diff options
-rw-r--r-- | src/ChangeLog | 16 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 12 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 12 | ||||
-rw-r--r-- | src/algebra/syntax.spad.pamphlet | 625 | ||||
-rw-r--r-- | src/interp/g-util.boot | 20 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3538 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5648 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1377 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9978 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33358 |
10 files changed, 27717 insertions, 26867 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index ebc7e957..ddd5fd61 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,19 @@ +2008-09-04 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * interp/g-util.boot (getTypeOfSyntax): Handle more ASTs. + * algebra/syntax.spad.pamphlet (SpadSyntaxCategory): Add + pretty-printer. + (HeadAst): Use Identifier. + (TypeAst,MappingAst,ImportAst,SignatureAst,AttributeAst,JoinAst, + IfAst,RepeatAst,WhileAst,InAst,CollectAst,ConstructAst, + ExitAst,ReturnAst,SequenceAst,LetAst,PretendAst,CoerceAst, + RestrictAst,CallAst,SegmentAst): New domains. + * algebra/Makefile.pamphlet (axiom_algebra_layer_user): Add + TYPEAST, IMPTAST, MAPPAST, ATTRAST, JOINAST, IFAST, RPTAST + WHILEAST, INAST, CLLCAST, LSTAST, EXITAST, RETAST, SEGAST, + PRTDAST, CRCAST, LETAST. + * share/algebra: Update databases. + 2008-09-02 Alfredo Portes <doyenatccny@gmail.com> * hyper/util.ht: Use OpenAxiom name in Hyperdoc pages. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 8f64184f..1c06da1f 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -817,7 +817,11 @@ axiom_algebra_layer_23_objects = \ $(addprefix $(OUT)/, \ $(addsuffix .$(FASLEXT),$(axiom_algebra_layer_23))) axiom_algebra_layer_user = \ - RINTERP ASTCAT ASTCAT- SASTCAT HEADAST LITERAL IDENT + RINTERP ASTCAT ASTCAT- SASTCAT SASTCAT- HEADAST \ + LITERAL IDENT TYPEAST IMPTAST MAPPAST ATTRAST \ + JOINAST IFAST RPTAST WHILEAST INAST CLLCAST \ + LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \ + LETAST axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -829,7 +833,11 @@ axiom_algebra_layer_user_objects = \ SASTCAT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT) LITERAL.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) IDENT.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) -HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) +HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT) +ATTRAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) +TYPEAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) +IMPTAST.NRLIB/code.$(FASLEXT): $(OUT)/TYPEAST.$(FASLEXT) +MAPPAST.NRLIB/code.$(FASLEXT): $(OUT)/TYPEAST.$(FASLEXT) .PHONY: all all-algebra mkdir-output-directory all: all-ax diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 974fc4c6..6073630c 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -1244,7 +1244,11 @@ Rather than classify newly created algebra into the existing type lattice we add it here. <<USERLAYER>>= axiom_algebra_layer_user = \ - RINTERP ASTCAT ASTCAT- SASTCAT HEADAST LITERAL IDENT + RINTERP ASTCAT ASTCAT- SASTCAT SASTCAT- HEADAST \ + LITERAL IDENT TYPEAST IMPTAST MAPPAST ATTRAST \ + JOINAST IFAST RPTAST WHILEAST INAST CLLCAST \ + LSTAST EXITAST RETAST SEGAST PRTDAST CRCAST \ + LETAST axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1256,7 +1260,11 @@ axiom_algebra_layer_user_objects = \ SASTCAT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT) LITERAL.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) IDENT.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) -HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) +HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT) +ATTRAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) +TYPEAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT) +IMPTAST.NRLIB/code.$(FASLEXT): $(OUT)/TYPEAST.$(FASLEXT) +MAPPAST.NRLIB/code.$(FASLEXT): $(OUT)/TYPEAST.$(FASLEXT) @ \section{Broken Files} diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet index ad742ab8..bd430752 100644 --- a/src/algebra/syntax.spad.pamphlet +++ b/src/algebra/syntax.spad.pamphlet @@ -385,11 +385,119 @@ AbstractSyntaxCategory(): Category == )abbrev category SASTCAT SpadSyntaxCategory ++ Author: Gabriel Dos Reis ++ Date Created: July 5, 2008 -++ Date Last Modified: September 1, 2008 +++ Date Last Modified: September 3, 2008 ++ Description: This is the category of Spad syntax objects. SpadSyntaxCategory(): Category == AbstractSyntaxCategory - -- for the moment. + add + renderSyntax: Syntax -> OutputForm + + renderMapping(x: List Syntax): OutputForm == + src := [renderSyntax t for t in rest x]::List(OutputForm)::OutputForm + tar := renderSyntax first x + elt('MappingAst::OutputForm, + ['source::OutputForm = src, 'target::OutputForm = tar])$OutputForm + + renderAttribute(x: Syntax): OutputForm == + elt('AttributeAst::OutputForm, + ['name::OutputForm = renderSyntax x])$OutputForm + + renderImport(x: List Syntax): OutputForm == + ts := [renderSyntax t for t in x]::List(OutputForm)::OutputForm + elt('ImportAst::OutputForm, ['imports::OutputForm = ts])$OutputForm + + renderSignature(x: List Syntax): OutputForm == + n := renderSyntax first x + s := (last(x) : Signature)::OutputForm + elt('SignatureAst::OutputForm, + ['name::OutputForm = n, 'signature::OutputForm = s])$OutputForm + + renderIf(x: List Syntax): OutputForm == + c := renderSyntax first x + t := renderSyntax second x + e := renderSyntax third x + elt('IfAst::OutputForm, + ['condition::OutputForm = c, 'thenBranch::OutputForm = t, + 'elseBranch::OutputForm = e])$OutputForm + + renderRepeat(x: List Syntax): OutputForm == + its := [renderSyntax(x.i) for i in 1..(#x-1)] + ::List(OutputForm)::OutputForm + b := renderSyntax last x + elt('RepeatAst::OutputForm, + ['iterators::OutputForm = its, 'body::OutputForm = b])$OutputForm + + renderWhile(x: List Syntax): OutputForm == + elt('WhileAst::OutputForm, + ['condition::OutputForm = renderSyntax(x : Syntax)])$OutputForm + + renderIn(x: List Syntax): OutputForm == + elt('InAst::OutputForm, + ['iterationVar::OutputForm = renderSyntax first x, + 'sequence::OutputForm = renderSyntax last x])$OutputForm + + renderCollect(x: List Syntax): OutputForm == + its := [renderSyntax(x.i) for i in 1..(#x-1)] + ::List(OutputForm)::OutputForm + elt('CollectAst::OutputForm, + ['iterators::OutputForm = its, + 'body::OutputForm = renderSyntax last x])$OutputForm + + renderConstruct(x: List Syntax): OutputForm == + es := [renderSyntax t for t in x]::List(OutputForm)::OutputForm + elt('ConstructAst::OutputForm, + ['elements::OutputForm = es])$OutputForm + + renderControl(tag: Symbol, x: List Syntax): OutputForm == + elt(tag::OutputForm, + ['expression::OutputForm = renderSyntax value x])$OutputForm + + renderRestrictedExpr(tag: Symbol, x: List Syntax): OutputForm == + elt(tag::OutputForm, + ['expression::OutputForm = renderSyntax first x, + 'target::OutputForm = renderSyntax second x])$OutputForm + + renderSegment(x: List Syntax): OutputForm == + es := [renderSyntax t for t in x]::List(OutputForm)::OutputForm + elt('SegmentAst::OutputForm, ['bounds::OutputForm = es])$OutputForm + + renderSequence(x: List Syntax): OutputForm == + elts := [renderSyntax t for t in x] + elt('SequenceAst::OutputForm, + ['body::OutputForm = elts::OutputForm, + 'last::OutputForm = last elts])$OutputForm + + renderLet(x: List Syntax): OutputForm == + elt('LetAst::OutputForm, + ['lhs::OutputForm = renderSyntax first x, + 'rhs::OutputForm = renderSyntax second x])$OutputForm + + renderSyntax x == + compound? x => + op := getOperator x + args := getOperands x + op = 'Mapping => renderMapping args + op = 'ATTRIBUTE or op = '%Attribute => renderAttribute value args + op = 'IMPORT or op = '%Import => renderImport args + op = 'SIGNATURE or op = '%Signature => renderSignature args + op = 'IF => renderIf args + op = 'REPEAT => renderRepeat args + op = 'WHILE => renderWhile args + op = 'IN => renderIn args + op = 'COLLECT => renderCollect args + op = 'construct => renderConstruct args + op = '_exit => renderControl('ExitAst,args) + op = '_return => renderControl('ReturnAst,args) + op = '_:_: => renderRestrictedExpr('CoerceAst,args) + op = '_pretend => renderRestrictedExpr('PretendAst,args) + op = '_@ => renderRestrictedExpr('RestrictAst,args) + op = 'SEGMENT => renderSegment args + op = 'SEQ => renderSequence args + op = '%LET => renderLet args + x::OutputForm + x::OutputForm + coerce(x: %): OutputForm == + renderSyntax(x::Syntax) @ \subsection{The Literal domain} @@ -436,24 +544,500 @@ import List Symbol )abbrev domain HEADAST HeadAst ++ Author: Gabriel Dos Reis ++ Date Created: November 10, 2007 -++ Date Last Modified: July 2008 +++ Date Last Modified: September 3, 2008 ++ Description: This domain represents the header of a definition. HeadAst(): Public == Private where Public == SpadSyntaxCategory with - headAst: List Symbol -> % - ++ headAst [f,x1,..,xn] constructs a function definition header. - name: % -> Symbol + headAst: (Identifier,List Identifier) -> % + ++ headAst(f,[x1,..,xn]) constructs a function definition header. + name: % -> Identifier ++ name(h) returns the name of the operation defined defined. - parameters: % -> List Symbol + parameters: % -> List Identifier ++ parameters(h) gives the parameters specified in the ++ definition header `h'. Private == add - Rep == List Symbol - headAst h == per h + Rep == List Identifier + headAst(op,args) == per cons(op,args) name h == first rep h parameters h == rest rep h + +@ + +\subsection{The TypeAst domain} + +<<domain TYPEAST TypeAst>>= +import AbstractSyntaxCategory +import Syntax +)abbrev domain TYPEAST TypeAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 28, 2008 +++ Description: This domain represents a type AST. +TypeAst(): Public == Private where + Public == SpadSyntaxCategory with + coerce: Syntax -> % + ++ s::TypeAst injects `s' into the TypeAst domain. + Private == add + Rep == Syntax + coerce(x: Syntax): % == per x + +@ + +\subsection{The ImportAst domain} + +<<domain IMPTAST ImportAst>>= +import List +import TypeAst +)abbrev domain IMPTAST ImportAst +)abbrev domain TYPEAST TypeAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 28, 2008 +++ Description: This domain represents an `import' of types. +ImportAst(): Public == Private where + Public == SpadSyntaxCategory with + coerce: List TypeAst -> % + ++ ts::ImportAst constructs an ImportAst for the list if types `ts'. + imports: % -> List TypeAst + ++ imports(x) returns the list of imported types. + Private == add + import Pair + Rep == Pair(Symbol, List TypeAst) + coerce(ts: List TypeAst): % == per pair('import,ts) + imports x == second rep x + +@ + +\subsection{The MappingAst domain} + +<<domain MAPPAST MappingAst>>= +)abbrev domain MAPPAST MappingAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 28, 2008 +++ Description: This domain represents a mapping type AST. A mapping AST +++ is a syntactic description of a function type, e.g. its result +++ type and the list of its argument types. +MappingAst(): Public == Private where + Public == Join(SpadSyntaxCategory, CoercibleTo TypeAst) with + coerce: Signature -> % + ++ sig::MappingAst builds a MappingAst from the Signature `sig'. + mappingAst: (List TypeAst, TypeAst) -> % + ++ mappingAst(s,t) builds the mapping AST s -> t + source: % -> List TypeAst + ++ source(s) returns the parameter type AST list of `s'. + target: % -> TypeAst + ++ target(s) returns the result type AST for `s'. + Private == add + import Pair + Rep == Pair(Symbol,Signature) + coerce(sig: Signature): % == per pair('Mapping,sig) + mappingAst(s,t) == + per pair('Mapping,cons(t,s) : Signature) + source x == source(second rep x)$Signature : List(TypeAst) + target x == target(second rep x)$Signature : TypeAst + coerce(x: %): TypeAst == x : TypeAst + +@ + +\subsection{The SignatureAst domain} + +<<domain SIGAST SignatureAst>>= +)abbrev domain SIGAST SignatureAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 28, 2008 +++ Description: This domain represents a signature AST. A signature AST +++ is a description of an exported operation, e.g. its name, result +++ type, and the list of its argument types. +SignatureAst(): Public == Private where + Public == SpadSyntaxCategory with + signatureAst: (Identifier, Signature) -> % + ++ signatureAst(n,s,t) builds the signature AST n: s -> t + name: % -> Symbol + ++ name(s) returns the name of the signature `s'. + signature: % -> Signature + ++ signature(s) returns AST of the declared signature for `s'. + Private == add + import List + Rep == Pair(Symbol, Pair(Symbol,List Signature)) + signatureAst(n,sig) == + per pair('SIGNATURE,pair(n,[sig])) + name x == first second rep x + signature x == value second second rep x + +@ + + +\subsection{The AttributeAst domain} + +<<domain ATTRAST AttributeAst>>= +)abbrev domain ATTRAST AttributeAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents the syntax of an attribute in +++ a category expression. +AttributeAst(): Public == Private where + Public == SpadSyntaxCategory with + name: % -> Syntax + ++ name(a) returns the name of the attribute `a'. Note, this + ++ name may be domain name, not just an identifier. + Private == add + Rep == Pair(Symbol,Syntax) + name x == second rep x + +@ + +\subsection{The JoinAst domain} + +<<domain JOINAST JoinAst>>= +)abbrev domain JOINAST JoinAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents the join of categories ASTs. +JoinAst(): Public == Private where + Public == Join(SpadSyntaxCategory, CoercibleTo TypeAst) with + coerce: List TypeAst -> % + ++ ts::JoinAst construct the AST for a join of the types `ts'. + categories: % -> List TypeAst + ++ catehories(x) returns the types in the join `x'. + Private == add + Rep == Pair(Symbol, List TypeAst) + categories x == second rep x + coerce(cats: List TypeAst): % == per pair('Join,cats) + coerce(x: %): TypeAst == x : TypeAst + +@ + + +\subsection{The IfAst domain} + +<<domain IFAST IfAst>>= +)abbrev domain IFAST IfAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents AST for conditional expressions. +IfAst(): Public == Private where + Public == SpadSyntaxCategory with + condition: % -> Syntax + ++ condition(e) returns the condition of the if-expression `e'. + thenBranch: % -> Syntax + ++ thenBranch(e) returns the `then-branch' of `e'. + elseBranch: % -> Syntax + ++ thenBranch(e) returns the `else-branch' of `e'. + Private == add + Rep == List Syntax + condition x == second rep x + thenBranch x == third rep x + elseBranch x == last rep x +@ + + +\subsection{The RepeatAst domain} + +<<domain RPTAST RepeatAst>>= +)abbrev domain RPTAST RepeatAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents the `repeat' iterator syntax. +RepeatAst(): Public == Private where + Public == SpadSyntaxCategory with + iterators: % -> List Syntax + ++ iterators(e) returns the list of iterators controlling the loop `e'. + body: % -> Syntax + ++ body(e) returns the body of the loop `e'. + Private == add + Rep == List Syntax + iterators x == + s := rep x + s.(2..(#s - 1)) + + body x == last rep x + +@ + +\subsection{The WhileAst domain} + +<<domain WHILEAST WhileAst>>= +)abbrev domain WHILEAST WhileAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents the `while' iterator syntax. +WhileAst(): Public == Private where + Public == SpadSyntaxCategory with + condition: % -> Syntax + ++ condition(i) returns the condition of the while iterator `i'. + Private == add + Rep == Pair(Symbol,Syntax) + condition x == second rep x + +@ + +\subsection{The InAst domain} + +<<domain INAST InAst>>= +)abbrev domain INAST InAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents the `in' iterator syntax. +InAst(): Public == Private where + Public == SpadSyntaxCategory with + iterationVar: % -> Symbol + ++ iterationVar(i) returns the name of the iterating + ++ variable of the `in' iterator 'i' + sequence: % -> Syntax + ++ sequence(i) returns the sequence expression being + ++ iterated over by `i'. + Private == add + Rep == List Syntax + iterationVar x == (second rep x)::Symbol + sequence x == last rep x +@ + +\subsection{The CollectAst domain} + +<<domain CLLCTAST CollectAst>>= +)abbrev domain CLLCTAST CollectAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents list comprehension syntax. +CollectAst(): Public == Private where + Public == SpadSyntaxCategory with + iterators: % -> List Syntax + ++ iterators(e) returns the list of the iterators of + ++ the list comprehension `e'. + body: % -> Syntax + ++ body(e) return the expression being + ++ collected by the list comprehension `e'. + Private == add + Rep == List Syntax + body x == last rep x + iterators x == + s := rep x + s.(2..(#s -1)) + +@ + + +\subsection{The ConstructAst domain} + +<<domain LSTAST ConstructAst>>= +)abbrev domain LSTAST ConstructAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents `literal sequence' syntax. +ConstructAst(): Public == Private where + Public == SpadSyntaxCategory with + elements: % -> List Syntax + ++ elements(e) returns the list of expressions in the + ++ `literal' list `e'. + Private == add + import Pair + Rep == Pair(Symbol, List Syntax) + elements x == second rep x + +@ + + +\subsection{The ExitAst domain} + +<<domain EXITAST ExitAst>>= +)abbrev domain EXITAST ExitAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents exit expressions. +ExitAst(): Public == Private where + Public == SpadSyntaxCategory with + expression: % -> Syntax + ++ expression(e) returns the exit expression of `e'. + Private == add + import Pair + Rep == Pair(Symbol,Syntax) + expression x == second rep x + +@ + + + +\subsection{The ReturnAst domain} + +<<domain RETAST ReturnAst>>= +)abbrev domain RETAST ReturnAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents `return' expressions. +ReturnAst(): Public == Private where + Public == SpadSyntaxCategory with + expression: % -> Syntax + ++ expression(e) returns the expression returned by `e'. + Private == add + import Pair + Rep == Pair(Symbol,Syntax) + expression x == second rep x + +@ + +\subsection{The SequenceAst domain} + +<<domain SEQAST SequenceAst>>= +)abbrev domain SEQAST SequenceAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents a block of expressions. +SequenceAst(): Public == Private where + Public == SpadSyntaxCategory with + body: % -> List Syntax + ++ body(e) returns the list of expressions in the sequence + ++ of instruction `e'. + last: % -> Syntax + ++ last(e) returns the last instruction in `e'. + Private == add + import Pair + Rep == Pair(Symbol,List Syntax) + body x == second rep x + last x == last(second rep x)$List(Syntax) +@ + +\subsection{The LetAst domain} + +<<domain LETAST LetAst>>= +import Syntax +import List +)abbrev domain LETAST LetAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents assignment expressions. +LetAst(): Public == Private where + Public == SpadSyntaxCategory with + lhs: % -> Syntax + ++ lhs(e) returns the left hand side of the assignment expression `e'. + rhs: % -> Syntax + ++ rhs(e) returns the right hand side of the assignment expression `e'. + Private == add + Rep == List Syntax + lhs x == second rep x + rhs x == third rep x + +@ + +\subsection{The PretendAst domain} + +<<domain PRTDAST PretendAst>>= +)abbrev domain PRTDAST PretendAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents `pretend' expressions. +PretendAst(): Public == Private where + Public == SpadSyntaxCategory with + expression: % -> Syntax + ++ expression(e) returns the expression being converted. + target: % -> TypeAst + ++ target(e) returns the target type of the conversion.. + Private == add + Rep == List Syntax + expression x == second rep x + target x == (third rep x) : TypeAst + +@ + +\subsection{The CoerceAst domain} + +<<domain CRCAST CoercedAst>>= +)abbrev domain CRCAST CoerceAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents `coerce' expressions. +CoerceAst(): Public == Private where + Public == SpadSyntaxCategory with + expression: % -> Syntax + ++ expression(e) returns the expression being converted. + target: % -> TypeAst + ++ target(e) returns the target type of the conversion.. + Private == add + Rep == List Syntax + expression x == second rep x + target x == (third rep x) : TypeAst + +@ + + +\subsection{The RestrictAst domain} + +<<domain RSTRCAST RestrictAst>>= +)abbrev domain RSTRCAST RestrictAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents `restrict' expressions. +RestrictAst(): Public == Private where + Public == SpadSyntaxCategory with + expression: % -> Syntax + ++ expression(e) returns the expression being converted. + target: % -> TypeAst + ++ target(e) returns the target type of the conversion.. + Private == add + Rep == List Syntax + expression x == second rep x + target x == (third rep x) : TypeAst + @ +\subsection{The CallAst domain} + +<<domain CALLAST CallAst>>= +import Syntax +import List +)abbrev domain CALLAST CallAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents calls. +CallAst(): Public == Private where + Public == SpadSyntaxCategory with + operator: % -> Syntax + ++ operation(e) returns the operation being called in `e'. + operands: % -> List Syntax + ++ arguments(e) returns the argument list used in the call `e'. + Private == add + Rep == List Syntax + operator x == first rep x + operands x == rest rep x + +@ + +\subsection{The SegmentAst domain} + +<<domain SEGAST SegmentAst>>= +)abbrev domain SEGAST SegmentAst +++ Author: Gabriel Dos Reis +++ Date Created: November 10, 2007 +++ Date Last Modified: August 30, 2008 +++ Description: This domain represents segement expressions. +SegmentAst(): Public == Private where + Public == SpadSyntaxCategory with + bounds: % -> List Syntax + Private == add + Rep == List Syntax + bounds x == rest rep x + +@ + + + \section{License} <<license>>= @@ -487,6 +1071,7 @@ HeadAst(): Public == Private where --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + @ <<*>>= @@ -500,6 +1085,28 @@ HeadAst(): Public == Private where <<domain LITERAL Literal>> <<domain HEADAST HeadAst>> +<<domain TYPEAST TypeAst>> +<<domain ATTRAST AttributeAst>> +<<domain IMPTAST ImportAst>> +<<domain MAPPAST MappingAst>> +<<domain SIGAST SignatureAst>> +<<domain JOINAST JoinAst>> + +<<domain IFAST IfAst>> +<<domain RPTAST RepeatAst>> +<<domain WHILEAST WhileAst>> +<<domain INAST InAst>> +<<domain CLLCTAST CollectAst>> +<<domain LSTAST ConstructAst>> +<<domain EXITAST ExitAst>> +<<domain RETAST ReturnAst>> +<<domain SEGAST SegmentAst>> +<<domain SEQAST SequenceAst>> +<<domain PRTDAST PretendAst>> +<<domain CRCAST CoercedAst>> +<<domain RSTRCAST RestrictAst>> +<<domain LETAST LetAst>> + @ \end{document} diff --git a/src/interp/g-util.boot b/src/interp/g-util.boot index d70a7361..6d3fe39f 100644 --- a/src/interp/g-util.boot +++ b/src/interp/g-util.boot @@ -125,6 +125,26 @@ getTypeOfSyntax t == (m := getBasicMode t) and not member(m,[$EmptyMode,$NoValueMode]) => ["Literal",m] $Syntax + [op,:.] := t + op = "Mapping" => '(MappingAst) + op = "Join" => '(JoinAst) + op in '(%Import import) => '(ImportAst) + op in '(%Signature SIGNATURE) => '(SignatureAst) + op = "QUOTE" and #t = 2 and IDENTP second t => ["Literal",$Symbol] + op = "IF" => '(IfAst) + op = "REPEAT" => '(RepeatAst) + op = "WHILE" => '(WhileAst) + op = "IN" => '(InAst) + op = "COLLECT" => '(CollectAst) + op = "construct" => '(ConstructAst) + op = "exit" => '(ExitAst) + op = "return" => '(ReturnAst) + op = "SEGMENT" => '(SegmentAst) + op = "SEQ" => '(SequenceAst) + op = "pretend" => '(PretendAst) + op = "::" => '(CoerceAst) + op = "@" => '(RestrictAst) + op = "%LET" => '(LetAst) $Syntax --% diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index b838ce6e..148bd83f 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2243104 . 3429317349) +(2247723 . 3429568332) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,20 +46,20 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4270 . T) (-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4266 . T) (-4271 . T) (-4265 . T) (-4120 . T)) +((-4297 . T) (-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4293 . T) (-4298 . T) (-4292 . T) (-4120 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -1327) +(-31 R -1393) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) +((|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4273))) +((|HasAttribute| |#1| (QUOTE -4300))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) ((-4120 . T)) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,20 +78,20 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL (-38 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -1327 UP UPUP -1406) +(-39 -1393 UP UPUP -2084) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4266 |has| (-388 |#2|) (-344)) (-4271 |has| (-388 |#2|) (-344)) (-4265 |has| (-388 |#2|) (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1435 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1435 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1435 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344))))) -(-40 R -1327) +((-4293 |has| (-391 |#2|) (-347)) (-4298 |has| (-391 |#2|) (-347)) (-4292 |has| (-391 |#2|) (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-391 |#2|) (QUOTE (-139))) (|HasCategory| (-391 |#2|) (QUOTE (-141))) (|HasCategory| (-391 |#2|) (QUOTE (-333))) (-1533 (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-352))) (-1533 (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (-1533 (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-333))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347))))) +(-40 R -1393) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -414) (|devaluate| |#1|))))) (-41 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -99,34 +99,34 @@ NIL (-42 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-289)))) +((|HasCategory| |#1| (QUOTE (-291)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4270 |has| |#1| (-523)) (-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) +((-4297 |has| |#1| (-529)) (-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4273 . T) (-4274 . T)) -((-1435 (-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|))))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) +((-4300 . T) (-4301 . T)) +((-1533 (-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|))))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531))))) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) (-48) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4270 . T)) +((-4297 . T)) NIL (-50 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -140,7 +140,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -1327) +(-53 |Base| R -1393) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,7 +150,7 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL (-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -158,65 +158,65 @@ NIL NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-59 -3955) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-59 -3923) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -3955) +(-60 -3923) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -3955) +(-61 -3923) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3955) +(-62 -3923) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-63 -3955) +(-63 -3923) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3955) +(-64 -3923) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3955) +(-65 -3923) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3955) +(-66 -3923) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3955) +(-67 -3923) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3955) +(-68 -3923) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3955) +(-69 -3923) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3955) +(-70 -3923) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3955) +(-71 -3923) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3955) +(-72 -3923) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -228,66 +228,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3955) +(-75 -3923) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-76 -3955) +(-76 -3923) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3955) +(-77 -3923) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3955) +(-78 -3923) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3955) +(-79 -3923) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3955) +(-80 -3923) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3955) +(-81 -3923) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3955) +(-82 -3923) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3955) +(-83 -3923) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3955) +(-84 -3923) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3955) +(-85 -3923) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3955) +(-86 -3923) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -3955) +(-87 -3923) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-88 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-344)))) +((|HasCategory| |#1| (QUOTE (-347)))) (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (-90 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -305,4472 +305,4540 @@ NIL NIL NIL (-94) -((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4273 . T)) +((|constructor| (NIL "This domain represents the syntax of an attribute in \\indented{2}{a category expression.}")) (|name| (((|Syntax|) $) "\\spad{name(a)} returns the name of the attribute `a'. Note,{} this name may be domain name,{} not just an identifier."))) +NIL NIL (-95) +((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) +((-4300 . T)) +NIL +(-96) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4273 . T) ((-4275 "*") . T) (-4274 . T) (-4270 . T) (-4268 . T) (-4267 . T) (-4266 . T) (-4271 . T) (-4265 . T) (-4264 . T) (-4263 . T) (-4262 . T) (-4261 . T) (-4269 . T) (-4272 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4260 . T)) +((-4300 . T) ((-4302 "*") . T) (-4301 . T) (-4297 . T) (-4295 . T) (-4294 . T) (-4293 . T) (-4298 . T) (-4292 . T) (-4291 . T) (-4290 . T) (-4289 . T) (-4288 . T) (-4296 . T) (-4299 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4287 . T)) NIL -(-96 R) +(-97 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-97 R UP) +(-98 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) NIL NIL -(-98 S) +(-99 S) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-99) +(-100) ((|constructor| (NIL "\\spadtype{BasicType} is the basic category for describing a collection of elements with \\spadop{=} (equality).")) (~= (((|Boolean|) $ $) "\\spad{x~=y} tests if \\spad{x} and \\spad{y} are not equal.")) (= (((|Boolean|) $ $) "\\spad{x=y} tests if \\spad{x} and \\spad{y} are equal."))) NIL NIL -(-100 S) +(-101 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-101 R UP M |Row| |Col|) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-102 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4275 "*")))) -(-102) +((|HasAttribute| |#1| (QUOTE (-4302 "*")))) +(-103) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4273 . T)) +((-4300 . T)) NIL -(-103 A S) +(-104 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL -(-104 S) +(-105 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-105) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138))))) (-106) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) +(-107) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL -(-107) +(-108) ((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-108) +(-109) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-110) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-806))))) -(-109 R S) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -293) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-111) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -579) (QUOTE (-816))))) +(-110 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-110) +(-111) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-111 A) +(-112 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-797)))) -(-112) +((|HasCategory| |#1| (QUOTE (-807)))) +(-113) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-113 -1327 UP) +(-114 -1393 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-114 |p|) +(-115 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-115 |p|) +(-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-114 |#1|) (QUOTE (-852))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-114 |#1|) (QUOTE (-962))) (|HasCategory| (-114 |#1|) (QUOTE (-770))) (-1435 (|HasCategory| (-114 |#1|) (QUOTE (-770))) (|HasCategory| (-114 |#1|) (QUOTE (-797)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-114 |#1|) (QUOTE (-1078))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-114 |#1|) (QUOTE (-216))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-289))) (|HasCategory| (-114 |#1|) (QUOTE (-516))) (|HasCategory| (-114 |#1|) (QUOTE (-797))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-852)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))))) -(-116 A S) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-115 |#1|) (QUOTE (-862))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-141))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-115 |#1|) (QUOTE (-973))) (|HasCategory| (-115 |#1|) (QUOTE (-780))) (-1533 (|HasCategory| (-115 |#1|) (QUOTE (-780))) (|HasCategory| (-115 |#1|) (QUOTE (-807)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-115 |#1|) (QUOTE (-1093))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-115 |#1|) (QUOTE (-218))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -270) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-291))) (|HasCategory| (-115 |#1|) (QUOTE (-522))) (|HasCategory| (-115 |#1|) (QUOTE (-807))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-115 |#1|) (QUOTE (-862)))) (|HasCategory| (-115 |#1|) (QUOTE (-139))))) +(-117 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4274))) -(-117 S) +((|HasAttribute| |#1| (QUOTE -4301))) +(-118 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) ((-4120 . T)) NIL -(-118 UP) +(-119 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-119 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (-120 S) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-121 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL -(-121) +(-122) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-122 A S) +(-123 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-123 S) +(-124 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL -(-124 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (-125 S) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-126 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-126) -((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| (-127) (QUOTE (-797))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1030))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127)))))) (-1435 (-12 (|HasCategory| (-127) (QUOTE (-1030))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-127) (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| (-127) (QUOTE (-797))) (|HasCategory| (-127) (QUOTE (-1030)))) (|HasCategory| (-127) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-127) (QUOTE (-1030))) (-12 (|HasCategory| (-127) (QUOTE (-1030))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-806))))) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (-127) +((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| (-128) (QUOTE (-807))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1045))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128)))))) (-1533 (-12 (|HasCategory| (-128) (QUOTE (-1045))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-128) (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| (-128) (QUOTE (-807))) (|HasCategory| (-128) (QUOTE (-1045)))) (|HasCategory| (-128) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-128) (QUOTE (-1045))) (-12 (|HasCategory| (-128) (QUOTE (-1045))) (|HasCategory| (-128) (LIST (QUOTE -293) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -579) (QUOTE (-816))))) +(-128) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-128) +(-129) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-129) +(-130) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-130) +(-131) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4275 "*") . T)) +(((-4302 "*") . T)) NIL -(-131 |minix| -3169 S T$) +(-132 |minix| -1532 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-132 |minix| -3169 R) +(-133 |minix| -1532 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-133) +(-134) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: February 16,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type"))) NIL NIL -(-134) +(-135) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4273 . T) (-4263 . T) (-4274 . T)) -((-1435 (-12 (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806))))) -(-135 R Q A) +((-4300 . T) (-4290 . T) (-4301 . T)) +((-1533 (-12 (|HasCategory| (-138) (QUOTE (-352))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-138) (QUOTE (-352))) (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816))))) +(-136 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-136) +(-137) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-137) +(-138) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-138) +(-139) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4270 . T)) +((-4297 . T)) NIL -(-139 R) +(-140 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-140) +(-141) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4270 . T)) +((-4297 . T)) NIL -(-141 -1327 UP UPUP) +(-142 -1393 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-142 R CR) +(-143 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-143 A S) +(-144 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasAttribute| |#1| (QUOTE -4273))) -(-144 S) +((|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasAttribute| |#1| (QUOTE -4300))) +(-145 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) ((-4120 . T)) NIL -(-145 |n| K Q) +(-146 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4268 . T) (-4267 . T) (-4270 . T)) +((-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-146) +(-147) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-147 UP |Par|) +(-148 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-148) +(-149) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-149 R -1327) +(-150 R -1393) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-150 I) +(-151 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-151) +(-152) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-152) +(-153) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-153) +(-154) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-154 R UP UPUP) +(-155 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-155 S R) +(-156 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-943))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasAttribute| |#2| (QUOTE -4269)) (|HasAttribute| |#2| (QUOTE -4272)) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-797)))) -(-156 R) +((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1139))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-347))) (|HasAttribute| |#2| (QUOTE -4296)) (|HasAttribute| |#2| (QUOTE -4299)) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-807)))) +(-157 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4266 -1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4269 |has| |#1| (-6 -4269)) (-4272 |has| |#1| (-6 -4272)) (-4157 . T) (-4120 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 -1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4296 |has| |#1| (-6 -4296)) (-4299 |has| |#1| (-6 -4299)) (-4161 . T) (-4120 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-157 RR PR) +(-158 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-158 R S) +(-159 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-159 R) +(-160 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4266 -1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4269 |has| |#1| (-6 -4269)) (-4272 |has| |#1| (-6 -4272)) (-4157 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-778)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-797)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-852))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-852))))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#1| (QUOTE (-995))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasAttribute| |#1| (QUOTE -4269)) (|HasAttribute| |#1| (QUOTE -4272)) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-330))))) -(-160 R S CS) +((-4293 -1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4296 |has| |#1| (-6 -4296)) (-4299 |has| |#1| (-6 -4299)) (-4161 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-333))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-218))) (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1139)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-862))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-862))))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#1| (QUOTE (-1007))) (-12 (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-218))) (-12 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasAttribute| |#1| (QUOTE -4296)) (|HasAttribute| |#1| (QUOTE -4299)) (-12 (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-333))))) +(-161 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-161) +(-162) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-162) +(-163) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-163 R) +(-164 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4275 "*") . T) (-4266 . T) (-4271 . T) (-4265 . T) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") . T) (-4293 . T) (-4298 . T) (-4292 . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-164) +(-165) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-165 R) +(-166 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-166 R |PolR| E) +(-167 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-167 R S CS) +(-168 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-895 |#2|) (LIST (QUOTE -829) (|devaluate| |#1|)))) -(-168 R) +((|HasCategory| (-905 |#2|) (LIST (QUOTE -839) (|devaluate| |#1|)))) +(-169 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-169 R UP) +(-170) +((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) +NIL +NIL +(-171 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-170 S ST) +(-172 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-171) +(-173) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-172 R -1327) +(-174 R -1393) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-173 R) +(-175 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-174) +(-176) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-175) +(-177) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-176) +(-178) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-177) +(-179) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-178) +(-180) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-179) +(-181) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-180) +(-182) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-181) +(-183) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-182) +(-184) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-183) +(-185) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-184) +(-186) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-185) +(-187) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-186) +(-188) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-187) +(-189) NIL NIL NIL -(-188) +(-190) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-189) +(-191) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-190) +(-192) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-191) +(-193) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-192) +(-194) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-193) +(-195) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-194) +(-196) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-195) +(-197) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-196) +(-198) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-197 N T$) +(-199 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-198 S) +(-200 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-199 -1327 UP UPUP R) +(-201 -1393 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-200 -1327 FP) +(-202 -1393 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-201) +(-203) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138))))) -(-202 R -1327) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) +(-204 R -1393) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-203 R) +(-205 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-204 R1 R2) +(-206 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-205 S) +(-207 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-206 |CoefRing| |listIndVar|) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-208 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-207 R -1327) +(-209 R -1393) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-208) +(-210) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-209) +(-211) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-210 R) +(-212 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4275 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-211 A S) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529))) (|HasAttribute| |#1| (QUOTE (-4302 "*"))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-213 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-212 S) +(-214 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-213 S R) +(-215 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216)))) -(-214 R) +((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218)))) +(-216 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-215 S) +(-217 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-216) +(-218) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4270 . T)) +((-4297 . T)) NIL -(-217 A S) +(-219 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4273))) -(-218 S) +((|HasAttribute| |#1| (QUOTE -4300))) +(-220 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-219) +(-221) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-220 S -3169 R) +(-222 S -1532 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795))) (|HasAttribute| |#3| (QUOTE -4270)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-1030)))) -(-221 -3169 R) +((|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805))) (|HasAttribute| |#3| (QUOTE -4297)) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-1045)))) +(-223 -1532 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T) (-4120 . T)) +((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T) (-4120 . T)) NIL -(-222 -3169 A B) +(-224 -1532 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-223 -3169 R) +(-225 -1532 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-743))) (-1435 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-986))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasAttribute| |#2| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) -(-224) +((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-753))) (-1533 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-163)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-352)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-998))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasAttribute| |#2| (QUOTE -4297)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) +(-226) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-225 S) +(-227 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-226) +(-228) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4266 . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-227 S) +(-229 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) ((-4120 . T)) NIL -(-228 S) +(-230 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-229 M) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-231 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-230 |vl| R) +(-232 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138))))) -(-231) +(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-233) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-232 |n| R M S) +(-234 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4270 -1435 (-3427 (|has| |#4| (-986)) (|has| |#4| (-216))) (-3427 (|has| |#4| (-986)) (|has| |#4| (-843 (-1102)))) (|has| |#4| (-6 -4270)) (-3427 (|has| |#4| (-986)) (|has| |#4| (-594 (-531))))) (-4267 |has| |#4| (-986)) (-4268 |has| |#4| (-986)) ((-4275 "*") |has| |#4| (-162)) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-677))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-743))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#4| (QUOTE (-344))) (-1435 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-986)))) (-1435 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344)))) (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (QUOTE (-743))) (-1435 (|HasCategory| |#4| (QUOTE (-743))) (|HasCategory| |#4| (QUOTE (-795)))) (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (QUOTE (-677))) (|HasCategory| |#4| (QUOTE (-162))) (-1435 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-986)))) (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-162)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-216)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-349)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-677)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-743)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-795)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-986)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-677))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-743))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (-1435 (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (|HasCategory| |#4| (QUOTE (-677))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (|HasCategory| |#4| (QUOTE (-986))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-1030)))) (-1435 (|HasAttribute| |#4| (QUOTE -4270)) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806))))) -(-233 |n| R S) +((-4297 -1533 (-3319 (|has| |#4| (-998)) (|has| |#4| (-218))) (-3319 (|has| |#4| (-998)) (|has| |#4| (-853 (-1117)))) (|has| |#4| (-6 -4297)) (-3319 (|has| |#4| (-998)) (|has| |#4| (-602 (-537))))) (-4294 |has| |#4| (-998)) (-4295 |has| |#4| (-998)) ((-4302 "*") |has| |#4| (-163)) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-687))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-753))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#4| (QUOTE (-347))) (-1533 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (QUOTE (-998)))) (-1533 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-347)))) (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (QUOTE (-753))) (-1533 (|HasCategory| |#4| (QUOTE (-753))) (|HasCategory| |#4| (QUOTE (-805)))) (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-687))) (|HasCategory| |#4| (QUOTE (-163))) (-1533 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-998)))) (|HasCategory| |#4| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-163)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-218)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-347)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-352)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-687)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-753)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-998)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-687))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-753))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (-1533 (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (|HasCategory| |#4| (QUOTE (-687))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (|HasCategory| |#4| (QUOTE (-998))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-1533 (|HasAttribute| |#4| (QUOTE -4297)) (-12 (|HasCategory| |#4| (QUOTE (-218))) (|HasCategory| |#4| (QUOTE (-998)))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#4| (QUOTE (-998))) (|HasCategory| |#4| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) +(-235 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4270 -1435 (-3427 (|has| |#3| (-986)) (|has| |#3| (-216))) (-3427 (|has| |#3| (-986)) (|has| |#3| (-843 (-1102)))) (|has| |#3| (-6 -4270)) (-3427 (|has| |#3| (-986)) (|has| |#3| (-594 (-531))))) (-4267 |has| |#3| (-986)) (-4268 |has| |#3| (-986)) ((-4275 "*") |has| |#3| (-162)) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#3| (QUOTE (-344))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-743))) (-1435 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795)))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-162))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-677)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-743)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-795)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-677))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (|HasCategory| |#3| (QUOTE (-986))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030)))) (-1435 (|HasAttribute| |#3| (QUOTE -4270)) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806))))) -(-234 A R S V E) +((-4297 -1533 (-3319 (|has| |#3| (-998)) (|has| |#3| (-218))) (-3319 (|has| |#3| (-998)) (|has| |#3| (-853 (-1117)))) (|has| |#3| (-6 -4297)) (-3319 (|has| |#3| (-998)) (|has| |#3| (-602 (-537))))) (-4294 |has| |#3| (-998)) (-4295 |has| |#3| (-998)) ((-4302 "*") |has| |#3| (-163)) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#3| (QUOTE (-347))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347)))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-753))) (-1533 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805)))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-163))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-163)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-218)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-347)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-352)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-687)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-753)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-687))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (|HasCategory| |#3| (QUOTE (-998))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-1533 (|HasAttribute| |#3| (QUOTE -4297)) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816))))) +(-236 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-216)))) -(-235 R S V E) +((|HasCategory| |#2| (QUOTE (-218)))) +(-237 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-236 S) +(-238 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL -(-237) +(-239) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-238 R |Ex|) +(-240 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-239) +(-241) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-240 R) +(-242 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-241 |Ex|) +(-243 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-242) +(-244) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-243) +(-245) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-244 S) +(-246 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-245) +(-247) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-246 R S V) +(-248 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#3| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#3| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-247 A S) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#3| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#3| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-249 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-248 S) +(-250 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-249) +(-251) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-250) +(-252) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-251) +(-253) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-252) +(-254) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-253) +(-255) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-254) +(-256) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-255) +(-257) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-256) +(-258) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-257) +(-259) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-258 R -1327) +(-260 R -1393) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-259 R -1327) +(-261 R -1393) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-260 |Coef| UTS ULS) +(-262 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-344)))) -(-261 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-347)))) +(-263 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-344)))) -(-262) +((|HasCategory| |#1| (QUOTE (-347)))) +(-264) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-263 A S) +(-265 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030)))) -(-264 S) +((|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045)))) +(-266 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-265 S) +(-267 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-266) +(-268) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-267 |Coef| UTS) +(-269 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-268 S |Index|) +(-270 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-269 S |Dom| |Im|) +(-271 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4274))) -(-270 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4301))) +(-272 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-271 S R |Mod| -3848 -3508 |exactQuo|) +(-273 S R |Mod| -1818 -1470 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-272) +(-274) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4266 . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-273) +(-275) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-274 R) +(-276 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-275 S R) +(-277 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-276 S) +(-278 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4270 -1435 (|has| |#1| (-986)) (|has| |#1| (-453))) (-4267 |has| |#1| (-986)) (-4268 |has| |#1| (-986))) -((|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-677)))) (|HasCategory| |#1| (QUOTE (-453))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-1030)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-284))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453)))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-986)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-277 |Key| |Entry|) +((-4297 -1533 (|has| |#1| (-998)) (|has| |#1| (-456))) (-4294 |has| |#1| (-998)) (-4295 |has| |#1| (-998))) +((|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-687)))) (|HasCategory| |#1| (QUOTE (-456))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1045)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-286))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-456)))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-998)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-279 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-278) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-280) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-279 -1327 S) +(-281 -1393 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-280 E -1327) +(-282 E -1393) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-281 A B) +(-283 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-282) +(-284) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-283 S) +(-285 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-986)))) -(-284) +((|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-998)))) +(-286) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-285 R1) +(-287 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-286 R1 R2) +(-288 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-287) +(-289) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-288 S) +(-290 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-289) +(-291) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-290 S R) +(-292 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-291 R) +(-293 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-292 -1327) +(-294 -1393) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-293) +(-295) +((|constructor| (NIL "This domain represents exit expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +NIL +NIL +(-296) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-294 R FE |var| |cen|) +(-297 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-962))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-770))) (-1435 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-770))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-797)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-1078))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-216))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -291) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -268) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-289))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-516))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-797))) (-12 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (|HasCategory| $ (QUOTE (-138)))) (-1435 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (-12 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (|HasCategory| $ (QUOTE (-138)))))) -(-295 R S) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-973))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-780))) (-1533 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-780))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-807)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-1093))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-218))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -293) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (LIST (QUOTE -270) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-291))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-522))) (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (|HasCategory| $ (QUOTE (-139)))) (-1533 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-139))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (|HasCategory| $ (QUOTE (-139)))))) +(-298 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-296 R FE) +(-299 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-297 R) +(-300 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4270 -1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (-12 (|has| |#1| (-523)) (-1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (|has| |#1| (-986)) (|has| |#1| (-453)))) (|has| |#1| (-986)) (|has| |#1| (-453))) (-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) ((-4275 "*") |has| |#1| (-523)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-523)) (-4265 |has| |#1| (-523))) -((-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-1042)))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))))) (-1435 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-1042)))) (-1435 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531))))) -(-298 R -1327) +((-4297 -1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (-12 (|has| |#1| (-529)) (-1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (|has| |#1| (-998)) (|has| |#1| (-456)))) (|has| |#1| (-998)) (|has| |#1| (-456))) (-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) ((-4302 "*") |has| |#1| (-529)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-529)) (-4292 |has| |#1| (-529))) +((-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1057)))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))))) (-1533 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1057)))) (-1533 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))))) (-1533 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#1| (QUOTE (-998)))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) +(-301 R -1393) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-299) +(-302) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-300 FE |var| |cen|) +(-303 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|))))))) -(-301 M) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-304 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-302 E OV R P) +(-305 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-303 S) +(-306 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-742)))) -(-304 S E) +((-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-752)))) +(-307 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-305 S) +(-308 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-721) (QUOTE (-742)))) -(-306 S R E) +((|HasCategory| (-731) (QUOTE (-752)))) +(-309 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162)))) -(-307 R E) +((|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163)))) +(-310 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-308 S) +(-311 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-309 S -1327) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-312 S -1393) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-349)))) -(-310 -1327) +((|HasCategory| |#2| (QUOTE (-352)))) +(-313 -1393) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-311) +(-314) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-312 E) +(-315 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-313) +(-316) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-314 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-317 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-315 S -1327 UP UPUP R) +(-318 S -1393 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-316 -1327 UP UPUP R) +(-319 -1393 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-317 -1327 UP UPUP R) +(-320 -1393 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-318 S R) +(-321 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-319 R) +((|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-322 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-320 |basicSymbols| |subscriptedSymbols| R) +(-323 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-360)))) (|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531))))) -(-321 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-363)))) (|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) +(-324 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-322 S -1327 UP UPUP) +(-325 S -1393 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-344)))) -(-323 -1327 UP UPUP) +((|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-347)))) +(-326 -1393 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4266 |has| (-388 |#2|) (-344)) (-4271 |has| (-388 |#2|) (-344)) (-4265 |has| (-388 |#2|) (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 |has| (-391 |#2|) (-347)) (-4298 |has| (-391 |#2|) (-347)) (-4292 |has| (-391 |#2|) (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-324 |p| |extdeg|) +(-327 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| (-853 |#1|) (QUOTE (-138))) (|HasCategory| (-853 |#1|) (QUOTE (-349)))) (|HasCategory| (-853 |#1|) (QUOTE (-140))) (|HasCategory| (-853 |#1|) (QUOTE (-349))) (|HasCategory| (-853 |#1|) (QUOTE (-138)))) -(-325 GF |defpol|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| (-863 |#1|) (QUOTE (-139))) (|HasCategory| (-863 |#1|) (QUOTE (-352)))) (|HasCategory| (-863 |#1|) (QUOTE (-141))) (|HasCategory| (-863 |#1|) (QUOTE (-352))) (|HasCategory| (-863 |#1|) (QUOTE (-139)))) +(-328 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138)))) -(-326 GF |extdeg|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) +(-329 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138)))) -(-327 GF) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) +(-330 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-328 F1 GF F2) +(-331 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-329 S) +(-332 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-330) +(-333) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-331 R UP -1327) +(-334 R UP -1393) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-332 |p| |extdeg|) +(-335 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| (-853 |#1|) (QUOTE (-138))) (|HasCategory| (-853 |#1|) (QUOTE (-349)))) (|HasCategory| (-853 |#1|) (QUOTE (-140))) (|HasCategory| (-853 |#1|) (QUOTE (-349))) (|HasCategory| (-853 |#1|) (QUOTE (-138)))) -(-333 GF |uni|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| (-863 |#1|) (QUOTE (-139))) (|HasCategory| (-863 |#1|) (QUOTE (-352)))) (|HasCategory| (-863 |#1|) (QUOTE (-141))) (|HasCategory| (-863 |#1|) (QUOTE (-352))) (|HasCategory| (-863 |#1|) (QUOTE (-139)))) +(-336 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138)))) -(-334 GF |extdeg|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) +(-337 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138)))) -(-335 |p| |n|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) +(-338 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| (-853 |#1|) (QUOTE (-138))) (|HasCategory| (-853 |#1|) (QUOTE (-349)))) (|HasCategory| (-853 |#1|) (QUOTE (-140))) (|HasCategory| (-853 |#1|) (QUOTE (-349))) (|HasCategory| (-853 |#1|) (QUOTE (-138)))) -(-336 GF |defpol|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| (-863 |#1|) (QUOTE (-139))) (|HasCategory| (-863 |#1|) (QUOTE (-352)))) (|HasCategory| (-863 |#1|) (QUOTE (-141))) (|HasCategory| (-863 |#1|) (QUOTE (-352))) (|HasCategory| (-863 |#1|) (QUOTE (-139)))) +(-339 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138)))) -(-337 -1327 GF) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) +(-340 -1393 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-338 GF) +(-341 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-339 -1327 FP FPP) +(-342 -1393 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-340 GF |n|) +(-343 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138)))) -(-341 R |ls|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-139)))) +(-344 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-342 S) +(-345 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4270 . T)) +((-4297 . T)) NIL -(-343 S) +(-346 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-344) +(-347) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-345 |Name| S) +(-348 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-346 S) +(-349 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-347 S R) +(-350 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-523)))) -(-348 R) +((|HasCategory| |#2| (QUOTE (-529)))) +(-351 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4270 |has| |#1| (-523)) (-4268 . T) (-4267 . T)) +((-4297 |has| |#1| (-529)) (-4295 . T) (-4294 . T)) NIL -(-349) +(-352) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-350 S R UP) +(-353 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-344)))) -(-351 R UP) +((|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-347)))) +(-354 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-352 S A R B) +(-355 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-353 A S) +(-356 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030)))) -(-354 S) +((|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045)))) +(-357 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4273 . T) (-4120 . T)) +((-4300 . T) (-4120 . T)) NIL -(-355 |VarSet| R) +(-358 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4268 . T) (-4267 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4295 . T) (-4294 . T)) NIL -(-356 S V) +(-359 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-357 S R) +(-360 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) -(-358 R) +((|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) +(-361 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4270 . T)) +((-4297 . T)) NIL -(-359 |Par|) +(-362 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-360) +(-363) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4256 . T) (-4264 . T) (-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4283 . T) (-4291 . T) (-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-361 |Par|) +(-364 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-362 R S) +(-365 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (QUOTE (-162)))) -(-363 R |Basis|) +((-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (QUOTE (-163)))) +(-366 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-364) +(-367) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) ((-4120 . T)) NIL -(-365) +(-368) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) ((-4120 . T)) NIL -(-366 R S) +(-369 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (QUOTE (-162)))) -(-367 S) +((-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (QUOTE (-163)))) +(-370 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-797)))) -(-368) +((|HasCategory| |#1| (QUOTE (-807)))) +(-371) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-369) +(-372) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-370) +(-373) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-371 |n| |class| R) +(-374 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-372) +(-375) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-373 -1327 UP UPUP R) +(-376 -1393 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-374 S) +(-377 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-375) +(-378) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-376) +(-379) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) ((-4120 . T)) NIL -(-377) +(-380) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) ((-4120 . T)) NIL -(-378) +(-381) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-379 -3955 |returnType| -2687 |symbols|) +(-382 -3923 |returnType| -2920 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-380 -1327 UP) +(-383 -1393 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-381 R) +(-384 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) ((-4120 . T)) NIL -(-382 S) +(-385 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-383) +(-386) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-384 S) +(-387 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#1| (QUOTE -4264))) -(-385) +((|HasAttribute| |#1| (QUOTE -4283)) (|HasAttribute| |#1| (QUOTE -4291))) +(-388) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-386 R S) +(-389 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-387 A B) +(-390 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-388 S) +(-391 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4260 -12 (|has| |#1| (-6 -4271)) (|has| |#1| (-432)) (|has| |#1| (-6 -4260))) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-770))) (-1435 (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-797)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-1078))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-516))) (-12 (|HasAttribute| |#1| (QUOTE -4271)) (|HasAttribute| |#1| (QUOTE -4260)) (|HasCategory| |#1| (QUOTE (-432)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-389 S R UP) +((-4287 -12 (|has| |#1| (-6 -4298)) (|has| |#1| (-435)) (|has| |#1| (-6 -4287))) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-780))) (-1533 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-807)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1093))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-788)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-522))) (-12 (|HasAttribute| |#1| (QUOTE -4298)) (|HasAttribute| |#1| (QUOTE -4287)) (|HasCategory| |#1| (QUOTE (-435)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-392 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-390 R UP) +(-393 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-391 A S) +(-394 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) -(-392 S) +((|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) +(-395 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-393 R1 F1 U1 A1 R2 F2 U2 A2) +(-396 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-394 R -1327 UP A) +(-397 R -1393 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-395 R -1327 UP A |ibasis|) +(-398 R -1393 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -977) (|devaluate| |#2|)))) -(-396 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -989) (|devaluate| |#2|)))) +(-399 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-397 S R) +(-400 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-344)))) -(-398 R) +((|HasCategory| |#2| (QUOTE (-347)))) +(-401 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4270 |has| |#1| (-523)) (-4268 . T) (-4267 . T)) +((-4297 |has| |#1| (-529)) (-4295 . T) (-4294 . T)) NIL -(-399 R) +(-402 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -291) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -268) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-1142))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-432)))) -(-400 R) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -293) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -270) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-1158))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-1158)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-435)))) +(-403 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-401 R FE |x| |cen|) +(-404 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-402 R A S B) +(-405 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-403 R FE |Expon| UPS TRAN |x|) +(-406 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-404 S A R B) +(-407 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-405 A S) +(-408 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-349)))) -(-406 S) +((|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-352)))) +(-409 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4273 . T) (-4263 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4290 . T) (-4301 . T) (-4120 . T)) NIL -(-407 R -1327) +(-410 R -1393) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-408 R E) +(-411 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4260 -12 (|has| |#1| (-6 -4260)) (|has| |#2| (-6 -4260))) (-4267 . T) (-4268 . T) (-4270 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4260)) (|HasAttribute| |#2| (QUOTE -4260)))) -(-409 R -1327) +((-4287 -12 (|has| |#1| (-6 -4287)) (|has| |#2| (-6 -4287))) (-4294 . T) (-4295 . T) (-4297 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4287)) (|HasAttribute| |#2| (QUOTE -4287)))) +(-412 R -1393) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-410 S R) +(-413 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) -(-411 R) +((|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) +(-414 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4270 -1435 (|has| |#1| (-986)) (|has| |#1| (-453))) (-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) ((-4275 "*") |has| |#1| (-523)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-523)) (-4265 |has| |#1| (-523)) (-4120 . T)) +((-4297 -1533 (|has| |#1| (-998)) (|has| |#1| (-456))) (-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) ((-4302 "*") |has| |#1| (-529)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-529)) (-4292 |has| |#1| (-529)) (-4120 . T)) NIL -(-412 R -1327) +(-415 R -1393) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-413 R -1327) +(-416 R -1393) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-414 R -1327) +(-417 R -1393) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-415) +(-418) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-416 R -1327 UP) +(-419 R -1393 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-47))))) -(-417) +((|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-47))))) +(-420) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-418) +(-421) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-419 |f|) +(-422 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-420) +(-423) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) ((-4120 . T)) NIL -(-421) +(-424) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) ((-4120 . T)) NIL -(-422 UP) +(-425 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-423 R UP -1327) +(-426 R UP -1393) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-424 R UP) +(-427 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-425 R) +(-428 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-385)))) -(-426) +((|HasCategory| |#1| (QUOTE (-388)))) +(-429) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-427 |Dom| |Expon| |VarSet| |Dpol|) +(-430 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-428 |Dom| |Expon| |VarSet| |Dpol|) +(-431 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-429 |Dom| |Expon| |VarSet| |Dpol|) +(-432 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-430 |Dom| |Expon| |VarSet| |Dpol|) +(-433 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-344)))) -(-431 S) +((|HasCategory| |#1| (QUOTE (-347)))) +(-434 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-432) +(-435) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-433 R |n| |ls| |gamma|) +(-436 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4270 |has| (-388 (-895 |#1|)) (-523)) (-4268 . T) (-4267 . T)) -((|HasCategory| (-388 (-895 |#1|)) (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-388 (-895 |#1|)) (QUOTE (-523)))) -(-434 |vl| R E) +((-4297 |has| (-391 (-905 |#1|)) (-529)) (-4295 . T) (-4294 . T)) +((|HasCategory| (-391 (-905 |#1|)) (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| (-391 (-905 |#1|)) (QUOTE (-529)))) +(-437 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138))))) -(-435 R BP) +(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-438 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-436 OV E S R P) +(-439 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-437 E OV R P) +(-440 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-438 R) +(-441 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-439 R FE) +(-442 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-440 RP TP) +(-443 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-441 |vl| R IS E |ff| P) +(-444 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-442 E V R P Q) +(-445 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-443 R E |VarSet| P) +(-446 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806))))) -(-444 S R E) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) +(-447 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-445 R E) +(-448 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-446) +(-449) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-447) +(-450) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-448) +(-451) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-449 S R E) +(-452 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-450 R E) +(-453 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-451 |lv| -1327 R) +(-454 |lv| -1393 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-452 S) +(-455 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-453) +(-456) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-454 |Coef| |var| |cen|) +(-457 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|))))))) -(-455 |Key| |Entry| |Tbl| |dent|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-458 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-797))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-456 R E V P) +((-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-807))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-459 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806))))) -(-457) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) +(-460) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-458 |Key| |Entry| |hashfn|) +(-461 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-459) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-462) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-460 |vl| R) +(-463 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138))))) -(-461 -3169 S) +(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-464 -1532 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-743))) (-1435 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-986))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasAttribute| |#2| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) -(-462) -((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Symbol|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|List| (|Symbol|))) "\\spad{headAst [f,{}x1,{}..,{}xn]} constructs a function definition header."))) +((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-753))) (-1533 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-163)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-352)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-998))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasAttribute| |#2| (QUOTE -4297)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) +(-465) +((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-463 S) +(-466 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-464 -1327 UP UPUP R) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-467 -1393 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-465 BP) +(-468 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-466) +(-469) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138))))) -(-467 A S) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) +(-470 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4273)) (|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) -(-468 S) +((|HasAttribute| |#1| (QUOTE -4300)) (|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) +(-471 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) ((-4120 . T)) NIL -(-469) +(-472) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-470 S) +(-473 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-471) +(-474) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-472 -1327 UP |AlExt| |AlPol|) +(-475 -1393 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-473) +(-476) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531))))) -(-474 S |mn|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| $ (QUOTE (-998))) (|HasCategory| $ (LIST (QUOTE -989) (QUOTE (-537))))) +(-477 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-475 R |mnRow| |mnCol|) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-478 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-476 K R UP) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-479 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-477 R UP -1327) +(-480 R UP -1393) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-478 |mn|) +(-481 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-110) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-806))))) -(-479 K R UP L) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -293) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-111) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-111) (QUOTE (-1045))) (|HasCategory| (-111) (LIST (QUOTE -579) (QUOTE (-816))))) +(-482 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-480) +(-483) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-481 R Q A B) +(-484 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-482 -1327 |Expon| |VarSet| |DPoly|) +(-485 -1393 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -573) (QUOTE (-1102))))) -(-483 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -580) (QUOTE (-1117))))) +(-486 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-484) +(-487) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-485 A S) +(-488 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-486 A S) +(-489 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-487 A S) +(-490 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-488 A S) +(-491 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-489 A S) +(-492 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-490 A S) +(-493 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-491 S A B) +(-494 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-492 A B) +(-495 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-493 S E |un|) +(-496 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-742)))) -(-494 S |mn|) +((|HasCategory| |#2| (QUOTE (-752)))) +(-497 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-495 |p| |n|) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-498) +((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|Syntax|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|Syntax|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|Syntax|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) +NIL +NIL +(-499 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| (-544 |#1|) (QUOTE (-138))) (|HasCategory| (-544 |#1|) (QUOTE (-349)))) (|HasCategory| (-544 |#1|) (QUOTE (-140))) (|HasCategory| (-544 |#1|) (QUOTE (-349))) (|HasCategory| (-544 |#1|) (QUOTE (-138)))) -(-496 R |mnRow| |mnCol| |Row| |Col|) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| (-550 |#1|) (QUOTE (-139))) (|HasCategory| (-550 |#1|) (QUOTE (-352)))) (|HasCategory| (-550 |#1|) (QUOTE (-141))) (|HasCategory| (-550 |#1|) (QUOTE (-352))) (|HasCategory| (-550 |#1|) (QUOTE (-139)))) +(-500 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-497 S |mn|) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-501 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-498 R |Row| |Col| M) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-502 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4274))) -(-499 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4301))) +(-503 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4274))) -(-500 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4301))) +(-504 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4275 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-501 GF) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529))) (|HasAttribute| |#1| (QUOTE (-4302 "*"))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-505) +((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) +NIL +NIL +(-506) +((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|Syntax|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) +NIL +NIL +(-507 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-502 R) +(-508 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-503 |Varset|) +(-509 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-504 K -1327 |Par|) +(-510 K -1393 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-505) +(-511) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-506 R) +(-512 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-507) +(-513) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-508 |Coef| UTS) +(-514 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-509 K -1327 |Par|) +(-515 K -1393 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-510 R BP |pMod| |nextMod|) +(-516 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-511 OV E R P) +(-517 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-512 K UP |Coef| UTS) +(-518 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-513 |Coef| UTS) +(-519 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-514 R UP) +(-520 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-515 S) +(-521 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-516) +(-522) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-517 |Key| |Entry| |addDom|) +(-523 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-518 R -1327) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-524 R -1393) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-519 R0 -1327 UP UPUP R) +(-525 R0 -1393 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-520) +(-526) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-521 R) +(-527 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4148 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4150 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-522 S) +(-528 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-523) +(-529) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-524 R -1327) +(-530 R -1393) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-525 I) +(-531 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-526) +(-532) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-527 R -1327 L) +(-533 R -1393 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -609) (|devaluate| |#2|)))) -(-528) +((|HasCategory| |#3| (LIST (QUOTE -617) (|devaluate| |#2|)))) +(-534) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-529 -1327 UP UPUP R) +(-535 -1393 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-530 -1327 UP) +(-536 -1393 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-531) +(-537) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4255 . T) (-4261 . T) (-4265 . T) (-4260 . T) (-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4282 . T) (-4288 . T) (-4292 . T) (-4287 . T) (-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-532) +(-538) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-533 R -1327 L) +(-539 R -1393 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -609) (|devaluate| |#2|)))) -(-534 R -1327) +((|HasCategory| |#3| (LIST (QUOTE -617) (|devaluate| |#2|)))) +(-540 R -1393) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-584))))) -(-535 -1327 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-1081)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-592))))) +(-541 -1393 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-536 S) +(-542 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-537 -1327) +(-543 -1393) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-538 R) +(-544 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4148 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4150 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-539) +(-545) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-540 R -1327) +(-546 R -1393) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-266))) (|HasCategory| |#2| (QUOTE (-584))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-266)))) (|HasCategory| |#1| (QUOTE (-523)))) -(-541 -1327 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-268))) (|HasCategory| |#2| (QUOTE (-592))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-268)))) (|HasCategory| |#1| (QUOTE (-529)))) +(-547 -1393 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-542 R -1327) +(-548 R -1393) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-543 |p| |unBalanced?|) +(-549 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-544 |p|) +(-550 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349)))) -(-545) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-352)))) +(-551) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-546 R -1327) +(-552 R -1393) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-547 E -1327) +(-553 E -1393) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-548 -1327) +(-554 -1393) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-1102))))) -(-549 I) +((-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-1117))))) +(-555 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-550 GF) +(-556 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-551 R) +(-557 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-140)))) -(-552) +((|HasCategory| |#1| (QUOTE (-141)))) +(-558) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-553 R E V P TS) +(-559 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-554 |mn|) +(-560 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (-1435 (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030)))) (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806))))) -(-555 E V R P) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (-1533 (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045)))) (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816))))) +(-561 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-556 |Coef|) +(-562 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|)))) (|HasCategory| (-531) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531)))))) -(-557 |Coef|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|)))) (|HasCategory| (-537) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537)))))) +(-563 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4268 |has| |#1| (-523)) (-4267 |has| |#1| (-523)) ((-4275 "*") |has| |#1| (-523)) (-4266 |has| |#1| (-523)) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-523)))) -(-558 A B) +((-4295 |has| |#1| (-529)) (-4294 |has| |#1| (-529)) ((-4302 "*") |has| |#1| (-529)) (-4293 |has| |#1| (-529)) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-529)))) +(-564 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-559 A B C) +(-565 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-560 R -1327 FG) +(-566 R -1393 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-561 S) +(-567 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-562 R |mn|) +(-568 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-563 S |Index| |Entry|) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-569 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (QUOTE (-797))) (|HasAttribute| |#1| (QUOTE -4273)) (|HasCategory| |#3| (QUOTE (-1030)))) -(-564 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (QUOTE (-807))) (|HasAttribute| |#1| (QUOTE -4300)) (|HasCategory| |#3| (QUOTE (-1045)))) +(-570 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) ((-4120 . T)) NIL -(-565) +(-571) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-566 R A) +(-572) +((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) +NIL +NIL +(-573 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4270 -1435 (-3427 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))) (-4268 . T) (-4267 . T)) -((-1435 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) -(-567 |Entry|) +((-4297 -1533 (-3319 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))) (-4295 . T) (-4294 . T)) +((-1533 (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) +(-574 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| (-1085) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-568 S |Key| |Entry|) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1100))) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| (-1100) (QUOTE (-807))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-575 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-569 |Key| |Entry|) +(-576 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-570 R S) +(-577 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-571 S) +(-578 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) -(-572 S) +((|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) +(-579 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-573 S) +(-580 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-574 -1327 UP) +(-581 -1393 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-575 S R) +(-582 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-576 R) +(-583 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4270 . T)) +((-4297 . T)) NIL -(-577 A R S) +(-584 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-795)))) -(-578 R -1327) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-805)))) +(-585 R -1393) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-579 R UP) +(-586 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4266 . T) (-4270 . T)) -((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) -(-580 R E V P TS ST) +((-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4293 . T) (-4297 . T)) +((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) +(-587 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-581 OV E Z P) +(-588 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-582 |VarSet| R |Order|) +(-589) +((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|Syntax|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|Syntax|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) +NIL +NIL +(-590 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-583 R |ls|) +(-591 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-584) +(-592) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-585 R -1327) +(-593 R -1393) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-586 |lv| -1327) +(-594 |lv| -1393) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-587) +(-595) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -1798) (QUOTE (-51))))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-51) (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-1085) (QUOTE (-797))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806))))) -(-588 S R) +((-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1100))) (LIST (QUOTE |:|) (QUOTE -2140) (QUOTE (-51))))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-51) (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -293) (QUOTE (-51))))) (|HasCategory| (-1100) (QUOTE (-807))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816))))) +(-596 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-344)))) -(-589 R) +((|HasCategory| |#2| (QUOTE (-347)))) +(-597 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4268 . T) (-4267 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4295 . T) (-4294 . T)) NIL -(-590 R A) +(-598 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4270 -1435 (-3427 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))) (-4268 . T) (-4267 . T)) -((-1435 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) -(-591 R FE) +((-4297 -1533 (-3319 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))) (-4295 . T) (-4294 . T)) +((-1533 (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -401) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -351) (|devaluate| |#1|)))) +(-599 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-592 R) +(-600 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-593 S R) +(-601 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3745 (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-344)))) -(-594 R) +((-3679 (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-347)))) +(-602 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-595 A B) +(-603 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-596 A B) +(-604 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-597 A B C) +(-605 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-598 S) +(-606 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-599 T$) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-607 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-600 S) +(-608 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-601 R) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-609 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-602 S E |un|) +(-610 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-603 A S) +(-611 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4274))) -(-604 S) +((|HasAttribute| |#1| (QUOTE -4301))) +(-612 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) ((-4120 . T)) NIL -(-605 R -1327 L) +(-613 R -1393 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-606 A) +(-614 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344)))) -(-607 A M) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) +(-615 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344)))) -(-608 S A) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) +(-616 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-344)))) -(-609 A) +((|HasCategory| |#2| (QUOTE (-347)))) +(-617 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-610 -1327 UP) +(-618 -1393 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-611 A -4032) +(-619 A -1303) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344)))) -(-612 A L) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) +(-620 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-613 S) +(-621 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-614) +(-622) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-615 M R S) +(-623 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (QUOTE (-741)))) -(-616 R) +((-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (QUOTE (-751)))) +(-624 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-617 |VarSet| R) +(-625 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4268 . T) (-4267 . T)) -((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-162)))) -(-618 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4295 . T) (-4294 . T)) +((|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-163)))) +(-626 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-619 S) +(-627 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-620 -1327) +(-628 -1393) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-621 -1327 |Row| |Col| M) +(-629 -1393 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-622 R E OV P) +(-630 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-623 |n| R) +(-631 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4270 . T) (-4273 . T) (-4267 . T) (-4268 . T)) -((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (-1435 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-523))) (-1435 (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-162)))) -(-624 |VarSet|) +((-4297 . T) (-4300 . T) (-4294 . T) (-4295 . T)) +((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (-1533 (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-529))) (-1533 (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-163)))) +(-632) +((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|Syntax|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) +NIL +NIL +(-633 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-625 A S) +(-634 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-626 S) +(-635 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) ((-4120 . T)) NIL -(-627 R) +(-636 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-628 |VarSet|) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-637 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-629 A) +(-638 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-630 A C) +(-639 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-631 A B C) +(-640 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-632 A) +(-641) +((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) +NIL +NIL +(-642 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-633 A C) +(-643 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-634 A B C) +(-644 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-635 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-645 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-636 S R |Row| |Col|) +(-646 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-523)))) -(-637 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-529)))) +(-647 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL -(-638 R |Row| |Col| M) +(-648 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523)))) -(-639 R) +((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529)))) +(-649 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4273 . T) (-4274 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4275 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-640 R) +((-4300 . T) (-4301 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-529))) (|HasAttribute| |#1| (QUOTE (-4302 "*"))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-650 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-641 T$) +(-651 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-642 S -1327 FLAF FLAS) +(-652 S -1393 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-643 R Q) +(-653 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-644) +(-654) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4266 . T) (-4271 |has| (-649) (-344)) (-4265 |has| (-649) (-344)) (-4157 . T) (-4272 |has| (-649) (-6 -4272)) (-4269 |has| (-649) (-6 -4269)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-649) (QUOTE (-140))) (|HasCategory| (-649) (QUOTE (-138))) (|HasCategory| (-649) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-649) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-649) (QUOTE (-349))) (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-649) (QUOTE (-216))) (-1435 (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (QUOTE (-330)))) (|HasCategory| (-649) (QUOTE (-330))) (|HasCategory| (-649) (LIST (QUOTE -268) (QUOTE (-649)) (QUOTE (-649)))) (|HasCategory| (-649) (LIST (QUOTE -291) (QUOTE (-649)))) (|HasCategory| (-649) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-649)))) (|HasCategory| (-649) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-649) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-649) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-649) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (-1435 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (QUOTE (-330)))) (|HasCategory| (-649) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-649) (QUOTE (-962))) (|HasCategory| (-649) (QUOTE (-1124))) (-12 (|HasCategory| (-649) (QUOTE (-943))) (|HasCategory| (-649) (QUOTE (-1124)))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-344))) (-12 (|HasCategory| (-649) (QUOTE (-330))) (|HasCategory| (-649) (QUOTE (-852))))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (-12 (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (QUOTE (-852)))) (-12 (|HasCategory| (-649) (QUOTE (-330))) (|HasCategory| (-649) (QUOTE (-852))))) (|HasCategory| (-649) (QUOTE (-516))) (-12 (|HasCategory| (-649) (QUOTE (-995))) (|HasCategory| (-649) (QUOTE (-1124)))) (|HasCategory| (-649) (QUOTE (-995))) (-1435 (|HasCategory| (-649) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-649) (QUOTE (-344)))) (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-344)))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-523)))) (-12 (|HasCategory| (-649) (QUOTE (-216))) (|HasCategory| (-649) (QUOTE (-344)))) (-12 (|HasCategory| (-649) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-649) (QUOTE (-344)))) (|HasCategory| (-649) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-649) (QUOTE (-797))) (|HasCategory| (-649) (QUOTE (-523))) (|HasAttribute| (-649) (QUOTE -4272)) (|HasAttribute| (-649) (QUOTE -4269)) (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-138)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-330))))) -(-645 S) +((-4293 . T) (-4298 |has| (-659) (-347)) (-4292 |has| (-659) (-347)) (-4161 . T) (-4299 |has| (-659) (-6 -4299)) (-4296 |has| (-659) (-6 -4296)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-659) (QUOTE (-141))) (|HasCategory| (-659) (QUOTE (-139))) (|HasCategory| (-659) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-659) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-659) (QUOTE (-352))) (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-659) (QUOTE (-218))) (-1533 (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (QUOTE (-333)))) (|HasCategory| (-659) (QUOTE (-333))) (|HasCategory| (-659) (LIST (QUOTE -270) (QUOTE (-659)) (QUOTE (-659)))) (|HasCategory| (-659) (LIST (QUOTE -293) (QUOTE (-659)))) (|HasCategory| (-659) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-659)))) (|HasCategory| (-659) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-659) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-659) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-659) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (-1533 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (QUOTE (-333)))) (|HasCategory| (-659) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-659) (QUOTE (-973))) (|HasCategory| (-659) (QUOTE (-1139))) (-12 (|HasCategory| (-659) (QUOTE (-954))) (|HasCategory| (-659) (QUOTE (-1139)))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-347))) (-12 (|HasCategory| (-659) (QUOTE (-333))) (|HasCategory| (-659) (QUOTE (-862))))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (-12 (|HasCategory| (-659) (QUOTE (-347))) (|HasCategory| (-659) (QUOTE (-862)))) (-12 (|HasCategory| (-659) (QUOTE (-333))) (|HasCategory| (-659) (QUOTE (-862))))) (|HasCategory| (-659) (QUOTE (-522))) (-12 (|HasCategory| (-659) (QUOTE (-1007))) (|HasCategory| (-659) (QUOTE (-1139)))) (|HasCategory| (-659) (QUOTE (-1007))) (-1533 (|HasCategory| (-659) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-659) (QUOTE (-347)))) (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-347)))) (-1533 (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-529)))) (-12 (|HasCategory| (-659) (QUOTE (-218))) (|HasCategory| (-659) (QUOTE (-347)))) (-12 (|HasCategory| (-659) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-659) (QUOTE (-347)))) (|HasCategory| (-659) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-659) (QUOTE (-807))) (|HasCategory| (-659) (QUOTE (-529))) (|HasAttribute| (-659) (QUOTE -4299)) (|HasAttribute| (-659) (QUOTE -4296)) (-12 (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-139)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-659) (QUOTE (-291))) (|HasCategory| (-659) (QUOTE (-862)))) (|HasCategory| (-659) (QUOTE (-333))))) +(-655 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-646 U) +(-656 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-647) +(-657) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-648 OV E -1327 PG) +(-658 OV E -1393 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-649) +(-659) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4150 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-650 R) +(-660 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-651) +(-661) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4272 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4299 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-652 S D1 D2 I) +(-662 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-653 S) +(-663 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-654 S) +(-664 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-655 S) +(-665 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-656 S T$) +(-666 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-657 S -4020 I) +(-667 S -4230 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-658 E OV R P) +(-668 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-659 R) +(-669 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-660 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-670 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-661) +(-671) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-662 R |Mod| -3848 -3508 |exactQuo|) +(-672 R |Mod| -1818 -1470 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-663 R |Rep|) +(-673 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-330))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-664 IS E |ff|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-333))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-674 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-665 R M) +(-675 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140)))) -(-666 R |Mod| -3848 -3508 |exactQuo|) +((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141)))) +(-676 R |Mod| -1818 -1470 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4270 . T)) +((-4297 . T)) NIL -(-667 S R) +(-677 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-668 R) +(-678 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-669 -1327) +(-679 -1393) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-670 S) +(-680 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-671) +(-681) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-672 S) +(-682 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-673) +(-683) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-674 S R UP) +(-684 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-330))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349)))) -(-675 R UP) +((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352)))) +(-685 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4266 |has| |#1| (-344)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 |has| |#1| (-347)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-676 S) +(-686 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-677) +(-687) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-678 -1327 UP) +(-688 -1393 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-679 |VarSet| E1 E2 R S PR PS) +(-689 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-680 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-690 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-681 E OV R PPR) +(-691 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-682 |vl| R) +(-692 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138))))) -(-683 E OV R PRF) +(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-862))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-818 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-693 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-684 E OV R P) +(-694 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-685 R S M) +(-695 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-686 R M) +(-696 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-797)))) -(-687 S) +((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-807)))) +(-697 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4263 . T) (-4274 . T) (-4120 . T)) +((-4290 . T) (-4301 . T) (-4120 . T)) NIL -(-688 S) +(-698 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4273 . T) (-4263 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-689) +((-4300 . T) (-4290 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-699) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-690 S) +(-700 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-691 |Coef| |Var|) +(-701 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4268 . T) (-4267 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-692 OV E R P) +(-702 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-693 E OV R P) +(-703 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-694 S R) +(-704 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-695 R) +(-705 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-696) +(-706) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-697) +(-707) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-698) +(-708) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-699) +(-709) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-700) +(-710) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-701) +(-711) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-702) +(-712) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-703) +(-713) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-704) +(-714) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-705) +(-715) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-706) +(-716) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-707) +(-717) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-708) +(-718) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-709) +(-719) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-710) +(-720) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-711 S) +(-721 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-712) +(-722) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-713 S) +(-723 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-714) +(-724) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-715 |Par|) +(-725 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-716 -1327) +(-726 -1393) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-717 P -1327) +(-727 P -1393) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-718 UP -1327) +(-728 UP -1393) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-719) +(-729) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-720 R) +(-730 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-721) +(-731) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4275 "*") . T)) +(((-4302 "*") . T)) NIL -(-722 R -1327) +(-732 R -1393) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-723 S) +(-733 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-724) +(-734) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-725 R |PolR| E |PolE|) +(-735 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-726 R E V P TS) +(-736 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-727 -1327 |ExtF| |SUEx| |ExtP| |n|) +(-737 -1393 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-728 BP E OV R P) +(-738 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-729 |Par|) +(-739 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-730 R |VarSet|) +(-740 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (QUOTE (-516)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-531))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -934) (QUOTE (-531))))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-731 R S) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (QUOTE (-522)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-537))))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-1117)))) (-3679 (|HasCategory| |#1| (LIST (QUOTE -945) (QUOTE (-537))))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-741 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-732 R) +(-742 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-733 R) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-743 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) -(-734 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) +(-744 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-735 S) +(-745 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-162)))) -(-736) +((-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-807)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-163)))) +(-746) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-737) +(-747) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-738) +(-748) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-739) +(-749) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-740 |Curve|) +(-750 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-741) +(-751) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-742) +(-752) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-743) +(-753) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-744) +(-754) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-745) +(-755) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-746 S R) +(-756 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-349)))) -(-747 R) +((|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-352)))) +(-757 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-748 -1435 R OS S) +(-758 -1533 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-749 R) +(-759 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-1435 (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) -(-750) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (-1533 (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-951 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) +(-760) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-751 R -1327 L) +(-761 R -1393 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-752 R -1327) +(-762 R -1393) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-753) +(-763) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-754 R -1327) +(-764 R -1393) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-755) +(-765) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-756 -1327 UP UPUP R) +(-766 -1393 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-757 -1327 UP L LQ) +(-767 -1393 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-758) +(-768) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-759 -1327 UP L LQ) +(-769 -1393 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-760 -1327 UP) +(-770 -1393 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-761 -1327 L UP A LO) +(-771 -1393 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-762 -1327 UP) +(-772 -1393 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-763 -1327 LO) +(-773 -1393 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-764 -1327 LODO) +(-774 -1393 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-765 -3169 S |f|) +(-775 -1532 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-743))) (-1435 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-986))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasAttribute| |#2| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) -(-766 R) +((-4294 |has| |#2| (-998)) (-4295 |has| |#2| (-998)) (-4297 |has| |#2| (-6 -4297)) ((-4302 "*") |has| |#2| (-163)) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-753))) (-1533 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805)))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-998)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-163)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-352)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-753))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-998))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasAttribute| |#2| (QUOTE -4297)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) +(-776 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-767 |Kernels| R |var|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-778 (-1117)) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-777 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4275 "*") |has| |#2| (-344)) (-4266 |has| |#2| (-344)) (-4271 |has| |#2| (-344)) (-4265 |has| |#2| (-344)) (-4270 . T) (-4268 . T) (-4267 . T)) -((|HasCategory| |#2| (QUOTE (-344)))) -(-768 S) +(((-4302 "*") |has| |#2| (-347)) (-4293 |has| |#2| (-347)) (-4298 |has| |#2| (-347)) (-4292 |has| |#2| (-347)) (-4297 . T) (-4295 . T) (-4294 . T)) +((|HasCategory| |#2| (QUOTE (-347)))) +(-778 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-769 S) +(-779 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-770) +(-780) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-771) +(-781) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-772) +(-782) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-773) +(-783) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-774) +(-784) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-775) +(-785) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-776 R) +(-786 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-777 P R) +(-787 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-216)))) -(-778) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-218)))) +(-788) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-779) +(-789) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-780 S) +(-790 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4273 . T) (-4263 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4290 . T) (-4301 . T) (-4120 . T)) NIL -(-781) +(-791) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-782 R S) +(-792 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-783 R) +(-793 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4270 |has| |#1| (-795))) -((|HasCategory| |#1| (QUOTE (-795))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-784 R) +((-4297 |has| |#1| (-805))) +((|HasCategory| |#1| (QUOTE (-805))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-805)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-794 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140)))) -(-785) +((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141)))) +(-795) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-786) +(-796) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-787) +(-797) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-788) +(-798) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-789 R S) +(-799 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-790 R) +(-800 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4270 |has| |#1| (-795))) -((|HasCategory| |#1| (QUOTE (-795))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-791) +((-4297 |has| |#1| (-805))) +((|HasCategory| |#1| (QUOTE (-805))) (-1533 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-805)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-801) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-792 -3169 S) +(-802 -1532 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-793) +(-803) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-794 S) +(-804 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-795) +(-805) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4270 . T)) +((-4297 . T)) NIL -(-796 S) +(-806 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-797) +(-807) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-798 S R) +(-808 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162)))) -(-799 R) +((|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163)))) +(-809 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-800 R C) +(-810 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) -(-801 R |sigma| -1784) +((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) +(-811 R |sigma| -2108) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344)))) -(-802 |x| R |sigma| -1784) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-347)))) +(-812 |x| R |sigma| -2108) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-344)))) -(-803 R) +((-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-347)))) +(-813 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) -(-804) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) +(-814) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-805) +(-815) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-806) +(-816) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-807) +(-817) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-808 |VariableList|) +(-818 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-809 R |vl| |wl| |wtlevel|) +(-819 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) -(-810 R PS UP) +((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347)))) +(-820 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-811 R |x| |pt|) +(-821 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-812 |p|) +(-822 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-813 |p|) +(-823 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-814 |p|) +(-824 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-813 |#1|) (QUOTE (-852))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-813 |#1|) (QUOTE (-138))) (|HasCategory| (-813 |#1|) (QUOTE (-140))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-813 |#1|) (QUOTE (-962))) (|HasCategory| (-813 |#1|) (QUOTE (-770))) (-1435 (|HasCategory| (-813 |#1|) (QUOTE (-770))) (|HasCategory| (-813 |#1|) (QUOTE (-797)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-813 |#1|) (QUOTE (-1078))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-813 |#1|) (QUOTE (-216))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -813) (|devaluate| |#1|)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -813) (|devaluate| |#1|)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -813) (|devaluate| |#1|)) (LIST (QUOTE -813) (|devaluate| |#1|)))) (|HasCategory| (-813 |#1|) (QUOTE (-289))) (|HasCategory| (-813 |#1|) (QUOTE (-516))) (|HasCategory| (-813 |#1|) (QUOTE (-797))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-813 |#1|) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-813 |#1|) (QUOTE (-852)))) (|HasCategory| (-813 |#1|) (QUOTE (-138))))) -(-815 |p| PADIC) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-823 |#1|) (QUOTE (-862))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-823 |#1|) (QUOTE (-139))) (|HasCategory| (-823 |#1|) (QUOTE (-141))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-823 |#1|) (QUOTE (-973))) (|HasCategory| (-823 |#1|) (QUOTE (-780))) (-1533 (|HasCategory| (-823 |#1|) (QUOTE (-780))) (|HasCategory| (-823 |#1|) (QUOTE (-807)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-823 |#1|) (QUOTE (-1093))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-823 |#1|) (QUOTE (-218))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -293) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| (-823 |#1|) (LIST (QUOTE -270) (LIST (QUOTE -823) (|devaluate| |#1|)) (LIST (QUOTE -823) (|devaluate| |#1|)))) (|HasCategory| (-823 |#1|) (QUOTE (-291))) (|HasCategory| (-823 |#1|) (QUOTE (-522))) (|HasCategory| (-823 |#1|) (QUOTE (-807))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-823 |#1|) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-823 |#1|) (QUOTE (-862)))) (|HasCategory| (-823 |#1|) (QUOTE (-139))))) +(-825 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-770))) (-1435 (|HasCategory| |#2| (QUOTE (-770))) (|HasCategory| |#2| (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-797))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138))))) -(-816 S T$) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-780))) (-1533 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-807)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-807))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-826 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))) -(-817) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))))) +(-827) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-818) +(-828) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-819 CF1 CF2) +(-829 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-820 |ComponentFunction|) +(-830 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-821 CF1 CF2) +(-831 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-822 |ComponentFunction|) +(-832 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-823) +(-833) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-824 CF1 CF2) +(-834 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-825 |ComponentFunction|) +(-835 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-826) +(-836) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-827 R) +(-837 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-828 R S L) +(-838 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-829 S) +(-839 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-830 |Base| |Subject| |Pat|) +(-840 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3745 (|HasCategory| |#2| (QUOTE (-986)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102))))) -(-831 R A B) +((-12 (-3679 (|HasCategory| |#2| (QUOTE (-998)))) (-3679 (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))))) (-12 (|HasCategory| |#2| (QUOTE (-998))) (-3679 (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117))))) +(-841 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-832 R S) +(-842 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-833 R -4020) +(-843 R -4230) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-834 R S) +(-844 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-835 R) +(-845 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-836 |VarSet|) +(-846 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-837 UP R) +(-847 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-838) +(-848) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-839 UP -1327) +(-849 UP -1393) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-840) +(-850) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-841) +(-851) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-842 A S) +(-852 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-843 S) +(-853 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4270 . T)) +((-4297 . T)) NIL -(-844 S) +(-854 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-845 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-855 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-846 S) +(-856 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4270 . T)) +((-4297 . T)) NIL -(-847 S) +(-857 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-848 S) +(-858 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4270 . T)) -((-1435 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-797)))) -(-849 R E |VarSet| S) +((-4297 . T)) +((-1533 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-807)))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-807)))) +(-859 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-850 R S) +(-860 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-851 S) +(-861 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-138)))) -(-852) +((|HasCategory| |#1| (QUOTE (-139)))) +(-862) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-853 |p|) +(-863 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349)))) -(-854 R0 -1327 UP UPUP R) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| $ (QUOTE (-141))) (|HasCategory| $ (QUOTE (-139))) (|HasCategory| $ (QUOTE (-352)))) +(-864 R0 -1393 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-855 UP UPUP R) +(-865 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-856 UP UPUP) +(-866 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-857 R) +(-867 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-858 R) +(-868 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-859 E OV R P) +(-869 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-860) +(-870) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-861 -1327) +(-871 -1393) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-862 R) +(-872 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-863) +(-873) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-864) +(-874) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4275 "*") . T)) +(((-4302 "*") . T)) NIL -(-865 -1327 P) +(-875 -1393 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-866 |xx| -1327) +(-876 |xx| -1393) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-867 R |Var| |Expon| GR) +(-877 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-868 S) +(-878 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-869) +(-879) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-870) +(-880) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-871) +(-881) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-872 R -1327) +(-882 R -1393) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-873) +(-883) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-874 S A B) +(-884 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-875 S R -1327) +(-885 S R -1393) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-876 I) +(-886 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-877 S E) +(-887 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-878 S R L) +(-888 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-879 S E V R P) +(-889 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -829) (|devaluate| |#1|)))) -(-880 R -1327 -4020) +((|HasCategory| |#3| (LIST (QUOTE -839) (|devaluate| |#1|)))) +(-890 R -1393 -4230) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-881 -4020) +(-891 -4230) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-882 S R Q) +(-892 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-883 S) +(-893 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-884 S R P) +(-894 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-885) +(-895) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-886 R) +(-896 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-887 |lv| R) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-897 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-888 |TheField| |ThePols|) +(-898 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-795)))) -(-889 R S) +((|HasCategory| |#1| (QUOTE (-805)))) +(-899 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-890 |x| R) +(-900 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-891 S R E |VarSet|) +(-901 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-852))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#4| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-797)))) -(-892 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#4| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#4| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#4| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-807)))) +(-902 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-893 E V R P -1327) +(-903 E V R P -1393) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-894 E |Vars| R P S) +(-904 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-895 R) +(-905 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-896 E V R P -1327) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1117) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-906 E V R P -1393) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-432)))) -(-897) +((|HasCategory| |#3| (QUOTE (-435)))) +(-907) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-898) +(-908) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-899 R L) +(-909 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-900 A B) +(-910 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-901 S) +(-911 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-902) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-912) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-903 -1327) +(-913 -1393) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-904 I) +(-914 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-905) +(-915) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-906 R E) +(-916 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-128)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271))) -(-907 A B) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-129)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298))) +(-917 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4270 -12 (|has| |#2| (-453)) (|has| |#1| (-453)))) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-797))))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743))))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-677))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743))))) (-12 (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-797))))) -(-908) +((-4297 -12 (|has| |#2| (-456)) (|has| |#1| (-456)))) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753)))) (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-807))))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753))))) (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-456)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-456)))) (-12 (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-687))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-352)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-456))) (|HasCategory| |#2| (QUOTE (-456)))) (-12 (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#1| (QUOTE (-753))) (|HasCategory| |#2| (QUOTE (-753))))) (-12 (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-687)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-807))))) +(-918) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-909 T$) +(-919 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-910) +((|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-920) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-911 S) +(-921 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL -(-912 R |polR|) +(-922 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-432)))) -(-913) +((|HasCategory| |#1| (QUOTE (-435)))) +(-923) +((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression being converted."))) +NIL +NIL +(-924) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-914 S |Coef| |Expon| |Var|) +(-925 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-915 |Coef| |Expon| |Var|) +(-926 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-916) +(-927) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-917 S R E |VarSet| P) +(-928 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-523)))) -(-918 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-529)))) +(-929 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4273 . T) (-4120 . T)) +((-4300 . T) (-4120 . T)) NIL -(-919 R E V P) +(-930 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-432)))) -(-920 K) +((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-291)))) (|HasCategory| |#1| (QUOTE (-435)))) +(-931 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-921 |VarSet| E RC P) +(-932 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-922 R) +(-933 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-923 R1 R2) +(-934 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-924 R) +(-935 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-925 K) +(-936 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-926 R E OV PPR) +(-937 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-927 K R UP -1327) +(-938 K R UP -1393) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-928 |vl| |nv|) +(-939 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-929 R |Var| |Expon| |Dpoly|) +(-940 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-289))))) -(-930 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-291))))) +(-941 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-931) +(-942) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-932 A B R S) +(-943 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-933 A S) +(-944 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-770))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-1078)))) -(-934 S) +((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-1093)))) +(-945 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4120 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4120 . T) (-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-935 |n| K) +(-946 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-936 S) +(-947 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL -(-937 S R) +(-948 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-272)))) -(-938 R) +((|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1007))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-274)))) +(-949 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4266 |has| |#1| (-272)) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 |has| |#1| (-274)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-939 QR R QS S) +(-950 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-940 R) +(-951 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4266 |has| |#1| (-272)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344))))) -(-941 S) +((-4293 |has| |#1| (-274)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-274))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-274))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -270) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-1007))) (|HasCategory| |#1| (QUOTE (-522))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347))))) +(-952 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-942 S) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-953 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-943) +(-954) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-944 -1327 UP UPUP |radicnd| |n|) +(-955 -1393 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4266 |has| (-388 |#2|) (-344)) (-4271 |has| (-388 |#2|) (-344)) (-4265 |has| (-388 |#2|) (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1435 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1435 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1435 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344))))) -(-945 |bb|) +((-4293 |has| (-391 |#2|) (-347)) (-4298 |has| (-391 |#2|) (-347)) (-4292 |has| (-391 |#2|) (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-391 |#2|) (QUOTE (-139))) (|HasCategory| (-391 |#2|) (QUOTE (-141))) (|HasCategory| (-391 |#2|) (QUOTE (-333))) (-1533 (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (|HasCategory| (-391 |#2|) (QUOTE (-347))) (|HasCategory| (-391 |#2|) (QUOTE (-352))) (-1533 (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (|HasCategory| (-391 |#2|) (QUOTE (-333)))) (-1533 (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-333))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (|HasCategory| (-391 |#2|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-391 |#2|) (QUOTE (-347)))) (-12 (|HasCategory| (-391 |#2|) (QUOTE (-218))) (|HasCategory| (-391 |#2|) (QUOTE (-347))))) +(-956 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138))))) -(-946) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-537) (QUOTE (-862))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| (-537) (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-141))) (|HasCategory| (-537) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-973))) (|HasCategory| (-537) (QUOTE (-780))) (-1533 (|HasCategory| (-537) (QUOTE (-780))) (|HasCategory| (-537) (QUOTE (-807)))) (|HasCategory| (-537) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-1093))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| (-537) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| (-537) (QUOTE (-218))) (|HasCategory| (-537) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| (-537) (LIST (QUOTE -495) (QUOTE (-1117)) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -293) (QUOTE (-537)))) (|HasCategory| (-537) (LIST (QUOTE -270) (QUOTE (-537)) (QUOTE (-537)))) (|HasCategory| (-537) (QUOTE (-291))) (|HasCategory| (-537) (QUOTE (-522))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-537) (LIST (QUOTE -602) (QUOTE (-537)))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-537) (QUOTE (-862)))) (|HasCategory| (-537) (QUOTE (-139))))) +(-957) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-947) +(-958) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-948 RP) +(-959 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-949 S) +(-960 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-950 A S) +(-961 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (QUOTE (-1030)))) -(-951 S) +((|HasAttribute| |#1| (QUOTE -4301)) (|HasCategory| |#2| (QUOTE (-1045)))) +(-962 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) ((-4120 . T)) NIL -(-952 S) +(-963 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-953) +(-964) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4266 . T) (-4271 . T) (-4265 . T) (-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4270 . T)) +((-4293 . T) (-4298 . T) (-4292 . T) (-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4297 . T)) NIL -(-954 R -1327) +(-965 R -1393) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-955 R -1327) +(-966 R -1393) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-956 -1327 UP) +(-967 -1393 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-957 -1327 UP) +(-968 -1393 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-958 S) +(-969 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-959 F1 UP UPUP R F2) +(-970 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-960 |Pol|) +(-971 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-961 |Pol|) +(-972 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-962) +(-973) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-963) +(-974) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-964 |TheField|) +(-975 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4266 . T) (-4271 . T) (-4265 . T) (-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4270 . T)) -((-1435 (|HasCategory| (-388 (-531)) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-388 (-531)) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 (-531)) (LIST (QUOTE -977) (QUOTE (-531))))) -(-965 -1327 L) +((-4293 . T) (-4298 . T) (-4292 . T) (-4295 . T) (-4294 . T) ((-4302 "*") . T) (-4297 . T)) +((-1533 (|HasCategory| (-391 (-537)) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-391 (-537)) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-391 (-537)) (LIST (QUOTE -989) (QUOTE (-537))))) +(-976 -1393 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-966 S) +(-977 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1030)))) -(-967 R E V P) +((|HasCategory| |#1| (QUOTE (-1045)))) +(-978 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806))))) -(-968 R) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) +(-979 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4275 "*")))) -(-969 R) +((|HasAttribute| |#1| (QUOTE (-4302 "*")))) +(-980 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289)))) -(-970 S) +((-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-291)))) +(-981 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-971) +(-982) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-972 S) +(-983 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-973 S) +(-984 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-974 -1327 |Expon| |VarSet| |FPol| |LFPol|) +(-985 -1393 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-975) +(-986) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1102))) (LIST (QUOTE |:|) (QUOTE -1798) (QUOTE (-51))))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-51) (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-1102) (QUOTE (-797))) (|HasCategory| (-51) (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806))))) -(-976 A S) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1117))) (LIST (QUOTE |:|) (QUOTE -2140) (QUOTE (-51))))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-51) (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -293) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-1117) (QUOTE (-807))) (|HasCategory| (-51) (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816))))) +(-987) +((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|Syntax|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) +NIL +NIL +(-988 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-977 S) +(-989 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-978 Q R) +(-990 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-979) +(-991) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-980 UP) +(-992 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-981 R) +(-993 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-982 R) +(-994 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-983 R |ls|) +(-995 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| (-730 |#1| (-808 |#2|)) (QUOTE (-1030))) (|HasCategory| (-730 |#1| (-808 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -730) (|devaluate| |#1|) (LIST (QUOTE -808) (|devaluate| |#2|)))))) (|HasCategory| (-730 |#1| (-808 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-730 |#1| (-808 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-808 |#2|) (QUOTE (-349))) (|HasCategory| (-730 |#1| (-808 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-984) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| (-740 |#1| (-818 |#2|)) (QUOTE (-1045))) (|HasCategory| (-740 |#1| (-818 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -740) (|devaluate| |#1|) (LIST (QUOTE -818) (|devaluate| |#2|)))))) (|HasCategory| (-740 |#1| (-818 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-740 |#1| (-818 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| (-818 |#2|) (QUOTE (-352))) (|HasCategory| (-740 |#1| (-818 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-996) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-985 S) +(-997 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-986) +(-998) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4270 . T)) +((-4297 . T)) NIL -(-987 |xx| -1327) +(-999 |xx| -1393) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-988 S |m| |n| R |Row| |Col|) +(-1000 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-289))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-523))) (|HasCategory| |#4| (QUOTE (-162)))) -(-989 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-291))) (|HasCategory| |#4| (QUOTE (-347))) (|HasCategory| |#4| (QUOTE (-529))) (|HasCategory| |#4| (QUOTE (-163)))) +(-1001 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4273 . T) (-4120 . T) (-4268 . T) (-4267 . T)) +((-4300 . T) (-4120 . T) (-4295 . T) (-4294 . T)) NIL -(-990 |m| |n| R) +(-1002 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4273 . T) (-4268 . T) (-4267 . T)) -((-1435 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (QUOTE (-289))) (|HasCategory| |#3| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) -(-991 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4300 . T) (-4295 . T) (-4294 . T)) +((-1533 (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347)))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-291))) (|HasCategory| |#3| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))))) +(-1003 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-992 R) +(-1004 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-993) +(-1005) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-994 S) +(-1006 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-995) +(-1007) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-996 |TheField| |ThePolDom|) +(-1008 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-997) +(-1009) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4261 . T) (-4265 . T) (-4260 . T) (-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4288 . T) (-4292 . T) (-4287 . T) (-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-998) +(-1010) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1102))) (LIST (QUOTE |:|) (QUOTE -1798) (QUOTE (-51))))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-51) (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-1102) (QUOTE (-797))) (|HasCategory| (-51) (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806))))) -(-999 S R E V) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1117))) (LIST (QUOTE |:|) (QUOTE -2140) (QUOTE (-51))))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-51) (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| (-51) (QUOTE (-1045))) (|HasCategory| (-51) (LIST (QUOTE -293) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (QUOTE (-1045))) (|HasCategory| (-1117) (QUOTE (-807))) (|HasCategory| (-51) (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-51) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (LIST (QUOTE -579) (QUOTE (-816))))) +(-1011 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -934) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-1102))))) -(-1000 R E V) +((|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -945) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-1117))))) +(-1012 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +NIL +(-1013) +((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|Syntax|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|Syntax|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL -(-1001 S |TheField| |ThePols|) +NIL +(-1014 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1002 |TheField| |ThePols|) +(-1015 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1003 R E V P TS) +(-1016 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1004 S R E V P) +(-1017 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1005 R E V P) +(-1018 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1006 R E V P TS) +(-1019 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1007 |f|) +(-1020 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1008 |Base| R -1327) +(-1021 |Base| R -1393) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1009 |Base| R -1327) +(-1022 |Base| R -1393) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1010 R |ls|) +(-1023 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1011 UP SAE UPA) +(-1024 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1012 R UP M) +(-1025 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4266 |has| |#1| (-344)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-330)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344))))) -(-1013 UP SAE UPA) +((-4293 |has| |#1| (-347)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-333))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-352))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-333)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117))))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347))))) +(-1026 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1014) +(-1027) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1015) +(-1028 S) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1016 S) +(-1029) +((|constructor| (NIL "This is the category of Spad syntax objects."))) +NIL +NIL +(-1030 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1017) +(-1031) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1018 R) +(-1032 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1019 R) +(-1033 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-1020 S) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1034 (-1117)) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1034 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1021 R S) +(-1035 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-795)))) -(-1022 R S) +((|HasCategory| |#1| (QUOTE (-805)))) +(-1036) +((|constructor| (NIL "This domain represents segement expressions."))) +NIL +NIL +(-1037 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1023 S) +(-1038 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1030)))) -(-1024 S) +((|HasCategory| |#1| (QUOTE (-1045)))) +(-1039 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) ((-4120 . T)) NIL -(-1025 S) +(-1040 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1030)))) -(-1026 S L) +((|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-1045)))) +(-1041 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) ((-4120 . T)) NIL -(-1027 A S) +(-1042 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1028 S) +(-1043 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4263 . T) (-4120 . T)) +((-4290 . T) (-4120 . T)) NIL -(-1029 S) +(-1044 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1030) +(-1045) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1031 |m| |n|) +(-1046 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1032 S) +(-1047 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4273 . T) (-4263 . T) (-4274 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1033 |Str| |Sym| |Int| |Flt| |Expr|) +((-4300 . T) (-4290 . T) (-4301 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1048 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1034) +(-1049) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1035 |Str| |Sym| |Int| |Flt| |Expr|) +(-1050 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1036 R FS) +(-1051 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1037 R E V P TS) +(-1052 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1038 R E V P TS) +(-1053 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1039 R E V P) +(-1054 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1040) +(-1055) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1041 S) +(-1056 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1042) +(-1057) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1043 |dimtot| |dim1| S) +(-1058 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4267 |has| |#3| (-986)) (-4268 |has| |#3| (-986)) (-4270 |has| |#3| (-6 -4270)) ((-4275 "*") |has| |#3| (-162)) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#3| (QUOTE (-344))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-743))) (-1435 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795)))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-162))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-1030)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-128)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-677)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-743)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-795)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#3| (QUOTE (-986))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasAttribute| |#3| (QUOTE -4270)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1044 R |x|) +((-4294 |has| |#3| (-998)) (-4295 |has| |#3| (-998)) (-4297 |has| |#3| (-6 -4297)) ((-4302 "*") |has| |#3| (-163)) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#3| (QUOTE (-347))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-347)))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-753))) (-1533 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805)))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-163))) (-1533 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (QUOTE (-1045)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (QUOTE (-998)))) (-1533 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-129)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-163)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-218)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-347)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-352)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-687)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-753)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045))))) (-1533 (-12 (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-163))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-347))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-687))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-753))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (|HasCategory| (-537) (QUOTE (-807))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#3| (QUOTE (-218))) (|HasCategory| |#3| (QUOTE (-998)))) (-12 (|HasCategory| |#3| (QUOTE (-998))) (|HasCategory| |#3| (LIST (QUOTE -853) (QUOTE (-1117))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537))))) (-1533 (|HasCategory| |#3| (QUOTE (-998))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -989) (QUOTE (-537)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasAttribute| |#3| (QUOTE -4297)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -293) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1059 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-432)))) -(-1045 R -1327) +((|HasCategory| |#1| (QUOTE (-435)))) +(-1060 R -1393) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1046 R) +(-1061 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1047) +(-1062) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1048) +(-1063) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1049) +(-1064) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4261 . T) (-4265 . T) (-4260 . T) (-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4288 . T) (-4292 . T) (-4287 . T) (-4298 . T) (-4299 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1050 S) +(-1065 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4273 . T) (-4274 . T) (-4120 . T)) +((-4300 . T) (-4301 . T) (-4120 . T)) NIL -(-1051 S |ndim| R |Row| |Col|) +(-1066 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-344))) (|HasAttribute| |#3| (QUOTE (-4275 "*"))) (|HasCategory| |#3| (QUOTE (-162)))) -(-1052 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-347))) (|HasAttribute| |#3| (QUOTE (-4302 "*"))) (|HasCategory| |#3| (QUOTE (-163)))) +(-1067 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4120 . T) (-4273 . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4120 . T) (-4300 . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1053 R |Row| |Col| M) +(-1068 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1054 R |VarSet|) +(-1069 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-1055 |Coef| |Var| SMP) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1070 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344)))) -(-1056 R E V P) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-347)))) +(-1071 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1057 UP -1327) +(-1072 UP -1393) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1058 R) +(-1073 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1059 R) +(-1074 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1060 R) +(-1075 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1061 S A) +(-1076 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-797)))) -(-1062 R) +((|HasCategory| |#1| (QUOTE (-807)))) +(-1077 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1063 R) +(-1078 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1064) +(-1079) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1065) +(-1080) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1066) +(-1081) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1067 V C) +(-1082 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1068 V C) +(-1083 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1067) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1067 |#1| |#2|) (QUOTE (-1030)))) (|HasCategory| (-1067 |#1| |#2|) (QUOTE (-1030))) (-1435 (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1067) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1067 |#1| |#2|) (QUOTE (-1030))))) (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -572) (QUOTE (-806))))) -(-1069 |ndim| R) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -293) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1082 |#1| |#2|) (QUOTE (-1045)))) (|HasCategory| (-1082 |#1| |#2|) (QUOTE (-1045))) (-1533 (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -579) (QUOTE (-816)))) (-12 (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -293) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1082 |#1| |#2|) (QUOTE (-1045))))) (|HasCategory| (-1082 |#1| |#2|) (LIST (QUOTE -579) (QUOTE (-816))))) +(-1084 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4270 . T) (-4262 |has| |#2| (-6 (-4275 "*"))) (-4273 . T) (-4267 . T) (-4268 . T)) -((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (-1435 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-162)))) -(-1070 S) +((-4297 . T) (-4289 |has| |#2| (-6 (-4302 "*"))) (-4300 . T) (-4294 . T) (-4295 . T)) +((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218))) (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (-1533 (-12 (|HasCategory| |#2| (QUOTE (-218))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (QUOTE (-291))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-347))) (-1533 (|HasAttribute| |#2| (QUOTE (-4302 "*"))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#2| (QUOTE (-218)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-163)))) +(-1085 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1071) +(-1086) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1072 R E V P TS) +(-1087 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1073 R E V P) +(-1088 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1074 S) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1089 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1075 A S) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1090 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1076 S) +(-1091 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) ((-4120 . T)) NIL -(-1077 |Key| |Ent| |dent|) +(-1092 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-797))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-1078) +((-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-807))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-1093) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1079 |Coef|) +(-1094 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1080 S) +(-1095 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1081 A B) +(-1096 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1082 A B C) +(-1097 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1083 S) +(-1098 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4274 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1084) +((-4301 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1099) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1085) +(-1100) NIL -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806))))) -(-1086 |Entry|) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138)))))) (|HasCategory| (-138) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| (-138) (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| (-138) (QUOTE (-1045))) (-12 (|HasCategory| (-138) (QUOTE (-1045))) (|HasCategory| (-138) (LIST (QUOTE -293) (QUOTE (-138))))) (|HasCategory| (-138) (LIST (QUOTE -579) (QUOTE (-816))))) +(-1101 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#1|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-1085) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-1087 A) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (QUOTE (-1100))) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#1|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (QUOTE (-1045))) (|HasCategory| (-1100) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-1102 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) -(-1088 |Coef|) +((|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) +(-1103 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1089 |Coef|) +(-1104 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1090 R UP) +(-1105 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-289)))) -(-1091 |n| R) +((|HasCategory| |#1| (QUOTE (-291)))) +(-1106 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1092 S1 S2) +(-1107 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1093 |Coef| |var| |cen|) +(-1108 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4275 "*") -1435 (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-770))) (|has| |#1| (-162)) (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-852)))) (-4266 -1435 (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-770))) (|has| |#1| (-523)) (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|)))))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasCategory| (-531) (QUOTE (-1042))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-1094 R -1327) +(((-4302 "*") -1533 (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-780))) (|has| |#1| (-163)) (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-862)))) (-4293 -1533 (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-780))) (|has| |#1| (-529)) (-3319 (|has| |#1| (-347)) (|has| (-1115 |#1| |#2| |#3|) (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-141)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|)))))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasCategory| (-537) (QUOTE (-1057))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347))))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1115) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1115 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1109 R -1393) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1095 R) +(-1110 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1096 R S) +(-1111 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1097 E OV R P) +(-1112 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1098 R) +(-1113 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-1099 |Coef| |var| |cen|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-218))) (|HasAttribute| |#1| (QUOTE -4298)) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1114 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|))))))) -(-1100 |Coef| |var| |cen|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1115 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|)))) (|HasCategory| (-721) (QUOTE (-1042))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|))))))) -(-1101) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|)))) (|HasCategory| (-731) (QUOTE (-1057))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1116) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1102) +(-1117) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1103 R) +(-1118 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1104 R) +(-1119 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| (-913) (QUOTE (-128))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271))) -(-1105) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-6 -4298)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-435))) (-12 (|HasCategory| (-924) (QUOTE (-129))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasAttribute| |#1| (QUOTE -4298))) +(-1120) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1106) +(-1121) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1107) +(-1122) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1108 R) +(-1123 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1109) +(-1124) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1110 S) +(-1125 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1111 S) +(-1126 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1112 |Key| |Entry|) +(-1127 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4273 . T) (-4274 . T)) -((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806))))) -(-1113 R) +((-4300 . T) (-4301 . T)) +((-12 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -293) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2926) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2140) (|devaluate| |#2|)))))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1045)))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -580) (QUOTE (-513)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-1045))) (-1533 (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-816)))) (|HasCategory| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (LIST (QUOTE -579) (QUOTE (-816))))) +(-1128 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1114 S |Key| |Entry|) +(-1129 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1115 |Key| |Entry|) +(-1130 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4274 . T) (-4120 . T)) +((-4301 . T) (-4120 . T)) NIL -(-1116 |Key| |Entry|) +(-1131 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1117) +(-1132) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1118 S) +(-1133 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1119) +(-1134) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1120) +(-1135) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1121 R) +(-1136 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1122) +(-1137) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1123 S) +(-1138 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1124) +(-1139) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1125 S) +(-1140 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1126 S) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1045))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1141 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1127) +(-1142) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1128 R -1327) +(-1143 R -1393) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1129 R |Row| |Col| M) +(-1144 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1130 R -1327) +(-1145 R -1393) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -829) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -829) (|devaluate| |#1|))))) -(-1131 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -580) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -839) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -839) (|devaluate| |#1|))))) +(-1146 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-349)))) -(-1132 R E V P) +((|HasCategory| |#4| (QUOTE (-352)))) +(-1147 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1133 |Coef|) +(-1148 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344)))) -(-1134 |Curve|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-347)))) +(-1149 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1135) +(-1150) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1136 S) +(-1151 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1137 -1327) +((|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1152 -1393) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1138) +(-1153) +((|constructor| (NIL "This domain represents a type AST.")) (|coerce| (($ (|Syntax|)) "s::TypeAst injects \\spad{`s'} into the TypeAst domain."))) +NIL +NIL +(-1154) ((|constructor| (NIL "The fundamental Type."))) ((-4120 . T)) NIL -(-1139 S) +(-1155 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-797)))) -(-1140) +((|HasCategory| |#1| (QUOTE (-807)))) +(-1156) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1141 S) +(-1157 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1142) +(-1158) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1143 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1159 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1144 |Coef|) +(-1160 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1145 S |Coef| UTS) +(-1161 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-344)))) -(-1146 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-347)))) +(-1162 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4120 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4120 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1147 |Coef| UTS) +(-1163 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))) (-1435 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-140))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasCategory| (-531) (QUOTE (-1042))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-962)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-770)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-852))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-516)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138)))))) -(-1148 |Coef| |var| |cen|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-973)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117)))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-139))))) (-1533 (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-141))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-218)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasCategory| (-537) (QUOTE (-1057))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-1117))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-973)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-780)))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -270) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -293) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -495) (QUOTE (-1117)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-807)))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-291)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-139))) (-12 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-139)))))) +(-1164 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4275 "*") -1435 (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-770))) (|has| |#1| (-162)) (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-852)))) (-4266 -1435 (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-770))) (|has| |#1| (-523)) (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|)))))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasCategory| (-531) (QUOTE (-1042))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138))))) -(-1149 ZP) +(((-4302 "*") -1533 (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-780))) (|has| |#1| (-163)) (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-862)))) (-4293 -1533 (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-780))) (|has| |#1| (-529)) (-3319 (|has| |#1| (-347)) (|has| (-1192 |#1| |#2| |#3|) (-862)))) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-141))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-141)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|)))))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-218))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-537)) (|devaluate| |#1|))))) (|HasCategory| (-537) (QUOTE (-1057))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-347))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -270) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -293) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -495) (QUOTE (-1117)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-537))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-139))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-163)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-347)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-347)))) (|HasCategory| |#1| (QUOTE (-139))))) +(-1165 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1150 R S) +(-1166 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-795)))) -(-1151 S) +((|HasCategory| |#1| (QUOTE (-805)))) +(-1167 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1030)))) -(-1152 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#1| (QUOTE (-1045)))) +(-1168 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1153 R Q UP) +(-1169 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1154 R UP) +(-1170 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1155 R UP) +(-1171 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1156 R U) +(-1172 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1157 |x| R) +(-1173 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4269 |has| |#2| (-344)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138))))) -(-1158 R PR S PS) +(((-4302 "*") |has| |#2| (-163)) (-4293 |has| |#2| (-529)) (-4296 |has| |#2| (-347)) (-4298 |has| |#2| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-529)))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-363)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-363))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -839) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -839) (QUOTE (-537))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-363)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -580) (LIST (QUOTE -845) (QUOTE (-537)))))) (-12 (|HasCategory| (-1027) (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#2| (LIST (QUOTE -580) (QUOTE (-513))))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -602) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-141))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (-1533 (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (-1533 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| |#2| (QUOTE (-218))) (|HasAttribute| |#2| (QUOTE -4298)) (|HasCategory| |#2| (QUOTE (-435))) (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (-1533 (-12 (|HasCategory| $ (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-139))))) +(-1174 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1159 S R) +(-1175 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-1078)))) -(-1160 R) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347))) (|HasCategory| |#2| (QUOTE (-435))) (|HasCategory| |#2| (QUOTE (-529))) (|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (QUOTE (-1093)))) +(-1176 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4296 |has| |#1| (-347)) (-4298 |has| |#1| (-6 -4298)) (-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-1161 S |Coef| |Expon|) +(-1177 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2265) (LIST (|devaluate| |#2|) (QUOTE (-1102)))))) -(-1162 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2341) (LIST (|devaluate| |#2|) (QUOTE (-1117)))))) +(-1178 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1163 RC P) +(-1179 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1164 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1180 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1165 |Coef|) +(-1181 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1166 S |Coef| ULS) +(-1182 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1167 |Coef| ULS) +(-1183 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1168 |Coef| ULS) +(-1184 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) -(-1169 |Coef| |var| |cen|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) +(-1185 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|))))))) -(-1170 R FE |var| |cen|) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4298 |has| |#1| (-347)) (-4292 |has| |#1| (-347)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#1| (QUOTE (-163))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537))) (|devaluate| |#1|)))) (|HasCategory| (-391 (-537)) (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-1533 (|HasCategory| |#1| (QUOTE (-347))) (|HasCategory| |#1| (QUOTE (-529)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -391) (QUOTE (-537)))))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1186 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4275 "*") |has| (-1169 |#2| |#3| |#4|) (-162)) (-4266 |has| (-1169 |#2| |#3| |#4|) (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-344))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-432))) (-1435 (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-523)))) -(-1171 A S) +(((-4302 "*") |has| (-1185 |#2| |#3| |#4|) (-163)) (-4293 |has| (-1185 |#2| |#3| |#4|) (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-139))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-141))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-163))) (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -989) (QUOTE (-537)))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-347))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-435))) (-1533 (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (LIST (QUOTE -989) (LIST (QUOTE -391) (QUOTE (-537)))))) (|HasCategory| (-1185 |#2| |#3| |#4|) (QUOTE (-529)))) +(-1187 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4274))) -(-1172 S) +((|HasAttribute| |#1| (QUOTE -4301))) +(-1188 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) ((-4120 . T)) NIL -(-1173 |Coef1| |Coef2| UTS1 UTS2) +(-1189 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1174 S |Coef|) +(-1190 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasSignature| |#2| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1788) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1102))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) -(-1175 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#2| (QUOTE (-912))) (|HasCategory| |#2| (QUOTE (-1139))) (|HasSignature| |#2| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3092) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1117))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#2| (QUOTE (-347)))) +(-1191 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1176 |Coef| |var| |cen|) +(-1192 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|)))) (|HasCategory| (-721) (QUOTE (-1042))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|))))))) -(-1177 |Coef| UTS) +(((-4302 "*") |has| |#1| (-163)) (-4293 |has| |#1| (-529)) (-4294 . T) (-4295 . T) (-4297 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasCategory| |#1| (QUOTE (-529))) (-1533 (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-529)))) (|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-139))) (|HasCategory| |#1| (QUOTE (-141))) (-12 (|HasCategory| |#1| (LIST (QUOTE -853) (QUOTE (-1117)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-731)) (|devaluate| |#1|)))) (|HasCategory| (-731) (QUOTE (-1057))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasSignature| |#1| (LIST (QUOTE -2341) (LIST (|devaluate| |#1|) (QUOTE (-1117)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-731))))) (|HasCategory| |#1| (QUOTE (-347))) (-1533 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-537)))) (|HasCategory| |#1| (QUOTE (-912))) (|HasCategory| |#1| (QUOTE (-1139))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasSignature| |#1| (LIST (QUOTE -3092) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1117))))) (|HasSignature| |#1| (LIST (QUOTE -3757) (LIST (LIST (QUOTE -606) (QUOTE (-1117))) (|devaluate| |#1|))))))) +(-1193 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1178 -1327 UP L UTS) +(-1194 -1393 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-523)))) -(-1179) +((|HasCategory| |#1| (QUOTE (-529)))) +(-1195) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) ((-4120 . T)) NIL -(-1180 |sym|) +(-1196 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1181 S R) +(-1197 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-943))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1182 R) +((|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-687))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1198 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4274 . T) (-4273 . T) (-4120 . T)) +((-4301 . T) (-4300 . T) (-4120 . T)) NIL -(-1183 A B) +(-1199 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1184 R) +(-1200 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4274 . T) (-4273 . T)) -((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1185) +((-4301 . T) (-4300 . T)) +((-1533 (-12 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|))))) (-1533 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) (|HasCategory| |#1| (LIST (QUOTE -580) (QUOTE (-513)))) (-1533 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| (-537) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-687))) (|HasCategory| |#1| (QUOTE (-998))) (-12 (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -293) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1201) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1186) +(-1202) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1187) +(-1203) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1188) +(-1204) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1189) +(-1205) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1190 A S) +(-1206 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1191 S) +(-1207 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4268 . T) (-4267 . T)) +((-4295 . T) (-4294 . T)) NIL -(-1192 R) +(-1208 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1193 K R UP -1327) +(-1209 K R UP -1393) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1194 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1210) +((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|Syntax|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) +NIL +NIL +(-1211 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) -(-1195 R E V P) +((-4295 |has| |#1| (-163)) (-4294 |has| |#1| (-163)) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347)))) +(-1212 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4274 . T) (-4273 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806))))) -(-1196 R) +((-4301 . T) (-4300 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -293) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -580) (QUOTE (-513)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-529))) (|HasCategory| |#3| (QUOTE (-352))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-816))))) +(-1213 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4267 . T) (-4268 . T) (-4270 . T)) +((-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1197 |vl| R) +(-1214 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4270 . T) (-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T)) -((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4266))) -(-1198 R |VarSet| XPOLY) +((-4297 . T) (-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4293))) +(-1215 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1199 |vl| R) +(-1216 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T)) +((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-1200 S -1327) +(-1217 S -1393) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140)))) -(-1201 -1327) +((|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-139))) (|HasCategory| |#2| (QUOTE (-141)))) +(-1218 -1393) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +((-4292 . T) (-4298 . T) (-4293 . T) ((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL -(-1202 |VarSet| R) +(-1219 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -668) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasAttribute| |#2| (QUOTE -4266))) -(-1203 |vl| R) +((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasCategory| |#2| (LIST (QUOTE -678) (LIST (QUOTE -391) (QUOTE (-537))))) (|HasAttribute| |#2| (QUOTE -4293))) +(-1220 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T)) +((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) NIL -(-1204 R) +(-1221 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4266 |has| |#1| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4266))) -(-1205 R E) +((-4293 |has| |#1| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasAttribute| |#1| (QUOTE -4293))) +(-1222 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4270 . T) (-4271 |has| |#1| (-6 -4271)) (-4266 |has| |#1| (-6 -4266)) (-4268 . T) (-4267 . T)) -((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasAttribute| |#1| (QUOTE -4270)) (|HasAttribute| |#1| (QUOTE -4271)) (|HasAttribute| |#1| (QUOTE -4266))) -(-1206 |VarSet| R) +((-4297 . T) (-4298 |has| |#1| (-6 -4298)) (-4293 |has| |#1| (-6 -4293)) (-4295 . T) (-4294 . T)) +((|HasCategory| |#1| (QUOTE (-163))) (|HasCategory| |#1| (QUOTE (-347))) (|HasAttribute| |#1| (QUOTE -4297)) (|HasAttribute| |#1| (QUOTE -4298)) (|HasAttribute| |#1| (QUOTE -4293))) +(-1223 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T)) -((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4266))) -(-1207 A) +((-4293 |has| |#2| (-6 -4293)) (-4295 . T) (-4294 . T) (-4297 . T)) +((|HasCategory| |#2| (QUOTE (-163))) (|HasAttribute| |#2| (QUOTE -4293))) +(-1224 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1208 R |ls| |ls2|) +(-1225 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1209 R) +(-1226 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1210 |p|) +(-1227 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T)) +(((-4302 "*") . T) (-4294 . T) (-4295 . T) (-4297 . T)) NIL NIL NIL @@ -4788,4 +4856,4 @@ NIL NIL NIL NIL -((-3 NIL 2243084 2243089 2243094 2243099) (-2 NIL 2243064 2243069 2243074 2243079) (-1 NIL 2243044 2243049 2243054 2243059) (0 NIL 2243024 2243029 2243034 2243039) (-1210 "ZMOD.spad" 2242833 2242846 2242962 2243019) (-1209 "ZLINDEP.spad" 2241877 2241888 2242823 2242828) (-1208 "ZDSOLVE.spad" 2231726 2231748 2241867 2241872) (-1207 "YSTREAM.spad" 2231219 2231230 2231716 2231721) (-1206 "XRPOLY.spad" 2230439 2230459 2231075 2231144) (-1205 "XPR.spad" 2228168 2228181 2230157 2230256) (-1204 "XPOLY.spad" 2227723 2227734 2228024 2228093) (-1203 "XPOLYC.spad" 2227040 2227056 2227649 2227718) (-1202 "XPBWPOLY.spad" 2225477 2225497 2226820 2226889) (-1201 "XF.spad" 2223938 2223953 2225379 2225472) (-1200 "XF.spad" 2222379 2222396 2223822 2223827) (-1199 "XFALG.spad" 2219403 2219419 2222305 2222374) (-1198 "XEXPPKG.spad" 2218654 2218680 2219393 2219398) (-1197 "XDPOLY.spad" 2218268 2218284 2218510 2218579) (-1196 "XALG.spad" 2217866 2217877 2218224 2218263) (-1195 "WUTSET.spad" 2213705 2213722 2217512 2217539) (-1194 "WP.spad" 2212719 2212763 2213563 2213630) (-1193 "WFFINTBS.spad" 2210282 2210304 2212709 2212714) (-1192 "WEIER.spad" 2208496 2208507 2210272 2210277) (-1191 "VSPACE.spad" 2208169 2208180 2208464 2208491) (-1190 "VSPACE.spad" 2207862 2207875 2208159 2208164) (-1189 "VOID.spad" 2207452 2207461 2207852 2207857) (-1188 "VIEW.spad" 2205074 2205083 2207442 2207447) (-1187 "VIEWDEF.spad" 2200271 2200280 2205064 2205069) (-1186 "VIEW3D.spad" 2184106 2184115 2200261 2200266) (-1185 "VIEW2D.spad" 2171843 2171852 2184096 2184101) (-1184 "VECTOR.spad" 2170520 2170531 2170771 2170798) (-1183 "VECTOR2.spad" 2169147 2169160 2170510 2170515) (-1182 "VECTCAT.spad" 2167035 2167046 2169103 2169142) (-1181 "VECTCAT.spad" 2164744 2164757 2166814 2166819) (-1180 "VARIABLE.spad" 2164524 2164539 2164734 2164739) (-1179 "UTYPE.spad" 2164158 2164167 2164504 2164519) (-1178 "UTSODETL.spad" 2163451 2163475 2164114 2164119) (-1177 "UTSODE.spad" 2161639 2161659 2163441 2163446) (-1176 "UTS.spad" 2156428 2156456 2160106 2160203) (-1175 "UTSCAT.spad" 2153879 2153895 2156326 2156423) (-1174 "UTSCAT.spad" 2150974 2150992 2153423 2153428) (-1173 "UTS2.spad" 2150567 2150602 2150964 2150969) (-1172 "URAGG.spad" 2145189 2145200 2150547 2150562) (-1171 "URAGG.spad" 2139785 2139798 2145145 2145150) (-1170 "UPXSSING.spad" 2137431 2137457 2138869 2139002) (-1169 "UPXS.spad" 2134458 2134486 2135563 2135712) (-1168 "UPXSCONS.spad" 2132215 2132235 2132590 2132739) (-1167 "UPXSCCA.spad" 2130673 2130693 2132061 2132210) (-1166 "UPXSCCA.spad" 2129273 2129295 2130663 2130668) (-1165 "UPXSCAT.spad" 2127854 2127870 2129119 2129268) (-1164 "UPXS2.spad" 2127395 2127448 2127844 2127849) (-1163 "UPSQFREE.spad" 2125807 2125821 2127385 2127390) (-1162 "UPSCAT.spad" 2123400 2123424 2125705 2125802) (-1161 "UPSCAT.spad" 2120699 2120725 2123006 2123011) (-1160 "UPOLYC.spad" 2115677 2115688 2120541 2120694) (-1159 "UPOLYC.spad" 2110547 2110560 2115413 2115418) (-1158 "UPOLYC2.spad" 2110016 2110035 2110537 2110542) (-1157 "UP.spad" 2107061 2107076 2107569 2107722) (-1156 "UPMP.spad" 2105951 2105964 2107051 2107056) (-1155 "UPDIVP.spad" 2105514 2105528 2105941 2105946) (-1154 "UPDECOMP.spad" 2103751 2103765 2105504 2105509) (-1153 "UPCDEN.spad" 2102958 2102974 2103741 2103746) (-1152 "UP2.spad" 2102320 2102341 2102948 2102953) (-1151 "UNISEG.spad" 2101673 2101684 2102239 2102244) (-1150 "UNISEG2.spad" 2101166 2101179 2101629 2101634) (-1149 "UNIFACT.spad" 2100267 2100279 2101156 2101161) (-1148 "ULS.spad" 2090826 2090854 2091919 2092348) (-1147 "ULSCONS.spad" 2084869 2084889 2085241 2085390) (-1146 "ULSCCAT.spad" 2082466 2082486 2084689 2084864) (-1145 "ULSCCAT.spad" 2080197 2080219 2082422 2082427) (-1144 "ULSCAT.spad" 2078413 2078429 2080043 2080192) (-1143 "ULS2.spad" 2077925 2077978 2078403 2078408) (-1142 "UFD.spad" 2076990 2076999 2077851 2077920) (-1141 "UFD.spad" 2076117 2076128 2076980 2076985) (-1140 "UDVO.spad" 2074964 2074973 2076107 2076112) (-1139 "UDPO.spad" 2072391 2072402 2074920 2074925) (-1138 "TYPE.spad" 2072313 2072322 2072371 2072386) (-1137 "TWOFACT.spad" 2070963 2070978 2072303 2072308) (-1136 "TUPLE.spad" 2070349 2070360 2070862 2070867) (-1135 "TUBETOOL.spad" 2067186 2067195 2070339 2070344) (-1134 "TUBE.spad" 2065827 2065844 2067176 2067181) (-1133 "TS.spad" 2064416 2064432 2065392 2065489) (-1132 "TSETCAT.spad" 2051531 2051548 2064372 2064411) (-1131 "TSETCAT.spad" 2038644 2038663 2051487 2051492) (-1130 "TRMANIP.spad" 2033010 2033027 2038350 2038355) (-1129 "TRIMAT.spad" 2031969 2031994 2033000 2033005) (-1128 "TRIGMNIP.spad" 2030486 2030503 2031959 2031964) (-1127 "TRIGCAT.spad" 2029998 2030007 2030476 2030481) (-1126 "TRIGCAT.spad" 2029508 2029519 2029988 2029993) (-1125 "TREE.spad" 2028079 2028090 2029115 2029142) (-1124 "TRANFUN.spad" 2027910 2027919 2028069 2028074) (-1123 "TRANFUN.spad" 2027739 2027750 2027900 2027905) (-1122 "TOPSP.spad" 2027413 2027422 2027729 2027734) (-1121 "TOOLSIGN.spad" 2027076 2027087 2027403 2027408) (-1120 "TEXTFILE.spad" 2025633 2025642 2027066 2027071) (-1119 "TEX.spad" 2022650 2022659 2025623 2025628) (-1118 "TEX1.spad" 2022206 2022217 2022640 2022645) (-1117 "TEMUTL.spad" 2021761 2021770 2022196 2022201) (-1116 "TBCMPPK.spad" 2019854 2019877 2021751 2021756) (-1115 "TBAGG.spad" 2018878 2018901 2019822 2019849) (-1114 "TBAGG.spad" 2017922 2017947 2018868 2018873) (-1113 "TANEXP.spad" 2017298 2017309 2017912 2017917) (-1112 "TABLE.spad" 2015709 2015732 2015979 2016006) (-1111 "TABLEAU.spad" 2015190 2015201 2015699 2015704) (-1110 "TABLBUMP.spad" 2011973 2011984 2015180 2015185) (-1109 "SYSTEM.spad" 2011247 2011256 2011963 2011968) (-1108 "SYSSOLP.spad" 2008720 2008731 2011237 2011242) (-1107 "SYNTAX.spad" 2004912 2004921 2008710 2008715) (-1106 "SYMTAB.spad" 2002968 2002977 2004902 2004907) (-1105 "SYMS.spad" 1998953 1998962 2002958 2002963) (-1104 "SYMPOLY.spad" 1997963 1997974 1998045 1998172) (-1103 "SYMFUNC.spad" 1997438 1997449 1997953 1997958) (-1102 "SYMBOL.spad" 1994774 1994783 1997428 1997433) (-1101 "SWITCH.spad" 1991531 1991540 1994764 1994769) (-1100 "SUTS.spad" 1988430 1988458 1989998 1990095) (-1099 "SUPXS.spad" 1985444 1985472 1986562 1986711) (-1098 "SUP.spad" 1982216 1982227 1982997 1983150) (-1097 "SUPFRACF.spad" 1981321 1981339 1982206 1982211) (-1096 "SUP2.spad" 1980711 1980724 1981311 1981316) (-1095 "SUMRF.spad" 1979677 1979688 1980701 1980706) (-1094 "SUMFS.spad" 1979310 1979327 1979667 1979672) (-1093 "SULS.spad" 1969856 1969884 1970962 1971391) (-1092 "SUCH.spad" 1969536 1969551 1969846 1969851) (-1091 "SUBSPACE.spad" 1961543 1961558 1969526 1969531) (-1090 "SUBRESP.spad" 1960703 1960717 1961499 1961504) (-1089 "STTF.spad" 1956802 1956818 1960693 1960698) (-1088 "STTFNC.spad" 1953270 1953286 1956792 1956797) (-1087 "STTAYLOR.spad" 1945668 1945679 1953151 1953156) (-1086 "STRTBL.spad" 1944173 1944190 1944322 1944349) (-1085 "STRING.spad" 1943582 1943591 1943596 1943623) (-1084 "STRICAT.spad" 1943358 1943367 1943538 1943577) (-1083 "STREAM.spad" 1940126 1940137 1942883 1942898) (-1082 "STREAM3.spad" 1939671 1939686 1940116 1940121) (-1081 "STREAM2.spad" 1938739 1938752 1939661 1939666) (-1080 "STREAM1.spad" 1938443 1938454 1938729 1938734) (-1079 "STINPROD.spad" 1937349 1937365 1938433 1938438) (-1078 "STEP.spad" 1936550 1936559 1937339 1937344) (-1077 "STBL.spad" 1935076 1935104 1935243 1935258) (-1076 "STAGG.spad" 1934141 1934152 1935056 1935071) (-1075 "STAGG.spad" 1933214 1933227 1934131 1934136) (-1074 "STACK.spad" 1932565 1932576 1932821 1932848) (-1073 "SREGSET.spad" 1930269 1930286 1932211 1932238) (-1072 "SRDCMPK.spad" 1928814 1928834 1930259 1930264) (-1071 "SRAGG.spad" 1923899 1923908 1928770 1928809) (-1070 "SRAGG.spad" 1919016 1919027 1923889 1923894) (-1069 "SQMATRIX.spad" 1916642 1916660 1917550 1917637) (-1068 "SPLTREE.spad" 1911194 1911207 1916078 1916105) (-1067 "SPLNODE.spad" 1907782 1907795 1911184 1911189) (-1066 "SPFCAT.spad" 1906559 1906568 1907772 1907777) (-1065 "SPECOUT.spad" 1905109 1905118 1906549 1906554) (-1064 "spad-parser.spad" 1904574 1904583 1905099 1905104) (-1063 "SPACEC.spad" 1888587 1888598 1904564 1904569) (-1062 "SPACE3.spad" 1888363 1888374 1888577 1888582) (-1061 "SORTPAK.spad" 1887908 1887921 1888319 1888324) (-1060 "SOLVETRA.spad" 1885665 1885676 1887898 1887903) (-1059 "SOLVESER.spad" 1884185 1884196 1885655 1885660) (-1058 "SOLVERAD.spad" 1880195 1880206 1884175 1884180) (-1057 "SOLVEFOR.spad" 1878615 1878633 1880185 1880190) (-1056 "SNTSCAT.spad" 1878203 1878220 1878571 1878610) (-1055 "SMTS.spad" 1876463 1876489 1877768 1877865) (-1054 "SMP.spad" 1873905 1873925 1874295 1874422) (-1053 "SMITH.spad" 1872748 1872773 1873895 1873900) (-1052 "SMATCAT.spad" 1870846 1870876 1872680 1872743) (-1051 "SMATCAT.spad" 1868888 1868920 1870724 1870729) (-1050 "SKAGG.spad" 1867837 1867848 1868844 1868883) (-1049 "SINT.spad" 1866145 1866154 1867703 1867832) (-1048 "SIMPAN.spad" 1865873 1865882 1866135 1866140) (-1047 "SIG.spad" 1865201 1865210 1865863 1865868) (-1046 "SIGNRF.spad" 1864309 1864320 1865191 1865196) (-1045 "SIGNEF.spad" 1863578 1863595 1864299 1864304) (-1044 "SHP.spad" 1861496 1861511 1863534 1863539) (-1043 "SHDP.spad" 1852532 1852559 1853041 1853170) (-1042 "SGROUP.spad" 1852140 1852149 1852522 1852527) (-1041 "SGROUP.spad" 1851746 1851757 1852130 1852135) (-1040 "SGCF.spad" 1844627 1844636 1851736 1851741) (-1039 "SFRTCAT.spad" 1843543 1843560 1844583 1844622) (-1038 "SFRGCD.spad" 1842606 1842626 1843533 1843538) (-1037 "SFQCMPK.spad" 1837243 1837263 1842596 1842601) (-1036 "SFORT.spad" 1836678 1836692 1837233 1837238) (-1035 "SEXOF.spad" 1836521 1836561 1836668 1836673) (-1034 "SEX.spad" 1836413 1836422 1836511 1836516) (-1033 "SEXCAT.spad" 1833517 1833557 1836403 1836408) (-1032 "SET.spad" 1831817 1831828 1832938 1832977) (-1031 "SETMN.spad" 1830251 1830268 1831807 1831812) (-1030 "SETCAT.spad" 1829736 1829745 1830241 1830246) (-1029 "SETCAT.spad" 1829219 1829230 1829726 1829731) (-1028 "SETAGG.spad" 1825728 1825739 1829187 1829214) (-1027 "SETAGG.spad" 1822257 1822270 1825718 1825723) (-1026 "SEGXCAT.spad" 1821369 1821382 1822237 1822252) (-1025 "SEG.spad" 1821182 1821193 1821288 1821293) (-1024 "SEGCAT.spad" 1820001 1820012 1821162 1821177) (-1023 "SEGBIND.spad" 1819073 1819084 1819956 1819961) (-1022 "SEGBIND2.spad" 1818769 1818782 1819063 1819068) (-1021 "SEG2.spad" 1818194 1818207 1818725 1818730) (-1020 "SDVAR.spad" 1817470 1817481 1818184 1818189) (-1019 "SDPOL.spad" 1814863 1814874 1815154 1815281) (-1018 "SCPKG.spad" 1812942 1812953 1814853 1814858) (-1017 "SCOPE.spad" 1812087 1812096 1812932 1812937) (-1016 "SCACHE.spad" 1810769 1810780 1812077 1812082) (-1015 "SASTCAT.spad" 1810678 1810687 1810759 1810764) (-1014 "SAOS.spad" 1810550 1810559 1810668 1810673) (-1013 "SAERFFC.spad" 1810263 1810283 1810540 1810545) (-1012 "SAE.spad" 1808441 1808457 1809052 1809187) (-1011 "SAEFACT.spad" 1808142 1808162 1808431 1808436) (-1010 "RURPK.spad" 1805783 1805799 1808132 1808137) (-1009 "RULESET.spad" 1805224 1805248 1805773 1805778) (-1008 "RULE.spad" 1803428 1803452 1805214 1805219) (-1007 "RULECOLD.spad" 1803280 1803293 1803418 1803423) (-1006 "RSETGCD.spad" 1799658 1799678 1803270 1803275) (-1005 "RSETCAT.spad" 1789430 1789447 1799614 1799653) (-1004 "RSETCAT.spad" 1779234 1779253 1789420 1789425) (-1003 "RSDCMPK.spad" 1777686 1777706 1779224 1779229) (-1002 "RRCC.spad" 1776070 1776100 1777676 1777681) (-1001 "RRCC.spad" 1774452 1774484 1776060 1776065) (-1000 "RPOLCAT.spad" 1753812 1753827 1774320 1774447) (-999 "RPOLCAT.spad" 1732888 1732904 1753397 1753402) (-998 "ROUTINE.spad" 1728752 1728760 1731535 1731562) (-997 "ROMAN.spad" 1727985 1727993 1728618 1728747) (-996 "ROIRC.spad" 1727066 1727097 1727975 1727980) (-995 "RNS.spad" 1725970 1725978 1726968 1727061) (-994 "RNS.spad" 1724960 1724970 1725960 1725965) (-993 "RNG.spad" 1724696 1724704 1724950 1724955) (-992 "RMODULE.spad" 1724335 1724345 1724686 1724691) (-991 "RMCAT2.spad" 1723744 1723800 1724325 1724330) (-990 "RMATRIX.spad" 1722424 1722442 1722911 1722950) (-989 "RMATCAT.spad" 1717946 1717976 1722368 1722419) (-988 "RMATCAT.spad" 1713370 1713402 1717794 1717799) (-987 "RINTERP.spad" 1713259 1713278 1713360 1713365) (-986 "RING.spad" 1712617 1712625 1713239 1713254) (-985 "RING.spad" 1711983 1711993 1712607 1712612) (-984 "RIDIST.spad" 1711368 1711376 1711973 1711978) (-983 "RGCHAIN.spad" 1709948 1709963 1710853 1710880) (-982 "RF.spad" 1707563 1707573 1709938 1709943) (-981 "RFFACTOR.spad" 1707026 1707036 1707553 1707558) (-980 "RFFACT.spad" 1706762 1706773 1707016 1707021) (-979 "RFDIST.spad" 1705751 1705759 1706752 1706757) (-978 "RETSOL.spad" 1705169 1705181 1705741 1705746) (-977 "RETRACT.spad" 1704519 1704529 1705159 1705164) (-976 "RETRACT.spad" 1703867 1703879 1704509 1704514) (-975 "RESULT.spad" 1701928 1701936 1702514 1702541) (-974 "RESRING.spad" 1701276 1701322 1701866 1701923) (-973 "RESLATC.spad" 1700601 1700611 1701266 1701271) (-972 "REPSQ.spad" 1700331 1700341 1700591 1700596) (-971 "REP.spad" 1697884 1697892 1700321 1700326) (-970 "REPDB.spad" 1697590 1697600 1697874 1697879) (-969 "REP2.spad" 1687163 1687173 1697432 1697437) (-968 "REP1.spad" 1681154 1681164 1687113 1687118) (-967 "REGSET.spad" 1678952 1678968 1680800 1680827) (-966 "REF.spad" 1678282 1678292 1678907 1678912) (-965 "REDORDER.spad" 1677459 1677475 1678272 1678277) (-964 "RECLOS.spad" 1676249 1676268 1676952 1677045) (-963 "REALSOLV.spad" 1675382 1675390 1676239 1676244) (-962 "REAL.spad" 1675255 1675263 1675372 1675377) (-961 "REAL0Q.spad" 1672538 1672552 1675245 1675250) (-960 "REAL0.spad" 1669367 1669381 1672528 1672533) (-959 "RDIV.spad" 1669019 1669043 1669357 1669362) (-958 "RDIST.spad" 1668583 1668593 1669009 1669014) (-957 "RDETRS.spad" 1667380 1667397 1668573 1668578) (-956 "RDETR.spad" 1665488 1665505 1667370 1667375) (-955 "RDEEFS.spad" 1664562 1664578 1665478 1665483) (-954 "RDEEF.spad" 1663559 1663575 1664552 1664557) (-953 "RCFIELD.spad" 1660746 1660754 1663461 1663554) (-952 "RCFIELD.spad" 1658019 1658029 1660736 1660741) (-951 "RCAGG.spad" 1655922 1655932 1657999 1658014) (-950 "RCAGG.spad" 1653762 1653774 1655841 1655846) (-949 "RATRET.spad" 1653123 1653133 1653752 1653757) (-948 "RATFACT.spad" 1652816 1652827 1653113 1653118) (-947 "RANDSRC.spad" 1652136 1652144 1652806 1652811) (-946 "RADUTIL.spad" 1651891 1651899 1652126 1652131) (-945 "RADIX.spad" 1648684 1648697 1650361 1650454) (-944 "RADFF.spad" 1647101 1647137 1647219 1647375) (-943 "RADCAT.spad" 1646695 1646703 1647091 1647096) (-942 "RADCAT.spad" 1646287 1646297 1646685 1646690) (-941 "QUEUE.spad" 1645630 1645640 1645894 1645921) (-940 "QUAT.spad" 1644216 1644226 1644558 1644623) (-939 "QUATCT2.spad" 1643835 1643853 1644206 1644211) (-938 "QUATCAT.spad" 1642000 1642010 1643765 1643830) (-937 "QUATCAT.spad" 1639917 1639929 1641684 1641689) (-936 "QUAGG.spad" 1638731 1638741 1639873 1639912) (-935 "QFORM.spad" 1638194 1638208 1638721 1638726) (-934 "QFCAT.spad" 1636885 1636895 1638084 1638189) (-933 "QFCAT.spad" 1635182 1635194 1636383 1636388) (-932 "QFCAT2.spad" 1634873 1634889 1635172 1635177) (-931 "QEQUAT.spad" 1634430 1634438 1634863 1634868) (-930 "QCMPACK.spad" 1629177 1629196 1634420 1634425) (-929 "QALGSET.spad" 1625252 1625284 1629091 1629096) (-928 "QALGSET2.spad" 1623248 1623266 1625242 1625247) (-927 "PWFFINTB.spad" 1620558 1620579 1623238 1623243) (-926 "PUSHVAR.spad" 1619887 1619906 1620548 1620553) (-925 "PTRANFN.spad" 1616013 1616023 1619877 1619882) (-924 "PTPACK.spad" 1613101 1613111 1616003 1616008) (-923 "PTFUNC2.spad" 1612922 1612936 1613091 1613096) (-922 "PTCAT.spad" 1612004 1612014 1612878 1612917) (-921 "PSQFR.spad" 1611311 1611335 1611994 1611999) (-920 "PSEUDLIN.spad" 1610169 1610179 1611301 1611306) (-919 "PSETPK.spad" 1595602 1595618 1610047 1610052) (-918 "PSETCAT.spad" 1589510 1589533 1595570 1595597) (-917 "PSETCAT.spad" 1583404 1583429 1589466 1589471) (-916 "PSCURVE.spad" 1582387 1582395 1583394 1583399) (-915 "PSCAT.spad" 1581154 1581183 1582285 1582382) (-914 "PSCAT.spad" 1580011 1580042 1581144 1581149) (-913 "PRTITION.spad" 1578854 1578862 1580001 1580006) (-912 "PRS.spad" 1568416 1568433 1578810 1578815) (-911 "PRQAGG.spad" 1567835 1567845 1568372 1568411) (-910 "PROPLOG.spad" 1567238 1567246 1567825 1567830) (-909 "PROPFRML.spad" 1565102 1565113 1567174 1567179) (-908 "PROPERTY.spad" 1564596 1564604 1565092 1565097) (-907 "PRODUCT.spad" 1562276 1562288 1562562 1562617) (-906 "PR.spad" 1560665 1560677 1561370 1561497) (-905 "PRINT.spad" 1560417 1560425 1560655 1560660) (-904 "PRIMES.spad" 1558668 1558678 1560407 1560412) (-903 "PRIMELT.spad" 1556649 1556663 1558658 1558663) (-902 "PRIMCAT.spad" 1556272 1556280 1556639 1556644) (-901 "PRIMARR.spad" 1555277 1555287 1555455 1555482) (-900 "PRIMARR2.spad" 1554000 1554012 1555267 1555272) (-899 "PREASSOC.spad" 1553372 1553384 1553990 1553995) (-898 "PPCURVE.spad" 1552509 1552517 1553362 1553367) (-897 "PORTNUM.spad" 1552284 1552292 1552499 1552504) (-896 "POLYROOT.spad" 1551056 1551078 1552240 1552245) (-895 "POLY.spad" 1548356 1548366 1548873 1549000) (-894 "POLYLIFT.spad" 1547617 1547640 1548346 1548351) (-893 "POLYCATQ.spad" 1545719 1545741 1547607 1547612) (-892 "POLYCAT.spad" 1539125 1539146 1545587 1545714) (-891 "POLYCAT.spad" 1531833 1531856 1538297 1538302) (-890 "POLY2UP.spad" 1531281 1531295 1531823 1531828) (-889 "POLY2.spad" 1530876 1530888 1531271 1531276) (-888 "POLUTIL.spad" 1529817 1529846 1530832 1530837) (-887 "POLTOPOL.spad" 1528565 1528580 1529807 1529812) (-886 "POINT.spad" 1527406 1527416 1527493 1527520) (-885 "PNTHEORY.spad" 1524072 1524080 1527396 1527401) (-884 "PMTOOLS.spad" 1522829 1522843 1524062 1524067) (-883 "PMSYM.spad" 1522374 1522384 1522819 1522824) (-882 "PMQFCAT.spad" 1521961 1521975 1522364 1522369) (-881 "PMPRED.spad" 1521430 1521444 1521951 1521956) (-880 "PMPREDFS.spad" 1520874 1520896 1521420 1521425) (-879 "PMPLCAT.spad" 1519944 1519962 1520806 1520811) (-878 "PMLSAGG.spad" 1519525 1519539 1519934 1519939) (-877 "PMKERNEL.spad" 1519092 1519104 1519515 1519520) (-876 "PMINS.spad" 1518668 1518678 1519082 1519087) (-875 "PMFS.spad" 1518241 1518259 1518658 1518663) (-874 "PMDOWN.spad" 1517527 1517541 1518231 1518236) (-873 "PMASS.spad" 1516539 1516547 1517517 1517522) (-872 "PMASSFS.spad" 1515508 1515524 1516529 1516534) (-871 "PLOTTOOL.spad" 1515288 1515296 1515498 1515503) (-870 "PLOT.spad" 1510119 1510127 1515278 1515283) (-869 "PLOT3D.spad" 1506539 1506547 1510109 1510114) (-868 "PLOT1.spad" 1505680 1505690 1506529 1506534) (-867 "PLEQN.spad" 1492896 1492923 1505670 1505675) (-866 "PINTERP.spad" 1492512 1492531 1492886 1492891) (-865 "PINTERPA.spad" 1492294 1492310 1492502 1492507) (-864 "PI.spad" 1491901 1491909 1492268 1492289) (-863 "PID.spad" 1490857 1490865 1491827 1491896) (-862 "PICOERCE.spad" 1490514 1490524 1490847 1490852) (-861 "PGROEB.spad" 1489111 1489125 1490504 1490509) (-860 "PGE.spad" 1480364 1480372 1489101 1489106) (-859 "PGCD.spad" 1479246 1479263 1480354 1480359) (-858 "PFRPAC.spad" 1478389 1478399 1479236 1479241) (-857 "PFR.spad" 1475046 1475056 1478291 1478384) (-856 "PFOTOOLS.spad" 1474304 1474320 1475036 1475041) (-855 "PFOQ.spad" 1473674 1473692 1474294 1474299) (-854 "PFO.spad" 1473093 1473120 1473664 1473669) (-853 "PF.spad" 1472667 1472679 1472898 1472991) (-852 "PFECAT.spad" 1470333 1470341 1472593 1472662) (-851 "PFECAT.spad" 1468027 1468037 1470289 1470294) (-850 "PFBRU.spad" 1465897 1465909 1468017 1468022) (-849 "PFBR.spad" 1463435 1463458 1465887 1465892) (-848 "PERM.spad" 1459116 1459126 1463265 1463280) (-847 "PERMGRP.spad" 1453852 1453862 1459106 1459111) (-846 "PERMCAT.spad" 1452404 1452414 1453832 1453847) (-845 "PERMAN.spad" 1450936 1450950 1452394 1452399) (-844 "PENDTREE.spad" 1450209 1450219 1450565 1450570) (-843 "PDRING.spad" 1448700 1448710 1450189 1450204) (-842 "PDRING.spad" 1447199 1447211 1448690 1448695) (-841 "PDEPROB.spad" 1446156 1446164 1447189 1447194) (-840 "PDEPACK.spad" 1440158 1440166 1446146 1446151) (-839 "PDECOMP.spad" 1439620 1439637 1440148 1440153) (-838 "PDECAT.spad" 1437974 1437982 1439610 1439615) (-837 "PCOMP.spad" 1437825 1437838 1437964 1437969) (-836 "PBWLB.spad" 1436407 1436424 1437815 1437820) (-835 "PATTERN.spad" 1430838 1430848 1436397 1436402) (-834 "PATTERN2.spad" 1430574 1430586 1430828 1430833) (-833 "PATTERN1.spad" 1428876 1428892 1430564 1430569) (-832 "PATRES.spad" 1426423 1426435 1428866 1428871) (-831 "PATRES2.spad" 1426085 1426099 1426413 1426418) (-830 "PATMATCH.spad" 1424247 1424278 1425798 1425803) (-829 "PATMAB.spad" 1423672 1423682 1424237 1424242) (-828 "PATLRES.spad" 1422756 1422770 1423662 1423667) (-827 "PATAB.spad" 1422520 1422530 1422746 1422751) (-826 "PARTPERM.spad" 1419882 1419890 1422510 1422515) (-825 "PARSURF.spad" 1419310 1419338 1419872 1419877) (-824 "PARSU2.spad" 1419105 1419121 1419300 1419305) (-823 "script-parser.spad" 1418625 1418633 1419095 1419100) (-822 "PARSCURV.spad" 1418053 1418081 1418615 1418620) (-821 "PARSC2.spad" 1417842 1417858 1418043 1418048) (-820 "PARPCURV.spad" 1417300 1417328 1417832 1417837) (-819 "PARPC2.spad" 1417089 1417105 1417290 1417295) (-818 "PAN2EXPR.spad" 1416501 1416509 1417079 1417084) (-817 "PALETTE.spad" 1415471 1415479 1416491 1416496) (-816 "PAIR.spad" 1414454 1414467 1415059 1415064) (-815 "PADICRC.spad" 1411787 1411805 1412962 1413055) (-814 "PADICRAT.spad" 1409805 1409817 1410026 1410119) (-813 "PADIC.spad" 1409500 1409512 1409731 1409800) (-812 "PADICCT.spad" 1408041 1408053 1409426 1409495) (-811 "PADEPAC.spad" 1406720 1406739 1408031 1408036) (-810 "PADE.spad" 1405460 1405476 1406710 1406715) (-809 "OWP.spad" 1404444 1404474 1405318 1405385) (-808 "OVAR.spad" 1404225 1404248 1404434 1404439) (-807 "OUT.spad" 1403309 1403317 1404215 1404220) (-806 "OUTFORM.spad" 1392723 1392731 1403299 1403304) (-805 "OSI.spad" 1392198 1392206 1392713 1392718) (-804 "OSGROUP.spad" 1392116 1392124 1392188 1392193) (-803 "ORTHPOL.spad" 1390577 1390587 1392033 1392038) (-802 "OREUP.spad" 1389937 1389965 1390259 1390298) (-801 "ORESUP.spad" 1389238 1389262 1389619 1389658) (-800 "OREPCTO.spad" 1387057 1387069 1389158 1389163) (-799 "OREPCAT.spad" 1381114 1381124 1387013 1387052) (-798 "OREPCAT.spad" 1375061 1375073 1380962 1380967) (-797 "ORDSET.spad" 1374227 1374235 1375051 1375056) (-796 "ORDSET.spad" 1373391 1373401 1374217 1374222) (-795 "ORDRING.spad" 1372781 1372789 1373371 1373386) (-794 "ORDRING.spad" 1372179 1372189 1372771 1372776) (-793 "ORDMON.spad" 1372034 1372042 1372169 1372174) (-792 "ORDFUNS.spad" 1371160 1371176 1372024 1372029) (-791 "ORDFIN.spad" 1371094 1371102 1371150 1371155) (-790 "ORDCOMP.spad" 1369562 1369572 1370644 1370673) (-789 "ORDCOMP2.spad" 1368847 1368859 1369552 1369557) (-788 "OPTPROB.spad" 1367427 1367435 1368837 1368842) (-787 "OPTPACK.spad" 1359812 1359820 1367417 1367422) (-786 "OPTCAT.spad" 1357487 1357495 1359802 1359807) (-785 "OPQUERY.spad" 1357036 1357044 1357477 1357482) (-784 "OP.spad" 1356778 1356788 1356858 1356925) (-783 "ONECOMP.spad" 1355526 1355536 1356328 1356357) (-782 "ONECOMP2.spad" 1354944 1354956 1355516 1355521) (-781 "OMSERVER.spad" 1353946 1353954 1354934 1354939) (-780 "OMSAGG.spad" 1353722 1353732 1353890 1353941) (-779 "OMPKG.spad" 1352334 1352342 1353712 1353717) (-778 "OM.spad" 1351299 1351307 1352324 1352329) (-777 "OMLO.spad" 1350724 1350736 1351185 1351224) (-776 "OMEXPR.spad" 1350558 1350568 1350714 1350719) (-775 "OMERR.spad" 1350101 1350109 1350548 1350553) (-774 "OMERRK.spad" 1349135 1349143 1350091 1350096) (-773 "OMENC.spad" 1348479 1348487 1349125 1349130) (-772 "OMDEV.spad" 1342768 1342776 1348469 1348474) (-771 "OMCONN.spad" 1342177 1342185 1342758 1342763) (-770 "OINTDOM.spad" 1341940 1341948 1342103 1342172) (-769 "OFMONOID.spad" 1338127 1338137 1341930 1341935) (-768 "ODVAR.spad" 1337388 1337398 1338117 1338122) (-767 "ODR.spad" 1336836 1336862 1337200 1337349) (-766 "ODPOL.spad" 1334185 1334195 1334525 1334652) (-765 "ODP.spad" 1325357 1325377 1325730 1325859) (-764 "ODETOOLS.spad" 1323940 1323959 1325347 1325352) (-763 "ODESYS.spad" 1321590 1321607 1323930 1323935) (-762 "ODERTRIC.spad" 1317531 1317548 1321547 1321552) (-761 "ODERED.spad" 1316918 1316942 1317521 1317526) (-760 "ODERAT.spad" 1314469 1314486 1316908 1316913) (-759 "ODEPRRIC.spad" 1311360 1311382 1314459 1314464) (-758 "ODEPROB.spad" 1310559 1310567 1311350 1311355) (-757 "ODEPRIM.spad" 1307833 1307855 1310549 1310554) (-756 "ODEPAL.spad" 1307209 1307233 1307823 1307828) (-755 "ODEPACK.spad" 1293811 1293819 1307199 1307204) (-754 "ODEINT.spad" 1293242 1293258 1293801 1293806) (-753 "ODEIFTBL.spad" 1290637 1290645 1293232 1293237) (-752 "ODEEF.spad" 1286004 1286020 1290627 1290632) (-751 "ODECONST.spad" 1285523 1285541 1285994 1285999) (-750 "ODECAT.spad" 1284119 1284127 1285513 1285518) (-749 "OCT.spad" 1282266 1282276 1282982 1283021) (-748 "OCTCT2.spad" 1281910 1281931 1282256 1282261) (-747 "OC.spad" 1279684 1279694 1281866 1281905) (-746 "OC.spad" 1277184 1277196 1279368 1279373) (-745 "OCAMON.spad" 1277032 1277040 1277174 1277179) (-744 "OASGP.spad" 1276847 1276855 1277022 1277027) (-743 "OAMONS.spad" 1276367 1276375 1276837 1276842) (-742 "OAMON.spad" 1276228 1276236 1276357 1276362) (-741 "OAGROUP.spad" 1276090 1276098 1276218 1276223) (-740 "NUMTUBE.spad" 1275677 1275693 1276080 1276085) (-739 "NUMQUAD.spad" 1263539 1263547 1275667 1275672) (-738 "NUMODE.spad" 1254675 1254683 1263529 1263534) (-737 "NUMINT.spad" 1252233 1252241 1254665 1254670) (-736 "NUMFMT.spad" 1251073 1251081 1252223 1252228) (-735 "NUMERIC.spad" 1243146 1243156 1250879 1250884) (-734 "NTSCAT.spad" 1241636 1241652 1243102 1243141) (-733 "NTPOLFN.spad" 1241181 1241191 1241553 1241558) (-732 "NSUP.spad" 1234194 1234204 1238734 1238887) (-731 "NSUP2.spad" 1233586 1233598 1234184 1234189) (-730 "NSMP.spad" 1229785 1229804 1230093 1230220) (-729 "NREP.spad" 1228157 1228171 1229775 1229780) (-728 "NPCOEF.spad" 1227403 1227423 1228147 1228152) (-727 "NORMRETR.spad" 1227001 1227040 1227393 1227398) (-726 "NORMPK.spad" 1224903 1224922 1226991 1226996) (-725 "NORMMA.spad" 1224591 1224617 1224893 1224898) (-724 "NONE.spad" 1224332 1224340 1224581 1224586) (-723 "NONE1.spad" 1224008 1224018 1224322 1224327) (-722 "NODE1.spad" 1223477 1223493 1223998 1224003) (-721 "NNI.spad" 1222364 1222372 1223451 1223472) (-720 "NLINSOL.spad" 1220986 1220996 1222354 1222359) (-719 "NIPROB.spad" 1219469 1219477 1220976 1220981) (-718 "NFINTBAS.spad" 1216929 1216946 1219459 1219464) (-717 "NCODIV.spad" 1215127 1215143 1216919 1216924) (-716 "NCNTFRAC.spad" 1214769 1214783 1215117 1215122) (-715 "NCEP.spad" 1212929 1212943 1214759 1214764) (-714 "NASRING.spad" 1212525 1212533 1212919 1212924) (-713 "NASRING.spad" 1212119 1212129 1212515 1212520) (-712 "NARNG.spad" 1211463 1211471 1212109 1212114) (-711 "NARNG.spad" 1210805 1210815 1211453 1211458) (-710 "NAGSP.spad" 1209878 1209886 1210795 1210800) (-709 "NAGS.spad" 1199403 1199411 1209868 1209873) (-708 "NAGF07.spad" 1197796 1197804 1199393 1199398) (-707 "NAGF04.spad" 1192028 1192036 1197786 1197791) (-706 "NAGF02.spad" 1185837 1185845 1192018 1192023) (-705 "NAGF01.spad" 1181440 1181448 1185827 1185832) (-704 "NAGE04.spad" 1174900 1174908 1181430 1181435) (-703 "NAGE02.spad" 1165242 1165250 1174890 1174895) (-702 "NAGE01.spad" 1161126 1161134 1165232 1165237) (-701 "NAGD03.spad" 1159046 1159054 1161116 1161121) (-700 "NAGD02.spad" 1151577 1151585 1159036 1159041) (-699 "NAGD01.spad" 1145690 1145698 1151567 1151572) (-698 "NAGC06.spad" 1141477 1141485 1145680 1145685) (-697 "NAGC05.spad" 1139946 1139954 1141467 1141472) (-696 "NAGC02.spad" 1139201 1139209 1139936 1139941) (-695 "NAALG.spad" 1138736 1138746 1139169 1139196) (-694 "NAALG.spad" 1138291 1138303 1138726 1138731) (-693 "MULTSQFR.spad" 1135249 1135266 1138281 1138286) (-692 "MULTFACT.spad" 1134632 1134649 1135239 1135244) (-691 "MTSCAT.spad" 1132666 1132687 1134530 1134627) (-690 "MTHING.spad" 1132323 1132333 1132656 1132661) (-689 "MSYSCMD.spad" 1131757 1131765 1132313 1132318) (-688 "MSET.spad" 1129699 1129709 1131463 1131502) (-687 "MSETAGG.spad" 1129532 1129542 1129655 1129694) (-686 "MRING.spad" 1126503 1126515 1129240 1129307) (-685 "MRF2.spad" 1126071 1126085 1126493 1126498) (-684 "MRATFAC.spad" 1125617 1125634 1126061 1126066) (-683 "MPRFF.spad" 1123647 1123666 1125607 1125612) (-682 "MPOLY.spad" 1121085 1121100 1121444 1121571) (-681 "MPCPF.spad" 1120349 1120368 1121075 1121080) (-680 "MPC3.spad" 1120164 1120204 1120339 1120344) (-679 "MPC2.spad" 1119806 1119839 1120154 1120159) (-678 "MONOTOOL.spad" 1118141 1118158 1119796 1119801) (-677 "MONOID.spad" 1117460 1117468 1118131 1118136) (-676 "MONOID.spad" 1116777 1116787 1117450 1117455) (-675 "MONOGEN.spad" 1115523 1115536 1116637 1116772) (-674 "MONOGEN.spad" 1114291 1114306 1115407 1115412) (-673 "MONADWU.spad" 1112305 1112313 1114281 1114286) (-672 "MONADWU.spad" 1110317 1110327 1112295 1112300) (-671 "MONAD.spad" 1109461 1109469 1110307 1110312) (-670 "MONAD.spad" 1108603 1108613 1109451 1109456) (-669 "MOEBIUS.spad" 1107289 1107303 1108583 1108598) (-668 "MODULE.spad" 1107159 1107169 1107257 1107284) (-667 "MODULE.spad" 1107049 1107061 1107149 1107154) (-666 "MODRING.spad" 1106380 1106419 1107029 1107044) (-665 "MODOP.spad" 1105039 1105051 1106202 1106269) (-664 "MODMONOM.spad" 1104571 1104589 1105029 1105034) (-663 "MODMON.spad" 1101276 1101292 1102052 1102205) (-662 "MODFIELD.spad" 1100634 1100673 1101178 1101271) (-661 "MMLFORM.spad" 1099494 1099502 1100624 1100629) (-660 "MMAP.spad" 1099234 1099268 1099484 1099489) (-659 "MLO.spad" 1097661 1097671 1099190 1099229) (-658 "MLIFT.spad" 1096233 1096250 1097651 1097656) (-657 "MKUCFUNC.spad" 1095766 1095784 1096223 1096228) (-656 "MKRECORD.spad" 1095368 1095381 1095756 1095761) (-655 "MKFUNC.spad" 1094749 1094759 1095358 1095363) (-654 "MKFLCFN.spad" 1093705 1093715 1094739 1094744) (-653 "MKCHSET.spad" 1093481 1093491 1093695 1093700) (-652 "MKBCFUNC.spad" 1092966 1092984 1093471 1093476) (-651 "MINT.spad" 1092405 1092413 1092868 1092961) (-650 "MHROWRED.spad" 1090906 1090916 1092395 1092400) (-649 "MFLOAT.spad" 1089351 1089359 1090796 1090901) (-648 "MFINFACT.spad" 1088751 1088773 1089341 1089346) (-647 "MESH.spad" 1086483 1086491 1088741 1088746) (-646 "MDDFACT.spad" 1084676 1084686 1086473 1086478) (-645 "MDAGG.spad" 1083951 1083961 1084644 1084671) (-644 "MCMPLX.spad" 1079931 1079939 1080545 1080746) (-643 "MCDEN.spad" 1079139 1079151 1079921 1079926) (-642 "MCALCFN.spad" 1076241 1076267 1079129 1079134) (-641 "MAYBE.spad" 1075490 1075501 1076231 1076236) (-640 "MATSTOR.spad" 1072766 1072776 1075480 1075485) (-639 "MATRIX.spad" 1071470 1071480 1071954 1071981) (-638 "MATLIN.spad" 1068796 1068820 1071354 1071359) (-637 "MATCAT.spad" 1060369 1060391 1068752 1068791) (-636 "MATCAT.spad" 1051826 1051850 1060211 1060216) (-635 "MATCAT2.spad" 1051094 1051142 1051816 1051821) (-634 "MAPPKG3.spad" 1049993 1050007 1051084 1051089) (-633 "MAPPKG2.spad" 1049327 1049339 1049983 1049988) (-632 "MAPPKG1.spad" 1048145 1048155 1049317 1049322) (-631 "MAPHACK3.spad" 1047953 1047967 1048135 1048140) (-630 "MAPHACK2.spad" 1047718 1047730 1047943 1047948) (-629 "MAPHACK1.spad" 1047348 1047358 1047708 1047713) (-628 "MAGMA.spad" 1045138 1045155 1047338 1047343) (-627 "M3D.spad" 1042836 1042846 1044518 1044523) (-626 "LZSTAGG.spad" 1040054 1040064 1042816 1042831) (-625 "LZSTAGG.spad" 1037280 1037292 1040044 1040049) (-624 "LWORD.spad" 1033985 1034002 1037270 1037275) (-623 "LSQM.spad" 1032213 1032227 1032611 1032662) (-622 "LSPP.spad" 1031746 1031763 1032203 1032208) (-621 "LSMP.spad" 1030586 1030614 1031736 1031741) (-620 "LSMP1.spad" 1028390 1028404 1030576 1030581) (-619 "LSAGG.spad" 1028047 1028057 1028346 1028385) (-618 "LSAGG.spad" 1027736 1027748 1028037 1028042) (-617 "LPOLY.spad" 1026690 1026709 1027592 1027661) (-616 "LPEFRAC.spad" 1025947 1025957 1026680 1026685) (-615 "LO.spad" 1025348 1025362 1025881 1025908) (-614 "LOGIC.spad" 1024950 1024958 1025338 1025343) (-613 "LOGIC.spad" 1024550 1024560 1024940 1024945) (-612 "LODOOPS.spad" 1023468 1023480 1024540 1024545) (-611 "LODO.spad" 1022854 1022870 1023150 1023189) (-610 "LODOF.spad" 1021898 1021915 1022811 1022816) (-609 "LODOCAT.spad" 1020556 1020566 1021854 1021893) (-608 "LODOCAT.spad" 1019212 1019224 1020512 1020517) (-607 "LODO2.spad" 1018487 1018499 1018894 1018933) (-606 "LODO1.spad" 1017889 1017899 1018169 1018208) (-605 "LODEEF.spad" 1016661 1016679 1017879 1017884) (-604 "LNAGG.spad" 1012453 1012463 1016641 1016656) (-603 "LNAGG.spad" 1008219 1008231 1012409 1012414) (-602 "LMOPS.spad" 1004955 1004972 1008209 1008214) (-601 "LMODULE.spad" 1004597 1004607 1004945 1004950) (-600 "LMDICT.spad" 1003880 1003890 1004148 1004175) (-599 "LITERAL.spad" 1003786 1003797 1003870 1003875) (-598 "LIST.spad" 1001504 1001514 1002933 1002960) (-597 "LIST3.spad" 1000795 1000809 1001494 1001499) (-596 "LIST2.spad" 999435 999447 1000785 1000790) (-595 "LIST2MAP.spad" 996312 996324 999425 999430) (-594 "LINEXP.spad" 995744 995754 996292 996307) (-593 "LINDEP.spad" 994521 994533 995656 995661) (-592 "LIMITRF.spad" 992435 992445 994511 994516) (-591 "LIMITPS.spad" 991318 991331 992425 992430) (-590 "LIE.spad" 989332 989344 990608 990753) (-589 "LIECAT.spad" 988808 988818 989258 989327) (-588 "LIECAT.spad" 988312 988324 988764 988769) (-587 "LIB.spad" 986360 986368 986971 986986) (-586 "LGROBP.spad" 983713 983732 986350 986355) (-585 "LF.spad" 982632 982648 983703 983708) (-584 "LFCAT.spad" 981651 981659 982622 982627) (-583 "LEXTRIPK.spad" 977154 977169 981641 981646) (-582 "LEXP.spad" 975157 975184 977134 977149) (-581 "LEADCDET.spad" 973541 973558 975147 975152) (-580 "LAZM3PK.spad" 972245 972267 973531 973536) (-579 "LAUPOL.spad" 970936 970949 971840 971909) (-578 "LAPLACE.spad" 970509 970525 970926 970931) (-577 "LA.spad" 969949 969963 970431 970470) (-576 "LALG.spad" 969725 969735 969929 969944) (-575 "LALG.spad" 969509 969521 969715 969720) (-574 "KOVACIC.spad" 968222 968239 969499 969504) (-573 "KONVERT.spad" 967944 967954 968212 968217) (-572 "KOERCE.spad" 967681 967691 967934 967939) (-571 "KERNEL.spad" 966216 966226 967465 967470) (-570 "KERNEL2.spad" 965919 965931 966206 966211) (-569 "KDAGG.spad" 965010 965032 965887 965914) (-568 "KDAGG.spad" 964121 964145 965000 965005) (-567 "KAFILE.spad" 963084 963100 963319 963346) (-566 "JORDAN.spad" 960911 960923 962374 962519) (-565 "JAVACODE.spad" 960677 960685 960901 960906) (-564 "IXAGG.spad" 958790 958814 960657 960672) (-563 "IXAGG.spad" 956768 956794 958637 958642) (-562 "IVECTOR.spad" 955541 955556 955696 955723) (-561 "ITUPLE.spad" 954686 954696 955531 955536) (-560 "ITRIGMNP.spad" 953497 953516 954676 954681) (-559 "ITFUN3.spad" 952991 953005 953487 953492) (-558 "ITFUN2.spad" 952721 952733 952981 952986) (-557 "ITAYLOR.spad" 950513 950528 952557 952682) (-556 "ISUPS.spad" 942924 942939 949487 949584) (-555 "ISUMP.spad" 942421 942437 942914 942919) (-554 "ISTRING.spad" 941424 941437 941590 941617) (-553 "IRURPK.spad" 940137 940156 941414 941419) (-552 "IRSN.spad" 938097 938105 940127 940132) (-551 "IRRF2F.spad" 936572 936582 938053 938058) (-550 "IRREDFFX.spad" 936173 936184 936562 936567) (-549 "IROOT.spad" 934504 934514 936163 936168) (-548 "IR.spad" 932294 932308 934360 934387) (-547 "IR2.spad" 931314 931330 932284 932289) (-546 "IR2F.spad" 930514 930530 931304 931309) (-545 "IPRNTPK.spad" 930274 930282 930504 930509) (-544 "IPF.spad" 929839 929851 930079 930172) (-543 "IPADIC.spad" 929600 929626 929765 929834) (-542 "INVLAPLA.spad" 929245 929261 929590 929595) (-541 "INTTR.spad" 922491 922508 929235 929240) (-540 "INTTOOLS.spad" 920203 920219 922066 922071) (-539 "INTSLPE.spad" 919509 919517 920193 920198) (-538 "INTRVL.spad" 919075 919085 919423 919504) (-537 "INTRF.spad" 917439 917453 919065 919070) (-536 "INTRET.spad" 916871 916881 917429 917434) (-535 "INTRAT.spad" 915546 915563 916861 916866) (-534 "INTPM.spad" 913909 913925 915189 915194) (-533 "INTPAF.spad" 911677 911695 913841 913846) (-532 "INTPACK.spad" 901987 901995 911667 911672) (-531 "INT.spad" 901348 901356 901841 901982) (-530 "INTHERTR.spad" 900614 900631 901338 901343) (-529 "INTHERAL.spad" 900280 900304 900604 900609) (-528 "INTHEORY.spad" 896693 896701 900270 900275) (-527 "INTG0.spad" 890156 890174 896625 896630) (-526 "INTFTBL.spad" 884185 884193 890146 890151) (-525 "INTFACT.spad" 883244 883254 884175 884180) (-524 "INTEF.spad" 881559 881575 883234 883239) (-523 "INTDOM.spad" 880174 880182 881485 881554) (-522 "INTDOM.spad" 878851 878861 880164 880169) (-521 "INTCAT.spad" 877104 877114 878765 878846) (-520 "INTBIT.spad" 876607 876615 877094 877099) (-519 "INTALG.spad" 875789 875816 876597 876602) (-518 "INTAF.spad" 875281 875297 875779 875784) (-517 "INTABL.spad" 873799 873830 873962 873989) (-516 "INS.spad" 871195 871203 873701 873794) (-515 "INS.spad" 868677 868687 871185 871190) (-514 "INPSIGN.spad" 868111 868124 868667 868672) (-513 "INPRODPF.spad" 867177 867196 868101 868106) (-512 "INPRODFF.spad" 866235 866259 867167 867172) (-511 "INNMFACT.spad" 865206 865223 866225 866230) (-510 "INMODGCD.spad" 864690 864720 865196 865201) (-509 "INFSP.spad" 862975 862997 864680 864685) (-508 "INFPROD0.spad" 862025 862044 862965 862970) (-507 "INFORM.spad" 859293 859301 862015 862020) (-506 "INFORM1.spad" 858918 858928 859283 859288) (-505 "INFINITY.spad" 858470 858478 858908 858913) (-504 "INEP.spad" 857002 857024 858460 858465) (-503 "INDE.spad" 856731 856748 856992 856997) (-502 "INCRMAPS.spad" 856152 856162 856721 856726) (-501 "INBFF.spad" 851922 851933 856142 856147) (-500 "IMATRIX.spad" 850867 850893 851379 851406) (-499 "IMATQF.spad" 849961 850005 850823 850828) (-498 "IMATLIN.spad" 848566 848590 849917 849922) (-497 "ILIST.spad" 847222 847237 847749 847776) (-496 "IIARRAY2.spad" 846610 846648 846829 846856) (-495 "IFF.spad" 846020 846036 846291 846384) (-494 "IFARRAY.spad" 843507 843522 845203 845230) (-493 "IFAMON.spad" 843369 843386 843463 843468) (-492 "IEVALAB.spad" 842758 842770 843359 843364) (-491 "IEVALAB.spad" 842145 842159 842748 842753) (-490 "IDPO.spad" 841943 841955 842135 842140) (-489 "IDPOAMS.spad" 841699 841711 841933 841938) (-488 "IDPOAM.spad" 841419 841431 841689 841694) (-487 "IDPC.spad" 840353 840365 841409 841414) (-486 "IDPAM.spad" 840098 840110 840343 840348) (-485 "IDPAG.spad" 839845 839857 840088 840093) (-484 "IDENT.spad" 839762 839770 839835 839840) (-483 "IDECOMP.spad" 836999 837017 839752 839757) (-482 "IDEAL.spad" 831922 831961 836934 836939) (-481 "ICDEN.spad" 831073 831089 831912 831917) (-480 "ICARD.spad" 830262 830270 831063 831068) (-479 "IBPTOOLS.spad" 828855 828872 830252 830257) (-478 "IBITS.spad" 828054 828067 828491 828518) (-477 "IBATOOL.spad" 824929 824948 828044 828049) (-476 "IBACHIN.spad" 823416 823431 824919 824924) (-475 "IARRAY2.spad" 822404 822430 823023 823050) (-474 "IARRAY1.spad" 821449 821464 821587 821614) (-473 "IAN.spad" 819664 819672 821267 821360) (-472 "IALGFACT.spad" 819265 819298 819654 819659) (-471 "HYPCAT.spad" 818689 818697 819255 819260) (-470 "HYPCAT.spad" 818111 818121 818679 818684) (-469 "HOSTNAME.spad" 817919 817927 818101 818106) (-468 "HOAGG.spad" 815177 815187 817899 817914) (-467 "HOAGG.spad" 812220 812232 814944 814949) (-466 "HEXADEC.spad" 810092 810100 810690 810783) (-465 "HEUGCD.spad" 809107 809118 810082 810087) (-464 "HELLFDIV.spad" 808697 808721 809097 809102) (-463 "HEAP.spad" 808089 808099 808304 808331) (-462 "HEADAST.spad" 807648 807656 808079 808084) (-461 "HDP.spad" 798816 798832 799193 799322) (-460 "HDMP.spad" 795995 796010 796613 796740) (-459 "HB.spad" 794232 794240 795985 795990) (-458 "HASHTBL.spad" 792702 792733 792913 792940) (-457 "HACKPI.spad" 792185 792193 792604 792697) (-456 "GTSET.spad" 791124 791140 791831 791858) (-455 "GSTBL.spad" 789643 789678 789817 789832) (-454 "GSERIES.spad" 786810 786837 787775 787924) (-453 "GROUP.spad" 786079 786087 786790 786805) (-452 "GROUP.spad" 785356 785366 786069 786074) (-451 "GROEBSOL.spad" 783844 783865 785346 785351) (-450 "GRMOD.spad" 782415 782427 783834 783839) (-449 "GRMOD.spad" 780984 780998 782405 782410) (-448 "GRIMAGE.spad" 773589 773597 780974 780979) (-447 "GRDEF.spad" 771968 771976 773579 773584) (-446 "GRAY.spad" 770427 770435 771958 771963) (-445 "GRALG.spad" 769474 769486 770417 770422) (-444 "GRALG.spad" 768519 768533 769464 769469) (-443 "GPOLSET.spad" 767973 767996 768201 768228) (-442 "GOSPER.spad" 767238 767256 767963 767968) (-441 "GMODPOL.spad" 766376 766403 767206 767233) (-440 "GHENSEL.spad" 765445 765459 766366 766371) (-439 "GENUPS.spad" 761546 761559 765435 765440) (-438 "GENUFACT.spad" 761123 761133 761536 761541) (-437 "GENPGCD.spad" 760707 760724 761113 761118) (-436 "GENMFACT.spad" 760159 760178 760697 760702) (-435 "GENEEZ.spad" 758098 758111 760149 760154) (-434 "GDMP.spad" 755119 755136 755895 756022) (-433 "GCNAALG.spad" 749014 749041 754913 754980) (-432 "GCDDOM.spad" 748186 748194 748940 749009) (-431 "GCDDOM.spad" 747420 747430 748176 748181) (-430 "GB.spad" 744938 744976 747376 747381) (-429 "GBINTERN.spad" 740958 740996 744928 744933) (-428 "GBF.spad" 736715 736753 740948 740953) (-427 "GBEUCLID.spad" 734589 734627 736705 736710) (-426 "GAUSSFAC.spad" 733886 733894 734579 734584) (-425 "GALUTIL.spad" 732208 732218 733842 733847) (-424 "GALPOLYU.spad" 730654 730667 732198 732203) (-423 "GALFACTU.spad" 728819 728838 730644 730649) (-422 "GALFACT.spad" 718952 718963 728809 728814) (-421 "FVFUN.spad" 715965 715973 718932 718947) (-420 "FVC.spad" 715007 715015 715945 715960) (-419 "FUNCTION.spad" 714856 714868 714997 715002) (-418 "FT.spad" 713068 713076 714846 714851) (-417 "FTEM.spad" 712231 712239 713058 713063) (-416 "FSUPFACT.spad" 711132 711151 712168 712173) (-415 "FST.spad" 709218 709226 711122 711127) (-414 "FSRED.spad" 708696 708712 709208 709213) (-413 "FSPRMELT.spad" 707520 707536 708653 708658) (-412 "FSPECF.spad" 705597 705613 707510 707515) (-411 "FS.spad" 699648 699658 705361 705592) (-410 "FS.spad" 693490 693502 699205 699210) (-409 "FSINT.spad" 693148 693164 693480 693485) (-408 "FSERIES.spad" 692335 692347 692968 693067) (-407 "FSCINT.spad" 691648 691664 692325 692330) (-406 "FSAGG.spad" 690753 690763 691592 691643) (-405 "FSAGG.spad" 689832 689844 690673 690678) (-404 "FSAGG2.spad" 688531 688547 689822 689827) (-403 "FS2UPS.spad" 682920 682954 688521 688526) (-402 "FS2.spad" 682565 682581 682910 682915) (-401 "FS2EXPXP.spad" 681688 681711 682555 682560) (-400 "FRUTIL.spad" 680630 680640 681678 681683) (-399 "FR.spad" 674327 674337 679657 679726) (-398 "FRNAALG.spad" 669414 669424 674269 674322) (-397 "FRNAALG.spad" 664513 664525 669370 669375) (-396 "FRNAAF2.spad" 663967 663985 664503 664508) (-395 "FRMOD.spad" 663362 663392 663899 663904) (-394 "FRIDEAL.spad" 662557 662578 663342 663357) (-393 "FRIDEAL2.spad" 662159 662191 662547 662552) (-392 "FRETRCT.spad" 661670 661680 662149 662154) (-391 "FRETRCT.spad" 661049 661061 661530 661535) (-390 "FRAMALG.spad" 659377 659390 661005 661044) (-389 "FRAMALG.spad" 657737 657752 659367 659372) (-388 "FRAC.spad" 654840 654850 655243 655416) (-387 "FRAC2.spad" 654443 654455 654830 654835) (-386 "FR2.spad" 653777 653789 654433 654438) (-385 "FPS.spad" 650586 650594 653667 653772) (-384 "FPS.spad" 647423 647433 650506 650511) (-383 "FPC.spad" 646465 646473 647325 647418) (-382 "FPC.spad" 645593 645603 646455 646460) (-381 "FPATMAB.spad" 645345 645355 645573 645588) (-380 "FPARFRAC.spad" 643818 643835 645335 645340) (-379 "FORTRAN.spad" 642324 642367 643808 643813) (-378 "FORT.spad" 641253 641261 642314 642319) (-377 "FORTFN.spad" 638413 638421 641233 641248) (-376 "FORTCAT.spad" 638087 638095 638393 638408) (-375 "FORMULA.spad" 635425 635433 638077 638082) (-374 "FORMULA1.spad" 634904 634914 635415 635420) (-373 "FORDER.spad" 634595 634619 634894 634899) (-372 "FOP.spad" 633796 633804 634585 634590) (-371 "FNLA.spad" 633220 633242 633764 633791) (-370 "FNCAT.spad" 631548 631556 633210 633215) (-369 "FNAME.spad" 631440 631448 631538 631543) (-368 "FMTC.spad" 631238 631246 631366 631435) (-367 "FMONOID.spad" 628293 628303 631194 631199) (-366 "FM.spad" 627988 628000 628227 628254) (-365 "FMFUN.spad" 625008 625016 627968 627983) (-364 "FMC.spad" 624050 624058 624988 625003) (-363 "FMCAT.spad" 621704 621722 624018 624045) (-362 "FM1.spad" 621061 621073 621638 621665) (-361 "FLOATRP.spad" 618782 618796 621051 621056) (-360 "FLOAT.spad" 611946 611954 618648 618777) (-359 "FLOATCP.spad" 609363 609377 611936 611941) (-358 "FLINEXP.spad" 609075 609085 609343 609358) (-357 "FLINEXP.spad" 608741 608753 609011 609016) (-356 "FLASORT.spad" 608061 608073 608731 608736) (-355 "FLALG.spad" 605707 605726 607987 608056) (-354 "FLAGG.spad" 602713 602723 605675 605702) (-353 "FLAGG.spad" 599632 599644 602596 602601) (-352 "FLAGG2.spad" 598313 598329 599622 599627) (-351 "FINRALG.spad" 596342 596355 598269 598308) (-350 "FINRALG.spad" 594297 594312 596226 596231) (-349 "FINITE.spad" 593449 593457 594287 594292) (-348 "FINAALG.spad" 582430 582440 593391 593444) (-347 "FINAALG.spad" 571423 571435 582386 582391) (-346 "FILE.spad" 571006 571016 571413 571418) (-345 "FILECAT.spad" 569524 569541 570996 571001) (-344 "FIELD.spad" 568930 568938 569426 569519) (-343 "FIELD.spad" 568422 568432 568920 568925) (-342 "FGROUP.spad" 567031 567041 568402 568417) (-341 "FGLMICPK.spad" 565818 565833 567021 567026) (-340 "FFX.spad" 565193 565208 565534 565627) (-339 "FFSLPE.spad" 564682 564703 565183 565188) (-338 "FFPOLY.spad" 555934 555945 564672 564677) (-337 "FFPOLY2.spad" 554994 555011 555924 555929) (-336 "FFP.spad" 554391 554411 554710 554803) (-335 "FF.spad" 553839 553855 554072 554165) (-334 "FFNBX.spad" 552351 552371 553555 553648) (-333 "FFNBP.spad" 550864 550881 552067 552160) (-332 "FFNB.spad" 549329 549350 550545 550638) (-331 "FFINTBAS.spad" 546743 546762 549319 549324) (-330 "FFIELDC.spad" 544318 544326 546645 546738) (-329 "FFIELDC.spad" 541979 541989 544308 544313) (-328 "FFHOM.spad" 540727 540744 541969 541974) (-327 "FFF.spad" 538162 538173 540717 540722) (-326 "FFCGX.spad" 537009 537029 537878 537971) (-325 "FFCGP.spad" 535898 535918 536725 536818) (-324 "FFCG.spad" 534690 534711 535579 535672) (-323 "FFCAT.spad" 527717 527739 534529 534685) (-322 "FFCAT.spad" 520823 520847 527637 527642) (-321 "FFCAT2.spad" 520568 520608 520813 520818) (-320 "FEXPR.spad" 512281 512327 520328 520367) (-319 "FEVALAB.spad" 511987 511997 512271 512276) (-318 "FEVALAB.spad" 511478 511490 511764 511769) (-317 "FDIV.spad" 510920 510944 511468 511473) (-316 "FDIVCAT.spad" 508962 508986 510910 510915) (-315 "FDIVCAT.spad" 507002 507028 508952 508957) (-314 "FDIV2.spad" 506656 506696 506992 506997) (-313 "FCPAK1.spad" 505209 505217 506646 506651) (-312 "FCOMP.spad" 504588 504598 505199 505204) (-311 "FC.spad" 494413 494421 504578 504583) (-310 "FAXF.spad" 487348 487362 494315 494408) (-309 "FAXF.spad" 480335 480351 487304 487309) (-308 "FARRAY.spad" 478481 478491 479518 479545) (-307 "FAMR.spad" 476601 476613 478379 478476) (-306 "FAMR.spad" 474705 474719 476485 476490) (-305 "FAMONOID.spad" 474355 474365 474659 474664) (-304 "FAMONC.spad" 472577 472589 474345 474350) (-303 "FAGROUP.spad" 472183 472193 472473 472500) (-302 "FACUTIL.spad" 470379 470396 472173 472178) (-301 "FACTFUNC.spad" 469555 469565 470369 470374) (-300 "EXPUPXS.spad" 466388 466411 467687 467836) (-299 "EXPRTUBE.spad" 463616 463624 466378 466383) (-298 "EXPRODE.spad" 460488 460504 463606 463611) (-297 "EXPR.spad" 455790 455800 456504 456907) (-296 "EXPR2UPS.spad" 451882 451895 455780 455785) (-295 "EXPR2.spad" 451585 451597 451872 451877) (-294 "EXPEXPAN.spad" 448526 448551 449160 449253) (-293 "EXIT.spad" 448197 448205 448516 448521) (-292 "EVALCYC.spad" 447655 447669 448187 448192) (-291 "EVALAB.spad" 447219 447229 447645 447650) (-290 "EVALAB.spad" 446781 446793 447209 447214) (-289 "EUCDOM.spad" 444323 444331 446707 446776) (-288 "EUCDOM.spad" 441927 441937 444313 444318) (-287 "ESTOOLS.spad" 433767 433775 441917 441922) (-286 "ESTOOLS2.spad" 433368 433382 433757 433762) (-285 "ESTOOLS1.spad" 433053 433064 433358 433363) (-284 "ES.spad" 425600 425608 433043 433048) (-283 "ES.spad" 418055 418065 425500 425505) (-282 "ESCONT.spad" 414828 414836 418045 418050) (-281 "ESCONT1.spad" 414577 414589 414818 414823) (-280 "ES2.spad" 414072 414088 414567 414572) (-279 "ES1.spad" 413638 413654 414062 414067) (-278 "ERROR.spad" 410959 410967 413628 413633) (-277 "EQTBL.spad" 409431 409453 409640 409667) (-276 "EQ.spad" 404315 404325 407114 407223) (-275 "EQ2.spad" 404031 404043 404305 404310) (-274 "EP.spad" 400345 400355 404021 404026) (-273 "ENV.spad" 399047 399055 400335 400340) (-272 "ENTIRER.spad" 398715 398723 398991 399042) (-271 "EMR.spad" 397916 397957 398641 398710) (-270 "ELTAGG.spad" 396156 396175 397906 397911) (-269 "ELTAGG.spad" 394360 394381 396112 396117) (-268 "ELTAB.spad" 393807 393825 394350 394355) (-267 "ELFUTS.spad" 393186 393205 393797 393802) (-266 "ELEMFUN.spad" 392875 392883 393176 393181) (-265 "ELEMFUN.spad" 392562 392572 392865 392870) (-264 "ELAGG.spad" 390493 390503 392530 392557) (-263 "ELAGG.spad" 388373 388385 390412 390417) (-262 "ELABEXPR.spad" 387304 387312 388363 388368) (-261 "EFUPXS.spad" 384080 384110 387260 387265) (-260 "EFULS.spad" 380916 380939 384036 384041) (-259 "EFSTRUC.spad" 378871 378887 380906 380911) (-258 "EF.spad" 373637 373653 378861 378866) (-257 "EAB.spad" 371913 371921 373627 373632) (-256 "E04UCFA.spad" 371449 371457 371903 371908) (-255 "E04NAFA.spad" 371026 371034 371439 371444) (-254 "E04MBFA.spad" 370606 370614 371016 371021) (-253 "E04JAFA.spad" 370142 370150 370596 370601) (-252 "E04GCFA.spad" 369678 369686 370132 370137) (-251 "E04FDFA.spad" 369214 369222 369668 369673) (-250 "E04DGFA.spad" 368750 368758 369204 369209) (-249 "E04AGNT.spad" 364592 364600 368740 368745) (-248 "DVARCAT.spad" 361277 361287 364582 364587) (-247 "DVARCAT.spad" 357960 357972 361267 361272) (-246 "DSMP.spad" 355394 355408 355699 355826) (-245 "DROPT.spad" 349339 349347 355384 355389) (-244 "DROPT1.spad" 349002 349012 349329 349334) (-243 "DROPT0.spad" 343829 343837 348992 348997) (-242 "DRAWPT.spad" 341984 341992 343819 343824) (-241 "DRAW.spad" 334584 334597 341974 341979) (-240 "DRAWHACK.spad" 333892 333902 334574 334579) (-239 "DRAWCX.spad" 331334 331342 333882 333887) (-238 "DRAWCURV.spad" 330871 330886 331324 331329) (-237 "DRAWCFUN.spad" 320043 320051 330861 330866) (-236 "DQAGG.spad" 318199 318209 319999 320038) (-235 "DPOLCAT.spad" 313540 313556 318067 318194) (-234 "DPOLCAT.spad" 308967 308985 313496 313501) (-233 "DPMO.spad" 302317 302333 302455 302751) (-232 "DPMM.spad" 295680 295698 295805 296101) (-231 "DOMAIN.spad" 294951 294959 295670 295675) (-230 "DMP.spad" 292176 292191 292748 292875) (-229 "DLP.spad" 291524 291534 292166 292171) (-228 "DLIST.spad" 289936 289946 290707 290734) (-227 "DLAGG.spad" 288337 288347 289916 289931) (-226 "DIVRING.spad" 287879 287887 288281 288332) (-225 "DIVRING.spad" 287465 287475 287869 287874) (-224 "DISPLAY.spad" 285645 285653 287455 287460) (-223 "DIRPROD.spad" 276550 276566 277190 277319) (-222 "DIRPROD2.spad" 275358 275376 276540 276545) (-221 "DIRPCAT.spad" 274290 274306 275212 275353) (-220 "DIRPCAT.spad" 272962 272980 273886 273891) (-219 "DIOSP.spad" 271787 271795 272952 272957) (-218 "DIOPS.spad" 270759 270769 271755 271782) (-217 "DIOPS.spad" 269717 269729 270715 270720) (-216 "DIFRING.spad" 269009 269017 269697 269712) (-215 "DIFRING.spad" 268309 268319 268999 269004) (-214 "DIFEXT.spad" 267468 267478 268289 268304) (-213 "DIFEXT.spad" 266544 266556 267367 267372) (-212 "DIAGG.spad" 266162 266172 266512 266539) (-211 "DIAGG.spad" 265800 265812 266152 266157) (-210 "DHMATRIX.spad" 264104 264114 265257 265284) (-209 "DFSFUN.spad" 257512 257520 264094 264099) (-208 "DFLOAT.spad" 254035 254043 257402 257507) (-207 "DFINTTLS.spad" 252244 252260 254025 254030) (-206 "DERHAM.spad" 250154 250186 252224 252239) (-205 "DEQUEUE.spad" 249472 249482 249761 249788) (-204 "DEGRED.spad" 249087 249101 249462 249467) (-203 "DEFINTRF.spad" 246612 246622 249077 249082) (-202 "DEFINTEF.spad" 245108 245124 246602 246607) (-201 "DECIMAL.spad" 242992 243000 243578 243671) (-200 "DDFACT.spad" 240791 240808 242982 242987) (-199 "DBLRESP.spad" 240389 240413 240781 240786) (-198 "DBASE.spad" 238961 238971 240379 240384) (-197 "DATABUF.spad" 238449 238462 238951 238956) (-196 "D03FAFA.spad" 238277 238285 238439 238444) (-195 "D03EEFA.spad" 238097 238105 238267 238272) (-194 "D03AGNT.spad" 237177 237185 238087 238092) (-193 "D02EJFA.spad" 236639 236647 237167 237172) (-192 "D02CJFA.spad" 236117 236125 236629 236634) (-191 "D02BHFA.spad" 235607 235615 236107 236112) (-190 "D02BBFA.spad" 235097 235105 235597 235602) (-189 "D02AGNT.spad" 229901 229909 235087 235092) (-188 "D01WGTS.spad" 228220 228228 229891 229896) (-187 "D01TRNS.spad" 228197 228205 228210 228215) (-186 "D01GBFA.spad" 227719 227727 228187 228192) (-185 "D01FCFA.spad" 227241 227249 227709 227714) (-184 "D01ASFA.spad" 226709 226717 227231 227236) (-183 "D01AQFA.spad" 226155 226163 226699 226704) (-182 "D01APFA.spad" 225579 225587 226145 226150) (-181 "D01ANFA.spad" 225073 225081 225569 225574) (-180 "D01AMFA.spad" 224583 224591 225063 225068) (-179 "D01ALFA.spad" 224123 224131 224573 224578) (-178 "D01AKFA.spad" 223649 223657 224113 224118) (-177 "D01AJFA.spad" 223172 223180 223639 223644) (-176 "D01AGNT.spad" 219231 219239 223162 223167) (-175 "CYCLOTOM.spad" 218737 218745 219221 219226) (-174 "CYCLES.spad" 215569 215577 218727 218732) (-173 "CVMP.spad" 214986 214996 215559 215564) (-172 "CTRIGMNP.spad" 213476 213492 214976 214981) (-171 "CTORCALL.spad" 213064 213072 213466 213471) (-170 "CSTTOOLS.spad" 212307 212320 213054 213059) (-169 "CRFP.spad" 206011 206024 212297 212302) (-168 "CRAPACK.spad" 205054 205064 206001 206006) (-167 "CPMATCH.spad" 204554 204569 204979 204984) (-166 "CPIMA.spad" 204259 204278 204544 204549) (-165 "COORDSYS.spad" 199152 199162 204249 204254) (-164 "CONTOUR.spad" 198554 198562 199142 199147) (-163 "CONTFRAC.spad" 194166 194176 198456 198549) (-162 "COMRING.spad" 193840 193848 194104 194161) (-161 "COMPPROP.spad" 193354 193362 193830 193835) (-160 "COMPLPAT.spad" 193121 193136 193344 193349) (-159 "COMPLEX.spad" 187154 187164 187398 187659) (-158 "COMPLEX2.spad" 186867 186879 187144 187149) (-157 "COMPFACT.spad" 186469 186483 186857 186862) (-156 "COMPCAT.spad" 184525 184535 186191 186464) (-155 "COMPCAT.spad" 182288 182300 183956 183961) (-154 "COMMUPC.spad" 182034 182052 182278 182283) (-153 "COMMONOP.spad" 181567 181575 182024 182029) (-152 "COMM.spad" 181376 181384 181557 181562) (-151 "COMBOPC.spad" 180281 180289 181366 181371) (-150 "COMBINAT.spad" 179026 179036 180271 180276) (-149 "COMBF.spad" 176394 176410 179016 179021) (-148 "COLOR.spad" 175231 175239 176384 176389) (-147 "CMPLXRT.spad" 174940 174957 175221 175226) (-146 "CLIP.spad" 171032 171040 174930 174935) (-145 "CLIF.spad" 169671 169687 170988 171027) (-144 "CLAGG.spad" 166146 166156 169651 169666) (-143 "CLAGG.spad" 162502 162514 166009 166014) (-142 "CINTSLPE.spad" 161827 161840 162492 162497) (-141 "CHVAR.spad" 159905 159927 161817 161822) (-140 "CHARZ.spad" 159820 159828 159885 159900) (-139 "CHARPOL.spad" 159328 159338 159810 159815) (-138 "CHARNZ.spad" 159081 159089 159308 159323) (-137 "CHAR.spad" 156949 156957 159071 159076) (-136 "CFCAT.spad" 156265 156273 156939 156944) (-135 "CDEN.spad" 155423 155437 156255 156260) (-134 "CCLASS.spad" 153572 153580 154834 154873) (-133 "CATEGORY.spad" 153351 153359 153562 153567) (-132 "CARTEN.spad" 148454 148478 153341 153346) (-131 "CARTEN2.spad" 147840 147867 148444 148449) (-130 "CARD.spad" 145129 145137 147814 147835) (-129 "CACHSET.spad" 144751 144759 145119 145124) (-128 "CABMON.spad" 144304 144312 144741 144746) (-127 "BYTE.spad" 143698 143706 144294 144299) (-126 "BYTEARY.spad" 142773 142781 142867 142894) (-125 "BTREE.spad" 141842 141852 142380 142407) (-124 "BTOURN.spad" 140845 140855 141449 141476) (-123 "BTCAT.spad" 140221 140231 140801 140840) (-122 "BTCAT.spad" 139629 139641 140211 140216) (-121 "BTAGG.spad" 138739 138747 139585 139624) (-120 "BTAGG.spad" 137881 137891 138729 138734) (-119 "BSTREE.spad" 136616 136626 137488 137515) (-118 "BRILL.spad" 134811 134822 136606 136611) (-117 "BRAGG.spad" 133725 133735 134791 134806) (-116 "BRAGG.spad" 132613 132625 133681 133686) (-115 "BPADICRT.spad" 130597 130609 130852 130945) (-114 "BPADIC.spad" 130261 130273 130523 130592) (-113 "BOUNDZRO.spad" 129917 129934 130251 130256) (-112 "BOP.spad" 125381 125389 129907 129912) (-111 "BOP1.spad" 122767 122777 125337 125342) (-110 "BOOLEAN.spad" 122091 122099 122757 122762) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2247703 2247708 2247713 2247718) (-2 NIL 2247683 2247688 2247693 2247698) (-1 NIL 2247663 2247668 2247673 2247678) (0 NIL 2247643 2247648 2247653 2247658) (-1227 "ZMOD.spad" 2247452 2247465 2247581 2247638) (-1226 "ZLINDEP.spad" 2246496 2246507 2247442 2247447) (-1225 "ZDSOLVE.spad" 2236345 2236367 2246486 2246491) (-1224 "YSTREAM.spad" 2235838 2235849 2236335 2236340) (-1223 "XRPOLY.spad" 2235058 2235078 2235694 2235763) (-1222 "XPR.spad" 2232787 2232800 2234776 2234875) (-1221 "XPOLY.spad" 2232342 2232353 2232643 2232712) (-1220 "XPOLYC.spad" 2231659 2231675 2232268 2232337) (-1219 "XPBWPOLY.spad" 2230096 2230116 2231439 2231508) (-1218 "XF.spad" 2228557 2228572 2229998 2230091) (-1217 "XF.spad" 2226998 2227015 2228441 2228446) (-1216 "XFALG.spad" 2224022 2224038 2226924 2226993) (-1215 "XEXPPKG.spad" 2223273 2223299 2224012 2224017) (-1214 "XDPOLY.spad" 2222887 2222903 2223129 2223198) (-1213 "XALG.spad" 2222485 2222496 2222843 2222882) (-1212 "WUTSET.spad" 2218324 2218341 2222131 2222158) (-1211 "WP.spad" 2217338 2217382 2218182 2218249) (-1210 "WHILEAST.spad" 2217137 2217146 2217328 2217333) (-1209 "WFFINTBS.spad" 2214700 2214722 2217127 2217132) (-1208 "WEIER.spad" 2212914 2212925 2214690 2214695) (-1207 "VSPACE.spad" 2212587 2212598 2212882 2212909) (-1206 "VSPACE.spad" 2212280 2212293 2212577 2212582) (-1205 "VOID.spad" 2211870 2211879 2212270 2212275) (-1204 "VIEW.spad" 2209492 2209501 2211860 2211865) (-1203 "VIEWDEF.spad" 2204689 2204698 2209482 2209487) (-1202 "VIEW3D.spad" 2188524 2188533 2204679 2204684) (-1201 "VIEW2D.spad" 2176261 2176270 2188514 2188519) (-1200 "VECTOR.spad" 2174938 2174949 2175189 2175216) (-1199 "VECTOR2.spad" 2173565 2173578 2174928 2174933) (-1198 "VECTCAT.spad" 2171453 2171464 2173521 2173560) (-1197 "VECTCAT.spad" 2169162 2169175 2171232 2171237) (-1196 "VARIABLE.spad" 2168942 2168957 2169152 2169157) (-1195 "UTYPE.spad" 2168576 2168585 2168922 2168937) (-1194 "UTSODETL.spad" 2167869 2167893 2168532 2168537) (-1193 "UTSODE.spad" 2166057 2166077 2167859 2167864) (-1192 "UTS.spad" 2160846 2160874 2164524 2164621) (-1191 "UTSCAT.spad" 2158297 2158313 2160744 2160841) (-1190 "UTSCAT.spad" 2155392 2155410 2157841 2157846) (-1189 "UTS2.spad" 2154985 2155020 2155382 2155387) (-1188 "URAGG.spad" 2149607 2149618 2154965 2154980) (-1187 "URAGG.spad" 2144203 2144216 2149563 2149568) (-1186 "UPXSSING.spad" 2141849 2141875 2143287 2143420) (-1185 "UPXS.spad" 2138876 2138904 2139981 2140130) (-1184 "UPXSCONS.spad" 2136633 2136653 2137008 2137157) (-1183 "UPXSCCA.spad" 2135091 2135111 2136479 2136628) (-1182 "UPXSCCA.spad" 2133691 2133713 2135081 2135086) (-1181 "UPXSCAT.spad" 2132272 2132288 2133537 2133686) (-1180 "UPXS2.spad" 2131813 2131866 2132262 2132267) (-1179 "UPSQFREE.spad" 2130225 2130239 2131803 2131808) (-1178 "UPSCAT.spad" 2127818 2127842 2130123 2130220) (-1177 "UPSCAT.spad" 2125117 2125143 2127424 2127429) (-1176 "UPOLYC.spad" 2120095 2120106 2124959 2125112) (-1175 "UPOLYC.spad" 2114965 2114978 2119831 2119836) (-1174 "UPOLYC2.spad" 2114434 2114453 2114955 2114960) (-1173 "UP.spad" 2111479 2111494 2111987 2112140) (-1172 "UPMP.spad" 2110369 2110382 2111469 2111474) (-1171 "UPDIVP.spad" 2109932 2109946 2110359 2110364) (-1170 "UPDECOMP.spad" 2108169 2108183 2109922 2109927) (-1169 "UPCDEN.spad" 2107376 2107392 2108159 2108164) (-1168 "UP2.spad" 2106738 2106759 2107366 2107371) (-1167 "UNISEG.spad" 2106091 2106102 2106657 2106662) (-1166 "UNISEG2.spad" 2105584 2105597 2106047 2106052) (-1165 "UNIFACT.spad" 2104685 2104697 2105574 2105579) (-1164 "ULS.spad" 2095244 2095272 2096337 2096766) (-1163 "ULSCONS.spad" 2089287 2089307 2089659 2089808) (-1162 "ULSCCAT.spad" 2086884 2086904 2089107 2089282) (-1161 "ULSCCAT.spad" 2084615 2084637 2086840 2086845) (-1160 "ULSCAT.spad" 2082831 2082847 2084461 2084610) (-1159 "ULS2.spad" 2082343 2082396 2082821 2082826) (-1158 "UFD.spad" 2081408 2081417 2082269 2082338) (-1157 "UFD.spad" 2080535 2080546 2081398 2081403) (-1156 "UDVO.spad" 2079382 2079391 2080525 2080530) (-1155 "UDPO.spad" 2076809 2076820 2079338 2079343) (-1154 "TYPE.spad" 2076731 2076740 2076789 2076804) (-1153 "TYPEAST.spad" 2076564 2076573 2076721 2076726) (-1152 "TWOFACT.spad" 2075214 2075229 2076554 2076559) (-1151 "TUPLE.spad" 2074600 2074611 2075113 2075118) (-1150 "TUBETOOL.spad" 2071437 2071446 2074590 2074595) (-1149 "TUBE.spad" 2070078 2070095 2071427 2071432) (-1148 "TS.spad" 2068667 2068683 2069643 2069740) (-1147 "TSETCAT.spad" 2055782 2055799 2068623 2068662) (-1146 "TSETCAT.spad" 2042895 2042914 2055738 2055743) (-1145 "TRMANIP.spad" 2037261 2037278 2042601 2042606) (-1144 "TRIMAT.spad" 2036220 2036245 2037251 2037256) (-1143 "TRIGMNIP.spad" 2034737 2034754 2036210 2036215) (-1142 "TRIGCAT.spad" 2034249 2034258 2034727 2034732) (-1141 "TRIGCAT.spad" 2033759 2033770 2034239 2034244) (-1140 "TREE.spad" 2032330 2032341 2033366 2033393) (-1139 "TRANFUN.spad" 2032161 2032170 2032320 2032325) (-1138 "TRANFUN.spad" 2031990 2032001 2032151 2032156) (-1137 "TOPSP.spad" 2031664 2031673 2031980 2031985) (-1136 "TOOLSIGN.spad" 2031327 2031338 2031654 2031659) (-1135 "TEXTFILE.spad" 2029884 2029893 2031317 2031322) (-1134 "TEX.spad" 2026901 2026910 2029874 2029879) (-1133 "TEX1.spad" 2026457 2026468 2026891 2026896) (-1132 "TEMUTL.spad" 2026012 2026021 2026447 2026452) (-1131 "TBCMPPK.spad" 2024105 2024128 2026002 2026007) (-1130 "TBAGG.spad" 2023129 2023152 2024073 2024100) (-1129 "TBAGG.spad" 2022173 2022198 2023119 2023124) (-1128 "TANEXP.spad" 2021549 2021560 2022163 2022168) (-1127 "TABLE.spad" 2019960 2019983 2020230 2020257) (-1126 "TABLEAU.spad" 2019441 2019452 2019950 2019955) (-1125 "TABLBUMP.spad" 2016224 2016235 2019431 2019436) (-1124 "SYSTEM.spad" 2015498 2015507 2016214 2016219) (-1123 "SYSSOLP.spad" 2012971 2012982 2015488 2015493) (-1122 "SYNTAX.spad" 2009163 2009172 2012961 2012966) (-1121 "SYMTAB.spad" 2007219 2007228 2009153 2009158) (-1120 "SYMS.spad" 2003204 2003213 2007209 2007214) (-1119 "SYMPOLY.spad" 2002214 2002225 2002296 2002423) (-1118 "SYMFUNC.spad" 2001689 2001700 2002204 2002209) (-1117 "SYMBOL.spad" 1999025 1999034 2001679 2001684) (-1116 "SWITCH.spad" 1995782 1995791 1999015 1999020) (-1115 "SUTS.spad" 1992681 1992709 1994249 1994346) (-1114 "SUPXS.spad" 1989695 1989723 1990813 1990962) (-1113 "SUP.spad" 1986467 1986478 1987248 1987401) (-1112 "SUPFRACF.spad" 1985572 1985590 1986457 1986462) (-1111 "SUP2.spad" 1984962 1984975 1985562 1985567) (-1110 "SUMRF.spad" 1983928 1983939 1984952 1984957) (-1109 "SUMFS.spad" 1983561 1983578 1983918 1983923) (-1108 "SULS.spad" 1974107 1974135 1975213 1975642) (-1107 "SUCH.spad" 1973787 1973802 1974097 1974102) (-1106 "SUBSPACE.spad" 1965794 1965809 1973777 1973782) (-1105 "SUBRESP.spad" 1964954 1964968 1965750 1965755) (-1104 "STTF.spad" 1961053 1961069 1964944 1964949) (-1103 "STTFNC.spad" 1957521 1957537 1961043 1961048) (-1102 "STTAYLOR.spad" 1949919 1949930 1957402 1957407) (-1101 "STRTBL.spad" 1948424 1948441 1948573 1948600) (-1100 "STRING.spad" 1947833 1947842 1947847 1947874) (-1099 "STRICAT.spad" 1947609 1947618 1947789 1947828) (-1098 "STREAM.spad" 1944377 1944388 1947134 1947149) (-1097 "STREAM3.spad" 1943922 1943937 1944367 1944372) (-1096 "STREAM2.spad" 1942990 1943003 1943912 1943917) (-1095 "STREAM1.spad" 1942694 1942705 1942980 1942985) (-1094 "STINPROD.spad" 1941600 1941616 1942684 1942689) (-1093 "STEP.spad" 1940801 1940810 1941590 1941595) (-1092 "STBL.spad" 1939327 1939355 1939494 1939509) (-1091 "STAGG.spad" 1938392 1938403 1939307 1939322) (-1090 "STAGG.spad" 1937465 1937478 1938382 1938387) (-1089 "STACK.spad" 1936816 1936827 1937072 1937099) (-1088 "SREGSET.spad" 1934520 1934537 1936462 1936489) (-1087 "SRDCMPK.spad" 1933065 1933085 1934510 1934515) (-1086 "SRAGG.spad" 1928150 1928159 1933021 1933060) (-1085 "SRAGG.spad" 1923267 1923278 1928140 1928145) (-1084 "SQMATRIX.spad" 1920893 1920911 1921801 1921888) (-1083 "SPLTREE.spad" 1915445 1915458 1920329 1920356) (-1082 "SPLNODE.spad" 1912033 1912046 1915435 1915440) (-1081 "SPFCAT.spad" 1910810 1910819 1912023 1912028) (-1080 "SPECOUT.spad" 1909360 1909369 1910800 1910805) (-1079 "spad-parser.spad" 1908825 1908834 1909350 1909355) (-1078 "SPACEC.spad" 1892838 1892849 1908815 1908820) (-1077 "SPACE3.spad" 1892614 1892625 1892828 1892833) (-1076 "SORTPAK.spad" 1892159 1892172 1892570 1892575) (-1075 "SOLVETRA.spad" 1889916 1889927 1892149 1892154) (-1074 "SOLVESER.spad" 1888436 1888447 1889906 1889911) (-1073 "SOLVERAD.spad" 1884446 1884457 1888426 1888431) (-1072 "SOLVEFOR.spad" 1882866 1882884 1884436 1884441) (-1071 "SNTSCAT.spad" 1882454 1882471 1882822 1882861) (-1070 "SMTS.spad" 1880714 1880740 1882019 1882116) (-1069 "SMP.spad" 1878156 1878176 1878546 1878673) (-1068 "SMITH.spad" 1876999 1877024 1878146 1878151) (-1067 "SMATCAT.spad" 1875097 1875127 1876931 1876994) (-1066 "SMATCAT.spad" 1873139 1873171 1874975 1874980) (-1065 "SKAGG.spad" 1872088 1872099 1873095 1873134) (-1064 "SINT.spad" 1870396 1870405 1871954 1872083) (-1063 "SIMPAN.spad" 1870124 1870133 1870386 1870391) (-1062 "SIG.spad" 1869452 1869461 1870114 1870119) (-1061 "SIGNRF.spad" 1868560 1868571 1869442 1869447) (-1060 "SIGNEF.spad" 1867829 1867846 1868550 1868555) (-1059 "SHP.spad" 1865747 1865762 1867785 1867790) (-1058 "SHDP.spad" 1856783 1856810 1857292 1857421) (-1057 "SGROUP.spad" 1856391 1856400 1856773 1856778) (-1056 "SGROUP.spad" 1855997 1856008 1856381 1856386) (-1055 "SGCF.spad" 1848878 1848887 1855987 1855992) (-1054 "SFRTCAT.spad" 1847794 1847811 1848834 1848873) (-1053 "SFRGCD.spad" 1846857 1846877 1847784 1847789) (-1052 "SFQCMPK.spad" 1841494 1841514 1846847 1846852) (-1051 "SFORT.spad" 1840929 1840943 1841484 1841489) (-1050 "SEXOF.spad" 1840772 1840812 1840919 1840924) (-1049 "SEX.spad" 1840664 1840673 1840762 1840767) (-1048 "SEXCAT.spad" 1837768 1837808 1840654 1840659) (-1047 "SET.spad" 1836068 1836079 1837189 1837228) (-1046 "SETMN.spad" 1834502 1834519 1836058 1836063) (-1045 "SETCAT.spad" 1833987 1833996 1834492 1834497) (-1044 "SETCAT.spad" 1833470 1833481 1833977 1833982) (-1043 "SETAGG.spad" 1829979 1829990 1833438 1833465) (-1042 "SETAGG.spad" 1826508 1826521 1829969 1829974) (-1041 "SEGXCAT.spad" 1825620 1825633 1826488 1826503) (-1040 "SEG.spad" 1825433 1825444 1825539 1825544) (-1039 "SEGCAT.spad" 1824252 1824263 1825413 1825428) (-1038 "SEGBIND.spad" 1823324 1823335 1824207 1824212) (-1037 "SEGBIND2.spad" 1823020 1823033 1823314 1823319) (-1036 "SEGAST.spad" 1822929 1822938 1823010 1823015) (-1035 "SEG2.spad" 1822354 1822367 1822885 1822890) (-1034 "SDVAR.spad" 1821630 1821641 1822344 1822349) (-1033 "SDPOL.spad" 1819023 1819034 1819314 1819441) (-1032 "SCPKG.spad" 1817102 1817113 1819013 1819018) (-1031 "SCOPE.spad" 1816247 1816256 1817092 1817097) (-1030 "SCACHE.spad" 1814929 1814940 1816237 1816242) (-1029 "SASTCAT.spad" 1814838 1814847 1814919 1814924) (-1028 "SASTCAT.spad" 1814745 1814756 1814828 1814833) (-1027 "SAOS.spad" 1814617 1814626 1814735 1814740) (-1026 "SAERFFC.spad" 1814330 1814350 1814607 1814612) (-1025 "SAE.spad" 1812508 1812524 1813119 1813254) (-1024 "SAEFACT.spad" 1812209 1812229 1812498 1812503) (-1023 "RURPK.spad" 1809850 1809866 1812199 1812204) (-1022 "RULESET.spad" 1809291 1809315 1809840 1809845) (-1021 "RULE.spad" 1807495 1807519 1809281 1809286) (-1020 "RULECOLD.spad" 1807347 1807360 1807485 1807490) (-1019 "RSETGCD.spad" 1803725 1803745 1807337 1807342) (-1018 "RSETCAT.spad" 1793497 1793514 1803681 1803720) (-1017 "RSETCAT.spad" 1783301 1783320 1793487 1793492) (-1016 "RSDCMPK.spad" 1781753 1781773 1783291 1783296) (-1015 "RRCC.spad" 1780137 1780167 1781743 1781748) (-1014 "RRCC.spad" 1778519 1778551 1780127 1780132) (-1013 "RPTAST.spad" 1778223 1778232 1778509 1778514) (-1012 "RPOLCAT.spad" 1757583 1757598 1778091 1778218) (-1011 "RPOLCAT.spad" 1736658 1736675 1757168 1757173) (-1010 "ROUTINE.spad" 1732521 1732530 1735305 1735332) (-1009 "ROMAN.spad" 1731753 1731762 1732387 1732516) (-1008 "ROIRC.spad" 1730833 1730865 1731743 1731748) (-1007 "RNS.spad" 1729736 1729745 1730735 1730828) (-1006 "RNS.spad" 1728725 1728736 1729726 1729731) (-1005 "RNG.spad" 1728460 1728469 1728715 1728720) (-1004 "RMODULE.spad" 1728098 1728109 1728450 1728455) (-1003 "RMCAT2.spad" 1727506 1727563 1728088 1728093) (-1002 "RMATRIX.spad" 1726185 1726204 1726673 1726712) (-1001 "RMATCAT.spad" 1721706 1721737 1726129 1726180) (-1000 "RMATCAT.spad" 1717129 1717162 1721554 1721559) (-999 "RINTERP.spad" 1717018 1717037 1717119 1717124) (-998 "RING.spad" 1716376 1716384 1716998 1717013) (-997 "RING.spad" 1715742 1715752 1716366 1716371) (-996 "RIDIST.spad" 1715127 1715135 1715732 1715737) (-995 "RGCHAIN.spad" 1713707 1713722 1714612 1714639) (-994 "RF.spad" 1711322 1711332 1713697 1713702) (-993 "RFFACTOR.spad" 1710785 1710795 1711312 1711317) (-992 "RFFACT.spad" 1710521 1710532 1710775 1710780) (-991 "RFDIST.spad" 1709510 1709518 1710511 1710516) (-990 "RETSOL.spad" 1708928 1708940 1709500 1709505) (-989 "RETRACT.spad" 1708278 1708288 1708918 1708923) (-988 "RETRACT.spad" 1707626 1707638 1708268 1708273) (-987 "RETAST.spad" 1707440 1707448 1707616 1707621) (-986 "RESULT.spad" 1705501 1705509 1706087 1706114) (-985 "RESRING.spad" 1704849 1704895 1705439 1705496) (-984 "RESLATC.spad" 1704174 1704184 1704839 1704844) (-983 "REPSQ.spad" 1703904 1703914 1704164 1704169) (-982 "REP.spad" 1701457 1701465 1703894 1703899) (-981 "REPDB.spad" 1701163 1701173 1701447 1701452) (-980 "REP2.spad" 1690736 1690746 1701005 1701010) (-979 "REP1.spad" 1684727 1684737 1690686 1690691) (-978 "REGSET.spad" 1682525 1682541 1684373 1684400) (-977 "REF.spad" 1681855 1681865 1682480 1682485) (-976 "REDORDER.spad" 1681032 1681048 1681845 1681850) (-975 "RECLOS.spad" 1679822 1679841 1680525 1680618) (-974 "REALSOLV.spad" 1678955 1678963 1679812 1679817) (-973 "REAL.spad" 1678828 1678836 1678945 1678950) (-972 "REAL0Q.spad" 1676111 1676125 1678818 1678823) (-971 "REAL0.spad" 1672940 1672954 1676101 1676106) (-970 "RDIV.spad" 1672592 1672616 1672930 1672935) (-969 "RDIST.spad" 1672156 1672166 1672582 1672587) (-968 "RDETRS.spad" 1670953 1670970 1672146 1672151) (-967 "RDETR.spad" 1669061 1669078 1670943 1670948) (-966 "RDEEFS.spad" 1668135 1668151 1669051 1669056) (-965 "RDEEF.spad" 1667132 1667148 1668125 1668130) (-964 "RCFIELD.spad" 1664319 1664327 1667034 1667127) (-963 "RCFIELD.spad" 1661592 1661602 1664309 1664314) (-962 "RCAGG.spad" 1659495 1659505 1661572 1661587) (-961 "RCAGG.spad" 1657335 1657347 1659414 1659419) (-960 "RATRET.spad" 1656696 1656706 1657325 1657330) (-959 "RATFACT.spad" 1656389 1656400 1656686 1656691) (-958 "RANDSRC.spad" 1655709 1655717 1656379 1656384) (-957 "RADUTIL.spad" 1655464 1655472 1655699 1655704) (-956 "RADIX.spad" 1652257 1652270 1653934 1654027) (-955 "RADFF.spad" 1650674 1650710 1650792 1650948) (-954 "RADCAT.spad" 1650268 1650276 1650664 1650669) (-953 "RADCAT.spad" 1649860 1649870 1650258 1650263) (-952 "QUEUE.spad" 1649203 1649213 1649467 1649494) (-951 "QUAT.spad" 1647788 1647798 1648130 1648195) (-950 "QUATCT2.spad" 1647407 1647425 1647778 1647783) (-949 "QUATCAT.spad" 1645572 1645582 1647337 1647402) (-948 "QUATCAT.spad" 1643488 1643500 1645255 1645260) (-947 "QUAGG.spad" 1642302 1642312 1643444 1643483) (-946 "QFORM.spad" 1641765 1641779 1642292 1642297) (-945 "QFCAT.spad" 1640456 1640466 1641655 1641760) (-944 "QFCAT.spad" 1638753 1638765 1639954 1639959) (-943 "QFCAT2.spad" 1638444 1638460 1638743 1638748) (-942 "QEQUAT.spad" 1638001 1638009 1638434 1638439) (-941 "QCMPACK.spad" 1632748 1632767 1637991 1637996) (-940 "QALGSET.spad" 1628823 1628855 1632662 1632667) (-939 "QALGSET2.spad" 1626819 1626837 1628813 1628818) (-938 "PWFFINTB.spad" 1624129 1624150 1626809 1626814) (-937 "PUSHVAR.spad" 1623458 1623477 1624119 1624124) (-936 "PTRANFN.spad" 1619584 1619594 1623448 1623453) (-935 "PTPACK.spad" 1616672 1616682 1619574 1619579) (-934 "PTFUNC2.spad" 1616493 1616507 1616662 1616667) (-933 "PTCAT.spad" 1615575 1615585 1616449 1616488) (-932 "PSQFR.spad" 1614882 1614906 1615565 1615570) (-931 "PSEUDLIN.spad" 1613740 1613750 1614872 1614877) (-930 "PSETPK.spad" 1599173 1599189 1613618 1613623) (-929 "PSETCAT.spad" 1593081 1593104 1599141 1599168) (-928 "PSETCAT.spad" 1586975 1587000 1593037 1593042) (-927 "PSCURVE.spad" 1585958 1585966 1586965 1586970) (-926 "PSCAT.spad" 1584725 1584754 1585856 1585953) (-925 "PSCAT.spad" 1583582 1583613 1584715 1584720) (-924 "PRTITION.spad" 1582425 1582433 1583572 1583577) (-923 "PRTDAST.spad" 1582145 1582153 1582415 1582420) (-922 "PRS.spad" 1571707 1571724 1582101 1582106) (-921 "PRQAGG.spad" 1571126 1571136 1571663 1571702) (-920 "PROPLOG.spad" 1570529 1570537 1571116 1571121) (-919 "PROPFRML.spad" 1568393 1568404 1570465 1570470) (-918 "PROPERTY.spad" 1567887 1567895 1568383 1568388) (-917 "PRODUCT.spad" 1565567 1565579 1565853 1565908) (-916 "PR.spad" 1563956 1563968 1564661 1564788) (-915 "PRINT.spad" 1563708 1563716 1563946 1563951) (-914 "PRIMES.spad" 1561959 1561969 1563698 1563703) (-913 "PRIMELT.spad" 1559940 1559954 1561949 1561954) (-912 "PRIMCAT.spad" 1559563 1559571 1559930 1559935) (-911 "PRIMARR.spad" 1558568 1558578 1558746 1558773) (-910 "PRIMARR2.spad" 1557291 1557303 1558558 1558563) (-909 "PREASSOC.spad" 1556663 1556675 1557281 1557286) (-908 "PPCURVE.spad" 1555800 1555808 1556653 1556658) (-907 "PORTNUM.spad" 1555575 1555583 1555790 1555795) (-906 "POLYROOT.spad" 1554347 1554369 1555531 1555536) (-905 "POLY.spad" 1551647 1551657 1552164 1552291) (-904 "POLYLIFT.spad" 1550908 1550931 1551637 1551642) (-903 "POLYCATQ.spad" 1549010 1549032 1550898 1550903) (-902 "POLYCAT.spad" 1542416 1542437 1548878 1549005) (-901 "POLYCAT.spad" 1535124 1535147 1541588 1541593) (-900 "POLY2UP.spad" 1534572 1534586 1535114 1535119) (-899 "POLY2.spad" 1534167 1534179 1534562 1534567) (-898 "POLUTIL.spad" 1533108 1533137 1534123 1534128) (-897 "POLTOPOL.spad" 1531856 1531871 1533098 1533103) (-896 "POINT.spad" 1530697 1530707 1530784 1530811) (-895 "PNTHEORY.spad" 1527363 1527371 1530687 1530692) (-894 "PMTOOLS.spad" 1526120 1526134 1527353 1527358) (-893 "PMSYM.spad" 1525665 1525675 1526110 1526115) (-892 "PMQFCAT.spad" 1525252 1525266 1525655 1525660) (-891 "PMPRED.spad" 1524721 1524735 1525242 1525247) (-890 "PMPREDFS.spad" 1524165 1524187 1524711 1524716) (-889 "PMPLCAT.spad" 1523235 1523253 1524097 1524102) (-888 "PMLSAGG.spad" 1522816 1522830 1523225 1523230) (-887 "PMKERNEL.spad" 1522383 1522395 1522806 1522811) (-886 "PMINS.spad" 1521959 1521969 1522373 1522378) (-885 "PMFS.spad" 1521532 1521550 1521949 1521954) (-884 "PMDOWN.spad" 1520818 1520832 1521522 1521527) (-883 "PMASS.spad" 1519830 1519838 1520808 1520813) (-882 "PMASSFS.spad" 1518799 1518815 1519820 1519825) (-881 "PLOTTOOL.spad" 1518579 1518587 1518789 1518794) (-880 "PLOT.spad" 1513410 1513418 1518569 1518574) (-879 "PLOT3D.spad" 1509830 1509838 1513400 1513405) (-878 "PLOT1.spad" 1508971 1508981 1509820 1509825) (-877 "PLEQN.spad" 1496187 1496214 1508961 1508966) (-876 "PINTERP.spad" 1495803 1495822 1496177 1496182) (-875 "PINTERPA.spad" 1495585 1495601 1495793 1495798) (-874 "PI.spad" 1495192 1495200 1495559 1495580) (-873 "PID.spad" 1494148 1494156 1495118 1495187) (-872 "PICOERCE.spad" 1493805 1493815 1494138 1494143) (-871 "PGROEB.spad" 1492402 1492416 1493795 1493800) (-870 "PGE.spad" 1483655 1483663 1492392 1492397) (-869 "PGCD.spad" 1482537 1482554 1483645 1483650) (-868 "PFRPAC.spad" 1481680 1481690 1482527 1482532) (-867 "PFR.spad" 1478337 1478347 1481582 1481675) (-866 "PFOTOOLS.spad" 1477595 1477611 1478327 1478332) (-865 "PFOQ.spad" 1476965 1476983 1477585 1477590) (-864 "PFO.spad" 1476384 1476411 1476955 1476960) (-863 "PF.spad" 1475958 1475970 1476189 1476282) (-862 "PFECAT.spad" 1473624 1473632 1475884 1475953) (-861 "PFECAT.spad" 1471318 1471328 1473580 1473585) (-860 "PFBRU.spad" 1469188 1469200 1471308 1471313) (-859 "PFBR.spad" 1466726 1466749 1469178 1469183) (-858 "PERM.spad" 1462407 1462417 1466556 1466571) (-857 "PERMGRP.spad" 1457143 1457153 1462397 1462402) (-856 "PERMCAT.spad" 1455695 1455705 1457123 1457138) (-855 "PERMAN.spad" 1454227 1454241 1455685 1455690) (-854 "PENDTREE.spad" 1453500 1453510 1453856 1453861) (-853 "PDRING.spad" 1451991 1452001 1453480 1453495) (-852 "PDRING.spad" 1450490 1450502 1451981 1451986) (-851 "PDEPROB.spad" 1449447 1449455 1450480 1450485) (-850 "PDEPACK.spad" 1443449 1443457 1449437 1449442) (-849 "PDECOMP.spad" 1442911 1442928 1443439 1443444) (-848 "PDECAT.spad" 1441265 1441273 1442901 1442906) (-847 "PCOMP.spad" 1441116 1441129 1441255 1441260) (-846 "PBWLB.spad" 1439698 1439715 1441106 1441111) (-845 "PATTERN.spad" 1434129 1434139 1439688 1439693) (-844 "PATTERN2.spad" 1433865 1433877 1434119 1434124) (-843 "PATTERN1.spad" 1432167 1432183 1433855 1433860) (-842 "PATRES.spad" 1429714 1429726 1432157 1432162) (-841 "PATRES2.spad" 1429376 1429390 1429704 1429709) (-840 "PATMATCH.spad" 1427538 1427569 1429089 1429094) (-839 "PATMAB.spad" 1426963 1426973 1427528 1427533) (-838 "PATLRES.spad" 1426047 1426061 1426953 1426958) (-837 "PATAB.spad" 1425811 1425821 1426037 1426042) (-836 "PARTPERM.spad" 1423173 1423181 1425801 1425806) (-835 "PARSURF.spad" 1422601 1422629 1423163 1423168) (-834 "PARSU2.spad" 1422396 1422412 1422591 1422596) (-833 "script-parser.spad" 1421916 1421924 1422386 1422391) (-832 "PARSCURV.spad" 1421344 1421372 1421906 1421911) (-831 "PARSC2.spad" 1421133 1421149 1421334 1421339) (-830 "PARPCURV.spad" 1420591 1420619 1421123 1421128) (-829 "PARPC2.spad" 1420380 1420396 1420581 1420586) (-828 "PAN2EXPR.spad" 1419792 1419800 1420370 1420375) (-827 "PALETTE.spad" 1418762 1418770 1419782 1419787) (-826 "PAIR.spad" 1417745 1417758 1418350 1418355) (-825 "PADICRC.spad" 1415078 1415096 1416253 1416346) (-824 "PADICRAT.spad" 1413096 1413108 1413317 1413410) (-823 "PADIC.spad" 1412791 1412803 1413022 1413091) (-822 "PADICCT.spad" 1411332 1411344 1412717 1412786) (-821 "PADEPAC.spad" 1410011 1410030 1411322 1411327) (-820 "PADE.spad" 1408751 1408767 1410001 1410006) (-819 "OWP.spad" 1407735 1407765 1408609 1408676) (-818 "OVAR.spad" 1407516 1407539 1407725 1407730) (-817 "OUT.spad" 1406600 1406608 1407506 1407511) (-816 "OUTFORM.spad" 1396014 1396022 1406590 1406595) (-815 "OSI.spad" 1395489 1395497 1396004 1396009) (-814 "OSGROUP.spad" 1395407 1395415 1395479 1395484) (-813 "ORTHPOL.spad" 1393868 1393878 1395324 1395329) (-812 "OREUP.spad" 1393228 1393256 1393550 1393589) (-811 "ORESUP.spad" 1392529 1392553 1392910 1392949) (-810 "OREPCTO.spad" 1390348 1390360 1392449 1392454) (-809 "OREPCAT.spad" 1384405 1384415 1390304 1390343) (-808 "OREPCAT.spad" 1378352 1378364 1384253 1384258) (-807 "ORDSET.spad" 1377518 1377526 1378342 1378347) (-806 "ORDSET.spad" 1376682 1376692 1377508 1377513) (-805 "ORDRING.spad" 1376072 1376080 1376662 1376677) (-804 "ORDRING.spad" 1375470 1375480 1376062 1376067) (-803 "ORDMON.spad" 1375325 1375333 1375460 1375465) (-802 "ORDFUNS.spad" 1374451 1374467 1375315 1375320) (-801 "ORDFIN.spad" 1374385 1374393 1374441 1374446) (-800 "ORDCOMP.spad" 1372853 1372863 1373935 1373964) (-799 "ORDCOMP2.spad" 1372138 1372150 1372843 1372848) (-798 "OPTPROB.spad" 1370718 1370726 1372128 1372133) (-797 "OPTPACK.spad" 1363103 1363111 1370708 1370713) (-796 "OPTCAT.spad" 1360778 1360786 1363093 1363098) (-795 "OPQUERY.spad" 1360327 1360335 1360768 1360773) (-794 "OP.spad" 1360069 1360079 1360149 1360216) (-793 "ONECOMP.spad" 1358817 1358827 1359619 1359648) (-792 "ONECOMP2.spad" 1358235 1358247 1358807 1358812) (-791 "OMSERVER.spad" 1357237 1357245 1358225 1358230) (-790 "OMSAGG.spad" 1357013 1357023 1357181 1357232) (-789 "OMPKG.spad" 1355625 1355633 1357003 1357008) (-788 "OM.spad" 1354590 1354598 1355615 1355620) (-787 "OMLO.spad" 1354015 1354027 1354476 1354515) (-786 "OMEXPR.spad" 1353849 1353859 1354005 1354010) (-785 "OMERR.spad" 1353392 1353400 1353839 1353844) (-784 "OMERRK.spad" 1352426 1352434 1353382 1353387) (-783 "OMENC.spad" 1351770 1351778 1352416 1352421) (-782 "OMDEV.spad" 1346059 1346067 1351760 1351765) (-781 "OMCONN.spad" 1345468 1345476 1346049 1346054) (-780 "OINTDOM.spad" 1345231 1345239 1345394 1345463) (-779 "OFMONOID.spad" 1341418 1341428 1345221 1345226) (-778 "ODVAR.spad" 1340679 1340689 1341408 1341413) (-777 "ODR.spad" 1340127 1340153 1340491 1340640) (-776 "ODPOL.spad" 1337476 1337486 1337816 1337943) (-775 "ODP.spad" 1328648 1328668 1329021 1329150) (-774 "ODETOOLS.spad" 1327231 1327250 1328638 1328643) (-773 "ODESYS.spad" 1324881 1324898 1327221 1327226) (-772 "ODERTRIC.spad" 1320822 1320839 1324838 1324843) (-771 "ODERED.spad" 1320209 1320233 1320812 1320817) (-770 "ODERAT.spad" 1317760 1317777 1320199 1320204) (-769 "ODEPRRIC.spad" 1314651 1314673 1317750 1317755) (-768 "ODEPROB.spad" 1313850 1313858 1314641 1314646) (-767 "ODEPRIM.spad" 1311124 1311146 1313840 1313845) (-766 "ODEPAL.spad" 1310500 1310524 1311114 1311119) (-765 "ODEPACK.spad" 1297102 1297110 1310490 1310495) (-764 "ODEINT.spad" 1296533 1296549 1297092 1297097) (-763 "ODEIFTBL.spad" 1293928 1293936 1296523 1296528) (-762 "ODEEF.spad" 1289295 1289311 1293918 1293923) (-761 "ODECONST.spad" 1288814 1288832 1289285 1289290) (-760 "ODECAT.spad" 1287410 1287418 1288804 1288809) (-759 "OCT.spad" 1285556 1285566 1286272 1286311) (-758 "OCTCT2.spad" 1285200 1285221 1285546 1285551) (-757 "OC.spad" 1282974 1282984 1285156 1285195) (-756 "OC.spad" 1280473 1280485 1282657 1282662) (-755 "OCAMON.spad" 1280321 1280329 1280463 1280468) (-754 "OASGP.spad" 1280136 1280144 1280311 1280316) (-753 "OAMONS.spad" 1279656 1279664 1280126 1280131) (-752 "OAMON.spad" 1279517 1279525 1279646 1279651) (-751 "OAGROUP.spad" 1279379 1279387 1279507 1279512) (-750 "NUMTUBE.spad" 1278966 1278982 1279369 1279374) (-749 "NUMQUAD.spad" 1266828 1266836 1278956 1278961) (-748 "NUMODE.spad" 1257964 1257972 1266818 1266823) (-747 "NUMINT.spad" 1255522 1255530 1257954 1257959) (-746 "NUMFMT.spad" 1254362 1254370 1255512 1255517) (-745 "NUMERIC.spad" 1246435 1246445 1254168 1254173) (-744 "NTSCAT.spad" 1244925 1244941 1246391 1246430) (-743 "NTPOLFN.spad" 1244470 1244480 1244842 1244847) (-742 "NSUP.spad" 1237483 1237493 1242023 1242176) (-741 "NSUP2.spad" 1236875 1236887 1237473 1237478) (-740 "NSMP.spad" 1233074 1233093 1233382 1233509) (-739 "NREP.spad" 1231446 1231460 1233064 1233069) (-738 "NPCOEF.spad" 1230692 1230712 1231436 1231441) (-737 "NORMRETR.spad" 1230290 1230329 1230682 1230687) (-736 "NORMPK.spad" 1228192 1228211 1230280 1230285) (-735 "NORMMA.spad" 1227880 1227906 1228182 1228187) (-734 "NONE.spad" 1227621 1227629 1227870 1227875) (-733 "NONE1.spad" 1227297 1227307 1227611 1227616) (-732 "NODE1.spad" 1226766 1226782 1227287 1227292) (-731 "NNI.spad" 1225653 1225661 1226740 1226761) (-730 "NLINSOL.spad" 1224275 1224285 1225643 1225648) (-729 "NIPROB.spad" 1222758 1222766 1224265 1224270) (-728 "NFINTBAS.spad" 1220218 1220235 1222748 1222753) (-727 "NCODIV.spad" 1218416 1218432 1220208 1220213) (-726 "NCNTFRAC.spad" 1218058 1218072 1218406 1218411) (-725 "NCEP.spad" 1216218 1216232 1218048 1218053) (-724 "NASRING.spad" 1215814 1215822 1216208 1216213) (-723 "NASRING.spad" 1215408 1215418 1215804 1215809) (-722 "NARNG.spad" 1214752 1214760 1215398 1215403) (-721 "NARNG.spad" 1214094 1214104 1214742 1214747) (-720 "NAGSP.spad" 1213167 1213175 1214084 1214089) (-719 "NAGS.spad" 1202692 1202700 1213157 1213162) (-718 "NAGF07.spad" 1201085 1201093 1202682 1202687) (-717 "NAGF04.spad" 1195317 1195325 1201075 1201080) (-716 "NAGF02.spad" 1189126 1189134 1195307 1195312) (-715 "NAGF01.spad" 1184729 1184737 1189116 1189121) (-714 "NAGE04.spad" 1178189 1178197 1184719 1184724) (-713 "NAGE02.spad" 1168531 1168539 1178179 1178184) (-712 "NAGE01.spad" 1164415 1164423 1168521 1168526) (-711 "NAGD03.spad" 1162335 1162343 1164405 1164410) (-710 "NAGD02.spad" 1154866 1154874 1162325 1162330) (-709 "NAGD01.spad" 1148979 1148987 1154856 1154861) (-708 "NAGC06.spad" 1144766 1144774 1148969 1148974) (-707 "NAGC05.spad" 1143235 1143243 1144756 1144761) (-706 "NAGC02.spad" 1142490 1142498 1143225 1143230) (-705 "NAALG.spad" 1142025 1142035 1142458 1142485) (-704 "NAALG.spad" 1141580 1141592 1142015 1142020) (-703 "MULTSQFR.spad" 1138538 1138555 1141570 1141575) (-702 "MULTFACT.spad" 1137921 1137938 1138528 1138533) (-701 "MTSCAT.spad" 1135955 1135976 1137819 1137916) (-700 "MTHING.spad" 1135612 1135622 1135945 1135950) (-699 "MSYSCMD.spad" 1135046 1135054 1135602 1135607) (-698 "MSET.spad" 1132988 1132998 1134752 1134791) (-697 "MSETAGG.spad" 1132821 1132831 1132944 1132983) (-696 "MRING.spad" 1129792 1129804 1132529 1132596) (-695 "MRF2.spad" 1129360 1129374 1129782 1129787) (-694 "MRATFAC.spad" 1128906 1128923 1129350 1129355) (-693 "MPRFF.spad" 1126936 1126955 1128896 1128901) (-692 "MPOLY.spad" 1124374 1124389 1124733 1124860) (-691 "MPCPF.spad" 1123638 1123657 1124364 1124369) (-690 "MPC3.spad" 1123453 1123493 1123628 1123633) (-689 "MPC2.spad" 1123095 1123128 1123443 1123448) (-688 "MONOTOOL.spad" 1121430 1121447 1123085 1123090) (-687 "MONOID.spad" 1120749 1120757 1121420 1121425) (-686 "MONOID.spad" 1120066 1120076 1120739 1120744) (-685 "MONOGEN.spad" 1118812 1118825 1119926 1120061) (-684 "MONOGEN.spad" 1117580 1117595 1118696 1118701) (-683 "MONADWU.spad" 1115594 1115602 1117570 1117575) (-682 "MONADWU.spad" 1113606 1113616 1115584 1115589) (-681 "MONAD.spad" 1112750 1112758 1113596 1113601) (-680 "MONAD.spad" 1111892 1111902 1112740 1112745) (-679 "MOEBIUS.spad" 1110578 1110592 1111872 1111887) (-678 "MODULE.spad" 1110448 1110458 1110546 1110573) (-677 "MODULE.spad" 1110338 1110350 1110438 1110443) (-676 "MODRING.spad" 1109669 1109708 1110318 1110333) (-675 "MODOP.spad" 1108328 1108340 1109491 1109558) (-674 "MODMONOM.spad" 1107860 1107878 1108318 1108323) (-673 "MODMON.spad" 1104565 1104581 1105341 1105494) (-672 "MODFIELD.spad" 1103923 1103962 1104467 1104560) (-671 "MMLFORM.spad" 1102783 1102791 1103913 1103918) (-670 "MMAP.spad" 1102523 1102557 1102773 1102778) (-669 "MLO.spad" 1100950 1100960 1102479 1102518) (-668 "MLIFT.spad" 1099522 1099539 1100940 1100945) (-667 "MKUCFUNC.spad" 1099055 1099073 1099512 1099517) (-666 "MKRECORD.spad" 1098657 1098670 1099045 1099050) (-665 "MKFUNC.spad" 1098038 1098048 1098647 1098652) (-664 "MKFLCFN.spad" 1096994 1097004 1098028 1098033) (-663 "MKCHSET.spad" 1096770 1096780 1096984 1096989) (-662 "MKBCFUNC.spad" 1096255 1096273 1096760 1096765) (-661 "MINT.spad" 1095694 1095702 1096157 1096250) (-660 "MHROWRED.spad" 1094195 1094205 1095684 1095689) (-659 "MFLOAT.spad" 1092640 1092648 1094085 1094190) (-658 "MFINFACT.spad" 1092040 1092062 1092630 1092635) (-657 "MESH.spad" 1089772 1089780 1092030 1092035) (-656 "MDDFACT.spad" 1087965 1087975 1089762 1089767) (-655 "MDAGG.spad" 1087240 1087250 1087933 1087960) (-654 "MCMPLX.spad" 1083218 1083226 1083832 1084033) (-653 "MCDEN.spad" 1082426 1082438 1083208 1083213) (-652 "MCALCFN.spad" 1079528 1079554 1082416 1082421) (-651 "MAYBE.spad" 1078777 1078788 1079518 1079523) (-650 "MATSTOR.spad" 1076053 1076063 1078767 1078772) (-649 "MATRIX.spad" 1074757 1074767 1075241 1075268) (-648 "MATLIN.spad" 1072083 1072107 1074641 1074646) (-647 "MATCAT.spad" 1063656 1063678 1072039 1072078) (-646 "MATCAT.spad" 1055113 1055137 1063498 1063503) (-645 "MATCAT2.spad" 1054381 1054429 1055103 1055108) (-644 "MAPPKG3.spad" 1053280 1053294 1054371 1054376) (-643 "MAPPKG2.spad" 1052614 1052626 1053270 1053275) (-642 "MAPPKG1.spad" 1051432 1051442 1052604 1052609) (-641 "MAPPAST.spad" 1050745 1050753 1051422 1051427) (-640 "MAPHACK3.spad" 1050553 1050567 1050735 1050740) (-639 "MAPHACK2.spad" 1050318 1050330 1050543 1050548) (-638 "MAPHACK1.spad" 1049948 1049958 1050308 1050313) (-637 "MAGMA.spad" 1047738 1047755 1049938 1049943) (-636 "M3D.spad" 1045436 1045446 1047118 1047123) (-635 "LZSTAGG.spad" 1042654 1042664 1045416 1045431) (-634 "LZSTAGG.spad" 1039880 1039892 1042644 1042649) (-633 "LWORD.spad" 1036585 1036602 1039870 1039875) (-632 "LSTAST.spad" 1036370 1036378 1036575 1036580) (-631 "LSQM.spad" 1034598 1034612 1034996 1035047) (-630 "LSPP.spad" 1034131 1034148 1034588 1034593) (-629 "LSMP.spad" 1032971 1032999 1034121 1034126) (-628 "LSMP1.spad" 1030775 1030789 1032961 1032966) (-627 "LSAGG.spad" 1030432 1030442 1030731 1030770) (-626 "LSAGG.spad" 1030121 1030133 1030422 1030427) (-625 "LPOLY.spad" 1029075 1029094 1029977 1030046) (-624 "LPEFRAC.spad" 1028332 1028342 1029065 1029070) (-623 "LO.spad" 1027733 1027747 1028266 1028293) (-622 "LOGIC.spad" 1027335 1027343 1027723 1027728) (-621 "LOGIC.spad" 1026935 1026945 1027325 1027330) (-620 "LODOOPS.spad" 1025853 1025865 1026925 1026930) (-619 "LODO.spad" 1025239 1025255 1025535 1025574) (-618 "LODOF.spad" 1024283 1024300 1025196 1025201) (-617 "LODOCAT.spad" 1022941 1022951 1024239 1024278) (-616 "LODOCAT.spad" 1021597 1021609 1022897 1022902) (-615 "LODO2.spad" 1020872 1020884 1021279 1021318) (-614 "LODO1.spad" 1020274 1020284 1020554 1020593) (-613 "LODEEF.spad" 1019046 1019064 1020264 1020269) (-612 "LNAGG.spad" 1014838 1014848 1019026 1019041) (-611 "LNAGG.spad" 1010604 1010616 1014794 1014799) (-610 "LMOPS.spad" 1007340 1007357 1010594 1010599) (-609 "LMODULE.spad" 1006982 1006992 1007330 1007335) (-608 "LMDICT.spad" 1006265 1006275 1006533 1006560) (-607 "LITERAL.spad" 1006171 1006182 1006255 1006260) (-606 "LIST.spad" 1003889 1003899 1005318 1005345) (-605 "LIST3.spad" 1003180 1003194 1003879 1003884) (-604 "LIST2.spad" 1001820 1001832 1003170 1003175) (-603 "LIST2MAP.spad" 998697 998709 1001810 1001815) (-602 "LINEXP.spad" 998129 998139 998677 998692) (-601 "LINDEP.spad" 996906 996918 998041 998046) (-600 "LIMITRF.spad" 994820 994830 996896 996901) (-599 "LIMITPS.spad" 993703 993716 994810 994815) (-598 "LIE.spad" 991717 991729 992993 993138) (-597 "LIECAT.spad" 991193 991203 991643 991712) (-596 "LIECAT.spad" 990697 990709 991149 991154) (-595 "LIB.spad" 988745 988753 989356 989371) (-594 "LGROBP.spad" 986098 986117 988735 988740) (-593 "LF.spad" 985017 985033 986088 986093) (-592 "LFCAT.spad" 984036 984044 985007 985012) (-591 "LEXTRIPK.spad" 979539 979554 984026 984031) (-590 "LEXP.spad" 977542 977569 979519 979534) (-589 "LETAST.spad" 977243 977251 977532 977537) (-588 "LEADCDET.spad" 975627 975644 977233 977238) (-587 "LAZM3PK.spad" 974331 974353 975617 975622) (-586 "LAUPOL.spad" 973022 973035 973926 973995) (-585 "LAPLACE.spad" 972595 972611 973012 973017) (-584 "LA.spad" 972035 972049 972517 972556) (-583 "LALG.spad" 971811 971821 972015 972030) (-582 "LALG.spad" 971595 971607 971801 971806) (-581 "KOVACIC.spad" 970308 970325 971585 971590) (-580 "KONVERT.spad" 970030 970040 970298 970303) (-579 "KOERCE.spad" 969767 969777 970020 970025) (-578 "KERNEL.spad" 968302 968312 969551 969556) (-577 "KERNEL2.spad" 968005 968017 968292 968297) (-576 "KDAGG.spad" 967096 967118 967973 968000) (-575 "KDAGG.spad" 966207 966231 967086 967091) (-574 "KAFILE.spad" 965170 965186 965405 965432) (-573 "JORDAN.spad" 962997 963009 964460 964605) (-572 "JOINAST.spad" 962691 962699 962987 962992) (-571 "JAVACODE.spad" 962457 962465 962681 962686) (-570 "IXAGG.spad" 960570 960594 962437 962452) (-569 "IXAGG.spad" 958548 958574 960417 960422) (-568 "IVECTOR.spad" 957321 957336 957476 957503) (-567 "ITUPLE.spad" 956466 956476 957311 957316) (-566 "ITRIGMNP.spad" 955277 955296 956456 956461) (-565 "ITFUN3.spad" 954771 954785 955267 955272) (-564 "ITFUN2.spad" 954501 954513 954761 954766) (-563 "ITAYLOR.spad" 952293 952308 954337 954462) (-562 "ISUPS.spad" 944704 944719 951267 951364) (-561 "ISUMP.spad" 944201 944217 944694 944699) (-560 "ISTRING.spad" 943204 943217 943370 943397) (-559 "IRURPK.spad" 941917 941936 943194 943199) (-558 "IRSN.spad" 939877 939885 941907 941912) (-557 "IRRF2F.spad" 938352 938362 939833 939838) (-556 "IRREDFFX.spad" 937953 937964 938342 938347) (-555 "IROOT.spad" 936284 936294 937943 937948) (-554 "IR.spad" 934074 934088 936140 936167) (-553 "IR2.spad" 933094 933110 934064 934069) (-552 "IR2F.spad" 932294 932310 933084 933089) (-551 "IPRNTPK.spad" 932054 932062 932284 932289) (-550 "IPF.spad" 931619 931631 931859 931952) (-549 "IPADIC.spad" 931380 931406 931545 931614) (-548 "INVLAPLA.spad" 931025 931041 931370 931375) (-547 "INTTR.spad" 924271 924288 931015 931020) (-546 "INTTOOLS.spad" 921983 921999 923846 923851) (-545 "INTSLPE.spad" 921289 921297 921973 921978) (-544 "INTRVL.spad" 920855 920865 921203 921284) (-543 "INTRF.spad" 919219 919233 920845 920850) (-542 "INTRET.spad" 918651 918661 919209 919214) (-541 "INTRAT.spad" 917326 917343 918641 918646) (-540 "INTPM.spad" 915689 915705 916969 916974) (-539 "INTPAF.spad" 913457 913475 915621 915626) (-538 "INTPACK.spad" 903767 903775 913447 913452) (-537 "INT.spad" 903128 903136 903621 903762) (-536 "INTHERTR.spad" 902394 902411 903118 903123) (-535 "INTHERAL.spad" 902060 902084 902384 902389) (-534 "INTHEORY.spad" 898473 898481 902050 902055) (-533 "INTG0.spad" 891936 891954 898405 898410) (-532 "INTFTBL.spad" 885965 885973 891926 891931) (-531 "INTFACT.spad" 885024 885034 885955 885960) (-530 "INTEF.spad" 883339 883355 885014 885019) (-529 "INTDOM.spad" 881954 881962 883265 883334) (-528 "INTDOM.spad" 880631 880641 881944 881949) (-527 "INTCAT.spad" 878884 878894 880545 880626) (-526 "INTBIT.spad" 878387 878395 878874 878879) (-525 "INTALG.spad" 877569 877596 878377 878382) (-524 "INTAF.spad" 877061 877077 877559 877564) (-523 "INTABL.spad" 875579 875610 875742 875769) (-522 "INS.spad" 872975 872983 875481 875574) (-521 "INS.spad" 870457 870467 872965 872970) (-520 "INPSIGN.spad" 869891 869904 870447 870452) (-519 "INPRODPF.spad" 868957 868976 869881 869886) (-518 "INPRODFF.spad" 868015 868039 868947 868952) (-517 "INNMFACT.spad" 866986 867003 868005 868010) (-516 "INMODGCD.spad" 866470 866500 866976 866981) (-515 "INFSP.spad" 864755 864777 866460 866465) (-514 "INFPROD0.spad" 863805 863824 864745 864750) (-513 "INFORM.spad" 861073 861081 863795 863800) (-512 "INFORM1.spad" 860698 860708 861063 861068) (-511 "INFINITY.spad" 860250 860258 860688 860693) (-510 "INEP.spad" 858782 858804 860240 860245) (-509 "INDE.spad" 858511 858528 858772 858777) (-508 "INCRMAPS.spad" 857932 857942 858501 858506) (-507 "INBFF.spad" 853702 853713 857922 857927) (-506 "INAST.spad" 853368 853376 853692 853697) (-505 "IMPTAST.spad" 853076 853084 853358 853363) (-504 "IMATRIX.spad" 852021 852047 852533 852560) (-503 "IMATQF.spad" 851115 851159 851977 851982) (-502 "IMATLIN.spad" 849720 849744 851071 851076) (-501 "ILIST.spad" 848376 848391 848903 848930) (-500 "IIARRAY2.spad" 847764 847802 847983 848010) (-499 "IFF.spad" 847174 847190 847445 847538) (-498 "IFAST.spad" 846791 846799 847164 847169) (-497 "IFARRAY.spad" 844278 844293 845974 846001) (-496 "IFAMON.spad" 844140 844157 844234 844239) (-495 "IEVALAB.spad" 843529 843541 844130 844135) (-494 "IEVALAB.spad" 842916 842930 843519 843524) (-493 "IDPO.spad" 842714 842726 842906 842911) (-492 "IDPOAMS.spad" 842470 842482 842704 842709) (-491 "IDPOAM.spad" 842190 842202 842460 842465) (-490 "IDPC.spad" 841124 841136 842180 842185) (-489 "IDPAM.spad" 840869 840881 841114 841119) (-488 "IDPAG.spad" 840616 840628 840859 840864) (-487 "IDENT.spad" 840533 840541 840606 840611) (-486 "IDECOMP.spad" 837770 837788 840523 840528) (-485 "IDEAL.spad" 832693 832732 837705 837710) (-484 "ICDEN.spad" 831844 831860 832683 832688) (-483 "ICARD.spad" 831033 831041 831834 831839) (-482 "IBPTOOLS.spad" 829626 829643 831023 831028) (-481 "IBITS.spad" 828825 828838 829262 829289) (-480 "IBATOOL.spad" 825700 825719 828815 828820) (-479 "IBACHIN.spad" 824187 824202 825690 825695) (-478 "IARRAY2.spad" 823175 823201 823794 823821) (-477 "IARRAY1.spad" 822220 822235 822358 822385) (-476 "IAN.spad" 820435 820443 822038 822131) (-475 "IALGFACT.spad" 820036 820069 820425 820430) (-474 "HYPCAT.spad" 819460 819468 820026 820031) (-473 "HYPCAT.spad" 818882 818892 819450 819455) (-472 "HOSTNAME.spad" 818690 818698 818872 818877) (-471 "HOAGG.spad" 815948 815958 818670 818685) (-470 "HOAGG.spad" 812991 813003 815715 815720) (-469 "HEXADEC.spad" 810863 810871 811461 811554) (-468 "HEUGCD.spad" 809878 809889 810853 810858) (-467 "HELLFDIV.spad" 809468 809492 809868 809873) (-466 "HEAP.spad" 808860 808870 809075 809102) (-465 "HEADAST.spad" 808391 808399 808850 808855) (-464 "HDP.spad" 799559 799575 799936 800065) (-463 "HDMP.spad" 796738 796753 797356 797483) (-462 "HB.spad" 794975 794983 796728 796733) (-461 "HASHTBL.spad" 793445 793476 793656 793683) (-460 "HACKPI.spad" 792928 792936 793347 793440) (-459 "GTSET.spad" 791867 791883 792574 792601) (-458 "GSTBL.spad" 790386 790421 790560 790575) (-457 "GSERIES.spad" 787553 787580 788518 788667) (-456 "GROUP.spad" 786822 786830 787533 787548) (-455 "GROUP.spad" 786099 786109 786812 786817) (-454 "GROEBSOL.spad" 784587 784608 786089 786094) (-453 "GRMOD.spad" 783158 783170 784577 784582) (-452 "GRMOD.spad" 781727 781741 783148 783153) (-451 "GRIMAGE.spad" 774332 774340 781717 781722) (-450 "GRDEF.spad" 772711 772719 774322 774327) (-449 "GRAY.spad" 771170 771178 772701 772706) (-448 "GRALG.spad" 770217 770229 771160 771165) (-447 "GRALG.spad" 769262 769276 770207 770212) (-446 "GPOLSET.spad" 768716 768739 768944 768971) (-445 "GOSPER.spad" 767981 767999 768706 768711) (-444 "GMODPOL.spad" 767119 767146 767949 767976) (-443 "GHENSEL.spad" 766188 766202 767109 767114) (-442 "GENUPS.spad" 762289 762302 766178 766183) (-441 "GENUFACT.spad" 761866 761876 762279 762284) (-440 "GENPGCD.spad" 761450 761467 761856 761861) (-439 "GENMFACT.spad" 760902 760921 761440 761445) (-438 "GENEEZ.spad" 758841 758854 760892 760897) (-437 "GDMP.spad" 755862 755879 756638 756765) (-436 "GCNAALG.spad" 749757 749784 755656 755723) (-435 "GCDDOM.spad" 748929 748937 749683 749752) (-434 "GCDDOM.spad" 748163 748173 748919 748924) (-433 "GB.spad" 745681 745719 748119 748124) (-432 "GBINTERN.spad" 741701 741739 745671 745676) (-431 "GBF.spad" 737458 737496 741691 741696) (-430 "GBEUCLID.spad" 735332 735370 737448 737453) (-429 "GAUSSFAC.spad" 734629 734637 735322 735327) (-428 "GALUTIL.spad" 732951 732961 734585 734590) (-427 "GALPOLYU.spad" 731397 731410 732941 732946) (-426 "GALFACTU.spad" 729562 729581 731387 731392) (-425 "GALFACT.spad" 719695 719706 729552 729557) (-424 "FVFUN.spad" 716708 716716 719675 719690) (-423 "FVC.spad" 715750 715758 716688 716703) (-422 "FUNCTION.spad" 715599 715611 715740 715745) (-421 "FT.spad" 713811 713819 715589 715594) (-420 "FTEM.spad" 712974 712982 713801 713806) (-419 "FSUPFACT.spad" 711875 711894 712911 712916) (-418 "FST.spad" 709961 709969 711865 711870) (-417 "FSRED.spad" 709439 709455 709951 709956) (-416 "FSPRMELT.spad" 708263 708279 709396 709401) (-415 "FSPECF.spad" 706340 706356 708253 708258) (-414 "FS.spad" 700391 700401 706104 706335) (-413 "FS.spad" 694233 694245 699948 699953) (-412 "FSINT.spad" 693891 693907 694223 694228) (-411 "FSERIES.spad" 693078 693090 693711 693810) (-410 "FSCINT.spad" 692391 692407 693068 693073) (-409 "FSAGG.spad" 691496 691506 692335 692386) (-408 "FSAGG.spad" 690575 690587 691416 691421) (-407 "FSAGG2.spad" 689274 689290 690565 690570) (-406 "FS2UPS.spad" 683663 683697 689264 689269) (-405 "FS2.spad" 683308 683324 683653 683658) (-404 "FS2EXPXP.spad" 682431 682454 683298 683303) (-403 "FRUTIL.spad" 681373 681383 682421 682426) (-402 "FR.spad" 675070 675080 680400 680469) (-401 "FRNAALG.spad" 670157 670167 675012 675065) (-400 "FRNAALG.spad" 665256 665268 670113 670118) (-399 "FRNAAF2.spad" 664710 664728 665246 665251) (-398 "FRMOD.spad" 664105 664135 664642 664647) (-397 "FRIDEAL.spad" 663300 663321 664085 664100) (-396 "FRIDEAL2.spad" 662902 662934 663290 663295) (-395 "FRETRCT.spad" 662413 662423 662892 662897) (-394 "FRETRCT.spad" 661792 661804 662273 662278) (-393 "FRAMALG.spad" 660120 660133 661748 661787) (-392 "FRAMALG.spad" 658480 658495 660110 660115) (-391 "FRAC.spad" 655583 655593 655986 656159) (-390 "FRAC2.spad" 655186 655198 655573 655578) (-389 "FR2.spad" 654520 654532 655176 655181) (-388 "FPS.spad" 651329 651337 654410 654515) (-387 "FPS.spad" 648166 648176 651249 651254) (-386 "FPC.spad" 647208 647216 648068 648161) (-385 "FPC.spad" 646336 646346 647198 647203) (-384 "FPATMAB.spad" 646088 646098 646316 646331) (-383 "FPARFRAC.spad" 644561 644578 646078 646083) (-382 "FORTRAN.spad" 643067 643110 644551 644556) (-381 "FORT.spad" 641996 642004 643057 643062) (-380 "FORTFN.spad" 639156 639164 641976 641991) (-379 "FORTCAT.spad" 638830 638838 639136 639151) (-378 "FORMULA.spad" 636168 636176 638820 638825) (-377 "FORMULA1.spad" 635647 635657 636158 636163) (-376 "FORDER.spad" 635338 635362 635637 635642) (-375 "FOP.spad" 634539 634547 635328 635333) (-374 "FNLA.spad" 633963 633985 634507 634534) (-373 "FNCAT.spad" 632291 632299 633953 633958) (-372 "FNAME.spad" 632183 632191 632281 632286) (-371 "FMTC.spad" 631981 631989 632109 632178) (-370 "FMONOID.spad" 629036 629046 631937 631942) (-369 "FM.spad" 628731 628743 628970 628997) (-368 "FMFUN.spad" 625751 625759 628711 628726) (-367 "FMC.spad" 624793 624801 625731 625746) (-366 "FMCAT.spad" 622447 622465 624761 624788) (-365 "FM1.spad" 621804 621816 622381 622408) (-364 "FLOATRP.spad" 619525 619539 621794 621799) (-363 "FLOAT.spad" 612689 612697 619391 619520) (-362 "FLOATCP.spad" 610106 610120 612679 612684) (-361 "FLINEXP.spad" 609818 609828 610086 610101) (-360 "FLINEXP.spad" 609484 609496 609754 609759) (-359 "FLASORT.spad" 608804 608816 609474 609479) (-358 "FLALG.spad" 606450 606469 608730 608799) (-357 "FLAGG.spad" 603456 603466 606418 606445) (-356 "FLAGG.spad" 600375 600387 603339 603344) (-355 "FLAGG2.spad" 599056 599072 600365 600370) (-354 "FINRALG.spad" 597085 597098 599012 599051) (-353 "FINRALG.spad" 595040 595055 596969 596974) (-352 "FINITE.spad" 594192 594200 595030 595035) (-351 "FINAALG.spad" 583173 583183 594134 594187) (-350 "FINAALG.spad" 572166 572178 583129 583134) (-349 "FILE.spad" 571749 571759 572156 572161) (-348 "FILECAT.spad" 570267 570284 571739 571744) (-347 "FIELD.spad" 569673 569681 570169 570262) (-346 "FIELD.spad" 569165 569175 569663 569668) (-345 "FGROUP.spad" 567774 567784 569145 569160) (-344 "FGLMICPK.spad" 566561 566576 567764 567769) (-343 "FFX.spad" 565936 565951 566277 566370) (-342 "FFSLPE.spad" 565425 565446 565926 565931) (-341 "FFPOLY.spad" 556677 556688 565415 565420) (-340 "FFPOLY2.spad" 555737 555754 556667 556672) (-339 "FFP.spad" 555134 555154 555453 555546) (-338 "FF.spad" 554582 554598 554815 554908) (-337 "FFNBX.spad" 553094 553114 554298 554391) (-336 "FFNBP.spad" 551607 551624 552810 552903) (-335 "FFNB.spad" 550072 550093 551288 551381) (-334 "FFINTBAS.spad" 547486 547505 550062 550067) (-333 "FFIELDC.spad" 545061 545069 547388 547481) (-332 "FFIELDC.spad" 542722 542732 545051 545056) (-331 "FFHOM.spad" 541470 541487 542712 542717) (-330 "FFF.spad" 538905 538916 541460 541465) (-329 "FFCGX.spad" 537752 537772 538621 538714) (-328 "FFCGP.spad" 536641 536661 537468 537561) (-327 "FFCG.spad" 535433 535454 536322 536415) (-326 "FFCAT.spad" 528460 528482 535272 535428) (-325 "FFCAT.spad" 521566 521590 528380 528385) (-324 "FFCAT2.spad" 521311 521351 521556 521561) (-323 "FEXPR.spad" 513024 513070 521071 521110) (-322 "FEVALAB.spad" 512730 512740 513014 513019) (-321 "FEVALAB.spad" 512221 512233 512507 512512) (-320 "FDIV.spad" 511663 511687 512211 512216) (-319 "FDIVCAT.spad" 509705 509729 511653 511658) (-318 "FDIVCAT.spad" 507745 507771 509695 509700) (-317 "FDIV2.spad" 507399 507439 507735 507740) (-316 "FCPAK1.spad" 505952 505960 507389 507394) (-315 "FCOMP.spad" 505331 505341 505942 505947) (-314 "FC.spad" 495156 495164 505321 505326) (-313 "FAXF.spad" 488091 488105 495058 495151) (-312 "FAXF.spad" 481078 481094 488047 488052) (-311 "FARRAY.spad" 479224 479234 480261 480288) (-310 "FAMR.spad" 477344 477356 479122 479219) (-309 "FAMR.spad" 475448 475462 477228 477233) (-308 "FAMONOID.spad" 475098 475108 475402 475407) (-307 "FAMONC.spad" 473320 473332 475088 475093) (-306 "FAGROUP.spad" 472926 472936 473216 473243) (-305 "FACUTIL.spad" 471122 471139 472916 472921) (-304 "FACTFUNC.spad" 470298 470308 471112 471117) (-303 "EXPUPXS.spad" 467131 467154 468430 468579) (-302 "EXPRTUBE.spad" 464359 464367 467121 467126) (-301 "EXPRODE.spad" 461231 461247 464349 464354) (-300 "EXPR.spad" 456533 456543 457247 457650) (-299 "EXPR2UPS.spad" 452625 452638 456523 456528) (-298 "EXPR2.spad" 452328 452340 452615 452620) (-297 "EXPEXPAN.spad" 449269 449294 449903 449996) (-296 "EXIT.spad" 448940 448948 449259 449264) (-295 "EXITAST.spad" 448762 448770 448930 448935) (-294 "EVALCYC.spad" 448220 448234 448752 448757) (-293 "EVALAB.spad" 447784 447794 448210 448215) (-292 "EVALAB.spad" 447346 447358 447774 447779) (-291 "EUCDOM.spad" 444888 444896 447272 447341) (-290 "EUCDOM.spad" 442492 442502 444878 444883) (-289 "ESTOOLS.spad" 434332 434340 442482 442487) (-288 "ESTOOLS2.spad" 433933 433947 434322 434327) (-287 "ESTOOLS1.spad" 433618 433629 433923 433928) (-286 "ES.spad" 426165 426173 433608 433613) (-285 "ES.spad" 418620 418630 426065 426070) (-284 "ESCONT.spad" 415393 415401 418610 418615) (-283 "ESCONT1.spad" 415142 415154 415383 415388) (-282 "ES2.spad" 414637 414653 415132 415137) (-281 "ES1.spad" 414203 414219 414627 414632) (-280 "ERROR.spad" 411524 411532 414193 414198) (-279 "EQTBL.spad" 409996 410018 410205 410232) (-278 "EQ.spad" 404880 404890 407679 407788) (-277 "EQ2.spad" 404596 404608 404870 404875) (-276 "EP.spad" 400910 400920 404586 404591) (-275 "ENV.spad" 399612 399620 400900 400905) (-274 "ENTIRER.spad" 399280 399288 399556 399607) (-273 "EMR.spad" 398481 398522 399206 399275) (-272 "ELTAGG.spad" 396721 396740 398471 398476) (-271 "ELTAGG.spad" 394925 394946 396677 396682) (-270 "ELTAB.spad" 394372 394390 394915 394920) (-269 "ELFUTS.spad" 393751 393770 394362 394367) (-268 "ELEMFUN.spad" 393440 393448 393741 393746) (-267 "ELEMFUN.spad" 393127 393137 393430 393435) (-266 "ELAGG.spad" 391058 391068 393095 393122) (-265 "ELAGG.spad" 388938 388950 390977 390982) (-264 "ELABEXPR.spad" 387869 387877 388928 388933) (-263 "EFUPXS.spad" 384645 384675 387825 387830) (-262 "EFULS.spad" 381481 381504 384601 384606) (-261 "EFSTRUC.spad" 379436 379452 381471 381476) (-260 "EF.spad" 374202 374218 379426 379431) (-259 "EAB.spad" 372478 372486 374192 374197) (-258 "E04UCFA.spad" 372014 372022 372468 372473) (-257 "E04NAFA.spad" 371591 371599 372004 372009) (-256 "E04MBFA.spad" 371171 371179 371581 371586) (-255 "E04JAFA.spad" 370707 370715 371161 371166) (-254 "E04GCFA.spad" 370243 370251 370697 370702) (-253 "E04FDFA.spad" 369779 369787 370233 370238) (-252 "E04DGFA.spad" 369315 369323 369769 369774) (-251 "E04AGNT.spad" 365157 365165 369305 369310) (-250 "DVARCAT.spad" 361842 361852 365147 365152) (-249 "DVARCAT.spad" 358525 358537 361832 361837) (-248 "DSMP.spad" 355959 355973 356264 356391) (-247 "DROPT.spad" 349904 349912 355949 355954) (-246 "DROPT1.spad" 349567 349577 349894 349899) (-245 "DROPT0.spad" 344394 344402 349557 349562) (-244 "DRAWPT.spad" 342549 342557 344384 344389) (-243 "DRAW.spad" 335149 335162 342539 342544) (-242 "DRAWHACK.spad" 334457 334467 335139 335144) (-241 "DRAWCX.spad" 331899 331907 334447 334452) (-240 "DRAWCURV.spad" 331436 331451 331889 331894) (-239 "DRAWCFUN.spad" 320608 320616 331426 331431) (-238 "DQAGG.spad" 318764 318774 320564 320603) (-237 "DPOLCAT.spad" 314105 314121 318632 318759) (-236 "DPOLCAT.spad" 309532 309550 314061 314066) (-235 "DPMO.spad" 302882 302898 303020 303316) (-234 "DPMM.spad" 296245 296263 296370 296666) (-233 "DOMAIN.spad" 295516 295524 296235 296240) (-232 "DMP.spad" 292741 292756 293313 293440) (-231 "DLP.spad" 292089 292099 292731 292736) (-230 "DLIST.spad" 290501 290511 291272 291299) (-229 "DLAGG.spad" 288902 288912 290481 290496) (-228 "DIVRING.spad" 288444 288452 288846 288897) (-227 "DIVRING.spad" 288030 288040 288434 288439) (-226 "DISPLAY.spad" 286210 286218 288020 288025) (-225 "DIRPROD.spad" 277115 277131 277755 277884) (-224 "DIRPROD2.spad" 275923 275941 277105 277110) (-223 "DIRPCAT.spad" 274855 274871 275777 275918) (-222 "DIRPCAT.spad" 273527 273545 274451 274456) (-221 "DIOSP.spad" 272352 272360 273517 273522) (-220 "DIOPS.spad" 271324 271334 272320 272347) (-219 "DIOPS.spad" 270282 270294 271280 271285) (-218 "DIFRING.spad" 269574 269582 270262 270277) (-217 "DIFRING.spad" 268874 268884 269564 269569) (-216 "DIFEXT.spad" 268033 268043 268854 268869) (-215 "DIFEXT.spad" 267109 267121 267932 267937) (-214 "DIAGG.spad" 266727 266737 267077 267104) (-213 "DIAGG.spad" 266365 266377 266717 266722) (-212 "DHMATRIX.spad" 264669 264679 265822 265849) (-211 "DFSFUN.spad" 258077 258085 264659 264664) (-210 "DFLOAT.spad" 254600 254608 257967 258072) (-209 "DFINTTLS.spad" 252809 252825 254590 254595) (-208 "DERHAM.spad" 250719 250751 252789 252804) (-207 "DEQUEUE.spad" 250037 250047 250326 250353) (-206 "DEGRED.spad" 249652 249666 250027 250032) (-205 "DEFINTRF.spad" 247177 247187 249642 249647) (-204 "DEFINTEF.spad" 245673 245689 247167 247172) (-203 "DECIMAL.spad" 243557 243565 244143 244236) (-202 "DDFACT.spad" 241356 241373 243547 243552) (-201 "DBLRESP.spad" 240954 240978 241346 241351) (-200 "DBASE.spad" 239526 239536 240944 240949) (-199 "DATABUF.spad" 239014 239027 239516 239521) (-198 "D03FAFA.spad" 238842 238850 239004 239009) (-197 "D03EEFA.spad" 238662 238670 238832 238837) (-196 "D03AGNT.spad" 237742 237750 238652 238657) (-195 "D02EJFA.spad" 237204 237212 237732 237737) (-194 "D02CJFA.spad" 236682 236690 237194 237199) (-193 "D02BHFA.spad" 236172 236180 236672 236677) (-192 "D02BBFA.spad" 235662 235670 236162 236167) (-191 "D02AGNT.spad" 230466 230474 235652 235657) (-190 "D01WGTS.spad" 228785 228793 230456 230461) (-189 "D01TRNS.spad" 228762 228770 228775 228780) (-188 "D01GBFA.spad" 228284 228292 228752 228757) (-187 "D01FCFA.spad" 227806 227814 228274 228279) (-186 "D01ASFA.spad" 227274 227282 227796 227801) (-185 "D01AQFA.spad" 226720 226728 227264 227269) (-184 "D01APFA.spad" 226144 226152 226710 226715) (-183 "D01ANFA.spad" 225638 225646 226134 226139) (-182 "D01AMFA.spad" 225148 225156 225628 225633) (-181 "D01ALFA.spad" 224688 224696 225138 225143) (-180 "D01AKFA.spad" 224214 224222 224678 224683) (-179 "D01AJFA.spad" 223737 223745 224204 224209) (-178 "D01AGNT.spad" 219796 219804 223727 223732) (-177 "CYCLOTOM.spad" 219302 219310 219786 219791) (-176 "CYCLES.spad" 216134 216142 219292 219297) (-175 "CVMP.spad" 215551 215561 216124 216129) (-174 "CTRIGMNP.spad" 214041 214057 215541 215546) (-173 "CTORCALL.spad" 213629 213637 214031 214036) (-172 "CSTTOOLS.spad" 212872 212885 213619 213624) (-171 "CRFP.spad" 206576 206589 212862 212867) (-170 "CRCAST.spad" 206297 206305 206566 206571) (-169 "CRAPACK.spad" 205340 205350 206287 206292) (-168 "CPMATCH.spad" 204840 204855 205265 205270) (-167 "CPIMA.spad" 204545 204564 204830 204835) (-166 "COORDSYS.spad" 199438 199448 204535 204540) (-165 "CONTOUR.spad" 198840 198848 199428 199433) (-164 "CONTFRAC.spad" 194452 194462 198742 198835) (-163 "COMRING.spad" 194126 194134 194390 194447) (-162 "COMPPROP.spad" 193640 193648 194116 194121) (-161 "COMPLPAT.spad" 193407 193422 193630 193635) (-160 "COMPLEX.spad" 187438 187448 187682 187943) (-159 "COMPLEX2.spad" 187151 187163 187428 187433) (-158 "COMPFACT.spad" 186753 186767 187141 187146) (-157 "COMPCAT.spad" 184809 184819 186475 186748) (-156 "COMPCAT.spad" 182571 182583 184239 184244) (-155 "COMMUPC.spad" 182317 182335 182561 182566) (-154 "COMMONOP.spad" 181850 181858 182307 182312) (-153 "COMM.spad" 181659 181667 181840 181845) (-152 "COMBOPC.spad" 180564 180572 181649 181654) (-151 "COMBINAT.spad" 179309 179319 180554 180559) (-150 "COMBF.spad" 176677 176693 179299 179304) (-149 "COLOR.spad" 175514 175522 176667 176672) (-148 "CMPLXRT.spad" 175223 175240 175504 175509) (-147 "CLIP.spad" 171315 171323 175213 175218) (-146 "CLIF.spad" 169954 169970 171271 171310) (-145 "CLAGG.spad" 166429 166439 169934 169949) (-144 "CLAGG.spad" 162785 162797 166292 166297) (-143 "CINTSLPE.spad" 162110 162123 162775 162780) (-142 "CHVAR.spad" 160188 160210 162100 162105) (-141 "CHARZ.spad" 160103 160111 160168 160183) (-140 "CHARPOL.spad" 159611 159621 160093 160098) (-139 "CHARNZ.spad" 159364 159372 159591 159606) (-138 "CHAR.spad" 157232 157240 159354 159359) (-137 "CFCAT.spad" 156548 156556 157222 157227) (-136 "CDEN.spad" 155706 155720 156538 156543) (-135 "CCLASS.spad" 153855 153863 155117 155156) (-134 "CATEGORY.spad" 153634 153642 153845 153850) (-133 "CARTEN.spad" 148737 148761 153624 153629) (-132 "CARTEN2.spad" 148123 148150 148727 148732) (-131 "CARD.spad" 145412 145420 148097 148118) (-130 "CACHSET.spad" 145034 145042 145402 145407) (-129 "CABMON.spad" 144587 144595 145024 145029) (-128 "BYTE.spad" 143981 143989 144577 144582) (-127 "BYTEARY.spad" 143056 143064 143150 143177) (-126 "BTREE.spad" 142125 142135 142663 142690) (-125 "BTOURN.spad" 141128 141138 141732 141759) (-124 "BTCAT.spad" 140504 140514 141084 141123) (-123 "BTCAT.spad" 139912 139924 140494 140499) (-122 "BTAGG.spad" 139022 139030 139868 139907) (-121 "BTAGG.spad" 138164 138174 139012 139017) (-120 "BSTREE.spad" 136899 136909 137771 137798) (-119 "BRILL.spad" 135094 135105 136889 136894) (-118 "BRAGG.spad" 134008 134018 135074 135089) (-117 "BRAGG.spad" 132896 132908 133964 133969) (-116 "BPADICRT.spad" 130880 130892 131135 131228) (-115 "BPADIC.spad" 130544 130556 130806 130875) (-114 "BOUNDZRO.spad" 130200 130217 130534 130539) (-113 "BOP.spad" 125664 125672 130190 130195) (-112 "BOP1.spad" 123050 123060 125620 125625) (-111 "BOOLEAN.spad" 122374 122382 123040 123045) (-110 "BMODULE.spad" 122086 122098 122342 122369) (-109 "BITS.spad" 121505 121513 121722 121749) (-108 "BINFILE.spad" 120848 120856 121495 121500) (-107 "BINDING.spad" 120267 120275 120838 120843) (-106 "BINARY.spad" 118160 118168 118737 118830) (-105 "BGAGG.spad" 117345 117355 118128 118155) (-104 "BGAGG.spad" 116550 116562 117335 117340) (-103 "BFUNCT.spad" 116114 116122 116530 116545) (-102 "BEZOUT.spad" 115248 115275 116064 116069) (-101 "BBTREE.spad" 112067 112077 114855 114882) (-100 "BASTYPE.spad" 111739 111747 112057 112062) (-99 "BASTYPE.spad" 111410 111419 111729 111734) (-98 "BALFACT.spad" 110850 110862 111400 111405) (-97 "AUTOMOR.spad" 110297 110306 110830 110845) (-96 "ATTREG.spad" 107016 107023 110049 110292) (-95 "ATTRBUT.spad" 103039 103046 106996 107011) (-94 "ATTRAST.spad" 102757 102764 103029 103034) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 675615ac..fc7a7e43 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3230 +1,3246 @@ -(143530 . 3429317354) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) +(144106 . 3429568338) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) (((|#2| |#2|) . T)) -((((-531)) . T)) -((($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2| |#2|) . T) ((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531))))) +((((-537)) . T)) +((($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2| |#2|) . T) ((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) (((|#2|) . T)) -((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2|) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531))))) -(|has| |#1| (-852)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((($) . T) (((-388 (-531))) . T)) +((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2|) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) +(|has| |#1| (-862)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((($) . T) (((-391 (-537))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-137)) . T)) -((((-507)) . T) (((-1085)) . T) (((-208)) . T) (((-360)) . T) (((-835 (-360))) . T)) -(((|#1|) . T)) -((((-208)) . T) (((-806)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -((($ $) . T) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T)) -(-1435 (|has| |#1| (-770)) (|has| |#1| (-797))) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(|has| |#1| (-795)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((((-138)) . T)) +((((-513)) . T) (((-1100)) . T) (((-210)) . T) (((-363)) . T) (((-845 (-363))) . T)) +(((|#1|) . T)) +((((-210)) . T) (((-816)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +((($ $) . T) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1| |#1|) . T)) +(-1533 (|has| |#1| (-780)) (|has| |#1| (-807))) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-805)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -((((-806)) . T)) -((((-806)) |has| |#1| (-1030))) +((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((((-816)) . T)) +((((-816)) |has| |#1| (-1045))) +((((-816)) . T) (((-1122)) . T)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#2| (-461 (-2167 |#1|) (-721))) . T)) -(((|#1| (-503 (-1102))) . T)) -(((#0=(-813 |#1|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(|has| |#4| (-349)) -(|has| |#3| (-349)) -(((|#1|) . T)) -((((-813 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#2| (-464 (-2258 |#1|) (-731))) . T)) +(((|#1| (-509 (-1117))) . T)) +(((#0=(-823 |#1|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| |#4| (-352)) +(|has| |#3| (-352)) +(((|#1|) . T)) +((((-823 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-523)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -((($) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -((((-806)) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#1|) . T)) -((((-806)) . T)) -(((|#1|) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-529)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +((($) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) +((((-816)) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) (($) . T) ((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((((-816)) . T)) +(((|#1|) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) (((|#1| |#2|) . T)) -((((-806)) . T)) +((((-816)) . T)) (((|#1|) . T)) -(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) +(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) (((|#1|) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) ((($ $) . T)) (((|#2|) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) ((($) . T)) -(|has| |#1| (-349)) +(|has| |#1| (-352)) (((|#1|) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -((((-806)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) +((((-816)) . T)) (((|#1| |#2|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) (((|#1| |#1|) . T)) -(|has| |#1| (-523)) -(((|#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) (((-1102) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-492 (-1102) |#2|)))) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(|has| |#1| (-1030)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(|has| |#1| (-1030)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(|has| |#1| (-795)) -((($) . T) (((-388 (-531))) . T)) -(((|#1|) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(-1435 (|has| |#4| (-743)) (|has| |#4| (-795))) -(-1435 (|has| |#4| (-743)) (|has| |#4| (-795))) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) +(|has| |#1| (-529)) +(((|#2| |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|))) (((-1117) |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-495 (-1117) |#2|)))) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(|has| |#1| (-1045)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(|has| |#1| (-1045)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(|has| |#1| (-805)) +((($) . T) (((-391 (-537))) . T)) +(((|#1|) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) +(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1030)) -(|has| |#1| (-1030)) -(((|#1| (-1102) (-1020 (-1102)) (-503 (-1020 (-1102)))) . T)) -((((-531) |#1|) . T)) -((((-531)) . T)) -((((-531)) . T)) -((((-853 |#1|)) . T)) -(((|#1| (-503 |#2|)) . T)) -((((-531)) . T)) -((((-531)) . T)) -(((|#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(((|#1| (-721)) . T)) -(|has| |#2| (-743)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(|has| |#2| (-795)) +(|has| |#1| (-1045)) +(|has| |#1| (-1045)) +(((|#1| (-1117) (-1034 (-1117)) (-509 (-1034 (-1117)))) . T)) +((((-537) |#1|) . T)) +((((-537)) . T)) +((((-537)) . T)) +((((-863 |#1|)) . T)) +(((|#1| (-509 |#2|)) . T)) +((((-537)) . T)) +((((-537)) . T)) +(((|#1|) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(((|#1| (-731)) . T)) +(|has| |#2| (-753)) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(|has| |#2| (-805)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1085) |#1|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(((|#1|) . T)) -(((|#3| (-721)) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(|has| |#1| (-1030)) -((((-388 (-531))) . T) (((-531)) . T)) -((((-1102) |#2|) |has| |#2| (-492 (-1102) |#2|)) ((|#2| |#2|) |has| |#2| (-291 |#2|))) -((((-388 (-531))) . T) (((-531)) . T)) +((((-1100) |#1|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(((|#3| (-731)) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-1045)) +((((-391 (-537))) . T) (((-537)) . T)) +((((-1117) |#2|) |has| |#2| (-495 (-1117) |#2|)) ((|#2| |#2|) |has| |#2| (-293 |#2|))) +((((-391 (-537))) . T) (((-537)) . T)) (((|#1|) . T) (($) . T)) -((((-531)) . T)) -((((-531)) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162))) -((((-531)) . T)) -((((-531)) . T)) -(((#0=(-649) (-1098 #0#)) . T)) -((((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -((((-531) |#1|) . T)) -((($) . T) (((-531)) . T) (((-388 (-531))) . T)) -(((|#1|) . T)) -(|has| |#2| (-344)) +((((-537)) . T)) +((((-537)) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) +((((-537)) . T)) +((((-537)) . T)) +(((#0=(-659) (-1113 #0#)) . T)) +((((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +((((-537) |#1|) . T)) +((($) . T) (((-537)) . T) (((-391 (-537))) . T)) +(((|#1|) . T)) +(|has| |#2| (-347)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-806)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-1085) |#1|) . T)) +((((-816)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-1100) |#1|) . T)) (((|#3| |#3|) . T)) -((((-806)) . T)) -((((-806)) . T)) +((((-816)) . T)) +((((-816)) . T)) (((|#1| |#1|) . T)) -(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) ((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986)))) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-531) |#1|) . T)) -((((-159 (-208))) |has| |#1| (-962)) (((-159 (-360))) |has| |#1| (-962)) (((-507)) |has| |#1| (-573 (-507))) (((-1098 |#1|)) . T) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360))))) -((((-806)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523)))) -(|has| |#1| (-344)) -(-12 (|has| |#4| (-216)) (|has| |#4| (-986))) -(-12 (|has| |#3| (-216)) (|has| |#3| (-986))) -(-1435 (|has| |#4| (-162)) (|has| |#4| (-795)) (|has| |#4| (-986))) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) -((((-806)) . T)) -(((|#1|) . T)) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531)))) -(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -(|has| |#1| (-523)) -(|has| |#1| (-523)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#1|) . T)) -(|has| |#1| (-523)) -(|has| |#1| (-523)) -(|has| |#1| (-523)) -((((-649)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-943)) (|has| |#1| (-1124))) -(((|#2|) . T) (($) . T) (((-388 (-531))) . T)) -(-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))) -((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T)) -(((|#4| |#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-986))) (($ $) |has| |#4| (-162))) -(((|#3| |#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($ $) |has| |#3| (-162))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531))))) -((((-806)) . T)) +(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) ((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998)))) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-537) |#1|) . T)) +((((-160 (-210))) |has| |#1| (-973)) (((-160 (-363))) |has| |#1| (-973)) (((-513)) |has| |#1| (-580 (-513))) (((-1113 |#1|)) . T) (((-845 (-537))) |has| |#1| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363))))) +((((-816)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#2|) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) +(|has| |#1| (-347)) +(-12 (|has| |#4| (-218)) (|has| |#4| (-998))) +(-12 (|has| |#3| (-218)) (|has| |#3| (-998))) +(-1533 (|has| |#4| (-163)) (|has| |#4| (-805)) (|has| |#4| (-998))) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) +((((-816)) . T) (((-1122)) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) +(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +(|has| |#1| (-529)) +(|has| |#1| (-529)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#1|) . T)) +(|has| |#1| (-529)) +(|has| |#1| (-529)) +(|has| |#1| (-529)) +((((-659)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-954)) (|has| |#1| (-1139))) +(((|#2|) . T) (($) . T) (((-391 (-537))) . T)) +(-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))) +((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) +(((|#4| |#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)) (|has| |#4| (-998))) (($ $) |has| |#4| (-163))) +(((|#3| |#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($ $) |has| |#3| (-163))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) +((((-816)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531))))) -((((-806)) . T)) -(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($) |has| |#3| (-162))) -(((|#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-986))) (($) |has| |#4| (-162))) -((((-806)) . T)) -((((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T)) -((((-388 $) (-388 $)) |has| |#2| (-523)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-852)) -((((-1085) (-51)) . T)) -((((-531)) |has| #0=(-388 |#2|) (-594 (-531))) ((#0#) . T)) -((((-507)) . T) (((-208)) . T) (((-360)) . T) (((-835 (-360))) . T)) -((((-806)) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) -(((|#1|) |has| |#1| (-162))) -(((|#1| $) |has| |#1| (-268 |#1| |#1|))) -((((-806)) . T)) -((((-806)) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-806)) . T)) -(|has| |#1| (-797)) -(|has| |#1| (-1030)) -(((|#1|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-127)) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((((-127)) . T)) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(|has| |#1| (-216)) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1| (-503 (-768 (-1102)))) . T)) -(((|#1| (-913)) . T)) -(((#0=(-813 |#1|) $) |has| #0# (-268 #0# #0#))) -((((-531) |#4|) . T)) -((((-531) |#3|) . T)) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537))))) +((((-816)) . T)) +(((|#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)) (|has| |#4| (-998))) (($) |has| |#4| (-163))) +(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($) |has| |#3| (-163))) +((((-816)) . T)) +((((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) +((((-391 $) (-391 $)) |has| |#2| (-529)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-862)) +((((-1100) (-51)) . T)) +((((-537)) |has| #0=(-391 |#2|) (-602 (-537))) ((#0#) . T)) +((((-513)) . T) (((-210)) . T) (((-363)) . T) (((-845 (-363))) . T)) +((((-816)) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) +(((|#1|) |has| |#1| (-163))) +(((|#1| $) |has| |#1| (-270 |#1| |#1|))) +((((-816)) . T)) +((((-816)) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-816)) . T)) +(|has| |#1| (-807)) +(|has| |#1| (-1045)) +(((|#1|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-128)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((((-128)) . T)) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(|has| |#1| (-218)) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1| (-509 (-778 (-1117)))) . T)) +(((|#1| (-924)) . T)) +(((#0=(-823 |#1|) $) |has| #0# (-270 #0# #0#))) +((((-537) |#4|) . T)) +((((-537) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1078)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -(|has| (-1170 |#1| |#2| |#3| |#4|) (-138)) -(|has| (-1170 |#1| |#2| |#3| |#4|) (-140)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(((|#1|) |has| |#1| (-162))) -((((-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) -(((|#2|) . T)) -(|has| |#1| (-1030)) -((((-1085) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) -(|has| |#2| (-349)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +(|has| |#1| (-1093)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +(|has| (-1186 |#1| |#2| |#3| |#4|) (-139)) +(|has| (-1186 |#1| |#2| |#3| |#4|) (-141)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(((|#1|) |has| |#1| (-163))) +((((-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) +(((|#2|) . T)) +(|has| |#1| (-1045)) +((((-1100) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) +(|has| |#2| (-352)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-986))) -((((-806)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) +(((|#2|) |has| |#2| (-998))) +((((-816)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((#0=(-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) #0#) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) -((((-531) |#1|) . T)) -((((-806)) . T)) -((((-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507)))) (((-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360))))) (((-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) -((((-806)) . T)) -((((-806)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((#0=(-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) #0#) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) +((((-537) |#1|) . T)) +((((-816)) . T)) +((((-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513)))) (((-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363))))) (((-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) +((((-816)) . T)) +((((-816)) . T)) ((($) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-806)) . T)) -((((-806)) . T)) -(|has| (-1169 |#2| |#3| |#4|) (-140)) -(|has| (-1169 |#2| |#3| |#4|) (-138)) -(((|#2|) |has| |#2| (-1030)) (((-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (((-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-816)) . T)) +((((-816)) . T)) +(|has| (-1185 |#2| |#3| |#4|) (-141)) +(|has| (-1185 |#2| |#3| |#4|) (-139)) +(((|#2|) |has| |#2| (-1045)) (((-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (((-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((|#1|) . T)) -(|has| |#1| (-1030)) -((((-806)) . T)) +(|has| |#1| (-1045)) +((((-816)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) (((|#1|) . T)) -((((-531) |#1|) . T)) -(((|#2|) |has| |#2| (-162))) -(((|#1|) |has| |#1| (-162))) +((((-537) |#1|) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -((((-806)) |has| |#1| (-1030))) -(-1435 (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -((((-853 |#1|)) . T)) -((((-388 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-531) |#1|))) -((((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-797)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +((((-816)) |has| |#1| (-1045))) +(-1533 (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +((((-863 |#1|)) . T)) +((((-391 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-537) |#1|))) +((((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-807)) (((|#1|) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-806)) . T)) -(((|#1|) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523))) -(|has| |#1| (-344)) -(-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))) -(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) -(|has| |#1| (-344)) -((((-531)) . T)) -(|has| |#1| (-15 * (|#1| (-721) |#1|))) -((((-1069 |#2| (-388 (-895 |#1|)))) . T) (((-388 (-895 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-162)) (($) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T)) -(((|#1|) . T)) -((((-531) |#1|) . T)) -(((|#2|) . T)) -(-1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(((|#1|) . T)) -((((-1102)) -12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(-12 (|has| |#1| (-344)) (|has| |#2| (-770))) -(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523))) -(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523)))) -((($ $) |has| |#1| (-523))) -(((#0=(-649) (-1098 #0#)) . T)) -((((-806)) . T)) -((((-806)) . T) (((-1184 |#4|)) . T)) -((((-806)) . T) (((-1184 |#3|)) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523)))) -((($) |has| |#1| (-523))) -((((-806)) . T)) -((($) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((#1=(-1176 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344)))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T)) -(((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344)))) -(((|#3|) |has| |#3| (-986))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(|has| |#1| (-1030)) -(((|#2| (-769 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-344)) -((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1014) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-853 |#1|)) . T)) -((((-137)) . T)) -((((-137)) . T)) -(((|#3|) |has| |#3| (-1030)) (((-531)) -12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (((-388 (-531))) -12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -(|has| |#1| (-344)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|))) -(|has| |#2| (-770)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-795)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-507)) |has| |#1| (-573 (-507)))) +((((-391 (-537))) . T) (($) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) +(|has| |#1| (-347)) +(-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))) +(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) +(|has| |#1| (-347)) +((((-537)) . T)) +(|has| |#1| (-15 * (|#1| (-731) |#1|))) +((((-1084 |#2| (-391 (-905 |#1|)))) . T) (((-391 (-905 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) +(((|#1|) . T)) +((((-537) |#1|) . T)) +(((|#2|) . T)) +(-1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(((|#1|) . T)) +((((-1117)) -12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) +(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) +(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) +((($ $) |has| |#1| (-529))) +(((#0=(-659) (-1113 #0#)) . T)) +((((-816)) . T)) +((((-816)) . T) (((-1200 |#4|)) . T)) +((((-816)) . T) (((-1200 |#3|)) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) +((($) |has| |#1| (-529))) +((((-816)) . T)) +((($) . T)) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((#1=(-1192 |#1| |#2| |#3|) #1#) |has| |#1| (-347)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) . T)) +(((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) +(((|#3|) |has| |#3| (-998))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(|has| |#1| (-1045)) +(((|#2| (-779 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-347)) +((((-391 $) (-391 $)) |has| |#1| (-529)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1027) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-863 |#1|)) . T)) +((((-138)) . T)) +((((-138)) . T)) +(((|#3|) |has| |#3| (-1045)) (((-537)) -12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (((-391 (-537))) -12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +(|has| |#1| (-347)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) +(|has| |#2| (-780)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-805)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-513)) |has| |#1| (-580 (-513)))) (((|#1| |#2|) . T)) -((((-1102)) -12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) -((((-1085) |#1|) . T)) -(((|#1| |#2| |#3| (-503 |#3|)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -((((-806)) . T)) -(((|#1|) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(|has| |#1| (-349)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((((-531)) . T)) -((((-531)) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -((((-806)) . T)) -((((-806)) . T)) -(-12 (|has| |#2| (-216)) (|has| |#2| (-986))) -((((-1102) #0=(-813 |#1|)) |has| #0# (-492 (-1102) #0#)) ((#0# #0#) |has| #0# (-291 #0#))) -(((|#1|) . T)) -((((-531) |#4|) . T)) -((((-531) |#3|) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531)))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -((((-388 (-531))) . T) (((-531)) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) +((((-1117)) -12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) +((((-1100) |#1|) . T)) +(((|#1| |#2| |#3| (-509 |#3|)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +((((-816)) . T)) +(((|#1|) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(|has| |#1| (-352)) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-537)) . T)) +((((-537)) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +((((-816)) . T)) +((((-816)) . T)) +(-12 (|has| |#2| (-218)) (|has| |#2| (-998))) +((((-1117) #0=(-823 |#1|)) |has| #0# (-495 (-1117) #0#)) ((#0# #0#) |has| #0# (-293 #0#))) +(((|#1|) . T)) +((((-537) |#4|) . T)) +((((-537) |#3|) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +((((-391 (-537))) . T) (((-537)) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-531)) . T) (((-388 (-531))) . T)) -((((-531)) . T)) -((((-531)) . T)) -((($) . T) (((-531)) . T) (((-388 (-531))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) |has| |#1| (-523))) -((((-531) |#4|) . T)) -((((-531) |#3|) . T)) -((((-806)) . T)) -((((-531)) . T) (((-388 (-531))) . T) (($) . T)) -((((-806)) . T)) -((((-531) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1102) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-162))) -((($) -1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2|) |has| |#2| (-162)) (((-388 (-531))) |has| |#2| (-37 (-388 (-531))))) -(((|#2| |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($ $) |has| |#2| (-162))) -((((-137)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-349)) (|has| |#2| (-349))) -((((-806)) . T)) -(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($) |has| |#2| (-162))) -(((|#1|) . T)) -((((-806)) . T)) -(|has| |#1| (-1030)) -(|has| $ (-140)) -((((-531) |#1|) . T)) -((($) -1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) -(|has| |#1| (-344)) -(-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))) -(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) -(|has| |#1| (-344)) -(|has| |#1| (-15 * (|#1| (-721) |#1|))) -(((|#1|) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -((((-806)) . T)) -((((-531) (-127)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(((|#2| (-503 (-808 |#1|))) . T)) -((((-806)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((((-544 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-537)) . T) (((-391 (-537))) . T)) +((((-537)) . T)) +((((-537)) . T)) +((($) . T) (((-537)) . T) (((-391 (-537))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) |has| |#1| (-529))) +((((-537) |#4|) . T)) +((((-537) |#3|) . T)) +((((-816)) . T)) +((((-537)) . T) (((-391 (-537))) . T) (($) . T)) +((((-816)) . T)) +((((-537) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1117) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-163))) +((($) -1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2|) |has| |#2| (-163)) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) +(((|#2| |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($ $) |has| |#2| (-163))) +((((-138)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-352)) (|has| |#2| (-352))) +((((-816)) . T)) +(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($) |has| |#2| (-163))) +(((|#1|) . T)) +((((-816)) . T)) +(|has| |#1| (-1045)) +(|has| $ (-141)) +((((-537) |#1|) . T)) +((($) -1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) +(|has| |#1| (-347)) +(-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))) +(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) +(|has| |#1| (-347)) +(|has| |#1| (-15 * (|#1| (-731) |#1|))) +(((|#1|) . T)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-816)) . T)) +((((-537) (-128)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(((|#2| (-509 (-818 |#1|))) . T)) +((((-816)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-550 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-813 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -((((-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) -(((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-531) |#2|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) +((((-823 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +((((-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) +(((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-537) |#2|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523)))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((#1=(-1100 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344)))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -(((|#2|) |has| |#2| (-986))) -(|has| |#1| (-1030)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523)))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T)) -(((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344)))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) |has| |#1| (-162)) (($) . T)) -(((|#1|) . T)) -(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((((-806)) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) +(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((#1=(-1115 |#1| |#2| |#3|) #1#) |has| |#1| (-347)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +(((|#2|) |has| |#2| (-998))) +(|has| |#1| (-1045)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) . T)) +(((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) |has| |#1| (-163)) (($) . T)) +(((|#1|) . T)) +(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((((-816)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) -(((#0=(-1014) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((($) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#2|) |has| |#1| (-344))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1030)) (((-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (((-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) -((((-531) |#1|) . T)) -((((-806)) . T)) -((((-388 |#2|) |#3|) . T)) -(((|#1| (-388 (-531))) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -(((|#2| |#3| (-808 |#1|)) . T)) -((((-1102)) |has| |#2| (-843 (-1102)))) -(((|#1|) . T)) -(((|#1| (-503 |#2|) |#2|) . T)) -(((|#1| (-721) (-1014)) . T)) -((((-388 (-531))) |has| |#2| (-344)) (($) . T)) -(((|#1| (-503 (-1020 (-1102))) (-1020 (-1102))) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(|has| |#2| (-743)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#2| (-795)) -((((-836 |#1|)) . T) (((-769 |#1|)) . T)) -((((-769 (-1102))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-598 (-531))) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) -(|has| |#1| (-216)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) +(((#0=(-1027) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((($) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#2|) |has| |#1| (-347))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1045)) (((-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (((-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) +((((-537) |#1|) . T)) +((((-816)) . T)) +((((-391 |#2|) |#3|) . T)) +(((|#1| (-391 (-537))) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +((((-816)) . T) (((-1122)) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) . T) (($) . T)) +(((|#2| |#3| (-818 |#1|)) . T)) +((((-1117)) |has| |#2| (-853 (-1117)))) +(((|#1|) . T)) +(((|#1| (-509 |#2|) |#2|) . T)) +(((|#1| (-731) (-1027)) . T)) +((((-391 (-537))) |has| |#2| (-347)) (($) . T)) +(((|#1| (-509 (-1034 (-1117))) (-1034 (-1117))) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#1|) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(|has| |#2| (-753)) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#2| (-805)) +((((-846 |#1|)) . T) (((-779 |#1|)) . T)) +((((-779 (-1117))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-606 (-537))) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +(|has| |#1| (-218)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-1176 |#1| |#2| |#3|) $) -12 (|has| (-1176 |#1| |#2| |#3|) (-268 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-1192 |#1| |#2| |#3|) $) -12 (|has| (-1192 |#1| |#2| |#3|) (-270 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1067 |#1| |#2|)) |has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531))))) -(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) +((((-1082 |#1| |#2|)) |has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) +(((|#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -(((|#2|) . T)) -((((-806)) -1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-572 (-806))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) (((-1184 |#2|)) . T)) -(((|#1|) |has| |#1| (-162))) -((((-531)) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-531) (-137)) . T)) -((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) ((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986)))) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) -(((|#1|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) -(((|#2|) |has| |#1| (-344))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +(((|#2|) . T)) +((((-816)) -1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-579 (-816))) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((-1200 |#2|)) . T)) +(((|#1|) |has| |#1| (-163))) +((((-537)) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-537) (-138)) . T)) +((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) ((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998)))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +(((|#1|) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +(((|#2|) |has| |#1| (-347))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| (-503 #0=(-1102)) #0#) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| (-509 #0=(-1117)) #0#) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-162)) -(|has| |#3| (-162)) -(((#0=(-388 (-895 |#1|)) #0#) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(|has| |#1| (-1030)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(|has| |#1| (-1030)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#1| |#1|) |has| |#1| (-162))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) . T)) -((((-388 (-895 |#1|))) . T)) -((((-531) (-127)) . T)) -(((|#1|) |has| |#1| (-162))) -((((-127)) . T)) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((((-806)) . T)) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-986)) (((-531)) -12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) +(|has| |#4| (-163)) +(|has| |#3| (-163)) +(((#0=(-391 (-905 |#1|)) #0#) . T)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(|has| |#1| (-1045)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(|has| |#1| (-1045)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-816)) . T) (((-1122)) . T)) +(((|#1| |#1|) |has| |#1| (-163))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) . T)) +((((-391 (-905 |#1|))) . T)) +((((-537) (-128)) . T)) +(((|#1|) |has| |#1| (-163))) +((((-128)) . T)) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-816)) . T)) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-998)) (((-537)) -12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((|#1| |#2|) . T)) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986))) -(|has| |#3| (-743)) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -(|has| |#3| (-795)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523)))) -(((|#2|) . T)) -((((-531) (-127)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-531) |#2|) . T)) -(((|#1| (-1083 |#1|)) |has| |#1| (-795))) -(|has| |#1| (-1030)) -(((|#1|) . T)) -(-12 (|has| |#1| (-344)) (|has| |#2| (-1078))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(|has| |#1| (-1030)) -(((|#2|) . T)) -((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531))))) -(((|#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)))) -(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)))) -((((-806)) . T)) -(((|#1|) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-852))) -((($ $) . T) ((#0=(-1102) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-768 (-1102)) |#1|) . T) ((#1# $) . T)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-852))) -((((-531) |#2|) . T)) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((($) -1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) ((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986)))) -((((-531) |#1|) . T)) -(|has| (-388 |#2|) (-140)) -(|has| (-388 |#2|) (-138)) -(((|#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|)))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-388 (-531))) . T)) -((((-806)) . T)) -(|has| |#1| (-523)) -(|has| |#1| (-523)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-806)) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((((-369) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#2| (-1078)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(((|#1|) . T)) -((((-369) (-1085)) . T)) -(|has| |#1| (-523)) -((((-114 |#1|)) . T)) -((((-127)) . T)) -((((-531) |#1|) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#2|) . T)) -((((-806)) . T)) -((((-769 |#1|)) . T)) -(((|#2|) |has| |#2| (-162))) -((((-1102) (-51)) . T)) -(((|#1|) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-523)) -(((|#1|) |has| |#1| (-162))) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507)))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#2|) |has| |#2| (-291 |#2|))) -(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1098 |#1|)) . T)) -(|has| $ (-140)) -(((|#2|) . T)) -(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -((($) . T) (((-531)) . T) (((-388 (-531))) . T)) -(|has| |#2| (-349)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -((((-531)) . T) (((-388 (-531))) . T) (($) . T)) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) +(|has| |#3| (-753)) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +(|has| |#3| (-805)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#2|) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) +(((|#2|) . T)) +((((-537) (-128)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-537) |#2|) . T)) +(((|#1| (-1098 |#1|)) |has| |#1| (-805))) +(|has| |#1| (-1045)) +(((|#1|) . T)) +(-12 (|has| |#1| (-347)) (|has| |#2| (-1093))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#1| (-1045)) +(((|#2|) . T)) +((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) +(((|#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)))) +(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)))) +((((-816)) . T)) +(((|#1|) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-862))) +((($ $) . T) ((#0=(-1117) $) |has| |#1| (-218)) ((#0# |#1|) |has| |#1| (-218)) ((#1=(-778 (-1117)) |#1|) . T) ((#1# $) . T)) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) +((((-537) |#2|) . T)) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((($) -1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) ((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998)))) +((((-537) |#1|) . T)) +(|has| (-391 |#2|) (-141)) +(|has| (-391 |#2|) (-139)) +(((|#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|)))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-391 (-537))) . T)) +((((-816)) . T)) +(|has| |#1| (-529)) +(|has| |#1| (-529)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-816)) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((((-372) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#2| (-1093)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +((((-816)) . T) (((-1122)) . T)) +((((-816)) . T) (((-1122)) . T)) +(((|#1|) . T)) +((((-1153)) . T) (((-816)) . T) (((-1122)) . T)) +((((-372) (-1100)) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-529)) +((((-115 |#1|)) . T)) +((((-128)) . T)) +((((-537) |#1|) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#2|) . T)) +((((-816)) . T)) +((((-779 |#1|)) . T)) +(((|#2|) |has| |#2| (-163))) +((((-1117) (-51)) . T)) +(((|#1|) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-529)) +(((|#1|) |has| |#1| (-163))) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513)))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#2|) |has| |#2| (-293 |#2|))) +(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1113 |#1|)) . T)) +(|has| $ (-141)) +(((|#2|) . T)) +(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +((($) . T) (((-537)) . T) (((-391 (-537))) . T)) +(|has| |#2| (-352)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +((((-537)) . T) (((-391 (-537))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-531)) . T) (((-388 (-531))) . T) (($) . T)) -((((-1100 |#1| |#2| |#3|) $) -12 (|has| (-1100 |#1| |#2| |#3|) (-268 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T)) -((((-806)) . T)) -((((-806)) . T)) -((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) +((((-537)) . T) (((-391 (-537))) . T) (($) . T)) +((((-1115 |#1| |#2| |#3|) $) -12 (|has| (-1115 |#1| |#2| |#3|) (-270 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))) (($ $) . T)) +((((-816)) . T)) +((((-816)) . T)) +((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) ((($ $) . T)) ((($ $) . T)) -((((-806)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((#0=(-1176 |#1| |#2| |#3|) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1102) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-492 (-1102) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) -(-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-388 (-531))) . T) (((-531)) . T)) -((((-531) (-137)) . T)) -((((-137)) . T)) -(((|#1|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) -((((-110)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-110)) . T)) -(((|#1|) . T)) -((((-507)) |has| |#1| (-573 (-507))) (((-208)) . #0=(|has| |#1| (-962))) (((-360)) . #0#)) -((((-806)) . T)) -(|has| |#1| (-770)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(|has| |#1| (-797)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -(|has| |#1| (-523)) -(|has| |#1| (-852)) -(((|#1|) . T)) -(|has| |#1| (-1030)) -((((-806)) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#1| (-1184 |#1|) (-1184 |#1|)) . T)) -((((-531) (-137)) . T)) -((($) . T)) -(-1435 (|has| |#4| (-162)) (|has| |#4| (-795)) (|has| |#4| (-986))) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) -((((-806)) . T)) -(|has| |#1| (-1030)) -(((|#1| (-913)) . T)) +((((-816)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((#0=(-1192 |#1| |#2| |#3|) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))) (((-1117) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-495 (-1117) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) +(-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-391 (-537))) . T) (((-537)) . T)) +((((-537) (-138)) . T)) +((((-138)) . T)) +(((|#1|) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +((((-111)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-111)) . T)) +(((|#1|) . T)) +((((-513)) |has| |#1| (-580 (-513))) (((-210)) . #0=(|has| |#1| (-973))) (((-363)) . #0#)) +((((-816)) . T)) +(|has| |#1| (-780)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(|has| |#1| (-807)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +(|has| |#1| (-529)) +(|has| |#1| (-862)) +(((|#1|) . T)) +(|has| |#1| (-1045)) +((((-816)) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) +((((-537) (-138)) . T)) +((($) . T)) +(-1533 (|has| |#4| (-163)) (|has| |#4| (-805)) (|has| |#4| (-998))) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) +((((-816)) . T)) +(|has| |#1| (-1045)) +(((|#1| (-924)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(-12 (|has| |#1| (-453)) (|has| |#2| (-453))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(-12 (|has| |#1| (-456)) (|has| |#2| (-456))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))) (((|#1|) . T)) -(|has| |#2| (-743)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) +(|has| |#2| (-753)) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(|has| |#2| (-795)) -(-12 (|has| |#1| (-743)) (|has| |#2| (-743))) -(-12 (|has| |#1| (-743)) (|has| |#2| (-743))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#2| (-805)) +(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) +(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-162))) -(((|#1|) |has| |#1| (-162))) -((((-806)) . T)) -(|has| |#1| (-330)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-388 (-531))) . T) (($) . T)) -((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) . T)) -(|has| |#1| (-778)) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -(|has| |#1| (-1030)) -(((|#1| $) |has| |#1| (-268 |#1| |#1|))) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523))) -((($) |has| |#1| (-523))) -(((|#4|) |has| |#4| (-1030))) -(((|#3|) |has| |#3| (-1030))) -(|has| |#3| (-349)) -(((|#1|) . T) (((-806)) . T)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523)))) -((((-806)) . T)) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#2|) . T)) -(((|#1| |#1|) |has| |#1| (-162))) +(((|#2|) |has| |#2| (-163))) +(((|#1|) |has| |#1| (-163))) +((((-816)) . T)) +(|has| |#1| (-333)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-391 (-537))) . T) (($) . T)) +((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) . T)) +(|has| |#1| (-788)) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +(|has| |#1| (-1045)) +(((|#1| $) |has| |#1| (-270 |#1| |#1|))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) +((($) |has| |#1| (-529))) +(((|#4|) |has| |#4| (-1045))) +(((|#3|) |has| |#3| (-1045))) +(|has| |#3| (-352)) +(((|#1|) . T) (((-816)) . T)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) +((((-816)) . T)) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) +(((|#2|) . T)) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1| |#1|) |has| |#1| (-163))) (((|#1| |#2|) . T)) -(|has| |#2| (-344)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-162))) -((((-388 (-531))) . T) (((-531)) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -((((-137)) . T)) -(((|#1|) . T)) -((((-137)) . T)) -((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) ((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986)))) -((((-137)) . T)) +(|has| |#2| (-347)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-163))) +((((-391 (-537))) . T) (((-537)) . T)) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +((((-138)) . T)) +(((|#1|) . T)) +((((-138)) . T)) +((($) -1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) ((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998)))) +((((-138)) . T)) (((|#1| |#2| |#3|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) -(|has| $ (-140)) -(|has| $ (-140)) -(|has| |#1| (-1030)) -((((-806)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-523)) (|has| |#1| (-986)) (|has| |#1| (-1042))) -((($ $) |has| |#1| (-268 $ $)) ((|#1| $) |has| |#1| (-268 |#1| |#1|))) -(((|#1| (-388 (-531))) . T)) -(((|#1|) . T)) -((((-1102)) . T)) -(|has| |#1| (-523)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(|has| |#1| (-523)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -((((-806)) . T)) -(|has| |#2| (-138)) -(|has| |#2| (-140)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +(|has| $ (-141)) +(|has| $ (-141)) +(|has| |#1| (-1045)) +((((-816)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-456)) (|has| |#1| (-529)) (|has| |#1| (-998)) (|has| |#1| (-1057))) +((($ $) |has| |#1| (-270 $ $)) ((|#1| $) |has| |#1| (-270 |#1| |#1|))) +(((|#1| (-391 (-537))) . T)) +(((|#1|) . T)) +((((-1117)) . T)) +(|has| |#1| (-529)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-529)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +((((-816)) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -(|has| |#4| (-795)) -(((|#2| (-223 (-2167 |#1|) (-721)) (-808 |#1|)) . T)) -(|has| |#3| (-795)) -(((|#1| (-503 |#3|) |#3|) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -(((#0=(-388 (-531)) #0#) |has| |#2| (-344)) (($ $) . T)) -((((-813 |#1|)) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-138)) -((((-388 (-531))) |has| |#2| (-344)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-330)) (|has| |#1| (-349))) -((((-1069 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-162)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +(|has| |#4| (-805)) +(((|#2| (-225 (-2258 |#1|) (-731)) (-818 |#1|)) . T)) +(|has| |#3| (-805)) +(((|#1| (-509 |#3|) |#3|) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +(((#0=(-391 (-537)) #0#) |has| |#2| (-347)) (($ $) . T)) +((((-823 |#1|)) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-139)) +((((-391 (-537))) |has| |#2| (-347)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-333)) (|has| |#1| (-352))) +((((-1084 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-163)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-216)) (|has| |#2| (-986))) -(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -((((-806)) . T)) +(-12 (|has| |#2| (-218)) (|has| |#2| (-998))) +(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +((((-816)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-649)) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(|has| |#1| (-523)) +((((-659)) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(|has| |#1| (-529)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1102) (-51)) . T)) -((((-806)) . T)) -((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) +((((-1117) (-51)) . T)) +((((-816)) . T)) +((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) (((|#1|) . T)) -((((-806)) . T)) -((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) -(((|#1| (-531)) . T)) -((((-806)) . T)) -((((-806)) . T)) +((((-816)) . T)) +((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +(((|#1| (-537)) . T)) +((((-816)) . T)) +((((-816)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-388 (-531))) . T)) -(((|#3|) . T) (((-571 $)) . T)) +(((|#1| (-391 (-537))) . T)) +(((|#3|) . T) (((-578 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((#0=(-1100 |#1| |#2| |#3|) #0#) -12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1102) #0#) -12 (|has| (-1100 |#1| |#2| |#3|) (-492 (-1102) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) -((((-806)) . T)) -((((-806)) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((#0=(-1115 |#1| |#2| |#3|) #0#) -12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))) (((-1117) #0#) -12 (|has| (-1115 |#1| |#2| |#3|) (-495 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) +((((-816)) . T)) +((((-816)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) -((((-806)) . T)) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) +((((-816)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1102) (-51)) . T)) +((((-1117) (-51)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-778)) -(|has| |#1| (-1030)) -(((|#2| |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($ $) |has| |#2| (-162))) -(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)))) -((((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($) |has| |#2| (-162))) -((((-721)) . T)) -((((-531)) . T)) -(|has| |#1| (-523)) -((((-806)) . T)) -(((|#1| (-388 (-531)) (-1014)) . T)) -(|has| |#1| (-138)) -(((|#1|) . T)) -(|has| |#1| (-523)) -((((-531)) . T)) -((((-114 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-140)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -((((-835 (-531))) . T) (((-835 (-360))) . T) (((-507)) . T) (((-1102)) . T)) -((((-806)) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -((($) . T)) -((((-806)) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(((|#2|) |has| |#2| (-162))) -((($) -1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2|) |has| |#2| (-162)) (((-388 (-531))) |has| |#2| (-37 (-388 (-531))))) -((((-813 |#1|)) . T)) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) -(-12 (|has| |#3| (-216)) (|has| |#3| (-986))) -(|has| |#2| (-1078)) -(((#0=(-51)) . T) (((-2 (|:| -3033 (-1102)) (|:| -1798 #0#))) . T)) +((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-788)) +(|has| |#1| (-1045)) +(((|#2| |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($ $) |has| |#2| (-163))) +(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)))) +((((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($) |has| |#2| (-163))) +((((-731)) . T)) +((((-537)) . T)) +(|has| |#1| (-529)) +((((-816)) . T)) +(((|#1| (-391 (-537)) (-1027)) . T)) +(|has| |#1| (-139)) +(((|#1|) . T)) +(|has| |#1| (-529)) +((((-537)) . T)) +((((-115 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-141)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +((((-845 (-537))) . T) (((-845 (-363))) . T) (((-513)) . T) (((-1117)) . T)) +((((-816)) . T)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-816)) . T) (((-1122)) . T)) +((($) . T)) +((((-816)) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(((|#2|) |has| |#2| (-163))) +((($) -1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) ((|#2|) |has| |#2| (-163)) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) +((((-823 |#1|)) . T)) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) +(-12 (|has| |#3| (-218)) (|has| |#3| (-998))) +(|has| |#2| (-1093)) +(((#0=(-51)) . T) (((-2 (|:| -2926 (-1117)) (|:| -2140 #0#))) . T)) (((|#1| |#2|) . T)) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) -(((|#1| (-531) (-1014)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| (-388 (-531)) (-1014)) . T)) -((($) -1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -((((-531) |#2|) . T)) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) +(((|#1| (-537) (-1027)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| (-391 (-537)) (-1027)) . T)) +((($) -1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((((-537) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-349)) -(-12 (|has| |#1| (-349)) (|has| |#2| (-349))) -((((-806)) . T)) -((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(((|#1|) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523))) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523)))) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-806)) . T)) -(|has| |#1| (-330)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -(|has| |#1| (-523)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) +(|has| |#2| (-352)) +(-12 (|has| |#1| (-352)) (|has| |#2| (-352))) +((((-816)) . T)) +((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(((|#1|) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-816)) . T)) +(|has| |#1| (-333)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +(|has| |#1| (-529)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) (((|#1| |#2|) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-852))) -((((-388 (-531))) . T) (((-531)) . T)) -((((-531)) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((($) . T)) -((((-806)) . T)) -(((|#1|) . T)) -((((-813 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -((((-806)) . T)) -(((|#3| |#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($ $) |has| |#3| (-162))) -(|has| |#1| (-962)) -((((-806)) . T)) -(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($) |has| |#3| (-162))) -((((-531) (-110)) . T)) -(((|#1|) |has| |#1| (-291 |#1|))) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -((((-1102) $) |has| |#1| (-492 (-1102) $)) (($ $) |has| |#1| (-291 $)) ((|#1| |#1|) |has| |#1| (-291 |#1|)) (((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|))) -((((-1102)) |has| |#1| (-843 (-1102)))) -(-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330))) -((((-369) (-1049)) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) +((((-391 (-537))) . T) (((-537)) . T)) +((((-537)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((($) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((((-823 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +((((-816)) . T)) +(((|#3| |#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($ $) |has| |#3| (-163))) +(|has| |#1| (-973)) +((((-816)) . T)) +(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998))) (($) |has| |#3| (-163))) +((((-537) (-111)) . T)) +(((|#1|) |has| |#1| (-293 |#1|))) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +((((-1117) $) |has| |#1| (-495 (-1117) $)) (($ $) |has| |#1| (-293 $)) ((|#1| |#1|) |has| |#1| (-293 |#1|)) (((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|))) +((((-1117)) |has| |#1| (-853 (-1117)))) +(-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333))) +((((-372) (-1064)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-369) |#1|) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(|has| |#1| (-1030)) -((((-806)) . T)) -((((-806)) . T)) -((((-853 |#1|)) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) +((((-372) |#1|) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(|has| |#1| (-1045)) +((((-816)) . T)) +((((-816)) . T)) +((((-863 |#1|)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-813 |#1|)) |has| #0# (-291 #0#))) +(((#0=(-823 |#1|)) |has| #0# (-293 #0#))) (((|#1| |#2|) . T)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(-12 (|has| |#1| (-743)) (|has| |#2| (-743))) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (((|#1|) . T)) -(-12 (|has| |#1| (-743)) (|has| |#2| (-743))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) +(-12 (|has| |#1| (-753)) (|has| |#2| (-753))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(|has| |#1| (-1124)) -(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -((((-388 (-531))) . T) (($) . T)) -(((|#4|) |has| |#4| (-986))) -(((|#3|) |has| |#3| (-986))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(|has| |#1| (-344)) -((((-531)) . T) (((-388 (-531))) . T) (($) . T)) -((($ $) . T) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-531) |#3|) . T)) -((((-806)) . T)) -((((-507)) |has| |#3| (-573 (-507)))) -((((-639 |#3|)) . T) (((-806)) . T)) +(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| |#1| (-1139)) +(((#0=(-537) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +((((-391 (-537))) . T) (($) . T)) +(((|#4|) |has| |#4| (-998))) +(((|#3|) |has| |#3| (-998))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(|has| |#1| (-347)) +((((-537)) . T) (((-391 (-537))) . T) (($) . T)) +((($ $) . T) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1| |#1|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-537) |#3|) . T)) +((((-816)) . T)) +((((-513)) |has| |#3| (-580 (-513)))) +((((-649 |#3|)) . T) (((-816)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-795)) -(|has| |#1| (-795)) -((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -(((#0=(-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) #0#) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) -((($) . T)) -(|has| |#2| (-797)) -((($) . T)) -(((|#2|) |has| |#2| (-1030))) -((((-806)) -1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-572 (-806))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) (((-1184 |#2|)) . T)) -(|has| |#1| (-797)) -(|has| |#1| (-797)) -((((-1085) (-51)) . T)) -(|has| |#1| (-797)) -((((-806)) . T)) -((((-531)) |has| #0=(-388 |#2|) (-594 (-531))) ((#0#) . T)) -((((-531) (-137)) . T)) -((((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#1| |#2|) . T)) -((((-388 (-531))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-806)) . T)) -((((-853 |#1|)) . T)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) -(|has| |#1| (-795)) -(|has| |#1| (-344)) -(|has| |#1| (-795)) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +(((#0=(-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) #0#) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) +((($) . T)) +(|has| |#2| (-807)) +((($) . T)) +(((|#2|) |has| |#2| (-1045))) +((((-816)) -1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-579 (-816))) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((-1200 |#2|)) . T)) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +((((-1100) (-51)) . T)) +(|has| |#1| (-807)) +((((-816)) . T)) +((((-537)) |has| #0=(-391 |#2|) (-602 (-537))) ((#0#) . T)) +((((-537) (-138)) . T)) +((((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#1| |#2|) . T)) +((((-391 (-537))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-816)) . T)) +((((-863 |#1|)) . T)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) +(|has| |#1| (-805)) +(|has| |#1| (-347)) +(|has| |#1| (-805)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-795)) -((((-1102)) |has| |#1| (-843 (-1102)))) -(((|#1| (-1102)) . T)) -(((|#1| (-1184 |#1|) (-1184 |#1|)) . T)) +(|has| |#1| (-805)) +((((-1117)) |has| |#1| (-853 (-1117)))) +(((|#1| (-1117)) . T)) +(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) +((((-816)) . T) (((-1122)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1030)) -(((|#1| (-1102) (-768 (-1102)) (-503 (-768 (-1102)))) . T)) -((((-388 (-895 |#1|))) . T)) -((((-507)) . T)) -((((-806)) . T)) +(|has| |#1| (-1045)) +(((|#1| (-1117) (-778 (-1117)) (-509 (-778 (-1117)))) . T)) +((((-391 (-905 |#1|))) . T)) +((((-513)) . T)) +((((-816)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -(((|#1|) |has| |#1| (-162))) -((((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-163))) +((((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-162))) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-507)) |has| |#1| (-573 (-507))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531))))) -((((-806)) . T)) -(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(|has| |#2| (-795)) -(-12 (|has| |#2| (-216)) (|has| |#2| (-986))) -(|has| |#1| (-523)) -(|has| |#1| (-1078)) -((((-1085) |#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1| |#1|) . T)) -((((-388 (-531))) |has| |#1| (-977 (-531))) (((-531)) |has| |#1| (-977 (-531))) (((-1102)) |has| |#1| (-977 (-1102))) ((|#1|) . T)) -((((-531) |#2|) . T)) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -((((-531)) |has| |#1| (-829 (-531))) (((-360)) |has| |#1| (-829 (-360)))) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1|) . T)) -(((|#1|) . T)) -((((-598 |#4|)) . T) (((-806)) . T)) -((((-507)) |has| |#4| (-573 (-507)))) -((((-507)) |has| |#4| (-573 (-507)))) -((((-806)) . T) (((-598 |#4|)) . T)) -((($) |has| |#1| (-795))) -(((|#1|) . T)) -((((-598 |#4|)) . T) (((-806)) . T)) -((((-507)) |has| |#4| (-573 (-507)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1102)) |has| (-388 |#2|) (-843 (-1102)))) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-806)) -1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-572 (-806))) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-677)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)) (|has| |#3| (-1030))) (((-1184 |#3|)) . T)) -((((-531) |#2|) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#2| |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($ $) |has| |#2| (-162))) -((((-806)) . T)) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#2|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-1085) (-1102) (-531) (-208) (-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -((((-806)) . T)) -((((-531) (-110)) . T)) -(((|#1|) . T)) -((((-806)) . T)) -((((-110)) . T)) -((((-110)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-110)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($) |has| |#2| (-162))) -(|has| $ (-140)) -((((-388 |#2|)) . T)) -((((-388 (-531))) |has| #0=(-388 |#2|) (-977 (-388 (-531)))) (((-531)) |has| #0# (-977 (-531))) ((#0#) . T)) +(((|#1|) |has| |#1| (-163))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862)))) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-513)) |has| |#1| (-580 (-513))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537))))) +((((-816)) . T)) +(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| |#2| (-805)) +(-12 (|has| |#2| (-218)) (|has| |#2| (-998))) +(|has| |#1| (-529)) +(|has| |#1| (-1093)) +((((-1100) |#1|) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1| |#1|) . T)) +((((-391 (-537))) |has| |#1| (-989 (-537))) (((-537)) |has| |#1| (-989 (-537))) (((-1117)) |has| |#1| (-989 (-1117))) ((|#1|) . T)) +((((-537) |#2|) . T)) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +((((-537)) |has| |#1| (-839 (-537))) (((-363)) |has| |#1| (-839 (-363)))) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1|) . T)) +(((|#1|) . T)) +((((-606 |#4|)) . T) (((-816)) . T)) +((((-513)) |has| |#4| (-580 (-513)))) +((((-513)) |has| |#4| (-580 (-513)))) +((((-816)) . T) (((-606 |#4|)) . T)) +((($) |has| |#1| (-805))) +(((|#1|) . T)) +((((-606 |#4|)) . T) (((-816)) . T)) +((((-513)) |has| |#4| (-580 (-513)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1117)) |has| (-391 |#2|) (-853 (-1117)))) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-816)) -1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-579 (-816))) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-352)) (|has| |#3| (-687)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998)) (|has| |#3| (-1045))) (((-1200 |#3|)) . T)) +((((-537) |#2|) . T)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#2| |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($ $) |has| |#2| (-163))) +((((-816)) . T)) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((|#2|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-1100) (-1117) (-537) (-210) (-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +((((-816)) . T)) +((((-537) (-111)) . T)) +(((|#1|) . T)) +((((-816)) . T)) +((((-111)) . T)) +((((-111)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-111)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-998))) (($) |has| |#2| (-163))) +(|has| $ (-141)) +((((-391 |#2|)) . T)) +((((-391 (-537))) |has| #0=(-391 |#2|) (-989 (-391 (-537)))) (((-537)) |has| #0# (-989 (-537))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-162))) -(|has| |#2| (-138)) -(|has| |#2| (-140)) -(((|#3|) |has| |#3| (-162))) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(|has| |#1| (-140)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(|has| |#1| (-140)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(|has| |#1| (-140)) -(((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-216)) -((((-1102) (-51)) . T)) -((((-806)) . T)) +(((|#4|) |has| |#4| (-163))) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +(((|#3|) |has| |#3| (-163))) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(|has| |#1| (-141)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(|has| |#1| (-141)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(|has| |#1| (-141)) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-218)) +((((-1117) (-51)) . T)) +((((-816)) . T)) (((|#1| |#1|) . T)) -((((-1102)) |has| |#2| (-843 (-1102)))) -((((-531) (-110)) . T)) -(|has| |#1| (-523)) +((((-1117)) |has| |#2| (-853 (-1117)))) +((((-537) (-111)) . T)) +(|has| |#1| (-529)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) (((|#3|) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#1|) . T)) -((((-806)) . T)) -((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-940 |#1|)) . T) ((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-388 (-531))) . T) (((-388 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1098 |#1|)) . T)) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#1|) . T)) +((((-816)) . T)) +((((-513)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-951 |#1|)) . T) ((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-391 (-537))) . T) (((-391 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1113 |#1|)) . T)) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-797)) +(|has| |#1| (-807)) (((|#2|) . T)) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -((((-531) |#2|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +((((-537) |#2|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) (((|#2|) . T)) -((((-531) |#3|) . T)) +((((-537) |#3|) . T)) (((|#2|) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -((((-806)) . T)) -(|has| |#1| (-1030)) -(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +(|has| |#1| (-37 (-391 (-537)))) +((((-816)) . T)) +(|has| |#1| (-1045)) +(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) +(|has| |#1| (-37 (-391 (-537)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#2| (-344)) -(((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531))))) +(|has| |#2| (-347)) +(((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) (((|#2|) . T)) -((((-1085) (-51)) . T)) -(((|#2|) |has| |#2| (-162))) -((((-531) |#3|) . T)) -((((-531) (-137)) . T)) -((((-137)) . T)) -((((-806)) . T)) -((((-110)) . T)) -(|has| |#1| (-140)) +((((-1100) (-51)) . T)) +(((|#2|) |has| |#2| (-163))) +((((-537) |#3|) . T)) +((((-537) (-138)) . T)) +((((-138)) . T)) +((((-816)) . T)) +((((-111)) . T)) +(|has| |#1| (-141)) (((|#1|) . T)) -(|has| |#1| (-138)) +(|has| |#1| (-139)) ((($) . T)) -(|has| |#1| (-523)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +(|has| |#1| (-529)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) -((((-806)) . T)) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) -((((-1085) (-51)) . T)) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) +((((-816)) . T)) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) +((((-1100) (-51)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1| |#2|) . T)) -((((-531) (-137)) . T)) -(((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(|has| |#1| (-797)) -(((|#2| (-721) (-1014)) . T)) +((((-537) (-138)) . T)) +(((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(|has| |#1| (-807)) +(((|#2| (-731) (-1027)) . T)) (((|#1| |#2|) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -(|has| |#1| (-741)) -(((|#1|) |has| |#1| (-162))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +(|has| |#1| (-751)) +(((|#1|) |has| |#1| (-163))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-1435 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| |#2| (-140)))) -(-1435 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138)))) +(-1533 (|has| |#1| (-141)) (-12 (|has| |#1| (-347)) (|has| |#2| (-141)))) +(-1533 (|has| |#1| (-139)) (-12 (|has| |#1| (-347)) (|has| |#2| (-139)))) (((|#4|) . T)) -(|has| |#1| (-138)) -((((-1085) |#1|) . T)) -(|has| |#1| (-140)) +(|has| |#1| (-139)) +((((-1100) |#1|) . T)) +(|has| |#1| (-141)) (((|#1|) . T)) -((((-531)) . T)) -((((-806)) . T)) +((((-537)) . T)) +((((-816)) . T)) (((|#1| |#2|) . T)) -((((-806)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((((-816)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#3|) . T)) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#1|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))) (((-901 |#1|)) . T)) -(|has| |#1| (-795)) -(|has| |#1| (-795)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(|has| |#2| (-344)) -(((|#1|) |has| |#1| (-162))) -(((|#2|) |has| |#2| (-986))) -((((-1085) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) -(((|#2| (-836 |#1|)) . T)) -((($) . T)) -((((-369) (-1085)) . T)) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-806)) -1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-572 (-806))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) (((-1184 |#2|)) . T)) -(((#0=(-51)) . T) (((-2 (|:| -3033 (-1085)) (|:| -1798 #0#))) . T)) -(((|#1|) . T)) -((((-806)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -((((-137)) . T)) -(|has| |#2| (-138)) -(|has| |#2| (-140)) -(|has| |#1| (-453)) -(-1435 (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) -(|has| |#1| (-344)) -((((-806)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523))) -((($) |has| |#1| (-523))) -(|has| |#1| (-795)) -(|has| |#1| (-795)) -((((-806)) . T)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523)))) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#1|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045))) (((-911 |#1|)) . T)) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#2| (-347)) +(((|#1|) |has| |#1| (-163))) +(((|#2|) |has| |#2| (-998))) +((((-1100) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) +(((|#2| (-846 |#1|)) . T)) +((($) . T)) +((((-372) (-1100)) . T)) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-816)) -1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-579 (-816))) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((-1200 |#2|)) . T)) +(((#0=(-51)) . T) (((-2 (|:| -2926 (-1100)) (|:| -2140 #0#))) . T)) +(((|#1|) . T)) +((((-816)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +((((-138)) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +(|has| |#1| (-456)) +(-1533 (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) +(|has| |#1| (-347)) +((((-816)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) +((($) |has| |#1| (-529))) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +((((-816)) . T)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) (((|#1| |#2|) . T)) -((((-1102)) |has| |#1| (-843 (-1102)))) -((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -((((-806)) . T)) -((((-806)) . T)) -(|has| |#1| (-1030)) -(((|#2| (-461 (-2167 |#1|) (-721)) (-808 |#1|)) . T)) -((((-388 (-531))) . #0=(|has| |#2| (-344))) (($) . #0#)) -(((|#1| (-503 (-1102)) (-1102)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) +((((-1117)) |has| |#1| (-853 (-1117)))) +((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +((((-816)) . T)) +((((-816)) . T)) +(|has| |#1| (-1045)) +(((|#2| (-464 (-2258 |#1|) (-731)) (-818 |#1|)) . T)) +((((-391 (-537))) . #0=(|has| |#2| (-347))) (($) . #0#)) +(((|#1| (-509 (-1117)) (-1117)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-162)) +(|has| |#2| (-163)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-1102) (-51)) . T)) +(((|#1|) . T) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-1117) (-51)) . T)) ((($ $) . T)) -(((|#1| (-531)) . T)) -((((-853 |#1|)) . T)) -(((|#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-986))) (($) -1435 (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))) -(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -(|has| |#1| (-797)) -(|has| |#1| (-797)) -((((-531) |#2|) . T)) -((((-531)) . T)) -((((-1176 |#1| |#2| |#3|)) -12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) -(|has| |#1| (-797)) -((((-639 |#2|)) . T) (((-806)) . T)) +(((|#1| (-537)) . T)) +((((-863 |#1|)) . T)) +(((|#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-998))) (($) -1533 (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)))) +(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +((((-537) |#2|) . T)) +((((-537)) . T)) +((((-1192 |#1| |#2| |#3|)) -12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) +(|has| |#1| (-807)) +((((-649 |#2|)) . T) (((-816)) . T)) (((|#1| |#2|) . T)) -((((-388 (-895 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#1|) |has| |#1| (-162))) -(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)))) -(|has| |#2| (-797)) -(|has| |#1| (-797)) -(-1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-852))) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -((((-531) |#2|) . T)) -(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)))) -(|has| |#1| (-330)) -(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) -((($) . T) (((-388 (-531))) . T)) -((((-531) (-110)) . T)) -(|has| |#1| (-770)) -(|has| |#1| (-770)) -(((|#1|) . T)) -(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330))) -(|has| |#1| (-795)) -(|has| |#1| (-795)) -(|has| |#1| (-795)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(|has| |#1| (-37 (-388 (-531)))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-1102)) |has| |#1| (-843 (-1102))) (((-1014)) . T)) -(((|#1|) . T)) -(|has| |#1| (-795)) -(((#0=(-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) #0#) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(|has| |#1| (-1030)) +((((-391 (-905 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#1|) |has| |#1| (-163))) +(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)))) +(|has| |#2| (-807)) +(|has| |#1| (-807)) +(-1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-862))) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +((((-537) |#2|) . T)) +(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)))) +(|has| |#1| (-333)) +(((|#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) +((($) . T) (((-391 (-537))) . T)) +((((-537) (-111)) . T)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(((|#1|) . T)) +(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333))) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(|has| |#1| (-37 (-391 (-537)))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-1117)) |has| |#1| (-853 (-1117))) (((-1027)) . T)) +(((|#1|) . T)) +(|has| |#1| (-805)) +(((#0=(-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) #0#) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#1| (-1045)) +((((-816)) . T) (((-1122)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-503 |#2|) |#2|) . T)) -((((-806)) . T)) -((((-721)) . T) (((-806)) . T)) -(((|#1| (-721) (-1014)) . T)) +(((|#1| (-509 |#2|) |#2|) . T)) +((((-816)) . T)) +((((-731)) . T) (((-816)) . T)) +(((|#1| (-731) (-1027)) . T)) (((|#3|) . T)) (((|#1|) . T)) -((((-137)) . T)) -(((|#2|) |has| |#2| (-162))) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) +((((-138)) . T)) +(((|#2|) |has| |#2| (-163))) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) (((|#1|) . T)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#3| (-162)) -(((|#4|) |has| |#4| (-344))) -(((|#3|) |has| |#3| (-344))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#3| (-163)) +(((|#4|) |has| |#4| (-347))) +(((|#3|) |has| |#3| (-347))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-344))) -((((-806)) . T)) +(((|#2|) |has| |#1| (-347))) +((((-816)) . T)) (((|#2|) . T)) -(((|#1| (-1098 |#1|)) . T)) -((((-1014)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((($) . T) ((|#1|) . T) (((-388 (-531))) . T)) +(((|#1| (-1113 |#1|)) . T)) +((((-1027)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((($) . T) ((|#1|) . T) (((-391 (-537))) . T)) (((|#2|) . T)) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) -((($) |has| |#1| (-795))) -(|has| |#1| (-852)) -((((-806)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) +((($) |has| |#1| (-805))) +(|has| |#1| (-862)) +((((-816)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((#0=(-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) #0#) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-852))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((#0=(-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) #0#) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)))) -(|has| |#1| (-797)) -(|has| |#1| (-523)) -((((-544 |#1|)) . T)) +(((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)))) +(|has| |#1| (-807)) +(|has| |#1| (-529)) +((((-550 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-770))) (-12 (|has| |#1| (-344)) (|has| |#2| (-797)))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -((((-853 |#1|)) . T)) -(((|#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) . T)) +(-1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-780))) (-12 (|has| |#1| (-347)) (|has| |#2| (-807)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +((((-863 |#1|)) . T)) +(((|#1| (-477 |#1| |#3|) (-477 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-721)) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523))) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523)))) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -((((-624 |#1|)) . T)) +(((|#1| (-731)) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-1115 |#1| |#2| |#3|)) |has| |#1| (-347)) ((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529)))) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +((((-633 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-507)) . T)) -((((-806)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#2|) . T)) -(-1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-677)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)) (|has| |#3| (-1030))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -(|has| |#1| (-1124)) -(|has| |#1| (-1124)) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) -(|has| |#1| (-1124)) -(|has| |#1| (-1124)) +((((-816)) . T) (((-1122)) . T)) +((((-513)) . T)) +((((-816)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#2|) . T)) +(-1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-352)) (|has| |#3| (-687)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998)) (|has| |#3| (-1045))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +(|has| |#1| (-1139)) +(|has| |#1| (-1139)) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) +(|has| |#1| (-1139)) +(|has| |#1| (-1139)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T) ((#1=(-388 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T) ((#1=(-391 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) (((|#3|) . T)) -((($) . T) (((-388 (-531))) . T) (((-388 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -((((-1085) (-51)) . T)) -(|has| |#1| (-1030)) -(-1435 (|has| |#2| (-770)) (|has| |#2| (-797))) -(((|#1|) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -(((|#1|) |has| |#1| (-162)) (($) . T)) -((($) . T)) -((((-1100 |#1| |#2| |#3|)) -12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) -((((-806)) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -((($) . T)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-852))) -(|has| |#2| (-852)) -(|has| |#1| (-344)) -(((|#2|) |has| |#2| (-1030))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) +((($) . T) (((-391 (-537))) . T) (((-391 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +((((-1100) (-51)) . T)) +(|has| |#1| (-1045)) +(-1533 (|has| |#2| (-780)) (|has| |#2| (-807))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((($) . T)) +((((-1115 |#1| |#2| |#3|)) -12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) +((((-816)) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-816)) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) +(|has| |#2| (-862)) +(|has| |#1| (-347)) +(((|#2|) |has| |#2| (-1045))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((($) . T) ((|#2|) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-852))) -(|has| |#1| (-852)) -((((-507)) . T) (((-388 (-1098 (-531)))) . T) (((-208)) . T) (((-360)) . T)) -((((-360)) . T) (((-208)) . T) (((-806)) . T)) -(|has| |#1| (-852)) -(|has| |#1| (-852)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-862))) +((((-513)) . T) (((-391 (-1113 (-537)))) . T) (((-210)) . T) (((-363)) . T)) +((((-363)) . T) (((-210)) . T) (((-816)) . T)) +(|has| |#1| (-862)) +(|has| |#1| (-862)) +(|has| |#1| (-862)) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) ((($ $) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) ((($ $) . T)) -((((-531) (-110)) . T)) +((((-537) (-111)) . T)) ((($) . T)) (((|#1|) . T)) -((((-531)) . T)) -((((-110)) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#1| (-531)) . T)) +((((-537)) . T)) +((((-111)) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#1| (-537)) . T)) ((($) . T)) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) (((|#1|) . T)) -((((-531)) . T)) +((((-537)) . T)) (((|#1| |#2|) . T)) -((((-1102)) |has| |#1| (-986))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#1|) . T)) -((((-806)) . T)) -(((|#1| (-531)) . T)) -(((|#1| (-1176 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-388 (-531))) . T)) -(((|#1| (-1148 |#1| |#2| |#3|)) . T)) -(((|#1| (-721)) . T)) -(((|#1|) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-806)) . T)) -(|has| |#1| (-1030)) -((((-1085) |#1|) . T)) -((($) . T)) -(|has| |#2| (-140)) -(|has| |#2| (-138)) -(((|#1| (-503 (-768 (-1102))) (-768 (-1102))) . T)) -((((-806)) . T)) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-986))) -((((-531) (-110)) . T)) -((((-806)) |has| |#1| (-1030))) -(|has| |#2| (-162)) -((((-531)) . T)) -(|has| |#2| (-795)) -(((|#1|) . T)) -((((-531)) . T)) -((((-806)) . T)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-330))) -(|has| |#1| (-140)) -((((-806)) . T)) +((((-1117)) |has| |#1| (-998))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#1|) . T)) +((((-816)) . T)) +(((|#1| (-537)) . T)) +(((|#1| (-1192 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-391 (-537))) . T)) +(((|#1| (-1164 |#1| |#2| |#3|)) . T)) +(((|#1| (-731)) . T)) +(((|#1|) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-816)) . T)) +(|has| |#1| (-1045)) +((((-1100) |#1|) . T)) +((($) . T)) +(|has| |#2| (-141)) +(|has| |#2| (-139)) +(((|#1| (-509 (-778 (-1117))) (-778 (-1117))) . T)) +((((-816)) . T)) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-998))) +((((-537) (-111)) . T)) +((((-816)) |has| |#1| (-1045))) +(|has| |#2| (-163)) +((((-537)) . T)) +(|has| |#2| (-805)) +(((|#1|) . T)) +((((-537)) . T)) +((((-816)) . T)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-333))) +(|has| |#1| (-141)) +((((-816)) . T)) (((|#3|) . T)) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) -((((-806)) . T)) -((((-1169 |#2| |#3| |#4|)) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T)) -((((-806)) . T)) -((((-47)) -12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (((-571 $)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) -1435 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (|has| |#1| (-977 (-388 (-531))))) (((-388 (-895 |#1|))) |has| |#1| (-523)) (((-895 |#1|)) |has| |#1| (-986)) (((-1102)) . T)) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) +((((-816)) . T)) +((((-1185 |#2| |#3| |#4|)) . T) (((-1186 |#1| |#2| |#3| |#4|)) . T)) +((((-816)) . T)) +((((-47)) -12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (((-578 $)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) -1533 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (|has| |#1| (-989 (-391 (-537))))) (((-391 (-905 |#1|))) |has| |#1| (-529)) (((-905 |#1|)) |has| |#1| (-998)) (((-1117)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-721)) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-291 |#1|))) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -((((-531)) |has| |#1| (-829 (-531))) (((-360)) |has| |#1| (-829 (-360)))) -(((|#1|) . T)) -(|has| |#1| (-523)) -(((|#1|) . T)) -((((-806)) . T)) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -(((|#1|) |has| |#1| (-162))) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1030))) -(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)))) -((((-1169 |#2| |#3| |#4|)) . T)) -((((-110)) . T)) -(|has| |#1| (-770)) -(|has| |#1| (-770)) -(((|#1| (-531) (-1014)) . T)) -((($) |has| |#1| (-291 $)) ((|#1|) |has| |#1| (-291 |#1|))) -(|has| |#1| (-795)) -(|has| |#1| (-795)) -(((|#1| (-531) (-1014)) . T)) -(-1435 (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1| (-388 (-531)) (-1014)) . T)) -(((|#1| (-721) (-1014)) . T)) -(|has| |#1| (-797)) -(((#0=(-853 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T)) -(|has| |#2| (-138)) -(|has| |#2| (-140)) -(((|#2|) . T)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-1030)) -((((-853 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -(|has| |#1| (-1030)) -(((|#1|) . T)) -(|has| |#1| (-1030)) -((((-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-594 (-531)))) ((|#2|) |has| |#1| (-344))) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) -(((|#2|) |has| |#2| (-162))) -(((|#1|) |has| |#1| (-162))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -((((-806)) . T)) -(|has| |#3| (-795)) -((((-806)) . T)) -((((-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T)) -((((-806)) . T)) -(((|#1| |#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-986)))) -(((|#1|) . T)) -((((-531)) . T)) -((((-531)) . T)) -(((|#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-986)))) -(((|#2|) |has| |#2| (-344))) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-344))) -(|has| |#1| (-797)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-852))) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) -((((-806)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) -(|has| |#1| (-216)) -(((|#1|) . T)) -(((|#1| (-531)) . T)) -(|has| |#1| (-795)) -(((|#1| (-1100 |#1| |#2| |#3|)) . T)) +(((|#1| (-731)) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-293 |#1|))) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +((((-537)) |has| |#1| (-839 (-537))) (((-363)) |has| |#1| (-839 (-363)))) +(((|#1|) . T)) +(|has| |#1| (-529)) +(((|#1|) . T)) +((((-816)) . T)) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +(((|#1|) |has| |#1| (-163))) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1045))) +(((|#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-347)))) +((((-1185 |#2| |#3| |#4|)) . T)) +((((-111)) . T)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(((|#1| (-537) (-1027)) . T)) +((($) |has| |#1| (-293 $)) ((|#1|) |has| |#1| (-293 |#1|))) +(|has| |#1| (-805)) +(|has| |#1| (-805)) +(((|#1| (-537) (-1027)) . T)) +(-1533 (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1| (-391 (-537)) (-1027)) . T)) +(((|#1| (-731) (-1027)) . T)) +(|has| |#1| (-807)) +(((#0=(-863 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +(((|#2|) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-1045)) +((((-863 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +(|has| |#1| (-1045)) +(((|#1|) . T)) +(|has| |#1| (-1045)) +((((-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-602 (-537)))) ((|#2|) |has| |#1| (-347))) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) +(((|#2|) |has| |#2| (-163))) +(((|#1|) |has| |#1| (-163))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +((((-816)) . T)) +(|has| |#3| (-805)) +((((-816)) . T)) +((((-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) . T)) +((((-816)) . T)) +(((|#1| |#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-998)))) +(((|#1|) . T)) +((((-537)) . T)) +((((-537)) . T)) +(((|#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-998)))) +(((|#2|) |has| |#2| (-347))) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-347))) +(|has| |#1| (-807)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-862))) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +((((-816)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) +(|has| |#1| (-218)) +(((|#1|) . T)) +(((|#1| (-537)) . T)) +(|has| |#1| (-805)) +(((|#1| (-1115 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-388 (-531))) . T)) -(((|#1| (-1093 |#1| |#2| |#3|)) . T)) -(((|#1| (-721)) . T)) +(((|#1| (-391 (-537))) . T)) +(((|#1| (-1108 |#1| |#2| |#3|)) . T)) +(((|#1| (-731)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) (((|#1| |#2|) . T)) -((((-127)) . T)) -((((-137)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) . T) (($ $) . T)) -((((-806)) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| (-388 |#2|) (-216)) -(|has| |#1| (-852)) -(((|#2|) |has| |#2| (-986))) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -(|has| |#1| (-344)) -(((|#1|) |has| |#1| (-162))) +((((-128)) . T)) +((((-138)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#1|) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) . T) (($ $) . T)) +((((-816)) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| (-391 |#2|) (-218)) +(|has| |#1| (-862)) +(((|#2|) |has| |#2| (-998))) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +(|has| |#1| (-347)) +(((|#1|) |has| |#1| (-163))) (((|#1| |#1|) . T)) -((((-813 |#1|)) . T)) -((((-806)) . T)) +((((-823 |#1|)) . T)) +((((-816)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1030))) -(|has| |#2| (-797)) +(((|#2|) |has| |#2| (-1045))) +(|has| |#2| (-807)) (((|#1|) . T)) -((((-388 (-531))) . T) (((-531)) . T) (((-571 $)) . T)) +((((-391 (-537))) . T) (((-537)) . T) (((-578 $)) . T)) (((|#1|) . T)) -((((-806)) . T)) +((((-816)) . T)) ((($) . T)) -(|has| |#1| (-797)) -((((-806)) . T)) -(((|#1| (-503 |#2|) |#2|) . T)) -(((|#1| (-531) (-1014)) . T)) -((((-853 |#1|)) . T)) -((((-806)) . T)) +(|has| |#1| (-807)) +((((-816)) . T)) +(((|#1| (-509 |#2|) |#2|) . T)) +(((|#1| (-537) (-1027)) . T)) +((((-863 |#1|)) . T)) +((((-816)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-388 (-531)) (-1014)) . T)) -(((|#1| (-721) (-1014)) . T)) -(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-531)) -1435 (|has| (-388 (-531)) (-977 (-531))) (|has| |#1| (-977 (-531)))) (((-388 (-531))) . T)) -(((|#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-162))) +(((|#1| (-391 (-537)) (-1027)) . T)) +(((|#1| (-731) (-1027)) . T)) +(((#0=(-391 |#2|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-537)) -1533 (|has| (-391 (-537)) (-989 (-537))) (|has| |#1| (-989 (-537)))) (((-391 (-537))) . T)) +(((|#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-163))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -(|has| |#2| (-216)) -(((|#2| (-503 (-808 |#1|)) (-808 |#1|)) . T)) -((((-806)) . T)) -((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-806)) . T)) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +(|has| |#2| (-218)) +(((|#2| (-509 (-818 |#1|)) (-818 |#1|)) . T)) +((((-816)) . T)) +((($) |has| |#1| (-529)) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-816)) . T)) (((|#1| |#3|) . T)) -((((-806)) . T)) -(((|#1|) |has| |#1| (-162))) -((((-649)) . T)) -((((-649)) . T)) -(((|#2|) |has| |#2| (-162))) -(|has| |#2| (-795)) -((((-110)) |has| |#1| (-1030)) (((-806)) -1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)) (|has| |#1| (-1030)))) +((((-816)) . T)) +(((|#1|) |has| |#1| (-163))) +((((-659)) . T)) +((((-659)) . T)) +(((|#2|) |has| |#2| (-163))) +(|has| |#2| (-805)) +((((-111)) |has| |#1| (-1045)) (((-816)) -1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057)) (|has| |#1| (-1045)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T)) -((((-806)) . T)) -((((-531) |#1|) . T)) -((((-649)) . T) (((-388 (-531))) . T) (((-531)) . T)) -(((|#1| |#1|) |has| |#1| (-162))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -((((-360)) . T)) -((((-649)) . T)) -((((-388 (-531))) . #0=(|has| |#2| (-344))) (($) . #0#)) -(((|#1|) |has| |#1| (-162))) -((((-388 (-895 |#1|))) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) +((((-816)) . T)) +((((-537) |#1|) . T)) +((((-659)) . T) (((-391 (-537))) . T) (((-537)) . T)) +(((|#1| |#1|) |has| |#1| (-163))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +((((-363)) . T)) +((((-659)) . T)) +((((-391 (-537))) . #0=(|has| |#2| (-347))) (($) . #0#)) +(((|#1|) |has| |#1| (-163))) +((((-391 (-905 |#1|))) . T)) (((|#2| |#2|) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#2|) . T)) -(|has| |#2| (-797)) -(((|#3|) |has| |#3| (-986))) -(|has| |#2| (-852)) -(|has| |#1| (-852)) -(|has| |#1| (-344)) -(|has| |#1| (-797)) -((((-1102)) |has| |#2| (-843 (-1102)))) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-453)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-344)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-523)) (|has| |#1| (-986)) (|has| |#1| (-1042))) -(|has| |#1| (-37 (-388 (-531)))) -((((-114 |#1|)) . T)) -((((-114 |#1|)) . T)) -(|has| |#1| (-330)) -((((-137)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((($) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#2|) . T) (((-806)) . T)) -(((|#2|) . T) (((-806)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-797)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#2|) . T)) +(|has| |#2| (-807)) +(((|#3|) |has| |#3| (-998))) +(|has| |#2| (-862)) +(|has| |#1| (-862)) +(|has| |#1| (-347)) +(|has| |#1| (-807)) +((((-1117)) |has| |#2| (-853 (-1117)))) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-456)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-347)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-456)) (|has| |#1| (-529)) (|has| |#1| (-998)) (|has| |#1| (-1057))) +(|has| |#1| (-37 (-391 (-537)))) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) +(|has| |#1| (-333)) +((((-138)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((($) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#2|) . T) (((-816)) . T)) +(((|#2|) . T) (((-816)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-807)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) ((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) ((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (((|#2|) . T)) (((|#3|) . T)) -((((-114 |#1|)) . T)) -(|has| |#1| (-349)) -(|has| |#1| (-797)) -(((|#2|) . T) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -((((-114 |#1|)) . T)) -(((|#2|) |has| |#2| (-162))) -(((|#1|) . T)) -((((-531)) . T)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -((((-806)) . T)) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))) (((-360)) . #0=(|has| |#1| (-962))) (((-208)) . #0#)) -(((|#1|) |has| |#1| (-344))) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((($ $) . T) (((-571 $) $) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -((($) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T) (((-388 (-531))) . T)) -((($) -1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-523))) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -((((-360)) . T) (((-531)) . T) (((-388 (-531))) . T)) -((((-598 (-730 |#1| (-808 |#2|)))) . T) (((-806)) . T)) -((((-507)) |has| (-730 |#1| (-808 |#2|)) (-573 (-507)))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-360)) . T)) -(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) -((((-806)) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-852))) -(((|#1|) . T)) -(|has| |#1| (-797)) -(|has| |#1| (-797)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -(|has| |#1| (-1030)) -((((-806)) . T)) -((((-1102)) . T) (((-806)) . T) (((-1107)) . T)) -((((-388 (-531))) . T) (((-531)) . T) (((-571 $)) . T)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -((((-531)) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(((#0=(-1169 |#2| |#3| |#4|)) . T) (((-388 (-531))) |has| #0# (-37 (-388 (-531)))) (($) . T)) -((((-531)) . T)) -(|has| |#1| (-344)) -(-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140))) -(-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))) -(|has| |#1| (-344)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -(|has| |#1| (-216)) -(|has| |#1| (-344)) +((((-115 |#1|)) . T)) +(|has| |#1| (-352)) +(|has| |#1| (-807)) +(((|#2|) . T) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +((((-115 |#1|)) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#1|) . T)) +((((-537)) . T)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +((((-816)) . T)) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363)))) (((-363)) . #0=(|has| |#1| (-973))) (((-210)) . #0#)) +(((|#1|) |has| |#1| (-347))) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((($ $) . T) (((-578 $) $) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +((($) . T) (((-1186 |#1| |#2| |#3| |#4|)) . T) (((-391 (-537))) . T)) +((($) -1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-529))) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +((((-363)) . T) (((-537)) . T) (((-391 (-537))) . T)) +((((-606 (-740 |#1| (-818 |#2|)))) . T) (((-816)) . T)) +((((-513)) |has| (-740 |#1| (-818 |#2|)) (-580 (-513)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-363)) . T)) +(((|#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) +((((-816)) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-862))) +(((|#1|) . T)) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +(|has| |#1| (-1045)) +((((-816)) . T)) +((((-1117)) . T) (((-816)) . T) (((-1122)) . T)) +((((-391 (-537))) . T) (((-537)) . T) (((-578 $)) . T)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +((((-537)) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(((#0=(-1185 |#2| |#3| |#4|)) . T) (((-391 (-537))) |has| #0# (-37 (-391 (-537)))) (($) . T)) +((((-537)) . T)) +(|has| |#1| (-347)) +(-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-141)) (|has| |#1| (-347))) (|has| |#1| (-141))) +(-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))) +(|has| |#1| (-347)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +(|has| |#1| (-218)) +(|has| |#1| (-347)) (((|#3|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-531)) |has| |#2| (-594 (-531))) ((|#2|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-537)) |has| |#2| (-602 (-537))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1030)) +(|has| |#1| (-1045)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531)))) -(((|#3|) |has| |#3| (-162))) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) -((((-531)) . T)) -(((|#1| $) |has| |#1| (-268 |#1| |#1|))) -((((-388 (-531))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T)) -((((-806)) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) +(((|#3|) |has| |#3| (-163))) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) +((((-537)) . T)) +(((|#1| $) |has| |#1| (-270 |#1| |#1|))) +((((-391 (-537))) . T) (($) . T) (((-391 |#1|)) . T) ((|#1|) . T)) +((((-816)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-272)) (|has| |#1| (-344))) ((#0=(-388 (-531)) #0#) |has| |#1| (-344))) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -((($) . T)) -((((-531) |#1|) . T)) -((((-1102)) |has| (-388 |#2|) (-843 (-1102)))) -(((|#1|) . T) (($) -1435 (|has| |#1| (-272)) (|has| |#1| (-344))) (((-388 (-531))) |has| |#1| (-344))) -((((-507)) |has| |#2| (-573 (-507)))) -((((-639 |#2|)) . T) (((-806)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -((((-813 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(-1435 (|has| |#4| (-743)) (|has| |#4| (-795))) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -((((-806)) . T)) -((((-806)) . T)) -(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#2|) |has| |#2| (-986))) -(((|#1|) . T)) -((((-388 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) -((((-531) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-531)) . T) (($) . T) (((-388 (-531))) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 (-531))) . T) (($) . T)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-1142))) -((($) . T)) -((((-388 (-531))) |has| #0=(-388 |#2|) (-977 (-388 (-531)))) (((-531)) |has| #0# (-977 (-531))) ((#0#) . T)) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) -(((|#1| (-721)) . T)) -(|has| |#1| (-797)) -(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531)))) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -((((-531)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(|has| |#1| (-795)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-330)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) +(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-274)) (|has| |#1| (-347))) ((#0=(-391 (-537)) #0#) |has| |#1| (-347))) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +((($) . T)) +((((-537) |#1|) . T)) +((((-1117)) |has| (-391 |#2|) (-853 (-1117)))) +(((|#1|) . T) (($) -1533 (|has| |#1| (-274)) (|has| |#1| (-347))) (((-391 (-537))) |has| |#1| (-347))) +((((-513)) |has| |#2| (-580 (-513)))) +((((-649 |#2|)) . T) (((-816)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +((((-823 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +((((-816)) . T)) +((((-816)) . T)) +(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#2|) |has| |#2| (-998))) +(((|#1|) . T)) +((((-391 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) +((((-537) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-537)) . T) (($) . T) (((-391 (-537))) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 (-537))) . T) (($) . T)) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-1158))) +((($) . T)) +((((-391 (-537))) |has| #0=(-391 |#2|) (-989 (-391 (-537)))) (((-537)) |has| #0# (-989 (-537))) ((#0#) . T)) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) +(((|#1| (-731)) . T)) +(|has| |#1| (-807)) +(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((((-537)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#1| (-805)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-333)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) (((|#1| |#2|) . T)) -((((-137)) . T)) -((((-730 |#1| (-808 |#2|))) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(|has| |#1| (-1124)) -(((|#1|) . T)) -(-1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-677)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)) (|has| |#3| (-1030))) -((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|))) -(((|#2|) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-853 |#1|)) . T)) -((($) . T)) -((((-388 (-895 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-507)) |has| |#4| (-573 (-507)))) -((((-806)) . T) (((-598 |#4|)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-795)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) -(|has| |#1| (-1030)) -(|has| |#1| (-344)) -(|has| |#1| (-797)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-388 (-531))) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162))) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140))) -(-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -(|has| |#1| (-795)) +((((-138)) . T)) +((((-740 |#1| (-818 |#2|))) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(|has| |#1| (-1139)) +(((|#1|) . T)) +(-1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-352)) (|has| |#3| (-687)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998)) (|has| |#3| (-1045))) +((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|))) +(((|#2|) . T)) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-863 |#1|)) . T)) +((($) . T)) +((((-391 (-905 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-513)) |has| |#4| (-580 (-513)))) +((((-816)) . T) (((-606 |#4|)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-805)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) |has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) +(|has| |#1| (-1045)) +(|has| |#1| (-347)) +(|has| |#1| (-807)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-391 (-537))) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) |has| |#1| (-163))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-141)) (|has| |#1| (-347))) (|has| |#1| (-141))) +(-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +(|has| |#1| (-805)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531)))) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) -((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-1030)) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T) (((-531)) . T)) -(|has| |#2| (-138)) -(|has| |#2| (-140)) -((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-1030)) -(((|#2|) |has| |#2| (-162))) +(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) +((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-1045)) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T) (((-537)) . T)) +(|has| |#2| (-139)) +(|has| |#2| (-141)) +((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-1045)) +(((|#2|) |has| |#2| (-163))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-344))) -((((-388 |#2|)) . T)) -((((-806)) . T)) -(((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507)))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|))) -(((|#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)))) -((((-297 |#1|)) . T)) -(((|#2|) |has| |#2| (-344))) -(((|#2|) . T)) -((((-388 (-531))) . T) (((-649)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((#0=(-730 |#1| (-808 |#2|)) #0#) |has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|))))) -((((-808 |#1|)) . T)) -(((|#2|) |has| |#2| (-162))) -(((|#1|) |has| |#1| (-162))) -(((|#2|) . T)) -((((-1102)) |has| |#1| (-843 (-1102))) (((-1014)) . T)) -((((-1102)) |has| |#1| (-843 (-1102))) (((-1020 (-1102))) . T)) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(|has| |#1| (-37 (-388 (-531)))) -(((|#4|) |has| |#4| (-986)) (((-531)) -12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986)))) -(((|#3|) |has| |#3| (-986)) (((-531)) -12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) -(|has| |#1| (-138)) -(|has| |#1| (-140)) +(((|#3|) |has| |#3| (-347))) +((((-391 |#2|)) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513)))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) +(((|#1|) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)))) +((((-300 |#1|)) . T)) +(((|#2|) |has| |#2| (-347))) +(((|#2|) . T)) +((((-391 (-537))) . T) (((-659)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((#0=(-740 |#1| (-818 |#2|)) #0#) |has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|))))) +((((-818 |#1|)) . T)) +(((|#2|) |has| |#2| (-163))) +(((|#1|) |has| |#1| (-163))) +(((|#2|) . T)) +((((-1117)) |has| |#1| (-853 (-1117))) (((-1027)) . T)) +((((-1117)) |has| |#1| (-853 (-1117))) (((-1034 (-1117))) . T)) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(|has| |#1| (-37 (-391 (-537)))) +(((|#4|) |has| |#4| (-998)) (((-537)) -12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998)))) +(((|#3|) |has| |#3| (-998)) (((-537)) -12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) ((($ $) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)) (|has| |#1| (-1030))) -(|has| |#1| (-523)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057)) (|has| |#1| (-1045))) +(|has| |#1| (-529)) (((|#2|) . T)) -((((-531)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +((((-537)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) (((|#1|) . T)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) -((((-544 |#1|)) . T)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +((((-550 |#1|)) . T)) ((($) . T)) (((|#1| (-57 |#1|) (-57 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-806)) . T)) -(((|#2|) |has| |#2| (-6 (-4275 "*")))) +((((-816)) . T)) +(((|#2|) |has| |#2| (-6 (-4302 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T)) -((($) . T) (((-114 |#1|)) . T) (((-388 (-531))) . T)) -((((-1054 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((((-1098 |#1|)) . T) (((-1014)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((((-1054 |#1| (-1102))) . T) (((-1020 (-1102))) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-1102)) . T)) -(|has| |#1| (-1030)) +((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) +((($) . T) (((-115 |#1|)) . T) (((-391 (-537))) . T)) +((((-1069 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((((-1113 |#1|)) . T) (((-1027)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((((-1069 |#1| (-1117))) . T) (((-1034 (-1117))) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-1117)) . T)) +(|has| |#1| (-1045)) ((($) . T)) -(|has| |#1| (-1030)) -((((-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))) (((-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360))))) +(|has| |#1| (-1045)) +((((-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537)))) (((-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363))))) (((|#1| |#2|) . T)) -((((-1102) |#1|) . T)) +((((-1117) |#1|) . T)) (((|#4|) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -((((-1102) (-51)) . T)) -((((-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T)) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T)) -((((-806)) . T)) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) -(((#0=(-1170 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-162)) ((#0=(-388 (-531)) #0#) |has| |#1| (-523)) (($ $) |has| |#1| (-523))) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1| $) |has| |#1| (-268 |#1| |#1|))) -((((-1170 |#1| |#2| |#3| |#4|)) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-523)) (($) |has| |#1| (-523))) -(|has| |#1| (-344)) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -((((-388 (-531))) . T) (($) . T)) -(((|#3|) |has| |#3| (-344))) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -((((-1102)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +((((-1117) (-51)) . T)) +((((-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) . T)) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T)) +((((-816)) . T)) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-352)) (|has| |#2| (-687)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998)) (|has| |#2| (-1045))) +(((#0=(-1186 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-163)) ((#0=(-391 (-537)) #0#) |has| |#1| (-529)) (($ $) |has| |#1| (-529))) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1| $) |has| |#1| (-270 |#1| |#1|))) +((((-1186 |#1| |#2| |#3| |#4|)) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-529)) (($) |has| |#1| (-529))) +(|has| |#1| (-347)) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((((-391 (-537))) . T) (($) . T)) +(((|#3|) |has| |#3| (-347))) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +((((-1117)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (((|#2| |#3|) . T)) -(-1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(((|#1| (-503 |#2|)) . T)) -(((|#1| (-721)) . T)) -(((|#1| (-503 (-1020 (-1102)))) . T)) -(((|#1|) |has| |#1| (-162))) -(((|#1|) . T)) -(|has| |#2| (-852)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -((((-806)) . T)) -((($ $) . T) ((#0=(-1169 |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-531)) #1#) |has| #0# (-37 (-388 (-531))))) -((((-853 |#1|)) . T)) -(-12 (|has| |#1| (-344)) (|has| |#2| (-770))) -((($) . T) (((-388 (-531))) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-344)) -(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523))) -(|has| |#1| (-344)) -((($) . T) ((#0=(-1169 |#2| |#3| |#4|)) . T) (((-388 (-531))) |has| #0# (-37 (-388 (-531))))) +(-1533 (|has| |#2| (-347)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(((|#1| (-509 |#2|)) . T)) +(((|#1| (-731)) . T)) +(((|#1| (-509 (-1034 (-1117)))) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1|) . T)) +(|has| |#2| (-862)) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +((((-816)) . T)) +((($ $) . T) ((#0=(-1185 |#2| |#3| |#4|) #0#) . T) ((#1=(-391 (-537)) #1#) |has| #0# (-37 (-391 (-537))))) +((((-863 |#1|)) . T)) +(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) +((($) . T) (((-391 (-537))) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-347)) +(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333)) (|has| |#1| (-529))) +(|has| |#1| (-347)) +((($) . T) ((#0=(-1185 |#2| |#3| |#4|)) . T) (((-391 (-537))) |has| #0# (-37 (-391 (-537))))) (((|#1| |#2|) . T)) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) -(-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344)) (|has| |#1| (-330))) -(-1435 (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))) -((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) +(-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347)) (|has| |#1| (-333))) +(-1533 (|has| |#1| (-853 (-1117))) (|has| |#1| (-998))) +((((-537)) |has| |#1| (-602 (-537))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-110)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-111)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) . T)) -(|has| |#2| (-344)) -(|has| |#1| (-797)) +(((|#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) . T)) +(|has| |#2| (-347)) +(|has| |#1| (-807)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-806)) . T)) -(|has| |#1| (-1030)) +((((-816)) . T)) +(|has| |#1| (-1045)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-770)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-391 $) (-391 $)) |has| |#1| (-529)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-780)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-806)) . T)) -(((|#1| (-503 (-1102))) . T)) -(((|#1|) |has| |#1| (-162))) -((((-806)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(((|#2|) -1435 (|has| |#2| (-6 (-4275 "*"))) (|has| |#2| (-162)))) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(|has| |#2| (-797)) -(|has| |#2| (-852)) -(|has| |#1| (-852)) -(((|#2|) |has| |#2| (-162))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -((((-806)) . T)) -((((-806)) . T)) -((((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) +((((-816)) . T)) +(((|#1| (-509 (-1117))) . T)) +(((|#1|) |has| |#1| (-163))) +((((-816)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(((|#2|) -1533 (|has| |#2| (-6 (-4302 "*"))) (|has| |#2| (-163)))) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(|has| |#2| (-807)) +(|has| |#2| (-862)) +(|has| |#1| (-862)) +(((|#2|) |has| |#2| (-163))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +((((-816)) . T)) +((((-816)) . T)) +((((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) (((|#1|) . T)) -((((-806)) . T)) +((((-816)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-388 (-531))) . T)) +(((|#1| (-391 (-537))) . T)) (((|#1|) . T)) -(-1435 (|has| |#1| (-272)) (|has| |#1| (-344))) -((((-137)) . T)) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-795)) -((((-806)) . T)) -((((-806)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T)) +(-1533 (|has| |#1| (-274)) (|has| |#1| (-347))) +((((-138)) . T)) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-805)) +((((-816)) . T)) +((((-816)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360))))) -((((-1102) (-51)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-598 (-137))) . T) (((-1085)) . T)) -((((-806)) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|))) -(|has| |#1| (-797)) -((((-806)) . T)) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) . T)) -(((|#2|) |has| |#2| (-344))) -((((-806)) . T)) -((((-507)) |has| |#4| (-573 (-507)))) -((((-806)) . T) (((-598 |#4|)) . T)) -(((|#2|) . T)) -((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -(-1435 (|has| |#4| (-162)) (|has| |#4| (-677)) (|has| |#4| (-795)) (|has| |#4| (-986))) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986))) -((((-1102) (-51)) . T)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(|has| |#1| (-852)) -(|has| |#1| (-852)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-806)) . T)) -((((-531)) . T)) -(((#0=(-388 (-531)) #0#) . T) (($ $) . T)) -((((-388 (-531))) . T) (($) . T)) -(((|#1| (-388 (-531)) (-1014)) . T)) -(|has| |#1| (-1030)) -(|has| |#1| (-523)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(|has| |#1| (-770)) -(((#0=(-853 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T)) -((((-388 |#2|)) . T)) -(|has| |#1| (-795)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) . T) ((#1=(-531) #1#) . T) (($ $) . T)) -((((-853 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -(((|#2|) |has| |#2| (-986)) (((-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) -(((|#1|) . T) (((-388 (-531))) . T) (((-531)) . T) (($) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513))) (((-845 (-537))) |has| |#1| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#1| (-580 (-845 (-363))))) +((((-1117) (-51)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-606 (-138))) . T) (((-1100)) . T)) +((((-816)) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +((((-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((|#1| |#1|) |has| |#1| (-293 |#1|))) +(|has| |#1| (-807)) +((((-816)) . T)) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) . T)) +(((|#2|) |has| |#2| (-347))) +((((-816)) . T)) +((((-513)) |has| |#4| (-580 (-513)))) +((((-816)) . T) (((-606 |#4|)) . T)) +(((|#2|) . T)) +((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +(-1533 (|has| |#4| (-163)) (|has| |#4| (-687)) (|has| |#4| (-805)) (|has| |#4| (-998))) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) +((((-1117) (-51)) . T)) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(|has| |#1| (-862)) +(|has| |#1| (-862)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-816)) . T)) +((((-537)) . T)) +(((#0=(-391 (-537)) #0#) . T) (($ $) . T)) +((((-391 (-537))) . T) (($) . T)) +(((|#1| (-391 (-537)) (-1027)) . T)) +(|has| |#1| (-1045)) +(|has| |#1| (-529)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(|has| |#1| (-780)) +(((#0=(-863 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) +((((-391 |#2|)) . T)) +(|has| |#1| (-805)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) . T) ((#1=(-537) #1#) . T) (($ $) . T)) +((((-863 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +(((|#2|) |has| |#2| (-998)) (((-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) +(((|#1|) . T) (((-391 (-537))) . T) (((-537)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -(((|#2|) . T)) -((((-806)) . T)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -(((#0=(-51)) . T) (((-2 (|:| -3033 (-1102)) (|:| -1798 #0#))) . T)) -(|has| |#1| (-330)) -((((-531)) . T)) -((((-806)) . T)) -(((#0=(-1170 |#1| |#2| |#3| |#4|) $) |has| #0# (-268 #0# #0#))) -(|has| |#1| (-344)) -(((#0=(-1014) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(((#0=(-388 (-531)) #0#) . T) ((#1=(-649) #1#) . T) (($ $) . T)) -((((-297 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-344))) -(|has| |#1| (-1030)) -(((|#1|) . T)) -(((|#1|) -1435 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|)))) -(((|#1|) -1435 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|)))) -(((|#2|) . T)) -((((-388 (-531))) . T) (((-649)) . T) (($) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +(((|#2|) . T)) +((((-816)) . T)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +(((#0=(-51)) . T) (((-2 (|:| -2926 (-1117)) (|:| -2140 #0#))) . T)) +(|has| |#1| (-333)) +((((-537)) . T)) +((((-816)) . T)) +(((#0=(-1186 |#1| |#2| |#3| |#4|) $) |has| #0# (-270 #0# #0#))) +(|has| |#1| (-347)) +(((#0=(-1027) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(((#0=(-391 (-537)) #0#) . T) ((#1=(-659) #1#) . T) (($ $) . T)) +((((-300 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-347))) +(|has| |#1| (-1045)) +(((|#1|) . T)) +(((|#1|) -1533 (|has| |#2| (-351 |#1|)) (|has| |#2| (-401 |#1|)))) +(((|#1|) -1533 (|has| |#2| (-351 |#1|)) (|has| |#2| (-401 |#1|)))) +(((|#2|) . T)) +((((-391 (-537))) . T) (((-659)) . T) (($) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-216)) -((((-808 |#1|)) . T)) -((((-1102)) |has| |#1| (-843 (-1102))) ((|#3|) . T)) -(-12 (|has| |#1| (-344)) (|has| |#2| (-962))) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) -((((-806)) . T)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -((((-388 (-531))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T)) -((((-531)) . T)) -(|has| |#1| (-1030)) +(|has| |#2| (-218)) +((((-818 |#1|)) . T)) +((((-1117)) |has| |#1| (-853 (-1117))) ((|#3|) . T)) +(-12 (|has| |#1| (-347)) (|has| |#2| (-973))) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) +((((-816)) . T)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +((((-391 (-537))) . T) (($) . T) (((-391 |#1|)) . T) ((|#1|) . T)) +((((-537)) . T)) +(|has| |#1| (-1045)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-531)) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) +((((-537)) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-544 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -((($) . T) (((-388 (-531))) . T)) +((((-550 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +((($) . T) (((-391 (-537))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1184 |#1|) (-1184 |#1|)) . T)) +(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((#0=(-114 |#1|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T)) -((((-1054 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((|#2|) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((#0=(-115 |#1|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) +((((-1069 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-624 |#1|)) . T)) -((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T)) -((((-114 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -((((-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) (((-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360))))) +((((-633 |#1|)) . T)) +((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) +((((-115 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +((((-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) (((-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T)) -((((-137)) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) (($) . T)) +((((-138)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) (((|#1|) . T)) -(|has| |#2| (-852)) -(|has| |#1| (-852)) -(|has| |#1| (-852)) +(|has| |#2| (-862)) +(|has| |#1| (-862)) +(|has| |#1| (-862)) (((|#4|) . T)) -(|has| |#2| (-962)) +(|has| |#2| (-973)) ((($) . T)) -(|has| |#1| (-852)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +(|has| |#1| (-862)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-344)) -((((-853 |#1|)) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(-1435 (|has| |#1| (-349)) (|has| |#1| (-797))) -(((|#1|) . T)) -((((-806)) . T)) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) -((((-388 |#2|) |#3|) . T)) -((($) . T) (((-388 (-531))) . T)) -((((-721) |#1|) . T)) -(((|#2| (-223 (-2167 |#1|) (-721))) . T)) -(((|#1| (-503 |#3|)) . T)) -((((-388 (-531))) . T)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((((-806)) . T)) -(((#0=(-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) #0#) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) -(|has| |#1| (-852)) -(|has| |#2| (-344)) -(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-159 (-360))) . T) (((-208)) . T) (((-360)) . T)) -((((-806)) . T)) -(((|#1|) . T)) -((((-360)) . T) (((-531)) . T)) -(((#0=(-388 (-531)) #0#) . T) (($ $) . T)) +(|has| |#1| (-347)) +((((-863 |#1|)) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(-1533 (|has| |#1| (-352)) (|has| |#1| (-807))) +(((|#1|) . T)) +((((-816)) . T)) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) +((((-391 |#2|) |#3|) . T)) +((($) . T) (((-391 (-537))) . T)) +((((-731) |#1|) . T)) +(((|#2| (-225 (-2258 |#1|) (-731))) . T)) +(((|#1| (-509 |#3|)) . T)) +((((-391 (-537))) . T)) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-816)) . T)) +(((#0=(-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) #0#) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) +(|has| |#1| (-862)) +(|has| |#2| (-347)) +(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-160 (-363))) . T) (((-210)) . T) (((-363)) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((((-363)) . T) (((-537)) . T)) +(((#0=(-391 (-537)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-806)) . T)) -(|has| |#1| (-523)) -((((-388 (-531))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330))) -(|has| |#1| (-37 (-388 (-531)))) -(-12 (|has| |#1| (-516)) (|has| |#1| (-778))) -((((-806)) . T)) -((((-1102)) -1435 (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-843 (-1102)))))) -(|has| |#1| (-344)) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) -(|has| |#1| (-344)) -((((-388 (-531))) . T) (($) . T)) -((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T)) -((((-531) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-344))) -(((|#2|) |has| |#1| (-344))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-162))) -(((|#1|) . T)) -(((|#2|) . T) (((-1102)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-1102)))) (((-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))) (((-388 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531))))) -(((|#2|) . T)) -((((-1102) #0=(-1170 |#1| |#2| |#3| |#4|)) |has| #0# (-492 (-1102) #0#)) ((#0# #0#) |has| #0# (-291 #0#))) -((((-571 $) $) . T) (($ $) . T)) -((((-159 (-208))) . T) (((-159 (-360))) . T) (((-1098 (-649))) . T) (((-835 (-360))) . T)) -((((-806)) . T)) -(|has| |#1| (-523)) -(|has| |#1| (-523)) -(|has| (-388 |#2|) (-216)) -(((|#1| (-388 (-531))) . T)) +((((-816)) . T)) +(|has| |#1| (-529)) +((((-391 (-537))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333))) +(|has| |#1| (-37 (-391 (-537)))) +(-12 (|has| |#1| (-522)) (|has| |#1| (-788))) +((((-816)) . T)) +((((-1117)) -1533 (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))) (-12 (|has| |#1| (-347)) (|has| |#2| (-853 (-1117)))))) +(|has| |#1| (-347)) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) +(|has| |#1| (-347)) +((((-391 (-537))) . T) (($) . T)) +((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) +((((-537) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-347))) +(((|#2|) |has| |#1| (-347))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1|) . T)) +(((|#2|) . T) (((-1117)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-1117)))) (((-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537)))) (((-391 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537))))) +(((|#2|) . T)) +((((-1117) #0=(-1186 |#1| |#2| |#3| |#4|)) |has| #0# (-495 (-1117) #0#)) ((#0# #0#) |has| #0# (-293 #0#))) +((((-578 $) $) . T) (($ $) . T)) +((((-160 (-210))) . T) (((-160 (-363))) . T) (((-1113 (-659))) . T) (((-845 (-363))) . T)) +((((-816)) . T)) +(|has| |#1| (-529)) +(|has| |#1| (-529)) +(|has| (-391 |#2|) (-218)) +(((|#1| (-391 (-537))) . T)) ((($ $) . T)) -((((-1102)) |has| |#2| (-843 (-1102)))) -((($) . T)) -((((-806)) . T)) -((((-388 (-531))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -(((|#2|) |has| |#1| (-344))) -((((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-360)))) (((-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-531))))) -(|has| |#1| (-344)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(|has| |#1| (-344)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(|has| |#1| (-344)) -(|has| |#1| (-523)) -(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) +((((-1117)) |has| |#2| (-853 (-1117)))) +((($) . T)) +((((-816)) . T)) +((((-391 (-537))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) +(((|#2|) |has| |#1| (-347))) +((((-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-363)))) (((-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-537))))) +(|has| |#1| (-347)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-347)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(|has| |#1| (-347)) +(|has| |#1| (-529)) +(((|#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (((|#3|) . T)) (((|#1|) . T)) -(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) +(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) (((|#2|) . T)) (((|#2|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(|has| |#1| (-37 (-388 (-531)))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| |#1| (-37 (-391 (-537)))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(|has| |#1| (-140)) -((((-1085) |#1|) . T)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(|has| |#1| (-140)) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-349))) -(|has| |#1| (-140)) -((((-544 |#1|)) . T)) -((($) . T)) -((((-388 |#2|)) . T)) -(|has| |#1| (-523)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-330))) -(|has| |#1| (-140)) -((((-806)) . T)) -((($) . T)) -((((-388 (-531))) |has| |#2| (-977 (-531))) (((-531)) |has| |#2| (-977 (-531))) (((-1102)) |has| |#2| (-977 (-1102))) ((|#2|) . T)) -(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T)) -((((-1067 |#1| |#2|)) . T)) -(((|#1| (-531)) . T)) -(((|#1| (-388 (-531))) . T)) -((((-531)) |has| |#2| (-829 (-531))) (((-360)) |has| |#2| (-829 (-360)))) -(((|#2|) . T)) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -((((-110)) . T)) -(((|#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-806)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-1102) (-51)) . T)) -((((-388 |#2|)) . T)) -((((-806)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1030)) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-112)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-208)) . T) (((-360)) . T) (((-835 (-360))) . T)) -((((-806)) . T)) -((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)) (((-388 (-531))) |has| |#1| (-523))) -((((-806)) . T)) -((((-806)) . T)) -(((|#2|) . T)) -((((-806)) . T)) -(((#0=(-853 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-853 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -(|has| |#1| (-344)) -(((|#2|) . T)) -((((-531)) . T)) -((((-806)) . T)) -((((-531)) . T)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -((((-159 (-360))) . T) (((-208)) . T) (((-360)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-1085)) . T) (((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T)) -((((-806)) . T)) -(|has| |#1| (-140)) -(|has| |#1| (-138)) -((($) . T) ((#0=(-1169 |#2| |#3| |#4|)) |has| #0# (-162)) (((-388 (-531))) |has| #0# (-37 (-388 (-531))))) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)) (|has| |#1| (-1030))) -(|has| |#1| (-1078)) -((((-531) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-114 |#1|) $) |has| #0# (-268 #0# #0#))) -(((|#1|) |has| |#1| (-162))) -(((|#1|) . T)) -((((-112)) . T) ((|#1|) . T)) -((((-806)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(|has| |#1| (-141)) +((((-1100) |#1|) . T)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(|has| |#1| (-141)) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-352))) +(|has| |#1| (-141)) +((((-550 |#1|)) . T)) +((($) . T)) +((((-391 |#2|)) . T)) +(|has| |#1| (-529)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-333))) +(|has| |#1| (-141)) +((((-816)) . T)) +((($) . T)) +((((-391 (-537))) |has| |#2| (-989 (-537))) (((-537)) |has| |#2| (-989 (-537))) (((-1117)) |has| |#2| (-989 (-1117))) ((|#2|) . T)) +(((#0=(-391 |#2|) #0#) . T) ((#1=(-391 (-537)) #1#) . T) (($ $) . T)) +((((-1082 |#1| |#2|)) . T)) +(((|#1| (-537)) . T)) +(((|#1| (-391 (-537))) . T)) +((((-537)) |has| |#2| (-839 (-537))) (((-363)) |has| |#2| (-839 (-363)))) +(((|#2|) . T)) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +((((-111)) . T)) +(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-816)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-1117) (-51)) . T)) +((((-391 |#2|)) . T)) +((((-816)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1045)) +(|has| |#1| (-751)) +(|has| |#1| (-751)) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-113)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-210)) . T) (((-363)) . T) (((-845 (-363))) . T)) +((((-816)) . T)) +((((-1186 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529)) (((-391 (-537))) |has| |#1| (-529))) +((((-816)) . T)) +((((-816)) . T)) +(((|#2|) . T)) +((((-816)) . T)) +(((#0=(-863 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-863 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +(|has| |#1| (-347)) +(((|#2|) . T)) +((((-537)) . T)) +((((-816)) . T)) +((((-537)) . T)) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +((((-160 (-363))) . T) (((-210)) . T) (((-363)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-1100)) . T) (((-513)) . T) (((-537)) . T) (((-845 (-537))) . T) (((-363)) . T) (((-210)) . T)) +((((-816)) . T)) +(|has| |#1| (-141)) +(|has| |#1| (-139)) +((($) . T) ((#0=(-1185 |#2| |#3| |#4|)) |has| #0# (-163)) (((-391 (-537))) |has| #0# (-37 (-391 (-537))))) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-456)) (|has| |#1| (-687)) (|has| |#1| (-853 (-1117))) (|has| |#1| (-998)) (|has| |#1| (-1057)) (|has| |#1| (-1045))) +(|has| |#1| (-1093)) +((((-537) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-115 |#1|) $) |has| #0# (-270 #0# #0#))) +(((|#1|) |has| |#1| (-163))) +(((|#1|) . T)) +((((-113)) . T) ((|#1|) . T)) +((((-816)) . T)) (((|#1| |#2|) . T)) -((((-1102) |#1|) . T)) -(((|#1|) |has| |#1| (-291 |#1|))) -((((-531) |#1|) . T)) +((((-1117) |#1|) . T)) +(((|#1|) |has| |#1| (-293 |#1|))) +((((-537) |#1|) . T)) (((|#1|) . T)) -((((-531)) . T) (((-388 (-531))) . T)) +((((-537)) . T) (((-391 (-537))) . T)) (((|#1|) . T)) -(|has| |#1| (-523)) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -((((-360)) . T)) +(|has| |#1| (-529)) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +((((-363)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-523)) -(|has| |#1| (-1030)) -((((-730 |#1| (-808 |#2|))) |has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|))))) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-529)) +(|has| |#1| (-1045)) +((((-740 |#1| (-818 |#2|))) |has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|))))) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) (((|#1|) . T)) (((|#2| |#3|) . T)) -(|has| |#2| (-852)) -(((|#1|) . T)) -(((|#1| (-503 |#2|)) . T)) -(((|#1| (-721)) . T)) -(|has| |#1| (-216)) -(((|#1| (-503 (-1020 (-1102)))) . T)) -(|has| |#2| (-344)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T)) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -((((-806)) . T)) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -((((-806)) . T)) -((((-1049)) . T) (((-806)) . T)) -((((-806)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-571 $) $) . T)) -(((|#1|) . T)) -((((-531)) . T)) +(|has| |#2| (-862)) +(((|#1|) . T)) +(((|#1| (-509 |#2|)) . T)) +(((|#1| (-731)) . T)) +(|has| |#1| (-218)) +(((|#1| (-509 (-1034 (-1117)))) . T)) +(|has| |#2| (-347)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) +((((-816)) . T)) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +((((-816)) . T)) +((((-1064)) . T) (((-816)) . T)) +((((-816)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-578 $) $) . T)) +(((|#1|) . T)) +((((-537)) . T)) (((|#3|) . T)) -((((-806)) . T)) -(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330))) -(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) -(((#0=(-544 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T)) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(((|#1|) |has| |#1| (-162))) -(((|#1| (-1184 |#1|) (-1184 |#1|)) . T)) -((((-544 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -((($) . T) (((-388 (-531))) . T)) -((($) . T) (((-388 (-531))) . T)) -(((|#2|) |has| |#2| (-6 (-4275 "*")))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-806)) |has| |#1| (-572 (-806)))) -((((-276 |#3|)) . T)) -(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) +((((-816)) . T)) +(-1533 (|has| |#1| (-291)) (|has| |#1| (-347)) (|has| |#1| (-333))) +(-1533 (|has| |#1| (-139)) (|has| |#1| (-141)) (|has| |#1| (-163)) (|has| |#1| (-529)) (|has| |#1| (-998))) +(((#0=(-550 |#1|) #0#) . T) (($ $) . T) ((#1=(-391 (-537)) #1#) . T)) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(((|#1|) |has| |#1| (-163))) +(((|#1| (-1200 |#1|) (-1200 |#1|)) . T)) +((((-550 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +((($) . T) (((-391 (-537))) . T)) +((($) . T) (((-391 (-537))) . T)) +(((|#2|) |has| |#2| (-6 (-4302 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-816)) |has| |#1| (-579 (-816)))) +((((-278 |#3|)) . T)) +(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (($) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) +((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (($) . T)) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) (((|#2|) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -((((-806)) . T)) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(|has| |#2| (-852)) -(|has| |#1| (-852)) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +((((-816)) . T)) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(|has| |#2| (-862)) +(|has| |#1| (-862)) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) (((|#1|) . T)) -((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T)) +((((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1030)) -(((|#1|) . T)) -((((-1102)) . T) ((|#1|) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) -(((#0=(-388 (-531)) #0#) . T)) -((((-388 (-531))) . T)) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(((|#1|) . T)) -(((|#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-507)) . T)) -((((-806)) . T)) -((((-1102)) |has| |#2| (-843 (-1102))) (((-1014)) . T)) -((((-1169 |#2| |#3| |#4|)) . T)) -((((-853 |#1|)) . T)) -((($) . T) (((-388 (-531))) . T)) -(-12 (|has| |#1| (-344)) (|has| |#2| (-770))) -(-12 (|has| |#1| (-344)) (|has| |#2| (-770))) -((((-806)) . T)) -(|has| |#1| (-1142)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -((((-1102)) |has| |#1| (-843 (-1102)))) -((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) . T)) -(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523)))) -((($) . T) (((-388 (-531))) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (((-531)) . T) (($) . T)) -(((|#2|) |has| |#2| (-986)) (((-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523)))) -(|has| |#1| (-523)) -(((|#1|) |has| |#1| (-344))) -((((-531)) . T)) -(|has| |#1| (-741)) -(|has| |#1| (-741)) -((((-1102) #0=(-114 |#1|)) |has| #0# (-492 (-1102) #0#)) ((#0# #0#) |has| #0# (-291 #0#))) -(((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531))))) -((((-1014)) . T) ((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-531) (-721)) . T) ((|#3| (-721)) . T)) +(|has| |#1| (-1045)) +(((|#1|) . T)) +((((-1117)) . T) ((|#1|) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) +(((#0=(-391 (-537)) #0#) . T)) +((((-391 (-537))) . T)) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(((|#1|) . T)) +(((|#1|) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-513)) . T)) +((((-816)) . T)) +((((-1117)) |has| |#2| (-853 (-1117))) (((-1027)) . T)) +((((-1185 |#2| |#3| |#4|)) . T)) +((((-863 |#1|)) . T)) +((($) . T) (((-391 (-537))) . T)) +(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) +(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) +((((-816)) . T)) +(|has| |#1| (-1158)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +((((-1117)) |has| |#1| (-853 (-1117)))) +((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#1|) . T)) +(((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537)))) ((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) +((($) . T) (((-391 (-537))) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (((-537)) . T) (($) . T)) +(((|#2|) |has| |#2| (-998)) (((-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-529)))) +(|has| |#1| (-529)) +(((|#1|) |has| |#1| (-347))) +((((-537)) . T)) +(|has| |#1| (-751)) +(|has| |#1| (-751)) +((((-1117) #0=(-115 |#1|)) |has| #0# (-495 (-1117) #0#)) ((#0# #0#) |has| #0# (-293 #0#))) +(((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) +((((-1027)) . T) ((|#2|) . T) (((-537)) |has| |#2| (-989 (-537))) (((-391 (-537))) |has| |#2| (-989 (-391 (-537))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-537) (-731)) . T) ((|#3| (-731)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-806)) . T)) -(|has| |#2| (-770)) -(|has| |#2| (-770)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((((-531)) |has| |#1| (-829 (-531))) (((-360)) |has| |#1| (-829 (-360)))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-816)) . T)) +(|has| |#2| (-780)) +(|has| |#2| (-780)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#2|) |has| |#1| (-347)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((((-537)) |has| |#1| (-839 (-537))) (((-363)) |has| |#1| (-839 (-363)))) (((|#1|) . T)) -((((-813 |#1|)) . T)) -((((-813 |#1|)) . T)) -(-12 (|has| |#1| (-344)) (|has| |#2| (-852))) -((((-388 (-531))) . T) (((-649)) . T) (($) . T)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) +((((-823 |#1|)) . T)) +((((-823 |#1|)) . T)) +(-12 (|has| |#1| (-347)) (|has| |#2| (-862))) +((((-391 (-537))) . T) (((-659)) . T) (($) . T)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -(|has| |#1| (-344)) +(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +(|has| |#1| (-347)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-808 |#1|)) . T)) +((((-818 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-721)) . T)) -((((-1102)) . T)) -((((-813 |#1|)) . T)) -(-1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986))) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-795)) (|has| |#3| (-986))) -((((-806)) . T)) +(((|#2| (-731)) . T)) +((((-1117)) . T)) +((((-823 |#1|)) . T)) +(-1533 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998))) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-805)) (|has| |#3| (-998))) +((((-816)) . T)) (((|#1|) . T)) -(-1435 (|has| |#2| (-743)) (|has| |#2| (-795))) -(-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))) -((((-813 |#1|)) . T)) +(-1533 (|has| |#2| (-753)) (|has| |#2| (-805))) +(-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))) +((((-823 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) -((($ $) . T) (((-571 $) $) . T)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +((($ $) . T) (((-578 $) $) . T)) ((($) . T)) -((((-806)) . T)) -((((-531)) . T)) +((((-816)) . T)) +((((-537)) . T)) (((|#2|) . T)) -((((-806)) . T)) -(((|#1|) . T) (((-388 (-531))) |has| |#1| (-344))) -((((-806)) . T)) +((((-816)) . T)) +(((|#1|) . T) (((-391 (-537))) |has| |#1| (-347))) +((((-816)) . T)) (((|#1|) . T)) -((((-806)) . T)) -((($) . T) ((|#2|) . T) (((-388 (-531))) . T)) -(|has| |#1| (-1030)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((((-816)) . T)) +((($) . T) ((|#2|) . T) (((-391 (-537))) . T)) +(|has| |#1| (-1045)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-806)) . T)) -(|has| |#2| (-852)) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531))))) -((((-806)) . T)) -((((-806)) . T)) -(((|#3|) |has| |#3| (-986)) (((-531)) -12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) -((((-1054 |#1| |#2|)) . T) (((-895 |#1|)) |has| |#2| (-573 (-1102))) (((-806)) . T)) -((((-895 |#1|)) |has| |#2| (-573 (-1102))) (((-1085)) -12 (|has| |#1| (-977 (-531))) (|has| |#2| (-573 (-1102)))) (((-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531))))) (((-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360))))) (((-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507))))) -((((-1098 |#1|)) . T) (((-806)) . T)) -((((-806)) . T)) -((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T)) -((((-114 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T) (((-1102)) . T)) -((((-806)) . T)) -((((-531)) . T)) +((((-816)) . T)) +(|has| |#2| (-862)) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) +((((-816)) . T)) +((((-816)) . T)) +(((|#3|) |has| |#3| (-998)) (((-537)) -12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) +((((-1069 |#1| |#2|)) . T) (((-905 |#1|)) |has| |#2| (-580 (-1117))) (((-816)) . T)) +((((-905 |#1|)) |has| |#2| (-580 (-1117))) (((-1100)) -12 (|has| |#1| (-989 (-537))) (|has| |#2| (-580 (-1117)))) (((-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537))))) (((-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363))))) (((-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513))))) +((((-1113 |#1|)) . T) (((-816)) . T)) +((((-816)) . T)) +((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) +((((-115 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T) (((-1117)) . T)) +((((-816)) . T)) +((((-537)) . T)) ((($) . T)) -((((-360)) |has| |#1| (-829 (-360))) (((-531)) |has| |#1| (-829 (-531)))) -((((-531)) . T)) +((((-363)) |has| |#1| (-839 (-363))) (((-537)) |has| |#1| (-839 (-537)))) +((((-537)) . T)) (((|#1|) . T)) -((((-806)) . T)) +((((-816)) . T)) (((|#1|) . T)) -((((-806)) . T)) -(((|#1|) |has| |#1| (-162)) (($) . T)) -((((-531)) . T) (((-388 (-531))) . T)) -(((|#1|) |has| |#1| (-291 |#1|))) -((((-806)) . T)) -((((-360)) . T)) +((((-816)) . T)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((((-537)) . T) (((-391 (-537))) . T)) +(((|#1|) |has| |#1| (-293 |#1|))) +((((-816)) . T)) +((((-363)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-806)) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-388 |#2|) |#3|) . T)) +((((-816)) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-391 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1030)) -(((|#2| (-461 (-2167 |#1|) (-721))) . T)) -((((-531) |#1|) . T)) -((((-1085)) . T) (((-806)) . T)) +(|has| |#1| (-1045)) +(((|#2| (-464 (-2258 |#1|) (-731))) . T)) +((((-537) |#1|) . T)) +((((-1100)) . T) (((-816)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-503 (-1102))) . T)) -(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-531)) . T)) +(((|#1| (-509 (-1117))) . T)) +(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-537)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1102)) |has| |#1| (-843 (-1102))) (((-1014)) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531)))) -(|has| |#1| (-523)) -((($) . T) (((-388 (-531))) . T)) +((((-1117)) |has| |#1| (-853 (-1117))) (((-1027)) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-602 (-537)))) +(|has| |#1| (-529)) +((($) . T) (((-391 (-537))) . T)) ((($) . T)) ((($) . T)) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) (((|#1|) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-806)) . T)) -((((-137)) . T)) -(((|#1|) . T) (((-388 (-531))) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-816)) . T)) +((((-138)) . T)) +(((|#1|) . T) (((-391 (-537))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-806)) . T)) +((((-816)) . T)) (((|#1|) . T)) -(|has| |#1| (-1078)) -(((|#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) . T)) +(|has| |#1| (-1093)) +(((|#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) . T)) (((|#1|) . T)) -((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((((-806)) . T)) -((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T) ((|#2|) . T)) -((((-1014)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531))))) -((((-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360)))) (((-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531))))) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -((((-531) |#1|) . T)) +((((-391 $) (-391 $)) |has| |#1| (-529)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((((-816)) . T)) +((((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-537)) |has| |#1| (-989 (-537))) ((|#1|) . T) ((|#2|) . T)) +((((-1027)) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537))))) +((((-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363)))) (((-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537))))) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +((((-537) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-162)) (($) . T)) -((($) . T)) -((((-649)) . T)) -((((-730 |#1| (-808 |#2|))) . T)) -((($) . T)) -((((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-1030)) -(|has| |#1| (-1030)) -(|has| |#2| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-37 (-388 (-531)))) -((((-531)) . T)) -((((-1102)) -12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) -((((-1102)) -12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) -(((|#1|) . T)) -(|has| |#1| (-216)) -(((|#1| (-503 |#3|)) . T)) -(|has| |#1| (-349)) -(((|#2| (-223 (-2167 |#1|) (-721))) . T)) -(|has| |#1| (-349)) -(|has| |#1| (-349)) +(((|#1|) |has| |#1| (-163)) (($) . T)) +((($) . T)) +((((-659)) . T)) +((((-740 |#1| (-818 |#2|))) . T)) +((($) . T)) +((((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-1045)) +(|has| |#1| (-1045)) +(|has| |#2| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-37 (-391 (-537)))) +((((-537)) . T)) +((((-1117)) -12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) +((((-1117)) -12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) +(((|#1|) . T)) +(|has| |#1| (-218)) +(((|#1| (-509 |#3|)) . T)) +(|has| |#1| (-352)) +(((|#2| (-225 (-2258 |#1|) (-731))) . T)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) (((|#1|) . T) (($) . T)) -(((|#1| (-503 |#2|)) . T)) -(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(((|#1| (-721)) . T)) -(|has| |#1| (-523)) -(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-795)) (|has| |#2| (-986))) +(((|#1| (-509 |#2|)) . T)) +(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(((|#1| (-731)) . T)) +(|has| |#1| (-529)) +(-1533 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-805)) (|has| |#2| (-998))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-806)) . T)) -(-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) -(-1435 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986))) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(((|#1|) |has| |#1| (-162))) -(((|#4|) |has| |#4| (-986))) -(((|#3|) |has| |#3| (-986))) -(-12 (|has| |#1| (-344)) (|has| |#2| (-770))) -(-12 (|has| |#1| (-344)) (|has| |#2| (-770))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T)) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -((((-806)) . T)) -((($) . T) (((-388 (-531))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1030)) (((-531)) -12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030))) (((-388 (-531))) -12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030)))) -(((|#3|) |has| |#3| (-1030)) (((-531)) -12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (((-388 (-531))) -12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) -(|has| |#2| (-344)) -(((|#2|) |has| |#2| (-986)) (((-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) -(((|#1|) . T)) -(|has| |#2| (-344)) -(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T)) +((((-816)) . T)) +(-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) +(-1533 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998))) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(((|#1|) |has| |#1| (-163))) +(((|#4|) |has| |#4| (-998))) +(((|#3|) |has| |#3| (-998))) +(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) +(-12 (|has| |#1| (-347)) (|has| |#2| (-780))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-391 |#2|)) . T) (((-391 (-537))) . T) (($) . T)) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +((((-816)) . T)) +((($) . T) (((-391 (-537))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1045)) (((-537)) -12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045))) (((-391 (-537))) -12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045)))) +(((|#3|) |has| |#3| (-1045)) (((-537)) -12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (((-391 (-537))) -12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) +(|has| |#2| (-347)) +(((|#2|) |has| |#2| (-998)) (((-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) +(((|#1|) . T)) +(|has| |#2| (-347)) +(((#0=(-391 (-537)) #0#) |has| |#2| (-37 (-391 (-537)))) ((|#2| |#2|) . T) (($ $) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1| |#1|) . T) ((#0=(-391 (-537)) #0#) |has| |#1| (-37 (-391 (-537))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-391 (-537)) #0#) . T)) (((|#2| |#2|) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) . T) (($) . T) (((-388 (-531))) . T)) -(((|#2|) . T)) -((((-806)) |has| |#1| (-1030))) -((($) . T)) -((((-1170 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-770)) -(|has| |#2| (-770)) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) -(|has| |#1| (-344)) -(((|#1|) |has| |#2| (-398 |#1|))) -(((|#1|) |has| |#2| (-398 |#1|))) -((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) . T)) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -((((-531) |#1|) . T)) -((((-531) |#1|) . T)) -((((-531) |#1|) . T)) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((((-531) |#1|) . T)) -(((|#1|) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((((-1102)) |has| |#1| (-843 (-1102))) (((-768 (-1102))) . T)) -(-1435 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986))) -((((-769 |#1|)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T) (($) -1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) . T) (($) . T) (((-391 (-537))) . T)) +(((|#2|) . T)) +((((-816)) |has| |#1| (-1045))) +((($) . T)) +((((-1186 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-780)) +(|has| |#2| (-780)) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) +(|has| |#1| (-347)) +(((|#1|) |has| |#2| (-401 |#1|))) +(((|#1|) |has| |#2| (-401 |#1|))) +((((-863 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) . T)) +((((-1153)) . T) (((-816)) . T) (((-1122)) . T)) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) |has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +((((-537) |#1|) . T)) +((((-537) |#1|) . T)) +((((-537) |#1|) . T)) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-537) |#1|) . T)) +(((|#1|) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((((-1117)) |has| |#1| (-853 (-1117))) (((-778 (-1117))) . T)) +(-1533 (|has| |#3| (-129)) (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-753)) (|has| |#3| (-805)) (|has| |#3| (-998))) +((((-779 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-806)) . T)) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986))) +((((-816)) . T)) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-388 (-531)))) -((((-806)) . T)) -((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-531))) . T)) -(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)) (((-388 (-531))) |has| |#1| (-523))) -(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531)))) -(|has| |#1| (-344)) -(-1435 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (-12 (|has| |#1| (-344)) (|has| |#2| (-216)))) -(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) -(|has| |#1| (-344)) -(((|#1|) . T)) -(((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1| |#1|) . T)) -((((-531) |#1|) . T)) -((((-297 |#1|)) . T)) -(((#0=(-649) (-1098 #0#)) . T)) -((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1|) . T)) +(|has| |#1| (-37 (-391 (-537)))) +((((-816)) . T)) +((((-1186 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-391 (-537))) . T)) +(((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529)) (((-391 (-537))) |has| |#1| (-529))) +(((|#2|) . T) (((-537)) |has| |#2| (-602 (-537)))) +(|has| |#1| (-347)) +(-1533 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (-12 (|has| |#1| (-347)) (|has| |#2| (-218)))) +(|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) +(|has| |#1| (-347)) +(((|#1|) . T)) +(((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1| |#1|) . T)) +((((-537) |#1|) . T)) +((((-300 |#1|)) . T)) +(((#0=(-659) (-1113 #0#)) . T)) +((((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-795)) -((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1054 |#1| (-1102))) . T) (((-768 (-1102))) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-1102)) . T)) +(|has| |#1| (-805)) +((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1069 |#1| (-1117))) . T) (((-778 (-1117))) . T) ((|#1|) . T) (((-537)) |has| |#1| (-989 (-537))) (((-391 (-537))) |has| |#1| (-989 (-391 (-537)))) (((-1117)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1014) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1102) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-1020 (-1102)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1027) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1117) $) |has| |#1| (-218)) ((#0# |#1|) |has| |#1| (-218)) ((#1=(-1034 (-1117)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531))))) -(|has| |#2| (-852)) -((($) . T) ((#0=(-1169 |#2| |#3| |#4|)) |has| #0# (-162)) (((-388 (-531))) |has| #0# (-37 (-388 (-531))))) -((((-531) |#1|) . T)) -(((#0=(-1170 |#1| |#2| |#3| |#4|)) |has| #0# (-291 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#2| |#2|) |has| |#1| (-344)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344)))) -(|has| |#2| (-216)) -(|has| $ (-140)) -((((-806)) . T)) -((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T)) -((((-806)) . T)) -(|has| |#1| (-795)) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) -((((-388 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-806)) . T)) -(((|#2| (-624 |#1|)) . T)) -(-12 (|has| |#1| (-289)) (|has| |#1| (-852))) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +((($) . T) ((|#2|) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537))))) +(|has| |#2| (-862)) +((($) . T) ((#0=(-1185 |#2| |#3| |#4|)) |has| #0# (-163)) (((-391 (-537))) |has| #0# (-37 (-391 (-537))))) +((((-537) |#1|) . T)) +(((#0=(-1186 |#1| |#2| |#3| |#4|)) |has| #0# (-293 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#2| |#2|) |has| |#1| (-347)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) ((#0=(-391 (-537)) #0#) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) +(|has| |#2| (-218)) +(|has| $ (-141)) +((((-816)) . T)) +((($) . T) (((-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-333))) ((|#1|) . T)) +((((-816)) . T)) +(|has| |#1| (-805)) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) +((((-391 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-816)) . T)) +(((|#2| (-633 |#1|)) . T)) +(-12 (|has| |#1| (-291)) (|has| |#1| (-862))) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#4|) . T)) -(|has| |#1| (-523)) -((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) ((|#1|) . T)) -((((-1102)) -1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) -(((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344)))) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) -(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) -((((-531) |#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(((|#1|) . T)) -(((|#1| (-503 (-768 (-1102)))) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#1|) . T)) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -(((|#1|) . T)) -(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -((($) . T) (((-813 |#1|)) . T) (((-388 (-531))) . T)) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -(|has| |#1| (-523)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-388 |#2|)) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-388 (-531)) #0#) . T) (($ $) . T)) -((((-531)) . T)) -((((-806)) . T)) -(((|#2|) . T) (((-388 (-531))) . T) (($) . T)) -((((-544 |#1|)) . T) (((-388 (-531))) . T) (($) . T)) -((((-806)) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-531) |#1|) . T)) -((((-806)) . T)) -((($ $) . T) (((-1102) $) . T)) -((((-1176 |#1| |#2| |#3|)) . T)) -((((-1176 |#1| |#2| |#3|)) . T) (((-1148 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) . T)) -((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531))))) -((((-806)) . T)) -((((-806)) . T)) -((((-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) (((-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) (((-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507))))) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#1|) . T) (((-806)) . T) (((-1107)) . T)) -((((-806)) . T)) -(((|#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T)) -((((-806)) . T)) -((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344))) -(|has| |#1| (-344)) -((((-1102)) . T) (((-806)) . T)) -((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))) +(|has| |#1| (-529)) +((($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347))) ((|#2|) |has| |#1| (-347)) ((|#1|) . T)) +((((-1117)) -1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) +(((|#1|) . T) (($) -1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-529))) (((-391 (-537))) -1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-347)))) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) +(((|#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) +((((-537) |#1|) . T)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(((|#1|) . T)) +(((|#1| (-509 (-778 (-1117)))) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#1|) . T)) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +(((|#1|) . T)) +(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +((($) . T) (((-823 |#1|)) . T) (((-391 (-537))) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +(|has| |#1| (-529)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-391 |#2|)) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-391 (-537)) #0#) . T) (($ $) . T)) +((((-537)) . T)) +((((-816)) . T)) +(((|#2|) . T) (((-391 (-537))) . T) (($) . T)) +((((-550 |#1|)) . T) (((-391 (-537))) . T) (($) . T)) +((((-816)) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-537) |#1|) . T)) +((((-816)) . T)) +((($ $) . T) (((-1117) $) . T)) +((((-1192 |#1| |#2| |#3|)) . T)) +((((-1192 |#1| |#2| |#3|)) . T) (((-1164 |#1| |#2| |#3|)) . T)) +(((|#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) . T)) +((((-513)) |has| |#2| (-580 (-513))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537))))) +((((-816)) . T)) +((((-816)) . T)) +((((-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) (((-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) (((-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513))))) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#1|) . T) (((-816)) . T) (((-1122)) . T)) +((((-816)) . T)) +(((|#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) . T)) +((((-816)) . T)) +((((-1192 |#1| |#2| |#3|)) |has| |#1| (-347))) +(|has| |#1| (-347)) +((((-1117)) . T) (((-816)) . T)) +((((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) |has| |#2| (-163)) (($) -1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T)) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((((-1034)) . T)) -((((-806)) . T)) -((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T)) -((($) . T)) -((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(|has| |#2| (-852)) -(|has| |#1| (-852)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-162))) -((((-649)) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -(((|#1|) |has| |#1| (-162))) -(((|#1|) |has| |#1| (-162))) -((((-388 (-531))) . T) (($) . T)) -(((|#1| (-531)) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(|has| |#1| (-344)) -(|has| |#1| (-344)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(-1435 (|has| |#1| (-162)) (|has| |#1| (-523))) -(((|#1| (-531)) . T)) -(((|#1| (-388 (-531))) . T)) -(((|#1| (-721)) . T)) -((((-388 (-531))) . T)) -(((|#1| (-503 |#2|) |#2|) . T)) -((((-531) |#1|) . T)) -((((-531) |#1|) . T)) -(|has| |#1| (-1030)) -((((-531) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-835 (-360))) . T) (((-835 (-531))) . T) (((-1102)) . T) (((-507)) . T)) -(((|#1|) . T)) -((((-806)) . T)) -(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986))) -(-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) -((((-531)) . T)) -((((-531)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) +((($) . T) (((-391 (-537))) |has| |#2| (-37 (-391 (-537)))) ((|#2|) . T)) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((((-1049)) . T)) +((((-816)) . T)) +((($) -1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) +((($) . T)) +((($) -1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) ((|#1|) |has| |#1| (-163)) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(|has| |#2| (-862)) +(|has| |#1| (-862)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-163))) +((((-659)) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +(((|#1|) |has| |#1| (-163))) +(((|#1|) |has| |#1| (-163))) +((((-391 (-537))) . T) (($) . T)) +(((|#1| (-537)) . T)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(|has| |#1| (-347)) +(|has| |#1| (-347)) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(-1533 (|has| |#1| (-163)) (|has| |#1| (-529))) +(((|#1| (-537)) . T)) +(((|#1| (-391 (-537))) . T)) +(((|#1| (-731)) . T)) +((((-391 (-537))) . T)) +(((|#1| (-509 |#2|) |#2|) . T)) +((((-537) |#1|) . T)) +((((-537) |#1|) . T)) +(|has| |#1| (-1045)) +((((-537) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-845 (-363))) . T) (((-845 (-537))) . T) (((-1117)) . T) (((-513)) . T)) +(((|#1|) . T)) +((((-816)) . T)) +(-1533 (|has| |#2| (-129)) (|has| |#2| (-163)) (|has| |#2| (-347)) (|has| |#2| (-753)) (|has| |#2| (-805)) (|has| |#2| (-998))) +(-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) +((((-537)) . T)) +((((-537)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986))) -((((-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) -(-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))) -(|has| |#1| (-138)) -(|has| |#1| (-140)) -(|has| |#1| (-344)) +(-1533 (|has| |#2| (-163)) (|has| |#2| (-687)) (|has| |#2| (-805)) (|has| |#2| (-998))) +((((-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) +(-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))) +(|has| |#1| (-139)) +(|has| |#1| (-141)) +(|has| |#1| (-347)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-216)) -((((-806)) . T)) -(((|#1| (-721) (-1014)) . T)) -((((-531) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-531) |#1|) . T)) -((((-531) |#1|) . T)) -((((-114 |#1|)) . T)) -((((-388 (-531))) . T) (((-531)) . T)) -(((|#2|) |has| |#2| (-986))) -((((-388 (-531))) . T) (($) . T)) -(((|#2|) . T)) -((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523))) -((((-531)) . T)) -((((-531)) . T)) -((((-1085) (-1102) (-531) (-208) (-806)) . T)) +(|has| |#1| (-218)) +((((-816)) . T)) +(((|#1| (-731) (-1027)) . T)) +((((-537) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-537) |#1|) . T)) +((((-537) |#1|) . T)) +((((-115 |#1|)) . T)) +((((-391 (-537))) . T) (((-537)) . T)) +(((|#2|) |has| |#2| (-998))) +((((-391 (-537))) . T) (($) . T)) +(((|#2|) . T)) +((((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) |has| |#1| (-163)) (($) |has| |#1| (-529))) +((((-537)) . T)) +((((-537)) . T)) +((((-1100) (-1117) (-537) (-210) (-816)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1435 (|has| |#1| (-330)) (|has| |#1| (-349))) +(-1533 (|has| |#1| (-333)) (|has| |#1| (-352))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-806)) . T)) -((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531))))) -(((|#2|) |has| |#2| (-1030)) (((-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (((-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) -((((-507)) |has| |#1| (-573 (-507)))) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030)))) -((($) . T) (((-388 (-531))) . T)) -(|has| |#1| (-852)) -(|has| |#1| (-852)) -((((-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) (((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) (((-835 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-360))))) (((-835 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-531))))) (((-507)) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-507))))) -((((-806)) . T)) -((((-806)) . T)) +((((-816)) . T)) +((($) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-391 (-537))) |has| |#1| (-37 (-391 (-537))))) +(((|#2|) |has| |#2| (-1045)) (((-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (((-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) +((((-513)) |has| |#1| (-580 (-513)))) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-807)) (|has| |#1| (-1045)))) +((($) . T) (((-391 (-537))) . T)) +(|has| |#1| (-862)) +(|has| |#1| (-862)) +((((-210)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) (((-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) (((-845 (-363))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-363))))) (((-845 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-537))))) (((-513)) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-513))))) +((((-816)) . T)) +((((-816)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-162))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-523))) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -(((|#2|) . T)) -(-1435 (|has| |#1| (-21)) (|has| |#1| (-795))) -(((|#1|) |has| |#1| (-162))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-806)) -1435 (-12 (|has| |#1| (-572 (-806))) (|has| |#2| (-572 (-806)))) (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) -((((-388 |#2|) |#3|) . T)) -((((-388 (-531))) . T) (($) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-344)) -((($ $) . T) ((#0=(-388 (-531)) #0#) . T)) -(|has| (-388 |#2|) (-140)) -(|has| (-388 |#2|) (-138)) -((((-649)) . T)) -(((|#1|) . T) (((-388 (-531))) . T) (((-531)) . T) (($) . T)) -(((#0=(-531) #0#) . T)) -((($) . T) (((-388 (-531))) . T)) -(-1435 (|has| |#4| (-162)) (|has| |#4| (-677)) (|has| |#4| (-795)) (|has| |#4| (-986))) -(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986))) -(|has| |#4| (-743)) -(-1435 (|has| |#4| (-743)) (|has| |#4| (-795))) -(|has| |#4| (-795)) -(|has| |#3| (-743)) -(-1435 (|has| |#3| (-743)) (|has| |#3| (-795))) -(|has| |#3| (-795)) -((((-531)) . T)) -(((|#2|) . T)) -((((-1102)) -1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) -((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) +(((|#1| |#1|) |has| |#1| (-163))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-529))) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +(((|#2|) . T)) +(-1533 (|has| |#1| (-21)) (|has| |#1| (-805))) +(((|#1|) |has| |#1| (-163))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-816)) -1533 (-12 (|has| |#1| (-579 (-816))) (|has| |#2| (-579 (-816)))) (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) +((((-391 |#2|) |#3|) . T)) +((((-391 (-537))) . T) (($) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-347)) +((($ $) . T) ((#0=(-391 (-537)) #0#) . T)) +(|has| (-391 |#2|) (-141)) +(|has| (-391 |#2|) (-139)) +((((-659)) . T)) +(((|#1|) . T) (((-391 (-537))) . T) (((-537)) . T) (($) . T)) +(((#0=(-537) #0#) . T)) +((($) . T) (((-391 (-537))) . T)) +(-1533 (|has| |#4| (-163)) (|has| |#4| (-687)) (|has| |#4| (-805)) (|has| |#4| (-998))) +(-1533 (|has| |#3| (-163)) (|has| |#3| (-687)) (|has| |#3| (-805)) (|has| |#3| (-998))) +(|has| |#4| (-753)) +(-1533 (|has| |#4| (-753)) (|has| |#4| (-805))) +(|has| |#4| (-805)) +(|has| |#3| (-753)) +(-1533 (|has| |#3| (-753)) (|has| |#3| (-805))) +(|has| |#3| (-805)) +((((-537)) . T)) +(((|#2|) . T)) +((((-1117)) -1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) +((((-1117)) -12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-808 |#1|)) . T)) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) -((((-1067 |#1| |#2|)) . T)) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) -(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -((($) . T)) -(|has| |#1| (-962)) -(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -((((-806)) . T)) -((((-507)) |has| |#2| (-573 (-507))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-360)) . #0=(|has| |#2| (-962))) (((-208)) . #0#)) -((((-1102) (-51)) . T)) -(|has| |#1| (-37 (-388 (-531)))) -(|has| |#1| (-37 (-388 (-531)))) +((((-818 |#1|)) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) +((((-1082 |#1| |#2|)) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) +(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +((($) . T)) +(|has| |#1| (-973)) +(((|#2|) . T) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +((((-816)) . T)) +((((-513)) |has| |#2| (-580 (-513))) (((-845 (-537))) |has| |#2| (-580 (-845 (-537)))) (((-845 (-363))) |has| |#2| (-580 (-845 (-363)))) (((-363)) . #0=(|has| |#2| (-973))) (((-210)) . #0#)) +((((-1117) (-51)) . T)) +(|has| |#1| (-37 (-391 (-537)))) +(|has| |#1| (-37 (-391 (-537)))) (((|#2|) . T)) ((($ $) . T)) -((((-388 (-531))) . T) (((-649)) . T) (($) . T)) -((((-1100 |#1| |#2| |#3|)) . T)) -((((-1100 |#1| |#2| |#3|)) . T) (((-1093 |#1| |#2| |#3|)) . T)) -((((-806)) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-531) |#1|) . T)) -((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344))) +((((-391 (-537))) . T) (((-659)) . T) (($) . T)) +((((-1115 |#1| |#2| |#3|)) . T)) +((((-1115 |#1| |#2| |#3|)) . T) (((-1108 |#1| |#2| |#3|)) . T)) +((((-816)) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-537) |#1|) . T)) +((((-1115 |#1| |#2| |#3|)) |has| |#1| (-347))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-344)) -(((|#3|) . T) ((|#2|) . T) (($) -1435 (|has| |#4| (-162)) (|has| |#4| (-795)) (|has| |#4| (-986))) ((|#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-986)))) -(((|#2|) . T) (($) -1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) ((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986)))) +(|has| |#2| (-347)) +(((|#3|) . T) ((|#2|) . T) (($) -1533 (|has| |#4| (-163)) (|has| |#4| (-805)) (|has| |#4| (-998))) ((|#4|) -1533 (|has| |#4| (-163)) (|has| |#4| (-347)) (|has| |#4| (-998)))) +(((|#2|) . T) (($) -1533 (|has| |#3| (-163)) (|has| |#3| (-805)) (|has| |#3| (-998))) ((|#3|) -1533 (|has| |#3| (-163)) (|has| |#3| (-347)) (|has| |#3| (-998)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-344)) -((((-114 |#1|)) . T)) +(|has| |#1| (-347)) +((((-115 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T)) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) +((((-391 (-537))) |has| |#2| (-989 (-391 (-537)))) (((-537)) |has| |#2| (-989 (-537))) ((|#2|) . T) (((-818 |#1|)) . T)) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) (((|#1|) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) -((((-127)) . T) (((-806)) . T)) -((((-531) |#1|) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) +((((-128)) . T) (((-816)) . T)) +((((-537) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-347)) (|has| |#2| (-270 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-852))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) -((((-806)) . T)) -((((-806)) . T)) -((((-806)) . T)) -(((|#1| (-503 |#2|)) . T)) -((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T)) -(((|#1| (-531)) . T)) -(((|#1| (-388 (-531))) . T)) -(((|#1| (-721)) . T)) -((((-806)) . T) (((-1107)) . T)) -((((-114 |#1|)) . T) (($) . T) (((-388 (-531))) . T)) -(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) -(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) -((($) . T)) -(((|#2| (-503 (-808 |#1|))) . T)) -((((-531) |#1|) . T)) -(((|#2|) . T)) -(((|#2| (-721)) . T)) -((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030)))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-435)) (|has| |#1| (-862))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) +((((-816)) . T)) +((((-816)) . T)) +((((-816)) . T)) +(((|#1| (-509 |#2|)) . T)) +((((-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) . T)) +(((|#1| (-537)) . T)) +(((|#1| (-391 (-537))) . T)) +(((|#1| (-731)) . T)) +((((-816)) . T) (((-1122)) . T)) +((((-816)) . T) (((-1122)) . T)) +((((-115 |#1|)) . T) (($) . T) (((-391 (-537))) . T)) +((((-816)) . T) (((-1122)) . T)) +((((-816)) . T) (((-1122)) . T)) +((((-816)) . T) (((-1122)) . T)) +(-1533 (|has| |#2| (-435)) (|has| |#2| (-529)) (|has| |#2| (-862))) +(-1533 (|has| |#1| (-435)) (|has| |#1| (-529)) (|has| |#1| (-862))) +((($) . T)) +(((|#2| (-509 (-818 |#1|))) . T)) +((((-537) |#1|) . T)) +(((|#2|) . T)) +(((|#2| (-731)) . T)) +((((-816)) -1533 (|has| |#1| (-579 (-816))) (|has| |#1| (-1045)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1085) |#1|) . T)) -((((-388 |#2|)) . T)) -((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T)) -(|has| |#1| (-523)) -(|has| |#1| (-523)) +((((-1100) |#1|) . T)) +((((-391 |#2|)) . T)) +((((-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T)) +(|has| |#1| (-529)) +(|has| |#1| (-529)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-268 |#2| |#2|))) -(((|#1| (-598 |#1|)) |has| |#1| (-795))) -(-1435 (|has| |#1| (-216)) (|has| |#1| (-330))) -(-1435 (|has| |#1| (-344)) (|has| |#1| (-330))) -(|has| |#1| (-1030)) -(((|#1|) . T)) -((((-388 (-531))) . T) (($) . T)) -((((-940 |#1|)) . T) ((|#1|) . T) (((-531)) -1435 (|has| (-940 |#1|) (-977 (-531))) (|has| |#1| (-977 (-531)))) (((-388 (-531))) -1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -((((-1102)) |has| |#1| (-843 (-1102)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) -(((|#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) . T)) +(((|#2| $) |has| |#2| (-270 |#2| |#2|))) +(((|#1| (-606 |#1|)) |has| |#1| (-805))) +(-1533 (|has| |#1| (-218)) (|has| |#1| (-333))) +(-1533 (|has| |#1| (-347)) (|has| |#1| (-333))) +(|has| |#1| (-1045)) +(((|#1|) . T)) +((((-391 (-537))) . T) (($) . T)) +((((-951 |#1|)) . T) ((|#1|) . T) (((-537)) -1533 (|has| (-951 |#1|) (-989 (-537))) (|has| |#1| (-989 (-537)))) (((-391 (-537))) -1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +((((-1117)) |has| |#1| (-853 (-1117)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) +(((|#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1067 |#1| |#2|) #0#) |has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) -(((#0=(-114 |#1|)) |has| #0# (-291 #0#))) -(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030))) +(((#0=(-1082 |#1| |#2|) #0#) |has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((#0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) #0#) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) +(((#0=(-115 |#1|)) |has| #0# (-293 #0#))) +(-1533 (|has| |#1| (-807)) (|has| |#1| (-1045))) ((($ $) . T)) -((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-216)) ((|#2| |#1|) |has| |#1| (-216)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-615 . -1030) T) ((-246 . -492) 143421) ((-230 . -492) 143364) ((-538 . -109) 143349) ((-503 . -23) T) ((-228 . -1030) 143299) ((-115 . -291) 143256) ((-458 . -492) 143048) ((-644 . -99) T) ((-1068 . -492) 142967) ((-371 . -128) T) ((-1195 . -918) 142936) ((-562 . -468) 142920) ((-577 . -128) T) ((-769 . -793) T) ((-500 . -55) 142870) ((-57 . -492) 142803) ((-496 . -492) 142736) ((-399 . -843) 142695) ((-159 . -986) T) ((-494 . -492) 142628) ((-475 . -492) 142561) ((-474 . -492) 142494) ((-749 . -977) 142281) ((-649 . -37) 142246) ((-324 . -330) T) ((-1025 . -1024) 142230) ((-1025 . -1030) 142208) ((-159 . -226) 142159) ((-159 . -216) 142110) ((-1025 . -1026) 142068) ((-815 . -268) 142026) ((-208 . -745) T) ((-208 . -742) T) ((-644 . -266) NIL) ((-1077 . -1115) 142005) ((-388 . -934) 141989) ((-651 . -21) T) ((-651 . -25) T) ((-1197 . -601) 141963) ((-297 . -151) 141942) ((-297 . -136) 141921) ((-1077 . -104) 141871) ((-130 . -25) T) ((-39 . -214) 141848) ((-114 . -21) T) ((-114 . -25) T) ((-567 . -270) 141824) ((-455 . -270) 141803) ((-1157 . -986) T) ((-802 . -986) T) ((-749 . -319) 141787) ((-115 . -1078) NIL) ((-89 . -572) 141719) ((-457 . -128) T) ((-554 . -1138) T) ((-1157 . -307) 141696) ((-538 . -986) T) ((-1157 . -216) T) ((-615 . -668) 141680) ((-901 . -270) 141657) ((-58 . -33) T) ((-997 . -745) T) ((-997 . -742) T) ((-766 . -677) T) ((-682 . -46) 141622) ((-579 . -37) 141609) ((-336 . -272) T) ((-333 . -272) T) ((-325 . -272) T) ((-246 . -272) 141540) ((-230 . -272) 141471) ((-964 . -99) T) ((-394 . -677) T) ((-115 . -37) 141416) ((-394 . -453) T) ((-462 . -572) 141382) ((-335 . -99) T) ((-1133 . -993) T) ((-662 . -993) T) ((-1100 . -46) 141359) ((-1099 . -46) 141329) ((-1093 . -46) 141306) ((-975 . -144) 141252) ((-853 . -272) T) ((-1055 . -46) 141224) ((-644 . -291) NIL) ((-493 . -572) 141206) ((-488 . -572) 141188) ((-486 . -572) 141170) ((-308 . -1030) 141120) ((-663 . -432) 141051) ((-47 . -99) T) ((-1168 . -268) 141036) ((-1147 . -268) 140956) ((-598 . -619) 140940) ((-598 . -604) 140924) ((-320 . -21) T) ((-320 . -25) T) ((-39 . -330) NIL) ((-163 . -21) T) ((-163 . -25) T) ((-598 . -354) 140908) ((-562 . -268) 140885) ((-565 . -572) 140852) ((-369 . -99) T) ((-1049 . -136) T) ((-124 . -572) 140784) ((-817 . -1030) T) ((-611 . -392) 140768) ((-665 . -572) 140750) ((-152 . -572) 140732) ((-148 . -572) 140714) ((-1197 . -677) T) ((-1032 . -33) T) ((-814 . -745) NIL) ((-814 . -742) NIL) ((-805 . -797) T) ((-682 . -829) NIL) ((-1206 . -128) T) ((-362 . -128) T) ((-847 . -99) T) ((-682 . -977) 140592) ((-503 . -128) T) ((-1019 . -392) 140576) ((-941 . -468) 140560) ((-115 . -381) 140537) ((-1093 . -1138) 140516) ((-732 . -392) 140500) ((-730 . -392) 140484) ((-886 . -33) T) ((-644 . -1078) NIL) ((-233 . -601) 140321) ((-232 . -601) 140145) ((-767 . -863) 140124) ((-434 . -392) 140108) ((-562 . -19) 140092) ((-1073 . -1132) 140061) ((-1093 . -829) NIL) ((-1093 . -827) 140013) ((-562 . -564) 139990) ((-1125 . -572) 139922) ((-1101 . -572) 139904) ((-60 . -376) T) ((-1099 . -977) 139839) ((-1093 . -977) 139805) ((-644 . -37) 139755) ((-454 . -268) 139740) ((-682 . -358) 139724) ((-611 . -993) T) ((-1168 . -943) 139690) ((-1147 . -943) 139656) ((-998 . -1115) 139631) ((-815 . -573) 139439) ((-815 . -572) 139421) ((-1112 . -468) 139358) ((-399 . -962) 139337) ((-47 . -291) 139324) ((-998 . -104) 139270) ((-458 . -468) 139207) ((-497 . -1138) T) ((-1093 . -319) 139159) ((-1068 . -468) 139130) ((-1093 . -358) 139082) ((-1019 . -993) T) ((-418 . -99) T) ((-171 . -1030) T) ((-233 . -33) T) ((-232 . -33) T) ((-732 . -993) T) ((-730 . -993) T) ((-682 . -843) 139059) ((-434 . -993) T) ((-57 . -468) 139043) ((-974 . -992) 139017) ((-496 . -468) 139001) ((-494 . -468) 138985) ((-475 . -468) 138969) ((-474 . -468) 138953) ((-228 . -492) 138886) ((-974 . -109) 138853) ((-1100 . -843) 138766) ((-1099 . -843) 138672) ((-623 . -1042) T) ((-1093 . -843) 138505) ((-599 . -91) T) ((-1055 . -843) 138489) ((-335 . -1078) T) ((-303 . -992) 138471) ((-233 . -741) 138450) ((-233 . -744) 138401) ((-233 . -743) 138380) ((-232 . -741) 138359) ((-232 . -744) 138310) ((-232 . -743) 138289) ((-49 . -993) T) ((-233 . -677) 138200) ((-232 . -677) 138111) ((-1133 . -1030) T) ((-623 . -23) T) ((-544 . -993) T) ((-495 . -993) T) ((-360 . -992) 138076) ((-303 . -109) 138051) ((-71 . -364) T) ((-71 . -376) T) ((-964 . -37) 137988) ((-644 . -381) 137970) ((-96 . -99) T) ((-662 . -1030) T) ((-944 . -138) 137942) ((-944 . -140) 137914) ((-360 . -109) 137870) ((-300 . -1142) 137849) ((-454 . -943) 137815) ((-335 . -37) 137780) ((-39 . -351) 137752) ((-816 . -572) 137624) ((-125 . -123) 137608) ((-119 . -123) 137592) ((-784 . -992) 137562) ((-783 . -21) 137514) ((-777 . -992) 137498) ((-783 . -25) 137450) ((-300 . -523) 137401) ((-531 . -778) T) ((-223 . -1138) T) ((-784 . -109) 137366) ((-777 . -109) 137345) ((-1168 . -572) 137327) ((-1147 . -572) 137309) ((-1147 . -573) 136982) ((-1098 . -852) 136961) ((-1054 . -852) 136940) ((-47 . -37) 136905) ((-1204 . -1042) T) ((-562 . -572) 136817) ((-562 . -573) 136778) ((-1202 . -1042) T) ((-223 . -977) 136607) ((-1098 . -601) 136532) ((-1054 . -601) 136457) ((-669 . -572) 136439) ((-801 . -601) 136413) ((-469 . -1030) T) ((-1204 . -23) T) ((-1202 . -23) T) ((-974 . -986) T) ((-1112 . -268) 136392) ((-159 . -349) 136343) ((-945 . -1138) T) ((-43 . -23) T) ((-458 . -268) 136322) ((-548 . -1030) T) ((-1073 . -1039) 136291) ((-1034 . -1033) 136243) ((-126 . -1138) T) ((-371 . -21) T) ((-371 . -25) T) ((-145 . -1042) T) ((-1210 . -99) T) ((-945 . -827) 136225) ((-945 . -829) 136207) ((-1133 . -668) 136104) ((-579 . -214) 136088) ((-577 . -21) T) ((-271 . -523) T) ((-577 . -25) T) ((-1119 . -1030) T) ((-662 . -668) 136053) ((-223 . -358) 136023) ((-945 . -977) 135983) ((-360 . -986) T) ((-206 . -993) T) ((-115 . -214) 135960) ((-57 . -268) 135937) ((-145 . -23) T) ((-494 . -268) 135914) ((-308 . -492) 135847) ((-474 . -268) 135824) ((-360 . -226) T) ((-360 . -216) T) ((-784 . -986) T) ((-777 . -986) T) ((-663 . -892) 135793) ((-651 . -797) T) ((-454 . -572) 135775) ((-777 . -216) 135754) ((-130 . -797) T) ((-611 . -1030) T) ((-1112 . -564) 135733) ((-517 . -1115) 135712) ((-317 . -1030) T) ((-300 . -344) 135691) ((-388 . -140) 135670) ((-388 . -138) 135649) ((-907 . -1042) 135548) ((-223 . -843) 135481) ((-765 . -1042) 135392) ((-607 . -799) 135376) ((-458 . -564) 135355) ((-517 . -104) 135305) ((-945 . -358) 135287) ((-945 . -319) 135269) ((-94 . -1030) T) ((-907 . -23) 135080) ((-457 . -21) T) ((-457 . -25) T) ((-765 . -23) 134951) ((-1102 . -572) 134933) ((-57 . -19) 134917) ((-1102 . -573) 134839) ((-1098 . -677) T) ((-1054 . -677) T) ((-494 . -19) 134823) ((-474 . -19) 134807) ((-57 . -564) 134784) ((-1019 . -1030) T) ((-844 . -99) 134762) ((-801 . -677) T) ((-732 . -1030) T) ((-494 . -564) 134739) ((-474 . -564) 134716) ((-730 . -1030) T) ((-730 . -1000) 134683) ((-441 . -1030) T) ((-434 . -1030) T) ((-548 . -668) 134658) ((-602 . -1030) T) ((-945 . -843) NIL) ((-1176 . -46) 134635) ((-582 . -1042) T) ((-623 . -128) T) ((-1170 . -99) T) ((-1169 . -46) 134605) ((-1148 . -46) 134582) ((-1133 . -162) 134533) ((-1012 . -1142) 134484) ((-257 . -1030) T) ((-83 . -421) T) ((-83 . -376) T) ((-1099 . -289) 134463) ((-1093 . -289) 134442) ((-49 . -1030) T) ((-1012 . -523) 134393) ((-662 . -162) T) ((-556 . -46) 134370) ((-208 . -601) 134335) ((-544 . -1030) T) ((-495 . -1030) T) ((-340 . -1142) T) ((-334 . -1142) T) ((-326 . -1142) T) ((-466 . -770) T) ((-466 . -863) T) ((-300 . -1042) T) ((-105 . -1142) T) ((-320 . -797) T) ((-201 . -863) T) ((-201 . -770) T) ((-665 . -992) 134305) ((-340 . -523) T) ((-334 . -523) T) ((-326 . -523) T) ((-105 . -523) T) ((-611 . -668) 134275) ((-1093 . -962) NIL) ((-300 . -23) T) ((-65 . -1138) T) ((-941 . -572) 134207) ((-644 . -214) 134189) ((-665 . -109) 134154) ((-598 . -33) T) ((-228 . -468) 134138) ((-1032 . -1028) 134122) ((-161 . -1030) T) ((-895 . -852) 134101) ((-460 . -852) 134080) ((-1206 . -21) T) ((-1206 . -25) T) ((-1204 . -128) T) ((-1202 . -128) T) ((-1019 . -668) 133929) ((-997 . -601) 133916) ((-895 . -601) 133841) ((-732 . -668) 133670) ((-507 . -572) 133652) ((-507 . -573) 133633) ((-730 . -668) 133482) ((-1195 . -99) T) ((-1009 . -99) T) ((-362 . -25) T) ((-362 . -21) T) ((-460 . -601) 133407) ((-441 . -668) 133378) ((-434 . -668) 133227) ((-929 . -99) T) ((-688 . -99) T) ((-1210 . -1078) T) ((-1180 . -572) 133193) ((-503 . -25) T) ((-1148 . -1138) 133172) ((-1148 . -829) NIL) ((-1148 . -827) 133124) ((-1112 . -573) NIL) ((-134 . -99) T) ((-43 . -128) T) ((-1112 . -572) 133106) ((-1069 . -1052) 133051) ((-324 . -993) T) ((-617 . -572) 133033) ((-599 . -572) 132986) ((-271 . -1042) T) ((-336 . -572) 132968) ((-333 . -572) 132950) ((-325 . -572) 132932) ((-246 . -573) 132680) ((-246 . -572) 132662) ((-230 . -572) 132644) ((-230 . -573) 132505) ((-983 . -1132) 132434) ((-844 . -291) 132372) ((-1169 . -977) 132307) ((-1148 . -977) 132273) ((-1133 . -492) 132240) ((-1068 . -572) 132222) ((-769 . -804) T) ((-769 . -677) T) ((-562 . -270) 132199) ((-544 . -668) 132164) ((-458 . -573) NIL) ((-458 . -572) 132146) ((-495 . -668) 132091) ((-297 . -99) T) ((-294 . -99) T) ((-271 . -23) T) ((-145 . -128) T) ((-367 . -677) T) ((-815 . -992) 132043) ((-853 . -572) 132025) ((-853 . -573) 132007) ((-815 . -109) 131945) ((-132 . -99) T) ((-112 . -99) T) ((-663 . -1160) 131929) ((-665 . -986) T) ((-644 . -330) NIL) ((-496 . -572) 131861) ((-360 . -745) T) ((-206 . -1030) T) ((-360 . -742) T) ((-208 . -744) T) ((-208 . -741) T) ((-57 . -573) 131822) ((-57 . -572) 131734) ((-208 . -677) T) ((-494 . -573) 131695) ((-494 . -572) 131607) ((-475 . -572) 131539) ((-474 . -573) 131500) ((-474 . -572) 131412) ((-1012 . -344) 131363) ((-39 . -392) 131340) ((-75 . -1138) T) ((-814 . -852) NIL) ((-340 . -310) 131324) ((-340 . -344) T) ((-334 . -310) 131308) ((-334 . -344) T) ((-326 . -310) 131292) ((-326 . -344) T) ((-297 . -266) 131271) ((-105 . -344) T) ((-68 . -1138) T) ((-1148 . -319) 131223) ((-814 . -601) 131168) ((-1148 . -358) 131120) ((-907 . -128) 130975) ((-765 . -128) 130846) ((-901 . -604) 130830) ((-1019 . -162) 130741) ((-901 . -354) 130725) ((-997 . -744) T) ((-997 . -741) T) ((-732 . -162) 130616) ((-730 . -162) 130527) ((-766 . -46) 130489) ((-997 . -677) T) ((-308 . -468) 130473) ((-895 . -677) T) ((-434 . -162) 130384) ((-228 . -268) 130361) ((-460 . -677) T) ((-1195 . -291) 130299) ((-1176 . -843) 130212) ((-1169 . -843) 130118) ((-1168 . -992) 129953) ((-1148 . -843) 129786) ((-1147 . -992) 129594) ((-1133 . -272) 129573) ((-1073 . -144) 129557) ((-1049 . -99) T) ((-1007 . -99) T) ((-870 . -898) T) ((-73 . -1138) T) ((-688 . -291) 129495) ((-159 . -852) 129448) ((-617 . -363) 129420) ((-30 . -898) T) ((-1 . -572) 129402) ((-1047 . -1030) T) ((-1012 . -23) T) ((-49 . -576) 129386) ((-1012 . -1042) T) ((-944 . -390) 129358) ((-556 . -843) 129271) ((-419 . -99) T) ((-134 . -291) NIL) ((-815 . -986) T) ((-783 . -797) 129250) ((-79 . -1138) T) ((-662 . -272) T) ((-39 . -993) T) ((-544 . -162) T) ((-495 . -162) T) ((-489 . -572) 129232) ((-159 . -601) 129142) ((-485 . -572) 129124) ((-332 . -140) 129106) ((-332 . -138) T) ((-340 . -1042) T) ((-334 . -1042) T) ((-326 . -1042) T) ((-945 . -289) T) ((-857 . -289) T) ((-815 . -226) T) ((-105 . -1042) T) ((-815 . -216) 129085) ((-1168 . -109) 128906) ((-1147 . -109) 128695) ((-228 . -1172) 128679) ((-531 . -795) T) ((-340 . -23) T) ((-335 . -330) T) ((-297 . -291) 128666) ((-294 . -291) 128607) ((-334 . -23) T) ((-300 . -128) T) ((-326 . -23) T) ((-945 . -962) T) ((-105 . -23) T) ((-228 . -564) 128584) ((-1170 . -37) 128476) ((-1157 . -852) 128455) ((-110 . -1030) T) ((-975 . -99) T) ((-1157 . -601) 128380) ((-814 . -744) NIL) ((-802 . -601) 128354) ((-814 . -741) NIL) ((-766 . -829) NIL) ((-814 . -677) T) ((-1019 . -492) 128227) ((-732 . -492) 128174) ((-730 . -492) 128126) ((-538 . -601) 128113) ((-766 . -977) 127943) ((-434 . -492) 127886) ((-369 . -370) T) ((-58 . -1138) T) ((-577 . -797) 127865) ((-478 . -614) T) ((-1073 . -918) 127834) ((-944 . -432) T) ((-649 . -795) T) ((-488 . -742) T) ((-454 . -992) 127669) ((-324 . -1030) T) ((-294 . -1078) NIL) ((-271 . -128) T) ((-375 . -1030) T) ((-644 . -351) 127636) ((-813 . -993) T) ((-206 . -576) 127613) ((-308 . -268) 127590) ((-454 . -109) 127411) ((-1168 . -986) T) ((-1147 . -986) T) ((-766 . -358) 127395) ((-159 . -677) T) ((-607 . -99) T) ((-1168 . -226) 127374) ((-1168 . -216) 127326) ((-1147 . -216) 127231) ((-1147 . -226) 127210) ((-944 . -383) NIL) ((-623 . -594) 127158) ((-297 . -37) 127068) ((-294 . -37) 126997) ((-67 . -572) 126979) ((-300 . -471) 126945) ((-1112 . -270) 126924) ((-1043 . -1042) 126835) ((-81 . -1138) T) ((-59 . -572) 126817) ((-458 . -270) 126796) ((-1197 . -977) 126773) ((-1091 . -1030) T) ((-1043 . -23) 126644) ((-766 . -843) 126580) ((-1157 . -677) T) ((-1032 . -1138) T) ((-1019 . -272) 126511) ((-836 . -99) T) ((-732 . -272) 126422) ((-308 . -19) 126406) ((-57 . -270) 126383) ((-730 . -272) 126314) ((-802 . -677) T) ((-115 . -795) NIL) ((-494 . -270) 126291) ((-308 . -564) 126268) ((-474 . -270) 126245) ((-434 . -272) 126176) ((-975 . -291) 126027) ((-538 . -677) T) ((-615 . -572) 126009) ((-228 . -573) 125970) ((-228 . -572) 125882) ((-1074 . -33) T) ((-886 . -1138) T) ((-324 . -668) 125827) ((-623 . -25) T) ((-623 . -21) T) ((-454 . -986) T) ((-590 . -398) 125792) ((-566 . -398) 125757) ((-1049 . -1078) T) ((-544 . -272) T) ((-495 . -272) T) ((-1169 . -289) 125736) ((-454 . -216) 125688) ((-454 . -226) 125667) ((-1148 . -289) 125646) ((-1148 . -962) NIL) ((-1012 . -128) T) ((-815 . -745) 125625) ((-137 . -99) T) ((-39 . -1030) T) ((-815 . -742) 125604) ((-598 . -951) 125588) ((-543 . -993) T) ((-531 . -993) T) ((-473 . -993) T) ((-388 . -432) T) ((-340 . -128) T) ((-297 . -381) 125572) ((-294 . -381) 125533) ((-334 . -128) T) ((-326 . -128) T) ((-1107 . -1030) T) ((-1049 . -37) 125520) ((-1025 . -572) 125487) ((-105 . -128) T) ((-897 . -1030) T) ((-864 . -1030) T) ((-721 . -1030) T) ((-624 . -1030) T) ((-484 . -1015) T) ((-651 . -140) T) ((-114 . -140) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-1202 . -21) T) ((-1202 . -25) T) ((-617 . -992) 125471) ((-503 . -797) T) ((-478 . -797) T) ((-336 . -992) 125423) ((-333 . -992) 125375) ((-325 . -992) 125327) ((-233 . -1138) T) ((-232 . -1138) T) ((-246 . -992) 125170) ((-230 . -992) 125013) ((-617 . -109) 124992) ((-336 . -109) 124930) ((-333 . -109) 124868) ((-325 . -109) 124806) ((-246 . -109) 124635) ((-230 . -109) 124464) ((-767 . -1142) 124443) ((-579 . -392) 124427) ((-43 . -21) T) ((-43 . -25) T) ((-765 . -594) 124335) ((-767 . -523) 124314) ((-233 . -977) 124143) ((-232 . -977) 123972) ((-124 . -117) 123956) ((-853 . -992) 123921) ((-649 . -993) T) ((-663 . -99) T) ((-324 . -162) T) ((-145 . -21) T) ((-145 . -25) T) ((-86 . -572) 123903) ((-853 . -109) 123859) ((-39 . -668) 123804) ((-813 . -1030) T) ((-308 . -573) 123765) ((-308 . -572) 123677) ((-1147 . -742) 123630) ((-1147 . -745) 123583) ((-233 . -358) 123553) ((-232 . -358) 123523) ((-607 . -37) 123493) ((-567 . -33) T) ((-461 . -1042) 123404) ((-455 . -33) T) ((-1043 . -128) 123275) ((-907 . -25) 123086) ((-817 . -572) 123068) ((-907 . -21) 123023) ((-765 . -21) 122934) ((-765 . -25) 122786) ((-579 . -993) T) ((-1104 . -523) 122765) ((-1098 . -46) 122742) ((-336 . -986) T) ((-333 . -986) T) ((-461 . -23) 122613) ((-325 . -986) T) ((-230 . -986) T) ((-246 . -986) T) ((-1054 . -46) 122585) ((-115 . -993) T) ((-974 . -601) 122559) ((-901 . -33) T) ((-336 . -216) 122538) ((-336 . -226) T) ((-333 . -216) 122517) ((-333 . -226) T) ((-230 . -307) 122474) ((-325 . -216) 122453) ((-325 . -226) T) ((-246 . -307) 122425) ((-246 . -216) 122404) ((-1083 . -144) 122388) ((-233 . -843) 122321) ((-232 . -843) 122254) ((-1014 . -797) T) ((-1151 . -1138) T) ((-395 . -1042) T) ((-990 . -23) T) ((-853 . -986) T) ((-303 . -601) 122236) ((-964 . -795) T) ((-1133 . -943) 122202) ((-1099 . -863) 122181) ((-1093 . -863) 122160) ((-853 . -226) T) ((-767 . -344) 122139) ((-366 . -23) T) ((-125 . -1030) 122117) ((-119 . -1030) 122095) ((-853 . -216) T) ((-1093 . -770) NIL) ((-360 . -601) 122060) ((-813 . -668) 122047) ((-983 . -144) 122012) ((-39 . -162) T) ((-644 . -392) 121994) ((-663 . -291) 121981) ((-784 . -601) 121941) ((-777 . -601) 121915) ((-300 . -25) T) ((-300 . -21) T) ((-611 . -268) 121894) ((-543 . -1030) T) ((-531 . -1030) T) ((-473 . -1030) T) ((-228 . -270) 121871) ((-294 . -214) 121832) ((-1098 . -829) NIL) ((-1054 . -829) 121691) ((-127 . -797) T) ((-1098 . -977) 121573) ((-1054 . -977) 121458) ((-171 . -572) 121440) ((-801 . -977) 121338) ((-732 . -268) 121265) ((-767 . -1042) T) ((-974 . -677) T) ((-562 . -604) 121249) ((-983 . -918) 121178) ((-940 . -99) T) ((-767 . -23) T) ((-663 . -1078) 121156) ((-644 . -993) T) ((-562 . -354) 121140) ((-332 . -432) T) ((-324 . -272) T) ((-1185 . -1030) T) ((-231 . -1030) T) ((-380 . -99) T) ((-271 . -21) T) ((-271 . -25) T) ((-342 . -677) T) ((-661 . -1030) T) ((-649 . -1030) T) ((-342 . -453) T) ((-1133 . -572) 121122) ((-1098 . -358) 121106) ((-1054 . -358) 121090) ((-964 . -392) 121052) ((-134 . -212) 121034) ((-360 . -744) T) ((-360 . -741) T) ((-813 . -162) T) ((-360 . -677) T) ((-662 . -572) 121016) ((-663 . -37) 120845) ((-1184 . -1182) 120829) ((-332 . -383) T) ((-1184 . -1030) 120779) ((-543 . -668) 120766) ((-531 . -668) 120753) ((-473 . -668) 120718) ((-297 . -584) 120697) ((-784 . -677) T) ((-777 . -677) T) ((-598 . -1138) T) ((-1012 . -594) 120645) ((-1098 . -843) 120588) ((-1054 . -843) 120572) ((-615 . -992) 120556) ((-105 . -594) 120538) ((-461 . -128) 120409) ((-1104 . -1042) T) ((-895 . -46) 120378) ((-579 . -1030) T) ((-615 . -109) 120357) ((-469 . -572) 120323) ((-308 . -270) 120300) ((-460 . -46) 120257) ((-1104 . -23) T) ((-115 . -1030) T) ((-100 . -99) 120235) ((-1194 . -1042) T) ((-990 . -128) T) ((-964 . -993) T) ((-769 . -977) 120219) ((-944 . -675) 120191) ((-1194 . -23) T) ((-649 . -668) 120156) ((-548 . -572) 120138) ((-367 . -977) 120122) ((-335 . -993) T) ((-366 . -128) T) ((-305 . -977) 120106) ((-208 . -829) 120088) ((-945 . -863) T) ((-89 . -33) T) ((-945 . -770) T) ((-857 . -863) T) ((-466 . -1142) T) ((-1119 . -572) 120070) ((-1035 . -1030) T) ((-201 . -1142) T) ((-940 . -291) 120035) ((-208 . -977) 119995) ((-39 . -272) T) ((-1012 . -21) T) ((-1012 . -25) T) ((-1049 . -778) T) ((-466 . -523) T) ((-340 . -25) T) ((-201 . -523) T) ((-340 . -21) T) ((-334 . -25) T) ((-334 . -21) T) ((-665 . -601) 119955) ((-326 . -25) T) ((-326 . -21) T) ((-105 . -25) T) ((-105 . -21) T) ((-47 . -993) T) ((-543 . -162) T) ((-531 . -162) T) ((-473 . -162) T) ((-611 . -572) 119937) ((-688 . -687) 119921) ((-317 . -572) 119903) ((-66 . -364) T) ((-66 . -376) T) ((-1032 . -104) 119887) ((-997 . -829) 119869) ((-895 . -829) 119794) ((-606 . -1042) T) ((-579 . -668) 119781) ((-460 . -829) NIL) ((-1073 . -99) T) ((-997 . -977) 119763) ((-94 . -572) 119745) ((-457 . -140) T) ((-895 . -977) 119627) ((-115 . -668) 119572) ((-606 . -23) T) ((-460 . -977) 119450) ((-1019 . -573) NIL) ((-1019 . -572) 119432) ((-732 . -573) NIL) ((-732 . -572) 119393) ((-730 . -573) 119028) ((-730 . -572) 118942) ((-1043 . -594) 118850) ((-441 . -572) 118832) ((-434 . -572) 118814) ((-434 . -573) 118675) ((-975 . -212) 118621) ((-124 . -33) T) ((-767 . -128) T) ((-815 . -852) 118600) ((-602 . -572) 118582) ((-336 . -1201) 118566) ((-333 . -1201) 118550) ((-325 . -1201) 118534) ((-125 . -492) 118467) ((-119 . -492) 118400) ((-489 . -742) T) ((-489 . -745) T) ((-488 . -744) T) ((-100 . -291) 118338) ((-205 . -99) 118316) ((-644 . -1030) T) ((-649 . -162) T) ((-815 . -601) 118268) ((-63 . -365) T) ((-257 . -572) 118250) ((-63 . -376) T) ((-895 . -358) 118234) ((-813 . -272) T) ((-49 . -572) 118216) ((-940 . -37) 118164) ((-544 . -572) 118146) ((-460 . -358) 118130) ((-544 . -573) 118112) ((-495 . -572) 118094) ((-853 . -1201) 118081) ((-814 . -1138) T) ((-651 . -432) T) ((-473 . -492) 118047) ((-466 . -344) T) ((-336 . -349) 118026) ((-333 . -349) 118005) ((-325 . -349) 117984) ((-201 . -344) T) ((-665 . -677) T) ((-114 . -432) T) ((-1205 . -1196) 117968) ((-814 . -827) 117945) ((-814 . -829) NIL) ((-907 . -797) 117844) ((-765 . -797) 117795) ((-607 . -609) 117779) ((-1125 . -33) T) ((-161 . -572) 117761) ((-1043 . -21) 117672) ((-1043 . -25) 117524) ((-814 . -977) 117501) ((-895 . -843) 117482) ((-1157 . -46) 117459) ((-853 . -349) T) ((-57 . -604) 117443) ((-494 . -604) 117427) ((-460 . -843) 117404) ((-69 . -421) T) ((-69 . -376) T) ((-474 . -604) 117388) ((-57 . -354) 117372) ((-579 . -162) T) ((-494 . -354) 117356) ((-474 . -354) 117340) ((-777 . -659) 117324) ((-1098 . -289) 117303) ((-1104 . -128) T) ((-115 . -162) T) ((-1073 . -291) 117241) ((-159 . -1138) T) ((-590 . -695) 117225) ((-566 . -695) 117209) ((-1194 . -128) T) ((-1169 . -863) 117188) ((-1148 . -863) 117167) ((-1148 . -770) NIL) ((-644 . -668) 117117) ((-1147 . -852) 117070) ((-964 . -1030) T) ((-814 . -358) 117047) ((-814 . -319) 117024) ((-848 . -1042) T) ((-159 . -827) 117008) ((-159 . -829) 116933) ((-466 . -1042) T) ((-335 . -1030) T) ((-201 . -1042) T) ((-74 . -421) T) ((-74 . -376) T) ((-159 . -977) 116831) ((-300 . -797) T) ((-1184 . -492) 116764) ((-1168 . -601) 116661) ((-1147 . -601) 116531) ((-815 . -744) 116510) ((-815 . -741) 116489) ((-815 . -677) T) ((-466 . -23) T) ((-206 . -572) 116471) ((-163 . -432) T) ((-205 . -291) 116409) ((-84 . -421) T) ((-84 . -376) T) ((-201 . -23) T) ((-1206 . -1199) 116388) ((-543 . -272) T) ((-531 . -272) T) ((-628 . -977) 116372) ((-473 . -272) T) ((-132 . -450) 116327) ((-47 . -1030) T) ((-663 . -214) 116311) ((-814 . -843) NIL) ((-1157 . -829) NIL) ((-832 . -99) T) ((-828 . -99) T) ((-369 . -1030) T) ((-159 . -358) 116295) ((-159 . -319) 116279) ((-1157 . -977) 116161) ((-802 . -977) 116059) ((-1069 . -99) T) ((-606 . -128) T) ((-115 . -492) 115967) ((-615 . -742) 115946) ((-615 . -745) 115925) ((-538 . -977) 115907) ((-276 . -1191) 115877) ((-809 . -99) T) ((-906 . -523) 115856) ((-1133 . -992) 115739) ((-461 . -594) 115647) ((-847 . -1030) T) ((-964 . -668) 115584) ((-662 . -992) 115549) ((-562 . -33) T) ((-1074 . -1138) T) ((-1133 . -109) 115418) ((-454 . -601) 115315) ((-335 . -668) 115260) ((-159 . -843) 115219) ((-649 . -272) T) ((-644 . -162) T) ((-662 . -109) 115175) ((-1210 . -993) T) ((-1157 . -358) 115159) ((-399 . -1142) 115137) ((-1047 . -572) 115119) ((-294 . -795) NIL) ((-399 . -523) T) ((-208 . -289) T) ((-1147 . -741) 115072) ((-1147 . -744) 115025) ((-1168 . -677) T) ((-1147 . -677) T) ((-47 . -668) 114990) ((-208 . -962) T) ((-332 . -1191) 114967) ((-1170 . -392) 114933) ((-669 . -677) T) ((-1157 . -843) 114876) ((-110 . -572) 114858) ((-110 . -573) 114840) ((-669 . -453) T) ((-461 . -21) 114751) ((-125 . -468) 114735) ((-119 . -468) 114719) ((-461 . -25) 114571) ((-579 . -272) T) ((-548 . -992) 114546) ((-418 . -1030) T) ((-997 . -289) T) ((-115 . -272) T) ((-1034 . -99) T) ((-944 . -99) T) ((-548 . -109) 114514) ((-1069 . -291) 114452) ((-1133 . -986) T) ((-997 . -962) T) ((-64 . -1138) T) ((-990 . -25) T) ((-990 . -21) T) ((-662 . -986) T) ((-366 . -21) T) ((-366 . -25) T) ((-644 . -492) NIL) ((-964 . -162) T) ((-662 . -226) T) ((-997 . -516) T) ((-484 . -99) T) ((-480 . -99) T) ((-335 . -162) T) ((-324 . -572) 114434) ((-375 . -572) 114416) ((-454 . -677) T) ((-1049 . -795) T) ((-835 . -977) 114384) ((-105 . -797) T) ((-611 . -992) 114368) ((-466 . -128) T) ((-1170 . -993) T) ((-201 . -128) T) ((-1083 . -99) 114346) ((-96 . -1030) T) ((-228 . -619) 114330) ((-228 . -604) 114314) ((-611 . -109) 114293) ((-297 . -392) 114277) ((-228 . -354) 114261) ((-1086 . -218) 114208) ((-940 . -214) 114192) ((-72 . -1138) T) ((-47 . -162) T) ((-651 . -368) T) ((-651 . -136) T) ((-1205 . -99) T) ((-1019 . -992) 114035) ((-246 . -852) 114014) ((-230 . -852) 113993) ((-732 . -992) 113816) ((-730 . -992) 113659) ((-567 . -1138) T) ((-1091 . -572) 113641) ((-1019 . -109) 113470) ((-983 . -99) T) ((-455 . -1138) T) ((-441 . -992) 113441) ((-434 . -992) 113284) ((-617 . -601) 113268) ((-814 . -289) T) ((-732 . -109) 113077) ((-730 . -109) 112906) ((-336 . -601) 112858) ((-333 . -601) 112810) ((-325 . -601) 112762) ((-246 . -601) 112687) ((-230 . -601) 112612) ((-1085 . -797) T) ((-1020 . -977) 112596) ((-441 . -109) 112557) ((-434 . -109) 112386) ((-1008 . -977) 112363) ((-941 . -33) T) ((-909 . -572) 112324) ((-901 . -1138) T) ((-124 . -951) 112308) ((-906 . -1042) T) ((-814 . -962) NIL) ((-686 . -1042) T) ((-666 . -1042) T) ((-1184 . -468) 112292) ((-1069 . -37) 112252) ((-906 . -23) T) ((-790 . -99) T) ((-767 . -21) T) ((-767 . -25) T) ((-686 . -23) T) ((-666 . -23) T) ((-108 . -614) T) ((-853 . -601) 112217) ((-544 . -992) 112182) ((-495 . -992) 112127) ((-210 . -55) 112085) ((-433 . -23) T) ((-388 . -99) T) ((-245 . -99) T) ((-644 . -272) T) ((-809 . -37) 112055) ((-544 . -109) 112011) ((-495 . -109) 111940) ((-399 . -1042) T) ((-297 . -993) 111831) ((-294 . -993) T) ((-611 . -986) T) ((-1210 . -1030) T) ((-159 . -289) 111762) ((-399 . -23) T) ((-39 . -572) 111744) ((-39 . -573) 111728) ((-105 . -934) 111710) ((-114 . -812) 111694) ((-47 . -492) 111660) ((-1125 . -951) 111644) ((-1107 . -572) 111626) ((-1112 . -33) T) ((-897 . -572) 111592) ((-864 . -572) 111574) ((-1043 . -797) 111525) ((-721 . -572) 111507) ((-624 . -572) 111489) ((-1083 . -291) 111427) ((-458 . -33) T) ((-1023 . -1138) T) ((-457 . -432) T) ((-1019 . -986) T) ((-1068 . -33) T) ((-732 . -986) T) ((-730 . -986) T) ((-600 . -218) 111411) ((-587 . -218) 111357) ((-1157 . -289) 111336) ((-1019 . -307) 111297) ((-434 . -986) T) ((-1104 . -21) T) ((-1019 . -216) 111276) ((-732 . -307) 111253) ((-732 . -216) T) ((-730 . -307) 111225) ((-308 . -604) 111209) ((-682 . -1142) 111188) ((-1104 . -25) T) ((-57 . -33) T) ((-496 . -33) T) ((-494 . -33) T) ((-434 . -307) 111167) ((-308 . -354) 111151) ((-475 . -33) T) ((-474 . -33) T) ((-944 . -1078) NIL) ((-590 . -99) T) ((-566 . -99) T) ((-682 . -523) 111082) ((-336 . -677) T) ((-333 . -677) T) ((-325 . -677) T) ((-246 . -677) T) ((-230 . -677) T) ((-983 . -291) 110990) ((-844 . -1030) 110968) ((-49 . -986) T) ((-1194 . -21) T) ((-1194 . -25) T) ((-1100 . -523) 110947) ((-1099 . -1142) 110926) ((-544 . -986) T) ((-495 . -986) T) ((-1093 . -1142) 110905) ((-342 . -977) 110889) ((-303 . -977) 110873) ((-964 . -272) T) ((-360 . -829) 110855) ((-1099 . -523) 110806) ((-1093 . -523) 110757) ((-944 . -37) 110702) ((-749 . -1042) T) ((-853 . -677) T) ((-544 . -226) T) ((-544 . -216) T) ((-495 . -216) T) ((-495 . -226) T) ((-1055 . -523) 110681) ((-335 . -272) T) ((-600 . -645) 110665) ((-360 . -977) 110625) ((-1049 . -993) T) ((-100 . -123) 110609) ((-749 . -23) T) ((-1184 . -268) 110586) ((-388 . -291) 110551) ((-1204 . -1199) 110527) ((-1202 . -1199) 110506) ((-1170 . -1030) T) ((-813 . -572) 110488) ((-784 . -977) 110457) ((-187 . -737) T) ((-186 . -737) T) ((-185 . -737) T) ((-184 . -737) T) ((-183 . -737) T) ((-182 . -737) T) ((-181 . -737) T) ((-180 . -737) T) ((-179 . -737) T) ((-178 . -737) T) ((-473 . -943) T) ((-256 . -786) T) ((-255 . -786) T) ((-254 . -786) T) ((-253 . -786) T) ((-47 . -272) T) ((-252 . -786) T) ((-251 . -786) T) ((-250 . -786) T) ((-177 . -737) T) ((-571 . -797) T) ((-607 . -392) 110441) ((-108 . -797) T) ((-606 . -21) T) ((-606 . -25) T) ((-1205 . -37) 110411) ((-115 . -268) 110362) ((-1184 . -19) 110346) ((-1184 . -564) 110323) ((-1195 . -1030) T) ((-1009 . -1030) T) ((-929 . -1030) T) ((-906 . -128) T) ((-688 . -1030) T) ((-686 . -128) T) ((-666 . -128) T) ((-489 . -743) T) ((-388 . -1078) 110301) ((-433 . -128) T) ((-489 . -744) T) ((-206 . -986) T) ((-276 . -99) 110084) ((-134 . -1030) T) ((-649 . -943) T) ((-89 . -1138) T) ((-125 . -572) 110016) ((-119 . -572) 109948) ((-1210 . -162) T) ((-1099 . -344) 109927) ((-1093 . -344) 109906) ((-297 . -1030) T) ((-399 . -128) T) ((-294 . -1030) T) ((-388 . -37) 109858) ((-1062 . -99) T) ((-1170 . -668) 109750) ((-607 . -993) T) ((-300 . -138) 109729) ((-300 . -140) 109708) ((-132 . -1030) T) ((-112 . -1030) T) ((-805 . -99) T) ((-543 . -572) 109690) ((-531 . -573) 109589) ((-531 . -572) 109571) ((-473 . -572) 109553) ((-473 . -573) 109498) ((-464 . -23) T) ((-461 . -797) 109449) ((-466 . -594) 109431) ((-908 . -572) 109413) ((-201 . -594) 109395) ((-208 . -385) T) ((-615 . -601) 109379) ((-1098 . -863) 109358) ((-682 . -1042) T) ((-332 . -99) T) ((-768 . -797) T) ((-682 . -23) T) ((-324 . -992) 109303) ((-1085 . -1084) T) ((-1074 . -104) 109287) ((-1100 . -1042) T) ((-1099 . -1042) T) ((-493 . -977) 109271) ((-1093 . -1042) T) ((-1055 . -1042) T) ((-324 . -109) 109200) ((-945 . -1142) T) ((-124 . -1138) T) ((-857 . -1142) T) ((-644 . -268) NIL) ((-1185 . -572) 109182) ((-1100 . -23) T) ((-1099 . -23) T) ((-1093 . -23) T) ((-945 . -523) T) ((-1069 . -214) 109166) ((-857 . -523) T) ((-1055 . -23) T) ((-231 . -572) 109148) ((-1007 . -1030) T) ((-749 . -128) T) ((-661 . -572) 109130) ((-297 . -668) 109040) ((-294 . -668) 108969) ((-649 . -572) 108951) ((-649 . -573) 108896) ((-388 . -381) 108880) ((-419 . -1030) T) ((-466 . -25) T) ((-466 . -21) T) ((-1049 . -1030) T) ((-201 . -25) T) ((-201 . -21) T) ((-663 . -392) 108864) ((-665 . -977) 108833) ((-1184 . -572) 108745) ((-1184 . -573) 108706) ((-1170 . -162) T) ((-228 . -33) T) ((-869 . -916) T) ((-1125 . -1138) T) ((-615 . -741) 108685) ((-615 . -744) 108664) ((-379 . -376) T) ((-500 . -99) 108642) ((-975 . -1030) T) ((-205 . -936) 108626) ((-482 . -99) T) ((-579 . -572) 108608) ((-44 . -797) NIL) ((-579 . -573) 108585) ((-975 . -569) 108560) ((-844 . -492) 108493) ((-324 . -986) T) ((-115 . -573) NIL) ((-115 . -572) 108475) ((-815 . -1138) T) ((-623 . -398) 108459) ((-623 . -1052) 108404) ((-478 . -144) 108386) ((-324 . -216) T) ((-324 . -226) T) ((-39 . -992) 108331) ((-815 . -827) 108315) ((-815 . -829) 108240) ((-663 . -993) T) ((-644 . -943) NIL) ((-3 . |UnionCategory|) T) ((-1168 . -46) 108210) ((-1147 . -46) 108187) ((-1068 . -951) 108158) ((-208 . -863) T) ((-39 . -109) 108087) ((-815 . -977) 107954) ((-1049 . -668) 107941) ((-1035 . -572) 107923) ((-1012 . -140) 107902) ((-1012 . -138) 107853) ((-945 . -344) T) ((-300 . -1127) 107819) ((-360 . -289) T) ((-300 . -1124) 107785) ((-297 . -162) 107764) ((-294 . -162) T) ((-944 . -214) 107741) ((-857 . -344) T) ((-544 . -1201) 107728) ((-495 . -1201) 107705) ((-340 . -140) 107684) ((-340 . -138) 107635) ((-334 . -140) 107614) ((-334 . -138) 107565) ((-567 . -1115) 107541) ((-326 . -140) 107520) ((-326 . -138) 107471) ((-300 . -34) 107437) ((-455 . -1115) 107416) ((0 . |EnumerationCategory|) T) ((-300 . -93) 107382) ((-360 . -962) T) ((-105 . -140) T) ((-105 . -138) NIL) ((-44 . -218) 107332) ((-607 . -1030) T) ((-567 . -104) 107279) ((-464 . -128) T) ((-455 . -104) 107229) ((-223 . -1042) 107140) ((-815 . -358) 107124) ((-815 . -319) 107108) ((-223 . -23) 106979) ((-997 . -863) T) ((-997 . -770) T) ((-544 . -349) T) ((-495 . -349) T) ((-332 . -1078) T) ((-308 . -33) T) ((-43 . -398) 106963) ((-816 . -1138) T) ((-371 . -695) 106947) ((-1195 . -492) 106880) ((-682 . -128) T) ((-1176 . -523) 106859) ((-1169 . -1142) 106838) ((-1169 . -523) 106789) ((-1148 . -1142) 106768) ((-1148 . -523) 106719) ((-688 . -492) 106652) ((-1147 . -1138) 106631) ((-1147 . -829) 106504) ((-836 . -1030) T) ((-137 . -791) T) ((-1147 . -827) 106474) ((-641 . -572) 106456) ((-1100 . -128) T) ((-500 . -291) 106394) ((-1099 . -128) T) ((-134 . -492) NIL) ((-1093 . -128) T) ((-1055 . -128) T) ((-964 . -943) T) ((-945 . -23) T) ((-332 . -37) 106359) ((-945 . -1042) T) ((-857 . -1042) T) ((-80 . -572) 106341) ((-39 . -986) T) ((-813 . -992) 106328) ((-944 . -330) NIL) ((-815 . -843) 106287) ((-651 . -99) T) ((-913 . -23) T) ((-562 . -1138) T) ((-857 . -23) T) ((-813 . -109) 106272) ((-408 . -1042) T) ((-454 . -46) 106242) ((-197 . -99) T) ((-130 . -99) T) ((-39 . -216) 106214) ((-39 . -226) T) ((-114 . -99) T) ((-557 . -523) 106193) ((-556 . -523) 106172) ((-644 . -572) 106154) ((-644 . -573) 106062) ((-297 . -492) 106028) ((-294 . -492) 105920) ((-1168 . -977) 105904) ((-1147 . -977) 105693) ((-940 . -392) 105677) ((-408 . -23) T) ((-1049 . -162) T) ((-1170 . -272) T) ((-607 . -668) 105647) ((-137 . -1030) T) ((-47 . -943) T) ((-388 . -214) 105631) ((-277 . -218) 105581) ((-814 . -863) T) ((-814 . -770) NIL) ((-808 . -797) T) ((-1147 . -319) 105551) ((-1147 . -358) 105521) ((-205 . -1050) 105505) ((-1184 . -270) 105482) ((-1133 . -601) 105407) ((-906 . -21) T) ((-906 . -25) T) ((-686 . -21) T) ((-686 . -25) T) ((-666 . -21) T) ((-666 . -25) T) ((-662 . -601) 105372) ((-433 . -21) T) ((-433 . -25) T) ((-320 . -99) T) ((-163 . -99) T) ((-940 . -993) T) ((-813 . -986) T) ((-724 . -99) T) ((-1169 . -344) 105351) ((-1168 . -843) 105257) ((-1148 . -344) 105236) ((-1147 . -843) 105087) ((-964 . -572) 105069) ((-388 . -778) 105022) ((-1100 . -471) 104988) ((-159 . -863) 104919) ((-1099 . -471) 104885) ((-1093 . -471) 104851) ((-663 . -1030) T) ((-1055 . -471) 104817) ((-543 . -992) 104804) ((-531 . -992) 104791) ((-473 . -992) 104756) ((-297 . -272) 104735) ((-294 . -272) T) ((-335 . -572) 104717) ((-399 . -25) T) ((-399 . -21) T) ((-96 . -268) 104696) ((-543 . -109) 104681) ((-531 . -109) 104666) ((-473 . -109) 104622) ((-1102 . -829) 104589) ((-844 . -468) 104573) ((-47 . -572) 104555) ((-47 . -573) 104500) ((-223 . -128) 104371) ((-1157 . -863) 104350) ((-766 . -1142) 104329) ((-975 . -492) 104173) ((-369 . -572) 104155) ((-766 . -523) 104086) ((-548 . -601) 104061) ((-246 . -46) 104033) ((-230 . -46) 103990) ((-503 . -487) 103967) ((-941 . -1138) T) ((-649 . -992) 103932) ((-1176 . -1042) T) ((-1169 . -1042) T) ((-1148 . -1042) T) ((-944 . -351) 103904) ((-110 . -349) T) ((-454 . -843) 103810) ((-1176 . -23) T) ((-1169 . -23) T) ((-847 . -572) 103792) ((-89 . -104) 103776) ((-1133 . -677) T) ((-848 . -797) 103727) ((-651 . -1078) T) ((-649 . -109) 103683) ((-1148 . -23) T) ((-557 . -1042) T) ((-556 . -1042) T) ((-663 . -668) 103512) ((-662 . -677) T) ((-1049 . -272) T) ((-945 . -128) T) ((-466 . -797) T) ((-913 . -128) T) ((-857 . -128) T) ((-749 . -25) T) ((-201 . -797) T) ((-749 . -21) T) ((-543 . -986) T) ((-531 . -986) T) ((-473 . -986) T) ((-557 . -23) T) ((-324 . -1201) 103489) ((-300 . -432) 103468) ((-320 . -291) 103455) ((-556 . -23) T) ((-408 . -128) T) ((-611 . -601) 103429) ((-228 . -951) 103413) ((-815 . -289) T) ((-1206 . -1196) 103397) ((-651 . -37) 103384) ((-531 . -216) T) ((-473 . -226) T) ((-473 . -216) T) ((-721 . -742) T) ((-721 . -745) T) ((-1077 . -218) 103334) ((-1019 . -852) 103313) ((-114 . -37) 103300) ((-193 . -750) T) ((-192 . -750) T) ((-191 . -750) T) ((-190 . -750) T) ((-815 . -962) 103279) ((-1195 . -468) 103263) ((-732 . -852) 103242) ((-730 . -852) 103221) ((-1112 . -1138) T) ((-434 . -852) 103200) ((-688 . -468) 103184) ((-1019 . -601) 103109) ((-732 . -601) 103034) ((-579 . -992) 103021) ((-458 . -1138) T) ((-324 . -349) T) ((-134 . -468) 103003) ((-730 . -601) 102928) ((-1068 . -1138) T) ((-441 . -601) 102899) ((-246 . -829) 102758) ((-230 . -829) NIL) ((-115 . -992) 102703) ((-434 . -601) 102628) ((-617 . -977) 102605) ((-579 . -109) 102590) ((-336 . -977) 102574) ((-333 . -977) 102558) ((-325 . -977) 102542) ((-246 . -977) 102388) ((-230 . -977) 102266) ((-115 . -109) 102195) ((-57 . -1138) T) ((-496 . -1138) T) ((-494 . -1138) T) ((-475 . -1138) T) ((-474 . -1138) T) ((-418 . -572) 102177) ((-415 . -572) 102159) ((-3 . -99) T) ((-967 . -1132) 102128) ((-783 . -99) T) ((-639 . -55) 102086) ((-649 . -986) T) ((-49 . -601) 102060) ((-271 . -432) T) ((-456 . -1132) 102029) ((0 . -99) T) ((-544 . -601) 101994) ((-495 . -601) 101939) ((-48 . -99) T) ((-853 . -977) 101926) ((-649 . -226) T) ((-1012 . -390) 101905) ((-682 . -594) 101853) ((-940 . -1030) T) ((-663 . -162) 101744) ((-466 . -934) 101726) ((-246 . -358) 101710) ((-230 . -358) 101694) ((-380 . -1030) T) ((-320 . -37) 101678) ((-966 . -99) 101656) ((-201 . -934) 101638) ((-163 . -37) 101570) ((-1168 . -289) 101549) ((-1147 . -289) 101528) ((-611 . -677) T) ((-96 . -572) 101510) ((-1093 . -594) 101462) ((-464 . -25) T) ((-464 . -21) T) ((-1147 . -962) 101415) ((-579 . -986) T) ((-360 . -385) T) ((-371 . -99) T) ((-246 . -843) 101361) ((-230 . -843) 101338) ((-115 . -986) T) ((-766 . -1042) T) ((-1019 . -677) T) ((-579 . -216) 101317) ((-577 . -99) T) ((-732 . -677) T) ((-730 . -677) T) ((-394 . -1042) T) ((-115 . -226) T) ((-39 . -349) NIL) ((-115 . -216) NIL) ((-434 . -677) T) ((-766 . -23) T) ((-682 . -25) T) ((-682 . -21) T) ((-653 . -797) T) ((-1009 . -268) 101296) ((-76 . -377) T) ((-76 . -376) T) ((-644 . -992) 101246) ((-1176 . -128) T) ((-1169 . -128) T) ((-1148 . -128) T) ((-1069 . -392) 101230) ((-590 . -348) 101162) ((-566 . -348) 101094) ((-1083 . -1076) 101078) ((-100 . -1030) 101056) ((-1100 . -25) T) ((-1100 . -21) T) ((-1099 . -21) T) ((-940 . -668) 101004) ((-206 . -601) 100971) ((-644 . -109) 100905) ((-49 . -677) T) ((-1099 . -25) T) ((-332 . -330) T) ((-1093 . -21) T) ((-1012 . -432) 100856) ((-1093 . -25) T) ((-663 . -492) 100803) ((-544 . -677) T) ((-495 . -677) T) ((-1055 . -21) T) ((-1055 . -25) T) ((-557 . -128) T) ((-556 . -128) T) ((-340 . -432) T) ((-334 . -432) T) ((-326 . -432) T) ((-454 . -289) 100782) ((-294 . -268) 100717) ((-105 . -432) T) ((-77 . -421) T) ((-77 . -376) T) ((-457 . -99) T) ((-1210 . -572) 100699) ((-1210 . -573) 100681) ((-1012 . -383) 100660) ((-975 . -468) 100591) ((-531 . -745) T) ((-531 . -742) T) ((-998 . -218) 100537) ((-340 . -383) 100488) ((-334 . -383) 100439) ((-326 . -383) 100390) ((-1197 . -1042) T) ((-1197 . -23) T) ((-1186 . -99) T) ((-164 . -572) 100372) ((-1069 . -993) T) ((-623 . -695) 100356) ((-1104 . -138) 100335) ((-1104 . -140) 100314) ((-1073 . -1030) T) ((-1073 . -1005) 100283) ((-67 . -1138) T) ((-964 . -992) 100220) ((-809 . -993) T) ((-223 . -594) 100128) ((-644 . -986) T) ((-335 . -992) 100073) ((-59 . -1138) T) ((-964 . -109) 99989) ((-844 . -572) 99921) ((-644 . -226) T) ((-644 . -216) NIL) ((-790 . -795) 99900) ((-649 . -745) T) ((-649 . -742) T) ((-944 . -392) 99877) ((-335 . -109) 99806) ((-360 . -863) T) ((-388 . -795) 99785) ((-663 . -272) 99696) ((-206 . -677) T) ((-1176 . -471) 99662) ((-1169 . -471) 99628) ((-1148 . -471) 99594) ((-297 . -943) 99573) ((-205 . -1030) 99551) ((-300 . -915) 99513) ((-102 . -99) T) ((-47 . -992) 99478) ((-1206 . -99) T) ((-362 . -99) T) ((-47 . -109) 99434) ((-945 . -594) 99416) ((-1170 . -572) 99398) ((-503 . -99) T) ((-478 . -99) T) ((-1062 . -1063) 99382) ((-145 . -1191) 99366) ((-228 . -1138) T) ((-1098 . -1142) 99345) ((-1054 . -1142) 99324) ((-223 . -21) 99235) ((-223 . -25) 99087) ((-125 . -117) 99071) ((-119 . -117) 99055) ((-43 . -695) 99039) ((-1098 . -523) 98950) ((-1054 . -523) 98881) ((-975 . -268) 98856) ((-766 . -128) T) ((-115 . -745) NIL) ((-115 . -742) NIL) ((-336 . -289) T) ((-333 . -289) T) ((-325 . -289) T) ((-1025 . -1138) T) ((-233 . -1042) 98767) ((-232 . -1042) 98678) ((-964 . -986) T) ((-944 . -993) T) ((-324 . -601) 98623) ((-577 . -37) 98607) ((-1195 . -572) 98569) ((-1195 . -573) 98530) ((-1009 . -572) 98512) ((-964 . -226) T) ((-335 . -986) T) ((-765 . -1191) 98482) ((-233 . -23) T) ((-232 . -23) T) ((-929 . -572) 98464) ((-688 . -573) 98425) ((-688 . -572) 98407) ((-749 . -797) 98386) ((-940 . -492) 98298) ((-335 . -216) T) ((-335 . -226) T) ((-1086 . -144) 98245) ((-945 . -25) T) ((-134 . -572) 98227) ((-134 . -573) 98186) ((-853 . -289) T) ((-945 . -21) T) ((-913 . -25) T) ((-857 . -21) T) ((-857 . -25) T) ((-408 . -21) T) ((-408 . -25) T) ((-790 . -392) 98170) ((-47 . -986) T) ((-1204 . -1196) 98154) ((-1202 . -1196) 98138) ((-975 . -564) 98113) ((-297 . -573) 97974) ((-297 . -572) 97956) ((-294 . -573) NIL) ((-294 . -572) 97938) ((-47 . -226) T) ((-47 . -216) T) ((-607 . -268) 97899) ((-517 . -218) 97849) ((-132 . -572) 97831) ((-112 . -572) 97813) ((-457 . -37) 97778) ((-1206 . -1203) 97757) ((-1197 . -128) T) ((-1205 . -993) T) ((-1014 . -99) T) ((-86 . -1138) T) ((-478 . -291) NIL) ((-941 . -104) 97741) ((-832 . -1030) T) ((-828 . -1030) T) ((-1184 . -604) 97725) ((-1184 . -354) 97709) ((-308 . -1138) T) ((-554 . -797) T) ((-1069 . -1030) T) ((-1069 . -989) 97649) ((-100 . -492) 97582) ((-870 . -572) 97564) ((-324 . -677) T) ((-30 . -572) 97546) ((-809 . -1030) T) ((-790 . -993) 97525) ((-39 . -601) 97470) ((-208 . -1142) T) ((-388 . -993) T) ((-1085 . -144) 97452) ((-940 . -272) 97403) ((-208 . -523) T) ((-300 . -1165) 97387) ((-300 . -1162) 97357) ((-1112 . -1115) 97336) ((-1007 . -572) 97318) ((-600 . -144) 97302) ((-587 . -144) 97248) ((-1112 . -104) 97198) ((-458 . -1115) 97177) ((-466 . -140) T) ((-466 . -138) NIL) ((-1049 . -573) 97092) ((-419 . -572) 97074) ((-201 . -140) T) ((-201 . -138) NIL) ((-1049 . -572) 97056) ((-127 . -99) T) ((-51 . -99) T) ((-1148 . -594) 97008) ((-458 . -104) 96958) ((-935 . -23) T) ((-1206 . -37) 96928) ((-1098 . -1042) T) ((-1054 . -1042) T) ((-997 . -1142) T) ((-801 . -1042) T) ((-895 . -1142) 96907) ((-460 . -1142) 96886) ((-682 . -797) 96865) ((-997 . -523) T) ((-895 . -523) 96796) ((-1098 . -23) T) ((-1054 . -23) T) ((-801 . -23) T) ((-460 . -523) 96727) ((-1069 . -668) 96659) ((-1073 . -492) 96592) ((-975 . -573) NIL) ((-975 . -572) 96574) ((-809 . -668) 96544) ((-1133 . -46) 96513) ((-232 . -128) T) ((-233 . -128) T) ((-1034 . -1030) T) ((-944 . -1030) T) ((-60 . -572) 96495) ((-1093 . -797) NIL) ((-964 . -742) T) ((-964 . -745) T) ((-1210 . -992) 96482) ((-1210 . -109) 96467) ((-813 . -601) 96454) ((-1176 . -25) T) ((-1176 . -21) T) ((-1169 . -21) T) ((-1169 . -25) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-967 . -144) 96438) ((-815 . -770) 96417) ((-815 . -863) T) ((-663 . -268) 96344) ((-557 . -21) T) ((-557 . -25) T) ((-556 . -21) T) ((-39 . -677) T) ((-205 . -492) 96277) ((-556 . -25) T) ((-456 . -144) 96261) ((-443 . -144) 96245) ((-864 . -744) T) ((-864 . -677) T) ((-721 . -743) T) ((-721 . -744) T) ((-484 . -1030) T) ((-480 . -1030) T) ((-721 . -677) T) ((-208 . -344) T) ((-1083 . -1030) 96223) ((-814 . -1142) T) ((-607 . -572) 96205) ((-814 . -523) T) ((-644 . -349) NIL) ((-340 . -1191) 96189) ((-623 . -99) T) ((-334 . -1191) 96173) ((-326 . -1191) 96157) ((-1205 . -1030) T) ((-497 . -797) 96136) ((-767 . -432) 96115) ((-983 . -1030) T) ((-983 . -1005) 96044) ((-967 . -918) 96013) ((-769 . -1042) T) ((-944 . -668) 95958) ((-367 . -1042) T) ((-456 . -918) 95927) ((-443 . -918) 95896) ((-108 . -144) 95878) ((-71 . -572) 95860) ((-836 . -572) 95842) ((-1012 . -675) 95821) ((-1210 . -986) T) ((-766 . -594) 95769) ((-276 . -993) 95712) ((-159 . -1142) 95617) ((-208 . -1042) T) ((-305 . -23) T) ((-1093 . -934) 95569) ((-790 . -1030) T) ((-1055 . -691) 95548) ((-1170 . -992) 95453) ((-1168 . -863) 95432) ((-813 . -677) T) ((-159 . -523) 95343) ((-1147 . -863) 95322) ((-543 . -601) 95309) ((-388 . -1030) T) ((-531 . -601) 95296) ((-245 . -1030) T) ((-473 . -601) 95261) ((-208 . -23) T) ((-1147 . -770) 95214) ((-1204 . -99) T) ((-335 . -1201) 95191) ((-1202 . -99) T) ((-1170 . -109) 95083) ((-137 . -572) 95065) ((-935 . -128) T) ((-43 . -99) T) ((-223 . -797) 95016) ((-1157 . -1142) 94995) ((-100 . -468) 94979) ((-1205 . -668) 94949) ((-1019 . -46) 94910) ((-997 . -1042) T) ((-895 . -1042) T) ((-125 . -33) T) ((-119 . -33) T) ((-732 . -46) 94887) ((-730 . -46) 94859) ((-1157 . -523) 94770) ((-335 . -349) T) ((-460 . -1042) T) ((-1098 . -128) T) ((-1054 . -128) T) ((-434 . -46) 94749) ((-814 . -344) T) ((-801 . -128) T) ((-145 . -99) T) ((-997 . -23) T) ((-895 . -23) T) ((-538 . -523) T) ((-766 . -25) T) ((-766 . -21) T) ((-1069 . -492) 94682) ((-548 . -977) 94666) ((-460 . -23) T) ((-332 . -993) T) ((-1133 . -843) 94647) ((-623 . -291) 94585) ((-1043 . -1191) 94555) ((-649 . -601) 94520) ((-944 . -162) T) ((-906 . -138) 94499) ((-590 . -1030) T) ((-566 . -1030) T) ((-906 . -140) 94478) ((-945 . -797) T) ((-686 . -140) 94457) ((-686 . -138) 94436) ((-913 . -797) T) ((-454 . -863) 94415) ((-297 . -992) 94325) ((-294 . -992) 94254) ((-940 . -268) 94212) ((-388 . -668) 94164) ((-126 . -797) T) ((-651 . -795) T) ((-1170 . -986) T) ((-297 . -109) 94060) ((-294 . -109) 93973) ((-907 . -99) T) ((-765 . -99) 93764) ((-663 . -573) NIL) ((-663 . -572) 93746) ((-611 . -977) 93644) ((-1170 . -307) 93588) ((-975 . -270) 93563) ((-543 . -677) T) ((-531 . -744) T) ((-159 . -344) 93514) ((-531 . -741) T) ((-531 . -677) T) ((-473 . -677) T) ((-1073 . -468) 93498) ((-1019 . -829) NIL) ((-814 . -1042) T) ((-115 . -852) NIL) ((-1204 . -1203) 93474) ((-1202 . -1203) 93453) ((-732 . -829) NIL) ((-730 . -829) 93312) ((-1197 . -25) T) ((-1197 . -21) T) ((-1136 . -99) 93290) ((-1036 . -376) T) ((-579 . -601) 93277) ((-434 . -829) NIL) ((-627 . -99) 93255) ((-1019 . -977) 93084) ((-814 . -23) T) ((-732 . -977) 92945) ((-730 . -977) 92804) ((-115 . -601) 92749) ((-434 . -977) 92627) ((-602 . -977) 92611) ((-582 . -99) T) ((-205 . -468) 92595) ((-1184 . -33) T) ((-590 . -668) 92579) ((-566 . -668) 92563) ((-623 . -37) 92523) ((-300 . -99) T) ((-83 . -572) 92505) ((-49 . -977) 92489) ((-1049 . -992) 92476) ((-1019 . -358) 92460) ((-732 . -358) 92444) ((-58 . -55) 92406) ((-649 . -744) T) ((-649 . -741) T) ((-544 . -977) 92393) ((-495 . -977) 92370) ((-649 . -677) T) ((-305 . -128) T) ((-297 . -986) 92261) ((-294 . -986) T) ((-159 . -1042) T) ((-730 . -358) 92245) ((-44 . -144) 92195) ((-945 . -934) 92177) ((-434 . -358) 92161) ((-388 . -162) T) ((-297 . -226) 92140) ((-294 . -226) T) ((-294 . -216) NIL) ((-276 . -1030) 91923) ((-208 . -128) T) ((-1049 . -109) 91908) ((-159 . -23) T) ((-749 . -140) 91887) ((-749 . -138) 91866) ((-233 . -594) 91774) ((-232 . -594) 91682) ((-300 . -266) 91648) ((-1083 . -492) 91581) ((-1062 . -1030) T) ((-208 . -995) T) ((-765 . -291) 91519) ((-1019 . -843) 91454) ((-732 . -843) 91397) ((-730 . -843) 91381) ((-1204 . -37) 91351) ((-1202 . -37) 91321) ((-1157 . -1042) T) ((-802 . -1042) T) ((-434 . -843) 91298) ((-805 . -1030) T) ((-1157 . -23) T) ((-538 . -1042) T) ((-802 . -23) T) ((-579 . -677) T) ((-336 . -863) T) ((-333 . -863) T) ((-271 . -99) T) ((-325 . -863) T) ((-997 . -128) T) ((-895 . -128) T) ((-115 . -744) NIL) ((-115 . -741) NIL) ((-115 . -677) T) ((-644 . -852) NIL) ((-983 . -492) 91199) ((-460 . -128) T) ((-538 . -23) T) ((-627 . -291) 91137) ((-590 . -712) T) ((-566 . -712) T) ((-1148 . -797) NIL) ((-944 . -272) T) ((-233 . -21) T) ((-644 . -601) 91087) ((-332 . -1030) T) ((-233 . -25) T) ((-232 . -21) T) ((-232 . -25) T) ((-145 . -37) 91071) ((-2 . -99) T) ((-853 . -863) T) ((-461 . -1191) 91041) ((-206 . -977) 91018) ((-1049 . -986) T) ((-662 . -289) T) ((-276 . -668) 90960) ((-651 . -993) T) ((-466 . -432) T) ((-388 . -492) 90872) ((-201 . -432) T) ((-1049 . -216) T) ((-277 . -144) 90822) ((-940 . -573) 90783) ((-940 . -572) 90765) ((-931 . -572) 90747) ((-114 . -993) T) ((-607 . -992) 90731) ((-208 . -471) T) ((-380 . -572) 90713) ((-380 . -573) 90690) ((-990 . -1191) 90660) ((-607 . -109) 90639) ((-1069 . -468) 90623) ((-765 . -37) 90593) ((-61 . -421) T) ((-61 . -376) T) ((-1086 . -99) T) ((-814 . -128) T) ((-463 . -99) 90571) ((-1210 . -349) T) ((-1012 . -99) T) ((-996 . -99) T) ((-332 . -668) 90516) ((-682 . -140) 90495) ((-682 . -138) 90474) ((-964 . -601) 90411) ((-500 . -1030) 90389) ((-340 . -99) T) ((-334 . -99) T) ((-326 . -99) T) ((-105 . -99) T) ((-482 . -1030) T) ((-335 . -601) 90334) ((-1098 . -594) 90282) ((-1054 . -594) 90230) ((-366 . -487) 90209) ((-783 . -795) 90188) ((-360 . -1142) T) ((-644 . -677) T) ((-320 . -993) T) ((-1148 . -934) 90140) ((-163 . -993) T) ((-100 . -572) 90072) ((-1100 . -138) 90051) ((-1100 . -140) 90030) ((-360 . -523) T) ((-1099 . -140) 90009) ((-1099 . -138) 89988) ((-1093 . -138) 89895) ((-388 . -272) T) ((-1093 . -140) 89802) ((-1055 . -140) 89781) ((-1055 . -138) 89760) ((-300 . -37) 89601) ((-159 . -128) T) ((-294 . -745) NIL) ((-294 . -742) NIL) ((-607 . -986) T) ((-47 . -601) 89566) ((-935 . -21) T) ((-125 . -951) 89550) ((-119 . -951) 89534) ((-935 . -25) T) ((-844 . -117) 89518) ((-1085 . -99) T) ((-766 . -797) 89497) ((-1157 . -128) T) ((-1098 . -25) T) ((-1098 . -21) T) ((-802 . -128) T) ((-1054 . -25) T) ((-1054 . -21) T) ((-801 . -25) T) ((-801 . -21) T) ((-732 . -289) 89476) ((-600 . -99) 89454) ((-587 . -99) T) ((-1086 . -291) 89249) ((-538 . -128) T) ((-577 . -795) 89228) ((-1083 . -468) 89212) ((-1077 . -144) 89162) ((-1073 . -572) 89124) ((-1073 . -573) 89085) ((-964 . -741) T) ((-964 . -744) T) ((-964 . -677) T) ((-463 . -291) 89023) ((-433 . -398) 88993) ((-332 . -162) T) ((-271 . -37) 88980) ((-256 . -99) T) ((-255 . -99) T) ((-254 . -99) T) ((-253 . -99) T) ((-252 . -99) T) ((-251 . -99) T) ((-250 . -99) T) ((-324 . -977) 88957) ((-196 . -99) T) ((-195 . -99) T) ((-193 . -99) T) ((-192 . -99) T) ((-191 . -99) T) ((-190 . -99) T) ((-187 . -99) T) ((-186 . -99) T) ((-663 . -992) 88780) ((-185 . -99) T) ((-184 . -99) T) ((-183 . -99) T) ((-182 . -99) T) ((-181 . -99) T) ((-180 . -99) T) ((-179 . -99) T) ((-178 . -99) T) ((-177 . -99) T) ((-335 . -677) T) ((-663 . -109) 88589) ((-623 . -214) 88573) ((-544 . -289) T) ((-495 . -289) T) ((-276 . -492) 88522) ((-105 . -291) NIL) ((-70 . -376) T) ((-1043 . -99) 88313) ((-783 . -392) 88297) ((-1049 . -745) T) ((-1049 . -742) T) ((-651 . -1030) T) ((-360 . -344) T) ((-159 . -471) 88275) ((-197 . -1030) T) ((-205 . -572) 88207) ((-130 . -1030) T) ((-114 . -1030) T) ((-47 . -677) T) ((-983 . -468) 88172) ((-484 . -91) T) ((-134 . -406) 88154) ((-134 . -349) T) ((-967 . -99) T) ((-490 . -487) 88133) ((-456 . -99) T) ((-443 . -99) T) ((-974 . -1042) T) ((-1100 . -34) 88099) ((-1100 . -93) 88065) ((-1100 . -1127) 88031) ((-1100 . -1124) 87997) ((-1085 . -291) NIL) ((-87 . -377) T) ((-87 . -376) T) ((-1012 . -1078) 87976) ((-1099 . -1124) 87942) ((-1099 . -1127) 87908) ((-974 . -23) T) ((-1099 . -93) 87874) ((-538 . -471) T) ((-1099 . -34) 87840) ((-1093 . -1124) 87806) ((-1093 . -1127) 87772) ((-1093 . -93) 87738) ((-342 . -1042) T) ((-340 . -1078) 87717) ((-334 . -1078) 87696) ((-326 . -1078) 87675) ((-1093 . -34) 87641) ((-1055 . -34) 87607) ((-1055 . -93) 87573) ((-105 . -1078) T) ((-1055 . -1127) 87539) ((-783 . -993) 87518) ((-600 . -291) 87456) ((-587 . -291) 87307) ((-1055 . -1124) 87273) ((-663 . -986) T) ((-997 . -594) 87255) ((-1012 . -37) 87123) ((-895 . -594) 87071) ((-945 . -140) T) ((-945 . -138) NIL) ((-360 . -1042) T) ((-305 . -25) T) ((-303 . -23) T) ((-886 . -797) 87050) ((-663 . -307) 87027) ((-460 . -594) 86975) ((-39 . -977) 86865) ((-651 . -668) 86852) ((-663 . -216) T) ((-320 . -1030) T) ((-163 . -1030) T) ((-312 . -797) T) ((-399 . -432) 86802) ((-360 . -23) T) ((-340 . -37) 86767) ((-334 . -37) 86732) ((-326 . -37) 86697) ((-78 . -421) T) ((-78 . -376) T) ((-208 . -25) T) ((-208 . -21) T) ((-784 . -1042) T) ((-105 . -37) 86647) ((-777 . -1042) T) ((-724 . -1030) T) ((-114 . -668) 86634) ((-624 . -977) 86618) ((-571 . -99) T) ((-784 . -23) T) ((-777 . -23) T) ((-1083 . -268) 86595) ((-1043 . -291) 86533) ((-1032 . -218) 86517) ((-62 . -377) T) ((-62 . -376) T) ((-108 . -99) T) ((-39 . -358) 86494) ((-606 . -799) 86478) ((-997 . -21) T) ((-997 . -25) T) ((-765 . -214) 86448) ((-895 . -25) T) ((-895 . -21) T) ((-577 . -993) T) ((-460 . -25) T) ((-460 . -21) T) ((-967 . -291) 86386) ((-832 . -572) 86368) ((-828 . -572) 86350) ((-233 . -797) 86301) ((-232 . -797) 86252) ((-500 . -492) 86185) ((-814 . -594) 86162) ((-456 . -291) 86100) ((-443 . -291) 86038) ((-332 . -272) T) ((-1083 . -1172) 86022) ((-1069 . -572) 85984) ((-1069 . -573) 85945) ((-1067 . -99) T) ((-940 . -992) 85841) ((-39 . -843) 85793) ((-1083 . -564) 85770) ((-1210 . -601) 85757) ((-998 . -144) 85703) ((-815 . -1142) T) ((-940 . -109) 85585) ((-320 . -668) 85569) ((-809 . -572) 85551) ((-163 . -668) 85483) ((-388 . -268) 85441) ((-815 . -523) T) ((-105 . -381) 85423) ((-82 . -365) T) ((-82 . -376) T) ((-651 . -162) T) ((-96 . -677) T) ((-461 . -99) 85214) ((-96 . -453) T) ((-114 . -162) T) ((-1043 . -37) 85184) ((-159 . -594) 85132) ((-990 . -99) T) ((-814 . -25) T) ((-765 . -221) 85111) ((-814 . -21) T) ((-768 . -99) T) ((-395 . -99) T) ((-366 . -99) T) ((-108 . -291) NIL) ((-210 . -99) 85089) ((-125 . -1138) T) ((-119 . -1138) T) ((-974 . -128) T) ((-623 . -348) 85073) ((-940 . -986) T) ((-1157 . -594) 85021) ((-1034 . -572) 85003) ((-944 . -572) 84985) ((-493 . -23) T) ((-488 . -23) T) ((-324 . -289) T) ((-486 . -23) T) ((-303 . -128) T) ((-3 . -1030) T) ((-944 . -573) 84969) ((-940 . -226) 84948) ((-940 . -216) 84927) ((-1210 . -677) T) ((-1176 . -138) 84906) ((-783 . -1030) T) ((-1176 . -140) 84885) ((-1169 . -140) 84864) ((-1169 . -138) 84843) ((-1168 . -1142) 84822) ((-1148 . -138) 84729) ((-1148 . -140) 84636) ((-1147 . -1142) 84615) ((-360 . -128) T) ((-531 . -829) 84597) ((0 . -1030) T) ((-163 . -162) T) ((-159 . -21) T) ((-159 . -25) T) ((-48 . -1030) T) ((-1170 . -601) 84502) ((-1168 . -523) 84453) ((-665 . -1042) T) ((-1147 . -523) 84404) ((-531 . -977) 84386) ((-556 . -140) 84365) ((-556 . -138) 84344) ((-473 . -977) 84287) ((-85 . -365) T) ((-85 . -376) T) ((-815 . -344) T) ((-784 . -128) T) ((-777 . -128) T) ((-665 . -23) T) ((-484 . -572) 84237) ((-480 . -572) 84219) ((-1206 . -993) T) ((-360 . -995) T) ((-966 . -1030) 84197) ((-844 . -33) T) ((-461 . -291) 84135) ((-1083 . -573) 84096) ((-1083 . -572) 84028) ((-1098 . -797) 84007) ((-44 . -99) T) ((-1054 . -797) 83986) ((-767 . -99) T) ((-1157 . -25) T) ((-1157 . -21) T) ((-802 . -25) T) ((-43 . -348) 83970) ((-802 . -21) T) ((-682 . -432) 83921) ((-1205 . -572) 83903) ((-538 . -25) T) ((-538 . -21) T) ((-371 . -1030) T) ((-990 . -291) 83841) ((-577 . -1030) T) ((-649 . -829) 83823) ((-1184 . -1138) T) ((-210 . -291) 83761) ((-137 . -349) T) ((-983 . -573) 83703) ((-983 . -572) 83646) ((-294 . -852) NIL) ((-649 . -977) 83591) ((-662 . -863) T) ((-454 . -1142) 83570) ((-1099 . -432) 83549) ((-1093 . -432) 83528) ((-311 . -99) T) ((-815 . -1042) T) ((-297 . -601) 83350) ((-294 . -601) 83279) ((-454 . -523) 83230) ((-320 . -492) 83196) ((-517 . -144) 83146) ((-39 . -289) T) ((-790 . -572) 83128) ((-651 . -272) T) ((-815 . -23) T) ((-360 . -471) T) ((-1012 . -214) 83098) ((-490 . -99) T) ((-388 . -573) 82906) ((-388 . -572) 82888) ((-245 . -572) 82870) ((-114 . -272) T) ((-1170 . -677) T) ((-1168 . -344) 82849) ((-1147 . -344) 82828) ((-1195 . -33) T) ((-115 . -1138) T) ((-105 . -214) 82810) ((-1104 . -99) T) ((-457 . -1030) T) ((-500 . -468) 82794) ((-688 . -33) T) ((-461 . -37) 82764) ((-134 . -33) T) ((-115 . -827) 82741) ((-115 . -829) NIL) ((-579 . -977) 82626) ((-598 . -797) 82605) ((-1194 . -99) T) ((-277 . -99) T) ((-663 . -349) 82584) ((-115 . -977) 82561) ((-371 . -668) 82545) ((-577 . -668) 82529) ((-44 . -291) 82333) ((-766 . -138) 82312) ((-766 . -140) 82291) ((-1205 . -363) 82270) ((-769 . -797) T) ((-1186 . -1030) T) ((-1086 . -212) 82217) ((-367 . -797) 82196) ((-1176 . -1127) 82162) ((-1176 . -1124) 82128) ((-1169 . -1124) 82094) ((-493 . -128) T) ((-1169 . -1127) 82060) ((-1148 . -1124) 82026) ((-1148 . -1127) 81992) ((-1176 . -34) 81958) ((-1176 . -93) 81924) ((-590 . -572) 81893) ((-566 . -572) 81862) ((-208 . -797) T) ((-1169 . -93) 81828) ((-1169 . -34) 81794) ((-1168 . -1042) T) ((-1049 . -601) 81781) ((-1148 . -93) 81747) ((-1147 . -1042) T) ((-554 . -144) 81729) ((-1012 . -330) 81708) ((-115 . -358) 81685) ((-115 . -319) 81662) ((-163 . -272) T) ((-1148 . -34) 81628) ((-813 . -289) T) ((-294 . -744) NIL) ((-294 . -741) NIL) ((-297 . -677) 81478) ((-294 . -677) T) ((-454 . -344) 81457) ((-340 . -330) 81436) ((-334 . -330) 81415) ((-326 . -330) 81394) ((-297 . -453) 81373) ((-1168 . -23) T) ((-1147 . -23) T) ((-669 . -1042) T) ((-665 . -128) T) ((-606 . -99) T) ((-457 . -668) 81338) ((-44 . -264) 81288) ((-102 . -1030) T) ((-66 . -572) 81270) ((-808 . -99) T) ((-579 . -843) 81229) ((-1206 . -1030) T) ((-362 . -1030) T) ((-80 . -1138) T) ((-997 . -797) T) ((-895 . -797) 81208) ((-115 . -843) NIL) ((-732 . -863) 81187) ((-664 . -797) T) ((-503 . -1030) T) ((-478 . -1030) T) ((-336 . -1142) T) ((-333 . -1142) T) ((-325 . -1142) T) ((-246 . -1142) 81166) ((-230 . -1142) 81145) ((-1043 . -214) 81115) ((-460 . -797) 81094) ((-1069 . -992) 81078) ((-371 . -712) T) ((-1085 . -778) T) ((-644 . -1138) T) ((-336 . -523) T) ((-333 . -523) T) ((-325 . -523) T) ((-246 . -523) 81009) ((-230 . -523) 80940) ((-1069 . -109) 80919) ((-433 . -695) 80889) ((-809 . -992) 80859) ((-767 . -37) 80801) ((-644 . -827) 80783) ((-644 . -829) 80765) ((-277 . -291) 80569) ((-853 . -1142) T) ((-623 . -392) 80553) ((-809 . -109) 80518) ((-644 . -977) 80463) ((-945 . -432) T) ((-853 . -523) T) ((-544 . -863) T) ((-454 . -1042) T) ((-495 . -863) T) ((-1083 . -270) 80440) ((-857 . -432) T) ((-63 . -572) 80422) ((-587 . -212) 80368) ((-454 . -23) T) ((-1049 . -744) T) ((-815 . -128) T) ((-1049 . -741) T) ((-1197 . -1199) 80347) ((-1049 . -677) T) ((-607 . -601) 80321) ((-276 . -572) 80063) ((-975 . -33) T) ((-765 . -795) 80042) ((-543 . -289) T) ((-531 . -289) T) ((-473 . -289) T) ((-1206 . -668) 80012) ((-644 . -358) 79994) ((-644 . -319) 79976) ((-457 . -162) T) ((-362 . -668) 79946) ((-814 . -797) NIL) ((-531 . -962) T) ((-473 . -962) T) ((-1062 . -572) 79928) ((-1043 . -221) 79907) ((-198 . -99) T) ((-1077 . -99) T) ((-69 . -572) 79889) ((-1069 . -986) T) ((-1104 . -37) 79786) ((-805 . -572) 79768) ((-531 . -516) T) ((-623 . -993) T) ((-682 . -892) 79721) ((-1069 . -216) 79700) ((-1014 . -1030) T) ((-974 . -25) T) ((-974 . -21) T) ((-944 . -992) 79645) ((-848 . -99) T) ((-809 . -986) T) ((-644 . -843) NIL) ((-336 . -310) 79629) ((-336 . -344) T) ((-333 . -310) 79613) ((-333 . -344) T) ((-325 . -310) 79597) ((-325 . -344) T) ((-466 . -99) T) ((-1194 . -37) 79567) ((-500 . -637) 79517) ((-201 . -99) T) ((-964 . -977) 79399) ((-944 . -109) 79328) ((-1100 . -915) 79297) ((-1099 . -915) 79259) ((-497 . -144) 79243) ((-1012 . -351) 79222) ((-332 . -572) 79204) ((-303 . -21) T) ((-335 . -977) 79181) ((-303 . -25) T) ((-1093 . -915) 79150) ((-1055 . -915) 79117) ((-74 . -572) 79099) ((-649 . -289) T) ((-159 . -797) 79078) ((-853 . -344) T) ((-360 . -25) T) ((-360 . -21) T) ((-853 . -310) 79065) ((-84 . -572) 79047) ((-649 . -962) T) ((-628 . -797) T) ((-1168 . -128) T) ((-1147 . -128) T) ((-844 . -951) 79031) ((-784 . -21) T) ((-47 . -977) 78974) ((-784 . -25) T) ((-777 . -25) T) ((-777 . -21) T) ((-1204 . -993) T) ((-1202 . -993) T) ((-607 . -677) T) ((-1205 . -992) 78958) ((-1157 . -797) 78937) ((-765 . -392) 78906) ((-100 . -117) 78890) ((-127 . -1030) T) ((-51 . -1030) T) ((-869 . -572) 78872) ((-814 . -934) 78849) ((-773 . -99) T) ((-1205 . -109) 78828) ((-606 . -37) 78798) ((-538 . -797) T) ((-336 . -1042) T) ((-333 . -1042) T) ((-325 . -1042) T) ((-246 . -1042) T) ((-230 . -1042) T) ((-579 . -289) 78777) ((-1077 . -291) 78581) ((-617 . -23) T) ((-461 . -214) 78551) ((-145 . -993) T) ((-336 . -23) T) ((-333 . -23) T) ((-325 . -23) T) ((-115 . -289) T) ((-246 . -23) T) ((-230 . -23) T) ((-944 . -986) T) ((-663 . -852) 78530) ((-944 . -216) 78502) ((-944 . -226) T) ((-115 . -962) NIL) ((-853 . -1042) T) ((-1169 . -432) 78481) ((-1148 . -432) 78460) ((-500 . -572) 78392) ((-663 . -601) 78317) ((-388 . -992) 78269) ((-482 . -572) 78251) ((-853 . -23) T) ((-466 . -291) NIL) ((-454 . -128) T) ((-201 . -291) NIL) ((-388 . -109) 78189) ((-765 . -993) 78120) ((-688 . -1028) 78104) ((-1168 . -471) 78070) ((-1147 . -471) 78036) ((-457 . -272) T) ((-134 . -1028) 78018) ((-126 . -144) 78000) ((-1205 . -986) T) ((-998 . -99) T) ((-478 . -492) NIL) ((-653 . -99) T) ((-461 . -221) 77979) ((-1098 . -138) 77958) ((-1098 . -140) 77937) ((-1054 . -140) 77916) ((-1054 . -138) 77895) ((-590 . -992) 77879) ((-566 . -992) 77863) ((-623 . -1030) T) ((-623 . -989) 77803) ((-1100 . -1175) 77787) ((-1100 . -1162) 77764) ((-466 . -1078) T) ((-1099 . -1167) 77725) ((-1099 . -1162) 77695) ((-1099 . -1165) 77679) ((-201 . -1078) T) ((-324 . -863) T) ((-768 . -248) 77663) ((-590 . -109) 77642) ((-566 . -109) 77621) ((-1093 . -1146) 77582) ((-790 . -986) 77561) ((-1093 . -1162) 77538) ((-493 . -25) T) ((-473 . -284) T) ((-489 . -23) T) ((-488 . -25) T) ((-486 . -25) T) ((-485 . -23) T) ((-1093 . -1144) 77522) ((-388 . -986) T) ((-300 . -993) T) ((-644 . -289) T) ((-105 . -795) T) ((-388 . -226) T) ((-388 . -216) 77501) ((-663 . -677) T) ((-466 . -37) 77451) ((-201 . -37) 77401) ((-454 . -471) 77367) ((-1085 . -1071) T) ((-1031 . -99) T) ((-651 . -572) 77349) ((-651 . -573) 77264) ((-665 . -21) T) ((-665 . -25) T) ((-197 . -572) 77246) ((-130 . -572) 77228) ((-114 . -572) 77210) ((-148 . -25) T) ((-1204 . -1030) T) ((-815 . -594) 77158) ((-1202 . -1030) T) ((-906 . -99) T) ((-686 . -99) T) ((-666 . -99) T) ((-433 . -99) T) ((-766 . -432) 77109) ((-43 . -1030) T) ((-1020 . -797) T) ((-617 . -128) T) ((-998 . -291) 76960) ((-623 . -668) 76944) ((-271 . -993) T) ((-336 . -128) T) ((-333 . -128) T) ((-325 . -128) T) ((-246 . -128) T) ((-230 . -128) T) ((-399 . -99) T) ((-145 . -1030) T) ((-44 . -212) 76894) ((-901 . -797) 76873) ((-940 . -601) 76811) ((-223 . -1191) 76781) ((-964 . -289) T) ((-276 . -992) 76703) ((-853 . -128) T) ((-39 . -863) T) ((-466 . -381) 76685) ((-335 . -289) T) ((-201 . -381) 76667) ((-1012 . -392) 76651) ((-276 . -109) 76568) ((-815 . -25) T) ((-815 . -21) T) ((-320 . -572) 76550) ((-1170 . -46) 76494) ((-208 . -140) T) ((-163 . -572) 76476) ((-1043 . -795) 76455) ((-724 . -572) 76437) ((-567 . -218) 76384) ((-455 . -218) 76334) ((-1204 . -668) 76304) ((-47 . -289) T) ((-1202 . -668) 76274) ((-907 . -1030) T) ((-765 . -1030) 76065) ((-293 . -99) T) ((-844 . -1138) T) ((-47 . -962) T) ((-1147 . -594) 75973) ((-639 . -99) 75951) ((-43 . -668) 75935) ((-517 . -99) T) ((-65 . -364) T) ((-65 . -376) T) ((-615 . -23) T) ((-623 . -712) T) ((-1136 . -1030) 75913) ((-332 . -992) 75858) ((-627 . -1030) 75836) ((-997 . -140) T) ((-895 . -140) 75815) ((-895 . -138) 75794) ((-749 . -99) T) ((-145 . -668) 75778) ((-460 . -140) 75757) ((-460 . -138) 75736) ((-332 . -109) 75665) ((-1012 . -993) T) ((-303 . -797) 75644) ((-1176 . -915) 75613) ((-582 . -1030) T) ((-1169 . -915) 75575) ((-489 . -128) T) ((-485 . -128) T) ((-277 . -212) 75525) ((-340 . -993) T) ((-334 . -993) T) ((-326 . -993) T) ((-276 . -986) 75468) ((-1148 . -915) 75437) ((-360 . -797) T) ((-105 . -993) T) ((-940 . -677) T) ((-813 . -863) T) ((-790 . -745) 75416) ((-790 . -742) 75395) ((-399 . -291) 75334) ((-448 . -99) T) ((-556 . -915) 75303) ((-300 . -1030) T) ((-388 . -745) 75282) ((-388 . -742) 75261) ((-478 . -468) 75243) ((-1170 . -977) 75209) ((-1168 . -21) T) ((-1168 . -25) T) ((-1147 . -21) T) ((-1147 . -25) T) ((-765 . -668) 75151) ((-649 . -385) T) ((-1195 . -1138) T) ((-1043 . -392) 75120) ((-944 . -349) NIL) ((-100 . -33) T) ((-688 . -1138) T) ((-43 . -712) T) ((-554 . -99) T) ((-75 . -377) T) ((-75 . -376) T) ((-606 . -609) 75104) ((-134 . -1138) T) ((-814 . -140) T) ((-814 . -138) NIL) ((-332 . -986) T) ((-68 . -364) T) ((-68 . -376) T) ((-1092 . -99) T) ((-623 . -492) 75037) ((-639 . -291) 74975) ((-906 . -37) 74872) ((-686 . -37) 74842) ((-517 . -291) 74646) ((-297 . -1138) T) ((-332 . -216) T) ((-332 . -226) T) ((-294 . -1138) T) ((-271 . -1030) T) ((-1106 . -572) 74628) ((-662 . -1142) T) ((-1083 . -604) 74612) ((-1133 . -523) 74591) ((-662 . -523) T) ((-297 . -827) 74575) ((-297 . -829) 74500) ((-294 . -827) 74461) ((-294 . -829) NIL) ((-749 . -291) 74426) ((-300 . -668) 74267) ((-305 . -304) 74244) ((-464 . -99) T) ((-454 . -25) T) ((-454 . -21) T) ((-399 . -37) 74218) ((-297 . -977) 73886) ((-208 . -1124) T) ((-208 . -1127) T) ((-3 . -572) 73868) ((-294 . -977) 73798) ((-2 . -1030) T) ((-2 . |RecordCategory|) T) ((-783 . -572) 73780) ((-1043 . -993) 73711) ((-543 . -863) T) ((-531 . -770) T) ((-531 . -863) T) ((-473 . -863) T) ((-132 . -977) 73695) ((-208 . -93) T) ((-73 . -421) T) ((-73 . -376) T) ((0 . -572) 73677) ((-159 . -140) 73656) ((-159 . -138) 73607) ((-208 . -34) T) ((-48 . -572) 73589) ((-457 . -993) T) ((-466 . -214) 73571) ((-463 . -911) 73555) ((-461 . -795) 73534) ((-201 . -214) 73516) ((-79 . -421) T) ((-79 . -376) T) ((-1073 . -33) T) ((-765 . -162) 73495) ((-682 . -99) T) ((-966 . -572) 73462) ((-478 . -268) 73437) ((-297 . -358) 73407) ((-294 . -358) 73368) ((-294 . -319) 73329) ((-1017 . -572) 73311) ((-766 . -892) 73258) ((-615 . -128) T) ((-1157 . -138) 73237) ((-1157 . -140) 73216) ((-1100 . -99) T) ((-1099 . -99) T) ((-1093 . -99) T) ((-1086 . -1030) T) ((-1055 . -99) T) ((-205 . -33) T) ((-271 . -668) 73203) ((-1086 . -569) 73179) ((-554 . -291) NIL) ((-463 . -1030) 73157) ((-371 . -572) 73139) ((-488 . -797) T) ((-1077 . -212) 73089) ((-1176 . -1175) 73073) ((-1176 . -1162) 73050) ((-1169 . -1167) 73011) ((-1169 . -1162) 72981) ((-1169 . -1165) 72965) ((-1148 . -1146) 72926) ((-1148 . -1162) 72903) ((-577 . -572) 72885) ((-1148 . -1144) 72869) ((-649 . -863) T) ((-1100 . -266) 72835) ((-1099 . -266) 72801) ((-1093 . -266) 72767) ((-1012 . -1030) T) ((-996 . -1030) T) ((-47 . -284) T) ((-297 . -843) 72734) ((-294 . -843) NIL) ((-996 . -1002) 72713) ((-1049 . -829) 72695) ((-749 . -37) 72679) ((-246 . -594) 72627) ((-230 . -594) 72575) ((-651 . -992) 72562) ((-556 . -1162) 72539) ((-1055 . -266) 72505) ((-300 . -162) 72436) ((-340 . -1030) T) ((-334 . -1030) T) ((-326 . -1030) T) ((-478 . -19) 72418) ((-1049 . -977) 72400) ((-1032 . -144) 72384) ((-105 . -1030) T) ((-114 . -992) 72371) ((-662 . -344) T) ((-478 . -564) 72346) ((-651 . -109) 72331) ((-417 . -99) T) ((-44 . -1076) 72281) ((-114 . -109) 72266) ((-590 . -671) T) ((-566 . -671) T) ((-765 . -492) 72199) ((-975 . -1138) T) ((-886 . -144) 72183) ((-497 . -99) 72133) ((-1019 . -1142) 72112) ((-732 . -1142) 72091) ((-457 . -572) 72043) ((-60 . -1138) T) ((-457 . -573) 71965) ((-730 . -1142) 71944) ((-1098 . -432) 71875) ((-1085 . -1030) T) ((-1069 . -601) 71849) ((-1019 . -523) 71780) ((-461 . -392) 71749) ((-579 . -863) 71728) ((-434 . -1142) 71707) ((-1054 . -432) 71658) ((-732 . -523) 71569) ((-379 . -572) 71551) ((-627 . -492) 71484) ((-730 . -523) 71415) ((-682 . -291) 71402) ((-617 . -25) T) ((-617 . -21) T) ((-434 . -523) 71333) ((-115 . -863) T) ((-115 . -770) NIL) ((-336 . -25) T) ((-336 . -21) T) ((-333 . -25) T) ((-333 . -21) T) ((-325 . -25) T) ((-325 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-81 . -365) T) ((-81 . -376) T) ((-230 . -25) T) ((-230 . -21) T) ((-1186 . -572) 71315) ((-1133 . -1042) T) ((-1133 . -23) T) ((-1093 . -291) 71200) ((-1055 . -291) 71187) ((-809 . -601) 71147) ((-1012 . -668) 71015) ((-886 . -922) 70999) ((-271 . -162) T) ((-853 . -21) T) ((-853 . -25) T) ((-815 . -797) 70950) ((-662 . -1042) T) ((-662 . -23) T) ((-600 . -1030) 70928) ((-587 . -569) 70903) ((-587 . -1030) T) ((-544 . -1142) T) ((-495 . -1142) T) ((-544 . -523) T) ((-495 . -523) T) ((-340 . -668) 70855) ((-334 . -668) 70807) ((-163 . -992) 70739) ((-320 . -992) 70723) ((-105 . -668) 70673) ((-163 . -109) 70584) ((-326 . -668) 70536) ((-320 . -109) 70515) ((-256 . -1030) T) ((-255 . -1030) T) ((-254 . -1030) T) ((-253 . -1030) T) ((-651 . -986) T) ((-252 . -1030) T) ((-251 . -1030) T) ((-250 . -1030) T) ((-196 . -1030) T) ((-195 . -1030) T) ((-193 . -1030) T) ((-159 . -1127) 70493) ((-159 . -1124) 70471) ((-192 . -1030) T) ((-191 . -1030) T) ((-114 . -986) T) ((-190 . -1030) T) ((-187 . -1030) T) ((-651 . -216) T) ((-186 . -1030) T) ((-185 . -1030) T) ((-184 . -1030) T) ((-183 . -1030) T) ((-182 . -1030) T) ((-181 . -1030) T) ((-180 . -1030) T) ((-179 . -1030) T) ((-178 . -1030) T) ((-177 . -1030) T) ((-223 . -99) 70262) ((-159 . -34) 70240) ((-159 . -93) 70218) ((-607 . -977) 70116) ((-461 . -993) 70047) ((-1043 . -1030) 69838) ((-1069 . -33) T) ((-623 . -468) 69822) ((-71 . -1138) T) ((-102 . -572) 69804) ((-1206 . -572) 69786) ((-362 . -572) 69768) ((-538 . -1127) T) ((-538 . -1124) T) ((-682 . -37) 69617) ((-503 . -572) 69599) ((-497 . -291) 69537) ((-478 . -572) 69519) ((-478 . -573) 69501) ((-1093 . -1078) NIL) ((-967 . -1005) 69470) ((-967 . -1030) T) ((-945 . -99) T) ((-913 . -99) T) ((-857 . -99) T) ((-836 . -977) 69447) ((-1069 . -677) T) ((-944 . -601) 69392) ((-456 . -1030) T) ((-443 . -1030) T) ((-548 . -23) T) ((-538 . -34) T) ((-538 . -93) T) ((-408 . -99) T) ((-998 . -212) 69338) ((-126 . -99) T) ((-1100 . -37) 69235) ((-809 . -677) T) ((-644 . -863) T) ((-489 . -25) T) ((-485 . -21) T) ((-485 . -25) T) ((-1099 . -37) 69076) ((-320 . -986) T) ((-1093 . -37) 68872) ((-1012 . -162) T) ((-163 . -986) T) ((-1055 . -37) 68769) ((-663 . -46) 68746) ((-340 . -162) T) ((-334 . -162) T) ((-496 . -55) 68720) ((-475 . -55) 68670) ((-332 . -1201) 68647) ((-208 . -432) T) ((-300 . -272) 68598) ((-326 . -162) T) ((-163 . -226) T) ((-1147 . -797) 68497) ((-105 . -162) T) ((-815 . -934) 68481) ((-611 . -1042) T) ((-544 . -344) T) ((-544 . -310) 68468) ((-495 . -310) 68445) ((-495 . -344) T) ((-297 . -289) 68424) ((-294 . -289) T) ((-562 . -797) 68403) ((-1043 . -668) 68345) ((-497 . -264) 68329) ((-611 . -23) T) ((-399 . -214) 68313) ((-294 . -962) NIL) ((-317 . -23) T) ((-100 . -951) 68297) ((-44 . -35) 68276) ((-571 . -1030) T) ((-332 . -349) T) ((-473 . -27) T) ((-223 . -291) 68214) ((-1019 . -1042) T) ((-1205 . -601) 68188) ((-732 . -1042) T) ((-730 . -1042) T) ((-434 . -1042) T) ((-997 . -432) T) ((-895 . -432) 68139) ((-108 . -1030) T) ((-1019 . -23) T) ((-767 . -993) T) ((-732 . -23) T) ((-730 . -23) T) ((-460 . -432) 68090) ((-1086 . -492) 67873) ((-362 . -363) 67852) ((-1104 . -392) 67836) ((-441 . -23) T) ((-434 . -23) T) ((-463 . -492) 67769) ((-271 . -272) T) ((-1014 . -572) 67751) ((-388 . -852) 67730) ((-49 . -1042) T) ((-964 . -863) T) ((-944 . -677) T) ((-663 . -829) NIL) ((-544 . -1042) T) ((-495 . -1042) T) ((-790 . -601) 67703) ((-1133 . -128) T) ((-1093 . -381) 67655) ((-945 . -291) NIL) ((-765 . -468) 67639) ((-335 . -863) T) ((-1083 . -33) T) ((-388 . -601) 67591) ((-49 . -23) T) ((-662 . -128) T) ((-663 . -977) 67473) ((-544 . -23) T) ((-105 . -492) NIL) ((-495 . -23) T) ((-159 . -390) 67444) ((-126 . -291) NIL) ((-1067 . -1030) T) ((-1197 . -1196) 67428) ((-651 . -745) T) ((-651 . -742) T) ((-1049 . -289) T) ((-360 . -140) T) ((-262 . -572) 67410) ((-1147 . -934) 67380) ((-47 . -863) T) ((-627 . -468) 67364) ((-233 . -1191) 67334) ((-232 . -1191) 67304) ((-1102 . -797) T) ((-1043 . -162) 67283) ((-1049 . -962) T) ((-983 . -33) T) ((-784 . -140) 67262) ((-784 . -138) 67241) ((-688 . -104) 67225) ((-571 . -129) T) ((-461 . -1030) 67016) ((-1104 . -993) T) ((-814 . -432) T) ((-83 . -1138) T) ((-223 . -37) 66986) ((-134 . -104) 66968) ((-663 . -358) 66952) ((-1049 . -516) T) ((-371 . -992) 66936) ((-1205 . -677) T) ((-1098 . -892) 66905) ((-127 . -572) 66872) ((-51 . -572) 66854) ((-1054 . -892) 66821) ((-606 . -392) 66805) ((-1194 . -993) T) ((-577 . -992) 66789) ((-615 . -25) T) ((-615 . -21) T) ((-1085 . -492) NIL) ((-1176 . -99) T) ((-1169 . -99) T) ((-371 . -109) 66768) ((-205 . -236) 66752) ((-1148 . -99) T) ((-990 . -1030) T) ((-945 . -1078) T) ((-990 . -989) 66692) ((-768 . -1030) T) ((-324 . -1142) T) ((-590 . -601) 66676) ((-577 . -109) 66655) ((-566 . -601) 66639) ((-557 . -99) T) ((-548 . -128) T) ((-556 . -99) T) ((-395 . -1030) T) ((-366 . -1030) T) ((-210 . -1030) 66617) ((-600 . -492) 66550) ((-587 . -492) 66394) ((-783 . -986) 66373) ((-598 . -144) 66357) ((-324 . -523) T) ((-663 . -843) 66300) ((-517 . -212) 66250) ((-1176 . -266) 66216) ((-1012 . -272) 66167) ((-466 . -795) T) ((-206 . -1042) T) ((-1169 . -266) 66133) ((-1148 . -266) 66099) ((-945 . -37) 66049) ((-201 . -795) T) ((-1133 . -471) 66015) ((-857 . -37) 65967) ((-790 . -744) 65946) ((-790 . -741) 65925) ((-790 . -677) 65904) ((-340 . -272) T) ((-334 . -272) T) ((-326 . -272) T) ((-159 . -432) 65835) ((-408 . -37) 65819) ((-105 . -272) T) ((-206 . -23) T) ((-388 . -744) 65798) ((-388 . -741) 65777) ((-388 . -677) T) ((-478 . -270) 65752) ((-457 . -992) 65717) ((-611 . -128) T) ((-1043 . -492) 65650) ((-317 . -128) T) ((-159 . -383) 65629) ((-461 . -668) 65571) ((-765 . -268) 65548) ((-457 . -109) 65504) ((-606 . -993) T) ((-1157 . -432) 65435) ((-1019 . -128) T) ((-246 . -797) 65414) ((-230 . -797) 65393) ((-732 . -128) T) ((-730 . -128) T) ((-538 . -432) T) ((-990 . -668) 65335) ((-577 . -986) T) ((-967 . -492) 65268) ((-441 . -128) T) ((-434 . -128) T) ((-44 . -1030) T) ((-366 . -668) 65238) ((-767 . -1030) T) ((-456 . -492) 65171) ((-443 . -492) 65104) ((-433 . -348) 65074) ((-44 . -569) 65053) ((-297 . -284) T) ((-623 . -572) 65015) ((-57 . -797) 64994) ((-1148 . -291) 64879) ((-945 . -381) 64861) ((-765 . -564) 64838) ((-494 . -797) 64817) ((-474 . -797) 64796) ((-39 . -1142) T) ((-940 . -977) 64694) ((-49 . -128) T) ((-544 . -128) T) ((-495 . -128) T) ((-276 . -601) 64556) ((-324 . -310) 64533) ((-324 . -344) T) ((-303 . -304) 64510) ((-300 . -268) 64495) ((-39 . -523) T) ((-360 . -1124) T) ((-360 . -1127) T) ((-975 . -1115) 64470) ((-1112 . -218) 64420) ((-1093 . -214) 64372) ((-311 . -1030) T) ((-360 . -93) T) ((-360 . -34) T) ((-975 . -104) 64318) ((-457 . -986) T) ((-458 . -218) 64268) ((-1086 . -468) 64202) ((-1206 . -992) 64186) ((-362 . -992) 64170) ((-457 . -226) T) ((-766 . -99) T) ((-665 . -140) 64149) ((-665 . -138) 64128) ((-463 . -468) 64112) ((-464 . -316) 64081) ((-1206 . -109) 64060) ((-490 . -1030) T) ((-461 . -162) 64039) ((-940 . -358) 64023) ((-394 . -99) T) ((-362 . -109) 64002) ((-940 . -319) 63986) ((-261 . -925) 63970) ((-260 . -925) 63954) ((-1204 . -572) 63936) ((-1202 . -572) 63918) ((-108 . -492) NIL) ((-1098 . -1160) 63902) ((-801 . -799) 63886) ((-1104 . -1030) T) ((-100 . -1138) T) ((-895 . -892) 63847) ((-767 . -668) 63789) ((-1148 . -1078) NIL) ((-460 . -892) 63734) ((-997 . -136) T) ((-58 . -99) 63712) ((-43 . -572) 63694) ((-76 . -572) 63676) ((-332 . -601) 63621) ((-1194 . -1030) T) ((-489 . -797) T) ((-324 . -1042) T) ((-277 . -1030) T) ((-940 . -843) 63580) ((-277 . -569) 63559) ((-1176 . -37) 63456) ((-1169 . -37) 63297) ((-466 . -993) T) ((-1148 . -37) 63093) ((-201 . -993) T) ((-324 . -23) T) ((-145 . -572) 63075) ((-783 . -745) 63054) ((-783 . -742) 63033) ((-557 . -37) 63006) ((-556 . -37) 62903) ((-813 . -523) T) ((-206 . -128) T) ((-300 . -943) 62869) ((-77 . -572) 62851) ((-663 . -289) 62830) ((-276 . -677) 62733) ((-774 . -99) T) ((-808 . -791) T) ((-276 . -453) 62712) ((-1197 . -99) T) ((-39 . -344) T) ((-815 . -140) 62691) ((-815 . -138) 62670) ((-1085 . -468) 62652) ((-1206 . -986) T) ((-461 . -492) 62585) ((-1073 . -1138) T) ((-907 . -572) 62567) ((-600 . -468) 62551) ((-587 . -468) 62482) ((-765 . -572) 62214) ((-47 . -27) T) ((-1104 . -668) 62111) ((-606 . -1030) T) ((-417 . -345) 62085) ((-1032 . -99) T) ((-766 . -291) 62072) ((-808 . -1030) T) ((-1202 . -363) 62044) ((-990 . -492) 61977) ((-1086 . -268) 61953) ((-223 . -214) 61923) ((-1194 . -668) 61893) ((-767 . -162) 61872) ((-210 . -492) 61805) ((-577 . -745) 61784) ((-577 . -742) 61763) ((-1136 . -572) 61675) ((-205 . -1138) T) ((-627 . -572) 61607) ((-1083 . -951) 61591) ((-332 . -677) T) ((-886 . -99) 61541) ((-1148 . -381) 61493) ((-1043 . -468) 61477) ((-58 . -291) 61415) ((-312 . -99) T) ((-1133 . -21) T) ((-1133 . -25) T) ((-39 . -1042) T) ((-662 . -21) T) ((-582 . -572) 61397) ((-493 . -304) 61376) ((-662 . -25) T) ((-105 . -268) NIL) ((-864 . -1042) T) ((-39 . -23) T) ((-721 . -1042) T) ((-531 . -1142) T) ((-473 . -1142) T) ((-300 . -572) 61358) ((-945 . -214) 61340) ((-159 . -156) 61324) ((-543 . -523) T) ((-531 . -523) T) ((-473 . -523) T) ((-721 . -23) T) ((-1168 . -140) 61303) ((-1086 . -564) 61279) ((-1168 . -138) 61258) ((-967 . -468) 61242) ((-1147 . -138) 61167) ((-1147 . -140) 61092) ((-1197 . -1203) 61071) ((-456 . -468) 61055) ((-443 . -468) 61039) ((-500 . -33) T) ((-606 . -668) 61009) ((-110 . -910) T) ((-615 . -797) 60988) ((-1104 . -162) 60939) ((-346 . -99) T) ((-223 . -221) 60918) ((-233 . -99) T) ((-232 . -99) T) ((-1157 . -892) 60887) ((-107 . -99) T) ((-228 . -797) 60866) ((-766 . -37) 60715) ((-44 . -492) 60507) ((-1085 . -268) 60482) ((-198 . -1030) T) ((-1077 . -1030) T) ((-1077 . -569) 60461) ((-548 . -25) T) ((-548 . -21) T) ((-1032 . -291) 60399) ((-906 . -392) 60383) ((-649 . -1142) T) ((-587 . -268) 60358) ((-1019 . -594) 60306) ((-732 . -594) 60254) ((-730 . -594) 60202) ((-324 . -128) T) ((-271 . -572) 60184) ((-649 . -523) T) ((-848 . -1030) T) ((-813 . -1042) T) ((-434 . -594) 60132) ((-848 . -846) 60116) ((-360 . -432) T) ((-466 . -1030) T) ((-651 . -601) 60103) ((-886 . -291) 60041) ((-201 . -1030) T) ((-297 . -863) 60020) ((-294 . -863) T) ((-294 . -770) NIL) ((-371 . -671) T) ((-813 . -23) T) ((-114 . -601) 60007) ((-454 . -138) 59986) ((-399 . -392) 59970) ((-454 . -140) 59949) ((-108 . -468) 59931) ((-2 . -572) 59913) ((-1085 . -19) 59895) ((-1085 . -564) 59870) ((-611 . -21) T) ((-611 . -25) T) ((-554 . -1071) T) ((-1043 . -268) 59847) ((-317 . -25) T) ((-317 . -21) T) ((-473 . -344) T) ((-1197 . -37) 59817) ((-1069 . -1138) T) ((-587 . -564) 59792) ((-1019 . -25) T) ((-1019 . -21) T) ((-503 . -742) T) ((-503 . -745) T) ((-115 . -1142) T) ((-906 . -993) T) ((-579 . -523) T) ((-732 . -25) T) ((-732 . -21) T) ((-686 . -993) T) ((-666 . -993) T) ((-730 . -21) T) ((-730 . -25) T) ((-623 . -992) 59776) ((-441 . -25) T) ((-115 . -523) T) ((-441 . -21) T) ((-434 . -25) T) ((-434 . -21) T) ((-1069 . -977) 59674) ((-767 . -272) 59653) ((-773 . -1030) T) ((-909 . -910) T) ((-623 . -109) 59632) ((-277 . -492) 59424) ((-1204 . -992) 59408) ((-1202 . -992) 59392) ((-233 . -291) 59330) ((-232 . -291) 59268) ((-1151 . -99) 59246) ((-1086 . -573) NIL) ((-1086 . -572) 59228) ((-1168 . -1124) 59194) ((-1168 . -1127) 59160) ((-1148 . -214) 59112) ((-1147 . -1124) 59078) ((-1147 . -1127) 59044) ((-1069 . -358) 59028) ((-1049 . -770) T) ((-1049 . -863) T) ((-1043 . -564) 59005) ((-1012 . -573) 58989) ((-463 . -572) 58921) ((-765 . -270) 58898) ((-567 . -144) 58845) ((-399 . -993) T) ((-466 . -668) 58795) ((-461 . -468) 58779) ((-308 . -797) 58758) ((-320 . -601) 58732) ((-49 . -21) T) ((-49 . -25) T) ((-201 . -668) 58682) ((-159 . -675) 58653) ((-163 . -601) 58585) ((-544 . -21) T) ((-544 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-455 . -144) 58535) ((-1012 . -572) 58517) ((-996 . -572) 58499) ((-935 . -99) T) ((-806 . -99) T) ((-749 . -392) 58463) ((-39 . -128) T) ((-649 . -344) T) ((-196 . -838) T) ((-651 . -744) T) ((-651 . -741) T) ((-543 . -1042) T) ((-531 . -1042) T) ((-473 . -1042) T) ((-651 . -677) T) ((-340 . -572) 58445) ((-334 . -572) 58427) ((-326 . -572) 58409) ((-64 . -377) T) ((-64 . -376) T) ((-105 . -573) 58339) ((-105 . -572) 58321) ((-195 . -838) T) ((-901 . -144) 58305) ((-1168 . -93) 58271) ((-721 . -128) T) ((-130 . -677) T) ((-114 . -677) T) ((-1168 . -34) 58237) ((-990 . -468) 58221) ((-543 . -23) T) ((-531 . -23) T) ((-473 . -23) T) ((-1147 . -93) 58187) ((-1147 . -34) 58153) ((-1098 . -99) T) ((-1054 . -99) T) ((-801 . -99) T) ((-210 . -468) 58137) ((-1204 . -109) 58116) ((-1202 . -109) 58095) ((-43 . -992) 58079) ((-1157 . -1160) 58063) ((-802 . -799) 58047) ((-1104 . -272) 58026) ((-108 . -268) 58001) ((-1069 . -843) 57960) ((-43 . -109) 57939) ((-623 . -986) T) ((-1107 . -1179) T) ((-1085 . -573) NIL) ((-1085 . -572) 57921) ((-998 . -569) 57896) ((-998 . -1030) T) ((-72 . -421) T) ((-72 . -376) T) ((-623 . -216) 57875) ((-145 . -992) 57859) ((-538 . -521) 57843) ((-336 . -140) 57822) ((-336 . -138) 57773) ((-333 . -140) 57752) ((-653 . -1030) T) ((-333 . -138) 57703) ((-325 . -140) 57682) ((-325 . -138) 57633) ((-246 . -138) 57612) ((-246 . -140) 57591) ((-233 . -37) 57561) ((-230 . -140) 57540) ((-115 . -344) T) ((-230 . -138) 57519) ((-232 . -37) 57489) ((-145 . -109) 57468) ((-944 . -977) 57358) ((-1093 . -795) NIL) ((-644 . -1142) T) ((-749 . -993) T) ((-649 . -1042) T) ((-1204 . -986) T) ((-1202 . -986) T) ((-1083 . -1138) T) ((-944 . -358) 57335) ((-853 . -138) T) ((-853 . -140) 57317) ((-813 . -128) T) ((-765 . -992) 57215) ((-644 . -523) T) ((-649 . -23) T) ((-600 . -572) 57147) ((-600 . -573) 57108) ((-587 . -573) NIL) ((-587 . -572) 57090) ((-466 . -162) T) ((-206 . -21) T) ((-201 . -162) T) ((-206 . -25) T) ((-454 . -1127) 57056) ((-454 . -1124) 57022) ((-256 . -572) 57004) ((-255 . -572) 56986) ((-254 . -572) 56968) ((-253 . -572) 56950) ((-252 . -572) 56932) ((-478 . -604) 56914) ((-251 . -572) 56896) ((-320 . -677) T) ((-250 . -572) 56878) ((-108 . -19) 56860) ((-163 . -677) T) ((-478 . -354) 56842) ((-196 . -572) 56824) ((-497 . -1076) 56808) ((-478 . -121) T) ((-108 . -564) 56783) ((-195 . -572) 56765) ((-454 . -34) 56731) ((-454 . -93) 56697) ((-193 . -572) 56679) ((-192 . -572) 56661) ((-191 . -572) 56643) ((-190 . -572) 56625) ((-187 . -572) 56607) ((-186 . -572) 56589) ((-185 . -572) 56571) ((-184 . -572) 56553) ((-183 . -572) 56535) ((-182 . -572) 56517) ((-181 . -572) 56499) ((-507 . -1033) 56451) ((-180 . -572) 56433) ((-179 . -572) 56415) ((-44 . -468) 56352) ((-178 . -572) 56334) ((-177 . -572) 56316) ((-765 . -109) 56207) ((-598 . -99) 56157) ((-461 . -268) 56134) ((-1043 . -572) 55866) ((-1031 . -1030) T) ((-983 . -1138) T) ((-579 . -1042) T) ((-1205 . -977) 55850) ((-1098 . -291) 55837) ((-1054 . -291) 55824) ((-115 . -1042) T) ((-769 . -99) T) ((-579 . -23) T) ((-1077 . -492) 55616) ((-462 . -1015) T) ((-367 . -99) T) ((-305 . -99) T) ((-944 . -843) 55568) ((-906 . -1030) T) ((-145 . -986) T) ((-115 . -23) T) ((-682 . -392) 55552) ((-686 . -1030) T) ((-666 . -1030) T) ((-653 . -129) T) ((-433 . -1030) T) ((-297 . -411) 55536) ((-388 . -1138) T) ((-967 . -573) 55497) ((-964 . -1142) T) ((-208 . -99) T) ((-967 . -572) 55459) ((-766 . -214) 55443) ((-964 . -523) T) ((-783 . -601) 55416) ((-335 . -1142) T) ((-456 . -572) 55378) ((-456 . -573) 55339) ((-443 . -573) 55300) ((-443 . -572) 55262) ((-388 . -827) 55246) ((-300 . -992) 55081) ((-388 . -829) 55006) ((-790 . -977) 54904) ((-466 . -492) NIL) ((-461 . -564) 54881) ((-335 . -523) T) ((-201 . -492) NIL) ((-815 . -432) T) ((-399 . -1030) T) ((-388 . -977) 54748) ((-300 . -109) 54569) ((-644 . -344) T) ((-208 . -266) T) ((-47 . -1142) T) ((-765 . -986) 54500) ((-543 . -128) T) ((-531 . -128) T) ((-473 . -128) T) ((-47 . -523) T) ((-1086 . -270) 54476) ((-1098 . -1078) 54454) ((-297 . -27) 54433) ((-997 . -99) T) ((-765 . -216) 54386) ((-223 . -795) 54365) ((-895 . -99) T) ((-664 . -99) T) ((-277 . -468) 54302) ((-460 . -99) T) ((-682 . -993) T) ((-571 . -572) 54284) ((-571 . -573) 54145) ((-388 . -358) 54129) ((-388 . -319) 54113) ((-1098 . -37) 53942) ((-1054 . -37) 53791) ((-801 . -37) 53761) ((-371 . -601) 53745) ((-598 . -291) 53683) ((-906 . -668) 53580) ((-205 . -104) 53564) ((-44 . -268) 53489) ((-686 . -668) 53459) ((-577 . -601) 53433) ((-293 . -1030) T) ((-271 . -992) 53420) ((-108 . -572) 53402) ((-108 . -573) 53384) ((-433 . -668) 53354) ((-766 . -235) 53293) ((-639 . -1030) 53271) ((-517 . -1030) T) ((-1100 . -993) T) ((-1099 . -993) T) ((-271 . -109) 53256) ((-1093 . -993) T) ((-1055 . -993) T) ((-517 . -569) 53235) ((-945 . -795) T) ((-210 . -637) 53193) ((-644 . -1042) T) ((-1133 . -691) 53169) ((-300 . -986) T) ((-324 . -25) T) ((-324 . -21) T) ((-388 . -843) 53128) ((-66 . -1138) T) ((-783 . -744) 53107) ((-399 . -668) 53081) ((-749 . -1030) T) ((-783 . -741) 53060) ((-649 . -128) T) ((-663 . -863) 53039) ((-644 . -23) T) ((-466 . -272) T) ((-783 . -677) 53018) ((-300 . -216) 52970) ((-300 . -226) 52949) ((-201 . -272) T) ((-964 . -344) T) ((-1168 . -432) 52928) ((-1147 . -432) 52907) ((-335 . -310) 52884) ((-335 . -344) T) ((-1067 . -572) 52866) ((-44 . -1172) 52816) ((-814 . -99) T) ((-598 . -264) 52800) ((-649 . -995) T) ((-457 . -601) 52765) ((-448 . -1030) T) ((-44 . -564) 52690) ((-1085 . -270) 52665) ((-39 . -594) 52604) ((-47 . -344) T) ((-1036 . -572) 52586) ((-1019 . -797) 52565) ((-587 . -270) 52540) ((-732 . -797) 52519) ((-730 . -797) 52498) ((-461 . -572) 52230) ((-223 . -392) 52199) ((-895 . -291) 52186) ((-434 . -797) 52165) ((-63 . -1138) T) ((-579 . -128) T) ((-460 . -291) 52152) ((-998 . -492) 51996) ((-271 . -986) T) ((-115 . -128) T) ((-433 . -712) T) ((-906 . -162) 51947) ((-1012 . -992) 51857) ((-577 . -744) 51836) ((-554 . -1030) T) ((-577 . -741) 51815) ((-577 . -677) T) ((-277 . -268) 51794) ((-276 . -1138) T) ((-990 . -572) 51756) ((-990 . -573) 51717) ((-964 . -1042) T) ((-159 . -99) T) ((-257 . -797) T) ((-1092 . -1030) T) ((-768 . -572) 51699) ((-1043 . -270) 51676) ((-1032 . -212) 51660) ((-944 . -289) T) ((-749 . -668) 51644) ((-340 . -992) 51596) ((-335 . -1042) T) ((-334 . -992) 51548) ((-395 . -572) 51530) ((-366 . -572) 51512) ((-326 . -992) 51464) ((-210 . -572) 51396) ((-1012 . -109) 51292) ((-964 . -23) T) ((-105 . -992) 51242) ((-841 . -99) T) ((-788 . -99) T) ((-758 . -99) T) ((-719 . -99) T) ((-628 . -99) T) ((-454 . -432) 51221) ((-399 . -162) T) ((-340 . -109) 51159) ((-334 . -109) 51097) ((-326 . -109) 51035) ((-233 . -214) 51005) ((-232 . -214) 50975) ((-335 . -23) T) ((-69 . -1138) T) ((-208 . -37) 50940) ((-105 . -109) 50874) ((-39 . -25) T) ((-39 . -21) T) ((-623 . -671) T) ((-159 . -266) 50852) ((-47 . -1042) T) ((-864 . -25) T) ((-721 . -25) T) ((-1077 . -468) 50789) ((-464 . -1030) T) ((-1206 . -601) 50763) ((-1157 . -99) T) ((-802 . -99) T) ((-223 . -993) 50694) ((-997 . -1078) T) ((-907 . -742) 50647) ((-362 . -601) 50631) ((-47 . -23) T) ((-907 . -745) 50584) ((-765 . -745) 50535) ((-765 . -742) 50486) ((-277 . -564) 50465) ((-457 . -677) T) ((-538 . -99) T) ((-814 . -291) 50422) ((-606 . -268) 50401) ((-110 . -614) T) ((-74 . -1138) T) ((-997 . -37) 50388) ((-617 . -355) 50367) ((-895 . -37) 50216) ((-682 . -1030) T) ((-460 . -37) 50065) ((-84 . -1138) T) ((-538 . -266) T) ((-1148 . -795) NIL) ((-1100 . -1030) T) ((-1099 . -1030) T) ((-1093 . -1030) T) ((-332 . -977) 50042) ((-1012 . -986) T) ((-945 . -993) T) ((-44 . -572) 50024) ((-44 . -573) NIL) ((-857 . -993) T) ((-767 . -572) 50006) ((-1074 . -99) 49984) ((-1012 . -226) 49935) ((-408 . -993) T) ((-340 . -986) T) ((-334 . -986) T) ((-346 . -345) 49912) ((-326 . -986) T) ((-233 . -221) 49891) ((-232 . -221) 49870) ((-107 . -345) 49844) ((-1012 . -216) 49769) ((-1055 . -1030) T) ((-276 . -843) 49728) ((-105 . -986) T) ((-644 . -128) T) ((-399 . -492) 49570) ((-340 . -216) 49549) ((-340 . -226) T) ((-43 . -671) T) ((-334 . -216) 49528) ((-334 . -226) T) ((-326 . -216) 49507) ((-326 . -226) T) ((-159 . -291) 49472) ((-105 . -226) T) ((-105 . -216) T) ((-300 . -742) T) ((-813 . -21) T) ((-813 . -25) T) ((-388 . -289) T) ((-478 . -33) T) ((-108 . -270) 49447) ((-1043 . -992) 49345) ((-814 . -1078) NIL) ((-311 . -572) 49327) ((-388 . -962) 49306) ((-1043 . -109) 49197) ((-641 . -1179) T) ((-417 . -1030) T) ((-1206 . -677) T) ((-61 . -572) 49179) ((-814 . -37) 49124) ((-500 . -1138) T) ((-562 . -144) 49108) ((-490 . -572) 49090) ((-1157 . -291) 49077) ((-682 . -668) 48926) ((-503 . -743) T) ((-503 . -744) T) ((-531 . -594) 48908) ((-473 . -594) 48868) ((-336 . -432) T) ((-333 . -432) T) ((-325 . -432) T) ((-246 . -432) 48819) ((-497 . -1030) 48769) ((-230 . -432) 48720) ((-1077 . -268) 48699) ((-1104 . -572) 48681) ((-639 . -492) 48614) ((-906 . -272) 48593) ((-517 . -492) 48385) ((-1098 . -214) 48369) ((-159 . -1078) 48348) ((-1194 . -572) 48330) ((-1100 . -668) 48227) ((-1099 . -668) 48068) ((-835 . -99) T) ((-1093 . -668) 47864) ((-1055 . -668) 47761) ((-1083 . -626) 47745) ((-336 . -383) 47696) ((-333 . -383) 47647) ((-325 . -383) 47598) ((-964 . -128) T) ((-749 . -492) 47510) ((-277 . -573) NIL) ((-277 . -572) 47492) ((-853 . -432) T) ((-907 . -349) 47445) ((-765 . -349) 47424) ((-488 . -487) 47403) ((-486 . -487) 47382) ((-466 . -268) NIL) ((-461 . -270) 47359) ((-399 . -272) T) ((-335 . -128) T) ((-201 . -268) NIL) ((-644 . -471) NIL) ((-96 . -1042) T) ((-159 . -37) 47187) ((-1168 . -915) 47149) ((-1074 . -291) 47087) ((-1147 . -915) 47056) ((-853 . -383) T) ((-1043 . -986) 46987) ((-1170 . -523) T) ((-1077 . -564) 46966) ((-110 . -797) T) ((-998 . -468) 46897) ((-543 . -21) T) ((-543 . -25) T) ((-531 . -21) T) ((-531 . -25) T) ((-473 . -25) T) ((-473 . -21) T) ((-1157 . -1078) 46875) ((-1043 . -216) 46828) ((-47 . -128) T) ((-1120 . -99) T) ((-223 . -1030) 46619) ((-814 . -381) 46596) ((-1020 . -99) T) ((-1008 . -99) T) ((-567 . -99) T) ((-455 . -99) T) ((-1157 . -37) 46425) ((-802 . -37) 46395) ((-682 . -162) 46306) ((-606 . -572) 46288) ((-599 . -1015) T) ((-538 . -37) 46275) ((-901 . -99) 46225) ((-808 . -572) 46207) ((-808 . -573) 46129) ((-554 . -492) NIL) ((-1176 . -993) T) ((-1169 . -993) T) ((-1148 . -993) T) ((-557 . -993) T) ((-556 . -993) T) ((-1210 . -1042) T) ((-1100 . -162) 46080) ((-1099 . -162) 46011) ((-1093 . -162) 45942) ((-1055 . -162) 45893) ((-945 . -1030) T) ((-913 . -1030) T) ((-857 . -1030) T) ((-1133 . -140) 45872) ((-749 . -747) 45856) ((-649 . -25) T) ((-649 . -21) T) ((-115 . -594) 45833) ((-651 . -829) 45815) ((-408 . -1030) T) ((-297 . -1142) 45794) ((-294 . -1142) T) ((-159 . -381) 45778) ((-1133 . -138) 45757) ((-454 . -915) 45719) ((-126 . -1030) T) ((-70 . -572) 45701) ((-105 . -745) T) ((-105 . -742) T) ((-297 . -523) 45680) ((-651 . -977) 45662) ((-294 . -523) T) ((-1210 . -23) T) ((-130 . -977) 45644) ((-461 . -992) 45542) ((-44 . -270) 45467) ((-223 . -668) 45409) ((-461 . -109) 45300) ((-1023 . -99) 45278) ((-974 . -99) T) ((-598 . -778) 45257) ((-682 . -492) 45200) ((-990 . -992) 45184) ((-579 . -21) T) ((-579 . -25) T) ((-998 . -268) 45159) ((-342 . -99) T) ((-303 . -99) T) ((-623 . -601) 45133) ((-366 . -992) 45117) ((-990 . -109) 45096) ((-766 . -392) 45080) ((-115 . -25) T) ((-87 . -572) 45062) ((-115 . -21) T) ((-567 . -291) 44857) ((-455 . -291) 44661) ((-1077 . -573) NIL) ((-366 . -109) 44640) ((-360 . -99) T) ((-198 . -572) 44622) ((-1077 . -572) 44604) ((-945 . -668) 44554) ((-1093 . -492) 44323) ((-857 . -668) 44275) ((-1055 . -492) 44245) ((-332 . -289) T) ((-1112 . -144) 44195) ((-901 . -291) 44133) ((-784 . -99) T) ((-408 . -668) 44117) ((-208 . -778) T) ((-777 . -99) T) ((-775 . -99) T) ((-458 . -144) 44067) ((-1168 . -1167) 44046) ((-1049 . -1142) T) ((-320 . -977) 44013) ((-1168 . -1162) 43983) ((-1168 . -1165) 43967) ((-1147 . -1146) 43946) ((-78 . -572) 43928) ((-848 . -572) 43910) ((-1147 . -1162) 43887) ((-1049 . -523) T) ((-864 . -797) T) ((-466 . -573) 43817) ((-466 . -572) 43799) ((-721 . -797) T) ((-360 . -266) T) ((-624 . -797) T) ((-1147 . -1144) 43783) ((-1170 . -1042) T) ((-201 . -573) 43713) ((-201 . -572) 43695) ((-998 . -564) 43670) ((-57 . -144) 43654) ((-494 . -144) 43638) ((-474 . -144) 43622) ((-340 . -1201) 43606) ((-334 . -1201) 43590) ((-326 . -1201) 43574) ((-297 . -344) 43553) ((-294 . -344) T) ((-461 . -986) 43484) ((-644 . -594) 43466) ((-1204 . -601) 43440) ((-1202 . -601) 43414) ((-1170 . -23) T) ((-639 . -468) 43398) ((-62 . -572) 43380) ((-1043 . -745) 43331) ((-1043 . -742) 43282) ((-517 . -468) 43219) ((-623 . -33) T) ((-461 . -216) 43172) ((-277 . -270) 43151) ((-223 . -162) 43130) ((-766 . -993) T) ((-43 . -601) 43088) ((-1012 . -349) 43039) ((-682 . -272) 42970) ((-497 . -492) 42903) ((-767 . -992) 42854) ((-1019 . -138) 42833) ((-340 . -349) 42812) ((-334 . -349) 42791) ((-326 . -349) 42770) ((-1019 . -140) 42749) ((-814 . -214) 42726) ((-767 . -109) 42668) ((-732 . -138) 42647) ((-732 . -140) 42626) ((-246 . -892) 42593) ((-233 . -795) 42572) ((-230 . -892) 42517) ((-232 . -795) 42496) ((-730 . -138) 42475) ((-730 . -140) 42454) ((-145 . -601) 42428) ((-434 . -140) 42407) ((-434 . -138) 42386) ((-623 . -677) T) ((-773 . -572) 42368) ((-1176 . -1030) T) ((-1169 . -1030) T) ((-1148 . -1030) T) ((-1133 . -1127) 42334) ((-1133 . -1124) 42300) ((-1100 . -272) 42279) ((-1099 . -272) 42230) ((-1093 . -272) 42181) ((-1055 . -272) 42160) ((-320 . -843) 42141) ((-945 . -162) T) ((-857 . -162) T) ((-557 . -1030) T) ((-556 . -1030) T) ((-644 . -21) T) ((-644 . -25) T) ((-454 . -1165) 42125) ((-454 . -1162) 42095) ((-399 . -268) 42023) ((-297 . -1042) 41873) ((-294 . -1042) T) ((-1133 . -34) 41839) ((-1133 . -93) 41805) ((-82 . -572) 41787) ((-89 . -99) 41765) ((-1210 . -128) T) ((-544 . -138) T) ((-544 . -140) 41747) ((-495 . -140) 41729) ((-495 . -138) T) ((-297 . -23) 41582) ((-39 . -323) 41556) ((-294 . -23) T) ((-1085 . -604) 41538) ((-765 . -601) 41388) ((-1197 . -993) T) ((-1085 . -354) 41370) ((-159 . -214) 41354) ((-554 . -468) 41336) ((-223 . -492) 41269) ((-462 . -99) T) ((-1204 . -677) T) ((-1202 . -677) T) ((-1104 . -992) 41152) ((-1104 . -109) 41021) ((-767 . -986) T) ((-493 . -99) T) ((-47 . -594) 40981) ((-488 . -99) T) ((-486 . -99) T) ((-1194 . -992) 40951) ((-974 . -37) 40935) ((-767 . -216) T) ((-767 . -226) 40914) ((-517 . -268) 40893) ((-1194 . -109) 40858) ((-1157 . -214) 40842) ((-1176 . -668) 40739) ((-998 . -573) NIL) ((-998 . -572) 40721) ((-1169 . -668) 40562) ((-1148 . -668) 40358) ((-944 . -863) T) ((-653 . -572) 40327) ((-145 . -677) T) ((-1043 . -349) 40306) ((-945 . -492) NIL) ((-233 . -392) 40275) ((-232 . -392) 40244) ((-964 . -25) T) ((-964 . -21) T) ((-557 . -668) 40217) ((-556 . -668) 40114) ((-749 . -268) 40072) ((-124 . -99) 40050) ((-783 . -977) 39948) ((-159 . -778) 39927) ((-300 . -601) 39824) ((-765 . -33) T) ((-665 . -99) T) ((-1049 . -1042) T) ((-126 . -492) NIL) ((-966 . -1138) T) ((-360 . -37) 39789) ((-335 . -25) T) ((-335 . -21) T) ((-152 . -99) T) ((-148 . -99) T) ((-336 . -1191) 39773) ((-333 . -1191) 39757) ((-325 . -1191) 39741) ((-159 . -330) 39720) ((-531 . -797) T) ((-473 . -797) T) ((-1049 . -23) T) ((-85 . -572) 39702) ((-651 . -289) T) ((-784 . -37) 39672) ((-777 . -37) 39642) ((-1170 . -128) T) ((-1077 . -270) 39621) ((-907 . -743) 39574) ((-907 . -744) 39527) ((-765 . -741) 39506) ((-114 . -289) T) ((-89 . -291) 39444) ((-627 . -33) T) ((-517 . -564) 39423) ((-47 . -25) T) ((-47 . -21) T) ((-765 . -744) 39374) ((-765 . -743) 39353) ((-651 . -962) T) ((-606 . -992) 39337) ((-907 . -677) 39236) ((-765 . -677) 39147) ((-907 . -453) 39100) ((-461 . -745) 39051) ((-461 . -742) 39002) ((-853 . -1191) 38989) ((-1104 . -986) T) ((-606 . -109) 38968) ((-1104 . -307) 38945) ((-1125 . -99) 38923) ((-1031 . -572) 38905) ((-651 . -516) T) ((-766 . -1030) T) ((-1194 . -986) T) ((-394 . -1030) T) ((-233 . -993) 38836) ((-232 . -993) 38767) ((-271 . -601) 38754) ((-554 . -268) 38729) ((-639 . -637) 38687) ((-906 . -572) 38669) ((-815 . -99) T) ((-686 . -572) 38651) ((-666 . -572) 38633) ((-1176 . -162) 38584) ((-1169 . -162) 38515) ((-1148 . -162) 38446) ((-649 . -797) T) ((-945 . -272) T) ((-433 . -572) 38428) ((-582 . -677) T) ((-58 . -1030) 38406) ((-228 . -144) 38390) ((-857 . -272) T) ((-964 . -953) T) ((-582 . -453) T) ((-663 . -1142) 38369) ((-557 . -162) 38348) ((-556 . -162) 38299) ((-1184 . -797) 38278) ((-663 . -523) 38189) ((-388 . -863) T) ((-388 . -770) 38168) ((-300 . -744) T) ((-300 . -677) T) ((-399 . -572) 38150) ((-399 . -573) 38058) ((-598 . -1076) 38042) ((-108 . -604) 38024) ((-124 . -291) 37962) ((-108 . -354) 37944) ((-163 . -289) T) ((-379 . -1138) T) ((-297 . -128) 37816) ((-294 . -128) T) ((-67 . -376) T) ((-108 . -121) T) ((-497 . -468) 37800) ((-607 . -1042) T) ((-554 . -19) 37782) ((-59 . -421) T) ((-59 . -376) T) ((-774 . -1030) T) ((-554 . -564) 37757) ((-457 . -977) 37717) ((-606 . -986) T) ((-607 . -23) T) ((-1197 . -1030) T) ((-766 . -668) 37566) ((-115 . -797) NIL) ((-1098 . -392) 37550) ((-1054 . -392) 37534) ((-801 . -392) 37518) ((-816 . -99) 37469) ((-1168 . -99) T) ((-1148 . -492) 37238) ((-1125 . -291) 37176) ((-293 . -572) 37158) ((-1147 . -99) T) ((-1032 . -1030) T) ((-1100 . -268) 37143) ((-1099 . -268) 37128) ((-271 . -677) T) ((-105 . -852) NIL) ((-639 . -572) 37060) ((-639 . -573) 37021) ((-1012 . -601) 36931) ((-561 . -572) 36913) ((-517 . -573) NIL) ((-517 . -572) 36895) ((-1093 . -268) 36743) ((-466 . -992) 36693) ((-662 . -432) T) ((-489 . -487) 36672) ((-485 . -487) 36651) ((-201 . -992) 36601) ((-340 . -601) 36553) ((-334 . -601) 36505) ((-208 . -795) T) ((-326 . -601) 36457) ((-562 . -99) 36407) ((-461 . -349) 36386) ((-105 . -601) 36336) ((-466 . -109) 36270) ((-223 . -468) 36254) ((-324 . -140) 36236) ((-324 . -138) T) ((-159 . -351) 36207) ((-886 . -1182) 36191) ((-201 . -109) 36125) ((-815 . -291) 36090) ((-886 . -1030) 36040) ((-749 . -573) 36001) ((-749 . -572) 35983) ((-669 . -99) T) ((-312 . -1030) T) ((-1049 . -128) T) ((-665 . -37) 35953) ((-297 . -471) 35932) ((-478 . -1138) T) ((-1168 . -266) 35898) ((-1147 . -266) 35864) ((-308 . -144) 35848) ((-998 . -270) 35823) ((-1197 . -668) 35793) ((-1086 . -33) T) ((-1206 . -977) 35770) ((-448 . -572) 35752) ((-463 . -33) T) ((-362 . -977) 35736) ((-1098 . -993) T) ((-1054 . -993) T) ((-801 . -993) T) ((-997 . -795) T) ((-766 . -162) 35647) ((-497 . -268) 35624) ((-126 . -468) 35606) ((-115 . -934) 35583) ((-1176 . -272) 35562) ((-1120 . -345) 35536) ((-1020 . -248) 35520) ((-454 . -99) T) ((-346 . -1030) T) ((-233 . -1030) T) ((-232 . -1030) T) ((-1169 . -272) 35471) ((-107 . -1030) T) ((-1148 . -272) 35422) ((-815 . -1078) 35400) ((-1100 . -943) 35366) ((-567 . -345) 35306) ((-1099 . -943) 35272) ((-567 . -212) 35219) ((-554 . -572) 35201) ((-554 . -573) NIL) ((-644 . -797) T) ((-455 . -212) 35151) ((-466 . -986) T) ((-1093 . -943) 35117) ((-86 . -420) T) ((-86 . -376) T) ((-201 . -986) T) ((-1055 . -943) 35083) ((-1012 . -677) T) ((-663 . -1042) T) ((-557 . -272) 35062) ((-556 . -272) 35041) ((-466 . -226) T) ((-466 . -216) T) ((-201 . -226) T) ((-201 . -216) T) ((-1092 . -572) 35023) ((-815 . -37) 34975) ((-340 . -677) T) ((-334 . -677) T) ((-326 . -677) T) ((-105 . -744) T) ((-105 . -741) T) ((-497 . -1172) 34959) ((-105 . -677) T) ((-663 . -23) T) ((-1210 . -25) T) ((-454 . -266) 34925) ((-1210 . -21) T) ((-1147 . -291) 34864) ((-1102 . -99) T) ((-39 . -138) 34836) ((-39 . -140) 34808) ((-497 . -564) 34785) ((-1043 . -601) 34635) ((-562 . -291) 34573) ((-44 . -604) 34523) ((-44 . -619) 34473) ((-44 . -354) 34423) ((-1085 . -33) T) ((-814 . -795) NIL) ((-607 . -128) T) ((-464 . -572) 34405) ((-223 . -268) 34382) ((-600 . -33) T) ((-587 . -33) T) ((-1019 . -432) 34333) ((-766 . -492) 34207) ((-732 . -432) 34138) ((-730 . -432) 34089) ((-434 . -432) 34040) ((-895 . -392) 34024) ((-682 . -572) 34006) ((-233 . -668) 33948) ((-232 . -668) 33890) ((-682 . -573) 33751) ((-460 . -392) 33735) ((-320 . -284) T) ((-332 . -863) T) ((-941 . -99) 33713) ((-964 . -797) T) ((-58 . -492) 33646) ((-1147 . -1078) 33598) ((-945 . -268) NIL) ((-208 . -993) T) ((-360 . -778) T) ((-1043 . -33) T) ((-1151 . -1024) 33582) ((-544 . -432) T) ((-495 . -432) T) ((-1151 . -1030) 33560) ((-1151 . -1026) 33517) ((-223 . -564) 33494) ((-1100 . -572) 33476) ((-1099 . -572) 33458) ((-1093 . -572) 33440) ((-1093 . -573) NIL) ((-1055 . -572) 33422) ((-126 . -268) 33397) ((-815 . -381) 33381) ((-507 . -99) T) ((-1168 . -37) 33222) ((-1147 . -37) 33036) ((-813 . -140) T) ((-544 . -383) T) ((-47 . -797) T) ((-495 . -383) T) ((-1180 . -99) T) ((-1170 . -21) T) ((-1170 . -25) T) ((-1043 . -741) 33015) ((-1043 . -744) 32966) ((-1043 . -743) 32945) ((-935 . -1030) T) ((-967 . -33) T) ((-806 . -1030) T) ((-1043 . -677) 32856) ((-617 . -99) T) ((-599 . -99) T) ((-517 . -270) 32835) ((-1112 . -99) T) ((-456 . -33) T) ((-443 . -33) T) ((-336 . -99) T) ((-333 . -99) T) ((-325 . -99) T) ((-246 . -99) T) ((-230 . -99) T) ((-457 . -289) T) ((-997 . -993) T) ((-895 . -993) T) ((-297 . -594) 32743) ((-294 . -594) 32704) ((-460 . -993) T) ((-458 . -99) T) ((-417 . -572) 32686) ((-1098 . -1030) T) ((-1054 . -1030) T) ((-801 . -1030) T) ((-1068 . -99) T) ((-766 . -272) 32617) ((-906 . -992) 32500) ((-457 . -962) T) ((-126 . -19) 32482) ((-686 . -992) 32452) ((-126 . -564) 32427) ((-433 . -992) 32397) ((-1074 . -1050) 32381) ((-1032 . -492) 32314) ((-906 . -109) 32183) ((-853 . -99) T) ((-686 . -109) 32148) ((-57 . -99) 32098) ((-497 . -573) 32059) ((-497 . -572) 31971) ((-496 . -99) 31949) ((-494 . -99) 31899) ((-475 . -99) 31877) ((-474 . -99) 31827) ((-433 . -109) 31790) ((-233 . -162) 31769) ((-232 . -162) 31748) ((-399 . -992) 31722) ((-1133 . -915) 31684) ((-940 . -1042) T) ((-886 . -492) 31617) ((-466 . -745) T) ((-454 . -37) 31458) ((-399 . -109) 31425) ((-466 . -742) T) ((-941 . -291) 31363) ((-201 . -745) T) ((-201 . -742) T) ((-940 . -23) T) ((-663 . -128) T) ((-1147 . -381) 31333) ((-297 . -25) 31186) ((-159 . -392) 31170) ((-297 . -21) 31042) ((-294 . -25) T) ((-294 . -21) T) ((-808 . -349) T) ((-108 . -33) T) ((-461 . -601) 30892) ((-814 . -993) T) ((-554 . -270) 30867) ((-543 . -140) T) ((-531 . -140) T) ((-473 . -140) T) ((-1098 . -668) 30696) ((-1054 . -668) 30545) ((-1049 . -594) 30527) ((-801 . -668) 30497) ((-623 . -1138) T) ((-1 . -99) T) ((-223 . -572) 30229) ((-1157 . -392) 30213) ((-1112 . -291) 30017) ((-906 . -986) T) ((-686 . -986) T) ((-666 . -986) T) ((-598 . -1030) 29967) ((-990 . -601) 29951) ((-802 . -392) 29935) ((-489 . -99) T) ((-485 . -99) T) ((-230 . -291) 29922) ((-246 . -291) 29909) ((-906 . -307) 29888) ((-366 . -601) 29872) ((-458 . -291) 29676) ((-233 . -492) 29609) ((-623 . -977) 29507) ((-232 . -492) 29440) ((-1068 . -291) 29366) ((-769 . -1030) T) ((-749 . -992) 29350) ((-1176 . -268) 29335) ((-1169 . -268) 29320) ((-1148 . -268) 29168) ((-367 . -1030) T) ((-305 . -1030) T) ((-399 . -986) T) ((-159 . -993) T) ((-57 . -291) 29106) ((-749 . -109) 29085) ((-556 . -268) 29070) ((-496 . -291) 29008) ((-494 . -291) 28946) ((-475 . -291) 28884) ((-474 . -291) 28822) ((-399 . -216) 28801) ((-461 . -33) T) ((-945 . -573) 28731) ((-208 . -1030) T) ((-945 . -572) 28713) ((-913 . -572) 28695) ((-913 . -573) 28670) ((-857 . -572) 28652) ((-649 . -140) T) ((-651 . -863) T) ((-651 . -770) T) ((-408 . -572) 28634) ((-1049 . -21) T) ((-126 . -573) NIL) ((-126 . -572) 28616) ((-1049 . -25) T) ((-623 . -358) 28600) ((-114 . -863) T) ((-815 . -214) 28584) ((-76 . -1138) T) ((-124 . -123) 28568) ((-990 . -33) T) ((-1204 . -977) 28542) ((-1202 . -977) 28499) ((-1157 . -993) T) ((-802 . -993) T) ((-461 . -741) 28478) ((-336 . -1078) 28457) ((-333 . -1078) 28436) ((-325 . -1078) 28415) ((-461 . -744) 28366) ((-461 . -743) 28345) ((-210 . -33) T) ((-461 . -677) 28256) ((-58 . -468) 28240) ((-538 . -993) T) ((-1098 . -162) 28131) ((-1054 . -162) 28042) ((-997 . -1030) T) ((-1019 . -892) 27987) ((-895 . -1030) T) ((-767 . -601) 27938) ((-732 . -892) 27907) ((-664 . -1030) T) ((-730 . -892) 27874) ((-494 . -264) 27858) ((-623 . -843) 27817) ((-460 . -1030) T) ((-434 . -892) 27784) ((-77 . -1138) T) ((-336 . -37) 27749) ((-333 . -37) 27714) ((-325 . -37) 27679) ((-246 . -37) 27528) ((-230 . -37) 27377) ((-853 . -1078) T) ((-579 . -140) 27356) ((-579 . -138) 27335) ((-115 . -140) T) ((-115 . -138) NIL) ((-395 . -677) T) ((-749 . -986) T) ((-324 . -432) T) ((-1176 . -943) 27301) ((-1169 . -943) 27267) ((-1148 . -943) 27233) ((-853 . -37) 27198) ((-208 . -668) 27163) ((-300 . -46) 27133) ((-39 . -390) 27105) ((-133 . -572) 27087) ((-940 . -128) T) ((-765 . -1138) T) ((-163 . -863) T) ((-324 . -383) T) ((-497 . -270) 27064) ((-44 . -33) T) ((-765 . -977) 26893) ((-615 . -99) T) ((-607 . -21) T) ((-607 . -25) T) ((-1032 . -468) 26877) ((-1147 . -214) 26847) ((-627 . -1138) T) ((-228 . -99) 26797) ((-814 . -1030) T) ((-1104 . -601) 26722) ((-997 . -668) 26709) ((-682 . -992) 26552) ((-1098 . -492) 26499) ((-895 . -668) 26348) ((-1054 . -492) 26300) ((-460 . -668) 26149) ((-65 . -572) 26131) ((-682 . -109) 25960) ((-886 . -468) 25944) ((-1194 . -601) 25904) ((-767 . -677) T) ((-1100 . -992) 25787) ((-1099 . -992) 25622) ((-1093 . -992) 25412) ((-1055 . -992) 25295) ((-944 . -1142) T) ((-1025 . -99) 25273) ((-765 . -358) 25243) ((-944 . -523) T) ((-1100 . -109) 25112) ((-1099 . -109) 24933) ((-1093 . -109) 24702) ((-1055 . -109) 24571) ((-1035 . -1033) 24535) ((-360 . -795) T) ((-1176 . -572) 24517) ((-1169 . -572) 24499) ((-1148 . -572) 24481) ((-1148 . -573) NIL) ((-223 . -270) 24458) ((-39 . -432) T) ((-208 . -162) T) ((-159 . -1030) T) ((-644 . -140) T) ((-644 . -138) NIL) ((-557 . -572) 24440) ((-556 . -572) 24422) ((-841 . -1030) T) ((-788 . -1030) T) ((-758 . -1030) T) ((-719 . -1030) T) ((-611 . -799) 24406) ((-628 . -1030) T) ((-765 . -843) 24339) ((-39 . -383) NIL) ((-1049 . -614) T) ((-814 . -668) 24284) ((-233 . -468) 24268) ((-232 . -468) 24252) ((-663 . -594) 24200) ((-606 . -601) 24174) ((-277 . -33) T) ((-682 . -986) T) ((-544 . -1191) 24161) ((-495 . -1191) 24138) ((-1157 . -1030) T) ((-1098 . -272) 24049) ((-1054 . -272) 23980) ((-997 . -162) T) ((-802 . -1030) T) ((-895 . -162) 23891) ((-732 . -1160) 23875) ((-598 . -492) 23808) ((-75 . -572) 23790) ((-682 . -307) 23755) ((-1104 . -677) T) ((-538 . -1030) T) ((-460 . -162) 23666) ((-228 . -291) 23604) ((-126 . -270) 23579) ((-1069 . -1042) T) ((-68 . -572) 23561) ((-1194 . -677) T) ((-1100 . -986) T) ((-1099 . -986) T) ((-308 . -99) 23511) ((-1093 . -986) T) ((-1069 . -23) T) ((-1055 . -986) T) ((-89 . -1050) 23495) ((-809 . -1042) T) ((-1100 . -216) 23454) ((-1099 . -226) 23433) ((-1099 . -216) 23385) ((-1093 . -216) 23272) ((-1093 . -226) 23251) ((-300 . -843) 23157) ((-809 . -23) T) ((-159 . -668) 22985) ((-388 . -1142) T) ((-1031 . -349) T) ((-964 . -140) T) ((-944 . -344) T) ((-813 . -432) T) ((-886 . -268) 22962) ((-297 . -797) T) ((-294 . -797) NIL) ((-817 . -99) T) ((-663 . -25) T) ((-388 . -523) T) ((-663 . -21) T) ((-335 . -140) 22944) ((-335 . -138) T) ((-1074 . -1030) 22922) ((-433 . -671) T) ((-73 . -572) 22904) ((-112 . -797) T) ((-228 . -264) 22888) ((-223 . -992) 22786) ((-79 . -572) 22768) ((-686 . -349) 22721) ((-1102 . -778) T) ((-688 . -218) 22705) ((-1086 . -1138) T) ((-134 . -218) 22687) ((-223 . -109) 22578) ((-1157 . -668) 22407) ((-47 . -140) T) ((-814 . -162) T) ((-802 . -668) 22377) ((-463 . -1138) T) ((-895 . -492) 22324) ((-606 . -677) T) ((-538 . -668) 22311) ((-974 . -993) T) ((-460 . -492) 22254) ((-886 . -19) 22238) ((-886 . -564) 22215) ((-766 . -573) NIL) ((-766 . -572) 22197) ((-945 . -992) 22147) ((-394 . -572) 22129) ((-233 . -268) 22106) ((-232 . -268) 22083) ((-466 . -852) NIL) ((-297 . -29) 22053) ((-105 . -1138) T) ((-944 . -1042) T) ((-201 . -852) NIL) ((-857 . -992) 22005) ((-1012 . -977) 21903) ((-945 . -109) 21837) ((-246 . -214) 21821) ((-688 . -645) 21805) ((-408 . -992) 21789) ((-360 . -993) T) ((-944 . -23) T) ((-857 . -109) 21727) ((-644 . -1127) NIL) ((-466 . -601) 21677) ((-105 . -827) 21659) ((-105 . -829) 21641) ((-644 . -1124) NIL) ((-201 . -601) 21591) ((-340 . -977) 21575) ((-334 . -977) 21559) ((-308 . -291) 21497) ((-326 . -977) 21481) ((-208 . -272) T) ((-408 . -109) 21460) ((-58 . -572) 21392) ((-159 . -162) T) ((-1049 . -797) T) ((-105 . -977) 21352) ((-835 . -1030) T) ((-784 . -993) T) ((-777 . -993) T) ((-644 . -34) NIL) ((-644 . -93) NIL) ((-294 . -934) 21313) ((-171 . -99) T) ((-543 . -432) T) ((-531 . -432) T) ((-473 . -432) T) ((-388 . -344) T) ((-223 . -986) 21244) ((-1077 . -33) T) ((-457 . -863) T) ((-940 . -594) 21192) ((-233 . -564) 21169) ((-232 . -564) 21146) ((-1012 . -358) 21130) ((-814 . -492) 21038) ((-223 . -216) 20991) ((-1085 . -1138) T) ((-774 . -572) 20973) ((-1205 . -1042) T) ((-1197 . -572) 20955) ((-1157 . -162) 20846) ((-105 . -358) 20828) ((-105 . -319) 20810) ((-997 . -272) T) ((-895 . -272) 20741) ((-749 . -349) 20720) ((-600 . -1138) T) ((-587 . -1138) T) ((-460 . -272) 20651) ((-538 . -162) T) ((-308 . -264) 20635) ((-1205 . -23) T) ((-1133 . -99) T) ((-1120 . -1030) T) ((-1020 . -1030) T) ((-1008 . -1030) T) ((-81 . -572) 20617) ((-662 . -99) T) ((-336 . -330) 20596) ((-567 . -1030) T) ((-333 . -330) 20575) ((-325 . -330) 20554) ((-455 . -1030) T) ((-1112 . -212) 20504) ((-246 . -235) 20466) ((-1069 . -128) T) ((-567 . -569) 20442) ((-1012 . -843) 20375) ((-945 . -986) T) ((-857 . -986) T) ((-455 . -569) 20354) ((-1093 . -742) NIL) ((-1093 . -745) NIL) ((-1032 . -573) 20315) ((-458 . -212) 20265) ((-1032 . -572) 20247) ((-945 . -226) T) ((-945 . -216) T) ((-408 . -986) T) ((-901 . -1030) 20197) ((-857 . -226) T) ((-809 . -128) T) ((-649 . -432) T) ((-790 . -1042) 20176) ((-105 . -843) NIL) ((-1133 . -266) 20142) ((-815 . -795) 20121) ((-1043 . -1138) T) ((-848 . -677) T) ((-159 . -492) 20033) ((-940 . -25) T) ((-848 . -453) T) ((-388 . -1042) T) ((-466 . -744) T) ((-466 . -741) T) ((-853 . -330) T) ((-466 . -677) T) ((-201 . -744) T) ((-201 . -741) T) ((-940 . -21) T) ((-201 . -677) T) ((-790 . -23) 19985) ((-300 . -289) 19964) ((-975 . -218) 19910) ((-388 . -23) T) ((-886 . -573) 19871) ((-886 . -572) 19783) ((-598 . -468) 19767) ((-44 . -951) 19717) ((-469 . -99) T) ((-312 . -572) 19699) ((-1043 . -977) 19528) ((-554 . -604) 19510) ((-554 . -354) 19492) ((-324 . -1191) 19469) ((-967 . -1138) T) ((-814 . -272) T) ((-1157 . -492) 19416) ((-456 . -1138) T) ((-443 . -1138) T) ((-548 . -99) T) ((-1098 . -268) 19343) ((-579 . -432) 19322) ((-941 . -936) 19306) ((-1197 . -363) 19278) ((-115 . -432) T) ((-1119 . -99) T) ((-1023 . -1030) 19256) ((-974 . -1030) T) ((-836 . -797) T) ((-332 . -1142) T) ((-1176 . -992) 19139) ((-1043 . -358) 19109) ((-1169 . -992) 18944) ((-1148 . -992) 18734) ((-1176 . -109) 18603) ((-1169 . -109) 18424) ((-1148 . -109) 18193) ((-1133 . -291) 18180) ((-332 . -523) T) ((-346 . -572) 18162) ((-271 . -289) T) ((-557 . -992) 18135) ((-556 . -992) 18018) ((-342 . -1030) T) ((-303 . -1030) T) ((-233 . -572) 17979) ((-232 . -572) 17940) ((-944 . -128) T) ((-107 . -572) 17922) ((-590 . -23) T) ((-644 . -390) 17889) ((-566 . -23) T) ((-611 . -99) T) ((-557 . -109) 17860) ((-556 . -109) 17729) ((-360 . -1030) T) ((-317 . -99) T) ((-159 . -272) 17640) ((-1147 . -795) 17593) ((-665 . -993) T) ((-1074 . -492) 17526) ((-1043 . -843) 17459) ((-784 . -1030) T) ((-777 . -1030) T) ((-775 . -1030) T) ((-94 . -99) T) ((-137 . -797) T) ((-571 . -827) 17443) ((-108 . -1138) T) ((-1019 . -99) T) ((-998 . -33) T) ((-732 . -99) T) ((-730 . -99) T) ((-441 . -99) T) ((-434 . -99) T) ((-223 . -745) 17394) ((-223 . -742) 17345) ((-602 . -99) T) ((-1157 . -272) 17256) ((-617 . -589) 17240) ((-598 . -268) 17217) ((-974 . -668) 17201) ((-538 . -272) T) ((-906 . -601) 17126) ((-1205 . -128) T) ((-686 . -601) 17086) ((-666 . -601) 17073) ((-257 . -99) T) ((-433 . -601) 17003) ((-49 . -99) T) ((-544 . -99) T) ((-495 . -99) T) ((-1176 . -986) T) ((-1169 . -986) T) ((-1148 . -986) T) ((-1176 . -216) 16962) ((-303 . -668) 16944) ((-1169 . -226) 16923) ((-1169 . -216) 16875) ((-1148 . -216) 16762) ((-1148 . -226) 16741) ((-1133 . -37) 16638) ((-945 . -745) T) ((-557 . -986) T) ((-556 . -986) T) ((-945 . -742) T) ((-913 . -745) T) ((-913 . -742) T) ((-815 . -993) T) ((-813 . -812) 16622) ((-106 . -572) 16604) ((-644 . -432) T) ((-360 . -668) 16569) ((-399 . -601) 16543) ((-663 . -797) 16522) ((-662 . -37) 16487) ((-556 . -216) 16446) ((-39 . -675) 16418) ((-332 . -310) 16395) ((-332 . -344) T) ((-1012 . -289) 16346) ((-276 . -1042) 16228) ((-1036 . -1138) T) ((-161 . -99) T) ((-1151 . -572) 16195) ((-790 . -128) 16147) ((-598 . -1172) 16131) ((-784 . -668) 16101) ((-777 . -668) 16071) ((-461 . -1138) T) ((-340 . -289) T) ((-334 . -289) T) ((-326 . -289) T) ((-598 . -564) 16048) ((-388 . -128) T) ((-497 . -619) 16032) ((-105 . -289) T) ((-276 . -23) 15916) ((-497 . -604) 15900) ((-644 . -383) NIL) ((-497 . -354) 15884) ((-273 . -572) 15866) ((-89 . -1030) 15844) ((-105 . -962) T) ((-531 . -136) T) ((-1184 . -144) 15828) ((-461 . -977) 15657) ((-1170 . -138) 15618) ((-1170 . -140) 15579) ((-990 . -1138) T) ((-935 . -572) 15561) ((-806 . -572) 15543) ((-766 . -992) 15386) ((-1019 . -291) 15373) ((-210 . -1138) T) ((-732 . -291) 15360) ((-730 . -291) 15347) ((-766 . -109) 15176) ((-1098 . -573) NIL) ((-434 . -291) 15163) ((-462 . -1030) T) ((-1098 . -572) 15145) ((-1054 . -572) 15127) ((-1054 . -573) 14875) ((-974 . -162) T) ((-801 . -572) 14857) ((-886 . -270) 14834) ((-567 . -492) 14617) ((-768 . -977) 14601) ((-455 . -492) 14393) ((-906 . -677) T) ((-686 . -677) T) ((-666 . -677) T) ((-332 . -1042) T) ((-1105 . -572) 14375) ((-206 . -99) T) ((-461 . -358) 14345) ((-493 . -1030) T) ((-488 . -1030) T) ((-486 . -1030) T) ((-749 . -601) 14319) ((-964 . -432) T) ((-901 . -492) 14252) ((-332 . -23) T) ((-590 . -128) T) ((-566 . -128) T) ((-335 . -432) T) ((-223 . -349) 14231) ((-360 . -162) T) ((-1168 . -993) T) ((-1147 . -993) T) ((-208 . -943) T) ((-649 . -368) T) ((-399 . -677) T) ((-651 . -1142) T) ((-1069 . -594) 14179) ((-543 . -812) 14163) ((-1086 . -1115) 14139) ((-651 . -523) T) ((-124 . -1030) 14117) ((-1197 . -992) 14101) ((-665 . -1030) T) ((-461 . -843) 14034) ((-611 . -37) 14004) ((-335 . -383) T) ((-297 . -140) 13983) ((-297 . -138) 13962) ((-114 . -523) T) ((-294 . -140) 13918) ((-294 . -138) 13874) ((-47 . -432) T) ((-152 . -1030) T) ((-148 . -1030) T) ((-1086 . -104) 13821) ((-732 . -1078) 13799) ((-639 . -33) T) ((-1197 . -109) 13778) ((-517 . -33) T) ((-463 . -104) 13762) ((-233 . -270) 13739) ((-232 . -270) 13716) ((-814 . -268) 13667) ((-44 . -1138) T) ((-766 . -986) T) ((-1104 . -46) 13644) ((-766 . -307) 13606) ((-1019 . -37) 13455) ((-766 . -216) 13434) ((-732 . -37) 13263) ((-730 . -37) 13112) ((-126 . -604) 13094) ((-434 . -37) 12943) ((-126 . -354) 12925) ((-1047 . -99) T) ((-598 . -573) 12886) ((-598 . -572) 12798) ((-544 . -1078) T) ((-495 . -1078) T) ((-1074 . -468) 12782) ((-1125 . -1030) 12760) ((-1069 . -25) T) ((-1069 . -21) T) ((-454 . -993) T) ((-1148 . -742) NIL) ((-1148 . -745) NIL) ((-940 . -797) 12739) ((-769 . -572) 12721) ((-809 . -21) T) ((-809 . -25) T) ((-749 . -677) T) ((-163 . -1142) T) ((-544 . -37) 12686) ((-495 . -37) 12651) ((-367 . -572) 12633) ((-305 . -572) 12615) ((-159 . -268) 12573) ((-61 . -1138) T) ((-110 . -99) T) ((-815 . -1030) T) ((-163 . -523) T) ((-665 . -668) 12543) ((-276 . -128) 12427) ((-208 . -572) 12409) ((-208 . -573) 12339) ((-944 . -594) 12278) ((-1197 . -986) T) ((-1049 . -140) T) ((-587 . -1115) 12253) ((-682 . -852) 12232) ((-554 . -33) T) ((-600 . -104) 12216) ((-587 . -104) 12162) ((-1157 . -268) 12089) ((-682 . -601) 12014) ((-277 . -1138) T) ((-1104 . -977) 11912) ((-1093 . -852) NIL) ((-997 . -573) 11827) ((-997 . -572) 11809) ((-324 . -99) T) ((-232 . -992) 11707) ((-233 . -992) 11605) ((-375 . -99) T) ((-895 . -572) 11587) ((-895 . -573) 11448) ((-664 . -572) 11430) ((-1195 . -1132) 11399) ((-460 . -572) 11381) ((-460 . -573) 11242) ((-230 . -392) 11226) ((-246 . -392) 11210) ((-233 . -109) 11101) ((-232 . -109) 10992) ((-1100 . -601) 10917) ((-1099 . -601) 10814) ((-1093 . -601) 10666) ((-1055 . -601) 10591) ((-332 . -128) T) ((-80 . -421) T) ((-80 . -376) T) ((-944 . -25) T) ((-944 . -21) T) ((-816 . -1030) 10542) ((-815 . -668) 10494) ((-360 . -272) T) ((-159 . -943) 10446) ((-644 . -368) T) ((-940 . -938) 10430) ((-651 . -1042) T) ((-644 . -156) 10412) ((-1168 . -1030) T) ((-1147 . -1030) T) ((-297 . -1124) 10391) ((-297 . -1127) 10370) ((-1091 . -99) T) ((-297 . -902) 10349) ((-130 . -1042) T) ((-114 . -1042) T) ((-562 . -1182) 10333) ((-651 . -23) T) ((-562 . -1030) 10283) ((-89 . -492) 10216) ((-163 . -344) T) ((-297 . -93) 10195) ((-297 . -34) 10174) ((-567 . -468) 10108) ((-130 . -23) T) ((-114 . -23) T) ((-669 . -1030) T) ((-455 . -468) 10045) ((-388 . -594) 9993) ((-606 . -977) 9891) ((-901 . -468) 9875) ((-336 . -993) T) ((-333 . -993) T) ((-325 . -993) T) ((-246 . -993) T) ((-230 . -993) T) ((-814 . -573) NIL) ((-814 . -572) 9857) ((-1205 . -21) T) ((-538 . -943) T) ((-682 . -677) T) ((-1205 . -25) T) ((-233 . -986) 9788) ((-232 . -986) 9719) ((-70 . -1138) T) ((-233 . -216) 9672) ((-232 . -216) 9625) ((-39 . -99) T) ((-853 . -993) T) ((-1107 . -99) T) ((-1100 . -677) T) ((-1099 . -677) T) ((-1093 . -677) T) ((-1093 . -741) NIL) ((-1093 . -744) NIL) ((-897 . -99) T) ((-864 . -99) T) ((-1055 . -677) T) ((-721 . -99) T) ((-624 . -99) T) ((-454 . -1030) T) ((-320 . -1042) T) ((-163 . -1042) T) ((-300 . -863) 9604) ((-1168 . -668) 9445) ((-815 . -162) T) ((-1147 . -668) 9259) ((-790 . -21) 9211) ((-790 . -25) 9163) ((-228 . -1076) 9147) ((-124 . -492) 9080) ((-388 . -25) T) ((-388 . -21) T) ((-320 . -23) T) ((-159 . -572) 9062) ((-159 . -573) 8830) ((-163 . -23) T) ((-598 . -270) 8807) ((-497 . -33) T) ((-841 . -572) 8789) ((-87 . -1138) T) ((-788 . -572) 8771) ((-758 . -572) 8753) ((-719 . -572) 8735) ((-628 . -572) 8717) ((-223 . -601) 8567) ((-1102 . -1030) T) ((-1098 . -992) 8390) ((-1077 . -1138) T) ((-1054 . -992) 8233) ((-801 . -992) 8217) ((-1098 . -109) 8026) ((-1054 . -109) 7855) ((-801 . -109) 7834) ((-1157 . -573) NIL) ((-1157 . -572) 7816) ((-324 . -1078) T) ((-802 . -572) 7798) ((-1008 . -268) 7777) ((-78 . -1138) T) ((-945 . -852) NIL) ((-567 . -268) 7753) ((-1125 . -492) 7686) ((-466 . -1138) T) ((-538 . -572) 7668) ((-455 . -268) 7647) ((-201 . -1138) T) ((-1019 . -214) 7631) ((-271 . -863) T) ((-767 . -289) 7610) ((-813 . -99) T) ((-732 . -214) 7594) ((-945 . -601) 7544) ((-901 . -268) 7521) ((-857 . -601) 7473) ((-590 . -21) T) ((-590 . -25) T) ((-566 . -21) T) ((-324 . -37) 7438) ((-644 . -675) 7405) ((-466 . -827) 7387) ((-466 . -829) 7369) ((-454 . -668) 7210) ((-201 . -827) 7192) ((-62 . -1138) T) ((-201 . -829) 7174) ((-566 . -25) T) ((-408 . -601) 7148) ((-466 . -977) 7108) ((-815 . -492) 7020) ((-201 . -977) 6980) ((-223 . -33) T) ((-941 . -1030) 6958) ((-1168 . -162) 6889) ((-1147 . -162) 6820) ((-663 . -138) 6799) ((-663 . -140) 6778) ((-651 . -128) T) ((-132 . -445) 6755) ((-611 . -609) 6739) ((-1074 . -572) 6671) ((-114 . -128) T) ((-457 . -1142) T) ((-567 . -564) 6647) ((-455 . -564) 6626) ((-317 . -316) 6595) ((-507 . -1030) T) ((-457 . -523) T) ((-1098 . -986) T) ((-1054 . -986) T) ((-801 . -986) T) ((-223 . -741) 6574) ((-223 . -744) 6525) ((-223 . -743) 6504) ((-1098 . -307) 6481) ((-223 . -677) 6392) ((-901 . -19) 6376) ((-466 . -358) 6358) ((-466 . -319) 6340) ((-1054 . -307) 6312) ((-335 . -1191) 6289) ((-201 . -358) 6271) ((-201 . -319) 6253) ((-901 . -564) 6230) ((-1098 . -216) T) ((-617 . -1030) T) ((-599 . -1030) T) ((-1180 . -1030) T) ((-1112 . -1030) T) ((-1019 . -235) 6167) ((-336 . -1030) T) ((-333 . -1030) T) ((-325 . -1030) T) ((-246 . -1030) T) ((-230 . -1030) T) ((-82 . -1138) T) ((-125 . -99) 6145) ((-119 . -99) 6123) ((-126 . -33) T) ((-1112 . -569) 6102) ((-458 . -1030) T) ((-1068 . -1030) T) ((-458 . -569) 6081) ((-233 . -745) 6032) ((-233 . -742) 5983) ((-232 . -745) 5934) ((-39 . -1078) NIL) ((-232 . -742) 5885) ((-1012 . -863) 5836) ((-945 . -744) T) ((-945 . -741) T) ((-945 . -677) T) ((-913 . -744) T) ((-857 . -677) T) ((-89 . -468) 5820) ((-466 . -843) NIL) ((-853 . -1030) T) ((-208 . -992) 5785) ((-815 . -272) T) ((-201 . -843) NIL) ((-783 . -1042) 5764) ((-57 . -1030) 5714) ((-496 . -1030) 5692) ((-494 . -1030) 5642) ((-475 . -1030) 5620) ((-474 . -1030) 5570) ((-543 . -99) T) ((-531 . -99) T) ((-473 . -99) T) ((-454 . -162) 5501) ((-340 . -863) T) ((-334 . -863) T) ((-326 . -863) T) ((-208 . -109) 5457) ((-783 . -23) 5409) ((-408 . -677) T) ((-105 . -863) T) ((-39 . -37) 5354) ((-105 . -770) T) ((-544 . -330) T) ((-495 . -330) T) ((-1147 . -492) 5214) ((-297 . -432) 5193) ((-294 . -432) T) ((-784 . -268) 5172) ((-320 . -128) T) ((-163 . -128) T) ((-276 . -25) 5037) ((-276 . -21) 4921) ((-44 . -1115) 4900) ((-64 . -572) 4882) ((-835 . -572) 4864) ((-562 . -492) 4797) ((-44 . -104) 4747) ((-1032 . -406) 4731) ((-1032 . -349) 4710) ((-998 . -1138) T) ((-997 . -992) 4697) ((-895 . -992) 4540) ((-460 . -992) 4383) ((-617 . -668) 4367) ((-997 . -109) 4352) ((-895 . -109) 4181) ((-457 . -344) T) ((-336 . -668) 4133) ((-333 . -668) 4085) ((-325 . -668) 4037) ((-246 . -668) 3886) ((-230 . -668) 3735) ((-886 . -604) 3719) ((-460 . -109) 3548) ((-1185 . -99) T) ((-886 . -354) 3532) ((-231 . -99) T) ((-1148 . -852) NIL) ((-72 . -572) 3514) ((-906 . -46) 3493) ((-577 . -1042) T) ((-1 . -1030) T) ((-661 . -99) T) ((-649 . -99) T) ((-1184 . -99) 3443) ((-1176 . -601) 3368) ((-1169 . -601) 3265) ((-1120 . -572) 3247) ((-124 . -468) 3231) ((-462 . -91) T) ((-1020 . -572) 3213) ((-371 . -23) T) ((-1008 . -572) 3195) ((-85 . -1138) T) ((-1148 . -601) 3047) ((-853 . -668) 3012) ((-577 . -23) T) ((-567 . -572) 2994) ((-567 . -573) NIL) ((-455 . -573) NIL) ((-455 . -572) 2976) ((-489 . -1030) T) ((-485 . -1030) T) ((-332 . -25) T) ((-332 . -21) T) ((-125 . -291) 2914) ((-119 . -291) 2852) ((-557 . -601) 2839) ((-208 . -986) T) ((-556 . -601) 2764) ((-360 . -943) T) ((-208 . -226) T) ((-208 . -216) T) ((-901 . -573) 2725) ((-901 . -572) 2637) ((-813 . -37) 2624) ((-1168 . -272) 2575) ((-1147 . -272) 2526) ((-1049 . -432) T) ((-480 . -797) T) ((-297 . -1066) 2505) ((-940 . -140) 2484) ((-940 . -138) 2463) ((-473 . -291) 2450) ((-277 . -1115) 2429) ((-457 . -1042) T) ((-814 . -992) 2374) ((-579 . -99) T) ((-1125 . -468) 2358) ((-233 . -349) 2337) ((-232 . -349) 2316) ((-277 . -104) 2266) ((-997 . -986) T) ((-115 . -99) T) ((-895 . -986) T) ((-814 . -109) 2195) ((-457 . -23) T) ((-460 . -986) T) ((-997 . -216) T) ((-895 . -307) 2164) ((-460 . -307) 2121) ((-336 . -162) T) ((-333 . -162) T) ((-325 . -162) T) ((-246 . -162) 2032) ((-230 . -162) 1943) ((-906 . -977) 1841) ((-686 . -977) 1812) ((-1035 . -99) T) ((-1023 . -572) 1779) ((-974 . -572) 1761) ((-1176 . -677) T) ((-1169 . -677) T) ((-1148 . -741) NIL) ((-159 . -992) 1671) ((-1148 . -744) NIL) ((-853 . -162) T) ((-1148 . -677) T) ((-1195 . -144) 1655) ((-944 . -323) 1629) ((-941 . -492) 1562) ((-790 . -797) 1541) ((-531 . -1078) T) ((-454 . -272) 1492) ((-557 . -677) T) ((-342 . -572) 1474) ((-303 . -572) 1456) ((-399 . -977) 1354) ((-556 . -677) T) ((-388 . -797) 1305) ((-159 . -109) 1201) ((-783 . -128) 1153) ((-688 . -144) 1137) ((-1184 . -291) 1075) ((-466 . -289) T) ((-360 . -572) 1042) ((-497 . -951) 1026) ((-360 . -573) 940) ((-201 . -289) T) ((-134 . -144) 922) ((-665 . -268) 901) ((-466 . -962) T) ((-543 . -37) 888) ((-531 . -37) 875) ((-473 . -37) 840) ((-201 . -962) T) ((-814 . -986) T) ((-784 . -572) 822) ((-777 . -572) 804) ((-775 . -572) 786) ((-766 . -852) 765) ((-1206 . -1042) T) ((-1157 . -992) 588) ((-802 . -992) 572) ((-814 . -226) T) ((-814 . -216) NIL) ((-639 . -1138) T) ((-1206 . -23) T) ((-766 . -601) 497) ((-517 . -1138) T) ((-399 . -319) 481) ((-538 . -992) 468) ((-1157 . -109) 277) ((-651 . -594) 259) ((-802 . -109) 238) ((-362 . -23) T) ((-1112 . -492) 30))
\ No newline at end of file +((($ $) . T) ((#0=(-818 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-218)) ((|#2| |#1|) |has| |#1| (-218)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-623 . -1045) T) ((-248 . -495) 143997) ((-232 . -495) 143940) ((-544 . -110) 143925) ((-509 . -23) T) ((-230 . -1045) 143875) ((-116 . -293) 143832) ((-461 . -495) 143624) ((-654 . -100) T) ((-1083 . -495) 143543) ((-374 . -129) T) ((-1212 . -929) 143512) ((-568 . -471) 143496) ((-584 . -129) T) ((-779 . -803) T) ((-504 . -55) 143446) ((-57 . -495) 143379) ((-500 . -495) 143312) ((-402 . -853) 143271) ((-160 . -998) T) ((-497 . -495) 143204) ((-478 . -495) 143137) ((-477 . -495) 143070) ((-759 . -989) 142857) ((-659 . -37) 142822) ((-327 . -333) T) ((-1040 . -1039) 142806) ((-1040 . -1045) 142784) ((-160 . -228) 142735) ((-160 . -218) 142686) ((-1040 . -1041) 142644) ((-825 . -270) 142602) ((-210 . -755) T) ((-210 . -752) T) ((-654 . -268) NIL) ((-1092 . -1130) 142581) ((-391 . -945) 142565) ((-661 . -21) T) ((-661 . -25) T) ((-1214 . -609) 142539) ((-300 . -152) 142518) ((-300 . -137) 142497) ((-1092 . -105) 142447) ((-131 . -25) T) ((-39 . -216) 142424) ((-115 . -21) T) ((-115 . -25) T) ((-574 . -272) 142400) ((-458 . -272) 142379) ((-1173 . -998) T) ((-812 . -998) T) ((-759 . -322) 142363) ((-116 . -1093) NIL) ((-89 . -579) 142295) ((-460 . -129) T) ((-560 . -1154) T) ((-1173 . -310) 142272) ((-544 . -998) T) ((-1173 . -218) T) ((-623 . -678) 142256) ((-911 . -272) 142233) ((-58 . -33) T) ((-1009 . -755) T) ((-1009 . -752) T) ((-776 . -687) T) ((-692 . -46) 142198) ((-586 . -37) 142185) ((-339 . -274) T) ((-336 . -274) T) ((-328 . -274) T) ((-248 . -274) 142116) ((-232 . -274) 142047) ((-1036 . -579) 142013) ((-1013 . -579) 141979) ((-987 . -579) 141945) ((-975 . -100) T) ((-397 . -687) T) ((-116 . -37) 141890) ((-589 . -579) 141856) ((-397 . -456) T) ((-465 . -579) 141822) ((-338 . -100) T) ((-1148 . -1005) T) ((-672 . -1005) T) ((-1115 . -46) 141799) ((-1114 . -46) 141769) ((-1108 . -46) 141746) ((-986 . -145) 141692) ((-863 . -274) T) ((-1070 . -46) 141664) ((-654 . -293) NIL) ((-496 . -579) 141646) ((-491 . -579) 141628) ((-489 . -579) 141610) ((-311 . -1045) 141560) ((-673 . -435) 141491) ((-47 . -100) T) ((-1184 . -270) 141476) ((-1163 . -270) 141396) ((-606 . -627) 141380) ((-606 . -612) 141364) ((-323 . -21) T) ((-323 . -25) T) ((-39 . -333) NIL) ((-164 . -21) T) ((-164 . -25) T) ((-606 . -357) 141348) ((-568 . -270) 141325) ((-571 . -579) 141292) ((-372 . -100) T) ((-1064 . -137) T) ((-125 . -579) 141224) ((-827 . -1045) T) ((-619 . -395) 141208) ((-675 . -579) 141190) ((-153 . -579) 141172) ((-149 . -579) 141154) ((-1214 . -687) T) ((-1047 . -33) T) ((-824 . -755) NIL) ((-824 . -752) NIL) ((-815 . -807) T) ((-692 . -839) NIL) ((-1223 . -129) T) ((-365 . -129) T) ((-857 . -100) T) ((-692 . -989) 141032) ((-509 . -129) T) ((-1033 . -395) 141016) ((-952 . -471) 141000) ((-116 . -384) 140977) ((-1108 . -1154) 140956) ((-742 . -395) 140940) ((-740 . -395) 140924) ((-896 . -33) T) ((-654 . -1093) NIL) ((-235 . -609) 140761) ((-234 . -609) 140585) ((-777 . -873) 140564) ((-437 . -395) 140548) ((-568 . -19) 140532) ((-1088 . -1147) 140501) ((-1108 . -839) NIL) ((-1108 . -837) 140453) ((-568 . -570) 140430) ((-1140 . -579) 140362) ((-1116 . -579) 140344) ((-60 . -379) T) ((-1114 . -989) 140279) ((-1108 . -989) 140245) ((-654 . -37) 140195) ((-457 . -270) 140180) ((-692 . -361) 140164) ((-619 . -1005) T) ((-1184 . -954) 140130) ((-1163 . -954) 140096) ((-1010 . -1130) 140071) ((-825 . -580) 139879) ((-825 . -579) 139861) ((-1127 . -471) 139798) ((-402 . -973) 139777) ((-47 . -293) 139764) ((-1010 . -105) 139710) ((-461 . -471) 139647) ((-501 . -1154) T) ((-1108 . -322) 139599) ((-1083 . -471) 139570) ((-1108 . -361) 139522) ((-1033 . -1005) T) ((-421 . -100) T) ((-173 . -1045) T) ((-235 . -33) T) ((-234 . -33) T) ((-742 . -1005) T) ((-740 . -1005) T) ((-692 . -853) 139499) ((-437 . -1005) T) ((-57 . -471) 139483) ((-985 . -1004) 139457) ((-500 . -471) 139441) ((-497 . -471) 139425) ((-478 . -471) 139409) ((-477 . -471) 139393) ((-230 . -495) 139326) ((-985 . -110) 139293) ((-1115 . -853) 139206) ((-1114 . -853) 139112) ((-631 . -1057) T) ((-1108 . -853) 138945) ((-607 . -91) T) ((-1070 . -853) 138929) ((-338 . -1093) T) ((-306 . -1004) 138911) ((-235 . -751) 138890) ((-235 . -754) 138841) ((-235 . -753) 138820) ((-234 . -751) 138799) ((-234 . -754) 138750) ((-234 . -753) 138729) ((-49 . -1005) T) ((-235 . -687) 138640) ((-234 . -687) 138551) ((-1148 . -1045) T) ((-631 . -23) T) ((-550 . -1005) T) ((-499 . -1005) T) ((-363 . -1004) 138516) ((-306 . -110) 138491) ((-71 . -367) T) ((-71 . -379) T) ((-975 . -37) 138428) ((-654 . -384) 138410) ((-97 . -100) T) ((-672 . -1045) T) ((-955 . -139) 138382) ((-955 . -141) 138354) ((-363 . -110) 138310) ((-303 . -1158) 138289) ((-457 . -954) 138255) ((-338 . -37) 138220) ((-39 . -354) 138192) ((-826 . -579) 138064) ((-126 . -124) 138048) ((-120 . -124) 138032) ((-794 . -1004) 138002) ((-793 . -21) 137954) ((-787 . -1004) 137938) ((-793 . -25) 137890) ((-303 . -529) 137841) ((-537 . -788) T) ((-225 . -1154) T) ((-794 . -110) 137806) ((-787 . -110) 137785) ((-1184 . -579) 137767) ((-1163 . -579) 137749) ((-1163 . -580) 137422) ((-1113 . -862) 137401) ((-1069 . -862) 137380) ((-47 . -37) 137345) ((-1221 . -1057) T) ((-568 . -579) 137257) ((-568 . -580) 137218) ((-1219 . -1057) T) ((-225 . -989) 137047) ((-1113 . -609) 136972) ((-1069 . -609) 136897) ((-679 . -579) 136879) ((-811 . -609) 136853) ((-472 . -1045) T) ((-1221 . -23) T) ((-1219 . -23) T) ((-985 . -998) T) ((-1127 . -270) 136832) ((-160 . -352) 136783) ((-956 . -1154) T) ((-43 . -23) T) ((-461 . -270) 136762) ((-554 . -1045) T) ((-1088 . -1054) 136731) ((-1049 . -1048) 136683) ((-127 . -1154) T) ((-374 . -21) T) ((-374 . -25) T) ((-146 . -1057) T) ((-1227 . -100) T) ((-956 . -837) 136665) ((-956 . -839) 136647) ((-1148 . -678) 136544) ((-586 . -216) 136528) ((-584 . -21) T) ((-273 . -529) T) ((-584 . -25) T) ((-1134 . -1045) T) ((-672 . -678) 136493) ((-225 . -361) 136463) ((-956 . -989) 136423) ((-363 . -998) T) ((-208 . -1005) T) ((-116 . -216) 136400) ((-57 . -270) 136377) ((-146 . -23) T) ((-497 . -270) 136354) ((-311 . -495) 136287) ((-477 . -270) 136264) ((-363 . -228) T) ((-363 . -218) T) ((-794 . -998) T) ((-787 . -998) T) ((-673 . -902) 136233) ((-661 . -807) T) ((-457 . -579) 136215) ((-787 . -218) 136194) ((-131 . -807) T) ((-619 . -1045) T) ((-1127 . -570) 136173) ((-523 . -1130) 136152) ((-320 . -1045) T) ((-303 . -347) 136131) ((-391 . -141) 136110) ((-391 . -139) 136089) ((-917 . -1057) 135988) ((-225 . -853) 135921) ((-775 . -1057) 135832) ((-615 . -809) 135816) ((-461 . -570) 135795) ((-523 . -105) 135745) ((-956 . -361) 135727) ((-956 . -322) 135709) ((-95 . -1045) T) ((-917 . -23) 135520) ((-460 . -21) T) ((-460 . -25) T) ((-775 . -23) 135391) ((-1117 . -579) 135373) ((-57 . -19) 135357) ((-1117 . -580) 135279) ((-1113 . -687) T) ((-1069 . -687) T) ((-497 . -19) 135263) ((-477 . -19) 135247) ((-57 . -570) 135224) ((-1033 . -1045) T) ((-854 . -100) 135202) ((-811 . -687) T) ((-742 . -1045) T) ((-497 . -570) 135179) ((-477 . -570) 135156) ((-740 . -1045) T) ((-740 . -1012) 135123) ((-444 . -1045) T) ((-437 . -1045) T) ((-554 . -678) 135098) ((-610 . -1045) T) ((-956 . -853) NIL) ((-1192 . -46) 135075) ((-590 . -1057) T) ((-631 . -129) T) ((-1186 . -100) T) ((-1185 . -46) 135045) ((-1164 . -46) 135022) ((-1148 . -163) 134973) ((-1025 . -1158) 134924) ((-259 . -1045) T) ((-83 . -424) T) ((-83 . -379) T) ((-1114 . -291) 134903) ((-1108 . -291) 134882) ((-49 . -1045) T) ((-1025 . -529) 134833) ((-672 . -163) T) ((-562 . -46) 134810) ((-210 . -609) 134775) ((-550 . -1045) T) ((-499 . -1045) T) ((-343 . -1158) T) ((-337 . -1158) T) ((-329 . -1158) T) ((-469 . -780) T) ((-469 . -873) T) ((-303 . -1057) T) ((-106 . -1158) T) ((-323 . -807) T) ((-203 . -873) T) ((-203 . -780) T) ((-675 . -1004) 134745) ((-343 . -529) T) ((-337 . -529) T) ((-329 . -529) T) ((-106 . -529) T) ((-619 . -678) 134715) ((-1108 . -973) NIL) ((-303 . -23) T) ((-65 . -1154) T) ((-952 . -579) 134647) ((-654 . -216) 134629) ((-675 . -110) 134594) ((-606 . -33) T) ((-230 . -471) 134578) ((-1047 . -1043) 134562) ((-162 . -1045) T) ((-905 . -862) 134541) ((-463 . -862) 134520) ((-1223 . -21) T) ((-1223 . -25) T) ((-1221 . -129) T) ((-1219 . -129) T) ((-1033 . -678) 134369) ((-1009 . -609) 134356) ((-905 . -609) 134281) ((-742 . -678) 134110) ((-513 . -579) 134092) ((-513 . -580) 134073) ((-740 . -678) 133922) ((-1212 . -100) T) ((-1022 . -100) T) ((-365 . -25) T) ((-365 . -21) T) ((-463 . -609) 133847) ((-444 . -678) 133818) ((-437 . -678) 133667) ((-940 . -100) T) ((-698 . -100) T) ((-1227 . -1093) T) ((-1196 . -579) 133633) ((-1164 . -1154) 133612) ((-509 . -25) T) ((-1164 . -839) NIL) ((-1164 . -837) 133564) ((-1127 . -580) NIL) ((-1127 . -579) 133546) ((-135 . -100) T) ((-43 . -129) T) ((-1084 . -1067) 133491) ((-327 . -1005) T) ((-273 . -1057) T) ((-625 . -579) 133473) ((-607 . -579) 133426) ((-641 . -91) T) ((-339 . -579) 133408) ((-336 . -579) 133390) ((-328 . -579) 133372) ((-248 . -580) 133120) ((-248 . -579) 133102) ((-232 . -579) 133084) ((-232 . -580) 132945) ((-995 . -1147) 132874) ((-854 . -293) 132812) ((-1185 . -989) 132747) ((-1164 . -989) 132713) ((-1148 . -495) 132680) ((-1083 . -579) 132662) ((-779 . -814) T) ((-779 . -687) T) ((-568 . -272) 132639) ((-550 . -678) 132604) ((-461 . -580) NIL) ((-461 . -579) 132586) ((-499 . -678) 132531) ((-300 . -100) T) ((-297 . -100) T) ((-273 . -23) T) ((-146 . -129) T) ((-370 . -687) T) ((-825 . -1004) 132483) ((-863 . -579) 132465) ((-863 . -580) 132447) ((-825 . -110) 132385) ((-133 . -100) T) ((-113 . -100) T) ((-673 . -1176) 132369) ((-675 . -998) T) ((-654 . -333) NIL) ((-500 . -579) 132301) ((-363 . -755) T) ((-208 . -1045) T) ((-363 . -752) T) ((-210 . -754) T) ((-210 . -751) T) ((-57 . -580) 132262) ((-57 . -579) 132174) ((-210 . -687) T) ((-497 . -580) 132135) ((-497 . -579) 132047) ((-478 . -579) 131979) ((-477 . -580) 131940) ((-477 . -579) 131852) ((-1025 . -347) 131803) ((-39 . -395) 131780) ((-75 . -1154) T) ((-824 . -862) NIL) ((-343 . -313) 131764) ((-343 . -347) T) ((-337 . -313) 131748) ((-337 . -347) T) ((-329 . -313) 131732) ((-329 . -347) T) ((-300 . -268) 131711) ((-106 . -347) T) ((-68 . -1154) T) ((-1164 . -322) 131663) ((-824 . -609) 131608) ((-1164 . -361) 131560) ((-917 . -129) 131415) ((-775 . -129) 131286) ((-911 . -612) 131270) ((-1033 . -163) 131181) ((-911 . -357) 131165) ((-1009 . -754) T) ((-1009 . -751) T) ((-742 . -163) 131056) ((-740 . -163) 130967) ((-776 . -46) 130929) ((-1009 . -687) T) ((-311 . -471) 130913) ((-905 . -687) T) ((-437 . -163) 130824) ((-230 . -270) 130801) ((-463 . -687) T) ((-1212 . -293) 130739) ((-1192 . -853) 130652) ((-1185 . -853) 130558) ((-1184 . -1004) 130393) ((-1164 . -853) 130226) ((-1163 . -1004) 130034) ((-1148 . -274) 130013) ((-1088 . -145) 129997) ((-1064 . -100) T) ((-1020 . -100) T) ((-880 . -908) T) ((-73 . -1154) T) ((-698 . -293) 129935) ((-160 . -862) 129888) ((-625 . -366) 129860) ((-30 . -908) T) ((-1 . -579) 129842) ((-1062 . -1045) T) ((-1025 . -23) T) ((-49 . -583) 129826) ((-1025 . -1057) T) ((-955 . -393) 129798) ((-562 . -853) 129711) ((-422 . -100) T) ((-135 . -293) NIL) ((-825 . -998) T) ((-793 . -807) 129690) ((-79 . -1154) T) ((-672 . -274) T) ((-39 . -1005) T) ((-550 . -163) T) ((-499 . -163) T) ((-492 . -579) 129672) ((-160 . -609) 129582) ((-488 . -579) 129564) ((-335 . -141) 129546) ((-335 . -139) T) ((-343 . -1057) T) ((-337 . -1057) T) ((-329 . -1057) T) ((-956 . -291) T) ((-867 . -291) T) ((-825 . -228) T) ((-106 . -1057) T) ((-825 . -218) 129525) ((-1184 . -110) 129346) ((-1163 . -110) 129135) ((-230 . -1188) 129119) ((-537 . -805) T) ((-343 . -23) T) ((-338 . -333) T) ((-300 . -293) 129106) ((-297 . -293) 129047) ((-337 . -23) T) ((-303 . -129) T) ((-329 . -23) T) ((-956 . -973) T) ((-106 . -23) T) ((-230 . -570) 129024) ((-1186 . -37) 128916) ((-1173 . -862) 128895) ((-111 . -1045) T) ((-986 . -100) T) ((-1173 . -609) 128820) ((-824 . -754) NIL) ((-812 . -609) 128794) ((-824 . -751) NIL) ((-776 . -839) NIL) ((-824 . -687) T) ((-1033 . -495) 128667) ((-742 . -495) 128614) ((-740 . -495) 128566) ((-544 . -609) 128553) ((-776 . -989) 128383) ((-437 . -495) 128326) ((-372 . -373) T) ((-58 . -1154) T) ((-584 . -807) 128305) ((-481 . -622) T) ((-1088 . -929) 128274) ((-955 . -435) T) ((-659 . -805) T) ((-491 . -752) T) ((-457 . -1004) 128109) ((-327 . -1045) T) ((-297 . -1093) NIL) ((-273 . -129) T) ((-378 . -1045) T) ((-654 . -354) 128076) ((-823 . -1005) T) ((-208 . -583) 128053) ((-311 . -270) 128030) ((-457 . -110) 127851) ((-1184 . -998) T) ((-1163 . -998) T) ((-776 . -361) 127835) ((-160 . -687) T) ((-615 . -100) T) ((-1184 . -228) 127814) ((-1184 . -218) 127766) ((-1163 . -218) 127671) ((-1163 . -228) 127650) ((-955 . -386) NIL) ((-631 . -602) 127598) ((-300 . -37) 127508) ((-297 . -37) 127437) ((-67 . -579) 127419) ((-303 . -474) 127385) ((-1127 . -272) 127364) ((-1058 . -1057) 127275) ((-81 . -1154) T) ((-59 . -579) 127257) ((-461 . -272) 127236) ((-1214 . -989) 127213) ((-1106 . -1045) T) ((-1058 . -23) 127084) ((-776 . -853) 127020) ((-1173 . -687) T) ((-1047 . -1154) T) ((-1033 . -274) 126951) ((-846 . -100) T) ((-742 . -274) 126862) ((-311 . -19) 126846) ((-57 . -272) 126823) ((-740 . -274) 126754) ((-812 . -687) T) ((-116 . -805) NIL) ((-497 . -272) 126731) ((-311 . -570) 126708) ((-477 . -272) 126685) ((-437 . -274) 126616) ((-986 . -293) 126467) ((-544 . -687) T) ((-641 . -579) 126417) ((-623 . -579) 126399) ((-230 . -580) 126360) ((-230 . -579) 126272) ((-1089 . -33) T) ((-896 . -1154) T) ((-327 . -678) 126217) ((-631 . -25) T) ((-631 . -21) T) ((-457 . -998) T) ((-598 . -401) 126182) ((-573 . -401) 126147) ((-1064 . -1093) T) ((-550 . -274) T) ((-499 . -274) T) ((-1185 . -291) 126126) ((-457 . -218) 126078) ((-457 . -228) 126057) ((-1164 . -291) 126036) ((-1164 . -973) NIL) ((-1025 . -129) T) ((-825 . -755) 126015) ((-138 . -100) T) ((-39 . -1045) T) ((-825 . -752) 125994) ((-606 . -962) 125978) ((-549 . -1005) T) ((-537 . -1005) T) ((-476 . -1005) T) ((-391 . -435) T) ((-343 . -129) T) ((-300 . -384) 125962) ((-297 . -384) 125923) ((-337 . -129) T) ((-329 . -129) T) ((-1122 . -1045) T) ((-1064 . -37) 125910) ((-1040 . -579) 125877) ((-106 . -129) T) ((-907 . -1045) T) ((-874 . -1045) T) ((-731 . -1045) T) ((-633 . -1045) T) ((-487 . -1029) T) ((-661 . -141) T) ((-115 . -141) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1219 . -21) T) ((-1219 . -25) T) ((-625 . -1004) 125861) ((-509 . -807) T) ((-481 . -807) T) ((-339 . -1004) 125813) ((-336 . -1004) 125765) ((-328 . -1004) 125717) ((-235 . -1154) T) ((-234 . -1154) T) ((-248 . -1004) 125560) ((-232 . -1004) 125403) ((-625 . -110) 125382) ((-339 . -110) 125320) ((-336 . -110) 125258) ((-328 . -110) 125196) ((-248 . -110) 125025) ((-232 . -110) 124854) ((-777 . -1158) 124833) ((-586 . -395) 124817) ((-43 . -21) T) ((-43 . -25) T) ((-775 . -602) 124725) ((-777 . -529) 124704) ((-235 . -989) 124533) ((-234 . -989) 124362) ((-125 . -118) 124346) ((-863 . -1004) 124311) ((-659 . -1005) T) ((-673 . -100) T) ((-327 . -163) T) ((-146 . -21) T) ((-146 . -25) T) ((-86 . -579) 124293) ((-863 . -110) 124249) ((-39 . -678) 124194) ((-823 . -1045) T) ((-311 . -580) 124155) ((-311 . -579) 124067) ((-1163 . -752) 124020) ((-1163 . -755) 123973) ((-235 . -361) 123943) ((-234 . -361) 123913) ((-615 . -37) 123883) ((-574 . -33) T) ((-464 . -1057) 123794) ((-458 . -33) T) ((-1058 . -129) 123665) ((-917 . -25) 123476) ((-827 . -579) 123458) ((-917 . -21) 123413) ((-775 . -21) 123324) ((-775 . -25) 123176) ((-586 . -1005) T) ((-1119 . -529) 123155) ((-1113 . -46) 123132) ((-339 . -998) T) ((-336 . -998) T) ((-464 . -23) 123003) ((-328 . -998) T) ((-232 . -998) T) ((-248 . -998) T) ((-1069 . -46) 122975) ((-116 . -1005) T) ((-985 . -609) 122949) ((-911 . -33) T) ((-339 . -218) 122928) ((-339 . -228) T) ((-336 . -218) 122907) ((-336 . -228) T) ((-232 . -310) 122864) ((-328 . -218) 122843) ((-328 . -228) T) ((-248 . -310) 122815) ((-248 . -218) 122794) ((-1098 . -145) 122778) ((-235 . -853) 122711) ((-234 . -853) 122644) ((-1027 . -807) T) ((-1167 . -1154) T) ((-398 . -1057) T) ((-1002 . -23) T) ((-863 . -998) T) ((-306 . -609) 122626) ((-975 . -805) T) ((-1148 . -954) 122592) ((-1114 . -873) 122571) ((-1108 . -873) 122550) ((-863 . -228) T) ((-777 . -347) 122529) ((-369 . -23) T) ((-126 . -1045) 122507) ((-120 . -1045) 122485) ((-863 . -218) T) ((-1108 . -780) NIL) ((-363 . -609) 122450) ((-823 . -678) 122437) ((-995 . -145) 122402) ((-39 . -163) T) ((-654 . -395) 122384) ((-673 . -293) 122371) ((-794 . -609) 122331) ((-787 . -609) 122305) ((-303 . -25) T) ((-303 . -21) T) ((-619 . -270) 122284) ((-549 . -1045) T) ((-537 . -1045) T) ((-476 . -1045) T) ((-230 . -272) 122261) ((-297 . -216) 122222) ((-1113 . -839) NIL) ((-1069 . -839) 122081) ((-128 . -807) T) ((-1113 . -989) 121963) ((-1069 . -989) 121848) ((-173 . -579) 121830) ((-811 . -989) 121728) ((-742 . -270) 121655) ((-777 . -1057) T) ((-985 . -687) T) ((-568 . -612) 121639) ((-995 . -929) 121568) ((-951 . -100) T) ((-777 . -23) T) ((-673 . -1093) 121546) ((-654 . -1005) T) ((-568 . -357) 121530) ((-335 . -435) T) ((-327 . -274) T) ((-1201 . -1045) T) ((-233 . -1045) T) ((-383 . -100) T) ((-273 . -21) T) ((-273 . -25) T) ((-345 . -687) T) ((-671 . -1045) T) ((-659 . -1045) T) ((-345 . -456) T) ((-1148 . -579) 121512) ((-1113 . -361) 121496) ((-1069 . -361) 121480) ((-975 . -395) 121442) ((-135 . -214) 121424) ((-363 . -754) T) ((-363 . -751) T) ((-823 . -163) T) ((-363 . -687) T) ((-672 . -579) 121406) ((-673 . -37) 121235) ((-1200 . -1198) 121219) ((-335 . -386) T) ((-1200 . -1045) 121169) ((-549 . -678) 121156) ((-537 . -678) 121143) ((-476 . -678) 121108) ((-300 . -592) 121087) ((-794 . -687) T) ((-787 . -687) T) ((-606 . -1154) T) ((-1025 . -602) 121035) ((-1113 . -853) 120978) ((-1069 . -853) 120962) ((-623 . -1004) 120946) ((-106 . -602) 120928) ((-464 . -129) 120799) ((-1119 . -1057) T) ((-905 . -46) 120768) ((-586 . -1045) T) ((-623 . -110) 120747) ((-472 . -579) 120713) ((-311 . -272) 120690) ((-463 . -46) 120647) ((-1119 . -23) T) ((-116 . -1045) T) ((-101 . -100) 120625) ((-1211 . -1057) T) ((-1002 . -129) T) ((-975 . -1005) T) ((-779 . -989) 120609) ((-955 . -685) 120581) ((-1211 . -23) T) ((-659 . -678) 120546) ((-554 . -579) 120528) ((-370 . -989) 120512) ((-338 . -1005) T) ((-369 . -129) T) ((-308 . -989) 120496) ((-210 . -839) 120478) ((-956 . -873) T) ((-89 . -33) T) ((-956 . -780) T) ((-867 . -873) T) ((-469 . -1158) T) ((-1134 . -579) 120460) ((-1050 . -1045) T) ((-203 . -1158) T) ((-951 . -293) 120425) ((-210 . -989) 120385) ((-39 . -274) T) ((-1025 . -21) T) ((-1025 . -25) T) ((-1064 . -788) T) ((-469 . -529) T) ((-343 . -25) T) ((-203 . -529) T) ((-343 . -21) T) ((-337 . -25) T) ((-337 . -21) T) ((-675 . -609) 120345) ((-329 . -25) T) ((-329 . -21) T) ((-106 . -25) T) ((-106 . -21) T) ((-47 . -1005) T) ((-549 . -163) T) ((-537 . -163) T) ((-476 . -163) T) ((-619 . -579) 120327) ((-698 . -697) 120311) ((-320 . -579) 120293) ((-66 . -367) T) ((-66 . -379) T) ((-1047 . -105) 120277) ((-1009 . -839) 120259) ((-905 . -839) 120184) ((-614 . -1057) T) ((-586 . -678) 120171) ((-463 . -839) NIL) ((-1088 . -100) T) ((-1009 . -989) 120153) ((-95 . -579) 120135) ((-460 . -141) T) ((-905 . -989) 120017) ((-116 . -678) 119962) ((-614 . -23) T) ((-463 . -989) 119840) ((-1033 . -580) NIL) ((-1033 . -579) 119822) ((-742 . -580) NIL) ((-742 . -579) 119783) ((-740 . -580) 119418) ((-740 . -579) 119332) ((-1058 . -602) 119240) ((-444 . -579) 119222) ((-437 . -579) 119204) ((-437 . -580) 119065) ((-986 . -214) 119011) ((-125 . -33) T) ((-777 . -129) T) ((-825 . -862) 118990) ((-610 . -579) 118972) ((-339 . -1218) 118956) ((-336 . -1218) 118940) ((-328 . -1218) 118924) ((-126 . -495) 118857) ((-120 . -495) 118790) ((-492 . -752) T) ((-492 . -755) T) ((-491 . -754) T) ((-101 . -293) 118728) ((-207 . -100) 118706) ((-654 . -1045) T) ((-659 . -163) T) ((-825 . -609) 118658) ((-63 . -368) T) ((-259 . -579) 118640) ((-63 . -379) T) ((-905 . -361) 118624) ((-823 . -274) T) ((-49 . -579) 118606) ((-951 . -37) 118554) ((-550 . -579) 118536) ((-463 . -361) 118520) ((-550 . -580) 118502) ((-499 . -579) 118484) ((-863 . -1218) 118471) ((-824 . -1154) T) ((-661 . -435) T) ((-476 . -495) 118437) ((-469 . -347) T) ((-339 . -352) 118416) ((-336 . -352) 118395) ((-328 . -352) 118374) ((-203 . -347) T) ((-675 . -687) T) ((-115 . -435) T) ((-1222 . -1213) 118358) ((-824 . -837) 118335) ((-824 . -839) NIL) ((-917 . -807) 118234) ((-775 . -807) 118185) ((-615 . -617) 118169) ((-1140 . -33) T) ((-162 . -579) 118151) ((-1058 . -21) 118062) ((-1058 . -25) 117914) ((-824 . -989) 117891) ((-905 . -853) 117872) ((-1173 . -46) 117849) ((-863 . -352) T) ((-57 . -612) 117833) ((-497 . -612) 117817) ((-463 . -853) 117794) ((-69 . -424) T) ((-69 . -379) T) ((-477 . -612) 117778) ((-57 . -357) 117762) ((-586 . -163) T) ((-497 . -357) 117746) ((-477 . -357) 117730) ((-787 . -669) 117714) ((-1113 . -291) 117693) ((-1119 . -129) T) ((-116 . -163) T) ((-1088 . -293) 117631) ((-160 . -1154) T) ((-598 . -705) 117615) ((-573 . -705) 117599) ((-1211 . -129) T) ((-1185 . -873) 117578) ((-1164 . -873) 117557) ((-1164 . -780) NIL) ((-654 . -678) 117507) ((-1163 . -862) 117460) ((-975 . -1045) T) ((-824 . -361) 117437) ((-824 . -322) 117414) ((-858 . -1057) T) ((-160 . -837) 117398) ((-160 . -839) 117323) ((-469 . -1057) T) ((-338 . -1045) T) ((-203 . -1057) T) ((-74 . -424) T) ((-74 . -379) T) ((-160 . -989) 117221) ((-303 . -807) T) ((-1200 . -495) 117154) ((-1184 . -609) 117051) ((-1163 . -609) 116921) ((-825 . -754) 116900) ((-825 . -751) 116879) ((-825 . -687) T) ((-469 . -23) T) ((-208 . -579) 116861) ((-164 . -435) T) ((-207 . -293) 116799) ((-84 . -424) T) ((-84 . -379) T) ((-203 . -23) T) ((-1223 . -1216) 116778) ((-549 . -274) T) ((-537 . -274) T) ((-637 . -989) 116762) ((-476 . -274) T) ((-133 . -453) 116717) ((-47 . -1045) T) ((-673 . -216) 116701) ((-824 . -853) NIL) ((-1173 . -839) NIL) ((-842 . -100) T) ((-838 . -100) T) ((-372 . -1045) T) ((-160 . -361) 116685) ((-160 . -322) 116669) ((-1173 . -989) 116551) ((-812 . -989) 116449) ((-1084 . -100) T) ((-614 . -129) T) ((-116 . -495) 116357) ((-623 . -752) 116336) ((-623 . -755) 116315) ((-544 . -989) 116297) ((-278 . -1207) 116267) ((-819 . -100) T) ((-916 . -529) 116246) ((-1148 . -1004) 116129) ((-464 . -602) 116037) ((-857 . -1045) T) ((-975 . -678) 115974) ((-672 . -1004) 115939) ((-568 . -33) T) ((-1089 . -1154) T) ((-1148 . -110) 115808) ((-457 . -609) 115705) ((-338 . -678) 115650) ((-160 . -853) 115609) ((-659 . -274) T) ((-654 . -163) T) ((-672 . -110) 115565) ((-1227 . -1005) T) ((-1173 . -361) 115549) ((-402 . -1158) 115527) ((-1062 . -579) 115509) ((-297 . -805) NIL) ((-402 . -529) T) ((-210 . -291) T) ((-1163 . -751) 115462) ((-1163 . -754) 115415) ((-1184 . -687) T) ((-1163 . -687) T) ((-47 . -678) 115380) ((-210 . -973) T) ((-335 . -1207) 115357) ((-1186 . -395) 115323) ((-679 . -687) T) ((-1173 . -853) 115266) ((-111 . -579) 115248) ((-111 . -580) 115230) ((-679 . -456) T) ((-464 . -21) 115141) ((-126 . -471) 115125) ((-120 . -471) 115109) ((-464 . -25) 114961) ((-586 . -274) T) ((-554 . -1004) 114936) ((-421 . -1045) T) ((-1009 . -291) T) ((-116 . -274) T) ((-1049 . -100) T) ((-955 . -100) T) ((-554 . -110) 114904) ((-1084 . -293) 114842) ((-1148 . -998) T) ((-1009 . -973) T) ((-64 . -1154) T) ((-1002 . -25) T) ((-1002 . -21) T) ((-672 . -998) T) ((-369 . -21) T) ((-369 . -25) T) ((-654 . -495) NIL) ((-975 . -163) T) ((-672 . -228) T) ((-1009 . -522) T) ((-487 . -100) T) ((-483 . -100) T) ((-338 . -163) T) ((-327 . -579) 114824) ((-378 . -579) 114806) ((-457 . -687) T) ((-1064 . -805) T) ((-845 . -989) 114774) ((-106 . -807) T) ((-619 . -1004) 114758) ((-469 . -129) T) ((-1186 . -1005) T) ((-203 . -129) T) ((-1098 . -100) 114736) ((-97 . -1045) T) ((-230 . -627) 114720) ((-230 . -612) 114704) ((-619 . -110) 114683) ((-300 . -395) 114667) ((-230 . -357) 114651) ((-1101 . -220) 114598) ((-951 . -216) 114582) ((-72 . -1154) T) ((-47 . -163) T) ((-661 . -371) T) ((-661 . -137) T) ((-1222 . -100) T) ((-1033 . -1004) 114425) ((-248 . -862) 114404) ((-232 . -862) 114383) ((-742 . -1004) 114206) ((-740 . -1004) 114049) ((-574 . -1154) T) ((-1106 . -579) 114031) ((-1033 . -110) 113860) ((-995 . -100) T) ((-458 . -1154) T) ((-444 . -1004) 113831) ((-437 . -1004) 113674) ((-625 . -609) 113658) ((-824 . -291) T) ((-742 . -110) 113467) ((-740 . -110) 113296) ((-339 . -609) 113248) ((-336 . -609) 113200) ((-328 . -609) 113152) ((-248 . -609) 113077) ((-232 . -609) 113002) ((-1100 . -807) T) ((-1034 . -989) 112986) ((-444 . -110) 112947) ((-437 . -110) 112776) ((-1021 . -989) 112753) ((-952 . -33) T) ((-919 . -579) 112714) ((-911 . -1154) T) ((-125 . -962) 112698) ((-916 . -1057) T) ((-824 . -973) NIL) ((-696 . -1057) T) ((-676 . -1057) T) ((-1200 . -471) 112682) ((-1084 . -37) 112642) ((-916 . -23) T) ((-800 . -100) T) ((-777 . -21) T) ((-777 . -25) T) ((-696 . -23) T) ((-676 . -23) T) ((-109 . -622) T) ((-863 . -609) 112607) ((-550 . -1004) 112572) ((-499 . -1004) 112517) ((-212 . -55) 112475) ((-436 . -23) T) ((-391 . -100) T) ((-247 . -100) T) ((-654 . -274) T) ((-819 . -37) 112445) ((-550 . -110) 112401) ((-499 . -110) 112330) ((-402 . -1057) T) ((-300 . -1005) 112221) ((-297 . -1005) T) ((-619 . -998) T) ((-1227 . -1045) T) ((-160 . -291) 112152) ((-402 . -23) T) ((-39 . -579) 112134) ((-39 . -580) 112118) ((-106 . -945) 112100) ((-115 . -822) 112084) ((-47 . -495) 112050) ((-1140 . -962) 112034) ((-1122 . -579) 112016) ((-1127 . -33) T) ((-907 . -579) 111982) ((-874 . -579) 111964) ((-1058 . -807) 111915) ((-731 . -579) 111897) ((-633 . -579) 111879) ((-1098 . -293) 111817) ((-461 . -33) T) ((-1038 . -1154) T) ((-460 . -435) T) ((-1033 . -998) T) ((-1083 . -33) T) ((-742 . -998) T) ((-740 . -998) T) ((-608 . -220) 111801) ((-595 . -220) 111747) ((-1173 . -291) 111726) ((-1033 . -310) 111687) ((-437 . -998) T) ((-1119 . -21) T) ((-1033 . -218) 111666) ((-742 . -310) 111643) ((-742 . -218) T) ((-740 . -310) 111615) ((-311 . -612) 111599) ((-692 . -1158) 111578) ((-1119 . -25) T) ((-57 . -33) T) ((-500 . -33) T) ((-497 . -33) T) ((-437 . -310) 111557) ((-311 . -357) 111541) ((-478 . -33) T) ((-477 . -33) T) ((-955 . -1093) NIL) ((-598 . -100) T) ((-573 . -100) T) ((-692 . -529) 111472) ((-339 . -687) T) ((-336 . -687) T) ((-328 . -687) T) ((-248 . -687) T) ((-232 . -687) T) ((-995 . -293) 111380) ((-854 . -1045) 111358) ((-49 . -998) T) ((-1211 . -21) T) ((-1211 . -25) T) ((-1115 . -529) 111337) ((-1114 . -1158) 111316) ((-550 . -998) T) ((-499 . -998) T) ((-1108 . -1158) 111295) ((-345 . -989) 111279) ((-306 . -989) 111263) ((-975 . -274) T) ((-363 . -839) 111245) ((-1114 . -529) 111196) ((-1108 . -529) 111147) ((-955 . -37) 111092) ((-759 . -1057) T) ((-863 . -687) T) ((-550 . -228) T) ((-550 . -218) T) ((-499 . -218) T) ((-499 . -228) T) ((-1070 . -529) 111071) ((-338 . -274) T) ((-608 . -655) 111055) ((-363 . -989) 111015) ((-1064 . -1005) T) ((-101 . -124) 110999) ((-759 . -23) T) ((-1200 . -270) 110976) ((-391 . -293) 110941) ((-1221 . -1216) 110917) ((-1219 . -1216) 110896) ((-1186 . -1045) T) ((-823 . -579) 110878) ((-794 . -989) 110847) ((-189 . -747) T) ((-188 . -747) T) ((-187 . -747) T) ((-186 . -747) T) ((-185 . -747) T) ((-184 . -747) T) ((-183 . -747) T) ((-182 . -747) T) ((-181 . -747) T) ((-180 . -747) T) ((-476 . -954) T) ((-258 . -796) T) ((-257 . -796) T) ((-256 . -796) T) ((-255 . -796) T) ((-47 . -274) T) ((-254 . -796) T) ((-253 . -796) T) ((-252 . -796) T) ((-179 . -747) T) ((-578 . -807) T) ((-615 . -395) 110831) ((-109 . -807) T) ((-614 . -21) T) ((-614 . -25) T) ((-1222 . -37) 110801) ((-116 . -270) 110752) ((-1200 . -19) 110736) ((-1200 . -570) 110713) ((-1212 . -1045) T) ((-1022 . -1045) T) ((-940 . -1045) T) ((-916 . -129) T) ((-698 . -1045) T) ((-696 . -129) T) ((-676 . -129) T) ((-492 . -753) T) ((-391 . -1093) 110691) ((-436 . -129) T) ((-492 . -754) T) ((-208 . -998) T) ((-278 . -100) 110474) ((-135 . -1045) T) ((-659 . -954) T) ((-89 . -1154) T) ((-126 . -579) 110406) ((-120 . -579) 110338) ((-1227 . -163) T) ((-1114 . -347) 110317) ((-1108 . -347) 110296) ((-300 . -1045) T) ((-402 . -129) T) ((-297 . -1045) T) ((-391 . -37) 110248) ((-1077 . -100) T) ((-1186 . -678) 110140) ((-615 . -1005) T) ((-303 . -139) 110119) ((-303 . -141) 110098) ((-133 . -1045) T) ((-113 . -1045) T) ((-815 . -100) T) ((-549 . -579) 110080) ((-537 . -580) 109979) ((-537 . -579) 109961) ((-476 . -579) 109943) ((-476 . -580) 109888) ((-467 . -23) T) ((-464 . -807) 109839) ((-469 . -602) 109821) ((-918 . -579) 109803) ((-203 . -602) 109785) ((-210 . -388) T) ((-623 . -609) 109769) ((-1113 . -873) 109748) ((-692 . -1057) T) ((-335 . -100) T) ((-1153 . -1029) T) ((-778 . -807) T) ((-692 . -23) T) ((-327 . -1004) 109693) ((-1100 . -1099) T) ((-1089 . -105) 109677) ((-1115 . -1057) T) ((-1114 . -1057) T) ((-496 . -989) 109661) ((-1108 . -1057) T) ((-1070 . -1057) T) ((-327 . -110) 109590) ((-956 . -1158) T) ((-125 . -1154) T) ((-867 . -1158) T) ((-654 . -270) NIL) ((-1201 . -579) 109572) ((-1115 . -23) T) ((-1114 . -23) T) ((-1108 . -23) T) ((-956 . -529) T) ((-1084 . -216) 109556) ((-867 . -529) T) ((-1070 . -23) T) ((-233 . -579) 109538) ((-1020 . -1045) T) ((-759 . -129) T) ((-671 . -579) 109520) ((-300 . -678) 109430) ((-297 . -678) 109359) ((-659 . -579) 109341) ((-659 . -580) 109286) ((-391 . -384) 109270) ((-422 . -1045) T) ((-469 . -25) T) ((-469 . -21) T) ((-1064 . -1045) T) ((-203 . -25) T) ((-203 . -21) T) ((-673 . -395) 109254) ((-675 . -989) 109223) ((-1200 . -579) 109135) ((-1200 . -580) 109096) ((-1186 . -163) T) ((-230 . -33) T) ((-879 . -927) T) ((-1140 . -1154) T) ((-623 . -751) 109075) ((-623 . -754) 109054) ((-382 . -379) T) ((-504 . -100) 109032) ((-986 . -1045) T) ((-207 . -947) 109016) ((-485 . -100) T) ((-586 . -579) 108998) ((-44 . -807) NIL) ((-586 . -580) 108975) ((-986 . -576) 108950) ((-854 . -495) 108883) ((-327 . -998) T) ((-116 . -580) NIL) ((-116 . -579) 108865) ((-825 . -1154) T) ((-631 . -401) 108849) ((-631 . -1067) 108794) ((-481 . -145) 108776) ((-327 . -218) T) ((-327 . -228) T) ((-39 . -1004) 108721) ((-825 . -837) 108705) ((-825 . -839) 108630) ((-673 . -1005) T) ((-654 . -954) NIL) ((-3 . |UnionCategory|) T) ((-1184 . -46) 108600) ((-1163 . -46) 108577) ((-1083 . -962) 108548) ((-210 . -873) T) ((-39 . -110) 108477) ((-825 . -989) 108344) ((-1064 . -678) 108331) ((-1050 . -579) 108313) ((-1025 . -141) 108292) ((-1025 . -139) 108243) ((-956 . -347) T) ((-303 . -1142) 108209) ((-363 . -291) T) ((-303 . -1139) 108175) ((-300 . -163) 108154) ((-297 . -163) T) ((-955 . -216) 108131) ((-867 . -347) T) ((-550 . -1218) 108118) ((-499 . -1218) 108095) ((-343 . -141) 108074) ((-343 . -139) 108025) ((-337 . -141) 108004) ((-337 . -139) 107955) ((-574 . -1130) 107931) ((-329 . -141) 107910) ((-329 . -139) 107861) ((-303 . -34) 107827) ((-458 . -1130) 107806) ((0 . |EnumerationCategory|) T) ((-303 . -93) 107772) ((-363 . -973) T) ((-106 . -141) T) ((-106 . -139) NIL) ((-44 . -220) 107722) ((-615 . -1045) T) ((-574 . -105) 107669) ((-467 . -129) T) ((-458 . -105) 107619) ((-225 . -1057) 107530) ((-825 . -361) 107514) ((-825 . -322) 107498) ((-225 . -23) 107369) ((-1009 . -873) T) ((-1009 . -780) T) ((-550 . -352) T) ((-499 . -352) T) ((-335 . -1093) T) ((-311 . -33) T) ((-43 . -401) 107353) ((-826 . -1154) T) ((-374 . -705) 107337) ((-1212 . -495) 107270) ((-692 . -129) T) ((-1192 . -529) 107249) ((-1185 . -1158) 107228) ((-1185 . -529) 107179) ((-1164 . -1158) 107158) ((-295 . -1029) T) ((-1164 . -529) 107109) ((-698 . -495) 107042) ((-1163 . -1154) 107021) ((-1163 . -839) 106894) ((-846 . -1045) T) ((-138 . -801) T) ((-1163 . -837) 106864) ((-651 . -579) 106846) ((-1115 . -129) T) ((-504 . -293) 106784) ((-1114 . -129) T) ((-135 . -495) NIL) ((-1108 . -129) T) ((-1070 . -129) T) ((-975 . -954) T) ((-956 . -23) T) ((-335 . -37) 106749) ((-956 . -1057) T) ((-867 . -1057) T) ((-80 . -579) 106731) ((-39 . -998) T) ((-823 . -1004) 106718) ((-955 . -333) NIL) ((-825 . -853) 106677) ((-661 . -100) T) ((-924 . -23) T) ((-568 . -1154) T) ((-867 . -23) T) ((-823 . -110) 106662) ((-411 . -1057) T) ((-457 . -46) 106632) ((-199 . -100) T) ((-131 . -100) T) ((-39 . -218) 106604) ((-39 . -228) T) ((-115 . -100) T) ((-563 . -529) 106583) ((-562 . -529) 106562) ((-654 . -579) 106544) ((-654 . -580) 106452) ((-300 . -495) 106418) ((-297 . -495) 106310) ((-1184 . -989) 106294) ((-1163 . -989) 106083) ((-951 . -395) 106067) ((-411 . -23) T) ((-1064 . -163) T) ((-1186 . -274) T) ((-615 . -678) 106037) ((-138 . -1045) T) ((-47 . -954) T) ((-391 . -216) 106021) ((-279 . -220) 105971) ((-824 . -873) T) ((-824 . -780) NIL) ((-818 . -807) T) ((-1163 . -322) 105941) ((-1163 . -361) 105911) ((-207 . -1065) 105895) ((-1200 . -272) 105872) ((-1148 . -609) 105797) ((-916 . -21) T) ((-916 . -25) T) ((-696 . -21) T) ((-696 . -25) T) ((-676 . -21) T) ((-676 . -25) T) ((-672 . -609) 105762) ((-436 . -21) T) ((-436 . -25) T) ((-323 . -100) T) ((-164 . -100) T) ((-951 . -1005) T) ((-823 . -998) T) ((-734 . -100) T) ((-1185 . -347) 105741) ((-1184 . -853) 105647) ((-1164 . -347) 105626) ((-1163 . -853) 105477) ((-975 . -579) 105459) ((-391 . -788) 105412) ((-1115 . -474) 105378) ((-160 . -873) 105309) ((-1114 . -474) 105275) ((-1108 . -474) 105241) ((-673 . -1045) T) ((-1070 . -474) 105207) ((-549 . -1004) 105194) ((-537 . -1004) 105181) ((-476 . -1004) 105146) ((-300 . -274) 105125) ((-297 . -274) T) ((-338 . -579) 105107) ((-402 . -25) T) ((-402 . -21) T) ((-97 . -270) 105086) ((-549 . -110) 105071) ((-537 . -110) 105056) ((-476 . -110) 105012) ((-1117 . -839) 104979) ((-854 . -471) 104963) ((-47 . -579) 104945) ((-47 . -580) 104890) ((-225 . -129) 104761) ((-1173 . -873) 104740) ((-776 . -1158) 104719) ((-986 . -495) 104563) ((-372 . -579) 104545) ((-776 . -529) 104476) ((-554 . -609) 104451) ((-248 . -46) 104423) ((-232 . -46) 104380) ((-509 . -490) 104357) ((-952 . -1154) T) ((-659 . -1004) 104322) ((-1192 . -1057) T) ((-1185 . -1057) T) ((-1164 . -1057) T) ((-955 . -354) 104294) ((-111 . -352) T) ((-457 . -853) 104200) ((-1192 . -23) T) ((-1185 . -23) T) ((-857 . -579) 104182) ((-89 . -105) 104166) ((-1148 . -687) T) ((-858 . -807) 104117) ((-661 . -1093) T) ((-659 . -110) 104073) ((-1164 . -23) T) ((-563 . -1057) T) ((-562 . -1057) T) ((-673 . -678) 103902) ((-672 . -687) T) ((-1064 . -274) T) ((-956 . -129) T) ((-469 . -807) T) ((-924 . -129) T) ((-867 . -129) T) ((-759 . -25) T) ((-203 . -807) T) ((-759 . -21) T) ((-549 . -998) T) ((-537 . -998) T) ((-476 . -998) T) ((-563 . -23) T) ((-327 . -1218) 103879) ((-303 . -435) 103858) ((-323 . -293) 103845) ((-562 . -23) T) ((-411 . -129) T) ((-619 . -609) 103819) ((-230 . -962) 103803) ((-825 . -291) T) ((-1223 . -1213) 103787) ((-661 . -37) 103774) ((-537 . -218) T) ((-476 . -228) T) ((-476 . -218) T) ((-731 . -752) T) ((-731 . -755) T) ((-1092 . -220) 103724) ((-1033 . -862) 103703) ((-115 . -37) 103690) ((-195 . -760) T) ((-194 . -760) T) ((-193 . -760) T) ((-192 . -760) T) ((-825 . -973) 103669) ((-1212 . -471) 103653) ((-742 . -862) 103632) ((-740 . -862) 103611) ((-1127 . -1154) T) ((-437 . -862) 103590) ((-698 . -471) 103574) ((-1033 . -609) 103499) ((-742 . -609) 103424) ((-586 . -1004) 103411) ((-461 . -1154) T) ((-327 . -352) T) ((-135 . -471) 103393) ((-740 . -609) 103318) ((-1083 . -1154) T) ((-444 . -609) 103289) ((-248 . -839) 103148) ((-232 . -839) NIL) ((-116 . -1004) 103093) ((-437 . -609) 103018) ((-625 . -989) 102995) ((-586 . -110) 102980) ((-339 . -989) 102964) ((-336 . -989) 102948) ((-328 . -989) 102932) ((-248 . -989) 102778) ((-232 . -989) 102656) ((-116 . -110) 102585) ((-57 . -1154) T) ((-500 . -1154) T) ((-497 . -1154) T) ((-478 . -1154) T) ((-477 . -1154) T) ((-421 . -579) 102567) ((-418 . -579) 102549) ((-3 . -100) T) ((-978 . -1147) 102518) ((-793 . -100) T) ((-649 . -55) 102476) ((-659 . -998) T) ((-49 . -609) 102450) ((-273 . -435) T) ((-459 . -1147) 102419) ((0 . -100) T) ((-550 . -609) 102384) ((-499 . -609) 102329) ((-48 . -100) T) ((-863 . -989) 102316) ((-659 . -228) T) ((-1025 . -393) 102295) ((-692 . -602) 102243) ((-951 . -1045) T) ((-673 . -163) 102134) ((-469 . -945) 102116) ((-248 . -361) 102100) ((-232 . -361) 102084) ((-383 . -1045) T) ((-323 . -37) 102068) ((-977 . -100) 102046) ((-203 . -945) 102028) ((-164 . -37) 101960) ((-1184 . -291) 101939) ((-1163 . -291) 101918) ((-619 . -687) T) ((-97 . -579) 101900) ((-1108 . -602) 101852) ((-467 . -25) T) ((-467 . -21) T) ((-1163 . -973) 101805) ((-586 . -998) T) ((-363 . -388) T) ((-374 . -100) T) ((-248 . -853) 101751) ((-232 . -853) 101728) ((-116 . -998) T) ((-776 . -1057) T) ((-1033 . -687) T) ((-586 . -218) 101707) ((-584 . -100) T) ((-742 . -687) T) ((-740 . -687) T) ((-397 . -1057) T) ((-116 . -228) T) ((-39 . -352) NIL) ((-116 . -218) NIL) ((-437 . -687) T) ((-776 . -23) T) ((-692 . -25) T) ((-692 . -21) T) ((-663 . -807) T) ((-1022 . -270) 101686) ((-76 . -380) T) ((-76 . -379) T) ((-654 . -1004) 101636) ((-1192 . -129) T) ((-1185 . -129) T) ((-1164 . -129) T) ((-1084 . -395) 101620) ((-598 . -351) 101552) ((-573 . -351) 101484) ((-1098 . -1091) 101468) ((-101 . -1045) 101446) ((-1115 . -25) T) ((-1115 . -21) T) ((-1114 . -21) T) ((-951 . -678) 101394) ((-208 . -609) 101361) ((-654 . -110) 101295) ((-49 . -687) T) ((-1114 . -25) T) ((-335 . -333) T) ((-1108 . -21) T) ((-1025 . -435) 101246) ((-1108 . -25) T) ((-673 . -495) 101193) ((-550 . -687) T) ((-499 . -687) T) ((-1070 . -21) T) ((-1070 . -25) T) ((-563 . -129) T) ((-562 . -129) T) ((-343 . -435) T) ((-337 . -435) T) ((-329 . -435) T) ((-457 . -291) 101172) ((-297 . -270) 101107) ((-106 . -435) T) ((-77 . -424) T) ((-77 . -379) T) ((-460 . -100) T) ((-1227 . -579) 101089) ((-1227 . -580) 101071) ((-1025 . -386) 101050) ((-986 . -471) 100981) ((-537 . -755) T) ((-537 . -752) T) ((-1010 . -220) 100927) ((-343 . -386) 100878) ((-337 . -386) 100829) ((-329 . -386) 100780) ((-1214 . -1057) T) ((-1214 . -23) T) ((-1202 . -100) T) ((-165 . -579) 100762) ((-1084 . -1005) T) ((-631 . -705) 100746) ((-1119 . -139) 100725) ((-1119 . -141) 100704) ((-1088 . -1045) T) ((-1088 . -1018) 100673) ((-67 . -1154) T) ((-975 . -1004) 100610) ((-819 . -1005) T) ((-225 . -602) 100518) ((-654 . -998) T) ((-338 . -1004) 100463) ((-59 . -1154) T) ((-975 . -110) 100379) ((-854 . -579) 100311) ((-654 . -228) T) ((-654 . -218) NIL) ((-800 . -805) 100290) ((-659 . -755) T) ((-659 . -752) T) ((-955 . -395) 100267) ((-338 . -110) 100196) ((-363 . -873) T) ((-391 . -805) 100175) ((-673 . -274) 100086) ((-208 . -687) T) ((-1192 . -474) 100052) ((-1185 . -474) 100018) ((-1164 . -474) 99984) ((-300 . -954) 99963) ((-207 . -1045) 99941) ((-303 . -926) 99903) ((-103 . -100) T) ((-47 . -1004) 99868) ((-1223 . -100) T) ((-365 . -100) T) ((-47 . -110) 99824) ((-956 . -602) 99806) ((-1186 . -579) 99788) ((-509 . -100) T) ((-481 . -100) T) ((-1077 . -1078) 99772) ((-146 . -1207) 99756) ((-230 . -1154) T) ((-1153 . -100) T) ((-1113 . -1158) 99735) ((-1069 . -1158) 99714) ((-225 . -21) 99625) ((-225 . -25) 99477) ((-126 . -118) 99461) ((-120 . -118) 99445) ((-43 . -705) 99429) ((-1113 . -529) 99340) ((-1069 . -529) 99271) ((-986 . -270) 99246) ((-776 . -129) T) ((-116 . -755) NIL) ((-116 . -752) NIL) ((-339 . -291) T) ((-336 . -291) T) ((-328 . -291) T) ((-1040 . -1154) T) ((-235 . -1057) 99157) ((-234 . -1057) 99068) ((-975 . -998) T) ((-955 . -1005) T) ((-327 . -609) 99013) ((-584 . -37) 98997) ((-1212 . -579) 98959) ((-1212 . -580) 98920) ((-1022 . -579) 98902) ((-975 . -228) T) ((-338 . -998) T) ((-775 . -1207) 98872) ((-235 . -23) T) ((-234 . -23) T) ((-940 . -579) 98854) ((-698 . -580) 98815) ((-698 . -579) 98797) ((-759 . -807) 98776) ((-951 . -495) 98688) ((-338 . -218) T) ((-338 . -228) T) ((-1101 . -145) 98635) ((-956 . -25) T) ((-135 . -579) 98617) ((-135 . -580) 98576) ((-863 . -291) T) ((-956 . -21) T) ((-924 . -25) T) ((-867 . -21) T) ((-867 . -25) T) ((-411 . -21) T) ((-411 . -25) T) ((-800 . -395) 98560) ((-47 . -998) T) ((-1221 . -1213) 98544) ((-1219 . -1213) 98528) ((-986 . -570) 98503) ((-300 . -580) 98364) ((-300 . -579) 98346) ((-297 . -580) NIL) ((-297 . -579) 98328) ((-47 . -228) T) ((-47 . -218) T) ((-615 . -270) 98289) ((-523 . -220) 98239) ((-133 . -579) 98221) ((-113 . -579) 98203) ((-460 . -37) 98168) ((-1223 . -1220) 98147) ((-1214 . -129) T) ((-1222 . -1005) T) ((-1027 . -100) T) ((-86 . -1154) T) ((-481 . -293) NIL) ((-952 . -105) 98131) ((-842 . -1045) T) ((-838 . -1045) T) ((-1200 . -612) 98115) ((-1200 . -357) 98099) ((-311 . -1154) T) ((-560 . -807) T) ((-1084 . -1045) T) ((-1084 . -1001) 98039) ((-101 . -495) 97972) ((-880 . -579) 97954) ((-327 . -687) T) ((-30 . -579) 97936) ((-819 . -1045) T) ((-800 . -1005) 97915) ((-39 . -609) 97860) ((-210 . -1158) T) ((-391 . -1005) T) ((-1100 . -145) 97842) ((-951 . -274) 97793) ((-210 . -529) T) ((-303 . -1181) 97777) ((-303 . -1178) 97747) ((-1127 . -1130) 97726) ((-1020 . -579) 97708) ((-608 . -145) 97692) ((-595 . -145) 97638) ((-1127 . -105) 97588) ((-461 . -1130) 97567) ((-469 . -141) T) ((-469 . -139) NIL) ((-1064 . -580) 97482) ((-422 . -579) 97464) ((-203 . -141) T) ((-203 . -139) NIL) ((-1064 . -579) 97446) ((-128 . -100) T) ((-51 . -100) T) ((-1164 . -602) 97398) ((-461 . -105) 97348) ((-946 . -23) T) ((-1223 . -37) 97318) ((-1113 . -1057) T) ((-1069 . -1057) T) ((-1009 . -1158) T) ((-295 . -100) T) ((-811 . -1057) T) ((-905 . -1158) 97297) ((-463 . -1158) 97276) ((-692 . -807) 97255) ((-1009 . -529) T) ((-905 . -529) 97186) ((-1113 . -23) T) ((-1069 . -23) T) ((-811 . -23) T) ((-463 . -529) 97117) ((-1084 . -678) 97049) ((-1088 . -495) 96982) ((-986 . -580) NIL) ((-986 . -579) 96964) ((-94 . -1029) T) ((-819 . -678) 96934) ((-1148 . -46) 96903) ((-234 . -129) T) ((-235 . -129) T) ((-1049 . -1045) T) ((-955 . -1045) T) ((-60 . -579) 96885) ((-1108 . -807) NIL) ((-975 . -752) T) ((-975 . -755) T) ((-1227 . -1004) 96872) ((-1227 . -110) 96857) ((-823 . -609) 96844) ((-1192 . -25) T) ((-1192 . -21) T) ((-1185 . -21) T) ((-1185 . -25) T) ((-1164 . -21) T) ((-1164 . -25) T) ((-978 . -145) 96828) ((-825 . -780) 96807) ((-825 . -873) T) ((-673 . -270) 96734) ((-563 . -21) T) ((-563 . -25) T) ((-562 . -21) T) ((-39 . -687) T) ((-207 . -495) 96667) ((-562 . -25) T) ((-459 . -145) 96651) ((-446 . -145) 96635) ((-874 . -754) T) ((-874 . -687) T) ((-731 . -753) T) ((-731 . -754) T) ((-487 . -1045) T) ((-483 . -1045) T) ((-731 . -687) T) ((-210 . -347) T) ((-1098 . -1045) 96613) ((-824 . -1158) T) ((-615 . -579) 96595) ((-824 . -529) T) ((-654 . -352) NIL) ((-343 . -1207) 96579) ((-631 . -100) T) ((-337 . -1207) 96563) ((-329 . -1207) 96547) ((-1222 . -1045) T) ((-501 . -807) 96526) ((-777 . -435) 96505) ((-995 . -1045) T) ((-995 . -1018) 96434) ((-978 . -929) 96403) ((-779 . -1057) T) ((-955 . -678) 96348) ((-370 . -1057) T) ((-459 . -929) 96317) ((-446 . -929) 96286) ((-109 . -145) 96268) ((-71 . -579) 96250) ((-846 . -579) 96232) ((-1025 . -685) 96211) ((-1227 . -998) T) ((-776 . -602) 96159) ((-278 . -1005) 96102) ((-160 . -1158) 96007) ((-210 . -1057) T) ((-308 . -23) T) ((-1108 . -945) 95959) ((-800 . -1045) T) ((-1070 . -701) 95938) ((-1186 . -1004) 95843) ((-1184 . -873) 95822) ((-823 . -687) T) ((-160 . -529) 95733) ((-1163 . -873) 95712) ((-549 . -609) 95699) ((-391 . -1045) T) ((-537 . -609) 95686) ((-247 . -1045) T) ((-476 . -609) 95651) ((-210 . -23) T) ((-1163 . -780) 95604) ((-1221 . -100) T) ((-338 . -1218) 95581) ((-1219 . -100) T) ((-1186 . -110) 95473) ((-138 . -579) 95455) ((-946 . -129) T) ((-43 . -100) T) ((-225 . -807) 95406) ((-1173 . -1158) 95385) ((-101 . -471) 95369) ((-1222 . -678) 95339) ((-1033 . -46) 95300) ((-1009 . -1057) T) ((-905 . -1057) T) ((-126 . -33) T) ((-120 . -33) T) ((-742 . -46) 95277) ((-740 . -46) 95249) ((-1173 . -529) 95160) ((-338 . -352) T) ((-463 . -1057) T) ((-1113 . -129) T) ((-1069 . -129) T) ((-437 . -46) 95139) ((-824 . -347) T) ((-811 . -129) T) ((-146 . -100) T) ((-1009 . -23) T) ((-905 . -23) T) ((-544 . -529) T) ((-776 . -25) T) ((-776 . -21) T) ((-1084 . -495) 95072) ((-554 . -989) 95056) ((-463 . -23) T) ((-335 . -1005) T) ((-1148 . -853) 95037) ((-631 . -293) 94975) ((-1058 . -1207) 94945) ((-659 . -609) 94910) ((-955 . -163) T) ((-916 . -139) 94889) ((-598 . -1045) T) ((-573 . -1045) T) ((-916 . -141) 94868) ((-956 . -807) T) ((-696 . -141) 94847) ((-696 . -139) 94826) ((-924 . -807) T) ((-457 . -873) 94805) ((-300 . -1004) 94715) ((-297 . -1004) 94644) ((-951 . -270) 94602) ((-391 . -678) 94554) ((-127 . -807) T) ((-661 . -805) T) ((-1186 . -998) T) ((-300 . -110) 94450) ((-297 . -110) 94363) ((-917 . -100) T) ((-775 . -100) 94154) ((-673 . -580) NIL) ((-673 . -579) 94136) ((-619 . -989) 94034) ((-1186 . -310) 93978) ((-986 . -272) 93953) ((-549 . -687) T) ((-537 . -754) T) ((-160 . -347) 93904) ((-537 . -751) T) ((-537 . -687) T) ((-476 . -687) T) ((-1088 . -471) 93888) ((-1033 . -839) NIL) ((-824 . -1057) T) ((-116 . -862) NIL) ((-1221 . -1220) 93864) ((-1219 . -1220) 93843) ((-742 . -839) NIL) ((-740 . -839) 93702) ((-1214 . -25) T) ((-1214 . -21) T) ((-1151 . -100) 93680) ((-1051 . -379) T) ((-586 . -609) 93667) ((-437 . -839) NIL) ((-636 . -100) 93645) ((-1033 . -989) 93474) ((-824 . -23) T) ((-742 . -989) 93335) ((-740 . -989) 93194) ((-116 . -609) 93139) ((-437 . -989) 93017) ((-610 . -989) 93001) ((-590 . -100) T) ((-207 . -471) 92985) ((-1200 . -33) T) ((-598 . -678) 92969) ((-573 . -678) 92953) ((-631 . -37) 92913) ((-303 . -100) T) ((-83 . -579) 92895) ((-49 . -989) 92879) ((-1064 . -1004) 92866) ((-1033 . -361) 92850) ((-742 . -361) 92834) ((-58 . -55) 92796) ((-659 . -754) T) ((-659 . -751) T) ((-550 . -989) 92783) ((-499 . -989) 92760) ((-659 . -687) T) ((-308 . -129) T) ((-300 . -998) 92651) ((-297 . -998) T) ((-160 . -1057) T) ((-740 . -361) 92635) ((-44 . -145) 92585) ((-956 . -945) 92567) ((-437 . -361) 92551) ((-391 . -163) T) ((-300 . -228) 92530) ((-297 . -228) T) ((-297 . -218) NIL) ((-278 . -1045) 92313) ((-210 . -129) T) ((-1064 . -110) 92298) ((-160 . -23) T) ((-759 . -141) 92277) ((-759 . -139) 92256) ((-235 . -602) 92164) ((-234 . -602) 92072) ((-303 . -268) 92038) ((-1098 . -495) 91971) ((-1077 . -1045) T) ((-210 . -1007) T) ((-775 . -293) 91909) ((-1033 . -853) 91844) ((-742 . -853) 91787) ((-740 . -853) 91771) ((-1221 . -37) 91741) ((-1219 . -37) 91711) ((-1173 . -1057) T) ((-812 . -1057) T) ((-437 . -853) 91688) ((-815 . -1045) T) ((-1173 . -23) T) ((-544 . -1057) T) ((-812 . -23) T) ((-586 . -687) T) ((-339 . -873) T) ((-336 . -873) T) ((-273 . -100) T) ((-328 . -873) T) ((-1009 . -129) T) ((-923 . -1029) T) ((-905 . -129) T) ((-116 . -754) NIL) ((-116 . -751) NIL) ((-116 . -687) T) ((-654 . -862) NIL) ((-995 . -495) 91589) ((-463 . -129) T) ((-544 . -23) T) ((-636 . -293) 91527) ((-598 . -722) T) ((-573 . -722) T) ((-1164 . -807) NIL) ((-955 . -274) T) ((-235 . -21) T) ((-654 . -609) 91477) ((-335 . -1045) T) ((-235 . -25) T) ((-234 . -21) T) ((-234 . -25) T) ((-146 . -37) 91461) ((-2 . -100) T) ((-863 . -873) T) ((-464 . -1207) 91431) ((-208 . -989) 91408) ((-1064 . -998) T) ((-672 . -291) T) ((-278 . -678) 91350) ((-661 . -1005) T) ((-469 . -435) T) ((-391 . -495) 91262) ((-203 . -435) T) ((-1064 . -218) T) ((-279 . -145) 91212) ((-951 . -580) 91173) ((-951 . -579) 91155) ((-942 . -579) 91137) ((-115 . -1005) T) ((-615 . -1004) 91121) ((-210 . -474) T) ((-383 . -579) 91103) ((-383 . -580) 91080) ((-1002 . -1207) 91050) ((-615 . -110) 91029) ((-1084 . -471) 91013) ((-775 . -37) 90983) ((-61 . -424) T) ((-61 . -379) T) ((-1101 . -100) T) ((-824 . -129) T) ((-466 . -100) 90961) ((-1227 . -352) T) ((-1025 . -100) T) ((-1008 . -100) T) ((-335 . -678) 90906) ((-692 . -141) 90885) ((-692 . -139) 90864) ((-975 . -609) 90801) ((-504 . -1045) 90779) ((-343 . -100) T) ((-337 . -100) T) ((-329 . -100) T) ((-106 . -100) T) ((-485 . -1045) T) ((-338 . -609) 90724) ((-1113 . -602) 90672) ((-1069 . -602) 90620) ((-369 . -490) 90599) ((-793 . -805) 90578) ((-363 . -1158) T) ((-654 . -687) T) ((-323 . -1005) T) ((-1164 . -945) 90530) ((-164 . -1005) T) ((-101 . -579) 90462) ((-1115 . -139) 90441) ((-1115 . -141) 90420) ((-363 . -529) T) ((-1114 . -141) 90399) ((-1114 . -139) 90378) ((-1108 . -139) 90285) ((-391 . -274) T) ((-1108 . -141) 90192) ((-1070 . -141) 90171) ((-1070 . -139) 90150) ((-303 . -37) 89991) ((-160 . -129) T) ((-297 . -755) NIL) ((-297 . -752) NIL) ((-615 . -998) T) ((-47 . -609) 89956) ((-946 . -21) T) ((-126 . -962) 89940) ((-120 . -962) 89924) ((-946 . -25) T) ((-854 . -118) 89908) ((-1100 . -100) T) ((-776 . -807) 89887) ((-1173 . -129) T) ((-1113 . -25) T) ((-1113 . -21) T) ((-812 . -129) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-811 . -25) T) ((-811 . -21) T) ((-742 . -291) 89866) ((-608 . -100) 89844) ((-595 . -100) T) ((-1101 . -293) 89639) ((-544 . -129) T) ((-584 . -805) 89618) ((-1098 . -471) 89602) ((-1092 . -145) 89552) ((-1088 . -579) 89514) ((-1088 . -580) 89475) ((-975 . -751) T) ((-975 . -754) T) ((-975 . -687) T) ((-466 . -293) 89413) ((-436 . -401) 89383) ((-335 . -163) T) ((-273 . -37) 89370) ((-258 . -100) T) ((-257 . -100) T) ((-256 . -100) T) ((-255 . -100) T) ((-254 . -100) T) ((-253 . -100) T) ((-252 . -100) T) ((-327 . -989) 89347) ((-198 . -100) T) ((-197 . -100) T) ((-195 . -100) T) ((-194 . -100) T) ((-193 . -100) T) ((-192 . -100) T) ((-189 . -100) T) ((-188 . -100) T) ((-673 . -1004) 89170) ((-187 . -100) T) ((-186 . -100) T) ((-185 . -100) T) ((-184 . -100) T) ((-183 . -100) T) ((-182 . -100) T) ((-181 . -100) T) ((-180 . -100) T) ((-179 . -100) T) ((-338 . -687) T) ((-673 . -110) 88979) ((-631 . -216) 88963) ((-550 . -291) T) ((-499 . -291) T) ((-278 . -495) 88912) ((-106 . -293) NIL) ((-70 . -379) T) ((-1058 . -100) 88703) ((-793 . -395) 88687) ((-1064 . -755) T) ((-1064 . -752) T) ((-661 . -1045) T) ((-363 . -347) T) ((-160 . -474) 88665) ((-199 . -1045) T) ((-207 . -579) 88597) ((-131 . -1045) T) ((-115 . -1045) T) ((-47 . -687) T) ((-995 . -471) 88562) ((-487 . -91) T) ((-135 . -409) 88544) ((-135 . -352) T) ((-978 . -100) T) ((-493 . -490) 88523) ((-459 . -100) T) ((-446 . -100) T) ((-985 . -1057) T) ((-1115 . -34) 88489) ((-1115 . -93) 88455) ((-1115 . -1142) 88421) ((-1115 . -1139) 88387) ((-1100 . -293) NIL) ((-87 . -380) T) ((-87 . -379) T) ((-1025 . -1093) 88366) ((-1114 . -1139) 88332) ((-1114 . -1142) 88298) ((-985 . -23) T) ((-1114 . -93) 88264) ((-544 . -474) T) ((-1114 . -34) 88230) ((-1108 . -1139) 88196) ((-1108 . -1142) 88162) ((-1108 . -93) 88128) ((-345 . -1057) T) ((-343 . -1093) 88107) ((-337 . -1093) 88086) ((-329 . -1093) 88065) ((-1108 . -34) 88031) ((-1070 . -34) 87997) ((-1070 . -93) 87963) ((-106 . -1093) T) ((-1070 . -1142) 87929) ((-793 . -1005) 87908) ((-608 . -293) 87846) ((-595 . -293) 87697) ((-1070 . -1139) 87663) ((-673 . -998) T) ((-1009 . -602) 87645) ((-1025 . -37) 87513) ((-905 . -602) 87461) ((-956 . -141) T) ((-956 . -139) NIL) ((-363 . -1057) T) ((-308 . -25) T) ((-306 . -23) T) ((-896 . -807) 87440) ((-673 . -310) 87417) ((-463 . -602) 87365) ((-39 . -989) 87255) ((-661 . -678) 87242) ((-673 . -218) T) ((-323 . -1045) T) ((-164 . -1045) T) ((-315 . -807) T) ((-402 . -435) 87192) ((-363 . -23) T) ((-343 . -37) 87157) ((-337 . -37) 87122) ((-329 . -37) 87087) ((-78 . -424) T) ((-78 . -379) T) ((-210 . -25) T) ((-210 . -21) T) ((-794 . -1057) T) ((-106 . -37) 87037) ((-787 . -1057) T) ((-734 . -1045) T) ((-115 . -678) 87024) ((-633 . -989) 87008) ((-578 . -100) T) ((-794 . -23) T) ((-787 . -23) T) ((-1098 . -270) 86985) ((-1058 . -293) 86923) ((-1047 . -220) 86907) ((-62 . -380) T) ((-62 . -379) T) ((-109 . -100) T) ((-39 . -361) 86884) ((-94 . -100) T) ((-614 . -809) 86868) ((-1009 . -21) T) ((-1009 . -25) T) ((-775 . -216) 86838) ((-905 . -25) T) ((-905 . -21) T) ((-584 . -1005) T) ((-463 . -25) T) ((-463 . -21) T) ((-978 . -293) 86776) ((-842 . -579) 86758) ((-838 . -579) 86740) ((-235 . -807) 86691) ((-234 . -807) 86642) ((-504 . -495) 86575) ((-824 . -602) 86552) ((-459 . -293) 86490) ((-446 . -293) 86428) ((-335 . -274) T) ((-1098 . -1188) 86412) ((-1084 . -579) 86374) ((-1084 . -580) 86335) ((-1082 . -100) T) ((-951 . -1004) 86231) ((-39 . -853) 86183) ((-1098 . -570) 86160) ((-1227 . -609) 86147) ((-1010 . -145) 86093) ((-825 . -1158) T) ((-951 . -110) 85975) ((-323 . -678) 85959) ((-819 . -579) 85941) ((-164 . -678) 85873) ((-391 . -270) 85831) ((-825 . -529) T) ((-106 . -384) 85813) ((-82 . -368) T) ((-82 . -379) T) ((-661 . -163) T) ((-97 . -687) T) ((-464 . -100) 85604) ((-97 . -456) T) ((-115 . -163) T) ((-1058 . -37) 85574) ((-160 . -602) 85522) ((-1002 . -100) T) ((-824 . -25) T) ((-775 . -223) 85501) ((-824 . -21) T) ((-778 . -100) T) ((-398 . -100) T) ((-369 . -100) T) ((-109 . -293) NIL) ((-212 . -100) 85479) ((-126 . -1154) T) ((-120 . -1154) T) ((-985 . -129) T) ((-631 . -351) 85463) ((-951 . -998) T) ((-1173 . -602) 85411) ((-1049 . -579) 85393) ((-955 . -579) 85375) ((-496 . -23) T) ((-491 . -23) T) ((-327 . -291) T) ((-489 . -23) T) ((-306 . -129) T) ((-3 . -1045) T) ((-955 . -580) 85359) ((-951 . -228) 85338) ((-951 . -218) 85317) ((-1227 . -687) T) ((-1192 . -139) 85296) ((-793 . -1045) T) ((-1192 . -141) 85275) ((-1185 . -141) 85254) ((-1185 . -139) 85233) ((-1184 . -1158) 85212) ((-1164 . -139) 85119) ((-1164 . -141) 85026) ((-1163 . -1158) 85005) ((-363 . -129) T) ((-537 . -839) 84987) ((0 . -1045) T) ((-164 . -163) T) ((-160 . -21) T) ((-160 . -25) T) ((-48 . -1045) T) ((-1186 . -609) 84892) ((-1184 . -529) 84843) ((-675 . -1057) T) ((-1163 . -529) 84794) ((-537 . -989) 84776) ((-562 . -141) 84755) ((-562 . -139) 84734) ((-476 . -989) 84677) ((-85 . -368) T) ((-85 . -379) T) ((-825 . -347) T) ((-794 . -129) T) ((-787 . -129) T) ((-675 . -23) T) ((-487 . -579) 84627) ((-483 . -579) 84609) ((-1223 . -1005) T) ((-363 . -1007) T) ((-977 . -1045) 84587) ((-854 . -33) T) ((-464 . -293) 84525) ((-1098 . -580) 84486) ((-1098 . -579) 84418) ((-1113 . -807) 84397) ((-44 . -100) T) ((-1069 . -807) 84376) ((-777 . -100) T) ((-1173 . -25) T) ((-1173 . -21) T) ((-812 . -25) T) ((-43 . -351) 84360) ((-812 . -21) T) ((-692 . -435) 84311) ((-572 . -1029) T) ((-1222 . -579) 84293) ((-544 . -25) T) ((-544 . -21) T) ((-374 . -1045) T) ((-1002 . -293) 84231) ((-632 . -1029) T) ((-170 . -1029) T) ((-584 . -1045) T) ((-659 . -839) 84213) ((-1200 . -1154) T) ((-212 . -293) 84151) ((-138 . -352) T) ((-995 . -580) 84093) ((-995 . -579) 84036) ((-297 . -862) NIL) ((-659 . -989) 83981) ((-672 . -873) T) ((-457 . -1158) 83960) ((-1114 . -435) 83939) ((-1108 . -435) 83918) ((-314 . -100) T) ((-825 . -1057) T) ((-300 . -609) 83740) ((-297 . -609) 83669) ((-457 . -529) 83620) ((-323 . -495) 83586) ((-523 . -145) 83536) ((-39 . -291) T) ((-800 . -579) 83518) ((-661 . -274) T) ((-825 . -23) T) ((-363 . -474) T) ((-1025 . -216) 83488) ((-493 . -100) T) ((-391 . -580) 83296) ((-391 . -579) 83278) ((-247 . -579) 83260) ((-115 . -274) T) ((-1186 . -687) T) ((-1184 . -347) 83239) ((-1163 . -347) 83218) ((-1212 . -33) T) ((-116 . -1154) T) ((-106 . -216) 83200) ((-1119 . -100) T) ((-460 . -1045) T) ((-504 . -471) 83184) ((-698 . -33) T) ((-464 . -37) 83154) ((-135 . -33) T) ((-116 . -837) 83131) ((-116 . -839) NIL) ((-586 . -989) 83016) ((-606 . -807) 82995) ((-1211 . -100) T) ((-279 . -100) T) ((-673 . -352) 82974) ((-116 . -989) 82951) ((-374 . -678) 82935) ((-584 . -678) 82919) ((-44 . -293) 82723) ((-776 . -139) 82702) ((-776 . -141) 82681) ((-1222 . -366) 82660) ((-779 . -807) T) ((-1202 . -1045) T) ((-1101 . -214) 82607) ((-370 . -807) 82586) ((-1192 . -1142) 82552) ((-1192 . -1139) 82518) ((-1185 . -1139) 82484) ((-496 . -129) T) ((-1185 . -1142) 82450) ((-1164 . -1139) 82416) ((-1164 . -1142) 82382) ((-1192 . -34) 82348) ((-1192 . -93) 82314) ((-598 . -579) 82283) ((-573 . -579) 82252) ((-210 . -807) T) ((-1185 . -93) 82218) ((-1185 . -34) 82184) ((-1184 . -1057) T) ((-1064 . -609) 82171) ((-1164 . -93) 82137) ((-1163 . -1057) T) ((-560 . -145) 82119) ((-1025 . -333) 82098) ((-116 . -361) 82075) ((-116 . -322) 82052) ((-164 . -274) T) ((-1164 . -34) 82018) ((-823 . -291) T) ((-297 . -754) NIL) ((-297 . -751) NIL) ((-300 . -687) 81868) ((-297 . -687) T) ((-457 . -347) 81847) ((-343 . -333) 81826) ((-337 . -333) 81805) ((-329 . -333) 81784) ((-300 . -456) 81763) ((-1184 . -23) T) ((-1163 . -23) T) ((-679 . -1057) T) ((-675 . -129) T) ((-614 . -100) T) ((-460 . -678) 81728) ((-44 . -266) 81678) ((-103 . -1045) T) ((-66 . -579) 81660) ((-923 . -100) T) ((-818 . -100) T) ((-586 . -853) 81619) ((-1223 . -1045) T) ((-365 . -1045) T) ((-1153 . -1045) T) ((-80 . -1154) T) ((-1009 . -807) T) ((-905 . -807) 81598) ((-116 . -853) NIL) ((-742 . -873) 81577) ((-674 . -807) T) ((-509 . -1045) T) ((-481 . -1045) T) ((-339 . -1158) T) ((-336 . -1158) T) ((-328 . -1158) T) ((-248 . -1158) 81556) ((-232 . -1158) 81535) ((-1058 . -216) 81505) ((-463 . -807) 81484) ((-1084 . -1004) 81468) ((-374 . -722) T) ((-1100 . -788) T) ((-654 . -1154) T) ((-339 . -529) T) ((-336 . -529) T) ((-328 . -529) T) ((-248 . -529) 81399) ((-232 . -529) 81330) ((-506 . -1029) T) ((-1084 . -110) 81309) ((-436 . -705) 81279) ((-819 . -1004) 81249) ((-777 . -37) 81191) ((-654 . -837) 81173) ((-654 . -839) 81155) ((-279 . -293) 80959) ((-863 . -1158) T) ((-631 . -395) 80943) ((-819 . -110) 80908) ((-654 . -989) 80853) ((-956 . -435) T) ((-863 . -529) T) ((-550 . -873) T) ((-457 . -1057) T) ((-499 . -873) T) ((-1098 . -272) 80830) ((-867 . -435) T) ((-63 . -579) 80812) ((-595 . -214) 80758) ((-457 . -23) T) ((-1064 . -754) T) ((-825 . -129) T) ((-1064 . -751) T) ((-1214 . -1216) 80737) ((-1064 . -687) T) ((-615 . -609) 80711) ((-278 . -579) 80453) ((-986 . -33) T) ((-775 . -805) 80432) ((-549 . -291) T) ((-537 . -291) T) ((-476 . -291) T) ((-1223 . -678) 80402) ((-654 . -361) 80384) ((-654 . -322) 80366) ((-460 . -163) T) ((-365 . -678) 80336) ((-824 . -807) NIL) ((-537 . -973) T) ((-476 . -973) T) ((-1077 . -579) 80318) ((-1058 . -223) 80297) ((-200 . -100) T) ((-1092 . -100) T) ((-69 . -579) 80279) ((-1084 . -998) T) ((-1119 . -37) 80176) ((-815 . -579) 80158) ((-537 . -522) T) ((-631 . -1005) T) ((-692 . -902) 80111) ((-1084 . -218) 80090) ((-1027 . -1045) T) ((-985 . -25) T) ((-985 . -21) T) ((-955 . -1004) 80035) ((-858 . -100) T) ((-819 . -998) T) ((-654 . -853) NIL) ((-339 . -313) 80019) ((-339 . -347) T) ((-336 . -313) 80003) ((-336 . -347) T) ((-328 . -313) 79987) ((-328 . -347) T) ((-469 . -100) T) ((-1211 . -37) 79957) ((-504 . -647) 79907) ((-203 . -100) T) ((-975 . -989) 79789) ((-955 . -110) 79718) ((-1115 . -926) 79687) ((-1114 . -926) 79649) ((-501 . -145) 79633) ((-1025 . -354) 79612) ((-335 . -579) 79594) ((-306 . -21) T) ((-338 . -989) 79571) ((-306 . -25) T) ((-1108 . -926) 79540) ((-1070 . -926) 79507) ((-74 . -579) 79489) ((-659 . -291) T) ((-160 . -807) 79468) ((-863 . -347) T) ((-363 . -25) T) ((-363 . -21) T) ((-863 . -313) 79455) ((-84 . -579) 79437) ((-659 . -973) T) ((-637 . -807) T) ((-1184 . -129) T) ((-1163 . -129) T) ((-854 . -962) 79421) ((-794 . -21) T) ((-47 . -989) 79364) ((-794 . -25) T) ((-787 . -25) T) ((-787 . -21) T) ((-1221 . -1005) T) ((-1219 . -1005) T) ((-615 . -687) T) ((-1222 . -1004) 79348) ((-1173 . -807) 79327) ((-775 . -395) 79296) ((-101 . -118) 79280) ((-128 . -1045) T) ((-51 . -1045) T) ((-879 . -579) 79262) ((-824 . -945) 79239) ((-783 . -100) T) ((-1222 . -110) 79218) ((-614 . -37) 79188) ((-544 . -807) T) ((-339 . -1057) T) ((-336 . -1057) T) ((-328 . -1057) T) ((-248 . -1057) T) ((-232 . -1057) T) ((-586 . -291) 79167) ((-1092 . -293) 78971) ((-505 . -1029) T) ((-295 . -1045) T) ((-625 . -23) T) ((-464 . -216) 78941) ((-146 . -1005) T) ((-339 . -23) T) ((-336 . -23) T) ((-328 . -23) T) ((-116 . -291) T) ((-248 . -23) T) ((-232 . -23) T) ((-955 . -998) T) ((-673 . -862) 78920) ((-955 . -218) 78892) ((-955 . -228) T) ((-116 . -973) NIL) ((-863 . -1057) T) ((-1185 . -435) 78871) ((-1164 . -435) 78850) ((-504 . -579) 78782) ((-673 . -609) 78707) ((-391 . -1004) 78659) ((-485 . -579) 78641) ((-863 . -23) T) ((-469 . -293) NIL) ((-457 . -129) T) ((-203 . -293) NIL) ((-391 . -110) 78579) ((-775 . -1005) 78510) ((-698 . -1043) 78494) ((-1184 . -474) 78460) ((-1163 . -474) 78426) ((-460 . -274) T) ((-135 . -1043) 78408) ((-127 . -145) 78390) ((-1222 . -998) T) ((-1010 . -100) T) ((-481 . -495) NIL) ((-663 . -100) T) ((-464 . -223) 78369) ((-1113 . -139) 78348) ((-1113 . -141) 78327) ((-1069 . -141) 78306) ((-1069 . -139) 78285) ((-598 . -1004) 78269) ((-573 . -1004) 78253) ((-631 . -1045) T) ((-631 . -1001) 78193) ((-1115 . -1191) 78177) ((-1115 . -1178) 78154) ((-469 . -1093) T) ((-1114 . -1183) 78115) ((-1114 . -1178) 78085) ((-1114 . -1181) 78069) ((-203 . -1093) T) ((-327 . -873) T) ((-778 . -250) 78053) ((-598 . -110) 78032) ((-573 . -110) 78011) ((-1108 . -1162) 77972) ((-800 . -998) 77951) ((-1108 . -1178) 77928) ((-496 . -25) T) ((-476 . -286) T) ((-492 . -23) T) ((-491 . -25) T) ((-489 . -25) T) ((-488 . -23) T) ((-1108 . -1160) 77912) ((-391 . -998) T) ((-303 . -1005) T) ((-654 . -291) T) ((-106 . -805) T) ((-391 . -228) T) ((-391 . -218) 77891) ((-673 . -687) T) ((-469 . -37) 77841) ((-203 . -37) 77791) ((-457 . -474) 77757) ((-1100 . -1086) T) ((-1046 . -100) T) ((-661 . -579) 77739) ((-661 . -580) 77654) ((-675 . -21) T) ((-675 . -25) T) ((-199 . -579) 77636) ((-131 . -579) 77618) ((-115 . -579) 77600) ((-149 . -25) T) ((-1221 . -1045) T) ((-825 . -602) 77548) ((-1219 . -1045) T) ((-916 . -100) T) ((-696 . -100) T) ((-676 . -100) T) ((-436 . -100) T) ((-776 . -435) 77499) ((-43 . -1045) T) ((-1034 . -807) T) ((-625 . -129) T) ((-1010 . -293) 77350) ((-631 . -678) 77334) ((-273 . -1005) T) ((-339 . -129) T) ((-336 . -129) T) ((-328 . -129) T) ((-248 . -129) T) ((-232 . -129) T) ((-402 . -100) T) ((-146 . -1045) T) ((-44 . -214) 77284) ((-911 . -807) 77263) ((-951 . -609) 77201) ((-225 . -1207) 77171) ((-975 . -291) T) ((-278 . -1004) 77093) ((-863 . -129) T) ((-39 . -873) T) ((-469 . -384) 77075) ((-338 . -291) T) ((-203 . -384) 77057) ((-1025 . -395) 77041) ((-278 . -110) 76958) ((-825 . -25) T) ((-825 . -21) T) ((-323 . -579) 76940) ((-1186 . -46) 76884) ((-210 . -141) T) ((-164 . -579) 76866) ((-1058 . -805) 76845) ((-734 . -579) 76827) ((-574 . -220) 76774) ((-458 . -220) 76724) ((-1221 . -678) 76694) ((-47 . -291) T) ((-1219 . -678) 76664) ((-917 . -1045) T) ((-775 . -1045) 76455) ((-296 . -100) T) ((-854 . -1154) T) ((-47 . -973) T) ((-1163 . -602) 76363) ((-649 . -100) 76341) ((-43 . -678) 76325) ((-523 . -100) T) ((-65 . -367) T) ((-65 . -379) T) ((-623 . -23) T) ((-631 . -722) T) ((-1151 . -1045) 76303) ((-335 . -1004) 76248) ((-636 . -1045) 76226) ((-1009 . -141) T) ((-905 . -141) 76205) ((-905 . -139) 76184) ((-759 . -100) T) ((-146 . -678) 76168) ((-463 . -141) 76147) ((-463 . -139) 76126) ((-335 . -110) 76055) ((-1025 . -1005) T) ((-306 . -807) 76034) ((-1192 . -926) 76003) ((-590 . -1045) T) ((-1185 . -926) 75965) ((-492 . -129) T) ((-488 . -129) T) ((-279 . -214) 75915) ((-343 . -1005) T) ((-337 . -1005) T) ((-329 . -1005) T) ((-278 . -998) 75858) ((-1164 . -926) 75827) ((-363 . -807) T) ((-106 . -1005) T) ((-951 . -687) T) ((-823 . -873) T) ((-800 . -755) 75806) ((-800 . -752) 75785) ((-402 . -293) 75724) ((-451 . -100) T) ((-562 . -926) 75693) ((-303 . -1045) T) ((-391 . -755) 75672) ((-391 . -752) 75651) ((-481 . -471) 75633) ((-1186 . -989) 75599) ((-1184 . -21) T) ((-1184 . -25) T) ((-1163 . -21) T) ((-1163 . -25) T) ((-775 . -678) 75541) ((-659 . -388) T) ((-572 . -100) T) ((-1212 . -1154) T) ((-1058 . -395) 75510) ((-955 . -352) NIL) ((-632 . -100) T) ((-170 . -100) T) ((-101 . -33) T) ((-698 . -1154) T) ((-43 . -722) T) ((-560 . -100) T) ((-75 . -380) T) ((-75 . -379) T) ((-614 . -617) 75494) ((-135 . -1154) T) ((-824 . -141) T) ((-824 . -139) NIL) ((-1153 . -91) T) ((-335 . -998) T) ((-68 . -367) T) ((-68 . -379) T) ((-1107 . -100) T) ((-631 . -495) 75427) ((-649 . -293) 75365) ((-916 . -37) 75262) ((-696 . -37) 75232) ((-523 . -293) 75036) ((-300 . -1154) T) ((-335 . -218) T) ((-335 . -228) T) ((-297 . -1154) T) ((-273 . -1045) T) ((-1121 . -579) 75018) ((-672 . -1158) T) ((-1098 . -612) 75002) ((-1148 . -529) 74981) ((-672 . -529) T) ((-300 . -837) 74965) ((-300 . -839) 74890) ((-297 . -837) 74851) ((-297 . -839) NIL) ((-759 . -293) 74816) ((-303 . -678) 74657) ((-308 . -307) 74634) ((-467 . -100) T) ((-457 . -25) T) ((-457 . -21) T) ((-402 . -37) 74608) ((-300 . -989) 74276) ((-210 . -1139) T) ((-210 . -1142) T) ((-3 . -579) 74258) ((-297 . -989) 74188) ((-2 . -1045) T) ((-2 . |RecordCategory|) T) ((-793 . -579) 74170) ((-1058 . -1005) 74101) ((-549 . -873) T) ((-537 . -780) T) ((-537 . -873) T) ((-476 . -873) T) ((-133 . -989) 74085) ((-210 . -93) T) ((-73 . -424) T) ((-73 . -379) T) ((0 . -579) 74067) ((-160 . -141) 74046) ((-160 . -139) 73997) ((-210 . -34) T) ((-48 . -579) 73979) ((-460 . -1005) T) ((-469 . -216) 73961) ((-466 . -921) 73945) ((-464 . -805) 73924) ((-203 . -216) 73906) ((-79 . -424) T) ((-79 . -379) T) ((-1088 . -33) T) ((-775 . -163) 73885) ((-692 . -100) T) ((-977 . -579) 73852) ((-481 . -270) 73827) ((-300 . -361) 73797) ((-297 . -361) 73758) ((-297 . -322) 73719) ((-1031 . -579) 73701) ((-776 . -902) 73648) ((-623 . -129) T) ((-1173 . -139) 73627) ((-1173 . -141) 73606) ((-1115 . -100) T) ((-1114 . -100) T) ((-1108 . -100) T) ((-1101 . -1045) T) ((-1070 . -100) T) ((-207 . -33) T) ((-273 . -678) 73593) ((-1101 . -576) 73569) ((-560 . -293) NIL) ((-466 . -1045) 73547) ((-374 . -579) 73529) ((-491 . -807) T) ((-1092 . -214) 73479) ((-1192 . -1191) 73463) ((-1192 . -1178) 73440) ((-1185 . -1183) 73401) ((-1185 . -1178) 73371) ((-1185 . -1181) 73355) ((-1164 . -1162) 73316) ((-1164 . -1178) 73293) ((-584 . -579) 73275) ((-1164 . -1160) 73259) ((-659 . -873) T) ((-1115 . -268) 73225) ((-1114 . -268) 73191) ((-1108 . -268) 73157) ((-1025 . -1045) T) ((-1008 . -1045) T) ((-47 . -286) T) ((-300 . -853) 73124) ((-297 . -853) NIL) ((-1008 . -1015) 73103) ((-1064 . -839) 73085) ((-759 . -37) 73069) ((-248 . -602) 73017) ((-232 . -602) 72965) ((-661 . -1004) 72952) ((-562 . -1178) 72929) ((-1070 . -268) 72895) ((-303 . -163) 72826) ((-343 . -1045) T) ((-337 . -1045) T) ((-329 . -1045) T) ((-481 . -19) 72808) ((-1064 . -989) 72790) ((-1047 . -145) 72774) ((-106 . -1045) T) ((-115 . -1004) 72761) ((-672 . -347) T) ((-481 . -570) 72736) ((-661 . -110) 72721) ((-420 . -100) T) ((-44 . -1091) 72671) ((-115 . -110) 72656) ((-598 . -681) T) ((-573 . -681) T) ((-775 . -495) 72589) ((-986 . -1154) T) ((-896 . -145) 72573) ((-506 . -100) T) ((-501 . -100) 72523) ((-1033 . -1158) 72502) ((-742 . -1158) 72481) ((-740 . -1158) 72460) ((-60 . -1154) T) ((-460 . -579) 72412) ((-460 . -580) 72334) ((-1113 . -435) 72265) ((-1100 . -1045) T) ((-1084 . -609) 72239) ((-1033 . -529) 72170) ((-464 . -395) 72139) ((-586 . -873) 72118) ((-437 . -1158) 72097) ((-1069 . -435) 72048) ((-742 . -529) 71959) ((-382 . -579) 71941) ((-740 . -529) 71872) ((-636 . -495) 71805) ((-692 . -293) 71792) ((-625 . -25) T) ((-625 . -21) T) ((-437 . -529) 71723) ((-116 . -873) T) ((-116 . -780) NIL) ((-339 . -25) T) ((-339 . -21) T) ((-336 . -25) T) ((-336 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-248 . -25) T) ((-248 . -21) T) ((-81 . -368) T) ((-81 . -379) T) ((-232 . -25) T) ((-232 . -21) T) ((-1202 . -579) 71705) ((-1148 . -1057) T) ((-1148 . -23) T) ((-1108 . -293) 71590) ((-1070 . -293) 71577) ((-1025 . -678) 71445) ((-819 . -609) 71405) ((-896 . -933) 71389) ((-863 . -21) T) ((-273 . -163) T) ((-863 . -25) T) ((-295 . -91) T) ((-825 . -807) 71340) ((-672 . -1057) T) ((-672 . -23) T) ((-608 . -1045) 71318) ((-595 . -576) 71293) ((-595 . -1045) T) ((-550 . -1158) T) ((-499 . -1158) T) ((-550 . -529) T) ((-499 . -529) T) ((-343 . -678) 71245) ((-337 . -678) 71197) ((-164 . -1004) 71129) ((-323 . -1004) 71113) ((-106 . -678) 71063) ((-164 . -110) 70974) ((-329 . -678) 70926) ((-323 . -110) 70905) ((-258 . -1045) T) ((-257 . -1045) T) ((-256 . -1045) T) ((-255 . -1045) T) ((-661 . -998) T) ((-254 . -1045) T) ((-253 . -1045) T) ((-252 . -1045) T) ((-198 . -1045) T) ((-197 . -1045) T) ((-195 . -1045) T) ((-160 . -1142) 70883) ((-160 . -1139) 70861) ((-194 . -1045) T) ((-193 . -1045) T) ((-115 . -998) T) ((-192 . -1045) T) ((-189 . -1045) T) ((-661 . -218) T) ((-188 . -1045) T) ((-187 . -1045) T) ((-186 . -1045) T) ((-185 . -1045) T) ((-184 . -1045) T) ((-183 . -1045) T) ((-182 . -1045) T) ((-181 . -1045) T) ((-180 . -1045) T) ((-179 . -1045) T) ((-225 . -100) 70652) ((-160 . -34) 70630) ((-160 . -93) 70608) ((-615 . -989) 70506) ((-464 . -1005) 70437) ((-1058 . -1045) 70228) ((-1084 . -33) T) ((-631 . -471) 70212) ((-71 . -1154) T) ((-103 . -579) 70194) ((-1223 . -579) 70176) ((-365 . -579) 70158) ((-544 . -1142) T) ((-544 . -1139) T) ((-692 . -37) 70007) ((-509 . -579) 69989) ((-501 . -293) 69927) ((-481 . -579) 69909) ((-481 . -580) 69891) ((-1153 . -579) 69857) ((-1108 . -1093) NIL) ((-978 . -1018) 69826) ((-978 . -1045) T) ((-956 . -100) T) ((-924 . -100) T) ((-867 . -100) T) ((-846 . -989) 69803) ((-1084 . -687) T) ((-955 . -609) 69748) ((-459 . -1045) T) ((-446 . -1045) T) ((-554 . -23) T) ((-544 . -34) T) ((-544 . -93) T) ((-411 . -100) T) ((-1010 . -214) 69694) ((-127 . -100) T) ((-1115 . -37) 69591) ((-819 . -687) T) ((-654 . -873) T) ((-492 . -25) T) ((-488 . -21) T) ((-488 . -25) T) ((-1114 . -37) 69432) ((-323 . -998) T) ((-1108 . -37) 69228) ((-1025 . -163) T) ((-164 . -998) T) ((-1070 . -37) 69125) ((-673 . -46) 69102) ((-343 . -163) T) ((-337 . -163) T) ((-500 . -55) 69076) ((-478 . -55) 69026) ((-335 . -1218) 69003) ((-210 . -435) T) ((-303 . -274) 68954) ((-329 . -163) T) ((-164 . -228) T) ((-1163 . -807) 68853) ((-106 . -163) T) ((-825 . -945) 68837) ((-619 . -1057) T) ((-550 . -347) T) ((-550 . -313) 68824) ((-499 . -313) 68801) ((-499 . -347) T) ((-300 . -291) 68780) ((-297 . -291) T) ((-568 . -807) 68759) ((-1058 . -678) 68701) ((-501 . -266) 68685) ((-619 . -23) T) ((-402 . -216) 68669) ((-297 . -973) NIL) ((-320 . -23) T) ((-101 . -962) 68653) ((-44 . -35) 68632) ((-578 . -1045) T) ((-335 . -352) T) ((-505 . -100) T) ((-476 . -27) T) ((-225 . -293) 68570) ((-1033 . -1057) T) ((-1222 . -609) 68544) ((-742 . -1057) T) ((-740 . -1057) T) ((-437 . -1057) T) ((-1009 . -435) T) ((-905 . -435) 68495) ((-109 . -1045) T) ((-1033 . -23) T) ((-777 . -1005) T) ((-742 . -23) T) ((-740 . -23) T) ((-463 . -435) 68446) ((-1101 . -495) 68229) ((-365 . -366) 68208) ((-1119 . -395) 68192) ((-444 . -23) T) ((-437 . -23) T) ((-94 . -1045) T) ((-466 . -495) 68125) ((-273 . -274) T) ((-1027 . -579) 68107) ((-391 . -862) 68086) ((-49 . -1057) T) ((-975 . -873) T) ((-955 . -687) T) ((-673 . -839) NIL) ((-550 . -1057) T) ((-499 . -1057) T) ((-800 . -609) 68059) ((-1148 . -129) T) ((-1108 . -384) 68011) ((-956 . -293) NIL) ((-775 . -471) 67995) ((-338 . -873) T) ((-1098 . -33) T) ((-391 . -609) 67947) ((-49 . -23) T) ((-672 . -129) T) ((-673 . -989) 67829) ((-550 . -23) T) ((-106 . -495) NIL) ((-499 . -23) T) ((-160 . -393) 67800) ((-127 . -293) NIL) ((-1082 . -1045) T) ((-1214 . -1213) 67784) ((-661 . -755) T) ((-661 . -752) T) ((-1064 . -291) T) ((-363 . -141) T) ((-264 . -579) 67766) ((-1163 . -945) 67736) ((-47 . -873) T) ((-636 . -471) 67720) ((-235 . -1207) 67690) ((-234 . -1207) 67660) ((-1117 . -807) T) ((-1058 . -163) 67639) ((-1064 . -973) T) ((-995 . -33) T) ((-794 . -141) 67618) ((-794 . -139) 67597) ((-698 . -105) 67581) ((-578 . -130) T) ((-464 . -1045) 67372) ((-1119 . -1005) T) ((-824 . -435) T) ((-83 . -1154) T) ((-225 . -37) 67342) ((-135 . -105) 67324) ((-673 . -361) 67308) ((-1064 . -522) T) ((-374 . -1004) 67292) ((-1222 . -687) T) ((-1113 . -902) 67261) ((-128 . -579) 67228) ((-51 . -579) 67210) ((-1069 . -902) 67177) ((-614 . -395) 67161) ((-1211 . -1005) T) ((-584 . -1004) 67145) ((-623 . -25) T) ((-623 . -21) T) ((-1100 . -495) NIL) ((-1192 . -100) T) ((-1185 . -100) T) ((-374 . -110) 67124) ((-207 . -238) 67108) ((-1164 . -100) T) ((-1002 . -1045) T) ((-956 . -1093) T) ((-1002 . -1001) 67048) ((-778 . -1045) T) ((-327 . -1158) T) ((-598 . -609) 67032) ((-584 . -110) 67011) ((-573 . -609) 66995) ((-563 . -100) T) ((-554 . -129) T) ((-562 . -100) T) ((-398 . -1045) T) ((-369 . -1045) T) ((-295 . -579) 66961) ((-212 . -1045) 66939) ((-608 . -495) 66872) ((-595 . -495) 66716) ((-793 . -998) 66695) ((-606 . -145) 66679) ((-327 . -529) T) ((-673 . -853) 66622) ((-523 . -214) 66572) ((-1192 . -268) 66538) ((-1025 . -274) 66489) ((-469 . -805) T) ((-208 . -1057) T) ((-1185 . -268) 66455) ((-1164 . -268) 66421) ((-956 . -37) 66371) ((-203 . -805) T) ((-1148 . -474) 66337) ((-867 . -37) 66289) ((-800 . -754) 66268) ((-800 . -751) 66247) ((-800 . -687) 66226) ((-343 . -274) T) ((-337 . -274) T) ((-329 . -274) T) ((-160 . -435) 66157) ((-411 . -37) 66141) ((-106 . -274) T) ((-208 . -23) T) ((-391 . -754) 66120) ((-391 . -751) 66099) ((-391 . -687) T) ((-481 . -272) 66074) ((-460 . -1004) 66039) ((-619 . -129) T) ((-1058 . -495) 65972) ((-320 . -129) T) ((-160 . -386) 65951) ((-464 . -678) 65893) ((-775 . -270) 65870) ((-460 . -110) 65826) ((-614 . -1005) T) ((-1173 . -435) 65757) ((-1210 . -1029) T) ((-1033 . -129) T) ((-248 . -807) 65736) ((-232 . -807) 65715) ((-742 . -129) T) ((-740 . -129) T) ((-544 . -435) T) ((-1002 . -678) 65657) ((-584 . -998) T) ((-978 . -495) 65590) ((-444 . -129) T) ((-437 . -129) T) ((-44 . -1045) T) ((-369 . -678) 65560) ((-777 . -1045) T) ((-459 . -495) 65493) ((-446 . -495) 65426) ((-436 . -351) 65396) ((-44 . -576) 65375) ((-300 . -286) T) ((-631 . -579) 65337) ((-57 . -807) 65316) ((-1164 . -293) 65201) ((-956 . -384) 65183) ((-775 . -570) 65160) ((-497 . -807) 65139) ((-477 . -807) 65118) ((-39 . -1158) T) ((-951 . -989) 65016) ((-49 . -129) T) ((-550 . -129) T) ((-499 . -129) T) ((-278 . -609) 64878) ((-327 . -313) 64855) ((-327 . -347) T) ((-306 . -307) 64832) ((-303 . -270) 64817) ((-39 . -529) T) ((-363 . -1139) T) ((-363 . -1142) T) ((-986 . -1130) 64792) ((-1127 . -220) 64742) ((-1108 . -216) 64694) ((-314 . -1045) T) ((-363 . -93) T) ((-363 . -34) T) ((-986 . -105) 64640) ((-460 . -998) T) ((-461 . -220) 64590) ((-1101 . -471) 64524) ((-1223 . -1004) 64508) ((-365 . -1004) 64492) ((-460 . -228) T) ((-776 . -100) T) ((-675 . -141) 64471) ((-675 . -139) 64450) ((-466 . -471) 64434) ((-467 . -319) 64403) ((-1223 . -110) 64382) ((-493 . -1045) T) ((-464 . -163) 64361) ((-951 . -361) 64345) ((-397 . -100) T) ((-365 . -110) 64324) ((-951 . -322) 64308) ((-263 . -936) 64292) ((-262 . -936) 64276) ((-1221 . -579) 64258) ((-1219 . -579) 64240) ((-109 . -495) NIL) ((-1113 . -1176) 64224) ((-811 . -809) 64208) ((-1119 . -1045) T) ((-101 . -1154) T) ((-905 . -902) 64169) ((-777 . -678) 64111) ((-1164 . -1093) NIL) ((-463 . -902) 64056) ((-1009 . -137) T) ((-58 . -100) 64034) ((-43 . -579) 64016) ((-76 . -579) 63998) ((-335 . -609) 63943) ((-1211 . -1045) T) ((-492 . -807) T) ((-327 . -1057) T) ((-279 . -1045) T) ((-951 . -853) 63902) ((-279 . -576) 63881) ((-1192 . -37) 63778) ((-1185 . -37) 63619) ((-469 . -1005) T) ((-1164 . -37) 63415) ((-203 . -1005) T) ((-327 . -23) T) ((-146 . -579) 63397) ((-793 . -755) 63376) ((-793 . -752) 63355) ((-563 . -37) 63328) ((-562 . -37) 63225) ((-823 . -529) T) ((-208 . -129) T) ((-303 . -954) 63191) ((-77 . -579) 63173) ((-673 . -291) 63152) ((-278 . -687) 63055) ((-784 . -100) T) ((-818 . -801) T) ((-278 . -456) 63034) ((-1214 . -100) T) ((-39 . -347) T) ((-825 . -141) 63013) ((-825 . -139) 62992) ((-1100 . -471) 62974) ((-1223 . -998) T) ((-464 . -495) 62907) ((-1088 . -1154) T) ((-917 . -579) 62889) ((-608 . -471) 62873) ((-595 . -471) 62804) ((-775 . -579) 62536) ((-47 . -27) T) ((-1119 . -678) 62433) ((-614 . -1045) T) ((-420 . -348) 62407) ((-1047 . -100) T) ((-776 . -293) 62394) ((-923 . -1045) T) ((-818 . -1045) T) ((-1219 . -366) 62366) ((-1002 . -495) 62299) ((-1101 . -270) 62275) ((-225 . -216) 62245) ((-1211 . -678) 62215) ((-777 . -163) 62194) ((-212 . -495) 62127) ((-584 . -755) 62106) ((-584 . -752) 62085) ((-1151 . -579) 61997) ((-207 . -1154) T) ((-636 . -579) 61929) ((-1098 . -962) 61913) ((-335 . -687) T) ((-896 . -100) 61863) ((-1164 . -384) 61815) ((-1058 . -471) 61799) ((-58 . -293) 61737) ((-315 . -100) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-39 . -1057) T) ((-672 . -21) T) ((-590 . -579) 61719) ((-496 . -307) 61698) ((-672 . -25) T) ((-106 . -270) NIL) ((-874 . -1057) T) ((-39 . -23) T) ((-731 . -1057) T) ((-537 . -1158) T) ((-476 . -1158) T) ((-303 . -579) 61680) ((-956 . -216) 61662) ((-160 . -157) 61646) ((-549 . -529) T) ((-537 . -529) T) ((-476 . -529) T) ((-731 . -23) T) ((-1184 . -141) 61625) ((-1101 . -570) 61601) ((-1184 . -139) 61580) ((-978 . -471) 61564) ((-1163 . -139) 61489) ((-1163 . -141) 61414) ((-1214 . -1220) 61393) ((-459 . -471) 61377) ((-446 . -471) 61361) ((-504 . -33) T) ((-614 . -678) 61331) ((-111 . -920) T) ((-623 . -807) 61310) ((-1119 . -163) 61261) ((-349 . -100) T) ((-225 . -223) 61240) ((-235 . -100) T) ((-234 . -100) T) ((-1173 . -902) 61209) ((-108 . -100) T) ((-230 . -807) 61188) ((-776 . -37) 61037) ((-44 . -495) 60829) ((-1100 . -270) 60804) ((-200 . -1045) T) ((-1092 . -1045) T) ((-1092 . -576) 60783) ((-554 . -25) T) ((-554 . -21) T) ((-1047 . -293) 60721) ((-916 . -395) 60705) ((-659 . -1158) T) ((-595 . -270) 60680) ((-1033 . -602) 60628) ((-742 . -602) 60576) ((-740 . -602) 60524) ((-327 . -129) T) ((-273 . -579) 60506) ((-659 . -529) T) ((-858 . -1045) T) ((-823 . -1057) T) ((-437 . -602) 60454) ((-858 . -856) 60438) ((-363 . -435) T) ((-469 . -1045) T) ((-661 . -609) 60425) ((-896 . -293) 60363) ((-203 . -1045) T) ((-300 . -873) 60342) ((-297 . -873) T) ((-297 . -780) NIL) ((-374 . -681) T) ((-823 . -23) T) ((-115 . -609) 60329) ((-457 . -139) 60308) ((-402 . -395) 60292) ((-457 . -141) 60271) ((-109 . -471) 60253) ((-2 . -579) 60235) ((-1100 . -19) 60217) ((-1100 . -570) 60192) ((-619 . -21) T) ((-619 . -25) T) ((-560 . -1086) T) ((-1058 . -270) 60169) ((-320 . -25) T) ((-320 . -21) T) ((-476 . -347) T) ((-1214 . -37) 60139) ((-1084 . -1154) T) ((-595 . -570) 60114) ((-1033 . -25) T) ((-1033 . -21) T) ((-509 . -752) T) ((-509 . -755) T) ((-116 . -1158) T) ((-916 . -1005) T) ((-586 . -529) T) ((-742 . -25) T) ((-742 . -21) T) ((-740 . -21) T) ((-740 . -25) T) ((-696 . -1005) T) ((-676 . -1005) T) ((-631 . -1004) 60098) ((-498 . -1029) T) ((-444 . -25) T) ((-116 . -529) T) ((-444 . -21) T) ((-437 . -25) T) ((-437 . -21) T) ((-1084 . -989) 59996) ((-777 . -274) 59975) ((-783 . -1045) T) ((-919 . -920) T) ((-631 . -110) 59954) ((-279 . -495) 59746) ((-1221 . -1004) 59730) ((-1219 . -1004) 59714) ((-1184 . -1139) 59680) ((-235 . -293) 59618) ((-234 . -293) 59556) ((-1167 . -100) 59534) ((-1101 . -580) NIL) ((-1101 . -579) 59516) ((-1184 . -1142) 59482) ((-1164 . -216) 59434) ((-1163 . -1139) 59400) ((-94 . -91) T) ((-1163 . -1142) 59366) ((-1084 . -361) 59350) ((-1064 . -780) T) ((-1064 . -873) T) ((-1058 . -570) 59327) ((-1025 . -580) 59311) ((-466 . -579) 59243) ((-775 . -272) 59220) ((-574 . -145) 59167) ((-402 . -1005) T) ((-469 . -678) 59117) ((-464 . -471) 59101) ((-311 . -807) 59080) ((-323 . -609) 59054) ((-49 . -21) T) ((-49 . -25) T) ((-203 . -678) 59004) ((-160 . -685) 58975) ((-164 . -609) 58907) ((-550 . -21) T) ((-550 . -25) T) ((-499 . -25) T) ((-499 . -21) T) ((-458 . -145) 58857) ((-1025 . -579) 58839) ((-1008 . -579) 58821) ((-946 . -100) T) ((-816 . -100) T) ((-759 . -395) 58785) ((-39 . -129) T) ((-659 . -347) T) ((-198 . -848) T) ((-661 . -754) T) ((-661 . -751) T) ((-549 . -1057) T) ((-537 . -1057) T) ((-476 . -1057) T) ((-661 . -687) T) ((-343 . -579) 58767) ((-337 . -579) 58749) ((-329 . -579) 58731) ((-64 . -380) T) ((-64 . -379) T) ((-106 . -580) 58661) ((-106 . -579) 58643) ((-197 . -848) T) ((-911 . -145) 58627) ((-1184 . -93) 58593) ((-731 . -129) T) ((-131 . -687) T) ((-115 . -687) T) ((-1184 . -34) 58559) ((-1002 . -471) 58543) ((-549 . -23) T) ((-537 . -23) T) ((-476 . -23) T) ((-1163 . -93) 58509) ((-1163 . -34) 58475) ((-1113 . -100) T) ((-1069 . -100) T) ((-811 . -100) T) ((-212 . -471) 58459) ((-1221 . -110) 58438) ((-1219 . -110) 58417) ((-43 . -1004) 58401) ((-1173 . -1176) 58385) ((-812 . -809) 58369) ((-1119 . -274) 58348) ((-109 . -270) 58323) ((-1084 . -853) 58282) ((-43 . -110) 58261) ((-631 . -998) T) ((-1122 . -1195) T) ((-1100 . -580) NIL) ((-1100 . -579) 58243) ((-1010 . -576) 58218) ((-1010 . -1045) T) ((-72 . -424) T) ((-72 . -379) T) ((-631 . -218) 58197) ((-146 . -1004) 58181) ((-544 . -527) 58165) ((-339 . -141) 58144) ((-339 . -139) 58095) ((-336 . -141) 58074) ((-663 . -1045) T) ((-336 . -139) 58025) ((-328 . -141) 58004) ((-328 . -139) 57955) ((-248 . -139) 57934) ((-248 . -141) 57913) ((-235 . -37) 57883) ((-232 . -141) 57862) ((-116 . -347) T) ((-232 . -139) 57841) ((-234 . -37) 57811) ((-146 . -110) 57790) ((-955 . -989) 57680) ((-1108 . -805) NIL) ((-654 . -1158) T) ((-759 . -1005) T) ((-659 . -1057) T) ((-1221 . -998) T) ((-1219 . -998) T) ((-1098 . -1154) T) ((-955 . -361) 57657) ((-863 . -139) T) ((-863 . -141) 57639) ((-823 . -129) T) ((-775 . -1004) 57537) ((-654 . -529) T) ((-659 . -23) T) ((-608 . -579) 57469) ((-608 . -580) 57430) ((-595 . -580) NIL) ((-595 . -579) 57412) ((-469 . -163) T) ((-208 . -21) T) ((-203 . -163) T) ((-208 . -25) T) ((-457 . -1142) 57378) ((-457 . -1139) 57344) ((-258 . -579) 57326) ((-257 . -579) 57308) ((-256 . -579) 57290) ((-255 . -579) 57272) ((-254 . -579) 57254) ((-481 . -612) 57236) ((-253 . -579) 57218) ((-323 . -687) T) ((-252 . -579) 57200) ((-109 . -19) 57182) ((-164 . -687) T) ((-481 . -357) 57164) ((-198 . -579) 57146) ((-501 . -1091) 57130) ((-481 . -122) T) ((-109 . -570) 57105) ((-197 . -579) 57087) ((-457 . -34) 57053) ((-457 . -93) 57019) ((-195 . -579) 57001) ((-194 . -579) 56983) ((-193 . -579) 56965) ((-192 . -579) 56947) ((-189 . -579) 56929) ((-188 . -579) 56911) ((-187 . -579) 56893) ((-186 . -579) 56875) ((-185 . -579) 56857) ((-184 . -579) 56839) ((-183 . -579) 56821) ((-513 . -1048) 56773) ((-182 . -579) 56755) ((-181 . -579) 56737) ((-44 . -471) 56674) ((-180 . -579) 56656) ((-179 . -579) 56638) ((-775 . -110) 56529) ((-606 . -100) 56479) ((-464 . -270) 56456) ((-1058 . -579) 56188) ((-1046 . -1045) T) ((-995 . -1154) T) ((-586 . -1057) T) ((-1222 . -989) 56172) ((-1113 . -293) 56159) ((-1069 . -293) 56146) ((-1036 . -1029) T) ((-1013 . -1029) T) ((-987 . -1029) T) ((-116 . -1057) T) ((-779 . -100) T) ((-589 . -1029) T) ((-586 . -23) T) ((-1092 . -495) 55938) ((-465 . -1029) T) ((-370 . -100) T) ((-308 . -100) T) ((-955 . -853) 55890) ((-916 . -1045) T) ((-146 . -998) T) ((-116 . -23) T) ((-692 . -395) 55874) ((-696 . -1045) T) ((-676 . -1045) T) ((-663 . -130) T) ((-436 . -1045) T) ((-300 . -414) 55858) ((-391 . -1154) T) ((-978 . -580) 55819) ((-975 . -1158) T) ((-210 . -100) T) ((-978 . -579) 55781) ((-776 . -216) 55765) ((-975 . -529) T) ((-793 . -609) 55738) ((-338 . -1158) T) ((-459 . -579) 55700) ((-459 . -580) 55661) ((-446 . -580) 55622) ((-446 . -579) 55584) ((-391 . -837) 55568) ((-303 . -1004) 55403) ((-391 . -839) 55328) ((-800 . -989) 55226) ((-469 . -495) NIL) ((-464 . -570) 55203) ((-338 . -529) T) ((-203 . -495) NIL) ((-825 . -435) T) ((-402 . -1045) T) ((-391 . -989) 55070) ((-303 . -110) 54891) ((-654 . -347) T) ((-210 . -268) T) ((-47 . -1158) T) ((-775 . -998) 54822) ((-549 . -129) T) ((-537 . -129) T) ((-476 . -129) T) ((-47 . -529) T) ((-1101 . -272) 54798) ((-1113 . -1093) 54776) ((-300 . -27) 54755) ((-1009 . -100) T) ((-775 . -218) 54708) ((-225 . -805) 54687) ((-905 . -100) T) ((-674 . -100) T) ((-279 . -471) 54624) ((-463 . -100) T) ((-692 . -1005) T) ((-578 . -579) 54606) ((-578 . -580) 54467) ((-391 . -361) 54451) ((-391 . -322) 54435) ((-1113 . -37) 54264) ((-1069 . -37) 54113) ((-811 . -37) 54083) ((-374 . -609) 54067) ((-606 . -293) 54005) ((-916 . -678) 53902) ((-207 . -105) 53886) ((-44 . -270) 53811) ((-696 . -678) 53781) ((-584 . -609) 53755) ((-296 . -1045) T) ((-273 . -1004) 53742) ((-109 . -579) 53724) ((-109 . -580) 53706) ((-436 . -678) 53676) ((-776 . -237) 53615) ((-649 . -1045) 53593) ((-523 . -1045) T) ((-1115 . -1005) T) ((-1114 . -1005) T) ((-1108 . -1005) T) ((-273 . -110) 53578) ((-1070 . -1005) T) ((-523 . -576) 53557) ((-94 . -579) 53523) ((-956 . -805) T) ((-212 . -647) 53481) ((-654 . -1057) T) ((-1148 . -701) 53457) ((-303 . -998) T) ((-327 . -25) T) ((-327 . -21) T) ((-391 . -853) 53416) ((-66 . -1154) T) ((-793 . -754) 53395) ((-402 . -678) 53369) ((-759 . -1045) T) ((-793 . -751) 53348) ((-659 . -129) T) ((-673 . -873) 53327) ((-654 . -23) T) ((-469 . -274) T) ((-793 . -687) 53306) ((-303 . -218) 53258) ((-303 . -228) 53237) ((-203 . -274) T) ((-975 . -347) T) ((-1184 . -435) 53216) ((-1163 . -435) 53195) ((-338 . -313) 53172) ((-338 . -347) T) ((-1082 . -579) 53154) ((-44 . -1188) 53104) ((-824 . -100) T) ((-606 . -266) 53088) ((-659 . -1007) T) ((-460 . -609) 53053) ((-451 . -1045) T) ((-44 . -570) 52978) ((-1210 . -100) T) ((-1100 . -272) 52953) ((-39 . -602) 52892) ((-47 . -347) T) ((-1051 . -579) 52874) ((-1033 . -807) 52853) ((-595 . -272) 52828) ((-742 . -807) 52807) ((-740 . -807) 52786) ((-464 . -579) 52518) ((-225 . -395) 52487) ((-905 . -293) 52474) ((-437 . -807) 52453) ((-63 . -1154) T) ((-586 . -129) T) ((-463 . -293) 52440) ((-572 . -1045) T) ((-1010 . -495) 52284) ((-116 . -129) T) ((-632 . -1045) T) ((-273 . -998) T) ((-170 . -1045) T) ((-436 . -722) T) ((-916 . -163) 52235) ((-923 . -91) T) ((-1025 . -1004) 52145) ((-584 . -754) 52124) ((-560 . -1045) T) ((-584 . -751) 52103) ((-584 . -687) T) ((-279 . -270) 52082) ((-278 . -1154) T) ((-1002 . -579) 52044) ((-1002 . -580) 52005) ((-975 . -1057) T) ((-160 . -100) T) ((-259 . -807) T) ((-1107 . -1045) T) ((-778 . -579) 51987) ((-1058 . -272) 51964) ((-1047 . -214) 51948) ((-955 . -291) T) ((-759 . -678) 51932) ((-343 . -1004) 51884) ((-338 . -1057) T) ((-337 . -1004) 51836) ((-398 . -579) 51818) ((-369 . -579) 51800) ((-329 . -1004) 51752) ((-212 . -579) 51684) ((-1025 . -110) 51580) ((-975 . -23) T) ((-106 . -1004) 51530) ((-851 . -100) T) ((-798 . -100) T) ((-768 . -100) T) ((-729 . -100) T) ((-637 . -100) T) ((-457 . -435) 51509) ((-402 . -163) T) ((-343 . -110) 51447) ((-337 . -110) 51385) ((-329 . -110) 51323) ((-235 . -216) 51293) ((-234 . -216) 51263) ((-338 . -23) T) ((-69 . -1154) T) ((-210 . -37) 51228) ((-106 . -110) 51162) ((-39 . -25) T) ((-39 . -21) T) ((-631 . -681) T) ((-160 . -268) 51140) ((-47 . -1057) T) ((-874 . -25) T) ((-731 . -25) T) ((-1092 . -471) 51077) ((-467 . -1045) T) ((-1223 . -609) 51051) ((-1173 . -100) T) ((-812 . -100) T) ((-225 . -1005) 50982) ((-1009 . -1093) T) ((-917 . -752) 50935) ((-365 . -609) 50919) ((-47 . -23) T) ((-917 . -755) 50872) ((-775 . -755) 50823) ((-775 . -752) 50774) ((-279 . -570) 50753) ((-460 . -687) T) ((-544 . -100) T) ((-824 . -293) 50710) ((-614 . -270) 50689) ((-111 . -622) T) ((-74 . -1154) T) ((-1009 . -37) 50676) ((-625 . -358) 50655) ((-905 . -37) 50504) ((-692 . -1045) T) ((-463 . -37) 50353) ((-84 . -1154) T) ((-544 . -268) T) ((-1164 . -805) NIL) ((-1115 . -1045) T) ((-1114 . -1045) T) ((-1108 . -1045) T) ((-335 . -989) 50330) ((-1025 . -998) T) ((-956 . -1005) T) ((-44 . -579) 50312) ((-44 . -580) NIL) ((-867 . -1005) T) ((-777 . -579) 50294) ((-1089 . -100) 50272) ((-1025 . -228) 50223) ((-411 . -1005) T) ((-343 . -998) T) ((-337 . -998) T) ((-349 . -348) 50200) ((-329 . -998) T) ((-235 . -223) 50179) ((-234 . -223) 50158) ((-108 . -348) 50132) ((-1025 . -218) 50057) ((-1070 . -1045) T) ((-278 . -853) 50016) ((-106 . -998) T) ((-654 . -129) T) ((-402 . -495) 49858) ((-343 . -218) 49837) ((-343 . -228) T) ((-43 . -681) T) ((-337 . -218) 49816) ((-337 . -228) T) ((-329 . -218) 49795) ((-329 . -228) T) ((-160 . -293) 49760) ((-106 . -228) T) ((-106 . -218) T) ((-303 . -752) T) ((-823 . -21) T) ((-823 . -25) T) ((-391 . -291) T) ((-481 . -33) T) ((-109 . -272) 49735) ((-1058 . -1004) 49633) ((-824 . -1093) NIL) ((-314 . -579) 49615) ((-391 . -973) 49594) ((-1058 . -110) 49485) ((-651 . -1195) T) ((-420 . -1045) T) ((-1223 . -687) T) ((-61 . -579) 49467) ((-824 . -37) 49412) ((-504 . -1154) T) ((-568 . -145) 49396) ((-493 . -579) 49378) ((-1173 . -293) 49365) ((-692 . -678) 49214) ((-509 . -753) T) ((-509 . -754) T) ((-537 . -602) 49196) ((-476 . -602) 49156) ((-339 . -435) T) ((-336 . -435) T) ((-328 . -435) T) ((-248 . -435) 49107) ((-506 . -1045) T) ((-501 . -1045) 49057) ((-232 . -435) 49008) ((-1092 . -270) 48987) ((-1119 . -579) 48969) ((-649 . -495) 48902) ((-916 . -274) 48881) ((-523 . -495) 48673) ((-1113 . -216) 48657) ((-160 . -1093) 48636) ((-1211 . -579) 48618) ((-1115 . -678) 48515) ((-1114 . -678) 48356) ((-845 . -100) T) ((-1108 . -678) 48152) ((-1070 . -678) 48049) ((-1098 . -635) 48033) ((-339 . -386) 47984) ((-336 . -386) 47935) ((-328 . -386) 47886) ((-975 . -129) T) ((-759 . -495) 47798) ((-279 . -580) NIL) ((-279 . -579) 47780) ((-863 . -435) T) ((-917 . -352) 47733) ((-775 . -352) 47712) ((-491 . -490) 47691) ((-489 . -490) 47670) ((-469 . -270) NIL) ((-464 . -272) 47647) ((-402 . -274) T) ((-338 . -129) T) ((-203 . -270) NIL) ((-654 . -474) NIL) ((-97 . -1057) T) ((-160 . -37) 47475) ((-1184 . -926) 47437) ((-1089 . -293) 47375) ((-1163 . -926) 47344) ((-863 . -386) T) ((-1058 . -998) 47275) ((-1186 . -529) T) ((-1092 . -570) 47254) ((-111 . -807) T) ((-1010 . -471) 47185) ((-549 . -21) T) ((-549 . -25) T) ((-537 . -21) T) ((-537 . -25) T) ((-476 . -25) T) ((-476 . -21) T) ((-1173 . -1093) 47163) ((-1058 . -218) 47116) ((-47 . -129) T) ((-1135 . -100) T) ((-225 . -1045) 46907) ((-824 . -384) 46884) ((-1034 . -100) T) ((-1021 . -100) T) ((-574 . -100) T) ((-458 . -100) T) ((-1173 . -37) 46713) ((-812 . -37) 46683) ((-692 . -163) 46594) ((-614 . -579) 46576) ((-607 . -1029) T) ((-544 . -37) 46563) ((-923 . -579) 46529) ((-911 . -100) 46479) ((-818 . -579) 46461) ((-818 . -580) 46383) ((-560 . -495) NIL) ((-1192 . -1005) T) ((-1185 . -1005) T) ((-1164 . -1005) T) ((-563 . -1005) T) ((-562 . -1005) T) ((-1227 . -1057) T) ((-1115 . -163) 46334) ((-1114 . -163) 46265) ((-1108 . -163) 46196) ((-1070 . -163) 46147) ((-956 . -1045) T) ((-924 . -1045) T) ((-867 . -1045) T) ((-1148 . -141) 46126) ((-759 . -757) 46110) ((-659 . -25) T) ((-659 . -21) T) ((-116 . -602) 46087) ((-661 . -839) 46069) ((-411 . -1045) T) ((-300 . -1158) 46048) ((-297 . -1158) T) ((-160 . -384) 46032) ((-1148 . -139) 46011) ((-457 . -926) 45973) ((-127 . -1045) T) ((-70 . -579) 45955) ((-106 . -755) T) ((-106 . -752) T) ((-300 . -529) 45934) ((-661 . -989) 45916) ((-297 . -529) T) ((-1227 . -23) T) ((-131 . -989) 45898) ((-464 . -1004) 45796) ((-44 . -272) 45721) ((-225 . -678) 45663) ((-498 . -100) T) ((-464 . -110) 45554) ((-1038 . -100) 45532) ((-985 . -100) T) ((-606 . -788) 45511) ((-692 . -495) 45454) ((-1002 . -1004) 45438) ((-1010 . -270) 45413) ((-586 . -21) T) ((-586 . -25) T) ((-505 . -1045) T) ((-345 . -100) T) ((-306 . -100) T) ((-631 . -609) 45387) ((-369 . -1004) 45371) ((-1002 . -110) 45350) ((-776 . -395) 45334) ((-116 . -25) T) ((-87 . -579) 45316) ((-116 . -21) T) ((-574 . -293) 45111) ((-458 . -293) 44915) ((-1092 . -580) NIL) ((-369 . -110) 44894) ((-363 . -100) T) ((-200 . -579) 44876) ((-1092 . -579) 44858) ((-956 . -678) 44808) ((-1108 . -495) 44577) ((-867 . -678) 44529) ((-1070 . -495) 44499) ((-335 . -291) T) ((-1127 . -145) 44449) ((-911 . -293) 44387) ((-794 . -100) T) ((-411 . -678) 44371) ((-210 . -788) T) ((-787 . -100) T) ((-785 . -100) T) ((-461 . -145) 44321) ((-1184 . -1183) 44300) ((-1064 . -1158) T) ((-323 . -989) 44267) ((-1184 . -1178) 44237) ((-1184 . -1181) 44221) ((-1163 . -1162) 44200) ((-78 . -579) 44182) ((-858 . -579) 44164) ((-1163 . -1178) 44141) ((-1064 . -529) T) ((-874 . -807) T) ((-469 . -580) 44071) ((-469 . -579) 44053) ((-731 . -807) T) ((-363 . -268) T) ((-633 . -807) T) ((-1163 . -1160) 44037) ((-1186 . -1057) T) ((-203 . -580) 43967) ((-203 . -579) 43949) ((-1010 . -570) 43924) ((-57 . -145) 43908) ((-497 . -145) 43892) ((-477 . -145) 43876) ((-343 . -1218) 43860) ((-337 . -1218) 43844) ((-329 . -1218) 43828) ((-300 . -347) 43807) ((-297 . -347) T) ((-464 . -998) 43738) ((-654 . -602) 43720) ((-1221 . -609) 43694) ((-1219 . -609) 43668) ((-1186 . -23) T) ((-649 . -471) 43652) ((-62 . -579) 43634) ((-1058 . -755) 43585) ((-1058 . -752) 43536) ((-523 . -471) 43473) ((-631 . -33) T) ((-464 . -218) 43426) ((-279 . -272) 43405) ((-225 . -163) 43384) ((-776 . -1005) T) ((-43 . -609) 43342) ((-1025 . -352) 43293) ((-692 . -274) 43224) ((-501 . -495) 43157) ((-777 . -1004) 43108) ((-1033 . -139) 43087) ((-343 . -352) 43066) ((-337 . -352) 43045) ((-329 . -352) 43024) ((-1033 . -141) 43003) ((-824 . -216) 42980) ((-777 . -110) 42922) ((-742 . -139) 42901) ((-742 . -141) 42880) ((-248 . -902) 42847) ((-235 . -805) 42826) ((-232 . -902) 42771) ((-234 . -805) 42750) ((-740 . -139) 42729) ((-740 . -141) 42708) ((-146 . -609) 42682) ((-437 . -141) 42661) ((-437 . -139) 42640) ((-631 . -687) T) ((-783 . -579) 42622) ((-1192 . -1045) T) ((-1185 . -1045) T) ((-1164 . -1045) T) ((-1148 . -1142) 42588) ((-1148 . -1139) 42554) ((-1115 . -274) 42533) ((-1114 . -274) 42484) ((-1108 . -274) 42435) ((-1070 . -274) 42414) ((-323 . -853) 42395) ((-956 . -163) T) ((-867 . -163) T) ((-563 . -1045) T) ((-562 . -1045) T) ((-654 . -21) T) ((-654 . -25) T) ((-457 . -1181) 42379) ((-457 . -1178) 42349) ((-402 . -270) 42277) ((-300 . -1057) 42127) ((-297 . -1057) T) ((-1148 . -34) 42093) ((-1148 . -93) 42059) ((-82 . -579) 42041) ((-89 . -100) 42019) ((-1227 . -129) T) ((-550 . -139) T) ((-550 . -141) 42001) ((-499 . -141) 41983) ((-499 . -139) T) ((-300 . -23) 41836) ((-39 . -326) 41810) ((-297 . -23) T) ((-1100 . -612) 41792) ((-775 . -609) 41642) ((-1214 . -1005) T) ((-1100 . -357) 41624) ((-160 . -216) 41608) ((-1036 . -100) T) ((-1013 . -100) T) ((-987 . -100) T) ((-560 . -471) 41590) ((-589 . -100) T) ((-225 . -495) 41523) ((-465 . -100) T) ((-1221 . -687) T) ((-1219 . -687) T) ((-1119 . -1004) 41406) ((-1119 . -110) 41275) ((-777 . -998) T) ((-641 . -1029) T) ((-496 . -100) T) ((-47 . -602) 41235) ((-491 . -100) T) ((-489 . -100) T) ((-1211 . -1004) 41205) ((-985 . -37) 41189) ((-777 . -218) T) ((-777 . -228) 41168) ((-523 . -270) 41147) ((-1211 . -110) 41112) ((-572 . -91) T) ((-1192 . -678) 41009) ((-1173 . -216) 40993) ((-1185 . -678) 40834) ((-1010 . -580) NIL) ((-1010 . -579) 40816) ((-632 . -91) T) ((-170 . -91) T) ((-1164 . -678) 40612) ((-955 . -873) T) ((-663 . -579) 40581) ((-146 . -687) T) ((-1058 . -352) 40560) ((-956 . -495) NIL) ((-235 . -395) 40529) ((-234 . -395) 40498) ((-975 . -25) T) ((-975 . -21) T) ((-563 . -678) 40471) ((-562 . -678) 40368) ((-759 . -270) 40326) ((-125 . -100) 40304) ((-793 . -989) 40202) ((-160 . -788) 40181) ((-303 . -609) 40078) ((-775 . -33) T) ((-675 . -100) T) ((-1064 . -1057) T) ((-127 . -495) NIL) ((-977 . -1154) T) ((-363 . -37) 40043) ((-338 . -25) T) ((-338 . -21) T) ((-153 . -100) T) ((-149 . -100) T) ((-339 . -1207) 40027) ((-336 . -1207) 40011) ((-328 . -1207) 39995) ((-160 . -333) 39974) ((-537 . -807) T) ((-476 . -807) T) ((-1064 . -23) T) ((-85 . -579) 39956) ((-661 . -291) T) ((-794 . -37) 39926) ((-787 . -37) 39896) ((-1186 . -129) T) ((-1092 . -272) 39875) ((-917 . -753) 39828) ((-917 . -754) 39781) ((-775 . -751) 39760) ((-115 . -291) T) ((-89 . -293) 39698) ((-636 . -33) T) ((-523 . -570) 39677) ((-47 . -25) T) ((-47 . -21) T) ((-775 . -754) 39628) ((-775 . -753) 39607) ((-661 . -973) T) ((-614 . -1004) 39591) ((-917 . -687) 39490) ((-775 . -687) 39401) ((-917 . -456) 39354) ((-464 . -755) 39305) ((-464 . -752) 39256) ((-863 . -1207) 39243) ((-1119 . -998) T) ((-614 . -110) 39222) ((-1119 . -310) 39199) ((-1140 . -100) 39177) ((-1046 . -579) 39159) ((-661 . -522) T) ((-776 . -1045) T) ((-1211 . -998) T) ((-397 . -1045) T) ((-235 . -1005) 39090) ((-234 . -1005) 39021) ((-273 . -609) 39008) ((-560 . -270) 38983) ((-649 . -647) 38941) ((-916 . -579) 38923) ((-825 . -100) T) ((-696 . -579) 38905) ((-676 . -579) 38887) ((-1192 . -163) 38838) ((-1185 . -163) 38769) ((-1164 . -163) 38700) ((-659 . -807) T) ((-956 . -274) T) ((-436 . -579) 38682) ((-590 . -687) T) ((-58 . -1045) 38660) ((-230 . -145) 38644) ((-867 . -274) T) ((-975 . -964) T) ((-590 . -456) T) ((-673 . -1158) 38623) ((-563 . -163) 38602) ((-562 . -163) 38553) ((-1200 . -807) 38532) ((-673 . -529) 38443) ((-391 . -873) T) ((-391 . -780) 38422) ((-303 . -754) T) ((-303 . -687) T) ((-402 . -579) 38404) ((-402 . -580) 38312) ((-606 . -1091) 38296) ((-109 . -612) 38278) ((-125 . -293) 38216) ((-109 . -357) 38198) ((-164 . -291) T) ((-382 . -1154) T) ((-300 . -129) 38070) ((-297 . -129) T) ((-67 . -379) T) ((-109 . -122) T) ((-501 . -471) 38054) ((-615 . -1057) T) ((-560 . -19) 38036) ((-59 . -424) T) ((-59 . -379) T) ((-784 . -1045) T) ((-560 . -570) 38011) ((-460 . -989) 37971) ((-614 . -998) T) ((-615 . -23) T) ((-1214 . -1045) T) ((-776 . -678) 37820) ((-116 . -807) NIL) ((-1113 . -395) 37804) ((-1069 . -395) 37788) ((-811 . -395) 37772) ((-826 . -100) 37723) ((-1184 . -100) T) ((-1164 . -495) 37492) ((-506 . -91) T) ((-1140 . -293) 37430) ((-296 . -579) 37412) ((-1163 . -100) T) ((-1047 . -1045) T) ((-1115 . -270) 37397) ((-1114 . -270) 37382) ((-273 . -687) T) ((-106 . -862) NIL) ((-649 . -579) 37314) ((-649 . -580) 37275) ((-1025 . -609) 37185) ((-567 . -579) 37167) ((-523 . -580) NIL) ((-523 . -579) 37149) ((-1108 . -270) 36997) ((-469 . -1004) 36947) ((-672 . -435) T) ((-492 . -490) 36926) ((-488 . -490) 36905) ((-203 . -1004) 36855) ((-343 . -609) 36807) ((-337 . -609) 36759) ((-210 . -805) T) ((-329 . -609) 36711) ((-568 . -100) 36661) ((-464 . -352) 36640) ((-106 . -609) 36590) ((-469 . -110) 36524) ((-225 . -471) 36508) ((-327 . -141) 36490) ((-327 . -139) T) ((-160 . -354) 36461) ((-896 . -1198) 36445) ((-203 . -110) 36379) ((-825 . -293) 36344) ((-896 . -1045) 36294) ((-759 . -580) 36255) ((-759 . -579) 36237) ((-679 . -100) T) ((-315 . -1045) T) ((-1064 . -129) T) ((-675 . -37) 36207) ((-300 . -474) 36186) ((-481 . -1154) T) ((-1184 . -268) 36152) ((-1163 . -268) 36118) ((-311 . -145) 36102) ((-1010 . -272) 36077) ((-1214 . -678) 36047) ((-1101 . -33) T) ((-1223 . -989) 36024) ((-451 . -579) 36006) ((-466 . -33) T) ((-365 . -989) 35990) ((-1113 . -1005) T) ((-1069 . -1005) T) ((-811 . -1005) T) ((-1009 . -805) T) ((-776 . -163) 35901) ((-501 . -270) 35878) ((-127 . -471) 35860) ((-116 . -945) 35837) ((-1192 . -274) 35816) ((-1185 . -274) 35767) ((-1135 . -348) 35741) ((-572 . -579) 35691) ((-1034 . -250) 35675) ((-632 . -579) 35641) ((-457 . -100) T) ((-349 . -1045) T) ((-235 . -1045) T) ((-234 . -1045) T) ((-170 . -579) 35607) ((-108 . -1045) T) ((-1164 . -274) 35558) ((-825 . -1093) 35536) ((-1115 . -954) 35502) ((-574 . -348) 35442) ((-1114 . -954) 35408) ((-574 . -214) 35355) ((-560 . -579) 35337) ((-560 . -580) NIL) ((-654 . -807) T) ((-458 . -214) 35287) ((-469 . -998) T) ((-1108 . -954) 35253) ((-86 . -423) T) ((-86 . -379) T) ((-203 . -998) T) ((-1070 . -954) 35219) ((-1025 . -687) T) ((-673 . -1057) T) ((-563 . -274) 35198) ((-562 . -274) 35177) ((-469 . -228) T) ((-469 . -218) T) ((-203 . -228) T) ((-203 . -218) T) ((-1107 . -579) 35159) ((-825 . -37) 35111) ((-343 . -687) T) ((-337 . -687) T) ((-329 . -687) T) ((-106 . -754) T) ((-106 . -751) T) ((-501 . -1188) 35095) ((-106 . -687) T) ((-673 . -23) T) ((-1227 . -25) T) ((-457 . -268) 35061) ((-1227 . -21) T) ((-1163 . -293) 35000) ((-1117 . -100) T) ((-39 . -139) 34972) ((-39 . -141) 34944) ((-501 . -570) 34921) ((-1058 . -609) 34771) ((-568 . -293) 34709) ((-44 . -612) 34659) ((-44 . -627) 34609) ((-44 . -357) 34559) ((-1100 . -33) T) ((-824 . -805) NIL) ((-615 . -129) T) ((-467 . -579) 34541) ((-225 . -270) 34518) ((-608 . -33) T) ((-595 . -33) T) ((-1033 . -435) 34469) ((-776 . -495) 34343) ((-742 . -435) 34274) ((-740 . -435) 34225) ((-437 . -435) 34176) ((-905 . -395) 34160) ((-692 . -579) 34142) ((-235 . -678) 34084) ((-234 . -678) 34026) ((-692 . -580) 33887) ((-463 . -395) 33871) ((-323 . -286) T) ((-505 . -91) T) ((-335 . -873) T) ((-952 . -100) 33849) ((-975 . -807) T) ((-58 . -495) 33782) ((-1163 . -1093) 33734) ((-956 . -270) NIL) ((-210 . -1005) T) ((-363 . -788) T) ((-1058 . -33) T) ((-1167 . -1039) 33718) ((-550 . -435) T) ((-499 . -435) T) ((-1167 . -1045) 33696) ((-1167 . -1041) 33653) ((-225 . -570) 33630) ((-1115 . -579) 33612) ((-1114 . -579) 33594) ((-1108 . -579) 33576) ((-1108 . -580) NIL) ((-1070 . -579) 33558) ((-127 . -270) 33533) ((-825 . -384) 33517) ((-513 . -100) T) ((-1184 . -37) 33358) ((-1163 . -37) 33172) ((-823 . -141) T) ((-550 . -386) T) ((-47 . -807) T) ((-499 . -386) T) ((-1196 . -100) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-1058 . -751) 33151) ((-1058 . -754) 33102) ((-1058 . -753) 33081) ((-946 . -1045) T) ((-978 . -33) T) ((-816 . -1045) T) ((-1058 . -687) 32992) ((-625 . -100) T) ((-607 . -100) T) ((-523 . -272) 32971) ((-1127 . -100) T) ((-459 . -33) T) ((-446 . -33) T) ((-339 . -100) T) ((-336 . -100) T) ((-328 . -100) T) ((-248 . -100) T) ((-232 . -100) T) ((-460 . -291) T) ((-1009 . -1005) T) ((-905 . -1005) T) ((-300 . -602) 32879) ((-297 . -602) 32840) ((-463 . -1005) T) ((-461 . -100) T) ((-420 . -579) 32822) ((-1113 . -1045) T) ((-1069 . -1045) T) ((-811 . -1045) T) ((-1083 . -100) T) ((-776 . -274) 32753) ((-916 . -1004) 32636) ((-460 . -973) T) ((-127 . -19) 32618) ((-696 . -1004) 32588) ((-127 . -570) 32563) ((-436 . -1004) 32533) ((-1089 . -1065) 32517) ((-1047 . -495) 32450) ((-916 . -110) 32319) ((-863 . -100) T) ((-696 . -110) 32284) ((-506 . -579) 32250) ((-57 . -100) 32200) ((-501 . -580) 32161) ((-501 . -579) 32073) ((-500 . -100) 32051) ((-497 . -100) 32001) ((-478 . -100) 31979) ((-477 . -100) 31929) ((-436 . -110) 31892) ((-235 . -163) 31871) ((-234 . -163) 31850) ((-402 . -1004) 31824) ((-1148 . -926) 31786) ((-951 . -1057) T) ((-896 . -495) 31719) ((-469 . -755) T) ((-457 . -37) 31560) ((-402 . -110) 31527) ((-469 . -752) T) ((-952 . -293) 31465) ((-203 . -755) T) ((-203 . -752) T) ((-951 . -23) T) ((-673 . -129) T) ((-1163 . -384) 31435) ((-300 . -25) 31288) ((-160 . -395) 31272) ((-300 . -21) 31144) ((-297 . -25) T) ((-297 . -21) T) ((-818 . -352) T) ((-109 . -33) T) ((-464 . -609) 30994) ((-824 . -1005) T) ((-560 . -272) 30969) ((-549 . -141) T) ((-537 . -141) T) ((-476 . -141) T) ((-1113 . -678) 30798) ((-1069 . -678) 30647) ((-1064 . -602) 30629) ((-811 . -678) 30599) ((-631 . -1154) T) ((-1 . -100) T) ((-225 . -579) 30331) ((-1173 . -395) 30315) ((-1127 . -293) 30119) ((-916 . -998) T) ((-696 . -998) T) ((-676 . -998) T) ((-606 . -1045) 30069) ((-1002 . -609) 30053) ((-812 . -395) 30037) ((-492 . -100) T) ((-488 . -100) T) ((-232 . -293) 30024) ((-248 . -293) 30011) ((-916 . -310) 29990) ((-369 . -609) 29974) ((-461 . -293) 29778) ((-235 . -495) 29711) ((-631 . -989) 29609) ((-234 . -495) 29542) ((-1083 . -293) 29468) ((-779 . -1045) T) ((-759 . -1004) 29452) ((-1192 . -270) 29437) ((-1185 . -270) 29422) ((-1164 . -270) 29270) ((-370 . -1045) T) ((-308 . -1045) T) ((-402 . -998) T) ((-160 . -1005) T) ((-57 . -293) 29208) ((-759 . -110) 29187) ((-562 . -270) 29172) ((-500 . -293) 29110) ((-497 . -293) 29048) ((-478 . -293) 28986) ((-477 . -293) 28924) ((-402 . -218) 28903) ((-464 . -33) T) ((-956 . -580) 28833) ((-210 . -1045) T) ((-956 . -579) 28815) ((-924 . -579) 28797) ((-924 . -580) 28772) ((-867 . -579) 28754) ((-659 . -141) T) ((-661 . -873) T) ((-661 . -780) T) ((-411 . -579) 28736) ((-1064 . -21) T) ((-127 . -580) NIL) ((-127 . -579) 28718) ((-1064 . -25) T) ((-631 . -361) 28702) ((-115 . -873) T) ((-825 . -216) 28686) ((-76 . -1154) T) ((-125 . -124) 28670) ((-1002 . -33) T) ((-1221 . -989) 28644) ((-1219 . -989) 28601) ((-1173 . -1005) T) ((-812 . -1005) T) ((-464 . -751) 28580) ((-339 . -1093) 28559) ((-336 . -1093) 28538) ((-328 . -1093) 28517) ((-464 . -754) 28468) ((-464 . -753) 28447) ((-212 . -33) T) ((-464 . -687) 28358) ((-58 . -471) 28342) ((-544 . -1005) T) ((-1113 . -163) 28233) ((-1069 . -163) 28144) ((-1009 . -1045) T) ((-1033 . -902) 28089) ((-905 . -1045) T) ((-777 . -609) 28040) ((-742 . -902) 28009) ((-674 . -1045) T) ((-740 . -902) 27976) ((-497 . -266) 27960) ((-631 . -853) 27919) ((-463 . -1045) T) ((-437 . -902) 27886) ((-77 . -1154) T) ((-339 . -37) 27851) ((-336 . -37) 27816) ((-328 . -37) 27781) ((-248 . -37) 27630) ((-232 . -37) 27479) ((-863 . -1093) T) ((-586 . -141) 27458) ((-586 . -139) 27437) ((-505 . -579) 27403) ((-116 . -141) T) ((-116 . -139) NIL) ((-398 . -687) T) ((-759 . -998) T) ((-327 . -435) T) ((-1192 . -954) 27369) ((-1185 . -954) 27335) ((-1164 . -954) 27301) ((-863 . -37) 27266) ((-210 . -678) 27231) ((-303 . -46) 27201) ((-39 . -393) 27173) ((-134 . -579) 27155) ((-951 . -129) T) ((-775 . -1154) T) ((-164 . -873) T) ((-327 . -386) T) ((-501 . -272) 27132) ((-44 . -33) T) ((-775 . -989) 26961) ((-641 . -100) T) ((-623 . -100) T) ((-615 . -21) T) ((-615 . -25) T) ((-1047 . -471) 26945) ((-1163 . -216) 26915) ((-636 . -1154) T) ((-230 . -100) 26865) ((-824 . -1045) T) ((-1119 . -609) 26790) ((-1009 . -678) 26777) ((-692 . -1004) 26620) ((-1113 . -495) 26567) ((-905 . -678) 26416) ((-1069 . -495) 26368) ((-1210 . -1045) T) ((-463 . -678) 26217) ((-65 . -579) 26199) ((-692 . -110) 26028) ((-896 . -471) 26012) ((-1211 . -609) 25972) ((-777 . -687) T) ((-1115 . -1004) 25855) ((-1114 . -1004) 25690) ((-1108 . -1004) 25480) ((-1070 . -1004) 25363) ((-955 . -1158) T) ((-1040 . -100) 25341) ((-775 . -361) 25311) ((-955 . -529) T) ((-1115 . -110) 25180) ((-1114 . -110) 25001) ((-1108 . -110) 24770) ((-1070 . -110) 24639) ((-1050 . -1048) 24603) ((-363 . -805) T) ((-1192 . -579) 24585) ((-1185 . -579) 24567) ((-1164 . -579) 24549) ((-1164 . -580) NIL) ((-225 . -272) 24526) ((-39 . -435) T) ((-210 . -163) T) ((-160 . -1045) T) ((-654 . -141) T) ((-654 . -139) NIL) ((-563 . -579) 24508) ((-562 . -579) 24490) ((-851 . -1045) T) ((-798 . -1045) T) ((-768 . -1045) T) ((-729 . -1045) T) ((-619 . -809) 24474) ((-637 . -1045) T) ((-775 . -853) 24407) ((-39 . -386) NIL) ((-1064 . -622) T) ((-824 . -678) 24352) ((-235 . -471) 24336) ((-234 . -471) 24320) ((-673 . -602) 24268) ((-614 . -609) 24242) ((-279 . -33) T) ((-692 . -998) T) ((-550 . -1207) 24229) ((-499 . -1207) 24206) ((-1173 . -1045) T) ((-1113 . -274) 24117) ((-1069 . -274) 24048) ((-1009 . -163) T) ((-812 . -1045) T) ((-905 . -163) 23959) ((-742 . -1176) 23943) ((-606 . -495) 23876) ((-75 . -579) 23858) ((-692 . -310) 23823) ((-1119 . -687) T) ((-544 . -1045) T) ((-463 . -163) 23734) ((-230 . -293) 23672) ((-127 . -272) 23647) ((-1084 . -1057) T) ((-68 . -579) 23629) ((-1211 . -687) T) ((-1115 . -998) T) ((-1114 . -998) T) ((-311 . -100) 23579) ((-1108 . -998) T) ((-1084 . -23) T) ((-1070 . -998) T) ((-89 . -1065) 23563) ((-819 . -1057) T) ((-1115 . -218) 23522) ((-1114 . -228) 23501) ((-1114 . -218) 23453) ((-1108 . -218) 23340) ((-1108 . -228) 23319) ((-303 . -853) 23225) ((-819 . -23) T) ((-160 . -678) 23053) ((-391 . -1158) T) ((-1046 . -352) T) ((-975 . -141) T) ((-955 . -347) T) ((-823 . -435) T) ((-896 . -270) 23030) ((-300 . -807) T) ((-297 . -807) NIL) ((-827 . -100) T) ((-673 . -25) T) ((-391 . -529) T) ((-673 . -21) T) ((-338 . -141) 23012) ((-338 . -139) T) ((-1089 . -1045) 22990) ((-436 . -681) T) ((-73 . -579) 22972) ((-113 . -807) T) ((-230 . -266) 22956) ((-225 . -1004) 22854) ((-79 . -579) 22836) ((-696 . -352) 22789) ((-1117 . -788) T) ((-698 . -220) 22773) ((-1101 . -1154) T) ((-135 . -220) 22755) ((-225 . -110) 22646) ((-1173 . -678) 22475) ((-47 . -141) T) ((-824 . -163) T) ((-812 . -678) 22445) ((-466 . -1154) T) ((-905 . -495) 22392) ((-614 . -687) T) ((-544 . -678) 22379) ((-985 . -1005) T) ((-463 . -495) 22322) ((-896 . -19) 22306) ((-896 . -570) 22283) ((-776 . -580) NIL) ((-776 . -579) 22265) ((-956 . -1004) 22215) ((-397 . -579) 22197) ((-235 . -270) 22174) ((-234 . -270) 22151) ((-469 . -862) NIL) ((-300 . -29) 22121) ((-106 . -1154) T) ((-955 . -1057) T) ((-203 . -862) NIL) ((-867 . -1004) 22073) ((-1025 . -989) 21971) ((-956 . -110) 21905) ((-248 . -216) 21889) ((-698 . -655) 21873) ((-411 . -1004) 21857) ((-363 . -1005) T) ((-955 . -23) T) ((-867 . -110) 21795) ((-654 . -1142) NIL) ((-469 . -609) 21745) ((-106 . -837) 21727) ((-106 . -839) 21709) ((-654 . -1139) NIL) ((-203 . -609) 21659) ((-343 . -989) 21643) ((-337 . -989) 21627) ((-311 . -293) 21565) ((-329 . -989) 21549) ((-210 . -274) T) ((-411 . -110) 21528) ((-58 . -579) 21460) ((-160 . -163) T) ((-1064 . -807) T) ((-106 . -989) 21420) ((-845 . -1045) T) ((-794 . -1005) T) ((-787 . -1005) T) ((-654 . -34) NIL) ((-654 . -93) NIL) ((-297 . -945) 21381) ((-173 . -100) T) ((-549 . -435) T) ((-537 . -435) T) ((-476 . -435) T) ((-391 . -347) T) ((-225 . -998) 21312) ((-1092 . -33) T) ((-460 . -873) T) ((-951 . -602) 21260) ((-235 . -570) 21237) ((-234 . -570) 21214) ((-1025 . -361) 21198) ((-824 . -495) 21106) ((-225 . -218) 21059) ((-1100 . -1154) T) ((-784 . -579) 21041) ((-1222 . -1057) T) ((-1214 . -579) 21023) ((-1173 . -163) 20914) ((-106 . -361) 20896) ((-106 . -322) 20878) ((-1009 . -274) T) ((-905 . -274) 20809) ((-759 . -352) 20788) ((-608 . -1154) T) ((-595 . -1154) T) ((-463 . -274) 20719) ((-544 . -163) T) ((-311 . -266) 20703) ((-1222 . -23) T) ((-1148 . -100) T) ((-1135 . -1045) T) ((-1034 . -1045) T) ((-1021 . -1045) T) ((-81 . -579) 20685) ((-672 . -100) T) ((-339 . -333) 20664) ((-574 . -1045) T) ((-336 . -333) 20643) ((-328 . -333) 20622) ((-458 . -1045) T) ((-1127 . -214) 20572) ((-248 . -237) 20534) ((-1084 . -129) T) ((-574 . -576) 20510) ((-1025 . -853) 20443) ((-956 . -998) T) ((-867 . -998) T) ((-458 . -576) 20422) ((-1108 . -752) NIL) ((-1108 . -755) NIL) ((-1047 . -580) 20383) ((-461 . -214) 20333) ((-1047 . -579) 20315) ((-956 . -228) T) ((-956 . -218) T) ((-411 . -998) T) ((-911 . -1045) 20265) ((-867 . -228) T) ((-819 . -129) T) ((-659 . -435) T) ((-800 . -1057) 20244) ((-106 . -853) NIL) ((-1148 . -268) 20210) ((-825 . -805) 20189) ((-1058 . -1154) T) ((-858 . -687) T) ((-160 . -495) 20101) ((-951 . -25) T) ((-858 . -456) T) ((-391 . -1057) T) ((-469 . -754) T) ((-469 . -751) T) ((-863 . -333) T) ((-469 . -687) T) ((-203 . -754) T) ((-203 . -751) T) ((-951 . -21) T) ((-203 . -687) T) ((-800 . -23) 20053) ((-303 . -291) 20032) ((-986 . -220) 19978) ((-391 . -23) T) ((-896 . -580) 19939) ((-896 . -579) 19851) ((-606 . -471) 19835) ((-44 . -962) 19785) ((-472 . -100) T) ((-315 . -579) 19767) ((-1058 . -989) 19596) ((-560 . -612) 19578) ((-560 . -357) 19560) ((-327 . -1207) 19537) ((-978 . -1154) T) ((-824 . -274) T) ((-1173 . -495) 19484) ((-459 . -1154) T) ((-446 . -1154) T) ((-554 . -100) T) ((-1113 . -270) 19411) ((-586 . -435) 19390) ((-952 . -947) 19374) ((-1214 . -366) 19346) ((-498 . -1045) T) ((-116 . -435) T) ((-1134 . -100) T) ((-1038 . -1045) 19324) ((-985 . -1045) T) ((-846 . -807) T) ((-335 . -1158) T) ((-1192 . -1004) 19207) ((-1058 . -361) 19177) ((-1185 . -1004) 19012) ((-1164 . -1004) 18802) ((-1192 . -110) 18671) ((-1185 . -110) 18492) ((-1164 . -110) 18261) ((-1148 . -293) 18248) ((-335 . -529) T) ((-349 . -579) 18230) ((-273 . -291) T) ((-563 . -1004) 18203) ((-562 . -1004) 18086) ((-345 . -1045) T) ((-306 . -1045) T) ((-235 . -579) 18047) ((-234 . -579) 18008) ((-955 . -129) T) ((-108 . -579) 17990) ((-598 . -23) T) ((-654 . -393) 17957) ((-573 . -23) T) ((-619 . -100) T) ((-563 . -110) 17928) ((-562 . -110) 17797) ((-363 . -1045) T) ((-320 . -100) T) ((-160 . -274) 17708) ((-1163 . -805) 17661) ((-675 . -1005) T) ((-1089 . -495) 17594) ((-1058 . -853) 17527) ((-794 . -1045) T) ((-787 . -1045) T) ((-785 . -1045) T) ((-95 . -100) T) ((-138 . -807) T) ((-578 . -837) 17511) ((-109 . -1154) T) ((-1033 . -100) T) ((-1010 . -33) T) ((-742 . -100) T) ((-740 . -100) T) ((-444 . -100) T) ((-437 . -100) T) ((-225 . -755) 17462) ((-225 . -752) 17413) ((-610 . -100) T) ((-1173 . -274) 17324) ((-625 . -597) 17308) ((-606 . -270) 17285) ((-985 . -678) 17269) ((-544 . -274) T) ((-916 . -609) 17194) ((-1222 . -129) T) ((-696 . -609) 17154) ((-676 . -609) 17141) ((-259 . -100) T) ((-436 . -609) 17071) ((-49 . -100) T) ((-550 . -100) T) ((-499 . -100) T) ((-1192 . -998) T) ((-1185 . -998) T) ((-1164 . -998) T) ((-1192 . -218) 17030) ((-306 . -678) 17012) ((-1185 . -228) 16991) ((-1185 . -218) 16943) ((-1164 . -218) 16830) ((-1164 . -228) 16809) ((-1148 . -37) 16706) ((-956 . -755) T) ((-563 . -998) T) ((-562 . -998) T) ((-956 . -752) T) ((-924 . -755) T) ((-924 . -752) T) ((-825 . -1005) T) ((-823 . -822) 16690) ((-107 . -579) 16672) ((-654 . -435) T) ((-363 . -678) 16637) ((-402 . -609) 16611) ((-673 . -807) 16590) ((-672 . -37) 16555) ((-562 . -218) 16514) ((-39 . -685) 16486) ((-335 . -313) 16463) ((-335 . -347) T) ((-1025 . -291) 16414) ((-278 . -1057) 16296) ((-1051 . -1154) T) ((-162 . -100) T) ((-1167 . -579) 16263) ((-800 . -129) 16215) ((-606 . -1188) 16199) ((-794 . -678) 16169) ((-787 . -678) 16139) ((-464 . -1154) T) ((-343 . -291) T) ((-337 . -291) T) ((-329 . -291) T) ((-606 . -570) 16116) ((-391 . -129) T) ((-501 . -627) 16100) ((-106 . -291) T) ((-278 . -23) 15984) ((-501 . -612) 15968) ((-654 . -386) NIL) ((-501 . -357) 15952) ((-275 . -579) 15934) ((-89 . -1045) 15912) ((-106 . -973) T) ((-537 . -137) T) ((-1200 . -145) 15896) ((-464 . -989) 15725) ((-1186 . -139) 15686) ((-1186 . -141) 15647) ((-1002 . -1154) T) ((-946 . -579) 15629) ((-816 . -579) 15611) ((-776 . -1004) 15454) ((-1033 . -293) 15441) ((-212 . -1154) T) ((-1036 . -1045) T) ((-1013 . -1045) T) ((-987 . -1045) T) ((-742 . -293) 15428) ((-740 . -293) 15415) ((-776 . -110) 15244) ((-589 . -1045) T) ((-1210 . -91) T) ((-1113 . -580) NIL) ((-437 . -293) 15231) ((-465 . -1045) T) ((-1113 . -579) 15213) ((-1069 . -579) 15195) ((-1069 . -580) 14943) ((-985 . -163) T) ((-811 . -579) 14925) ((-896 . -272) 14902) ((-574 . -495) 14685) ((-778 . -989) 14669) ((-458 . -495) 14461) ((-916 . -687) T) ((-696 . -687) T) ((-676 . -687) T) ((-335 . -1057) T) ((-1120 . -579) 14443) ((-208 . -100) T) ((-464 . -361) 14413) ((-496 . -1045) T) ((-491 . -1045) T) ((-489 . -1045) T) ((-759 . -609) 14387) ((-975 . -435) T) ((-911 . -495) 14320) ((-335 . -23) T) ((-598 . -129) T) ((-573 . -129) T) ((-338 . -435) T) ((-225 . -352) 14299) ((-363 . -163) T) ((-1184 . -1005) T) ((-1163 . -1005) T) ((-210 . -954) T) ((-659 . -371) T) ((-402 . -687) T) ((-661 . -1158) T) ((-1084 . -602) 14247) ((-549 . -822) 14231) ((-1101 . -1130) 14207) ((-661 . -529) T) ((-125 . -1045) 14185) ((-1214 . -1004) 14169) ((-675 . -1045) T) ((-464 . -853) 14102) ((-619 . -37) 14072) ((-338 . -386) T) ((-300 . -141) 14051) ((-300 . -139) 14030) ((-115 . -529) T) ((-297 . -141) 13986) ((-297 . -139) 13942) ((-47 . -435) T) ((-153 . -1045) T) ((-149 . -1045) T) ((-1101 . -105) 13889) ((-742 . -1093) 13867) ((-649 . -33) T) ((-1214 . -110) 13846) ((-523 . -33) T) ((-466 . -105) 13830) ((-235 . -272) 13807) ((-234 . -272) 13784) ((-824 . -270) 13735) ((-44 . -1154) T) ((-776 . -998) T) ((-1119 . -46) 13712) ((-776 . -310) 13674) ((-1033 . -37) 13523) ((-776 . -218) 13502) ((-742 . -37) 13331) ((-740 . -37) 13180) ((-127 . -612) 13162) ((-437 . -37) 13011) ((-127 . -357) 12993) ((-1062 . -100) T) ((-606 . -580) 12954) ((-606 . -579) 12866) ((-550 . -1093) T) ((-499 . -1093) T) ((-1089 . -471) 12850) ((-1140 . -1045) 12828) ((-1084 . -25) T) ((-1084 . -21) T) ((-457 . -1005) T) ((-1164 . -752) NIL) ((-1164 . -755) NIL) ((-951 . -807) 12807) ((-779 . -579) 12789) ((-819 . -21) T) ((-819 . -25) T) ((-759 . -687) T) ((-164 . -1158) T) ((-550 . -37) 12754) ((-499 . -37) 12719) ((-370 . -579) 12701) ((-308 . -579) 12683) ((-160 . -270) 12641) ((-61 . -1154) T) ((-111 . -100) T) ((-825 . -1045) T) ((-164 . -529) T) ((-675 . -678) 12611) ((-278 . -129) 12495) ((-210 . -579) 12477) ((-210 . -580) 12407) ((-955 . -602) 12346) ((-1214 . -998) T) ((-1064 . -141) T) ((-595 . -1130) 12321) ((-692 . -862) 12300) ((-560 . -33) T) ((-608 . -105) 12284) ((-595 . -105) 12230) ((-1173 . -270) 12157) ((-692 . -609) 12082) ((-279 . -1154) T) ((-1119 . -989) 11980) ((-1108 . -862) NIL) ((-1009 . -580) 11895) ((-1009 . -579) 11877) ((-327 . -100) T) ((-235 . -1004) 11775) ((-234 . -1004) 11673) ((-378 . -100) T) ((-905 . -579) 11655) ((-905 . -580) 11516) ((-674 . -579) 11498) ((-1212 . -1147) 11467) ((-463 . -579) 11449) ((-463 . -580) 11310) ((-232 . -395) 11294) ((-248 . -395) 11278) ((-235 . -110) 11169) ((-234 . -110) 11060) ((-1115 . -609) 10985) ((-1114 . -609) 10882) ((-1108 . -609) 10734) ((-1070 . -609) 10659) ((-335 . -129) T) ((-80 . -424) T) ((-80 . -379) T) ((-955 . -25) T) ((-955 . -21) T) ((-826 . -1045) 10610) ((-825 . -678) 10562) ((-363 . -274) T) ((-160 . -954) 10514) ((-654 . -371) T) ((-951 . -949) 10498) ((-661 . -1057) T) ((-654 . -157) 10480) ((-1184 . -1045) T) ((-1163 . -1045) T) ((-300 . -1139) 10459) ((-300 . -1142) 10438) ((-1106 . -100) T) ((-300 . -912) 10417) ((-131 . -1057) T) ((-115 . -1057) T) ((-568 . -1198) 10401) ((-661 . -23) T) ((-568 . -1045) 10351) ((-89 . -495) 10284) ((-164 . -347) T) ((-300 . -93) 10263) ((-300 . -34) 10242) ((-574 . -471) 10176) ((-131 . -23) T) ((-115 . -23) T) ((-679 . -1045) T) ((-458 . -471) 10113) ((-391 . -602) 10061) ((-614 . -989) 9959) ((-911 . -471) 9943) ((-339 . -1005) T) ((-336 . -1005) T) ((-328 . -1005) T) ((-248 . -1005) T) ((-232 . -1005) T) ((-824 . -580) NIL) ((-824 . -579) 9925) ((-1222 . -21) T) ((-1210 . -579) 9891) ((-544 . -954) T) ((-692 . -687) T) ((-1222 . -25) T) ((-235 . -998) 9822) ((-234 . -998) 9753) ((-70 . -1154) T) ((-235 . -218) 9706) ((-234 . -218) 9659) ((-39 . -100) T) ((-863 . -1005) T) ((-1122 . -100) T) ((-1115 . -687) T) ((-1114 . -687) T) ((-1108 . -687) T) ((-1108 . -751) NIL) ((-1108 . -754) NIL) ((-907 . -100) T) ((-874 . -100) T) ((-1070 . -687) T) ((-731 . -100) T) ((-633 . -100) T) ((-457 . -1045) T) ((-323 . -1057) T) ((-164 . -1057) T) ((-303 . -873) 9638) ((-1184 . -678) 9479) ((-825 . -163) T) ((-1163 . -678) 9293) ((-800 . -21) 9245) ((-800 . -25) 9197) ((-230 . -1091) 9181) ((-125 . -495) 9114) ((-391 . -25) T) ((-391 . -21) T) ((-323 . -23) T) ((-160 . -579) 9096) ((-160 . -580) 8864) ((-164 . -23) T) ((-606 . -272) 8841) ((-501 . -33) T) ((-851 . -579) 8823) ((-87 . -1154) T) ((-798 . -579) 8805) ((-768 . -579) 8787) ((-729 . -579) 8769) ((-637 . -579) 8751) ((-225 . -609) 8601) ((-1117 . -1045) T) ((-1113 . -1004) 8424) ((-1092 . -1154) T) ((-1069 . -1004) 8267) ((-811 . -1004) 8251) ((-1113 . -110) 8060) ((-1069 . -110) 7889) ((-811 . -110) 7868) ((-1173 . -580) NIL) ((-1173 . -579) 7850) ((-327 . -1093) T) ((-812 . -579) 7832) ((-1021 . -270) 7811) ((-78 . -1154) T) ((-956 . -862) NIL) ((-574 . -270) 7787) ((-1140 . -495) 7720) ((-469 . -1154) T) ((-544 . -579) 7702) ((-458 . -270) 7681) ((-498 . -91) T) ((-203 . -1154) T) ((-1033 . -216) 7665) ((-273 . -873) T) ((-777 . -291) 7644) ((-823 . -100) T) ((-742 . -216) 7628) ((-956 . -609) 7578) ((-911 . -270) 7555) ((-867 . -609) 7507) ((-598 . -21) T) ((-598 . -25) T) ((-573 . -21) T) ((-327 . -37) 7472) ((-654 . -685) 7439) ((-469 . -837) 7421) ((-469 . -839) 7403) ((-457 . -678) 7244) ((-203 . -837) 7226) ((-62 . -1154) T) ((-203 . -839) 7208) ((-573 . -25) T) ((-411 . -609) 7182) ((-469 . -989) 7142) ((-825 . -495) 7054) ((-203 . -989) 7014) ((-225 . -33) T) ((-952 . -1045) 6992) ((-1184 . -163) 6923) ((-1163 . -163) 6854) ((-673 . -139) 6833) ((-673 . -141) 6812) ((-661 . -129) T) ((-133 . -448) 6789) ((-619 . -617) 6773) ((-1089 . -579) 6705) ((-115 . -129) T) ((-460 . -1158) T) ((-574 . -570) 6681) ((-458 . -570) 6660) ((-320 . -319) 6629) ((-513 . -1045) T) ((-460 . -529) T) ((-1113 . -998) T) ((-1069 . -998) T) ((-811 . -998) T) ((-225 . -751) 6608) ((-225 . -754) 6559) ((-225 . -753) 6538) ((-1113 . -310) 6515) ((-225 . -687) 6426) ((-911 . -19) 6410) ((-469 . -361) 6392) ((-469 . -322) 6374) ((-1069 . -310) 6346) ((-338 . -1207) 6323) ((-203 . -361) 6305) ((-203 . -322) 6287) ((-911 . -570) 6264) ((-1113 . -218) T) ((-625 . -1045) T) ((-607 . -1045) T) ((-1196 . -1045) T) ((-1127 . -1045) T) ((-1033 . -237) 6201) ((-339 . -1045) T) ((-336 . -1045) T) ((-328 . -1045) T) ((-248 . -1045) T) ((-232 . -1045) T) ((-82 . -1154) T) ((-126 . -100) 6179) ((-120 . -100) 6157) ((-127 . -33) T) ((-1127 . -576) 6136) ((-461 . -1045) T) ((-1083 . -1045) T) ((-461 . -576) 6115) ((-235 . -755) 6066) ((-235 . -752) 6017) ((-234 . -755) 5968) ((-39 . -1093) NIL) ((-234 . -752) 5919) ((-1025 . -873) 5870) ((-956 . -754) T) ((-956 . -751) T) ((-956 . -687) T) ((-924 . -754) T) ((-867 . -687) T) ((-89 . -471) 5854) ((-469 . -853) NIL) ((-863 . -1045) T) ((-210 . -1004) 5819) ((-825 . -274) T) ((-203 . -853) NIL) ((-793 . -1057) 5798) ((-57 . -1045) 5748) ((-500 . -1045) 5726) ((-497 . -1045) 5676) ((-478 . -1045) 5654) ((-477 . -1045) 5604) ((-549 . -100) T) ((-537 . -100) T) ((-476 . -100) T) ((-457 . -163) 5535) ((-343 . -873) T) ((-337 . -873) T) ((-329 . -873) T) ((-210 . -110) 5491) ((-793 . -23) 5443) ((-411 . -687) T) ((-106 . -873) T) ((-39 . -37) 5388) ((-106 . -780) T) ((-550 . -333) T) ((-499 . -333) T) ((-1163 . -495) 5248) ((-300 . -435) 5227) ((-297 . -435) T) ((-794 . -270) 5206) ((-323 . -129) T) ((-164 . -129) T) ((-278 . -25) 5071) ((-278 . -21) 4955) ((-44 . -1130) 4934) ((-64 . -579) 4916) ((-845 . -579) 4898) ((-568 . -495) 4831) ((-44 . -105) 4781) ((-1047 . -409) 4765) ((-1047 . -352) 4744) ((-1010 . -1154) T) ((-1009 . -1004) 4731) ((-905 . -1004) 4574) ((-463 . -1004) 4417) ((-625 . -678) 4401) ((-1009 . -110) 4386) ((-905 . -110) 4215) ((-460 . -347) T) ((-339 . -678) 4167) ((-336 . -678) 4119) ((-328 . -678) 4071) ((-248 . -678) 3920) ((-232 . -678) 3769) ((-1201 . -100) T) ((-1200 . -100) 3719) ((-896 . -612) 3703) ((-1164 . -862) NIL) ((-463 . -110) 3532) ((-1036 . -91) T) ((-1013 . -91) T) ((-896 . -357) 3516) ((-233 . -100) T) ((-987 . -91) T) ((-72 . -579) 3498) ((-916 . -46) 3477) ((-584 . -1057) T) ((-1 . -1045) T) ((-671 . -100) T) ((-659 . -100) T) ((-1192 . -609) 3402) ((-589 . -91) T) ((-1185 . -609) 3299) ((-1135 . -579) 3281) ((-125 . -471) 3265) ((-465 . -91) T) ((-1034 . -579) 3247) ((-374 . -23) T) ((-1021 . -579) 3229) ((-85 . -1154) T) ((-1164 . -609) 3081) ((-863 . -678) 3046) ((-584 . -23) T) ((-574 . -579) 3028) ((-574 . -580) NIL) ((-458 . -580) NIL) ((-458 . -579) 3010) ((-492 . -1045) T) ((-488 . -1045) T) ((-335 . -25) T) ((-335 . -21) T) ((-126 . -293) 2948) ((-120 . -293) 2886) ((-563 . -609) 2873) ((-210 . -998) T) ((-562 . -609) 2798) ((-363 . -954) T) ((-210 . -228) T) ((-210 . -218) T) ((-911 . -580) 2759) ((-911 . -579) 2671) ((-823 . -37) 2658) ((-1184 . -274) 2609) ((-1163 . -274) 2560) ((-1064 . -435) T) ((-483 . -807) T) ((-300 . -1081) 2539) ((-951 . -141) 2518) ((-951 . -139) 2497) ((-476 . -293) 2484) ((-279 . -1130) 2463) ((-460 . -1057) T) ((-824 . -1004) 2408) ((-586 . -100) T) ((-1140 . -471) 2392) ((-235 . -352) 2371) ((-234 . -352) 2350) ((-279 . -105) 2300) ((-1009 . -998) T) ((-116 . -100) T) ((-905 . -998) T) ((-824 . -110) 2229) ((-460 . -23) T) ((-463 . -998) T) ((-1009 . -218) T) ((-905 . -310) 2198) ((-463 . -310) 2155) ((-339 . -163) T) ((-336 . -163) T) ((-328 . -163) T) ((-248 . -163) 2066) ((-232 . -163) 1977) ((-916 . -989) 1875) ((-696 . -989) 1846) ((-498 . -579) 1812) ((-1050 . -100) T) ((-1038 . -579) 1779) ((-985 . -579) 1761) ((-1192 . -687) T) ((-1185 . -687) T) ((-1164 . -751) NIL) ((-160 . -1004) 1671) ((-1164 . -754) NIL) ((-863 . -163) T) ((-1164 . -687) T) ((-1212 . -145) 1655) ((-955 . -326) 1629) ((-952 . -495) 1562) ((-800 . -807) 1541) ((-537 . -1093) T) ((-457 . -274) 1492) ((-563 . -687) T) ((-345 . -579) 1474) ((-306 . -579) 1456) ((-402 . -989) 1354) ((-562 . -687) T) ((-391 . -807) 1305) ((-160 . -110) 1201) ((-793 . -129) 1153) ((-698 . -145) 1137) ((-1200 . -293) 1075) ((-469 . -291) T) ((-363 . -579) 1042) ((-501 . -962) 1026) ((-363 . -580) 940) ((-203 . -291) T) ((-135 . -145) 922) ((-675 . -270) 901) ((-469 . -973) T) ((-549 . -37) 888) ((-537 . -37) 875) ((-476 . -37) 840) ((-203 . -973) T) ((-824 . -998) T) ((-794 . -579) 822) ((-787 . -579) 804) ((-785 . -579) 786) ((-776 . -862) 765) ((-1223 . -1057) T) ((-1173 . -1004) 588) ((-812 . -1004) 572) ((-824 . -228) T) ((-824 . -218) NIL) ((-649 . -1154) T) ((-1223 . -23) T) ((-776 . -609) 497) ((-523 . -1154) T) ((-402 . -322) 481) ((-544 . -1004) 468) ((-1173 . -110) 277) ((-661 . -602) 259) ((-812 . -110) 238) ((-365 . -23) T) ((-1127 . -495) 30) ((-641 . -1045) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 6f24af82..19cd67e3 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3429317347) -(4276 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3429568331) +(4303 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -24,7 +24,7 @@ |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| - |AttributeButtons| |AttributeRegistry| |Automorphism| + |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| @@ -48,17 +48,17 @@ |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| - |ConstructorCall| |ComplexTrigonometricManipulations| - |CoerceVectorMatrixPackage| |CycleIndicators| - |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| - |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| - |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| - |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| - |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| - |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| - |DataBuffer| |Database| |DoubleResultantPackage| - |DistinctDegreeFactorize| |DecimalExpansion| + |CRApackage| |CoerceAst| |ComplexRootFindingPackage| + |CyclicStreamTools| |ConstructorCall| + |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| + |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| + |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| + |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| + |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| + |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| + |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| + |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| @@ -95,7 +95,7 @@ |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| - |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| + |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionTubePlot| @@ -178,13 +178,13 @@ |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| - |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| + |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| - |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| - |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| - |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| - |InputForm| |InfiniteProductCharacteristicZero| + |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| + |InAst| |InnerNormalBasisFieldFunctions| |IncrementingMaps| + |IndexedExponents| |InnerNumericEigenPackage| |Infinity| + |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| @@ -207,15 +207,15 @@ |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| - |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| + |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| - |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| - |LiouvillianFunctionCategory| |LiouvillianFunction| - |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| - |AssociatedLieAlgebra| |PowerSeriesLimitPackage| + |LeadingCoefDetermination| |LetAst| |LieExponentials| + |LexTriangularPackage| |LiouvillianFunctionCategory| + |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| + |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule| @@ -230,13 +230,13 @@ |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| - |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| + |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| - |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| - |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&| - |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| - |StorageEfficientMatrixOperations| |Maybe| + |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| + |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| + |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| + |Matrix| |StorageEfficientMatrixOperations| |Maybe| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| @@ -342,8 +342,8 @@ |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| |Property| |PropositionalFormula| |PropositionalLogic| - |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| - |PowerSeriesCategory&| |PowerSeriesCategory| + |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| + |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| @@ -364,7 +364,7 @@ |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| - |ResidueRing| |Result| |RetractableTo&| |RetractableTo| + |ResidueRing| |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| @@ -374,16 +374,16 @@ |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| - |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| - |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| - |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| - |RuleCalled| |RewriteRule| |Ruleset| + |RepeatAst| |RealRootCharacterizationCategory&| + |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| + |RegularTriangularSetCategory&| |RegularTriangularSetCategory| + |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| - |SpadSyntaxCategory| |SortedCache| |Scope| + |SpadSyntaxCategory&| |SpadSyntaxCategory| |SortedCache| |Scope| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |SegmentFunctions2| + |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| @@ -426,7 +426,7 @@ |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| - |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| + |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| @@ -456,654 +456,659 @@ |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| - |WildFunctionFieldIntegralBasis| |WeightedPolynomials| + |WildFunctionFieldIntegralBasis| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |externalList| |depth| |radicalOfLeftTraceForm| - |orbit| |property| |createPrimitivePoly| |LagrangeInterpolation| - |nextSubsetGray| |Not| |denomLODE| |shallowCopy| |getCurve| |cotIfCan| - |palgextint| |unexpand| |monomials| |point?| |lintgcd| - |minimalPolynomial| |laguerreL| |dom| |selectOptimizationRoutines| - |push| |paren| |sncndn| |in?| |max| |supDimElseRittWu?| |conjugates| - |makeprod| |set| |mainContent| |units| |c06fpf| |lllp| |sub| - |extractSplittingLeaf| |lowerPolynomial| |completeHensel| - |selectAndPolynomials| |tubeRadiusDefault| |byte| |d01asf| - |kroneckerDelta| |rangeIsFinite| |extractIndex| |weakBiRank| - |hdmpToDmp| |stop| |critM| |schwerpunkt| |zeroMatrix| |pointLists| - |s13adf| |rotate| |partialQuotients| |minRowIndex| - |normalizeAtInfinity| |overlap| |noKaratsuba| |smith| |getOrder| - |critMTonD1| |denominators| |initiallyReduce| |doubleDisc| - |firstNumer| |alternatingGroup| |infiniteProduct| |complexForm| - |title| UTS2UP |balancedFactorisation| |leftNorm| |code| |froot| - |copies| |factorList| |fortranInteger| |cyclicCopy| |constructorName| - |child| |s15aef| |float?| |irreducibleFactor| |maxint| |intersect| - |mainKernel| |primlimintfrac| |radicalEigenvectors| - |rewriteSetByReducingWithParticularGenerators| |intensity| |e| - |setMinPoints| |f02fjf| |unmakeSUP| |prefixRagits| |Beta| |rischDE| - |cTan| |LyndonWordsList| |bezoutMatrix| |wholePart| |rationalPower| - |realElementary| |rk4| |check| |edf2df| |getMatch| |iicos| |getlo| - |OMsupportsSymbol?| F |pdf2ef| |nextColeman| |iisech| |atom?| |sort| - |bumptab| |showSummary| |show| |iiatanh| |goto| |cot2trig| - |setProperties!| |prologue| |callForm?| |pascalTriangle| - |stoseInvertibleSetsqfreg| |cCos| |medialSet| |normFactors| |segment| - |lexTriangular| |clearDenominator| |torsionIfCan| - |shanksDiscLogAlgorithm| |evenlambert| |showAttributes| |trace| - |lepol| |nextPrimitivePoly| |midpoint| |bombieriNorm| |e02daf| - |computeCycleEntry| |dflist| |outputForm| |autoReduced?| |OMgetType| - |rewriteIdealWithQuasiMonicGenerators| |frst| |f01brf| |curryLeft| - |clipSurface| |write| |elements| |squareFreePrim| |f2st| |cubic| - |stoseInvertible?| |pseudoRemainder| |basisOfRightNucloid| |rotatey| - |save| |f07fdf| |random| |bubbleSort!| |squareFreePolynomial| |d01fcf| - |dihedralGroup| |generalizedContinuumHypothesisAssumed?| |rightRecip| - |extractBottom!| |updatF| |clipWithRanges| |selectPolynomials| - |charpol| |redmat| |selectSumOfSquaresRoutines| |zag| - |internalSubPolSet?| |useEisensteinCriterion| - |getMultiplicationMatrix| |LyndonWordsList1| |Ei| |distdfact| - |complexEigenvectors| |nonLinearPart| |flexibleArray| |nil?| |modulus| - |setAdaptive3D| |magnitude| |createPrimitiveNormalPoly| |moebiusMu| - |pack!| |tValues| |mapBivariate| |elem?| GF2FG |univariatePolynomials| - |makeCrit| |tRange| |dequeue| |f04mbf| |printCode| |doubleComplex?| - |setMaxPoints3D| |signature| NOT |normalized?| - |showFortranOutputStack| |purelyAlgebraicLeadingMonomial?| - |limitedint| |setAdaptive| |associative?| |quadraticForm| - |splitNodeOf!| |internalZeroSetSplit| OR |clearTheFTable| - |rightAlternative?| |positiveSolve| |diagonal?| |subscript| - |groebSolve| |selectIntegrationRoutines| |mkcomm| |cAcos| AND - |makeSeries| |plusInfinity| |monic?| |createThreeSpace| - |functionIsContinuousAtEndPoints| |Hausdorff| |approxSqrt| - |unprotectedRemoveRedundantFactors| |lineColorDefault| - |associatedEquations| |or?| |pdf2df| |minusInfinity| |primaryDecomp| - |slex| |yCoordinates| |pade| |width| |partialFraction| |OMgetString| - |movedPoints| |asinhIfCan| |lexGroebner| |ParCondList| |e02aef| - |c06gbf| |removeSinhSq| |nothing| |maxrow| |scanOneDimSubspaces| - |monicRightFactorIfCan| |leadingSupport| |node?| |quadraticNorm| - |leftMinimalPolynomial| |e02bdf| |closedCurve?| |expandPower| |lhs| - |representationType| |quatern| |jacobian| |maxdeg| |realSolve| - |cyclicGroup| |genericLeftTrace| |cosIfCan| |rhs| |c06gqf| - |idealSimplify| |symmetricPower| |acschIfCan| |tanh2trigh| - |signAround| |sequences| |KrullNumber| |zeroVector| |removeCoshSq| - |solveInField| |tracePowMod| |semiResultantEuclideannaif| |basicSet| - |setleft!| |type| |eigenvectors| |numFunEvals| |viewWriteAvailable| - |flexible?| |formula| |optional| |pointData| |quasiAlgebraicSet| - |e02dcf| |OMgetApp| |compdegd| |latex| |OMmakeConn| |node| |separant| - |rationalApproximation| |lprop| * |createNormalPoly| - |fortranCompilerName| |nextIrreduciblePoly| |f07fef| |cycleElt| |cond| - |s17dlf| |currentSubProgram| |makeSketch| |noLinearFactor?| - |changeName| |lfextendedint| |simpson| |bindings| |exponential1| - |mapSolve| |reify| |entry?| |mathieu11| |lazyPseudoDivide| |nrows| - |graphStates| |viewZoomDefault| |delete!| |schema| |buildSyntax| - |chebyshevT| |nodes| |alphabetic| |ncols| |setFieldInfo| |f02bbf| - |mapUnivariateIfCan| |jordanAdmissible?| |cPower| |symmetricGroup| - |startTable!| |rdHack1| |cons| |constantKernel| |invertibleElseSplit?| - |factorial| |pseudoQuotient| |moebius| |normal01| |top| |nullary?| - |curveColor| |pointPlot| |makeFR| |complexIntegrate| |transform| - |e04ucf| |continue| |sylvesterSequence| |factorFraction| |weights| - |localAbs| |aromberg| |forLoop| |OMconnInDevice| |empty?| |contours| - |polynomialZeros| |sizeMultiplication| |OMgetFloat| |tree| - |complement| |modularGcdPrimitive| |toScale| |Vectorise| |positive?| - |resize| |SturmHabichtSequence| |csch2sinh| |numberOfChildren| |red| - |antiCommutator| |problemPoints| |increment| |binary| |rationalIfCan| - |ScanFloatIgnoreSpaces| |makeop| |linearAssociatedLog| |gradient| - |imagK| |realRoots| |readIfCan!| |iitan| |level| |source| |abs| - |superHeight| |setOrder| |equation| |getConstant| |trivialIdeal?| - |directory| |palglimint| |tanintegrate| |checkRur| |lazyEvaluate| - |nthRootIfCan| |e01sbf| |laurentIfCan| |karatsuba| |constantLeft| - |e01baf| |logical?| |genericLeftTraceForm| |OMgetVariable| |nilFactor| - |e02bef| |fullPartialFraction| |explicitEntries?| |OMputInteger| - |mapdiv| |algebraicVariables| |pseudoDivide| |deleteProperty!| - |OMsetEncoding| |double?| |dec| |cAcsc| |intChoose| |selectfirst| - |completeSmith| |lambert| |roughEqualIdeals?| |prime| |lowerCase!| - |symbol?| |monomialIntegrate| |polCase| |bandedJacobian| - |intcompBasis| |minColIndex| |rightPower| |bright| |rightTrace| - |squareFreeLexTriangular| |totalfract| |target| |indicialEquations| - |localUnquote| |c05pbf| |sizePascalTriangle| |d03eef| |Si| - |divideIfCan| |genericRightTrace| |mainMonomials| |radicalSolve| - |splitDenominator| |ref| |sumOfSquares| |unitVector| |number?| - |surface| |expint| |algSplitSimple| |polygamma| |cyclicEqual?| - |standardBasisOfCyclicSubmodule| |f04adf| |round| |stirling2| - |degreePartition| |algebraic?| |stiffnessAndStabilityOfODEIF| |rspace| - |string?| |anfactor| |besselJ| |complexElementary| |sinIfCan| - |LazardQuotient| |f01qcf| |duplicates?| |setMinPoints3D| |trigs| - |OMputEndBind| |basisOfNucleus| |s17aef| - |solveLinearPolynomialEquationByRecursion| |possiblyNewVariety?| - |getOperator| |lazyPremWithDefault| |controlPanel| |df2mf| - |insertRoot!| |showTheRoutinesTable| |denomRicDE| |mainValue| |delete| - |subTriSet?| |result| |polyred| |key?| |aQuartic| |integralRepresents| - |singular?| |karatsubaOnce| |checkPrecision| |pureLex| |OMgetAtp| - |crushedSet| |viewPhiDefault| |conditionP| |showTheSymbolTable| - |boundOfCauchy| |minPol| |polyRicDE| |atanIfCan| |reopen!| - |infRittWu?| |edf2ef| |printStatement| |setScreenResolution| - |squareFreeFactors| |lift| |prepareDecompose| |mat| |tanIfCan| - |hasSolution?| |indiceSubResultant| |randomLC| |nthr| |redPol| - |changeVar| |comp| |reduce| |vertConcat| |leftZero| |cfirst| - |fracPart| |addMatch| |quartic| |content| |areEquivalent?| - |SturmHabichtMultiple| |selectsecond| |distribute| |csc2sin| |setelt!| - |lazyGintegrate| |linearPolynomials| |numerators| |homogeneous?| - |f02abf| |SFunction| |parametersOf| |pmintegrate| F2FG |isList| - |delta| |elt| |difference| |even?| |integrate| - |inverseIntegralMatrixAtInfinity| |exponent| |matrixConcat3D| - |oddInfiniteProduct| |prinb| |enterPointData| |getCode| - |OMlistSymbols| |modularGcd| |entry| |branchIfCan| |HermiteIntegrate| - |decrease| |OMgetSymbol| |normalDenom| |LowTriBddDenomInv| |li| - |primitiveElement| |leftTrace| |mainDefiningPolynomial| |objectOf| - |setScreenResolution3D| |OMputEndError| |hdmpToP| ~ |shrinkable| - |f01qef| |fmecg| |commutative?| |concat!| |GospersMethod| |escape| - |setOfMinN| |chainSubResultants| |acotIfCan| |complexNormalize| - |clearCache| |removeRedundantFactors| |gbasis| |reverse| |iitanh| - |binaryFunction| |e02adf| |linearAssociatedOrder| |open| - |showAllElements| |log10| |nativeModuleExtension| |stopTable!| - |typeLists| |chiSquare1| |numer| |subspace| |wordInGenerators| - |extractPoint| |printTypes| |bitand| |extend| |splitSquarefree| - |queue| |traceMatrix| |chineseRemainder| |obj| |uncouplingMatrices| - |denom| |/\\| |absolutelyIrreducible?| |hspace| |maxrank| |algDsolve| - |charClass| |singularAtInfinity?| |generator| |enterInCache| - |pushdown| |stoseInternalLastSubResultant| |cache| |rightLcm| |rule| - |\\/| |unparse| |f02awf| |solve| |limitPlus| |basisOfRightAnnihilator| - |triangulate| |leftCharacteristicPolynomial| |mathieu24| - |binaryTournament| |square?| |pquo| |pi| |OMputEndApp| |toroidal| - |member?| |leftGcd| |binding| |rightOne| |dAndcExp| |exists?| |index| - |df2st| |taylorIfCan| |expextendedint| |infinity| - |genericRightTraceForm| |splitLinear| |inR?| |drawComplexVectorField| - |e02bbf| |norm| |hasTopPredicate?| |stoseSquareFreePart| - |factorAndSplit| |permutationRepresentation| |quasiRegular| |makeTerm| - |calcRanges| |removeSuperfluousQuasiComponents| |option| |pushuconst| - |open?| |normInvertible?| |leftDivide| |logpart| |cycleRagits| |low| - |zeroSquareMatrix| |computePowers| |OMgetEndAttr| |wreath| - |nextLatticePermutation| |isobaric?| |retractable?| |birth| |pair| - |lazyVariations| |coefChoose| |simplifyExp| |measure2Result| BY - |kernel| |resultantnaif| |PDESolve| |nonQsign| |closed?| |axes| - |setImagSteps| |quoted?| |startStats!| |integer?| |modularFactor| - |legendreP| |draw| |points| |recolor| |indiceSubResultantEuclidean| - |cyclicParents| |biRank| |comparison| |minimize| |leftTraceMatrix| - |identityMatrix| |tube| |inverseIntegralMatrix| |subResultantChain| - |palgintegrate| |function| |nodeOf?| |cycleTail| |matrixDimensions| - |pToHdmp| |parabolicCylindrical| |makeMulti| |lo| |antiAssociative?| - |setProperties| |branchPointAtInfinity?| |badValues| |sumSquares| - |rst| |removeSinSq| |primitive?| |screenResolution3D| |incr| |cAcoth| - |subNodeOf?| |position| |semiDiscriminantEuclidean| |gramschmidt| - |initials| |paraboloidal| |wholeRagits| |regularRepresentation| - |triangular?| |hi| |makeObject| |comment| |swapColumns!| |preprocess| - |viewDeltaXDefault| |getRef| |cAtanh| |mathieu23| |supRittWu?| - |polyPart| |expressIdealMember| |partialNumerators| - |semiIndiceSubResultantEuclidean| |setrest!| |clearTable!| |ScanRoman| - |idealiserMatrix| |acoshIfCan| |ideal| |exactQuotient| |coef| - |spherical| |setProperty!| |numberOfDivisors| |initiallyReduced?| - |viewpoint| |curryRight| |degree| |specialTrigs| |uniform| - |quadratic?| |constantRight| |condition| |tan2cot| |eq?| |ldf2vmf| - |collectUnder| |someBasis| |wordsForStrongGenerators| |radPoly| - |d01bbf| |rootNormalize| |colorFunction| |dmpToP| |palgint| - |sparsityIF| |PollardSmallFactor| |palgextint0| |positiveRemainder| - |quoByVar| |lfextlimint| |OMUnknownSymbol?| |ran| - |halfExtendedResultant1| |setvalue!| |split| |finiteBound| |palgRDE| - |LiePoly| |qPot| |s18adf| |mesh| |tab| |OMputSymbol| |cycles| - |printStats!| |getIdentifier| |pattern| |atoms| |allRootsOf| |roman| - |internalDecompose| |fortranTypeOf| |btwFact| |shade| |any?| |nthFlag| - |partitions| |iiabs| |s17dhf| |rightNorm| |d01anf| |OMgetAttr| - |lastSubResultantElseSplit| |horizConcat| |bit?| - |numberOfFractionalTerms| |tail| |cCsch| |hconcat| |dioSolve| |log| - |isPlus| |lcm| |factorSquareFreeByRecursion| |lfinfieldint| |besselI| - |divideIfCan!| |plenaryPower| |withPredicates| |realZeros| |moduleSum| - |rowEch| |removeSquaresIfCan| |rightRemainder| - |basisOfLeftAnnihilator| |d01apf| |message| |over| |moreAlgebraic?| - |setRealSteps| |transpose| |append| |stopTableGcd!| - |unitsColorDefault| |divide| |mkPrim| |variationOfParameters| - |certainlySubVariety?| |OMputAttr| |commutativeEquality| - |internalAugment| |generate| |space| |gcd| |setTopPredicate| - |semiDegreeSubResultantEuclidean| |subscriptedVariables| - |cyclePartition| |baseRDEsys| |nextPrime| |antisymmetric?| - |upperCase?| |toseLastSubResultant| |validExponential| |false| - |logIfCan| |traverse| |fi2df| |isMult| |reduced?| |listBranches| - |lllip| |subtractIfCan| |getProperty| |incrementBy| |output| |leaves| - |userOrdered?| |setLabelValue| |euler| |setlast!| |twist| |bits| - |complexExpand| |expand| |possiblyInfinite?| |numberOfNormalPoly| - |besselK| |univcase| |att2Result| |ODESolve| |inverse| = |properties| - |alphanumeric?| |qinterval| |erf| |filterWhile| |hasHi| |rootSimp| - |OMsend| |padecf| |taylorQuoByVar| |subMatrix| |term| |translate| - |copyInto!| |numberOfCycles| |filterUntil| |putGraph| |compile| |#| - |qroot| |list?| |part?| |basisOfCentroid| |rectangularMatrix| - |OMopenString| < |reducedQPowers| |f07adf| |select| |OMconnOutDevice| - |setnext!| |putColorInfo| |cCot| |status| |hessian| > - |setLegalFortranSourceExtensions| |external?| |dilog| |digamma| - |optional?| |dimension| |expintegrate| |s19abf| |imagi| |gderiv| <= - |semiResultantEuclidean1| |particularSolution| |sin| |iisin| |matrix| - |optAttributes| |s18aef| |selectPDERoutines| |separateDegrees| - |strongGenerators| |flagFactor| >= |sortConstraints| |exactQuotient!| - |cos| |lookup| |multiset| |purelyAlgebraic?| |dfRange| |imaginary| - |functionIsFracPolynomial?| |ksec| |tan| |tanQ| |constDsolve| - |oddintegers| |permutationGroup| |useSingleFactorBound?| |HenselLift| - |f02ajf| |primitivePart| |parts| |romberg| |cot| |iicsc| - |iflist2Result| |minimumExponent| |scaleRoots| |leftRecip| - |subResultantsChain| |hcrf| + |iiatan| |leftAlternative?| |makeRecord| - |sec| |showTheFTable| |OMbindTCP| |tubePointsDefault| |select!| - |rroot| ~= |resultantReduit| |nthRoot| - |rCoord| |sinhcosh| |csc| - |outputFixed| |lastSubResultant| |consnewpol| |double| |linearPart| - |close| |showArrayValues| |cross| |numberOfComponents| / - |rightRegularRepresentation| |coerce| |asin| |option?| |lyndonIfCan| - |normalizedAssociate| |leastAffineMultiple| |bsolve| - |factorsOfCyclicGroupSize| |associatorDependence| |construct| - |totalLex| |typeList| |rank| |clearTheSymbolTable| |acos| - |leftRankPolynomial| |indicialEquationAtInfinity| |cCoth| |remove| - |characteristic| |internalInfRittWu?| |display| |rombergo| |subHeight| - |outputAsTex| |factorset| |ReduceOrder| |atan| |useNagFunctions| - |every?| |c06ebf| |argumentList!| |trace2PowMod| |lieAdmissible?| - |d01akf| |split!| |stFunc2| |palgLODE0| |radicalEigenvector| |nary?| - |acot| |addMatchRestricted| |phiCoord| |characteristicSerie| |last| - |setPosition| |finite?| |OMgetObject| |createMultiplicationMatrix| - |packageCall| |df2ef| |RittWuCompare| |assoc| |asec| |initial| - |wholeRadix| |leftLcm| |fractionPart| |extendedint| |padicFraction| - |bringDown| |fortranReal| |maxIndex| |overlabel| |dequeue!| - |transcendent?| |acsc| |brillhartIrreducible?| - |constantToUnaryFunction| |mainForm| |f04qaf| |airyAi| |Nul| |port| - |rewriteIdealWithRemainder| |expIfCan| |constantIfCan| |nextItem| - |sinh| |invertIfCan| |geometric| |cot2tan| |declare!| - |basisOfLeftNucloid| |bernoulli| |discreteLog| |ratpart| |c06frf| - |cosSinInfo| |coerceS| |lists| |cosh| |distance| - |createLowComplexityNormalBasis| |companionBlocks| |algintegrate| - |e01bef| |halfExtendedSubResultantGcd1| |OMgetEndBVar| |poisson| - |derivative| |atanhIfCan| |tanh| |range| |socf2socdf| |build| - |factor1| |tab1| |taylor| |pointColor| |sort!| |mainSquareFreePart| - |submod| |makeViewport2D| |coth| |nlde| |makeSin| |monicDivide| - |OMgetEndAtp| |light| |laurent| |matrixGcd| |d01amf| - |coerceListOfPairs| |createNormalElement| |scalarTypeOf| |sech| - |addmod| |lyndon?| |maxColIndex| |rootProduct| - |numberOfImproperPartitions| |puiseux| |setRow!| |iiasin| - |ListOfTerms| |rootRadius| |gcdcofactprim| |csch| |zeroDimPrimary?| - |roughSubIdeal?| |vconcat| |replace| |safeFloor| |implies?| |tower| - |viewSizeDefault| |getButtonValue| |rarrow| |bitLength| |curry| - |asinh| |hostPlatform| |nextsubResultant2| |delay| |tubeRadius| - |headReduced?| |inv| |summation| |zeroOf| |s19acf| |f01mcf| - |direction| |length| |acosh| |curve| |basisOfCenter| |powerSum| - |numberOfIrreduciblePoly| |principalIdeal| |ground?| - |semiLastSubResultantEuclidean| |findCycle| |leftFactorIfCan| - |fortranDouble| |aLinear| |scripts| |atanh| |var1StepsDefault| - |var2Steps| |members| |OMUnknownCD?| |interpretString| |ground| - |iiasec| |e04naf| |pol| |d01gaf| |genericLeftDiscriminant| |setelt| - |declare| |acoth| |definingInequation| |lowerCase?| |mathieu12| |pow| - |leadingCoefficientRicDE| |leadingMonomial| |solveLinearlyOverQ| - |symmetricRemainder| |indicialEquation| |divisors| |updateStatus!| - |asech| |rubiksGroup| |rightExactQuotient| |chiSquare| |insertTop!| - |exprToGenUPS| |iipow| |leadingCoefficient| |complexNumeric| - |nextSublist| |f04asf| |coth2tanh| |copy| |bumprow| |appendPoint| - |mapGen| |bat| |zerosOf| |numFunEvals3D| |say| |primitiveMonomials| - |rquo| |pomopo!| |e02bcf| |reduceBasisAtInfinity| |rk4f| |multiple| - |whatInfinity| |euclideanGroebner| |monomRDE| |createPrimitiveElement| - |graphCurves| |reductum| |kernels| |newSubProgram| |shuffle| - |cscIfCan| |integralBasisAtInfinity| |eisensteinIrreducible?| - |applyQuote| |completeEval| |genus| |vspace| |bat1| |routines| - |quasiRegular?| |iiexp| |makeCos| |univariate| |monicLeftDivide| - |drawStyle| |createMultiplicationTable| |autoCoerce| |doubleRank| - |refine| |retract| |bag| |harmonic| |factorSFBRlcUnit| |maxRowIndex| - |copy!| |hash| |fibonacci| |tanh2coth| |pushdterm| |e01sef| |prime?| - |divisor| |eulerE| |varselect| |SturmHabicht| |count| - |removeRoughlyRedundantFactorsInContents| |graeffe| |e04fdf| - |dictionary| |OMgetEndApp| |ruleset| |decomposeFunc| |OMopenFile| - |recoverAfterFail| |cAsinh| |structuralConstants| |reduceByQuasiMonic| - |factor| |midpoints| |readLine!| |permutation| |iCompose| |bipolar| - |critB| |lowerCase| |solveRetract| |subSet| |reset| |sqrt| |argscript| - |showScalarValues| |changeThreshhold| |fixedPoint| |s21bcf| |domainOf| - |conditionsForIdempotents| |linearMatrix| |front| - |ellipticCylindrical| |s20acf| |functionIsOscillatory| |OMserve| - |real| |antiCommutative?| |prem| |mantissa| |removeZeroes| - |nextNormalPrimitivePoly| |suchThat| |dark| |leftPower| - |realEigenvalues| |associates?| |primlimitedint| |binomial| |imag| - |ocf2ocdf| |hclf| |binarySearchTree| |taylorRep| |OMunhandledSymbol| - |stoseLastSubResultant| |neglist| |primeFactor| - |removeRoughlyRedundantFactorsInPols| |imagJ| |cylindrical| - |directProduct| |drawToScale| |ScanArabic| |divideExponents| - |triangSolve| |returnType!| |dmpToHdmp| |cTanh| |failed?| |inrootof| - |hermiteH| |relativeApprox| |ratPoly| |qqq| |factorials| - |setPrologue!| |write!| |eulerPhi| |e04ycf| |listOfMonoms| |mesh?| - |Aleph| |BasicMethod| |destruct| |multMonom| |qelt| |top!| - |powerAssociative?| |unrankImproperPartitions0| |c06fuf| |sqfree| - |reflect| |irreducibleRepresentation| |constantCoefficientRicDE| - |padicallyExpand| |monomRDEsys| |fractRadix| |getGraph| |iicoth| - |partition| |expandTrigProducts| |rightQuotient| |resultantEuclidean| - |fillPascalTriangle| |expt| |xRange| |invertible?| - |clearFortranOutputStack| |conjug| |constant| |ranges| |rightRank| - |deriv| |fortranLiteralLine| |extractProperty| |limit| |nullary| - |yRange| |rur| |adjoint| |bumptab1| |iidsum| |block| |untab| - |semiResultantEuclidean2| |characteristicSet| |yellow| |monomial| - |integralBasis| |zRange| |leaf?| |s19aaf| |quotedOperators| - |transcendenceDegree| |insertBottom!| |color| |evaluate| |asinIfCan| - |map!| |atrapezoidal| |multivariate| |leftMult| |rowEchelonLocal| - |divisorCascade| |monicCompleteDecompose| |arguments| - |numberOfFactors| |goodnessOfFit| |integers| |clipPointsDefault| - |removeCosSq| |qsetelt!| |regime| |variables| |fixedDivisor| |hue| - |style| |getMeasure| |basisOfLeftNucleus| |reorder| |outputAsScript| - |mindeg| |linGenPos| |removeDuplicates!| |loopPoints| |f01maf| - |coefficients| |rationalPoints| |badNum| |makeFloatFunction| - |parabolic| |setchildren!| |search| |OMcloseConn| |minus!| |remove!| - |mightHaveRoots| |symmetric?| |localIntegralBasis| |factors| - |wordInStrongGenerators| |eq| |increase| |plus!| |or| |rational| - |leadingBasisTerm| |definingEquations| |Frobenius| - |currentCategoryFrame| |enumerate| |minPoly| |changeMeasure| |iter| - |mapExponents| |hMonic| |rootOf| |realEigenvectors| - |selectFiniteRoutines| |normalDeriv| |printingInfo?| |relerror| - |htrigs| |region| |getDatabase| |startTableInvSet!| |normalize| - |equivOperands| |charthRoot| |stack| |checkForZero| |acsch| - |twoFactor| |diag| |tan2trig| |perfectNthPower?| |create3Space| - |internal?| |sizeLess?| |reduceLODE| |OMputVariable| |constantOpIfCan| - |call| |explicitlyFinite?| |gethi| |represents| |trigs2explogs| - |digit| |useEisensteinCriterion?| |coercePreimagesImages| |changeBase| - |LyndonCoordinates| |imagI| |curve?| |trapezoidalo| |largest| |fTable| - |e02agf| |swap| |freeOf?| |errorInfo| |rightUnit| |e01daf| |chvar| - |zCoord| |exteriorDifferential| |e01saf| |s13acf| - |noncommutativeJordanAlgebra?| |f02wef| |patternMatch| |shellSort| - |bivariateSLPEBR| |setCondition!| |truncate| |s17dcf| |exp| |c02agf| - |rowEchelon| |associator| |LiePolyIfCan| |minordet| |overset?| - |stoseInvertible?reg| |diagonalProduct| |commonDenominator| - |pushNewContour| |ramified?| |rightTrim| |var2StepsDefault| - |elementary| |UP2ifCan| |iicot| |upperCase!| |leftUnit| - |semicolonSeparate| |setPredicates| |alternative?| |heapSort| - |leftTrim| |gcdPrimitive| |diagonal| |UpTriBddDenomInv| |getZechTable| - |arg1| |lighting| |maxPoints| |leastPower| |firstDenom| - |pointColorDefault| |reciprocalPolynomial| |rangePascalTriangle| - |d01alf| |s17ahf| |dmp2rfi| |e02gaf| |arg2| |restorePrecision| - |complexLimit| |sin?| |denominator| |endOfFile?| |bitTruth| - |replaceKthElement| |isOp| |lazyPrem| |recur| |laguerre| |bernoulliB| - |repeating| |returnTypeOf| |infLex?| |normalForm| |zeroSetSplit| - |monicRightDivide| |extendedEuclidean| |conditions| |janko2| - |equality| |hasoln| |collectQuasiMonic| |rotatex| |c05nbf| - |exprHasWeightCosWXorSinWX| |uniform01| |satisfy?| |polygon?| |match| - |squareTop| |ef2edf| |closedCurve| |ptree| |cycleEntry| |distFact| - |imagE| |power!| |f01bsf| |trunc| |nthCoef| |rk4qc| |ricDsolve| - |outputFloating| |numberOfVariables| |bezoutDiscriminant| |leftOne| - |s17ajf| |fractionFreeGauss!| |pushucoef| |digits| |loadNativeModule| - |incrementKthElement| |resultantEuclideannaif| |factorPolynomial| - |currentScope| |virtualDegree| |internalSubQuasiComponent?| - |generalizedContinuumHypothesisAssumed| |char| |minGbasis| |coleman| - |solid| |ramifiedAtInfinity?| |repeatUntilLoop| |character?| - |viewDefaults| |list| |setEmpty!| |OMputAtp| |child?| |binomThmExpt| - |physicalLength| |generalSqFr| |numberOfPrimitivePoly| - |monomialIntPoly| |physicalLength!| |trailingCoefficient| - |invertibleSet| |car| |compound?| |unit?| |numericalOptimization| - |complexZeros| |firstUncouplingMatrix| |roughBasicSet| |OMputEndAttr| - |resetNew| |prepareSubResAlgo| |cdr| |cyclic?| |lquo| |rightDivide| - |findBinding| |tubePlot| |branchPoint?| |createLowComplexityTable| - |quotient| |setDifference| |iFTable| |B1solve| |leader| - |generalLambert| |floor| |messagePrint| |sech2cosh| - |subQuasiComponent?| |float| |cAcsch| |showTypeInOutput| - |purelyTranscendental?| |setIntersection| |lazy?| |maxPoints3D| - |yCoord| |substring?| |squareFree| |quickSort| |and?| |eigenvector| - |composite| |whileLoop| |bezoutResultant| |f01ref| |decimal| - |setUnion| |exQuo| |s18def| |id| |pToDmp| |algebraicDecompose| - |lagrange| |mapMatrixIfCan| |BumInSepFFE| |integral| |unaryFunction| - |removeRoughlyRedundantFactorsInPol| |s13aaf| |rotate!| |apply| - |cycleSplit!| |groebnerFactorize| |suffix?| |tablePow| |fractRagits| - |negative?| |endSubProgram| |internalIntegrate| |leftScalarTimes!| - |void| |compBound| |lfintegrate| |e01sff| |gcdPolynomial| |contract| - |table| |cCsc| |closeComponent| |fortranLogical| |OMencodingXML| - |generateIrredPoly| |nullSpace| |halfExtendedSubResultantGcd2| - |extractClosed| |rational?| |minimumDegree| |size| |rootsOf| |null| - |prefix?| |new| |numberOfOperations| |constant?| |powmod| |ode| - |components| |setPoly| |zeroDim?| |debug3D| |zero?| |orthonormalBasis| - |iiacosh| |case| |getSyntaxFormsFromFile| |stripCommentsAndBlanks| - |sumOfDivisors| |zoom| |numerator| |iprint| |mainCoefficients| |scale| - |besselY| |extendIfCan| |key| |swapRows!| |Zero| |jacobiIdentity?| - |lyndon| |multiEuclidean| |mindegTerm| |showRegion| |shiftRoots| - |printHeader| |sts2stst| |headReduce| |moduloP| |first| |inHallBasis?| - |generalPosition| |commaSeparate| |One| |implies| |back| |setValue!| - GE |iilog| |filename| |solve1| |isPower| |index?| |OMputFloat| - |modifyPoint| |rest| |leftRank| |headAst| |headRemainder| |aCubic| - |getPickedPoints| |root?| GT |credPol| |root| |groebgen| - |reducedSystem| |substitute| |extendedSubResultantGcd| |equiv| |not?| - |iicsch| |fortranDoubleComplex| |mapExpon| |predicate| |xor| |graphs| - |contractSolve| LE |removeDuplicates| |evaluateInverse| - |curveColorPalette| |eyeDistance| |limitedIntegrate| |ddFact| |c06ecf| - |parse| |iibinom| |infix?| |mdeg| |fortranCarriageReturn| |hermite| - |getVariableOrder| LT |llprop| |exprHasAlgebraicWeight| |leadingIndex| - |presuper| |coerceL| |ratDsolve| |mask| |polyRDE| |mkAnswer| - |usingTable?| |aQuadratic| |setfirst!| |readLineIfCan!| - |skewSFunction| |resultant| |cSec| |label| |factorOfDegree| - |backOldPos| |groebner?| |basisOfCommutingElements| |algebraicOf| - |critBonD| |cycleLength| |cSinh| |intermediateResultsIF| |ldf2lst| - |oddlambert| |cAtan| |c02aff| |wronskianMatrix| |setErrorBound| - |firstSubsetGray| |fglmIfCan| |LazardQuotient2| |saturate| |swap!| - |integerBound| |startPolynomial| |simplifyPower| |cSin| |bottom!| - |iiasinh| |left| |roughUnitIdeal?| |lazyPquo| |e02baf| |repeating?| - |string| |infix| |pastel| |symbolTable| |xCoord| |retractIfCan| - |exponential| |printInfo!| |right| |power| |numberOfHues| |rischDEsys| - |dihedral| |head| |entries| |perfectNthRoot| |green| |element?| - |belong?| |mpsode| |dim| |arrayStack| |myDegree| |ravel| |iiacot| - |choosemon| |c06eaf| |discriminant| |pushFortranOutputStack| - |roughBase?| |ratDenom| |exptMod| |iiacsch| |d03faf| |solid?| |subst| - |parameters| |reshape| |fortran| |coefficient| |stFuncN| |weighted| - |vectorise| |multiplyCoefficients| |reducedContinuedFraction| - |popFortranOutputStack| |singularitiesOf| |push!| |Lazard| - |tensorProduct| |pushup| |lSpaceBasis| |pole?| |sorted?| |scan| - |conical| |listYoungTableaus| |outputAsFortran| |computeInt| - |generalizedEigenvectors| |OMsupportsCD?| |inconsistent?| - |makeGraphImage| |f02adf| |f07aef| |commutator| |leftRemainder| - |semiSubResultantGcdEuclidean2| |cyclotomicFactorization| |iiasech| - |arity| |OMputEndAtp| |countRealRoots| |discriminantEuclidean| - |diagonalMatrix| |alternating| |dot| |leadingTerm| - |selectNonFiniteRoutines| |primintfldpoly| |OMgetEndObject| - |primPartElseUnitCanonical!| |rightZero| |nand| |mulmod| - |cyclotomicDecomposition| |modifyPointData| |monicDecomposeIfCan| - |knownInfBasis| |e01bhf| |prod| |squareFreePart| - |genericRightMinimalPolynomial| |LyndonBasis| |symmetricProduct| - |univariatePolynomialsGcds| |separate| |update| |elliptic?| - |primextendedint| |OMconnectTCP| |prinshINFO| |listRepresentation| - |symmetricDifference| |determinant| |operator| |univariateSolve| - |OMputString| |variable?| |unitCanonical| |bandedHessian| - |startTableGcd!| |map| |adaptive| |makeYoungTableau| |scalarMatrix| - |objects| |cAcot| |const| |genericPosition| |powern| |legendre| - |cosh2sech| |colorDef| |approximants| |equiv?| |tanNa| |base| - |basisOfMiddleNucleus| |nextsousResultant2| |halfExtendedResultant2| - |more?| |stoseInvertible?sqfreg| |deleteRoutine!| |linear?| |f02axf| - |infinite?| |leftFactor| |symbol| |differentialVariables| |plot| - |iiacoth| |s17agf| |polygon| |nextPrimitiveNormalPoly| |makeSUP| - |reseed| |simplifyLog| |second| |generalizedInverse| |iiGamma| - |normDeriv2| |morphism| |c06gcf| |setright!| |generators| - |resetBadValues| |topFortranOutputStack| |primes| |third| |octon| - |integer| |euclideanNormalForm| |d01gbf| |OMgetError| |defineProperty| - |partialDenominators| |gcdprim| |cAsech| |convert| |setButtonValue| - |removeRedundantFactorsInContents| |pleskenSplit| |script| - |normalElement| |stoseIntegralLastSubResultant| |infieldint| - |dimensionOfIrreducibleRepresentation| |tubePoints| |OMReadError?| - |listexp| |tableau| |createZechTable| |less?| |e02akf| |permutations| - |quasiMonicPolynomials| |OMputError| |iteratedInitials| |interpret| - |explicitlyEmpty?| |vector| |factorGroebnerBasis| |pair?| |secIfCan| - |sec2cos| |keys| |OMgetEndBind| |An| |coordinates| |f04axf| - |evenInfiniteProduct| |leftQuotient| |differentiate| |host| |notelem| - |f02xef| |tex| |showAll?| |singleFactorBound| |setref| - |rewriteIdealWithHeadRemainder| |univariatePolynomial| |OMgetEndError| - |updatD| |linear| |brillhartTrials| |s17def| |ParCond| |elRow2!| - |characteristicPolynomial| |mapUp!| |c06fqf| |quadratic| |algint| - |outputArgs| |omError| |chebyshevU| |setAttributeButtonStep| |mapmult| - |multinomial| |monomial?| |derivationCoordinates| |collectUpper| - |polynomial| |seriesSolve| |removeRedundantFactorsInPols| |subCase?| - |blue| |minrank| |polarCoordinates| |OMencodingBinary| |supersub| - |rightMult| |rootPower| |presub| |totalDifferential| |previous| - |modTree| |connect| |localReal?| |zeroDimPrime?| |rename!| - |subresultantSequence| |fullDisplay| |OMgetBVar| - |leftRegularRepresentation| |simpleBounds?| |e04gcf| |readable?| - |adaptive3D?| |genericRightNorm| |testDim| |OMputBind| |true| - |rischNormalize| |rightMinimalPolynomial| |shallowExpand| |csubst| - |perspective| |critT| |combineFeatureCompatibility| |edf2fi| - |numberOfComposites| |stiffnessAndStabilityFactor| |subNode?| - |FormatArabic| |totolex| |and| |rationalPoint?| |e02ahf| |component| - |column| |setClipValue| |minPoints3D| |OMputApp| |resetVariableOrder| - |cycle| |complete| |wrregime| |sinh2csch| |maximumExponent| - |shiftLeft| |cCosh| |isTimes| |rowEchLocal| |brace| |asechIfCan| - |assign| |isExpt| |weight| |createRandomElement| |deepestInitial| - |henselFact| |lastSubResultantEuclidean| |iomode| |processTemplate| - |logGamma| |fortranLiteral| |finiteBasis| |sign| |leftExtendedGcd| - |unvectorise| |times!| |scripted?| |critMonD1| |tanAn| |OMputEndBVar| - |move| |bfKeys| |divergence| |interval| |mainVariable| |rootKerSimp| - |cartesian| |getStream| |OMgetInteger| |interpolate| |alphabetic?| - |showIntensityFunctions| |createGenericMatrix| |postfix| |one?| - |value| |newTypeLists| |beauzamyBound| |meshPar1Var| |expr| - |stosePrepareSubResAlgo| |product| |doubleResultant| |totalGroebner| - |rightUnits| |setColumn!| |primeFrobenius| |leadingExponent| - |children| |var1Steps| |lflimitedint| |lazyPseudoQuotient| - |symmetricTensors| |nthFractionalTerm| |heap| |f01rdf| - |pointSizeDefault| |box| |parametric?| |relationsIdeal| |lp| |merge| - |seriesToOutputForm| |Ci| |tanhIfCan| |s19adf| |Is| |solveid| - |getMultiplicationTable| |solveLinear| |numberOfMonomials| - |cyclicEntries| |integralMatrixAtInfinity| |exprToXXP| |binaryTree| - |idealiser| |basis| |variable| |elColumn2!| |superscript| |crest| - |iisqrt2| |decreasePrecision| |randomR| |acscIfCan| |hitherPlane| - |leadingIdeal| |s17acf| |numeric| |concat| |useSingleFactorBound| - |compiledFunction| |sum| |inspect| |ptFunc| |inverseColeman| - |unitNormal| |d02bbf| |generalizedEigenvector| |leastMonomial| - |radical| |linearDependence| |e02ddf| |topPredicate| - |basisOfRightNucleus| |orbits| |explimitedint| |sPol| |duplicates| - |extendedResultant| |c06ekf| |airyBi| RF2UTS |setprevious!| - |OMreadStr| |expenseOfEvaluation| |getProperties| |cExp| - |transcendentalDecompose| |next| |addPoint| |complementaryBasis| |mix| - |integral?| |f02aef| |stopMusserTrials| |linkToFortran| |d02gbf| - |changeWeightLevel| |e02dff| |mainMonomial| |setStatus!| - |leftDiscriminant| |ridHack1| |OMread| |measure| |coerceImages| - |iroot| |OMreceive| |rightCharacteristicPolynomial| |interReduce| - |extension| |d02cjf| |rightFactorIfCan| |continuedFraction| - |primPartElseUnitCanonical| |collect| |integralDerivationMatrix| - |removeIrreducibleRedundantFactors| |kovacic| - |resultantReduitEuclidean| |zeroDimensional?| |addiag| |deepExpand| - |linearAssociatedExp| |upDateBranches| |genericRightDiscriminant| - |cLog| |sechIfCan| |create| |OMclose| |definingPolynomial| |exquo| - |sn| |merge!| |leviCivitaSymbol| |stoseInvertibleSet| |outputMeasure| - |expandLog| |nthFactor| |order| |argumentListOf| |setEpilogue!| |div| - |makeViewport3D| |recip| |innerint| |toseInvertible?| - |changeNameToObjf| |f2df| |addBadValue| |cAcosh| |deepCopy| |quo| - |exponents| |fixedPointExquo| |nextNormalPoly| |trim| |d01ajf| - |exponentialOrder| |deepestTail| |extractIfCan| LODO2FUN - |expenseOfEvaluationIF| |read!| |mapUnivariate| |optpair| |hexDigit?| - |currentEnv| |tableForDiscreteLogarithm| |critpOrder| |exprex| - |quotientByP| |rem| |quote| |infinityNorm| |normal?| |cAsin| - |OMreadFile| |f01rcf| |cup| |newReduc| |toseInvertibleSet| - |graphState| |bivariatePolynomials| |argument| - |zeroSetSplitIntoTriangularSystems| |minPoints| |rightExtendedGcd| - |d02gaf| |hyperelliptic| |rightRankPolynomial| |iiacsc| - |listConjugateBases| |laurentRep| |factorByRecursion| |iExquo| - |antisymmetricTensors| |e04dgf| |identitySquareMatrix| |rootBound| - |f04mcf| |OMputEndObject| |setsubMatrix!| |adaptive?| - |complexEigenvalues| |youngGroup| |patternMatchTimes| |psolve| |deref| - |resetAttributeButtons| |multiplyExponents| |polar| |getExplanations| - |OMParseError?| |epilogue| |inGroundField?| |complexRoots| - |algebraicCoefficients?| |exp1| |linears| |imagk| |scopes| |unravel| - |clipParametric| |exprToUPS| |multiEuclideanTree| |increasePrecision| - |sumOfKthPowerDivisors| |term?| |outputSpacing| |setleaves!| |shift| - |cap| |dimensions| |sinhIfCan| |meatAxe| |multisect| - |balancedBinaryTree| |groebner| |extensionDegree| |gcdcofact| - |ignore?| |subResultantGcd| |invmultisect| |iifact| |symmetricSquare| - |mapDown!| |ord| |selectMultiDimensionalRoutines| |repSq| - |cRationalPower| UP2UTS |operation| |module| |sturmSequence| - |unrankImproperPartitions1| |cAsec| |computeBasis| |sylvesterMatrix| - |ffactor| |log2| |trueEqual| |permanent| |generic| |fill!| - |ScanFloatIgnoreSpacesIfCan| |andOperands| |not| |s20adf| |OMputBVar| - |reducedForm| |baseRDE| |f02aff| |elliptic| |d03edf| |safetyMargin| - |RemainderList| |lifting1| |kmax| |corrPoly| |normalise| |se2rfi| - |innerEigenvectors| |hasPredicate?| |mapCoef| |overbar| |pile| - |indices| |listLoops| |shiftRight| |countable?| |lieAlgebra?| - |compactFraction| |degreeSubResultant| |complexSolve| - |mainPrimitivePart| |asimpson| |fixPredicate| |outputGeneral| - |augment| |rootSplit| |irreducible?| |has?| |empty| |applyRules| - |removeSuperfluousCases| |prolateSpheroidal| |removeZero| - |nthExponent| |selectOrPolynomials| |init| |complex?| |redPo| - |outlineRender| |hex| |inverseLaplace| |dimensionsOf| - |normalizedDivide| |xn| |linearlyDependent?| |varList| - |factorSquareFreePolynomial| |rules| |e02ajf| |bracket| - |groebnerIdeal| |minIndex| |minset| |normalizeIfCan| |OMencodingSGML| - |makingStats?| |insertionSort!| |coordinate| |rootDirectory| - |rightGcd| |setTex!| |selectODEIVPRoutines| |extendedIntegrate| - |match?| |exprHasLogarithmicWeights| |sup| |categoryFrame| |dn| - |viewport2D| |iiperm| |stronglyReduced?| |integralAtInfinity?| - |viewport3D| |rotatez| |linearDependenceOverZ| |bitior| |lambda| - |initializeGroupForWordProblem| |ceiling| |viewPosDefault| |iisinh| - |s21bdf| ** |f04atf| |setMaxPoints| |cSech| |meshPar2Var| |center| - |principal?| |computeCycleLength| |impliesOperands| |factorsOfDegree| - |splitConstant| |getOperands| |universe| |reduction| |parent| - |diophantineSystem| |mathieu22| |algebraicSort| |revert| - |viewThetaDefault| |sh| |semiSubResultantGcdEuclidean1| - |subResultantGcdEuclidean| |contains?| |rightFactorCandidate| - |showClipRegion| EQ |figureUnits| |hexDigit| |testModulus| |d02ejf| - |rdregime| |linearlyDependentOverZ?| |integerIfCan| |c06gsf| - |lazyIntegrate| |s21baf| |raisePolynomial| |coHeight| |accuracyIF| - |fixedPoints| |mr| |thetaCoord| |radicalRoots| |doubleFloatFormat| - |fortranCharacter| |highCommonTerms| |cyclicSubmodule| - |integralCoordinates| |initTable!| |s14abf| |viewWriteDefault| |unit| - |prevPrime| |radix| |subset?| |iisec| |palginfieldint| - |removeConstantTerm| |leftExactQuotient| |numericalIntegration| - |degreeSubResultantEuclidean| |blankSeparate| |iisqrt3| |innerSolve| - |symbolIfCan| |s21bbf| |getGoodPrime| |lex| |constantOperator| - |screenResolution| |inc| |e04jaf| |semiResultantReduitEuclidean| - |palgint0| |univariate?| |stronglyReduce| |palglimint0| |cyclotomic| - |orOperands| |completeEchelonBasis| |reverseLex| |stFunc1| - |drawComplex| |df2fi| |ode2| |innerSolve1| |null?| |elRow1!| - |listOfLists| |shufflein| |Gamma| |alphanumeric| |f04faf| |datalist| - |plus| |setFormula!| |f04jgf| |simpsono| |clikeUniv| |s14baf| |prefix| - |intPatternMatch| |e01bgf| |rightTraceMatrix| |singRicDE| SEGMENT - |pr2dmp| |genericLeftMinimalPolynomial| |insert!| |musserTrials| - |infieldIntegrate| |integralLastSubResultant| |test| |f02akf| - |safeCeiling| |mainVariables| |ipow| |fprindINFO| |randnum| |name| - |sayLength| |writeLine!| |f01qdf| |error| |rightDiscriminant| - |expintfldpoly| |explogs2trigs| |precision| |body| |asecIfCan| - |extractTop!| |rootOfIrreduciblePoly| |s18dcf| |enqueue!| - |integralMatrix| |numberOfComputedEntries| |s17dgf| |assert| |times| - |sin2csc| |hypergeometric0F1| |powers| |nsqfree| - |isAbsolutelyIrreducible?| |clipBoolean| |tryFunctionalDecomposition| - |OMencodingUnknown| |oneDimensionalArray| |sqfrFactor| |drawCurves| - |lfunc| |d02raf| |countRealRootsMultiple| |s14aaf| |compose| |seed| - |f02aaf| |aspFilename| |stirling1| |viewDeltaYDefault| |vedf2vef| - |lifting| |subresultantVector| |vark| |squareMatrix| |makeResult| - |abelianGroup| |fintegrate| FG2F |torsion?| |mergeFactors| |monom| - |debug| |quasiMonic?| |optimize| |row| |axesColorDefault| |simplify| - |diagonals| |iiacos| |slash| |karatsubaDivide| - |tryFunctionalDecomposition?| |returns| D |position!| |sdf2lst| - |unitNormalize| |coth2trigh| |bitCoef| |internalLastSubResultant| - |addPoint2| |fortranLinkerArgs| |clearTheIFTable| |errorKind| |s01eaf| - |diff| |predicates| |terms| |common| |laplace| |coerceP| |f04maf| - |doublyTransitive?| |super| |radicalSimplify| |point| |f02agf| - |decompose| |notOperand| |droot| |perfectSqrt| |d02kef| |OMgetBind| - |palgLODE| |operators| |symbolTableOf| |s17aff| |iidprod| - |complexNumericIfCan| |npcoef| |generalTwoFactor| |size?| |insert| - |numericIfCan| |bivariate?| |failed| |cschIfCan| |sturmVariationsOf| - |irreducibleFactors| |po| |series| |coshIfCan| |dominantTerm| |e02zaf| - |stoseInvertibleSetreg| |symFunc| |t| |close!| |mvar| |nextPartition| - |clip| |s17adf| |any| |makeUnit| |mainVariable?| |sample| - |nonSingularModel| |e01bff| |multiple?| |OMputObject| |insertMatch| - |triangularSystems| |iicosh| |expPot| |nullity| |middle| - |systemSizeIF| |print| |pdct| |coord| |probablyZeroDim?| |invmod| - |laplacian| |euclideanSize| |SturmHabichtCoefficients| |upperCase| - |min| |mirror| |bipolarCylindrical| |reverse!| |UnVectorise| - |stopTableInvSet!| |totalDegree| |rk4a| |setStatus| |cardinality| - |linSolve| |c05adf| |eval| |primextintfrac| |addPointLast| |flatten| - |mkIntegral| |nil| |imagj| |lexico| |cn| |remainder| - |lazyIrreducibleFactors| |toseSquareFreePart| |qfactor| |inRadical?| - |radicalEigenvalues| |reindex| |f04arf| |identity| |s15adf| |s18acf| - |outputList| |writable?| |inf| |showTheIFTable| Y |ode1| |prinpolINFO| - |e02def| |palgRDE0| |e04mbf| |digit?| |isQuotient| |frobenius| - |approximate| |mergeDifference| |int| |createNormalPrimitivePoly| - |leftUnits| |meshFun2Var| |acosIfCan| |op| |cos2sec| |complex| - |d02bhf| |approxNthRoot| |quasiComponent| |tanSum| |d01aqf| - |rationalFunction| |conjugate| |lazyResidueClass| |pointColorPalette| - |eigenvalues| |opeval| |unary?| |createIrreduciblePoly| |composites| - |setClosed| |nthExpon| |monicModulo| |trapezoidal| |perfectSquare?| - |generic?| |nor| |newLine| |printInfo| |jacobi| |setVariableOrder| - |acothIfCan| |factorSquareFree| |fortranComplex| |edf2efi| - |eigenMatrix| |systemCommand| |high| |find| |prindINFO| |extract!| - |plotPolar| |height| |mainCharacterization| |rootPoly| - |solveLinearPolynomialEquation| |primintegrate| |setProperty| |s18aff| - |cyclic| |cothIfCan| |central?| |internalIntegrate0| |pop!| - |genericLeftNorm| |FormatRoman| |makeEq| |real?| |union| |weierstrass| - |outerProduct| |redpps| |rightScalarTimes!| |separateFactors| |normal| - |convergents| |patternVariable| |anticoord| |sincos| - |rewriteSetWithReduction| |zero| |jordanAlgebra?| |OMlistCDs| - |reducedDiscriminant| |s17akf| |oblateSpheroidal| |primitivePart!| - |goodPoint| |rename| |OMwrite| |associatedSystem| - |lazyPseudoRemainder| |input| |pmComplexintegrate| |f02bjf| - |identification| |completeHermite| |directSum| |And| |Lazard2| - |options| |getBadValues| |generalInfiniteProduct| |library| |bfEntry| - |is?| |solveLinearPolynomialEquationByFractions| |subPolSet?| |odd?| - |Or| |makeVariable| |graphImage| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|)
\ No newline at end of file + |Record| |Union| |symFunc| |trunc| |cos| |iicos| |basisOfRightNucloid| + |iiatanh| |realEigenvectors| |axes| |OMread| |copyInto!| |moebiusMu| + |OMputVariable| |match| |permutationRepresentation| + |commonDenominator| |tan| |cAsech| |isMult| |mainMonomials| + |ScanArabic| |nthRootIfCan| |graphCurves| |plot| |positiveRemainder| + |viewport2D| |cotIfCan| |chainSubResultants| |cot| |dom| |startTable!| + |shellSort| |OMputApp| |parametric?| |antisymmetricTensors| |find| + |getZechTable| |hexDigit?| |iisqrt2| |indices| |e02dff| |set| |sec| + |rischDE| |sh| |transcendent?| |prod| |viewSizeDefault| |swap!| + |linearMatrix| |viewWriteDefault| |linGenPos| |lazyGintegrate| |rk4f| + |list| |csc| |semiResultantEuclidean1| |expenseOfEvaluation| + |mapMatrixIfCan| |option?| |stopTableInvSet!| |rationalApproximation| + |fortranInteger| |extractPoint| |makeGraphImage| |lazyPremWithDefault| + |car| |startTableGcd!| |leader| |asin| |palglimint0| |print| |diff| + |mainDefiningPolynomial| |getConstant| |setValue!| + |nextsousResultant2| |overlap| |primPartElseUnitCanonical| + |mainVariable| |findCycle| |OMgetApp| |cdr| |acos| |substring?| + |returnTypeOf| |createIrreduciblePoly| |bumptab| + |factorSquareFreePolynomial| |mapmult| |inverse| |sizeMultiplication| + |quasiRegular?| |numberOfNormalPoly| |mapExpon| |setDifference| |tab1| + |atan| |partialNumerators| |mathieu24| |hypergeometric0F1| + |nextSublist| |selectFiniteRoutines| |title| |iicot| |infix| |s15adf| + |close!| |An| |acot| |dictionary| |suffix?| |backOldPos| + |cRationalPower| |binomThmExpt| |e01sbf| |fixedPoints| |cothIfCan| + |e02aef| |setPoly| |primitivePart| |asec| |argumentListOf| |rotatey| + |bumptab1| |getButtonValue| |setImagSteps| |binaryFunction| + |changeName| |basisOfLeftAnnihilator| |nthCoef| |pack!| |e| |iiacsch| + |acsc| |goto| |prefix?| |relationsIdeal| |reduced?| |e04dgf| |result| + |measure| |iiacoth| |void| |constantOpIfCan| |removeDuplicates!| + |singRicDE| |sinh| |OMwrite| |bivariateSLPEBR| |radicalSolve| |iilog| + |divideExponents| |newSubProgram| |numberOfCycles| |iiperm| + |tableForDiscreteLogarithm| |quoByVar| |cosh| |setButtonValue| + |brillhartIrreducible?| |semiSubResultantGcdEuclidean1| F + |totalDegree| |squareFreePart| |integerBound| |unit| + |decreasePrecision| |palgextint| |listLoops| |showSummary| |show| + |tanh| |objectOf| |cTan| |recolor| |resetVariableOrder| |implies| + |trivialIdeal?| |prindINFO| |lighting| |linearPolynomials| + |rootKerSimp| |quasiRegular| |coth| |d01asf| |getProperties| + |predicates| |multinomial| |normalDeriv| |lprop| |printTypes| + |leftFactorIfCan| |front| |controlPanel| |showAttributes| + |lyndonIfCan| |trace| |sech| |e02ajf| |particularSolution| |f04asf| + |BumInSepFFE| |predicate| |xor| |alphanumeric?| |iiexp| |cyclicCopy| + |pointColor| |f02adf| |csch| |infix?| |cyclotomic| |groebner?| + |semiIndiceSubResultantEuclidean| |physicalLength| |laurentIfCan| + |halfExtendedResultant2| |collect| |s18acf| |zeroDim?| |noKaratsuba| + |asinh| |mask| |infLex?| |iidsum| |composites| |rarrow| |powers| + |thetaCoord| |central?| |graphs| |OMgetFloat| |mvar| |acosh| + |binaryTournament| |f07fdf| UP2UTS |quoted?| |merge| |pastel| |c06gbf| + |romberg| |tValues| |atanh| |OMgetEndApp| |listBranches| + |splitDenominator| |identitySquareMatrix| |solve1| |lfextendedint| + |d01apf| |lfextlimint| |coordinates| |acoth| |setEpilogue!| + |constantToUnaryFunction| |subResultantGcdEuclidean| |rk4a| + |triangSolve| |s17agf| |explicitlyFinite?| |rk4qc| |loopPoints| + |asech| |associatedSystem| |cycle| |setCondition!| + |genericRightMinimalPolynomial| |indiceSubResultantEuclidean| |/\\| + |putGraph| |stronglyReduced?| |pr2dmp| |shiftRight| |d03faf| + |property| |basisOfCommutingElements| |integral| |palglimint| + |bracket| |\\/| |maxPoints| |symbolTable| |numerators| |retractIfCan| + |cartesian| |makeTerm| |subst| |parameters| NOT |cExp| |positiveSolve| + |generator| |terms| |normalizedAssociate| |printingInfo?| |prevPrime| + |fortranDouble| |df2mf| |unexpand| |dim| OR |kroneckerDelta| + |coth2tanh| |setrest!| |karatsuba| |monomial?| + |pushFortranOutputStack| |extend| |randomR| |ellipticCylindrical| + |sort!| |iisin| AND |block| |units| |plusInfinity| |setClosed| + |bitLength| |nsqfree| |writable?| |critpOrder| |debug3D| |module| + |removeRedundantFactorsInContents| |minusInfinity| |bubbleSort!| + |seriesToOutputForm| |generalSqFr| |upperCase!| |contractSolve| + |f07aef| |nextPartition| |orOperands| |sort| |ref| |lllip| |rootBound| + |isPower| |e02adf| |removeSinhSq| |mapBivariate| |smith| |normalForm| + |contains?| |complete| |setStatus| |startStats!| |shuffle| |over| + |countable?| |complement| |ridHack1| |mainForm| |truncate| + |returnType!| |cyclicParents| |coerceImages| |gethi| |iicsc| + |OMUnknownSymbol?| |digamma| |objects| |laplace| |expint| |relerror| + |LyndonBasis| |extract!| |integralAtInfinity?| |f01maf| |f04axf| + |replaceKthElement| |leastAffineMultiple| |base| |unaryFunction| + |transcendentalDecompose| |groebnerIdeal| |lo| |startPolynomial| + |homogeneous?| |map| |insertRoot!| |genericLeftMinimalPolynomial| + |type| |lllp| |tanintegrate| |random| |bumprow| |clearTable!| + |constantLeft| |incr| |createNormalPoly| |getStream| |ricDsolve| + |unparse| |cardinality| |nthExpon| |sturmSequence| + |derivationCoordinates| |hi| |qinterval| |rootDirectory| |calcRanges| + |mainSquareFreePart| |divisor| * |algebraicOf| |untab| + |numberOfPrimitivePoly| |index?| |more?| |s19acf| |clip| |monomials| + |merge!| |second| |sumOfSquares| |squareFreePolynomial| |biRank| + |isAbsolutelyIrreducible?| |leftUnit| |addMatch| |latex| |exprex| + |zero?| |iiacot| |third| |minIndex| |integer?| |radicalRoots| + |cyclicEntries| |univcase| |elem?| |s20acf| |OMlistCDs| + |explimitedint| |conjug| |f04mcf| |htrigs| |linearAssociatedOrder| + |remainder| |ran| |commutator| |euclideanNormalForm| |totalfract| + |prologue| |e01baf| |dmpToHdmp| |iroot| |root?| |linear| |cons| + |lieAlgebra?| |getOrder| |setFieldInfo| |high| |keys| + |indicialEquation| |leftLcm| |symmetricProduct| + |indicialEquationAtInfinity| |cscIfCan| |symbol| |slex| |separant| + |isOp| |mkAnswer| |subNode?| |OMencodingBinary| |bsolve| + |simplifyPower| |ksec| |rightGcd| |expression| |polynomial| + |extractClosed| |basisOfMiddleNucleus| |screenResolution| |whileLoop| + |tanSum| |linSolve| |collectUpper| |plotPolar| |integer| |besselI| + |complexEigenvectors| |OMputError| |chvar| |previous| |optional?| + |unitNormalize| |ODESolve| |clipBoolean| |OMputFloat| + |fortranCompilerName| |twoFactor| |ef2edf| |corrPoly| + |stoseInvertibleSetsqfreg| |swapColumns!| |c06gqf| + |stoseInvertible?sqfreg| |integralMatrixAtInfinity| |setFormula!| + |d01bbf| |sub| |ignore?| |nextPrime| |mapUp!| |shiftRoots| |f01mcf| + |hasHi| |source| |inR?| |fixedDivisor| |signature| |att2Result| + |f02awf| |universe| |ranges| |outputFixed| |invmod| + |doubleFloatFormat| |quartic| |setMinPoints3D| |deepestTail| + |leviCivitaSymbol| |callForm?| |tanNa| |branchIfCan| |solid| + |clearTheFTable| |semicolonSeparate| |credPol| |argscript| |scripted?| + |eulerE| |sPol| |indicialEquations| |extractTop!| |fortranTypeOf| + |showAllElements| |lazyIrreducibleFactors| |zeroMatrix| |OMgetEndBVar| + |choosemon| |divisors| |FormatArabic| |complex?| |coefChoose| + |integralBasisAtInfinity| |yCoordinates| |tanQ| |sturmVariationsOf| + |width| |hyperelliptic| |reducedDiscriminant| |d01aqf| |fractionPart| + |Frobenius| |bright| |OMreceive| |localAbs| |divideIfCan!| |target| + |rational?| |cCos| |bezoutResultant| |usingTable?| |atanIfCan| + |stoseLastSubResultant| |cSin| |diag| |nonLinearPart| + |iteratedInitials| |d01gbf| |idealSimplify| |coth2trigh| |nand| + |var1Steps| |mainCharacterization| |properties| |setTex!| + |rootNormalize| |f04jgf| |f02bbf| |reduction| |preprocess| + |ListOfTerms| |imagK| |box| |rootSimp| |exprToXXP| |translate| |hue| + |closedCurve| |e04jaf| |rightRank| |antisymmetric?| |laplacian| + |c06fqf| |nextIrreduciblePoly| |lp| |content| |drawComplexVectorField| + |normalise| |sequence| |dimension| |zCoord| |subResultantGcd| + |lastSubResultant| |printHeader| |deleteRoutine!| |expr| |direction| + |critMonD1| |showScalarValues| |optional| |localUnquote| + |iterationVar| |lazyPrem| |ramifiedAtInfinity?| |HermiteIntegrate| + |rightAlternative?| |delete| |fortranCharacter| |root| |extractIfCan| + |trigs| |ptree| |extractSplittingLeaf| |extendedint| |duplicates| + |rootOfIrreduciblePoly| |btwFact| |conical| |setPredicates| |cond| + |toseSquareFreePart| |numeric| |poisson| |generate| |wholePart| + |totolex| |updateStatus!| |redPo| |simplifyExp| + |nativeModuleExtension| |pointLists| |pade| |radical| |minimumDegree| + |varselect| |bitCoef| |aQuadratic| |neglist| |currentCategoryFrame| + |rightCharacteristicPolynomial| |variable| |plenaryPower| + |explicitlyEmpty?| |irreducibleFactors| |incrementBy| |solve| |f01ref| + |rationalFunction| |reopen!| |rightRankPolynomial| + |eisensteinIrreducible?| |iterators| |selectODEIVPRoutines| + |flexibleArray| |aromberg| |expand| |stoseInvertibleSet| + |symmetricPower| |viewDeltaXDefault| |rootRadius| |mulmod| |rootPoly| + |tan2trig| |colorFunction| |simpsono| |filterWhile| |c06eaf| + |upperCase?| |deriv| |repeatUntilLoop| |lflimitedint| |bottom!| |elt| + |binaryTree| |style| |constDsolve| |filterUntil| |s17akf| + |exteriorDifferential| |invmultisect| |euclideanSize| |realRoots| + |f07fef| |areEquivalent?| |se2rfi| |cycleEntry| |select| + |lowerPolynomial| |c05pbf| |parent| |consnewpol| |sts2stst| |OMsend| + |curve| |e02bbf| |OMputEndBind| |decrease| |mapUnivariateIfCan| + |approximants| |rationalPoint?| |shade| |quadratic| |linear?| + |qfactor| |derivative| |changeThreshhold| |expintegrate| |s18dcf| + |extendedResultant| |padicFraction| |enumerate| |besselK| + |highCommonTerms| |groebgen| |tanAn| LODO2FUN |decimal| |recur| + |measure2Result| |rubiksGroup| |log10| |outlineRender| |alternative?| + |partialFraction| |rootsOf| |s13adf| |bitand| |conjugates| |conjugate| + |internalLastSubResultant| |iiacsc| |infRittWu?| |stopTable!| + |withPredicates| |po| |listYoungTableaus| |OMgetError| |getRef| + |setfirst!| |primeFactor| |gcdcofactprim| |completeEval| + |extendedIntegrate| |forLoop| |nil?| |iifact| |makeRecord| + |currentEnv| |semiResultantReduitEuclidean| |ramified?| |acschIfCan| + |cyclotomicDecomposition| |lazyPseudoQuotient| |interReduce| + |perfectNthPower?| |factorGroebnerBasis| |dmpToP| |fortranLiteralLine| + |medialSet| |index| |toseLastSubResultant| |SturmHabichtCoefficients| + |readIfCan!| |iiasinh| |basisOfCenter| |innerEigenvectors| + |oddintegers| |rationalPower| |sizePascalTriangle| |e01saf| + |linearPart| |headReduce| |solveLinearPolynomialEquation| + |SturmHabichtMultiple| |distFact| |getMeasure| |option| |limitPlus| + |bringDown| |diophantineSystem| |any?| |algint| |cycleElt| |idealiser| + |basisOfNucleus| |clikeUniv| |outputMeasure| |e02ahf| |OMgetSymbol| + |pair| |minPoly| |character?| BY |f02axf| |inRadical?| + |expenseOfEvaluationIF| |OMputEndBVar| |SturmHabicht| |exQuo| |c06ekf| + |hex| |enqueue!| |padecf| |reducedSystem| |atanhIfCan| |norm| + |oblateSpheroidal| |checkPrecision| |rightExactQuotient| |addPoint2| + |edf2ef| |resultantnaif| |heapSort| |computeInt| |OMgetString| + |numberOfOperations| |function| |discriminant| |cAtanh| + |lazyResidueClass| |listConjugateBases| |zeroDimPrimary?| + |cyclicSubmodule| |realZeros| |fixedPoint| |coshIfCan| |operation| + |jordanAdmissible?| |symmetricSquare| |readLineIfCan!| + |removeRoughlyRedundantFactorsInPols| |symmetricTensors| |typeLists| + |exprHasLogarithmicWeights| |modulus| |rotate| |completeHensel| + |extractProperty| |tanh2trigh| |moduloP| |modifyPointData| |genus| + |create3Space| |palgint| |OMconnInDevice| |palgint0| + |validExponential| |d03eef| |iitan| |upperCase| |extension| + |selectsecond| |basisOfLeftNucleus| |permutationGroup| |fortranReal| + |s19abf| |fortran| |s13acf| |delta| |nthFlag| |outputArgs| + |primintegrate| |powerSum| |hasPredicate?| |pair?| |component| + |defineProperty| |inverseLaplace| |mathieu22| |showArrayValues| + |univariateSolve| |roughUnitIdeal?| |basis| |s14baf| |s17aef| + |integralMatrix| |li| |laguerre| |normalDenom| |s18def| + |changeMeasure| |viewWriteAvailable| |radicalEigenvalues| |range| + |imagE| |makeprod| |fortranLinkerArgs| |chiSquare| |printStatement| + |viewDefaults| |entry| |extendedSubResultantGcd| |hasTopPredicate?| + |move| |rule| |basisOfRightAnnihilator| |mathieu23| |airyBi| |getlo| + |nthFractionalTerm| |movedPoints| |read!| |dominantTerm| |pattern| + |removeRoughlyRedundantFactorsInContents| |rules| |mapDown!| + |skewSFunction| |PDESolve| |roughSubIdeal?| |moduleSum| |s21bcf| + |constant?| |varList| |pointColorPalette| |limit| |clearCache| + |inHallBasis?| |imagJ| |sup| |partialQuotients| |setAdaptive3D| + |putColorInfo| |lambda| |signAround| |Si| |laurentRep| |mirror| + |ravel| |sparsityIF| |log| |internal?| |generalizedEigenvectors| |lcm| + |center| |innerSolve| |noncommutativeJordanAlgebra?| |maxIndex| + |partitions| |monicDecomposeIfCan| |distribute| |mapCoef| |reshape| + |empty?| |point?| |complexLimit| |message| |logIfCan| |column| + |mapExponents| |omError| |useSingleFactorBound?| |reorder| |append| + |OMputEndAttr| |singularAtInfinity?| |clearTheIFTable| |algebraicSort| + |dimensionsOf| |abs| |pushup| |gcd| + |solveLinearPolynomialEquationByRecursion| |secIfCan| |fibonacci| + |pToDmp| |LowTriBddDenomInv| |heap| |cross| |approxSqrt| |bfKeys| + |false| |intPatternMatch| |sechIfCan| |insertTop!| |script| |iisech| + |numberOfComputedEntries| |const| |vconcat| |numberOfFractionalTerms| + |socf2socdf| |power!| |element?| |bipolarCylindrical| |setEmpty!| + |setlast!| |satisfy?| |powmod| |update| |stoseSquareFreePart| + |meshPar2Var| |patternVariable| |elements| = |generalPosition| + |OMsupportsSymbol?| |Gamma| |domainOf| |e02zaf| |matrixConcat3D| + |schema| |semiDiscriminantEuclidean| |tex| |iiabs| |nonQsign| |redPol| + |mapUnivariate| |#| |magnitude| |lowerCase?| |cCot| |rightQuotient| < + |cylindrical| |hMonic| |s19adf| |datalist| |sinhIfCan| |generators| + |leastMonomial| > |normalizedDivide| |prefix| |factorByRecursion| + |comment| |nextsubResultant2| |anfactor| |listexp| + |exprHasAlgebraicWeight| |sin?| |bandedJacobian| <= |knownInfBasis| + |checkRur| |lSpaceBasis| |logGamma| |exactQuotient!| |test| + |symbolIfCan| |plus| |meshFun2Var| |squareFreePrim| >= |safeFloor| + |superHeight| |subPolSet?| |coerceS| |gcdPolynomial| |position| + |precision| |LyndonWordsList| |jacobian| |OMgetObject| + |unprotectedRemoveRedundantFactors| |eq?| |symbolTableOf| + |enterInCache| |space| |perspective| |doubleResultant| |updatD| + |cCsch| |dAndcExp| |internalSubPolSet?| |principal?| |create| |slash| + + |addmod| |currentScope| |Is| |elliptic| |makeFR| |swapRows!| + |e02agf| |times| |tanh2coth| |yCoord| - ~= |writeLine!| |changeVar| + |numberOfFactors| |lookup| |wreath| |belong?| |close| |gramschmidt| + |oddInfiniteProduct| / |coerce| |nullity| |delay| |fortranLiteral| + |tableau| |limitedint| |anticoord| |linearDependence| + |resultantEuclidean| |construct| |bivariatePolynomials| |contract| + |odd?| |besselJ| |remove| |display| |buildSyntax| |mathieu12| + |meatAxe| |binomial| |printStats!| |pole?| |s17aff| |distance| + |applyRules| |hessian| |monom| |f2st| |leadingIndex| |leadingTerm| + |optimize| |exists?| |lineColorDefault| |fortranLogical| |last| + |resetBadValues| |intcompBasis| |acosIfCan| |wordInStrongGenerators| + |froot| |assoc| |exponents| |hconcat| |npcoef| |point| |s21bbf| + |createMultiplicationMatrix| |maxdeg| |brillhartTrials| + |viewPhiDefault| |OMencodingSGML| |useEisensteinCriterion| |iCompose| + |common| |denominator| |critT| |setTopPredicate| |binary| |lyndon?| + |startTableInvSet!| |ldf2vmf| |complexIntegrate| |bezoutMatrix| + |computeCycleLength| |karatsubaDivide| |totalGroebner| |rroot| + |realElementary| |createZechTable| |d03edf| |series| |pushdown| |swap| + |squareFree| |jacobiIdentity?| |virtualDegree| |vertConcat| |multiset| + |goodnessOfFit| |pushdterm| |prinb| |initials| |f01qdf| |middle| + |tubeRadius| |iidprod| |finiteBasis| |OMclose| |fillPascalTriangle| + |pow| |setAdaptive| |nextLatticePermutation| |solveid| |cCsc| + |complexElementary| |sincos| |e02ddf| |multisect| |increase| + |ocf2ocdf| |makeVariable| |df2st| |createLowComplexityNormalBasis| + |min| |mpsode| |combineFeatureCompatibility| |presuper| + |getIdentifier| |argument| |sorted?| |bipolar| |OMencodingXML| + |topFortranOutputStack| |minColIndex| |cos2sec| |copies| + |removeSuperfluousCases| |flatten| |associatedEquations| + |generalTwoFactor| |fixedPointExquo| |cn| |chebyshevT| |quickSort| + |realSolve| |conditionP| |selectNonFiniteRoutines| |dioSolve| + |getMultiplicationMatrix| |transform| + |setLegalFortranSourceExtensions| |rightUnits| |packageCall| + |semiDegreeSubResultantEuclidean| |s17def| |setelt| |normalize| + |safetyMargin| |purelyAlgebraic?| |next| |getGoodPrime| |freeOf?| + |tryFunctionalDecomposition?| |rationalIfCan| |maxColIndex| |digit?| + |makingStats?| |collectUnder| |less?| |systemSizeIF| |endOfFile?| + |impliesOperands| |cubic| |copy| |resultantReduit| |isQuotient| + |leftZero| |complexNumericIfCan| |integers| |mainContent| + |paraboloidal| |enterPointData| |rightDiscriminant| |lyndon| |rk4| + |size?| |closeComponent| |balancedBinaryTree| + |stoseInternalLastSubResultant| |associative?| + |leadingCoefficientRicDE| |s21baf| |internalSubQuasiComponent?| + |getMultiplicationTable| |sinIfCan| |taylorIfCan| |prolateSpheroidal| + |isobaric?| |e01sef| |topPredicate| |expt| |autoCoerce| + |complexNormalize| |headReduced?| |nextNormalPoly| |companionBlocks| + |systemCommand| |hash| |definingPolynomial| |edf2fi| |coerceL| |hclf| + |atoms| |graphImage| |equiv?| |critB| |sign| |arrayStack| |count| + |printInfo| |rightPower| |d02bhf| |plus!| + |zeroSetSplitIntoTriangularSystems| |height| |var2StepsDefault| |scan| + |generateIrredPoly| |prefixRagits| |rewriteSetWithReduction| |df2ef| + |cyclicGroup| |factorList| |showTheSymbolTable| |outerProduct| |or?| + |LyndonWordsList1| |e04ucf| |normal| |subscriptedVariables| + |external?| |returns| |lintgcd| |rootProduct| |primintfldpoly| + |isPlus| |dfRange| |someBasis| |factorsOfDegree| |nodes| |seed| |and?| + |setColumn!| |ScanFloatIgnoreSpaces| |equivOperands| + |clipPointsDefault| |e02akf| |bitTruth| |errorInfo| |stoseInvertible?| + |multiEuclidean| |ParCond| |insertionSort!| |expextendedint| + |RemainderList| |getCode| |primes| |pdct| |wholeRagits| |nthRoot| + |zero| |cfirst| |LazardQuotient| |trim| |c06fpf| |basisOfRightNucleus| + |groebner| |generalizedContinuumHypothesisAssumed| |quadraticForm| + |summation| |algintegrate| |lowerCase| |expintfldpoly| |lex| + |invertible?| |solveLinearlyOverQ| |allRootsOf| |And| |solveLinear| + |leftExtendedGcd| |Beta| |position!| |sn| |approxNthRoot| + |retractable?| |rational| |Or| |pdf2df| |replace| |numericIfCan| + |sylvesterSequence| |binarySearchTree| |rightLcm| |rightTrace| + |ratDsolve| |Not| |removeZero| |factorSquareFreeByRecursion| + |imaginary| |nullSpace| |jordanAlgebra?| |genericLeftTrace| + |RittWuCompare| |minPoints| |boundOfCauchy| |coordinate| |Ei| + |permutations| |prime?| |cyclePartition| |numberOfComposites| + |primeFrobenius| |OMgetEndObject| |charthRoot| |alphanumeric| + |wordsForStrongGenerators| |myDegree| |eigenvector| |rightUnit| + |makeop| |numberOfImproperPartitions| |zeroOf| |lifting1| |polygon?| + |constantOperator| |splitConstant| |pseudoRemainder| |coord| |elRow2!| + |fracPart| |genericRightTraceForm| |removeCosSq| |alphabetic| + |regularRepresentation| |OMlistSymbols| |rCoord| |mindegTerm| + |numberOfMonomials| |d01ajf| |e01bef| |mr| |say| |pascalTriangle| + |clearFortranOutputStack| |symmetricRemainder| |minGbasis| + |splitNodeOf!| |multiple| |f01qcf| |lexico| |or| |solveRetract| + |octon| |orbits| |extensionDegree| |explogs2trigs| |roman| + |applyQuote| |constructorName| |getPickedPoints| |factorFraction| + |unvectorise| |squareFreeLexTriangular| |polyRDE| |leadingBasisTerm| + |birth| |primaryDecomp| |bivariate?| |cot2trig| |entry?| + |stiffnessAndStabilityFactor| |quasiComponent| |nthExponent| + |rightExtendedGcd| |lfinfieldint| |functionIsFracPolynomial?| + |halfExtendedSubResultantGcd2| |generalizedInverse| |cosIfCan| + |wholeRadix| |minPol| |taylorRep| |ruleset| |checkForZero| |distdfact| + |quasiMonicPolynomials| |OMopenString| |sdf2lst| |e01daf| |setRow!| + |primPartElseUnitCanonical!| |radPoly| |squareTop| |reset| |d01alf| + |baseRDEsys| |composite| |linearAssociatedLog| |leadingExponent| + |cAcos| |kmax| |f04faf| |leftExactQuotient| |triangular?| + |getOperands| |characteristicPolynomial| |probablyZeroDim?| |suchThat| + |hasoln| |splitLinear| |write| |regime| |absolutelyIrreducible?| + |gcdcofact| |modularGcd| |sinhcosh| |showRegion| |ode2| + |exponentialOrder| |removeRedundantFactors| |save| |duplicates?| |bag| + |asecIfCan| |internalZeroSetSplit| |mat| |leftDiscriminant| |times!| + |subSet| |deepExpand| |OMgetType| |viewPosDefault| |coleman| + |internalDecompose| |mainKernel| |weights| + |halfExtendedSubResultantGcd1| |dihedral| |critM| |radicalEigenvector| + |lazyVariations| |selectOrPolynomials| |addBadValue| |setProperties!| + |cschIfCan| |weierstrass| |isList| |sech2cosh| |d02gaf| + |definingEquations| |midpoints| |mathieu11| |inspect| |rst| + |polyRicDE| |OMunhandledSymbol| |constant| |reducedContinuedFraction| + |trueEqual| |overset?| |reducedQPowers| |iiasec| + |sumOfKthPowerDivisors| |iiasin| |rightZero| |basisOfLeftNucloid| + |Lazard2| |quotedOperators| |monomRDE| |iiGamma| |iibinom| + |monomRDEsys| |gradient| |children| |makeSeries| + |invertibleElseSplit?| |float?| |eigenMatrix| |loadNativeModule| + |s17ahf| |nary?| |e04mbf| |d01anf| |stirling2| |asechIfCan| |char| + |numericalIntegration| |leftMinimalPolynomial| |roughEqualIdeals?| + |nextNormalPrimitivePoly| |fixPredicate| |innerSolve1| + |LagrangeInterpolation| |nextItem| |intensity| |iisinh| |testDim| + |OMreadFile| |aQuartic| |collectQuasiMonic| |notOperand| + |createRandomElement| |hspace| |mkPrim| |quasiMonic?| |one?| + |OMputEndAtp| |tanIfCan| |jacobi| |negative?| |linearAssociatedExp| + |LyndonCoordinates| |subQuasiComponent?| |light| |alternatingGroup| + |primlimintfrac| |cAtan| |explicitEntries?| |permanent| |hdmpToP| + |float| |harmonic| |schwerpunkt| + |rewriteIdealWithQuasiMonicGenerators| |multiple?| |csch2sinh| + |clipWithRanges| |cAcosh| |search| |transcendenceDegree| + |torsionIfCan| |psolve| |iiatan| |saturate| |redpps| |term?| + |difference| |numerator| |lhs| |readLine!| |factorial| |degree| + |factorset| |qqq| |printCode| |head| |ptFunc| |removeSinSq| + |singleFactorBound| |rhs| |singularitiesOf| |formula| |invertIfCan| + |stoseInvertible?reg| |listRepresentation| |connect| |in?| |e04naf| + |fractRadix| |qPot| |pushucoef| |getBadValues| |assign| + |linearlyDependentOverZ?| |basicSet| |lquo| |lazyPseudoDivide| + |cAcsch| |frobenius| |outputGeneral| |mainVariables| |null| |monic?| + |droot| |irreducibleFactor| |Aleph| |complexZeros| |normDeriv2| + |prime| |mdeg| |minus!| |cycleRagits| |node| |OMgetAttr| |case| + |degreePartition| |endSubProgram| |palgintegrate| |d02raf| |arguments| + |integralRepresents| |f07adf| |e02bdf| |OMputBind| |f01rcf| |key| + |rotatex| |Zero| |OMputEndApp| |bernoulli| |nrows| |shrinkable| + |inGroundField?| |dmp2rfi| |variationOfParameters| + |addMatchRestricted| |matrixGcd| |dark| |factorials| + |shanksDiscLogAlgorithm| |insertBottom!| |null?| |One| + |deepestInitial| |ncols| |whatInfinity| GE |filename| + |degreeSubResultantEuclidean| |frst| |s21bdf| |countRealRoots| + |newTypeLists| |generic| |hasSolution?| |c02aff| |OMputInteger| + |deref| |mainMonomial| GT |iprint| |setMinPoints| |imagI| |row| + |infiniteProduct| |not?| |permutation| |localReal?| + |symmetricDifference| |setVariableOrder| |pseudoQuotient| |rightTrim| + LE |primitive?| |maxrank| |OMputObject| |even?| |numberOfChildren| + |parse| |setleft!| |deepCopy| |ReduceOrder| |isExpt| + |selectPolynomials| |leftTrim| LT |leftAlternative?| + |factorSFBRlcUnit| |outputSpacing| |pol| |doubleComplex?| |top| + |push!| |specialTrigs| |geometric| |rightDivide| |makeYoungTableau| + |continue| |label| |upDateBranches| |inverseColeman| |getGraph| + |s18adf| |setref| |generalInfiniteProduct| |integerIfCan| + |internalIntegrate| |userOrdered?| |viewDeltaYDefault| |entries| + |showTypeInOutput| |fortranCarriageReturn| |ipow| |augment| + |createThreeSpace| |tree| |perfectSqrt| |diagonalProduct| + |complexRoots| |firstUncouplingMatrix| |rischNormalize| + |rightScalarTimes!| |mergeDifference| |outputList| |digits| |remove!| + |level| |toroidal| |lastSubResultantElseSplit| |discreteLog| + |LazardQuotient2| |countRealRootsMultiple| |nodeOf?| |morphism| + |string| |closedCurve?| |lowerCase!| |singular?| |low| |fill!| + |elRow1!| |algebraic?| |OMmakeConn| |BasicMethod| |f01qef| + |graphStates| |f01brf| |certainlySubVariety?| |cup| |beauzamyBound| + |resetAttributeButtons| |c05nbf| |color| |henselFact| |vedf2vef| + |equation| |e02gaf| |f04atf| |phiCoord| |leftPower| |d01amf| |child| + |moebius| |wronskianMatrix| |check| |setPrologue!| |OMconnOutDevice| + |curve?| |axesColorDefault| |insertMatch| |discriminantEuclidean| + |indiceSubResultant| |weight| |acothIfCan| |determinant| |mapdiv| + |euclideanGroebner| |supDimElseRittWu?| |unitNormal| + |screenResolution3D| |mainCoefficients| |complexForm| |bfEntry| + |directory| |charpol| |cot2tan| |eigenvectors| |useNagFunctions| |dec| + |blankSeparate| |setleaves!| |integrate| |red| |setMaxPoints3D| + |Lazard| |leftScalarTimes!| |uniform| |setLabelValue| |zeroDimPrime?| + |iicoth| |setIntersection| |algDsolve| |d01gaf| |resetNew| + |showTheFTable| |mesh| |functionIsContinuousAtEndPoints| + |stiffnessAndStabilityOfODEIF| |d02kef| |scalarMatrix| |evenlambert| + |rightMinimalPolynomial| |genericRightDiscriminant| |setUnion| + |concat!| |hermite| |rootSplit| |rewriteIdealWithHeadRemainder| |id| + |horizConcat| |ratpart| |member?| |s14aaf| |findBinding| + |stopMusserTrials| |maxRowIndex| |apply| |symbol?| |int| |fprindINFO| + |mightHaveRoots| |weakBiRank| |ScanFloatIgnoreSpacesIfCan| + |lastSubResultantEuclidean| |roughBasicSet| |cycleTail| + |perfectNthRoot| |curryLeft| |rquo| |expandPower| + |incrementKthElement| |karatsubaOnce| |exprHasWeightCosWXorSinWX| + |table| |setErrorBound| |evaluate| |multMonom| |fmecg| + |separateFactors| |OMputString| |size| |OMputAttr| + |characteristicSerie| |zeroSquareMatrix| |meshPar1Var| |listOfLists| + |new| |normal01| |factorSquareFree| |write!| |algebraicCoefficients?| + |flexible?| |viewZoomDefault| |trapezoidalo| |purelyTranscendental?| + |newReduc| |coerceListOfPairs| |randomLC| |quadratic?| |compBound| + |edf2df| |multiplyExponents| |setnext!| |genericPosition| + |setMaxPoints| |simplify| |realEigenvalues| |triangularSystems| + |s15aef| |OMgetBind| |redmat| |tubePlot| |lift| + |inverseIntegralMatrixAtInfinity| |cAcoth| |c06gcf| |twist| |first| + |diagonalMatrix| |scale| |Ci| |reducedForm| |leftGcd| + |algebraicVariables| |reduce| |cap| |iisqrt3| + |genericLeftDiscriminant| |minimalPolynomial| |rest| |normalized?| + UTS2UP |curry| |rowEchelonLocal| |andOperands| |every?| |substitute| + |d02bbf| |restorePrecision| |f02aaf| |partition| |antiCommutator| + |tab| |stop| |is?| |iomode| |asinIfCan| |rename!| |setPosition| + |charClass| |removeDuplicates| |createNormalPrimitivePoly| + |prepareSubResAlgo| |irreducible?| |OMbindTCP| |tensorProduct| + |nullary?| |rspace| |lepol| |GospersMethod| |cLog| |monomialIntegrate| + |getVariableOrder| |symmetric?| |univariatePolynomial| |Hausdorff| + |tubePoints| |c06frf| |lifting| |pomopo!| |copy!| |representationType| + |shallowExpand| |pureLex| |resultantEuclideannaif| |bit?| |flagFactor| + |fortranComplex| |matrixDimensions| |green| |linkToFortran| |cSech| + |lazy?| |createNormalElement| |randnum| |shufflein| |firstSubsetGray| + |lfintegrate| |top!| |convergents| |commutativeEquality| |diagonals| + |variable?| |computePowers| |stosePrepareSubResAlgo| |uniform01| + |left| |palgLODE| |selectSumOfSquaresRoutines| |exp1| |setright!| + |bits| |largest| |clipSurface| |iicosh| |associates?| |hdmpToDmp| + |right| |binding| |constantRight| |branchPoint?| |delete!| |exponent| + ~ |subNodeOf?| |pointData| |toseInvertibleSet| |besselY| |reverse| + |nthr| |divisorCascade| |s20adf| |pseudoDivide| + |generalizedEigenvector| |expandTrigProducts| |powern| + |balancedFactorisation| |showFortranOutputStack| |matrix| |true| + |numer| |categories| |tanhIfCan| |atrapezoidal| |baseRDE| |c06ebf| + |integralDerivationMatrix| |popFortranOutputStack| |open| + |definingInequation| |dimensions| |laguerreL| |has?| |alternating| + |denom| |curveColor| |hostPlatform| |processTemplate| |and| + |subresultantSequence| |makeCos| |outputAsFortran| |iiacos| + |leftUnits| |aspFilename| |problemPoints| |OMputSymbol| + |solveLinearPolynomialEquationByFractions| |sortConstraints| |string?| + |nextPrimitivePoly| |internalIntegrate0| |polCase| |llprop| |cyclic?| + |OMgetEndError| |localIntegralBasis| |pi| |OMReadError?| |cosSinInfo| + |subresultantVector| |xCoord| |escape| |finite?| |quatern| |OMgetAtp| + |tubePointsDefault| |square?| |infinity| |operators| |edf2efi| + |pToHdmp| |compose| |qroot| |d02gbf| |csubst| |internalAugment| + |sayLength| |scalarTypeOf| |code| |decomposeFunc| |fglmIfCan| |e01sff| + |powerAssociative?| |commutative?| |simpson| |fTable| |e02bcf| + |maxPoints3D| |factorPolynomial| |product| |makeViewport3D| |rightOne| + |f02aff| |linears| |polygon| |unitCanonical| |expPot| |OMgetEndAttr| + |solid?| |kernel| |leftMult| |zag| |deleteProperty!| |leastPower| + |OMsetEncoding| |acscIfCan| |primlimitedint| |extendIfCan| |draw| + |lazyPseudoRemainder| |OMputBVar| |tan2cot| |createLowComplexityTable| + |radix| |bombieriNorm| |aLinear| |purelyAlgebraicLeadingMonomial?| + |graphState| |diagonal?| SEGMENT |pointPlot| |monicCompleteDecompose| + |fullDisplay| |splitSquarefree| |inf| |OMgetBVar| |leftNorm| |cycles| + |pleskenSplit| |argumentList!| |monicLeftDivide| |quotient| + |evaluateInverse| |factors| |dot| |rangeIsFinite| |subtractIfCan| + |f04qaf| |vark| |removeIrreducibleRedundantFactors| |squareMatrix| + |maxrow| |increment| |empty| |makeObject| |optAttributes| |s17dcf| + |wrregime| |midpoint| |exponential| |makeMulti| |moreAlgebraic?| + |concat| |select!| |crushedSet| |completeEchelonBasis| |coerceP| + |rightFactorCandidate| |parabolicCylindrical| |condition| |elementary| + |interpret| |pop!| |vector| |scopes| |represents| |zeroSetSplit| + |coef| |algSplitSimple| |removeRoughlyRedundantFactorsInPol| + |bindings| |modularGcdPrimitive| |imagk| |c06fuf| |differentiate| + |viewport3D| |coHeight| |coefficients| |quasiAlgebraicSet| + |pmComplexintegrate| |appendPoint| |ScanRoman| |iflist2Result| + |unrankImproperPartitions0| |nextPrimitiveNormalPoly| |thenBranch| + |lieAdmissible?| |f02abf| |complexExpand| |showTheRoutinesTable| + |pquo| |semiResultantEuclidean2| |addPoint| |trace2PowMod| + |elseBranch| |list?| |double?| |hitherPlane| |submod| + |evenInfiniteProduct| |OMopenFile| |critBonD| + |unrankImproperPartitions1| |firstDenom| |leftRegularRepresentation| + |var1StepsDefault| |outputFloating| |OMgetInteger| |recip| + |monicModulo| |unitVector| |comparison| |monomialIntPoly| |subset?| + |curveColorPalette| |e02daf| |s17adf| |insert!| |coefficient| |d01fcf| + |airyAi| |modularFactor| |minset| |queue| |showTheIFTable| |iFTable| + |orthonormalBasis| |removeSuperfluousQuasiComponents| |subscript| + |getProperty| |sinh2csch| |cTanh| |region| |exquo| + |functionIsOscillatory| |kovacic| |nextSubsetGray| |makeResult| GF2FG + |setStatus!| |normalElement| |c02agf| |f04maf| |logical?| + |OMputEndObject| |div| |raisePolynomial| |drawStyle| + |antiAssociative?| |scanOneDimSubspaces| |halfExtendedResultant1| + |quotientByP| |s18aef| |s13aaf| |showClipRegion| |cCoth| + |univariatePolynomialsGcds| |quo| |unravel| |genericLeftNorm| + |setRealSteps| |gbasis| |rationalPoints| |critMTonD1| |reverseLex| + |idealiserMatrix| |polygamma| |supersub| |KrullNumber| |rotatez| + |printInfo!| |createPrimitiveElement| |sqfree| |leftRemainder| + |compactFraction| |nothing| |monicRightDivide| |complementaryBasis| + |cAsec| |seriesSolve| |externalList| |rem| |exponential1| + |computeCycleEntry| |trigs2explogs| |toScale| |interpolate| |output| + |factorsOfCyclicGroupSize| |extractIndex| |mapGen| |characteristicSet| + |c05adf| |brace| |kernels| |part?| |SFunction| |cAcsc| + |minimumExponent| |denomRicDE| |innerint| |leaves| |imports| + |trapezoidal| |tryFunctionalDecomposition| |modifyPoint| |univariate| + |makeSUP| |var2Steps| |simpleBounds?| |leftQuotient| |makeViewport2D| + |number?| |recoverAfterFail| |minimize| |cycleLength| + |physicalLength!| |compile| |iisec| |leadingIdeal| |d01akf| |iiacosh| + |musserTrials| |f02bjf| |Nul| |dihedralGroup| |pdf2ef| + |normalizeIfCan| |status| |pointColorDefault| |abelianGroup| |ode1| + |makeUnit| |numberOfVariables| |figureUnits| |stFuncN| + |maximumExponent| |value| |getDatabase| |legendreP| |factor| + |traceMatrix| |B1solve| |eyeDistance| |pushuconst| |f02fjf| + |groebSolve| |doublyTransitive?| |rowEchelon| |genericLeftTraceForm| + |setsubMatrix!| |sqrt| |createMultiplicationTable| |setProperties| + |denomLODE| |OMserve| |univariatePolynomials| |any| + |selectPDERoutines| |rotate!| |cyclicEqual?| |rightMult| |failed?| + |real| |resultantReduitEuclidean| |clipParametric| + |monicRightFactorIfCan| |quote| |setvalue!| + |stoseIntegralLastSubResultant| |mix| |acoshIfCan| |characteristic| + |separate| |imag| |denominators| |FormatRoman| |reflect| |transpose| + |parts| |badNum| |extendedEuclidean| |yellow| |bat| + |radicalOfLeftTraceForm| |zeroVector| |directProduct| |power| |digit| + |dflist| |degreeSubResultant| |semiSubResultantGcdEuclidean2| + |stFunc1| |perfectSquare?| |computeBasis| |leftRank| + |associatorDependence| |not| |mapSolve| |intChoose| + |linearDependenceOverZ| |alphabetic?| |Vectorise| + |setScreenResolution| |cSinh| |mappingAst| |primextintfrac| + |removeRedundantFactorsInPols| |destruct| |basisOfCentroid| |e04gcf| + |parametersOf| |scaleRoots| |mainValue| |cAsinh| + |generalizedContinuumHypothesisAssumed?| |surface| |leftTraceMatrix| + |trailingCoefficient| |host| |reseed| |members| |split!| |rank| |nlde| + |toseInvertible?| |numberOfDivisors| |port| |OMgetVariable| + |OMencodingUnknown| |reciprocalPolynomial| |s17acf| |fintegrate| + |bezoutDiscriminant| |getSyntaxFormsFromFile| |identification| + |hexDigit| |shiftLeft| |rootPower| |nextColeman| |palginfieldint| + |prinpolINFO| |generalLambert| |infieldIntegrate| |mainVariable?| + |associator| |weighted| |super| |internalInfRittWu?| |depth| |points| + |monomial| |doubleRank| |branchPointAtInfinity?| |limitedIntegrate| + |double| |open?| |unmakeSUP| |inrootof| |selectIntegrationRoutines| + |standardBasisOfCyclicSubmodule| |cycleSplit!| |initial| |orbit| + |multivariate| |chineseRemainder| |exprToUPS| |leadingSupport| + |antiCommutative?| |makeCrit| |separateDegrees| |zerosOf| |ideal| + |headAst| |adaptive?| |variables| |irreducibleRepresentation| + |zeroDimensional?| |match?| |stopTableGcd!| |infinityNorm| |split| + |infieldint| |sylvesterMatrix| |integral?| |elliptic?| |addPointLast| + |cyclotomicFactorization| |maxint| |readable?| + |useEisensteinCriterion?| |complexSolve| |lists| |bitior| + |drawComplex| |intermediateResultsIF| |integralBasis| |identityMatrix| + |removeCoshSq| ** |numberOfHues| FG2F |legendre| + |initializeGroupForWordProblem| |makeFloatFunction| |initiallyReduce| + |janko2| |cCosh| |generic?| |polar| |totalLex| |makeEq| |pmintegrate| + |setOfMinN| |selectfirst| |positive?| |subTriSet?| |squareFreeFactors| + |rightRecip| |rewriteIdealWithRemainder| |eulerPhi| |subCase?| |reify| + |useSingleFactorBound| |stFunc2| |makeSin| |notelem| EQ + |changeNameToObjf| |groebnerFactorize| |initiallyReduced?| + |oneDimensionalArray| |nilFactor| |taylor| |rangePascalTriangle| + |declare!| |OMUnknownCD?| |outputForm| |leftRecip| + |showIntensityFunctions| |structuralConstants| |testModulus| + |radicalSimplify| |rombergo| |invertibleSet| |laurent| + |rectangularMatrix| |ddFact| |floor| |leftOne| |sample| |obj| + |completeHermite| |ffactor| |LiePolyIfCan| |complexEigenvalues| + |presub| |puiseux| |simplifyLog| |e02def| |badValues| + |integralLastSubResultant| |stripCommentsAndBlanks| |length| |f04adf| + |vectorise| |exactQuotient| |cache| |normFactors| |hermiteH| |tower| + |removeConstantTerm| |multiEuclideanTree| |shallowCopy| + |normInvertible?| |tRange| |scripts| |mkIntegral| |mkcomm| + |selectOptimizationRoutines| |leaf?| |primextendedint| |comp| |inv| + |uncouplingMatrices| |constantCoefficientRicDE| |node?| |finiteBound| + |normal?| |dimensionOfIrreducibleRepresentation| |f02aef| |rdHack1| + |solveInField| |headRemainder| |ground?| |palgLODE0| |refine| |shift| + |unitsColorDefault| |parabolic| |prem| |declare| |blue| + |strongGenerators| |paren| |numFunEvals3D| |e04ycf| |max| |ground| + |intersect| |coercePreimagesImages| |autoReduced?| |iiasech| + |mainPrimitivePart| |equality| |nor| |isTimes| |getExplanations| + |typeList| |leadingMonomial| |addiag| |ceiling| |completeSmith| + |doubleDisc| |polyred| |df2fi| |ldf2lst| |expIfCan| |sqfrFactor| + |tube| |leadingCoefficient| |complexNumeric| |rischDEsys| F2FG + |adaptive3D?| |createGenericMatrix| |resize| |extractBottom!| + |tablePow| |prepareDecompose| |adaptive| |name| |e02bef| |compound?| + |primitiveMonomials| |error| |real?| |compiledFunction| |messagePrint| + |f02xef| |monicDivide| |totalDifferential| |f2df| |f02agf| |body| + |viewpoint| |compdegd| |setScreenResolution3D| |reductum| + |nonSingularModel| |torsion?| |interpretString| |subResultantsChain| + |assert| |reduceByQuasiMonic| |spherical| |d02ejf| |subHeight| + |youngGroup| |s17dlf| |sumSquares| |palgRDE0| |sumOfDivisors| |f02akf| + |init| |directSum| |retract| |log2| |minordet| |lexTriangular| + |relativeApprox| |taylorQuoByVar| |increasePrecision| |c06ecf| + |dequeue| |s17ajf| |multiplyCoefficients| |push| |s19aaf| |imagj| + |OMconnectTCP| |infinite?| |quadraticNorm| |segment| |padicallyExpand| + |palgRDE| |leftDivide| |operator| |sncndn| |round| |tracePowMod| + |aCubic| |integralCoordinates| |mergeFactors| |getCurve| |cAsin| + |asimpson| |numFunEvals| |expandLog| |createPrimitivePoly| + |constantKernel| |inverseIntegralMatrix| |minrank| |gcdPrimitive| + |convert| |genericRightNorm| |divide| |setchildren!| |removeZeroes| + |cAcot| |roughBase?| |newLine| |constantIfCan| |radicalEigenvectors| + |clearTheSymbolTable| |chiSquare1| |changeBase| |lambert| |arity| + |key?| |euler| |primitivePart!| |rowEchLocal| |bounds| |oddlambert| + |unit?| |listOfMonoms| |d02cjf| |mantissa| |OMgetEndAtp| |firstNumer| + |partialDenominators| |updatF| |fractRagits| |OMParseError?| + |drawCurves| |vspace| |numberOfIrreduciblePoly| |qelt| |postfix| + |SturmHabichtSequence| |cPower| |curryRight| |decompose| |modTree| + |OMputEndError| |setProperty| |elColumn2!| |e01bff| |hcrf| + |bernoulliB| |setProperty!| |rdregime| |ratPoly| |fullPartialFraction| + |lazyPquo| |reindex| |insert| |xRange| |showAll?| |zoom| |failed| + |imagi| |patternMatchTimes| |outputAsTex| |currentSubProgram| |equiv| + |yRange| |safeCeiling| |f04mbf| |supRittWu?| |univariate?| RF2UTS |t| + |prinshINFO| |clearDenominator| |subMatrix| |asinhIfCan| |zRange| + |LiePoly| |fractionFreeGauss!| |selectAndPolynomials| |ord| + |eigenvalues| |semiResultantEuclideannaif| + |rewriteSetByReducingWithParticularGenerators| |inc| |leftFactor| + |rowEch| |map!| |logpart| |OMcloseConn| |ratDenom| |nullary| + |resultant| |polarCoordinates| |subResultantChain| |diagonal| + |categoryFrame| |qsetelt!| |colorDef| |goodPoint| |sequences| + |divideIfCan| |leftRankPolynomial| |mesh?| |initTable!| |sizeLess?| + |PollardSmallFactor| |OMsupportsCD?| |pushNewContour| |triangulate| + |setClipValue| |f02wef| |lfunc| |epilogue| |subspace| |csc2sin| + |overbar| |minRowIndex| |graeffe| |eq| |overlabel| |traverse| |eval| + |stirling1| |numericalOptimization| |bat1| |nil| |principalIdeal| + |contours| |outputAsScript| |iter| |nthFactor| |errorKind| |revert| + |rightFactorIfCan| |superscript| |HenselLift| |possiblyNewVariety?| + |getMatch| |setprevious!| |algebraicDecompose| |f01rdf| |chebyshevU| + |iicsch| |e02baf| |build| |sec2cos| |acsch| Y |gcdprim| |polyPart| + |primitiveElement| |reverse!| |numberOfComponents| |s18aff| |f04arf| + |approximate| |divergence| |e01bgf| |exprToGenUPS| |symmetricGroup| + |s17dgf| |selectMultiDimensionalRoutines| |op| |commaSeparate| + |makeSketch| |stack| |complex| |lexGroebner| |f01bsf| + |stoseInvertibleSetreg| |repeating| |cSec| |rur| |s17dhf| |OMputAtp| + |differentialVariables| |factorAndSplit| |removeSquaresIfCan| |call| + |ode| |gderiv| |genericRightTrace| |opeval| |xn| |closed?| |term| |dn| + |createPrimitiveNormalPoly| |conditionsForIdempotents| |lazyIntegrate| + |exp| |stronglyReduce| |fi2df| |minPoints3D| |drawToScale| |rootOf| + |s14abf| |reduceLODE| |palgextint0| |optpair| |acotIfCan| + |patternMatch| |tubeRadiusDefault| |dequeue!| |tail| |iExquo| + |lazyEvaluate| |UpTriBddDenomInv| |reduceBasisAtInfinity| |setelt!| + |normalizeAtInfinity| |pile| |leftCharacteristicPolynomial| |s01eaf| + |viewThetaDefault| |e01bhf| |implies?| |wordInGenerators| + |inconsistent?| |semiLastSubResultantEuclidean| |mindeg| + |changeWeightLevel| |leftTrace| |erf| |e04fdf| |debug| |union| + |lagrange| |setOrder| |pointSizeDefault| |continuedFraction| + |polynomialZeros| |crest| |interval| |bandedHessian| D |order| |iipow| + |atom?| |setAttributeButtonStep| |UnVectorise| |sum| |identity| + |routines| |arg1| |e02dcf| |f02ajf| |getOperator| |exptMod| + |OMreadStr| |expressIdealMember| |rightRegularRepresentation| |back| + |accuracyIF| |cyclic| |fortranDoubleComplex| |factor1| |arg2| + |OMgetEndBind| |possiblyInfinite?| |input| |dilog| |rename| |unary?| + |repSq| |rightNorm| |child?| |UP2ifCan| |rightTraceMatrix| + |repeating?| |ParCondList| |options| |components| |cosh2sech| + |library| |sin| |byte| |factorOfDegree| |adjoint| |linearlyDependent?| + |sin2csc| |iitanh| |noLinearFactor?| |c06gsf| |rightRemainder| + |conditions| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index dc907b4e..bf807ea3 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4975 +1,5043 @@ -(3139916 . 3429317369) -((-3202 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-2375 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-2454 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-1151 (-531)) |#2|) 34)) (-4106 (($ $) 59)) (-1760 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1976 (((-531) (-1 (-110) |#2|) $) 22) (((-531) |#2| $) NIL) (((-531) |#2| $ (-531)) 73)) (-2227 (((-598 |#2|) $) 13)) (-3508 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2680 (($ (-1 |#2| |#2|) $) 29)) (-3261 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4059 (($ |#2| $ (-531)) NIL) (($ $ $ (-531)) 50)) (-4190 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-2294 (((-110) (-1 (-110) |#2|) $) 21)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) NIL) (($ $ (-1151 (-531))) 49)) (-1723 (($ $ (-531)) 56) (($ $ (-1151 (-531))) 55)) (-2539 (((-721) (-1 (-110) |#2|) $) 26) (((-721) |#2| $) NIL)) (-2162 (($ $ $ (-531)) 52)) (-2480 (($ $) 51)) (-2274 (($ (-598 |#2|)) 53)) (-3536 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-598 $)) 62)) (-2265 (((-806) $) 69)) (-2060 (((-110) (-1 (-110) |#2|) $) 20)) (-2148 (((-110) $ $) 72)) (-2174 (((-110) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -3202 ((-110) |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|))) (-19 |#2|) (-1138)) (T -18)) -NIL -(-10 -8 (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -3202 ((-110) |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-19 |#1|) (-133) (-1138)) (T -19)) -NIL -(-13 (-354 |t#1|) (-10 -7 (-6 -4274))) -(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T)) -((-2128 (((-3 $ "failed") $ $) 12)) (-2250 (($ $) NIL) (($ $ $) 9)) (* (($ (-864) $) NIL) (($ (-721) $) 16) (($ (-531) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2128 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2128 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20))) -(((-21) (-133)) (T -21)) -((-2250 (*1 *1 *1) (-4 *1 (-21))) (-2250 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-531))))) -(-13 (-128) (-10 -8 (-15 -2250 ($ $)) (-15 -2250 ($ $ $)) (-15 * ($ (-531) $)))) -(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-3019 (((-110) $) 10)) (-4082 (($) 15)) (* (($ (-864) $) 14) (($ (-721) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 * (|#1| (-864) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15))) -(((-23) (-133)) (T -23)) -((-3035 (*1 *1) (-4 *1 (-23))) (-4082 (*1 *1) (-4 *1 (-23))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-721))))) -(-13 (-25) (-10 -8 (-15 (-3035) ($) -2651) (-15 -4082 ($) -2651) (-15 -3019 ((-110) $)) (-15 * ($ (-721) $)))) -(((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((* (($ (-864) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-864) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13))) -(((-25) (-133)) (T -25)) -((-2237 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-864))))) -(-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ (-864) $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2485 (((-598 $) (-895 $)) 29) (((-598 $) (-1098 $)) 16) (((-598 $) (-1098 $) (-1102)) 20)) (-2424 (($ (-895 $)) 27) (($ (-1098 $)) 11) (($ (-1098 $) (-1102)) 54)) (-3007 (((-598 $) (-895 $)) 30) (((-598 $) (-1098 $)) 18) (((-598 $) (-1098 $) (-1102)) 19)) (-2738 (($ (-895 $)) 28) (($ (-1098 $)) 13) (($ (-1098 $) (-1102)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|)))) -((-2247 (((-110) $ $) 7)) (-2485 (((-598 $) (-895 $)) 77) (((-598 $) (-1098 $)) 76) (((-598 $) (-1098 $) (-1102)) 75)) (-2424 (($ (-895 $)) 80) (($ (-1098 $)) 79) (($ (-1098 $) (-1102)) 78)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 89)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3007 (((-598 $) (-895 $)) 83) (((-598 $) (-1098 $)) 82) (((-598 $) (-1098 $) (-1102)) 81)) (-2738 (($ (-895 $)) 86) (($ (-1098 $)) 85) (($ (-1098 $) (-1102)) 84)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 87)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64))) -(((-27) (-133)) (T -27)) -((-2738 (*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27)))) (-2424 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27)) (-5 *2 (-598 *1))))) -(-13 (-344) (-943) (-10 -8 (-15 -2738 ($ (-895 $))) (-15 -2738 ($ (-1098 $))) (-15 -2738 ($ (-1098 $) (-1102))) (-15 -3007 ((-598 $) (-895 $))) (-15 -3007 ((-598 $) (-1098 $))) (-15 -3007 ((-598 $) (-1098 $) (-1102))) (-15 -2424 ($ (-895 $))) (-15 -2424 ($ (-1098 $))) (-15 -2424 ($ (-1098 $) (-1102))) (-15 -2485 ((-598 $) (-895 $))) (-15 -2485 ((-598 $) (-1098 $))) (-15 -2485 ((-598 $) (-1098 $) (-1102))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-943) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-2485 (((-598 $) (-895 $)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-1098 $) (-1102)) 50) (((-598 $) $) 19) (((-598 $) $ (-1102)) 41)) (-2424 (($ (-895 $)) NIL) (($ (-1098 $)) NIL) (($ (-1098 $) (-1102)) 52) (($ $) 17) (($ $ (-1102)) 37)) (-3007 (((-598 $) (-895 $)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-1098 $) (-1102)) 48) (((-598 $) $) 15) (((-598 $) $ (-1102)) 43)) (-2738 (($ (-895 $)) NIL) (($ (-1098 $)) NIL) (($ (-1098 $) (-1102)) NIL) (($ $) 12) (($ $ (-1102)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2485 ((-598 |#1|) |#1| (-1102))) (-15 -2424 (|#1| |#1| (-1102))) (-15 -2485 ((-598 |#1|) |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3007 ((-598 |#1|) |#1| (-1102))) (-15 -2738 (|#1| |#1| (-1102))) (-15 -3007 ((-598 |#1|) |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|)))) (-29 |#2|) (-13 (-797) (-523))) (T -28)) -NIL -(-10 -8 (-15 -2485 ((-598 |#1|) |#1| (-1102))) (-15 -2424 (|#1| |#1| (-1102))) (-15 -2485 ((-598 |#1|) |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3007 ((-598 |#1|) |#1| (-1102))) (-15 -2738 (|#1| |#1| (-1102))) (-15 -3007 ((-598 |#1|) |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|)))) -((-2247 (((-110) $ $) 7)) (-2485 (((-598 $) (-895 $)) 77) (((-598 $) (-1098 $)) 76) (((-598 $) (-1098 $) (-1102)) 75) (((-598 $) $) 123) (((-598 $) $ (-1102)) 121)) (-2424 (($ (-895 $)) 80) (($ (-1098 $)) 79) (($ (-1098 $) (-1102)) 78) (($ $) 124) (($ $ (-1102)) 122)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1102)) $) 198)) (-2516 (((-388 (-1098 $)) $ (-571 $)) 230 (|has| |#1| (-523)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2410 (((-598 (-571 $)) $) 161)) (-2128 (((-3 $ "failed") $ $) 19)) (-3184 (($ $ (-598 (-571 $)) (-598 $)) 151) (($ $ (-598 (-276 $))) 150) (($ $ (-276 $)) 149)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 89)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3007 (((-598 $) (-895 $)) 83) (((-598 $) (-1098 $)) 82) (((-598 $) (-1098 $) (-1102)) 81) (((-598 $) $) 127) (((-598 $) $ (-1102)) 125)) (-2738 (($ (-895 $)) 86) (($ (-1098 $)) 85) (($ (-1098 $) (-1102)) 84) (($ $) 128) (($ $ (-1102)) 126)) (-3154 (((-3 (-895 |#1|) "failed") $) 248 (|has| |#1| (-986))) (((-3 (-388 (-895 |#1|)) "failed") $) 232 (|has| |#1| (-523))) (((-3 |#1| "failed") $) 194) (((-3 (-531) "failed") $) 192 (|has| |#1| (-977 (-531)))) (((-3 (-1102) "failed") $) 185) (((-3 (-571 $) "failed") $) 136) (((-3 (-388 (-531)) "failed") $) 120 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 (((-895 |#1|) $) 249 (|has| |#1| (-986))) (((-388 (-895 |#1|)) $) 233 (|has| |#1| (-523))) ((|#1| $) 195) (((-531) $) 191 (|has| |#1| (-977 (-531)))) (((-1102) $) 186) (((-571 $) $) 137) (((-388 (-531)) $) 119 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-3650 (($ $ $) 53)) (-3073 (((-639 |#1|) (-639 $)) 238 (|has| |#1| (-986))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 237 (|has| |#1| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 118 (-1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (((-639 (-531)) (-639 $)) 117 (-1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 190 (|has| |#1| (-829 (-360)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 189 (|has| |#1| (-829 (-531))))) (-1238 (($ (-598 $)) 155) (($ $) 154)) (-4051 (((-598 (-112)) $) 162)) (-3254 (((-112) (-112)) 163)) (-3481 (((-110) $) 30)) (-4250 (((-110) $) 183 (|has| $ (-977 (-531))))) (-3027 (($ $) 215 (|has| |#1| (-986)))) (-1840 (((-1054 |#1| (-571 $)) $) 214 (|has| |#1| (-986)))) (-2249 (($ $ (-531)) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2733 (((-1098 $) (-571 $)) 180 (|has| $ (-986)))) (-4103 (($ $ $) 134)) (-1241 (($ $ $) 133)) (-3261 (($ (-1 $ $) (-571 $)) 169)) (-1302 (((-3 (-571 $) "failed") $) 159)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2501 (((-598 (-571 $)) $) 160)) (-1930 (($ (-112) (-598 $)) 168) (($ (-112) $) 167)) (-3443 (((-3 (-598 $) "failed") $) 209 (|has| |#1| (-1042)))) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) 218 (|has| |#1| (-986)))) (-2077 (((-3 (-598 $) "failed") $) 211 (|has| |#1| (-25)))) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) 217 (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) 216 (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) 210 (|has| |#1| (-1042)))) (-4247 (((-110) $ (-1102)) 166) (((-110) $ (-112)) 165)) (-2422 (($ $) 67)) (-4194 (((-721) $) 158)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 196)) (-2448 ((|#1| $) 197)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2781 (((-110) $ (-1102)) 171) (((-110) $ $) 170)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-1787 (((-110) $) 182 (|has| $ (-977 (-531))))) (-4115 (($ $ (-1102) (-721) (-1 $ $)) 222 (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ (-598 $))) 221 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) 220 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) 219 (|has| |#1| (-986))) (($ $ (-598 (-112)) (-598 $) (-1102)) 208 (|has| |#1| (-573 (-507)))) (($ $ (-112) $ (-1102)) 207 (|has| |#1| (-573 (-507)))) (($ $) 206 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102))) 205 (|has| |#1| (-573 (-507)))) (($ $ (-1102)) 204 (|has| |#1| (-573 (-507)))) (($ $ (-112) (-1 $ $)) 179) (($ $ (-112) (-1 $ (-598 $))) 178) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 177) (($ $ (-598 (-112)) (-598 (-1 $ $))) 176) (($ $ (-1102) (-1 $ $)) 175) (($ $ (-1102) (-1 $ (-598 $))) 174) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 173) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 172) (($ $ (-598 $) (-598 $)) 143) (($ $ $ $) 142) (($ $ (-276 $)) 141) (($ $ (-598 (-276 $))) 140) (($ $ (-598 (-571 $)) (-598 $)) 139) (($ $ (-571 $) $) 138)) (-4100 (((-721) $) 56)) (-1785 (($ (-112) (-598 $)) 148) (($ (-112) $ $ $ $) 147) (($ (-112) $ $ $) 146) (($ (-112) $ $) 145) (($ (-112) $) 144)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-1771 (($ $ $) 157) (($ $) 156)) (-3352 (($ $ (-1102)) 246 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 245 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 244 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) 243 (|has| |#1| (-986)))) (-2842 (($ $) 225 (|has| |#1| (-523)))) (-1853 (((-1054 |#1| (-571 $)) $) 224 (|has| |#1| (-523)))) (-3608 (($ $) 181 (|has| $ (-986)))) (-3318 (((-507) $) 252 (|has| |#1| (-573 (-507)))) (($ (-399 $)) 223 (|has| |#1| (-523))) (((-835 (-360)) $) 188 (|has| |#1| (-573 (-835 (-360))))) (((-835 (-531)) $) 187 (|has| |#1| (-573 (-835 (-531)))))) (-4164 (($ $ $) 251 (|has| |#1| (-453)))) (-3214 (($ $ $) 250 (|has| |#1| (-453)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ (-895 |#1|)) 247 (|has| |#1| (-986))) (($ (-388 (-895 |#1|))) 231 (|has| |#1| (-523))) (($ (-388 (-895 (-388 |#1|)))) 229 (|has| |#1| (-523))) (($ (-895 (-388 |#1|))) 228 (|has| |#1| (-523))) (($ (-388 |#1|)) 227 (|has| |#1| (-523))) (($ (-1054 |#1| (-571 $))) 213 (|has| |#1| (-986))) (($ |#1|) 193) (($ (-1102)) 184) (($ (-571 $)) 135)) (-2750 (((-3 $ "failed") $) 236 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3504 (($ (-598 $)) 153) (($ $) 152)) (-3167 (((-110) (-112)) 164)) (-2587 (((-110) $ $) 37)) (-2507 (($ (-1102) (-598 $)) 203) (($ (-1102) $ $ $ $) 202) (($ (-1102) $ $ $) 201) (($ (-1102) $ $) 200) (($ (-1102) $) 199)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1102)) 242 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 241 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 240 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) 239 (|has| |#1| (-986)))) (-2207 (((-110) $ $) 131)) (-2184 (((-110) $ $) 130)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 132)) (-2174 (((-110) $ $) 129)) (-2263 (($ $ $) 62) (($ (-1054 |#1| (-571 $)) (-1054 |#1| (-571 $))) 226 (|has| |#1| (-523)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 87)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-162))) (($ |#1| $) 234 (|has| |#1| (-162))))) -(((-29 |#1|) (-133) (-13 (-797) (-523))) (T -29)) -((-2738 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523))))) (-3007 (*1 *2 *1) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523))))) (-3007 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *4)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523))))) (-2485 (*1 *2 *1) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3)))) (-2424 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523))))) (-2485 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-411 |t#1|) (-10 -8 (-15 -2738 ($ $)) (-15 -3007 ((-598 $) $)) (-15 -2738 ($ $ (-1102))) (-15 -3007 ((-598 $) $ (-1102))) (-15 -2424 ($ $)) (-15 -2485 ((-598 $) $)) (-15 -2424 ($ $ (-1102))) (-15 -2485 ((-598 $) $ (-1102))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-226) . T) ((-272) . T) ((-289) . T) ((-291 $) . T) ((-284) . T) ((-344) . T) ((-358 |#1|) |has| |#1| (-986)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-411 |#1|) . T) ((-432) . T) ((-453) |has| |#1| (-453)) ((-492 (-571 $) $) . T) ((-492 $ $) . T) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) |has| |#1| (-162)) ((-601 $) . T) ((-594 (-531)) -12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) ((-594 |#1|) |has| |#1| (-986)) ((-668 #0#) . T) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) . T) ((-677) . T) ((-797) . T) ((-843 (-1102)) |has| |#1| (-986)) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-863) . T) ((-943) . T) ((-977 (-388 (-531))) -1435 (|has| |#1| (-977 (-388 (-531)))) (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) ((-977 (-388 (-895 |#1|))) |has| |#1| (-523)) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 (-571 $)) . T) ((-977 (-895 |#1|)) |has| |#1| (-986)) ((-977 (-1102)) . T) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) |has| |#1| (-162)) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1138) . T) ((-1142) . T)) -((-2659 (((-1025 (-208)) $) NIL)) (-2647 (((-1025 (-208)) $) NIL)) (-2522 (($ $ (-208)) 125)) (-1536 (($ (-895 (-531)) (-1102) (-1102) (-1025 (-388 (-531))) (-1025 (-388 (-531)))) 83)) (-2126 (((-598 (-598 (-886 (-208)))) $) 137)) (-2265 (((-806) $) 149))) -(((-30) (-13 (-898) (-10 -8 (-15 -1536 ($ (-895 (-531)) (-1102) (-1102) (-1025 (-388 (-531))) (-1025 (-388 (-531))))) (-15 -2522 ($ $ (-208)))))) (T -30)) -((-1536 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-895 (-531))) (-5 *3 (-1102)) (-5 *4 (-1025 (-388 (-531)))) (-5 *1 (-30)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30))))) -(-13 (-898) (-10 -8 (-15 -1536 ($ (-895 (-531)) (-1102) (-1102) (-1025 (-388 (-531))) (-1025 (-388 (-531))))) (-15 -2522 ($ $ (-208))))) -((-2738 ((|#2| (-1098 |#2|) (-1102)) 43)) (-3254 (((-112) (-112)) 56)) (-2733 (((-1098 |#2|) (-571 |#2|)) 133 (|has| |#1| (-977 (-531))))) (-3584 ((|#2| |#1| (-531)) 122 (|has| |#1| (-977 (-531))))) (-2611 ((|#2| (-1098 |#2|) |#2|) 30)) (-4046 (((-806) (-598 |#2|)) 85)) (-3608 ((|#2| |#2|) 129 (|has| |#1| (-977 (-531))))) (-3167 (((-110) (-112)) 18)) (** ((|#2| |#2| (-388 (-531))) 96 (|has| |#1| (-977 (-531)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -2738 (|#2| (-1098 |#2|) (-1102))) (-15 -3254 ((-112) (-112))) (-15 -3167 ((-110) (-112))) (-15 -2611 (|#2| (-1098 |#2|) |#2|)) (-15 -4046 ((-806) (-598 |#2|))) (IF (|has| |#1| (-977 (-531))) (PROGN (-15 ** (|#2| |#2| (-388 (-531)))) (-15 -2733 ((-1098 |#2|) (-571 |#2|))) (-15 -3608 (|#2| |#2|)) (-15 -3584 (|#2| |#1| (-531)))) |%noBranch|)) (-13 (-797) (-523)) (-411 |#1|)) (T -31)) -((-3584 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-977 *4)) (-4 *3 (-13 (-797) (-523))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-977 (-531))) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-571 *5)) (-4 *5 (-411 *4)) (-4 *4 (-977 (-531))) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-1098 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-977 (-531))) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-806)) (-5 *1 (-31 *4 *5)))) (-2611 (*1 *2 *3 *2) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-31 *4 *2)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-31 *3 *4)) (-4 *4 (-411 *3)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *2)) (-5 *4 (-1102)) (-4 *2 (-411 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-797) (-523)))))) -(-10 -7 (-15 -2738 (|#2| (-1098 |#2|) (-1102))) (-15 -3254 ((-112) (-112))) (-15 -3167 ((-110) (-112))) (-15 -2611 (|#2| (-1098 |#2|) |#2|)) (-15 -4046 ((-806) (-598 |#2|))) (IF (|has| |#1| (-977 (-531))) (PROGN (-15 ** (|#2| |#2| (-388 (-531)))) (-15 -2733 ((-1098 |#2|) (-571 |#2|))) (-15 -3608 (|#2| |#2|)) (-15 -3584 (|#2| |#1| (-531)))) |%noBranch|)) -((-4058 (((-110) $ (-721)) 16)) (-4082 (($) 10)) (-3280 (((-110) $ (-721)) 15)) (-3332 (((-110) $ (-721)) 14)) (-2019 (((-110) $ $) 8)) (-1589 (((-110) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -4082 (|#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -1589 ((-110) |#1|)) (-15 -2019 ((-110) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -4082 (|#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -1589 ((-110) |#1|)) (-15 -2019 ((-110) |#1| |#1|))) -((-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-3280 (((-110) $ (-721)) 9)) (-3332 (((-110) $ (-721)) 10)) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2480 (($ $) 13)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-33) (-133)) (T -33)) -((-2019 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2480 (*1 *1 *1) (-4 *1 (-33))) (-3781 (*1 *1) (-4 *1 (-33))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-3332 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) (-3280 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) (-4058 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) (-4082 (*1 *1) (-4 *1 (-33))) (-2167 (*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-33)) (-5 *2 (-721))))) -(-13 (-1138) (-10 -8 (-15 -2019 ((-110) $ $)) (-15 -2480 ($ $)) (-15 -3781 ($)) (-15 -1589 ((-110) $)) (-15 -3332 ((-110) $ (-721))) (-15 -3280 ((-110) $ (-721))) (-15 -4058 ((-110) $ (-721))) (-15 -4082 ($) -2651) (IF (|has| $ (-6 -4273)) (-15 -2167 ((-721) $)) |%noBranch|))) -(((-1138) . T)) -((-2442 (($ $) 11)) (-2416 (($ $) 10)) (-2468 (($ $) 9)) (-2753 (($ $) 8)) (-2456 (($ $) 7)) (-2429 (($ $) 6))) -(((-34) (-133)) (T -34)) -((-2442 (*1 *1 *1) (-4 *1 (-34))) (-2416 (*1 *1 *1) (-4 *1 (-34))) (-2468 (*1 *1 *1) (-4 *1 (-34))) (-2753 (*1 *1 *1) (-4 *1 (-34))) (-2456 (*1 *1 *1) (-4 *1 (-34))) (-2429 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -2429 ($ $)) (-15 -2456 ($ $)) (-15 -2753 ($ $)) (-15 -2468 ($ $)) (-15 -2416 ($ $)) (-15 -2442 ($ $)))) -((-2247 (((-110) $ $) 19 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3482 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 125)) (-3308 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 148)) (-2072 (($ $) 146)) (-2995 (($) 72) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 71)) (-3137 (((-1189) $ |#1| |#1|) 99 (|has| $ (-6 -4274))) (((-1189) $ (-531) (-531)) 178 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 159 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2375 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 200 (|has| $ (-6 -4274))) (($ $) 199 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2039 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 134 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 155 (|has| $ (-6 -4274)))) (-2136 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 157 (|has| $ (-6 -4274)))) (-3112 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 153 (|has| $ (-6 -4274)))) (-2454 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 189 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-1151 (-531)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 160 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 158 (|has| $ (-6 -4274))) (($ $ "rest" $) 156 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 154 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 133 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 132 (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 45 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 216)) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 55 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 175 (|has| $ (-6 -4273)))) (-3297 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 147)) (-2714 (((-3 |#2| "failed") |#1| $) 61)) (-4082 (($) 7 T CONST)) (-4106 (($ $) 201 (|has| $ (-6 -4274)))) (-1828 (($ $) 211)) (-3062 (($ $ (-721)) 142) (($ $) 140)) (-2705 (($ $) 214 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3086 (($ $) 58 (-1435 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))) (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 46 (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 220) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 215 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 54 (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 174 (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 56 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 53 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 52 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 176 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 173 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 172 (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 190 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 88) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 188)) (-2141 (((-110) $) 192)) (-1976 (((-531) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 208) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 207 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 206 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 30 (|has| $ (-6 -4273))) (((-598 |#2|) $) 79 (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 114 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 123)) (-1478 (((-110) $ $) 131 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3010 (($ (-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 169)) (-3280 (((-110) $ (-721)) 9)) (-3804 ((|#1| $) 96 (|has| |#1| (-797))) (((-531) $) 180 (|has| (-531) (-797)))) (-4103 (($ $ $) 198 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3611 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3508 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 29 (|has| $ (-6 -4273))) (((-598 |#2|) $) 80 (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 115 (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2327 ((|#1| $) 95 (|has| |#1| (-797))) (((-531) $) 181 (|has| (-531) (-797)))) (-1241 (($ $ $) 197 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 34 (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4274))) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 110 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 109)) (-2907 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 225)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 128)) (-2672 (((-110) $) 124)) (-1521 (((-1085) $) 22 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2309 (($ $ (-721)) 145) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 143)) (-3345 (((-598 |#1|) $) 63)) (-1727 (((-110) |#1| $) 64)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 39)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 40) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 219) (($ $ $ (-531)) 218)) (-4059 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 162) (($ $ $ (-531)) 161)) (-3765 (((-598 |#1|) $) 93) (((-598 (-531)) $) 183)) (-3059 (((-110) |#1| $) 92) (((-110) (-531) $) 184)) (-2529 (((-1049) $) 21 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3046 ((|#2| $) 97 (|has| |#1| (-797))) (($ $ (-721)) 139) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 137)) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 51) (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 171)) (-3742 (($ $ |#2|) 98 (|has| $ (-6 -4274))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 179 (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 41)) (-2765 (((-110) $) 191)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 32 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 112 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 26 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 25 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 24 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 23 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 121 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 120 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 119 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 118 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 182 (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3163 (((-598 |#2|) $) 91) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 185)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 187) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 186) (($ $ (-1151 (-531))) 165) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first") 138) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value") 126)) (-2357 (((-531) $ $) 129)) (-2543 (($) 49) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 48)) (-1551 (($ $ (-531)) 222) (($ $ (-1151 (-531))) 221)) (-1723 (($ $ (-531)) 164) (($ $ (-1151 (-531))) 163)) (-2930 (((-110) $) 127)) (-1958 (($ $) 151)) (-2980 (($ $) 152 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 150)) (-2874 (($ $) 149)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 31 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-721) |#2| $) 81 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 113 (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) 202 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507)))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 50) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 170)) (-1818 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 224) (($ $ $) 223)) (-3536 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 168) (($ (-598 $)) 167) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 136) (($ $ $) 135)) (-2265 (((-806) $) 18 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))))) (-3495 (((-598 $) $) 122)) (-2910 (((-110) $ $) 130 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 42)) (-2317 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") |#1| $) 108)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 33 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 111 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 195 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2184 (((-110) $ $) 194 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2148 (((-110) $ $) 20 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2195 (((-110) $ $) 196 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2174 (((-110) $ $) 193 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-35 |#1| |#2|) (-133) (-1030) (-1030)) (T -35)) -((-2317 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-2 (|:| -3033 *3) (|:| -1798 *4)))))) -(-13 (-1115 |t#1| |t#2|) (-619 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|))) (-10 -8 (-15 -2317 ((-3 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-104 #0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-99) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797))) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))) ((-144 #1=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-573 (-507)) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 #2=(-531) #1#) . T) ((-268 |#1| |#2|) . T) ((-270 #2# #1#) . T) ((-270 |#1| |#2|) . T) ((-291 #1#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-264 #1#) . T) ((-354 #1#) . T) ((-468 #1#) . T) ((-468 |#2|) . T) ((-564 #2# #1#) . T) ((-564 |#1| |#2|) . T) ((-492 #1# #1#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-569 |#1| |#2|) . T) ((-604 #1#) . T) ((-619 #1#) . T) ((-797) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)) ((-951 #1#) . T) ((-1030) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797))) ((-1076 #1#) . T) ((-1115 |#1| |#2|) . T) ((-1138) . T) ((-1172 #1#) . T)) -((-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-37 |#2|) (-162)) (T -36)) -NIL -(-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-37 |#1|) (-133) (-162)) (T -37)) -((-2265 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162))))) -(-13 (-986) (-668 |t#1|) (-10 -8 (-15 -2265 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2040 (((-399 |#1|) |#1|) 41)) (-2552 (((-399 |#1|) |#1|) 30) (((-399 |#1|) |#1| (-598 (-47))) 33)) (-4039 (((-110) |#1|) 56))) -(((-38 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1| (-598 (-47)))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2040 ((-399 |#1|) |#1|)) (-15 -4039 ((-110) |#1|))) (-1160 (-47))) (T -38)) -((-4039 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) (-2040 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47)))))) -(-10 -7 (-15 -2552 ((-399 |#1|) |#1| (-598 (-47)))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2040 ((-399 |#1|) |#1|)) (-15 -4039 ((-110) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1461 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3258 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2921 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1849 (((-639 (-388 |#2|)) (-1184 $)) NIL) (((-639 (-388 |#2|))) NIL)) (-1354 (((-388 |#2|) $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-388 |#2|) (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2956 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2760 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3006 (((-721)) NIL (|has| (-388 |#2|) (-349)))) (-1860 (((-110)) NIL)) (-1730 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-388 (-531)) $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-388 |#2|) $) NIL)) (-2767 (($ (-1184 (-388 |#2|)) (-1184 $)) NIL) (($ (-1184 (-388 |#2|))) 57) (($ (-1184 |#2|) |#2|) 125)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3650 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1982 (((-639 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-388 |#2|))) (|:| |vec| (-1184 (-388 |#2|)))) (-639 $) (-1184 $)) NIL) (((-639 (-388 |#2|)) (-639 $)) NIL)) (-2492 (((-1184 $) (-1184 $)) NIL)) (-1760 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2709 (((-598 (-598 |#1|))) NIL (|has| |#1| (-349)))) (-3428 (((-110) |#1| |#1|) NIL)) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| (-388 |#2|) (-349)))) (-2903 (((-110)) NIL)) (-2809 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3630 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| (-388 |#2|) (-344)))) (-2226 (($ $) NIL)) (-1806 (($) NIL (|has| (-388 |#2|) (-330)))) (-1971 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3493 (($ $ (-721)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-2534 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-3617 (((-864) $) NIL (|has| (-388 |#2|) (-330))) (((-783 (-864)) $) NIL (|has| (-388 |#2|) (-330)))) (-3481 (((-110) $) NIL)) (-2262 (((-721)) NIL)) (-1272 (((-1184 $) (-1184 $)) 102)) (-1899 (((-388 |#2|) $) NIL)) (-4083 (((-598 (-895 |#1|)) (-1102)) NIL (|has| |#1| (-344)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1233 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-2211 (((-864) $) NIL (|has| (-388 |#2|) (-349)))) (-1749 ((|#3| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1521 (((-1085) $) NIL)) (-3237 (((-1189) (-721)) 79)) (-1789 (((-639 (-388 |#2|))) 51)) (-1953 (((-639 (-388 |#2|))) 44)) (-2422 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1729 (($ (-1184 |#2|) |#2|) 126)) (-3519 (((-639 (-388 |#2|))) 45)) (-3970 (((-639 (-388 |#2|))) 43)) (-3594 (((-2 (|:| |num| (-639 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3883 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 64)) (-2505 (((-1184 $)) 42)) (-2670 (((-1184 $)) 41)) (-3824 (((-110) $) NIL)) (-3570 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3788 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| (-388 |#2|) (-349)))) (-3667 (((-3 |#2| "failed")) NIL)) (-2529 (((-1049) $) NIL)) (-2509 (((-721)) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| (-388 |#2|) (-344)))) (-2109 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-388 |#2|) (-330)))) (-2552 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-4100 (((-721) $) NIL (|has| (-388 |#2|) (-344)))) (-1785 ((|#1| $ |#1| |#1|) NIL)) (-3751 (((-3 |#2| "failed")) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3176 (((-388 |#2|) (-1184 $)) NIL) (((-388 |#2|)) 39)) (-2350 (((-721) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-721) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3352 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3381 (((-639 (-388 |#2|)) (-1184 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-3608 ((|#3|) 50)) (-2498 (($) NIL (|has| (-388 |#2|) (-330)))) (-3348 (((-1184 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) (-1184 $) (-1184 $)) NIL) (((-1184 (-388 |#2|)) $) 58) (((-639 (-388 |#2|)) (-1184 $)) 103)) (-3318 (((-1184 (-388 |#2|)) $) NIL) (($ (-1184 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-388 |#2|) (-330)))) (-3568 (((-1184 $) (-1184 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| (-388 |#2|) (-977 (-388 (-531)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2750 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-3369 ((|#3| $) NIL)) (-2284 (((-721)) NIL)) (-1966 (((-110)) 37)) (-2935 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-3523 (((-1184 $)) 93)) (-2587 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1689 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1855 (((-110)) NIL)) (-3035 (($) 16 T CONST)) (-3050 (($) 26 T CONST)) (-4020 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-531)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-531))) NIL (|has| (-388 |#2|) (-344))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3237 ((-1189) (-721))))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) |#3|) (T -39)) -((-3237 (*1 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *2 (-1189)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1160 (-388 *5))) (-14 *7 *6)))) -(-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3237 ((-1189) (-721))))) -((-3778 ((|#2| |#2|) 48)) (-2155 ((|#2| |#2|) 120 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-2395 ((|#2| |#2|) 87 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-3393 ((|#2| |#2|) 88 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-3472 ((|#2| (-112) |#2| (-721)) 116 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-2614 (((-1098 |#2|) |#2|) 45)) (-3179 ((|#2| |#2| (-598 (-571 |#2|))) 18) ((|#2| |#2| (-598 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-40 |#1| |#2|) (-10 -7 (-15 -3778 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -3179 (|#2| |#2| |#2|)) (-15 -3179 (|#2| |#2| (-598 |#2|))) (-15 -3179 (|#2| |#2| (-598 (-571 |#2|)))) (-15 -2614 ((-1098 |#2|) |#2|)) (IF (|has| |#1| (-797)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-977 (-531))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -3393 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -3472 (|#2| (-112) |#2| (-721)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-523) (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 |#1| (-571 $)) $)) (-15 -1853 ((-1054 |#1| (-571 $)) $)) (-15 -2265 ($ (-1054 |#1| (-571 $))))))) (T -40)) -((-3472 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-721)) (-4 *5 (-432)) (-4 *5 (-797)) (-4 *5 (-977 (-531))) (-4 *5 (-523)) (-5 *1 (-40 *5 *2)) (-4 *2 (-411 *5)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *5 (-571 $)) $)) (-15 -1853 ((-1054 *5 (-571 $)) $)) (-15 -2265 ($ (-1054 *5 (-571 $))))))))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-2614 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-1098 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) (-15 -1853 ((-1054 *4 (-571 $)) $)) (-15 -2265 ($ (-1054 *4 (-571 $))))))))) (-3179 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-571 *2))) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) (-15 -1853 ((-1054 *4 (-571 $)) $)) (-15 -2265 ($ (-1054 *4 (-571 $))))))) (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) (-3179 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) (-15 -1853 ((-1054 *4 (-571 $)) $)) (-15 -2265 ($ (-1054 *4 (-571 $))))))) (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) (-3179 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $)))))))))) -(-10 -7 (-15 -3778 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -3179 (|#2| |#2| |#2|)) (-15 -3179 (|#2| |#2| (-598 |#2|))) (-15 -3179 (|#2| |#2| (-598 (-571 |#2|)))) (-15 -2614 ((-1098 |#2|) |#2|)) (IF (|has| |#1| (-797)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-977 (-531))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -3393 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -3472 (|#2| (-112) |#2| (-721)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2552 (((-399 (-1098 |#3|)) (-1098 |#3|) (-598 (-47))) 23) (((-399 |#3|) |#3| (-598 (-47))) 19))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-399 |#3|) |#3| (-598 (-47)))) (-15 -2552 ((-399 (-1098 |#3|)) (-1098 |#3|) (-598 (-47))))) (-797) (-743) (-892 (-47) |#2| |#1|)) (T -41)) -((-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *7 (-892 (-47) *6 *5)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743)) (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-892 (-47) *6 *5))))) -(-10 -7 (-15 -2552 ((-399 |#3|) |#3| (-598 (-47)))) (-15 -2552 ((-399 (-1098 |#3|)) (-1098 |#3|) (-598 (-47))))) -((-1261 (((-721) |#2|) 65)) (-2653 (((-721) |#2|) 68)) (-1217 (((-598 |#2|)) 33)) (-3063 (((-721) |#2|) 67)) (-2521 (((-721) |#2|) 64)) (-1947 (((-721) |#2|) 66)) (-1377 (((-598 (-639 |#1|))) 60)) (-3551 (((-598 |#2|)) 55)) (-1873 (((-598 |#2|) |#2|) 43)) (-1711 (((-598 |#2|)) 57)) (-3277 (((-598 |#2|)) 56)) (-2348 (((-598 (-639 |#1|))) 48)) (-2700 (((-598 |#2|)) 54)) (-2090 (((-598 |#2|) |#2|) 42)) (-3121 (((-598 |#2|)) 50)) (-2171 (((-598 (-639 |#1|))) 61)) (-2431 (((-598 |#2|)) 59)) (-3523 (((-1184 |#2|) (-1184 |#2|)) 84 (|has| |#1| (-289))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -3063 ((-721) |#2|)) (-15 -2653 ((-721) |#2|)) (-15 -2521 ((-721) |#2|)) (-15 -1261 ((-721) |#2|)) (-15 -1947 ((-721) |#2|)) (-15 -3121 ((-598 |#2|))) (-15 -2090 ((-598 |#2|) |#2|)) (-15 -1873 ((-598 |#2|) |#2|)) (-15 -2700 ((-598 |#2|))) (-15 -3551 ((-598 |#2|))) (-15 -3277 ((-598 |#2|))) (-15 -1711 ((-598 |#2|))) (-15 -2431 ((-598 |#2|))) (-15 -2348 ((-598 (-639 |#1|)))) (-15 -1377 ((-598 (-639 |#1|)))) (-15 -2171 ((-598 (-639 |#1|)))) (-15 -1217 ((-598 |#2|))) (IF (|has| |#1| (-289)) (-15 -3523 ((-1184 |#2|) (-1184 |#2|))) |%noBranch|)) (-523) (-398 |#1|)) (T -42)) -((-3523 (*1 *2 *2) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-42 *3 *4)))) (-1217 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2171 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1377 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2348 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2431 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1711 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3277 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3551 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2700 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-3121 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4))))) -(-10 -7 (-15 -3063 ((-721) |#2|)) (-15 -2653 ((-721) |#2|)) (-15 -2521 ((-721) |#2|)) (-15 -1261 ((-721) |#2|)) (-15 -1947 ((-721) |#2|)) (-15 -3121 ((-598 |#2|))) (-15 -2090 ((-598 |#2|) |#2|)) (-15 -1873 ((-598 |#2|) |#2|)) (-15 -2700 ((-598 |#2|))) (-15 -3551 ((-598 |#2|))) (-15 -3277 ((-598 |#2|))) (-15 -1711 ((-598 |#2|))) (-15 -2431 ((-598 |#2|))) (-15 -2348 ((-598 (-639 |#1|)))) (-15 -1377 ((-598 (-639 |#1|)))) (-15 -2171 ((-598 (-639 |#1|)))) (-15 -1217 ((-598 |#2|))) (IF (|has| |#1| (-289)) (-15 -3523 ((-1184 |#2|) (-1184 |#2|))) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#1|)) (-1184 $)) NIL) (((-1184 (-639 |#1|))) 24)) (-2022 (((-1184 $)) 51)) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#1| (-523)))) (-2783 (((-3 $ "failed")) NIL (|has| |#1| (-523)))) (-3939 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) NIL)) (-1668 ((|#1| $) NIL)) (-2264 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-1387 (((-3 $ "failed") $) NIL (|has| |#1| (-523)))) (-3668 (((-1098 (-895 |#1|))) NIL (|has| |#1| (-344)))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#1| $) NIL)) (-3415 (((-1098 |#1|) $) NIL (|has| |#1| (-523)))) (-3960 ((|#1| (-1184 $)) NIL) ((|#1|) NIL)) (-3586 (((-1098 |#1|) $) NIL)) (-1437 (((-110)) 87)) (-2767 (($ (-1184 |#1|) (-1184 $)) NIL) (($ (-1184 |#1|)) NIL)) (-3622 (((-3 $ "failed") $) 14 (|has| |#1| (-523)))) (-2277 (((-864)) 52)) (-2629 (((-110)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL)) (-3769 (((-110)) NIL)) (-2298 (((-110)) 89)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#1| (-523)))) (-2816 (((-3 $ "failed")) NIL (|has| |#1| (-523)))) (-1950 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) NIL)) (-1807 ((|#1| $) NIL)) (-3405 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-2234 (((-3 $ "failed") $) NIL (|has| |#1| (-523)))) (-2280 (((-1098 (-895 |#1|))) NIL (|has| |#1| (-344)))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#1| $) NIL)) (-1480 (((-1098 |#1|) $) NIL (|has| |#1| (-523)))) (-3579 ((|#1| (-1184 $)) NIL) ((|#1|) NIL)) (-1875 (((-1098 |#1|) $) NIL)) (-2239 (((-110)) 86)) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) 93)) (-1561 (((-110)) 92)) (-3036 (((-110)) 94)) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) 88)) (-1785 ((|#1| $ (-531)) 54)) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) NIL) (((-1184 |#1|) $) 28) (((-639 |#1|) (-1184 $)) NIL)) (-3318 (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL)) (-2570 (((-598 (-895 |#1|)) (-1184 $)) NIL) (((-598 (-895 |#1|))) NIL)) (-3214 (($ $ $) NIL)) (-1817 (((-110)) 84)) (-2265 (((-806) $) 69) (($ (-1184 |#1|)) 22)) (-3523 (((-1184 $)) 45)) (-2273 (((-598 (-1184 |#1|))) NIL (|has| |#1| (-523)))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) 82)) (-2979 (($ (-639 |#1|) $) 18)) (-1605 (($ $ $) NIL)) (-2578 (((-110)) 85)) (-1964 (((-110)) 83)) (-2819 (((-110)) 81)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1069 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-398 |#1|) (-601 (-1069 |#2| |#1|)) (-10 -8 (-15 -2265 ($ (-1184 |#1|))))) (-344) (-864) (-598 (-1102)) (-1184 (-639 |#1|))) (T -43)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-14 *6 (-1184 (-639 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-864)) (-14 *5 (-598 (-1102)))))) -(-13 (-398 |#1|) (-601 (-1069 |#2| |#1|)) (-10 -8 (-15 -2265 ($ (-1184 |#1|))))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3482 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3308 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2072 (($ $) NIL)) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274))) (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2375 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797))))) (-1332 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2039 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) 27 (|has| $ (-6 -4274)))) (-2136 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-3112 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 29 (|has| $ (-6 -4274)))) (-2454 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-1151 (-531)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (($ $ "rest" $) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-3297 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2714 (((-3 |#2| "failed") |#1| $) 37)) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3062 (($ $ (-721)) NIL) (($ $) 24)) (-2705 (($ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 18 (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 18 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3010 (($ (-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797))) (((-531) $) 32 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3611 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3508 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797))) (((-531) $) 34 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-2907 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) 42 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2309 (($ $ (-721)) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3345 (((-598 |#1|) $) 20)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-4059 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 |#1|) $) NIL) (((-598 (-531)) $) NIL)) (-3059 (((-110) |#1| $) NIL) (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797))) (($ $ (-721)) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 23)) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3163 (((-598 |#2|) $) NIL) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 17)) (-1589 (((-110) $) 16)) (-3781 (($) 13)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first") NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value") NIL)) (-2357 (((-531) $ $) NIL)) (-2543 (($) 12) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-1551 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2930 (((-110) $) NIL)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-1818 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL) (($ $ $) NIL)) (-3536 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL) (($ (-598 $)) NIL) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 25) (($ $ $) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2317 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") |#1| $) 44)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2195 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2167 (((-721) $) 22 (|has| $ (-6 -4273))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1030) (-1030)) (T -44)) +(3148264 . 3429568352) +((-2450 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-1543 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-2476 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-1167 (-537)) |#2|) 34)) (-4146 (($ $) 59)) (-3195 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2299 (((-537) (-1 (-111) |#2|) $) 22) (((-537) |#2| $) NIL) (((-537) |#2| $ (-537)) 73)) (-3661 (((-606 |#2|) $) 13)) (-1470 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-4081 (($ (-1 |#2| |#2|) $) 29)) (-1612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4049 (($ |#2| $ (-537)) NIL) (($ $ $ (-537)) 50)) (-1266 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-3206 (((-111) (-1 (-111) |#2|) $) 21)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) NIL) (($ $ (-1167 (-537))) 49)) (-1856 (($ $ (-537)) 56) (($ $ (-1167 (-537))) 55)) (-2539 (((-731) (-1 (-111) |#2|) $) 26) (((-731) |#2| $) NIL)) (-1241 (($ $ $ (-537)) 52)) (-2494 (($ $) 51)) (-2350 (($ (-606 |#2|)) 53)) (-3434 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-606 $)) 62)) (-2341 (((-816) $) 69)) (-2030 (((-111) (-1 (-111) |#2|) $) 20)) (-2244 (((-111) $ $) 72)) (-2263 (((-111) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -2450 ((-111) |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) (-19 |#2|) (-1154)) (T -18)) +NIL +(-10 -8 (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -2450 ((-111) |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-19 |#1|) (-134) (-1154)) (T -19)) +NIL +(-13 (-357 |t#1|) (-10 -7 (-6 -4301))) +(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T)) +((-3418 (((-3 $ "failed") $ $) 12)) (-2329 (($ $) NIL) (($ $ $) 9)) (* (($ (-874) $) NIL) (($ (-731) $) 16) (($ (-537) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20))) +(((-21) (-134)) (T -21)) +((-2329 (*1 *1 *1) (-4 *1 (-21))) (-2329 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-537))))) +(-13 (-129) (-10 -8 (-15 -2329 ($ $)) (-15 -2329 ($ $ $)) (-15 * ($ (-537) $)))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-1656 (((-111) $) 10)) (-3832 (($) 15)) (* (($ (-874) $) 14) (($ (-731) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 * (|#1| (-874) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15))) +(((-23) (-134)) (T -23)) +((-2928 (*1 *1) (-4 *1 (-23))) (-3832 (*1 *1) (-4 *1 (-23))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-731))))) +(-13 (-25) (-10 -8 (-15 (-2928) ($) -2787) (-15 -3832 ($) -2787) (-15 -1656 ((-111) $)) (-15 * ($ (-731) $)))) +(((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((* (($ (-874) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-874) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13))) +(((-25) (-134)) (T -25)) +((-2318 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-874))))) +(-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ (-874) $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-3753 (((-606 $) (-905 $)) 29) (((-606 $) (-1113 $)) 16) (((-606 $) (-1113 $) (-1117)) 20)) (-2652 (($ (-905 $)) 27) (($ (-1113 $)) 11) (($ (-1113 $) (-1117)) 54)) (-1974 (((-606 $) (-905 $)) 30) (((-606 $) (-1113 $)) 18) (((-606 $) (-1113 $) (-1117)) 19)) (-4190 (($ (-905 $)) 28) (($ (-1113 $)) 13) (($ (-1113 $) (-1117)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) +((-2330 (((-111) $ $) 7)) (-3753 (((-606 $) (-905 $)) 77) (((-606 $) (-1113 $)) 76) (((-606 $) (-1113 $) (-1117)) 75)) (-2652 (($ (-905 $)) 80) (($ (-1113 $)) 79) (($ (-1113 $) (-1117)) 78)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 89)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1974 (((-606 $) (-905 $)) 83) (((-606 $) (-1113 $)) 82) (((-606 $) (-1113 $) (-1117)) 81)) (-4190 (($ (-905 $)) 86) (($ (-1113 $)) 85) (($ (-1113 $) (-1117)) 84)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 87)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +(((-27) (-134)) (T -27)) +((-4190 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) (-4190 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) (-2652 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) (-5 *2 (-606 *1))))) +(-13 (-347) (-954) (-10 -8 (-15 -4190 ($ (-905 $))) (-15 -4190 ($ (-1113 $))) (-15 -4190 ($ (-1113 $) (-1117))) (-15 -1974 ((-606 $) (-905 $))) (-15 -1974 ((-606 $) (-1113 $))) (-15 -1974 ((-606 $) (-1113 $) (-1117))) (-15 -2652 ($ (-905 $))) (-15 -2652 ($ (-1113 $))) (-15 -2652 ($ (-1113 $) (-1117))) (-15 -3753 ((-606 $) (-905 $))) (-15 -3753 ((-606 $) (-1113 $))) (-15 -3753 ((-606 $) (-1113 $) (-1117))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-954) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-3753 (((-606 $) (-905 $)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-1113 $) (-1117)) 50) (((-606 $) $) 19) (((-606 $) $ (-1117)) 41)) (-2652 (($ (-905 $)) NIL) (($ (-1113 $)) NIL) (($ (-1113 $) (-1117)) 52) (($ $) 17) (($ $ (-1117)) 37)) (-1974 (((-606 $) (-905 $)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-1113 $) (-1117)) 48) (((-606 $) $) 15) (((-606 $) $ (-1117)) 43)) (-4190 (($ (-905 $)) NIL) (($ (-1113 $)) NIL) (($ (-1113 $) (-1117)) NIL) (($ $) 12) (($ $ (-1117)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3753 ((-606 |#1|) |#1| (-1117))) (-15 -2652 (|#1| |#1| (-1117))) (-15 -3753 ((-606 |#1|) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -1974 ((-606 |#1|) |#1| (-1117))) (-15 -4190 (|#1| |#1| (-1117))) (-15 -1974 ((-606 |#1|) |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) (-29 |#2|) (-13 (-807) (-529))) (T -28)) +NIL +(-10 -8 (-15 -3753 ((-606 |#1|) |#1| (-1117))) (-15 -2652 (|#1| |#1| (-1117))) (-15 -3753 ((-606 |#1|) |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -1974 ((-606 |#1|) |#1| (-1117))) (-15 -4190 (|#1| |#1| (-1117))) (-15 -1974 ((-606 |#1|) |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -3753 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -3753 ((-606 |#1|) (-1113 |#1|))) (-15 -3753 ((-606 |#1|) (-905 |#1|))) (-15 -2652 (|#1| (-1113 |#1|) (-1117))) (-15 -2652 (|#1| (-1113 |#1|))) (-15 -2652 (|#1| (-905 |#1|))) (-15 -1974 ((-606 |#1|) (-1113 |#1|) (-1117))) (-15 -1974 ((-606 |#1|) (-1113 |#1|))) (-15 -1974 ((-606 |#1|) (-905 |#1|))) (-15 -4190 (|#1| (-1113 |#1|) (-1117))) (-15 -4190 (|#1| (-1113 |#1|))) (-15 -4190 (|#1| (-905 |#1|)))) +((-2330 (((-111) $ $) 7)) (-3753 (((-606 $) (-905 $)) 77) (((-606 $) (-1113 $)) 76) (((-606 $) (-1113 $) (-1117)) 75) (((-606 $) $) 123) (((-606 $) $ (-1117)) 121)) (-2652 (($ (-905 $)) 80) (($ (-1113 $)) 79) (($ (-1113 $) (-1117)) 78) (($ $) 124) (($ $ (-1117)) 122)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1117)) $) 198)) (-3588 (((-391 (-1113 $)) $ (-578 $)) 230 (|has| |#1| (-529)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3852 (((-606 (-578 $)) $) 161)) (-3418 (((-3 $ "failed") $ $) 19)) (-1519 (($ $ (-606 (-578 $)) (-606 $)) 151) (($ $ (-606 (-278 $))) 150) (($ $ (-278 $)) 149)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 89)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1974 (((-606 $) (-905 $)) 83) (((-606 $) (-1113 $)) 82) (((-606 $) (-1113 $) (-1117)) 81) (((-606 $) $) 127) (((-606 $) $ (-1117)) 125)) (-4190 (($ (-905 $)) 86) (($ (-1113 $)) 85) (($ (-1113 $) (-1117)) 84) (($ $) 128) (($ $ (-1117)) 126)) (-1516 (((-3 (-905 |#1|) "failed") $) 248 (|has| |#1| (-998))) (((-3 (-391 (-905 |#1|)) "failed") $) 232 (|has| |#1| (-529))) (((-3 |#1| "failed") $) 194) (((-3 (-537) "failed") $) 192 (|has| |#1| (-989 (-537)))) (((-3 (-1117) "failed") $) 185) (((-3 (-578 $) "failed") $) 136) (((-3 (-391 (-537)) "failed") $) 120 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 (((-905 |#1|) $) 249 (|has| |#1| (-998))) (((-391 (-905 |#1|)) $) 233 (|has| |#1| (-529))) ((|#1| $) 195) (((-537) $) 191 (|has| |#1| (-989 (-537)))) (((-1117) $) 186) (((-578 $) $) 137) (((-391 (-537)) $) 119 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3563 (($ $ $) 53)) (-2053 (((-649 |#1|) (-649 $)) 238 (|has| |#1| (-998))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 237 (|has| |#1| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 118 (-1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (((-649 (-537)) (-649 $)) 117 (-1533 (-3319 (|has| |#1| (-998)) (|has| |#1| (-602 (-537)))) (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 190 (|has| |#1| (-839 (-363)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 189 (|has| |#1| (-839 (-537))))) (-3886 (($ (-606 $)) 155) (($ $) 154)) (-3350 (((-606 (-113)) $) 162)) (-3979 (((-113) (-113)) 163)) (-2836 (((-111) $) 30)) (-2353 (((-111) $) 183 (|has| $ (-989 (-537))))) (-2868 (($ $) 215 (|has| |#1| (-998)))) (-3301 (((-1069 |#1| (-578 $)) $) 214 (|has| |#1| (-998)))) (-2590 (($ $ (-537)) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2040 (((-1113 $) (-578 $)) 180 (|has| $ (-998)))) (-2444 (($ $ $) 134)) (-3889 (($ $ $) 133)) (-1612 (($ (-1 $ $) (-578 $)) 169)) (-2765 (((-3 (-578 $) "failed") $) 159)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3576 (((-606 (-578 $)) $) 160)) (-3381 (($ (-113) (-606 $)) 168) (($ (-113) $) 167)) (-3898 (((-3 (-606 $) "failed") $) 209 (|has| |#1| (-1057)))) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) 218 (|has| |#1| (-998)))) (-2566 (((-3 (-606 $) "failed") $) 211 (|has| |#1| (-25)))) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 212 (|has| |#1| (-25)))) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) 217 (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) 216 (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) 210 (|has| |#1| (-1057)))) (-3215 (((-111) $ (-1117)) 166) (((-111) $ (-113)) 165)) (-3865 (($ $) 67)) (-2545 (((-731) $) 158)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 196)) (-3890 ((|#1| $) 197)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-2482 (((-111) $ (-1117)) 171) (((-111) $ $) 170)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-2977 (((-111) $) 182 (|has| $ (-989 (-537))))) (-4116 (($ $ (-1117) (-731) (-1 $ $)) 222 (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ (-606 $))) 221 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) 220 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) 219 (|has| |#1| (-998))) (($ $ (-606 (-113)) (-606 $) (-1117)) 208 (|has| |#1| (-580 (-513)))) (($ $ (-113) $ (-1117)) 207 (|has| |#1| (-580 (-513)))) (($ $) 206 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117))) 205 (|has| |#1| (-580 (-513)))) (($ $ (-1117)) 204 (|has| |#1| (-580 (-513)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-606 $))) 178) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 177) (($ $ (-606 (-113)) (-606 (-1 $ $))) 176) (($ $ (-1117) (-1 $ $)) 175) (($ $ (-1117) (-1 $ (-606 $))) 174) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 173) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 172) (($ $ (-606 $) (-606 $)) 143) (($ $ $ $) 142) (($ $ (-278 $)) 141) (($ $ (-606 (-278 $))) 140) (($ $ (-606 (-578 $)) (-606 $)) 139) (($ $ (-578 $) $) 138)) (-1930 (((-731) $) 56)) (-1922 (($ (-113) (-606 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2190 (($ $ $) 157) (($ $) 156)) (-3456 (($ $ (-1117)) 246 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 245 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 244 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) 243 (|has| |#1| (-998)))) (-2395 (($ $) 225 (|has| |#1| (-529)))) (-3315 (((-1069 |#1| (-578 $)) $) 224 (|has| |#1| (-529)))) (-2529 (($ $) 181 (|has| $ (-998)))) (-3996 (((-513) $) 252 (|has| |#1| (-580 (-513)))) (($ (-402 $)) 223 (|has| |#1| (-529))) (((-845 (-363)) $) 188 (|has| |#1| (-580 (-845 (-363))))) (((-845 (-537)) $) 187 (|has| |#1| (-580 (-845 (-537)))))) (-1978 (($ $ $) 251 (|has| |#1| (-456)))) (-1674 (($ $ $) 250 (|has| |#1| (-456)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ (-905 |#1|)) 247 (|has| |#1| (-998))) (($ (-391 (-905 |#1|))) 231 (|has| |#1| (-529))) (($ (-391 (-905 (-391 |#1|)))) 229 (|has| |#1| (-529))) (($ (-905 (-391 |#1|))) 228 (|has| |#1| (-529))) (($ (-391 |#1|)) 227 (|has| |#1| (-529))) (($ (-1069 |#1| (-578 $))) 213 (|has| |#1| (-998))) (($ |#1|) 193) (($ (-1117)) 184) (($ (-578 $)) 135)) (-2644 (((-3 $ "failed") $) 236 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-1822 (($ (-606 $)) 153) (($ $) 152)) (-2336 (((-111) (-113)) 164)) (-3276 (((-111) $ $) 37)) (-2688 (($ (-1117) (-606 $)) 203) (($ (-1117) $ $ $ $) 202) (($ (-1117) $ $ $) 201) (($ (-1117) $ $) 200) (($ (-1117) $) 199)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1117)) 242 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 241 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 240 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) 239 (|has| |#1| (-998)))) (-2293 (((-111) $ $) 131)) (-2271 (((-111) $ $) 130)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 132)) (-2263 (((-111) $ $) 129)) (-2340 (($ $ $) 62) (($ (-1069 |#1| (-578 $)) (-1069 |#1| (-578 $))) 226 (|has| |#1| (-529)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 87)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-163))) (($ |#1| $) 234 (|has| |#1| (-163))))) +(((-29 |#1|) (-134) (-13 (-807) (-529))) (T -29)) +((-4190 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529))))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) (-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *4)))) (-2652 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529))))) (-3753 (*1 *2 *1) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) (-3753 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-414 |t#1|) (-10 -8 (-15 -4190 ($ $)) (-15 -1974 ((-606 $) $)) (-15 -4190 ($ $ (-1117))) (-15 -1974 ((-606 $) $ (-1117))) (-15 -2652 ($ $)) (-15 -3753 ((-606 $) $)) (-15 -2652 ($ $ (-1117))) (-15 -3753 ((-606 $) $ (-1117))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) . T) ((-27) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-228) . T) ((-274) . T) ((-291) . T) ((-293 $) . T) ((-286) . T) ((-347) . T) ((-361 |#1|) |has| |#1| (-998)) ((-384 |#1|) . T) ((-395 |#1|) . T) ((-414 |#1|) . T) ((-435) . T) ((-456) |has| |#1| (-456)) ((-495 (-578 $) $) . T) ((-495 $ $) . T) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) |has| |#1| (-163)) ((-609 $) . T) ((-602 (-537)) -12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) ((-602 |#1|) |has| |#1| (-998)) ((-678 #0#) . T) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) . T) ((-687) . T) ((-807) . T) ((-853 (-1117)) |has| |#1| (-998)) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-873) . T) ((-954) . T) ((-989 (-391 (-537))) -1533 (|has| |#1| (-989 (-391 (-537)))) (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) ((-989 (-391 (-905 |#1|))) |has| |#1| (-529)) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 (-578 $)) . T) ((-989 (-905 |#1|)) |has| |#1| (-998)) ((-989 (-1117)) . T) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) |has| |#1| (-163)) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1154) . T) ((-1158) . T)) +((-4059 (((-1040 (-210)) $) NIL)) (-4050 (((-1040 (-210)) $) NIL)) (-3878 (($ $ (-210)) 125)) (-4159 (($ (-905 (-537)) (-1117) (-1117) (-1040 (-391 (-537))) (-1040 (-391 (-537)))) 83)) (-1477 (((-606 (-606 (-896 (-210)))) $) 137)) (-2341 (((-816) $) 149))) +(((-30) (-13 (-908) (-10 -8 (-15 -4159 ($ (-905 (-537)) (-1117) (-1117) (-1040 (-391 (-537))) (-1040 (-391 (-537))))) (-15 -3878 ($ $ (-210)))))) (T -30)) +((-4159 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-905 (-537))) (-5 *3 (-1117)) (-5 *4 (-1040 (-391 (-537)))) (-5 *1 (-30)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-30))))) +(-13 (-908) (-10 -8 (-15 -4159 ($ (-905 (-537)) (-1117) (-1117) (-1040 (-391 (-537))) (-1040 (-391 (-537))))) (-15 -3878 ($ $ (-210))))) +((-4190 ((|#2| (-1113 |#2|) (-1117)) 43)) (-3979 (((-113) (-113)) 56)) (-2040 (((-1113 |#2|) (-578 |#2|)) 133 (|has| |#1| (-989 (-537))))) (-1680 ((|#2| |#1| (-537)) 122 (|has| |#1| (-989 (-537))))) (-3740 ((|#2| (-1113 |#2|) |#2|) 30)) (-2904 (((-816) (-606 |#2|)) 85)) (-2529 ((|#2| |#2|) 129 (|has| |#1| (-989 (-537))))) (-2336 (((-111) (-113)) 18)) (** ((|#2| |#2| (-391 (-537))) 96 (|has| |#1| (-989 (-537)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -4190 (|#2| (-1113 |#2|) (-1117))) (-15 -3979 ((-113) (-113))) (-15 -2336 ((-111) (-113))) (-15 -3740 (|#2| (-1113 |#2|) |#2|)) (-15 -2904 ((-816) (-606 |#2|))) (IF (|has| |#1| (-989 (-537))) (PROGN (-15 ** (|#2| |#2| (-391 (-537)))) (-15 -2040 ((-1113 |#2|) (-578 |#2|))) (-15 -2529 (|#2| |#2|)) (-15 -1680 (|#2| |#1| (-537)))) |%noBranch|)) (-13 (-807) (-529)) (-414 |#1|)) (T -31)) +((-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-4 *2 (-414 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-989 *4)) (-4 *3 (-13 (-807) (-529))))) (-2529 (*1 *2 *2) (-12 (-4 *3 (-989 (-537))) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-31 *3 *2)) (-4 *2 (-414 *3)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-414 *4)) (-4 *4 (-989 (-537))) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-1113 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-989 (-537))) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-31 *4 *2)) (-4 *2 (-414 *4)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-816)) (-5 *1 (-31 *4 *5)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-31 *4 *2)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-31 *4 *5)) (-4 *5 (-414 *4)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-31 *3 *4)) (-4 *4 (-414 *3)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *2)) (-5 *4 (-1117)) (-4 *2 (-414 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-807) (-529)))))) +(-10 -7 (-15 -4190 (|#2| (-1113 |#2|) (-1117))) (-15 -3979 ((-113) (-113))) (-15 -2336 ((-111) (-113))) (-15 -3740 (|#2| (-1113 |#2|) |#2|)) (-15 -2904 ((-816) (-606 |#2|))) (IF (|has| |#1| (-989 (-537))) (PROGN (-15 ** (|#2| |#2| (-391 (-537)))) (-15 -2040 ((-1113 |#2|) (-578 |#2|))) (-15 -2529 (|#2| |#2|)) (-15 -1680 (|#2| |#1| (-537)))) |%noBranch|)) +((-2506 (((-111) $ (-731)) 16)) (-3832 (($) 10)) (-1642 (((-111) $ (-731)) 15)) (-2489 (((-111) $ (-731)) 14)) (-2305 (((-111) $ $) 8)) (-2193 (((-111) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -3832 (|#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2193 ((-111) |#1|)) (-15 -2305 ((-111) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -3832 (|#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2193 ((-111) |#1|)) (-15 -2305 ((-111) |#1| |#1|))) +((-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-1642 (((-111) $ (-731)) 9)) (-2489 (((-111) $ (-731)) 10)) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2494 (($ $) 13)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-33) (-134)) (T -33)) +((-2305 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-2494 (*1 *1 *1) (-4 *1 (-33))) (-3425 (*1 *1) (-4 *1 (-33))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) (-2489 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) (-1642 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) (-2506 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) (-3832 (*1 *1) (-4 *1 (-33))) (-2258 (*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-33)) (-5 *2 (-731))))) +(-13 (-1154) (-10 -8 (-15 -2305 ((-111) $ $)) (-15 -2494 ($ $)) (-15 -3425 ($)) (-15 -2193 ((-111) $)) (-15 -2489 ((-111) $ (-731))) (-15 -1642 ((-111) $ (-731))) (-15 -2506 ((-111) $ (-731))) (-15 -3832 ($) -2787) (IF (|has| $ (-6 -4300)) (-15 -2258 ((-731) $)) |%noBranch|))) +(((-1154) . T)) +((-1475 (($ $) 11)) (-1453 (($ $) 10)) (-1495 (($ $) 9)) (-4141 (($ $) 8)) (-1485 (($ $) 7)) (-1465 (($ $) 6))) +(((-34) (-134)) (T -34)) +((-1475 (*1 *1 *1) (-4 *1 (-34))) (-1453 (*1 *1 *1) (-4 *1 (-34))) (-1495 (*1 *1 *1) (-4 *1 (-34))) (-4141 (*1 *1 *1) (-4 *1 (-34))) (-1485 (*1 *1 *1) (-4 *1 (-34))) (-1465 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -1465 ($ $)) (-15 -1485 ($ $)) (-15 -4141 ($ $)) (-15 -1495 ($ $)) (-15 -1453 ($ $)) (-15 -1475 ($ $)))) +((-2330 (((-111) $ $) 19 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3619 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 125)) (-1658 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 148)) (-4199 (($ $) 146)) (-3144 (($) 72) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 71)) (-1279 (((-1205) $ |#1| |#1|) 99 (|has| $ (-6 -4301))) (((-1205) $ (-537) (-537)) 178 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 159 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1543 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 200 (|has| $ (-6 -4301))) (($ $) 199 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2506 (((-111) $ (-731)) 8)) (-3650 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 134 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 155 (|has| $ (-6 -4301)))) (-2236 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 157 (|has| $ (-6 -4301)))) (-1988 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 153 (|has| $ (-6 -4301)))) (-2476 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 189 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-1167 (-537)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 160 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 158 (|has| $ (-6 -4301))) (($ $ "rest" $) 156 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 154 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 133 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 132 (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 45 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 216)) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 55 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 175 (|has| $ (-6 -4300)))) (-1647 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 147)) (-2859 (((-3 |#2| "failed") |#1| $) 61)) (-3832 (($) 7 T CONST)) (-4146 (($ $) 201 (|has| $ (-6 -4301)))) (-3289 (($ $) 211)) (-3200 (($ $ (-731)) 142) (($ $) 140)) (-1376 (($ $) 214 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3221 (($ $) 58 (-1533 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))) (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 46 (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 220) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 215 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 54 (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 174 (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 56 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 53 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 52 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 176 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 173 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 172 (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 190 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 88) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 188)) (-4254 (((-111) $) 192)) (-2299 (((-537) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 208) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 207 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 206 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 30 (|has| $ (-6 -4300))) (((-606 |#2|) $) 79 (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 114 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 123)) (-3868 (((-111) $ $) 131 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3157 (($ (-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 169)) (-1642 (((-111) $ (-731)) 9)) (-1659 ((|#1| $) 96 (|has| |#1| (-807))) (((-537) $) 180 (|has| (-537) (-807)))) (-2444 (($ $ $) 198 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1646 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1470 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 29 (|has| $ (-6 -4300))) (((-606 |#2|) $) 80 (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 115 (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-2187 ((|#1| $) 95 (|has| |#1| (-807))) (((-537) $) 181 (|has| (-537) (-807)))) (-3889 (($ $ $) 197 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 34 (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4301))) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 110 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 109)) (-1285 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 225)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 128)) (-3862 (((-111) $) 124)) (-1654 (((-1100) $) 22 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2375 (($ $ (-731)) 145) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 143)) (-1688 (((-606 |#1|) $) 63)) (-4011 (((-111) |#1| $) 64)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 39)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 40) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 219) (($ $ $ (-537)) 218)) (-4049 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 162) (($ $ $ (-537)) 161)) (-1270 (((-606 |#1|) $) 93) (((-606 (-537)) $) 183)) (-1641 (((-111) |#1| $) 92) (((-111) (-537) $) 184)) (-2528 (((-1064) $) 21 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3188 ((|#2| $) 97 (|has| |#1| (-807))) (($ $ (-731)) 139) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 137)) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 51) (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 171)) (-3040 (($ $ |#2|) 98 (|has| $ (-6 -4301))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 179 (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 41)) (-1492 (((-111) $) 191)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 32 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 112 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 26 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 25 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 24 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 23 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 86 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) 83 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 121 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 120 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 119 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 118 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 182 (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3010 (((-606 |#2|) $) 91) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 185)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 187) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) 186) (($ $ (-1167 (-537))) 165) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first") 138) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value") 126)) (-2364 (((-537) $ $) 129)) (-1341 (($) 49) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 48)) (-3282 (($ $ (-537)) 222) (($ $ (-1167 (-537))) 221)) (-1856 (($ $ (-537)) 164) (($ $ (-1167 (-537))) 163)) (-3335 (((-111) $) 127)) (-3136 (($ $) 151)) (-3743 (($ $) 152 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 150)) (-1935 (($ $) 149)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 31 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-731) |#2| $) 81 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 113 (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) 202 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513)))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 50) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 170)) (-3115 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 224) (($ $ $) 223)) (-3434 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 168) (($ (-606 $)) 167) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 136) (($ $ $) 135)) (-2341 (((-816) $) 18 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))))) (-2804 (((-606 $) $) 122)) (-4261 (((-111) $ $) 130 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 42)) (-2381 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") |#1| $) 108)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 33 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 111 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 195 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2271 (((-111) $ $) 194 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2244 (((-111) $ $) 20 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2282 (((-111) $ $) 196 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2263 (((-111) $ $) 193 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-35 |#1| |#2|) (-134) (-1045) (-1045)) (T -35)) +((-2381 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2926 *3) (|:| -2140 *4)))))) +(-13 (-1130 |t#1| |t#2|) (-627 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|))) (-10 -8 (-15 -2381 ((-3 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-105 #0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-100) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807))) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))) ((-145 #1=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-580 (-513)) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) ((-214 #0#) . T) ((-220 #0#) . T) ((-270 #2=(-537) #1#) . T) ((-270 |#1| |#2|) . T) ((-272 #2# #1#) . T) ((-272 |#1| |#2|) . T) ((-293 #1#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-266 #1#) . T) ((-357 #1#) . T) ((-471 #1#) . T) ((-471 |#2|) . T) ((-570 #2# #1#) . T) ((-570 |#1| |#2|) . T) ((-495 #1# #1#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-576 |#1| |#2|) . T) ((-612 #1#) . T) ((-627 #1#) . T) ((-807) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)) ((-962 #1#) . T) ((-1045) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807))) ((-1091 #1#) . T) ((-1130 |#1| |#2|) . T) ((-1154) . T) ((-1188 #1#) . T)) +((-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-37 |#2|) (-163)) (T -36)) +NIL +(-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-37 |#1|) (-134) (-163)) (T -37)) +((-2341 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163))))) +(-13 (-998) (-678 |t#1|) (-10 -8 (-15 -2341 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-3763 (((-402 |#1|) |#1|) 41)) (-3622 (((-402 |#1|) |#1|) 30) (((-402 |#1|) |#1| (-606 (-47))) 33)) (-3629 (((-111) |#1|) 56))) +(((-38 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1| (-606 (-47)))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3763 ((-402 |#1|) |#1|)) (-15 -3629 ((-111) |#1|))) (-1176 (-47))) (T -38)) +((-3629 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) (-3763 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-47))) (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47)))))) +(-10 -7 (-15 -3622 ((-402 |#1|) |#1| (-606 (-47)))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3763 ((-402 |#1|) |#1|)) (-15 -3629 ((-111) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1783 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| (-391 |#2|) (-347)))) (-3377 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-4017 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-3623 (((-649 (-391 |#2|)) (-1200 $)) NIL) (((-649 (-391 |#2|))) NIL)) (-1428 (((-391 |#2|) $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-391 |#2|) (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2414 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-4099 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3151 (((-731)) NIL (|has| (-391 |#2|) (-352)))) (-2205 (((-111)) NIL)) (-3038 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-3 (-391 |#2|) "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-391 (-537)) $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-391 |#2|) $) NIL)) (-3447 (($ (-1200 (-391 |#2|)) (-1200 $)) NIL) (($ (-1200 (-391 |#2|))) 57) (($ (-1200 |#2|) |#2|) 125)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-391 |#2|) (-333)))) (-3563 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2664 (((-649 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-391 |#2|))) (|:| |vec| (-1200 (-391 |#2|)))) (-649 $) (-1200 $)) NIL) (((-649 (-391 |#2|)) (-649 $)) NIL)) (-4203 (((-1200 $) (-1200 $)) NIL)) (-3195 (($ |#3|) NIL) (((-3 $ "failed") (-391 |#3|)) NIL (|has| (-391 |#2|) (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3544 (((-606 (-606 |#1|))) NIL (|has| |#1| (-352)))) (-1949 (((-111) |#1| |#1|) NIL)) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| (-391 |#2|) (-352)))) (-1853 (((-111)) NIL)) (-1999 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3539 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| (-391 |#2|) (-347)))) (-1351 (($ $) NIL)) (-4145 (($) NIL (|has| (-391 |#2|) (-333)))) (-2974 (((-111) $) NIL (|has| (-391 |#2|) (-333)))) (-2642 (($ $ (-731)) NIL (|has| (-391 |#2|) (-333))) (($ $) NIL (|has| (-391 |#2|) (-333)))) (-2639 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-4231 (((-874) $) NIL (|has| (-391 |#2|) (-333))) (((-793 (-874)) $) NIL (|has| (-391 |#2|) (-333)))) (-2836 (((-111) $) NIL)) (-4147 (((-731)) NIL)) (-4205 (((-1200 $) (-1200 $)) 102)) (-2055 (((-391 |#2|) $) NIL)) (-3941 (((-606 (-905 |#1|)) (-1117)) NIL (|has| |#1| (-347)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3199 ((|#3| $) NIL (|has| (-391 |#2|) (-347)))) (-2334 (((-874) $) NIL (|has| (-391 |#2|) (-352)))) (-3183 ((|#3| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-1654 (((-1100) $) NIL)) (-2283 (((-1205) (-731)) 79)) (-3184 (((-649 (-391 |#2|))) 51)) (-3993 (((-649 (-391 |#2|))) 44)) (-3865 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2921 (($ (-1200 |#2|) |#2|) 126)) (-1734 (((-649 (-391 |#2|))) 45)) (-2125 (((-649 (-391 |#2|))) 43)) (-3307 (((-2 (|:| |num| (-649 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3984 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 64)) (-1782 (((-1200 $)) 42)) (-3778 (((-1200 $)) 41)) (-1600 (((-111) $) NIL)) (-3766 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3956 (($) NIL (|has| (-391 |#2|) (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| (-391 |#2|) (-352)))) (-1787 (((-3 |#2| "failed")) NIL)) (-2528 (((-1064) $) NIL)) (-2091 (((-731)) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| (-391 |#2|) (-347)))) (-2211 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-391 |#2|) (-333)))) (-3622 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-391 |#2|) (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| (-391 |#2|) (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-1930 (((-731) $) NIL (|has| (-391 |#2|) (-347)))) (-1922 ((|#1| $ |#1| |#1|) NIL)) (-2322 (((-3 |#2| "failed")) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-2067 (((-391 |#2|) (-1200 $)) NIL) (((-391 |#2|)) 39)) (-3030 (((-731) $) NIL (|has| (-391 |#2|) (-333))) (((-3 (-731) "failed") $ $) NIL (|has| (-391 |#2|) (-333)))) (-3456 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-1630 (((-649 (-391 |#2|)) (-1200 $) (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347)))) (-2529 ((|#3|) 50)) (-3553 (($) NIL (|has| (-391 |#2|) (-333)))) (-1484 (((-1200 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) (-1200 $) (-1200 $)) NIL) (((-1200 (-391 |#2|)) $) 58) (((-649 (-391 |#2|)) (-1200 $)) 103)) (-3996 (((-1200 (-391 |#2|)) $) NIL) (($ (-1200 (-391 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-391 |#2|) (-333)))) (-3559 (((-1200 $) (-1200 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 |#2|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| (-391 |#2|) (-989 (-391 (-537)))) (|has| (-391 |#2|) (-347)))) (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2644 (($ $) NIL (|has| (-391 |#2|) (-333))) (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-139)))) (-2736 ((|#3| $) NIL)) (-3654 (((-731)) NIL)) (-3735 (((-111)) 37)) (-3281 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-2122 (((-1200 $)) 93)) (-3276 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3450 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2743 (((-111)) NIL)) (-2928 (($) 16 T CONST)) (-2943 (($) 26 T CONST)) (-4230 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| (-391 |#2|) (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 |#2|)) NIL) (($ (-391 |#2|) $) NIL) (($ (-391 (-537)) $) NIL (|has| (-391 |#2|) (-347))) (($ $ (-391 (-537))) NIL (|has| (-391 |#2|) (-347))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-326 |#1| |#2| |#3|) (-10 -7 (-15 -2283 ((-1205) (-731))))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) |#3|) (T -39)) +((-2283 (*1 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *2 (-1205)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1176 (-391 *5))) (-14 *7 *6)))) +(-13 (-326 |#1| |#2| |#3|) (-10 -7 (-15 -2283 ((-1205) (-731))))) +((-3117 ((|#2| |#2|) 48)) (-1823 ((|#2| |#2|) 120 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-2564 ((|#2| |#2|) 87 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-3720 ((|#2| |#2|) 88 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-1413 ((|#2| (-113) |#2| (-731)) 116 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-435)) (|has| |#1| (-807)) (|has| |#1| (-989 (-537)))))) (-4045 (((-1113 |#2|) |#2|) 45)) (-4084 ((|#2| |#2| (-606 (-578 |#2|))) 18) ((|#2| |#2| (-606 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-40 |#1| |#2|) (-10 -7 (-15 -3117 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4084 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2| (-606 |#2|))) (-15 -4084 (|#2| |#2| (-606 (-578 |#2|)))) (-15 -4045 ((-1113 |#2|) |#2|)) (IF (|has| |#1| (-807)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-989 (-537))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -3720 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1413 (|#2| (-113) |#2| (-731)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-529) (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 |#1| (-578 $)) $)) (-15 -3315 ((-1069 |#1| (-578 $)) $)) (-15 -2341 ($ (-1069 |#1| (-578 $))))))) (T -40)) +((-1413 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-731)) (-4 *5 (-435)) (-4 *5 (-807)) (-4 *5 (-989 (-537))) (-4 *5 (-529)) (-5 *1 (-40 *5 *2)) (-4 *2 (-414 *5)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *5 (-578 $)) $)) (-15 -3315 ((-1069 *5 (-578 $)) $)) (-15 -2341 ($ (-1069 *5 (-578 $))))))))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-2564 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-3720 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-4045 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-1113 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) (-15 -3315 ((-1069 *4 (-578 $)) $)) (-15 -2341 ($ (-1069 *4 (-578 $))))))))) (-4084 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-578 *2))) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) (-15 -3315 ((-1069 *4 (-578 $)) $)) (-15 -2341 ($ (-1069 *4 (-578 $))))))) (-4 *4 (-529)) (-5 *1 (-40 *4 *2)))) (-4084 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) (-15 -3315 ((-1069 *4 (-578 $)) $)) (-15 -2341 ($ (-1069 *4 (-578 $))))))) (-4 *4 (-529)) (-5 *1 (-40 *4 *2)))) (-4084 (*1 *2 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $))))))))) (-3117 (*1 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-347) (-286) (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) (-15 -3315 ((-1069 *3 (-578 $)) $)) (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) +(-10 -7 (-15 -3117 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4084 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2| (-606 |#2|))) (-15 -4084 (|#2| |#2| (-606 (-578 |#2|)))) (-15 -4045 ((-1113 |#2|) |#2|)) (IF (|has| |#1| (-807)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-989 (-537))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -3720 (|#2| |#2|)) (-15 -2564 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1413 (|#2| (-113) |#2| (-731)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3622 (((-402 (-1113 |#3|)) (-1113 |#3|) (-606 (-47))) 23) (((-402 |#3|) |#3| (-606 (-47))) 19))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3622 ((-402 |#3|) |#3| (-606 (-47)))) (-15 -3622 ((-402 (-1113 |#3|)) (-1113 |#3|) (-606 (-47))))) (-807) (-753) (-902 (-47) |#2| |#1|)) (T -41)) +((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *7 (-902 (-47) *6 *5)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) (-5 *2 (-402 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-902 (-47) *6 *5))))) +(-10 -7 (-15 -3622 ((-402 |#3|) |#3| (-606 (-47)))) (-15 -3622 ((-402 (-1113 |#3|)) (-1113 |#3|) (-606 (-47))))) +((-3132 (((-731) |#2|) 65)) (-1829 (((-731) |#2|) 68)) (-3666 (((-606 |#2|)) 33)) (-3677 (((-731) |#2|) 67)) (-3734 (((-731) |#2|) 64)) (-1650 (((-731) |#2|) 66)) (-1236 (((-606 (-649 |#1|))) 60)) (-2596 (((-606 |#2|)) 55)) (-2145 (((-606 |#2|) |#2|) 43)) (-2034 (((-606 |#2|)) 57)) (-1708 (((-606 |#2|)) 56)) (-2796 (((-606 (-649 |#1|))) 48)) (-2102 (((-606 |#2|)) 54)) (-1360 (((-606 |#2|) |#2|) 42)) (-1508 (((-606 |#2|)) 50)) (-3691 (((-606 (-649 |#1|))) 61)) (-2014 (((-606 |#2|)) 59)) (-2122 (((-1200 |#2|) (-1200 |#2|)) 84 (|has| |#1| (-291))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -3677 ((-731) |#2|)) (-15 -1829 ((-731) |#2|)) (-15 -3734 ((-731) |#2|)) (-15 -3132 ((-731) |#2|)) (-15 -1650 ((-731) |#2|)) (-15 -1508 ((-606 |#2|))) (-15 -1360 ((-606 |#2|) |#2|)) (-15 -2145 ((-606 |#2|) |#2|)) (-15 -2102 ((-606 |#2|))) (-15 -2596 ((-606 |#2|))) (-15 -1708 ((-606 |#2|))) (-15 -2034 ((-606 |#2|))) (-15 -2014 ((-606 |#2|))) (-15 -2796 ((-606 (-649 |#1|)))) (-15 -1236 ((-606 (-649 |#1|)))) (-15 -3691 ((-606 (-649 |#1|)))) (-15 -3666 ((-606 |#2|))) (IF (|has| |#1| (-291)) (-15 -2122 ((-1200 |#2|) (-1200 |#2|))) |%noBranch|)) (-529) (-401 |#1|)) (T -42)) +((-2122 (*1 *2 *2) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-401 *3)) (-4 *3 (-291)) (-4 *3 (-529)) (-5 *1 (-42 *3 *4)))) (-3666 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-3691 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-1236 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2796 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2014 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2034 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-1708 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2596 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2102 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-2145 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-1360 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-1508 (*1 *2) (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-401 *3)))) (-1650 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-3132 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) (-4 *3 (-401 *4))))) +(-10 -7 (-15 -3677 ((-731) |#2|)) (-15 -1829 ((-731) |#2|)) (-15 -3734 ((-731) |#2|)) (-15 -3132 ((-731) |#2|)) (-15 -1650 ((-731) |#2|)) (-15 -1508 ((-606 |#2|))) (-15 -1360 ((-606 |#2|) |#2|)) (-15 -2145 ((-606 |#2|) |#2|)) (-15 -2102 ((-606 |#2|))) (-15 -2596 ((-606 |#2|))) (-15 -1708 ((-606 |#2|))) (-15 -2034 ((-606 |#2|))) (-15 -2014 ((-606 |#2|))) (-15 -2796 ((-606 (-649 |#1|)))) (-15 -1236 ((-606 (-649 |#1|)))) (-15 -3691 ((-606 (-649 |#1|)))) (-15 -3666 ((-606 |#2|))) (IF (|has| |#1| (-291)) (-15 -2122 ((-1200 |#2|) (-1200 |#2|))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#1|)) (-1200 $)) NIL) (((-1200 (-649 |#1|))) 24)) (-2568 (((-1200 $)) 51)) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#1| (-529)))) (-2649 (((-3 $ "failed")) NIL (|has| |#1| (-529)))) (-4263 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) NIL)) (-2624 ((|#1| $) NIL)) (-4246 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-3800 (((-3 $ "failed") $) NIL (|has| |#1| (-529)))) (-1899 (((-1113 (-905 |#1|))) NIL (|has| |#1| (-347)))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#1| $) NIL)) (-3112 (((-1113 |#1|) $) NIL (|has| |#1| (-529)))) (-2503 ((|#1| (-1200 $)) NIL) ((|#1|) NIL)) (-1889 (((-1113 |#1|) $) NIL)) (-1855 (((-111)) 87)) (-3447 (($ (-1200 |#1|) (-1200 $)) NIL) (($ (-1200 |#1|)) NIL)) (-3490 (((-3 $ "failed") $) 14 (|has| |#1| (-529)))) (-3705 (((-874)) 52)) (-3364 (((-111)) NIL)) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL)) (-1684 (((-111)) NIL)) (-3468 (((-111)) 89)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#1| (-529)))) (-1652 (((-3 $ "failed")) NIL (|has| |#1| (-529)))) (-3699 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) NIL)) (-4217 ((|#1| $) NIL)) (-3486 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-3820 (((-3 $ "failed") $) NIL (|has| |#1| (-529)))) (-4096 (((-1113 (-905 |#1|))) NIL (|has| |#1| (-347)))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#1| $) NIL)) (-2818 (((-1113 |#1|) $) NIL (|has| |#1| (-529)))) (-2757 ((|#1| (-1200 $)) NIL) ((|#1|) NIL)) (-4207 (((-1113 |#1|) $) NIL)) (-2987 (((-111)) 86)) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) 93)) (-2077 (((-111)) 92)) (-2415 (((-111)) 94)) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) 88)) (-1922 ((|#1| $ (-537)) 54)) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) NIL) (((-1200 |#1|) $) 28) (((-649 |#1|) (-1200 $)) NIL)) (-3996 (((-1200 |#1|) $) NIL) (($ (-1200 |#1|)) NIL)) (-4183 (((-606 (-905 |#1|)) (-1200 $)) NIL) (((-606 (-905 |#1|))) NIL)) (-1674 (($ $ $) NIL)) (-3365 (((-111)) 84)) (-2341 (((-816) $) 69) (($ (-1200 |#1|)) 22)) (-2122 (((-1200 $)) 45)) (-3678 (((-606 (-1200 |#1|))) NIL (|has| |#1| (-529)))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) 82)) (-3127 (($ (-649 |#1|) $) 18)) (-3212 (($ $ $) NIL)) (-3750 (((-111)) 85)) (-3530 (((-111)) 83)) (-1972 (((-111)) 81)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1084 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-401 |#1|) (-609 (-1084 |#2| |#1|)) (-10 -8 (-15 -2341 ($ (-1200 |#1|))))) (-347) (-874) (-606 (-1117)) (-1200 (-649 |#1|))) (T -43)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-14 *6 (-1200 (-649 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-874)) (-14 *5 (-606 (-1117)))))) +(-13 (-401 |#1|) (-609 (-1084 |#2| |#1|)) (-10 -8 (-15 -2341 ($ (-1200 |#1|))))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3619 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1658 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-4199 (($ $) NIL)) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301))) (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1543 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807))))) (-1566 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-3650 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) 27 (|has| $ (-6 -4301)))) (-2236 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-1988 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 29 (|has| $ (-6 -4301)))) (-2476 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-1167 (-537)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (($ $ "rest" $) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value" (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1647 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-2859 (((-3 |#2| "failed") |#1| $) 37)) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3200 (($ $ (-731)) NIL) (($ $) 24)) (-1376 (($ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) (((-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 18 (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 18 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-3157 (($ (-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807))) (((-537) $) 32 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1646 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-1470 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807))) (((-537) $) 34 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-1285 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) 42 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2375 (($ $ (-731)) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1688 (((-606 |#1|) $) 20)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-4049 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 |#1|) $) NIL) (((-606 (-537)) $) NIL)) (-1641 (((-111) |#1| $) NIL) (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807))) (($ $ (-731)) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 23)) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3010 (((-606 |#2|) $) NIL) (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 17)) (-2193 (((-111) $) 16)) (-3425 (($) 13)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "first") NIL) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $ "value") NIL)) (-2364 (((-537) $ $) NIL)) (-1341 (($) 12) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-3282 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3335 (((-111) $) NIL)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-3115 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL) (($ $ $) NIL)) (-3434 (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL) (($ (-606 $)) NIL) (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 25) (($ $ $) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2381 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") |#1| $) 44)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2282 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-807)))) (-2258 (((-731) $) 22 (|has| $ (-6 -4300))))) +(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1045) (-1045)) (T -44)) NIL (-35 |#1| |#2|) -((-3380 (((-110) $) 12)) (-3261 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-388 (-531)) $) 25) (($ $ (-388 (-531))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-46 |#2| |#3|) (-986) (-742)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-2012 ((|#2| $) 62)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-46 |#1| |#2|) (-133) (-986) (-742)) (T -46)) -((-2475 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-110)))) (-2669 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-3188 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *2 (-344))))) -(-13 (-986) (-109 |t#1| |t#1|) (-10 -8 (-15 -2475 (|t#1| $)) (-15 -2462 ($ $)) (-15 -2012 (|t#2| $)) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -3380 ((-110) $)) (-15 -2669 ($ |t#1| |t#2|)) (-15 -2500 ($ $)) (-15 -3188 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-344)) (-15 -2263 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-523)) (-6 (-523)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (-6 (-37 (-388 (-531)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-2485 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2424 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3019 (((-110) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2410 (((-598 (-571 $)) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3007 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2738 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-571 $) $) NIL) (((-531) $) NIL) (((-388 (-531)) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-388 (-531)))) (|:| |vec| (-1184 (-388 (-531))))) (-639 $) (-1184 $)) NIL) (((-639 (-388 (-531))) (-639 $)) NIL)) (-1760 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) NIL)) (-3481 (((-110) $) 14)) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-1840 (((-1054 (-531) (-571 $)) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-1899 (((-1098 $) (-1098 $) (-571 $)) NIL) (((-1098 $) (-1098 $) (-598 (-571 $))) NIL) (($ $ (-571 $)) NIL) (($ $ (-598 (-571 $))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2733 (((-1098 $) (-571 $)) NIL (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) NIL)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) NIL)) (-1930 (($ (-112) $) NIL) (($ (-112) (-598 $)) NIL)) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) NIL)) (-2422 (($ $) NIL)) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-4100 (((-721) $) NIL)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1771 (($ $) NIL) (($ $ $) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1853 (((-1054 (-531) (-571 $)) $) NIL)) (-3608 (($ $) NIL (|has| $ (-986)))) (-3318 (((-360) $) NIL) (((-208) $) NIL) (((-159 (-360)) $) NIL)) (-2265 (((-806) $) NIL) (($ (-571 $)) NIL) (($ (-388 (-531))) NIL) (($ $) NIL) (($ (-531)) NIL) (($ (-1054 (-531) (-571 $))) NIL)) (-2284 (((-721)) NIL)) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-3167 (((-110) (-112)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 7 T CONST)) (-3050 (($) 12 T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 16)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $ $) 15) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-388 (-531))) NIL) (($ $ (-531)) NIL) (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ $ $) NIL) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL))) -(((-47) (-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $))))))) (T -47)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) (-1760 (*1 *1 *1) (-5 *1 (-47))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-571 (-47))) (-5 *1 (-47)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-598 (-571 (-47)))) (-5 *1 (-47)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-571 (-47))) (-5 *1 (-47)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-47)))) (-5 *1 (-47))))) -(-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $)))))) -((-2247 (((-110) $ $) NIL)) (-3185 (((-598 (-1102)) $) 17)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-3964 (((-1107) $) 18)) (-2148 (((-110) $ $) NIL))) -(((-48) (-13 (-1030) (-10 -8 (-15 -3185 ((-598 (-1102)) $)) (-15 -3964 ((-1107) $))))) (T -48)) -((-3185 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-48)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-48))))) -(-13 (-1030) (-10 -8 (-15 -3185 ((-598 (-1102)) $)) (-15 -3964 ((-1107) $)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 61)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1922 (((-110) $) 20)) (-3154 (((-3 |#1| "failed") $) 23)) (-2523 ((|#1| $) 24)) (-2500 (($ $) 28)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2475 ((|#1| $) 21)) (-2728 (($ $) 50)) (-1521 (((-1085) $) NIL)) (-1777 (((-110) $) 30)) (-2529 (((-1049) $) NIL)) (-1861 (($ (-721)) 48)) (-2798 (($ (-598 (-531))) 49)) (-2012 (((-721) $) 31)) (-2265 (((-806) $) 64) (($ (-531)) 45) (($ |#1|) 43)) (-3188 ((|#1| $ $) 19)) (-2284 (((-721)) 47)) (-3035 (($) 32 T CONST)) (-3050 (($) 14 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 40)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-576 |#1|) (-977 |#1|) (-10 -8 (-15 -2475 (|#1| $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 (|#1| $ $)) (-15 -1861 ($ (-721))) (-15 -2798 ($ (-598 (-531)))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-721) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)))) (-986) (-598 (-1102))) (T -49)) -((-2475 (*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102))))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))))) (-3188 (*1 *2 *1 *1) (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102))))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-49 *3 *4)) (-14 *4 (-598 (-1102)))))) -(-13 (-576 |#1|) (-977 |#1|) (-10 -8 (-15 -2475 (|#1| $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 (|#1| $ $)) (-15 -1861 ($ (-721))) (-15 -2798 ($ (-598 (-531)))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-721) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)))) -((-1922 (((-110) (-51)) 13)) (-3154 (((-3 |#1| "failed") (-51)) 21)) (-2523 ((|#1| (-51)) 22)) (-2265 (((-51) |#1|) 18))) -(((-50 |#1|) (-10 -7 (-15 -2265 ((-51) |#1|)) (-15 -3154 ((-3 |#1| "failed") (-51))) (-15 -1922 ((-110) (-51))) (-15 -2523 (|#1| (-51)))) (-1138)) (T -50)) -((-2523 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1138)))) (-3154 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1138))))) -(-10 -7 (-15 -2265 ((-51) |#1|)) (-15 -3154 ((-3 |#1| "failed") (-51))) (-15 -1922 ((-110) (-51))) (-15 -2523 (|#1| (-51)))) -((-2247 (((-110) $ $) NIL)) (-2949 (((-1085) (-110)) 25)) (-1809 (((-806) $) 24)) (-1851 (((-724) $) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2569 (((-806) $) 16)) (-1235 (((-1034) $) 14)) (-2265 (((-806) $) 32)) (-4079 (($ (-1034) (-724)) 33)) (-2148 (((-110) $ $) 18))) -(((-51) (-13 (-1030) (-10 -8 (-15 -4079 ($ (-1034) (-724))) (-15 -2569 ((-806) $)) (-15 -1809 ((-806) $)) (-15 -1235 ((-1034) $)) (-15 -1851 ((-724) $)) (-15 -2949 ((-1085) (-110)))))) (T -51)) -((-4079 (*1 *1 *2 *3) (-12 (-5 *2 (-1034)) (-5 *3 (-724)) (-5 *1 (-51)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-51)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-724)) (-5 *1 (-51)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1085)) (-5 *1 (-51))))) -(-13 (-1030) (-10 -8 (-15 -4079 ($ (-1034) (-724))) (-15 -2569 ((-806) $)) (-15 -1809 ((-806) $)) (-15 -1235 ((-1034) $)) (-15 -1851 ((-724) $)) (-15 -2949 ((-1085) (-110))))) -((-2979 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2979 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-986) (-601 |#1|) (-799 |#1|)) (T -52)) -((-2979 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-601 *5)) (-4 *5 (-986)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-799 *5))))) -(-10 -7 (-15 -2979 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1673 ((|#3| |#3| (-598 (-1102))) 35)) (-3782 ((|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3| (-864)) 22) ((|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3|)) (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3| (-864))) (-15 -1673 (|#3| |#3| (-598 (-1102))))) (-1030) (-13 (-986) (-829 |#1|) (-797) (-573 (-835 |#1|))) (-13 (-411 |#2|) (-829 |#1|) (-573 (-835 |#1|)))) (T -53)) -((-1673 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) (-3782 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-598 (-1008 *5 *6 *2))) (-5 *4 (-864)) (-4 *5 (-1030)) (-4 *6 (-13 (-986) (-829 *5) (-797) (-573 (-835 *5)))) (-4 *2 (-13 (-411 *6) (-829 *5) (-573 (-835 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *3 (-598 (-1008 *4 *5 *2))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3|)) (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3| (-864))) (-15 -1673 (|#3| |#3| (-598 (-1102))))) -((-4058 (((-110) $ (-721)) 23)) (-2398 (($ $ (-531) |#3|) 46)) (-3492 (($ $ (-531) |#4|) 50)) (-4011 ((|#3| $ (-531)) 59)) (-2227 (((-598 |#2|) $) 30)) (-3280 (((-110) $ (-721)) 25)) (-1883 (((-110) |#2| $) 54)) (-2680 (($ (-1 |#2| |#2|) $) 37)) (-3261 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3332 (((-110) $ (-721)) 24)) (-3742 (($ $ |#2|) 34)) (-2294 (((-110) (-1 (-110) |#2|) $) 19)) (-1785 ((|#2| $ (-531) (-531)) NIL) ((|#2| $ (-531) (-531) |#2|) 27)) (-2539 (((-721) (-1 (-110) |#2|) $) 28) (((-721) |#2| $) 56)) (-2480 (($ $) 33)) (-3431 ((|#4| $ (-531)) 62)) (-2265 (((-806) $) 68)) (-2060 (((-110) (-1 (-110) |#2|) $) 18)) (-2148 (((-110) $ $) 53)) (-2167 (((-721) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 (|#1| |#1| (-531) |#4|)) (-15 -2398 (|#1| |#1| (-531) |#3|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -3431 (|#4| |#1| (-531))) (-15 -4011 (|#3| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -2480 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1138) (-354 |#2|) (-354 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 (|#1| |#1| (-531) |#4|)) (-15 -2398 (|#1| |#1| (-531) |#3|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -3431 (|#4| |#1| (-531))) (-15 -4011 (|#3| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -2480 (|#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) (-531) |#1|) 44)) (-2398 (($ $ (-531) |#2|) 42)) (-3492 (($ $ (-531) |#3|) 41)) (-4082 (($) 7 T CONST)) (-4011 ((|#2| $ (-531)) 46)) (-2693 ((|#1| $ (-531) (-531) |#1|) 43)) (-2627 ((|#1| $ (-531) (-531)) 48)) (-2227 (((-598 |#1|) $) 30)) (-1548 (((-721) $) 51)) (-3010 (($ (-721) (-721) |#1|) 57)) (-1557 (((-721) $) 50)) (-3280 (((-110) $ (-721)) 9)) (-1271 (((-531) $) 55)) (-1665 (((-531) $) 53)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 54)) (-2394 (((-531) $) 52)) (-2680 (($ (-1 |#1| |#1|) $) 34)) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) 56)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) (-531)) 49) ((|#1| $ (-531) (-531) |#1|) 47)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3431 ((|#3| $ (-531)) 45)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-55 |#1| |#2| |#3|) (-133) (-1138) (-354 |t#1|) (-354 |t#1|)) (T -55)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3010 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-721)) (-4 *3 (-1138)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3742 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-721)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-721)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1138)))) (-2627 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1138)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1138)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-598 *3)))) (-2454 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2693 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2398 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))) (-3492 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1138)) (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))) (-2680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3261 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))) -(-13 (-468 |t#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -3010 ($ (-721) (-721) |t#1|)) (-15 -3742 ($ $ |t#1|)) (-15 -1271 ((-531) $)) (-15 -2527 ((-531) $)) (-15 -1665 ((-531) $)) (-15 -2394 ((-531) $)) (-15 -1548 ((-721) $)) (-15 -1557 ((-721) $)) (-15 -1785 (|t#1| $ (-531) (-531))) (-15 -2627 (|t#1| $ (-531) (-531))) (-15 -1785 (|t#1| $ (-531) (-531) |t#1|)) (-15 -4011 (|t#2| $ (-531))) (-15 -3431 (|t#3| $ (-531))) (-15 -2227 ((-598 |t#1|) $)) (-15 -2454 (|t#1| $ (-531) (-531) |t#1|)) (-15 -2693 (|t#1| $ (-531) (-531) |t#1|)) (-15 -2398 ($ $ (-531) |t#2|)) (-15 -3492 ($ $ (-531) |t#3|)) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -2680 ($ (-1 |t#1| |t#1|) $)) (-15 -3261 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3261 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-3203 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3261 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-56 |#1| |#2|) (-10 -7 (-15 -3203 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3261 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1138) (-1138)) (T -56)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-56 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) -(-10 -7 (-15 -3203 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3261 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 11 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3983 (($ (-598 |#1|)) 13) (($ (-721) |#1|) 14)) (-3010 (($ (-721) |#1|) 9)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 7)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3983 ($ (-598 |#1|))) (-15 -3983 ($ (-721) |#1|)))) (-1138)) (T -57)) -((-3983 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-57 *3)))) (-3983 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-57 *3)) (-4 *3 (-1138))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3983 ($ (-598 |#1|))) (-15 -3983 ($ (-721) |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2398 (($ $ (-531) (-57 |#1|)) NIL)) (-3492 (($ $ (-531) (-57 |#1|)) NIL)) (-4082 (($) NIL T CONST)) (-4011 (((-57 |#1|) $ (-531)) NIL)) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-57 |#1|) $ (-531)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4274))) (-1138)) (T -58)) -NIL -(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4274))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 74) (((-3 $ "failed") (-1184 (-297 (-531)))) 63) (((-3 $ "failed") (-1184 (-895 (-360)))) 94) (((-3 $ "failed") (-1184 (-895 (-531)))) 84) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 52) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 39)) (-2523 (($ (-1184 (-297 (-360)))) 70) (($ (-1184 (-297 (-531)))) 59) (($ (-1184 (-895 (-360)))) 90) (($ (-1184 (-895 (-531)))) 80) (($ (-1184 (-388 (-895 (-360))))) 48) (($ (-1184 (-388 (-895 (-531))))) 32)) (-3206 (((-1189) $) 120)) (-2265 (((-806) $) 113) (($ (-598 (-311))) 103) (($ (-311)) 97) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 101) (($ (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649)))) 31))) -(((-59 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649))))))) (-1102)) (T -59)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649)))) (-5 *1 (-59 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649))))))) -((-3206 (((-1189) $) 53) (((-1189)) 54)) (-2265 (((-806) $) 50))) -(((-60 |#1|) (-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) (-1102)) (T -60)) -((-3206 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-60 *3)) (-14 *3 (-1102))))) -(-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 144) (((-3 $ "failed") (-1184 (-297 (-531)))) 134) (((-3 $ "failed") (-1184 (-895 (-360)))) 164) (((-3 $ "failed") (-1184 (-895 (-531)))) 154) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 123) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 111)) (-2523 (($ (-1184 (-297 (-360)))) 140) (($ (-1184 (-297 (-531)))) 130) (($ (-1184 (-895 (-360)))) 160) (($ (-1184 (-895 (-531)))) 150) (($ (-1184 (-388 (-895 (-360))))) 119) (($ (-1184 (-388 (-895 (-531))))) 104)) (-3206 (((-1189) $) 97)) (-2265 (((-806) $) 91) (($ (-598 (-311))) 29) (($ (-311)) 34) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 32) (($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) 89))) -(((-61 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))) (-1102)) (T -61)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) (-5 *1 (-61 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))) -((-3154 (((-3 $ "failed") (-297 (-360))) 41) (((-3 $ "failed") (-297 (-531))) 46) (((-3 $ "failed") (-895 (-360))) 50) (((-3 $ "failed") (-895 (-531))) 54) (((-3 $ "failed") (-388 (-895 (-360)))) 36) (((-3 $ "failed") (-388 (-895 (-531)))) 29)) (-2523 (($ (-297 (-360))) 39) (($ (-297 (-531))) 44) (($ (-895 (-360))) 48) (($ (-895 (-531))) 52) (($ (-388 (-895 (-360)))) 34) (($ (-388 (-895 (-531)))) 26)) (-3206 (((-1189) $) 76)) (-2265 (((-806) $) 69) (($ (-598 (-311))) 61) (($ (-311)) 66) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 64) (($ (-320 (-2274 (QUOTE X)) (-2274) (-649))) 25))) -(((-62 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274) (-649)))))) (-1102)) (T -62)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274 (QUOTE X)) (-2274) (-649))) (-5 *1 (-62 *3)) (-14 *3 (-1102))))) -(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274) (-649)))))) -((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 109) (((-3 $ "failed") (-639 (-297 (-531)))) 97) (((-3 $ "failed") (-639 (-895 (-360)))) 131) (((-3 $ "failed") (-639 (-895 (-531)))) 120) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 85) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 71)) (-2523 (($ (-639 (-297 (-360)))) 105) (($ (-639 (-297 (-531)))) 93) (($ (-639 (-895 (-360)))) 127) (($ (-639 (-895 (-531)))) 116) (($ (-639 (-388 (-895 (-360))))) 81) (($ (-639 (-388 (-895 (-531))))) 64)) (-3206 (((-1189) $) 139)) (-2265 (((-806) $) 133) (($ (-598 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 31) (($ (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649)))) 54))) -(((-63 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649))))))) (-1102)) (T -63)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649)))) (-5 *1 (-63 *3)) (-14 *3 (-1102))))) -(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649))))))) -((-3154 (((-3 $ "failed") (-297 (-360))) 59) (((-3 $ "failed") (-297 (-531))) 64) (((-3 $ "failed") (-895 (-360))) 68) (((-3 $ "failed") (-895 (-531))) 72) (((-3 $ "failed") (-388 (-895 (-360)))) 54) (((-3 $ "failed") (-388 (-895 (-531)))) 47)) (-2523 (($ (-297 (-360))) 57) (($ (-297 (-531))) 62) (($ (-895 (-360))) 66) (($ (-895 (-531))) 70) (($ (-388 (-895 (-360)))) 52) (($ (-388 (-895 (-531)))) 44)) (-3206 (((-1189) $) 81)) (-2265 (((-806) $) 75) (($ (-598 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 31) (($ (-320 (-2274) (-2274 (QUOTE XC)) (-649))) 39))) -(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE XC)) (-649)))))) (-1102)) (T -64)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274) (-2274 (QUOTE XC)) (-649))) (-5 *1 (-64 *3)) (-14 *3 (-1102))))) -(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE XC)) (-649)))))) -((-3206 (((-1189) $) 63)) (-2265 (((-806) $) 57) (($ (-639 (-649))) 49) (($ (-598 (-311))) 48) (($ (-311)) 55) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 53))) -(((-65 |#1|) (-364) (-1102)) (T -65)) -NIL -(-364) -((-3206 (((-1189) $) 64)) (-2265 (((-806) $) 58) (($ (-639 (-649))) 50) (($ (-598 (-311))) 49) (($ (-311)) 52) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 55))) -(((-66 |#1|) (-364) (-1102)) (T -66)) -NIL -(-364) -((-3206 (((-1189) $) NIL) (((-1189)) 32)) (-2265 (((-806) $) NIL))) -(((-67 |#1|) (-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) (-1102)) (T -67)) -((-3206 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-67 *3)) (-14 *3 (-1102))))) -(-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) -((-3206 (((-1189) $) 73)) (-2265 (((-806) $) 67) (($ (-639 (-649))) 59) (($ (-598 (-311))) 61) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 58))) -(((-68 |#1|) (-364) (-1102)) (T -68)) -NIL -(-364) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 103) (((-3 $ "failed") (-1184 (-297 (-531)))) 92) (((-3 $ "failed") (-1184 (-895 (-360)))) 123) (((-3 $ "failed") (-1184 (-895 (-531)))) 113) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 81) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 68)) (-2523 (($ (-1184 (-297 (-360)))) 99) (($ (-1184 (-297 (-531)))) 88) (($ (-1184 (-895 (-360)))) 119) (($ (-1184 (-895 (-531)))) 109) (($ (-1184 (-388 (-895 (-360))))) 77) (($ (-1184 (-388 (-895 (-531))))) 61)) (-3206 (((-1189) $) 136)) (-2265 (((-806) $) 130) (($ (-598 (-311))) 125) (($ (-311)) 128) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 53) (($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) 54))) -(((-69 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))) (-1102)) (T -69)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) (-5 *1 (-69 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))) -((-3206 (((-1189) $) 32) (((-1189)) 31)) (-2265 (((-806) $) 35))) -(((-70 |#1|) (-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) (-1102)) (T -70)) -((-3206 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-70 *3)) (-14 *3 (-1102))))) -(-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) -((-3206 (((-1189) $) 63)) (-2265 (((-806) $) 57) (($ (-639 (-649))) 49) (($ (-598 (-311))) 51) (($ (-311)) 54) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 48))) -(((-71 |#1|) (-364) (-1102)) (T -71)) -NIL -(-364) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 125) (((-3 $ "failed") (-1184 (-297 (-531)))) 115) (((-3 $ "failed") (-1184 (-895 (-360)))) 145) (((-3 $ "failed") (-1184 (-895 (-531)))) 135) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 105) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 93)) (-2523 (($ (-1184 (-297 (-360)))) 121) (($ (-1184 (-297 (-531)))) 111) (($ (-1184 (-895 (-360)))) 141) (($ (-1184 (-895 (-531)))) 131) (($ (-1184 (-388 (-895 (-360))))) 101) (($ (-1184 (-388 (-895 (-531))))) 86)) (-3206 (((-1189) $) 78)) (-2265 (((-806) $) 27) (($ (-598 (-311))) 68) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 71) (($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) 65))) -(((-72 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) (-1102)) (T -72)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) (-5 *1 (-72 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 130) (((-3 $ "failed") (-1184 (-297 (-531)))) 119) (((-3 $ "failed") (-1184 (-895 (-360)))) 150) (((-3 $ "failed") (-1184 (-895 (-531)))) 140) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 108) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 95)) (-2523 (($ (-1184 (-297 (-360)))) 126) (($ (-1184 (-297 (-531)))) 115) (($ (-1184 (-895 (-360)))) 146) (($ (-1184 (-895 (-531)))) 136) (($ (-1184 (-388 (-895 (-360))))) 104) (($ (-1184 (-388 (-895 (-531))))) 88)) (-3206 (((-1189) $) 79)) (-2265 (((-806) $) 71) (($ (-598 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) NIL) (($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649)))) 66))) -(((-73 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649))))))) (-1102) (-1102) (-1102)) (T -73)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102)) (-14 *5 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 134) (((-3 $ "failed") (-1184 (-297 (-531)))) 123) (((-3 $ "failed") (-1184 (-895 (-360)))) 154) (((-3 $ "failed") (-1184 (-895 (-531)))) 144) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 112) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 99)) (-2523 (($ (-1184 (-297 (-360)))) 130) (($ (-1184 (-297 (-531)))) 119) (($ (-1184 (-895 (-360)))) 150) (($ (-1184 (-895 (-531)))) 140) (($ (-1184 (-388 (-895 (-360))))) 108) (($ (-1184 (-388 (-895 (-531))))) 92)) (-3206 (((-1189) $) 83)) (-2265 (((-806) $) 75) (($ (-598 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) NIL) (($ (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649)))) 70))) -(((-74 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649))))))) (-1102) (-1102) (-1102)) (T -74)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102)) (-14 *5 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649))))))) -((-3154 (((-3 $ "failed") (-297 (-360))) 82) (((-3 $ "failed") (-297 (-531))) 87) (((-3 $ "failed") (-895 (-360))) 91) (((-3 $ "failed") (-895 (-531))) 95) (((-3 $ "failed") (-388 (-895 (-360)))) 77) (((-3 $ "failed") (-388 (-895 (-531)))) 70)) (-2523 (($ (-297 (-360))) 80) (($ (-297 (-531))) 85) (($ (-895 (-360))) 89) (($ (-895 (-531))) 93) (($ (-388 (-895 (-360)))) 75) (($ (-388 (-895 (-531)))) 67)) (-3206 (((-1189) $) 62)) (-2265 (((-806) $) 50) (($ (-598 (-311))) 46) (($ (-311)) 56) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 54) (($ (-320 (-2274) (-2274 (QUOTE X)) (-649))) 47))) -(((-75 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649)))))) (-1102)) (T -75)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274) (-2274 (QUOTE X)) (-649))) (-5 *1 (-75 *3)) (-14 *3 (-1102))))) -(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649)))))) -((-3154 (((-3 $ "failed") (-297 (-360))) 46) (((-3 $ "failed") (-297 (-531))) 51) (((-3 $ "failed") (-895 (-360))) 55) (((-3 $ "failed") (-895 (-531))) 59) (((-3 $ "failed") (-388 (-895 (-360)))) 41) (((-3 $ "failed") (-388 (-895 (-531)))) 34)) (-2523 (($ (-297 (-360))) 44) (($ (-297 (-531))) 49) (($ (-895 (-360))) 53) (($ (-895 (-531))) 57) (($ (-388 (-895 (-360)))) 39) (($ (-388 (-895 (-531)))) 31)) (-3206 (((-1189) $) 80)) (-2265 (((-806) $) 74) (($ (-598 (-311))) 66) (($ (-311)) 71) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 69) (($ (-320 (-2274) (-2274 (QUOTE X)) (-649))) 30))) -(((-76 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649)))))) (-1102)) (T -76)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274) (-2274 (QUOTE X)) (-649))) (-5 *1 (-76 *3)) (-14 *3 (-1102))))) -(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649)))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 89) (((-3 $ "failed") (-1184 (-297 (-531)))) 78) (((-3 $ "failed") (-1184 (-895 (-360)))) 109) (((-3 $ "failed") (-1184 (-895 (-531)))) 99) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 67) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 54)) (-2523 (($ (-1184 (-297 (-360)))) 85) (($ (-1184 (-297 (-531)))) 74) (($ (-1184 (-895 (-360)))) 105) (($ (-1184 (-895 (-531)))) 95) (($ (-1184 (-388 (-895 (-360))))) 63) (($ (-1184 (-388 (-895 (-531))))) 47)) (-3206 (((-1189) $) 125)) (-2265 (((-806) $) 119) (($ (-598 (-311))) 112) (($ (-311)) 37) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 115) (($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) 38))) -(((-77 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))) (-1102)) (T -77)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) (-5 *1 (-77 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 142) (((-3 $ "failed") (-1184 (-297 (-531)))) 132) (((-3 $ "failed") (-1184 (-895 (-360)))) 162) (((-3 $ "failed") (-1184 (-895 (-531)))) 152) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 122) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 110)) (-2523 (($ (-1184 (-297 (-360)))) 138) (($ (-1184 (-297 (-531)))) 128) (($ (-1184 (-895 (-360)))) 158) (($ (-1184 (-895 (-531)))) 148) (($ (-1184 (-388 (-895 (-360))))) 118) (($ (-1184 (-388 (-895 (-531))))) 103)) (-3206 (((-1189) $) 96)) (-2265 (((-806) $) 90) (($ (-598 (-311))) 81) (($ (-311)) 88) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 86) (($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) 82))) -(((-78 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) (-1102)) (T -78)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) (-5 *1 (-78 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 78) (((-3 $ "failed") (-1184 (-297 (-531)))) 67) (((-3 $ "failed") (-1184 (-895 (-360)))) 98) (((-3 $ "failed") (-1184 (-895 (-531)))) 88) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 56) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 43)) (-2523 (($ (-1184 (-297 (-360)))) 74) (($ (-1184 (-297 (-531)))) 63) (($ (-1184 (-895 (-360)))) 94) (($ (-1184 (-895 (-531)))) 84) (($ (-1184 (-388 (-895 (-360))))) 52) (($ (-1184 (-388 (-895 (-531))))) 36)) (-3206 (((-1189) $) 124)) (-2265 (((-806) $) 118) (($ (-598 (-311))) 109) (($ (-311)) 115) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 113) (($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) 35))) -(((-79 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) (-1102)) (T -79)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) (-5 *1 (-79 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 95) (((-3 $ "failed") (-1184 (-297 (-531)))) 84) (((-3 $ "failed") (-1184 (-895 (-360)))) 115) (((-3 $ "failed") (-1184 (-895 (-531)))) 105) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 73) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 60)) (-2523 (($ (-1184 (-297 (-360)))) 91) (($ (-1184 (-297 (-531)))) 80) (($ (-1184 (-895 (-360)))) 111) (($ (-1184 (-895 (-531)))) 101) (($ (-1184 (-388 (-895 (-360))))) 69) (($ (-1184 (-388 (-895 (-531))))) 53)) (-3206 (((-1189) $) 45)) (-2265 (((-806) $) 39) (($ (-598 (-311))) 29) (($ (-311)) 32) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 35) (($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) 30))) -(((-80 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649))))))) (-1102)) (T -80)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) (-5 *1 (-80 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649))))))) -((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 115) (((-3 $ "failed") (-639 (-297 (-531)))) 104) (((-3 $ "failed") (-639 (-895 (-360)))) 137) (((-3 $ "failed") (-639 (-895 (-531)))) 126) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 93) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 80)) (-2523 (($ (-639 (-297 (-360)))) 111) (($ (-639 (-297 (-531)))) 100) (($ (-639 (-895 (-360)))) 133) (($ (-639 (-895 (-531)))) 122) (($ (-639 (-388 (-895 (-360))))) 89) (($ (-639 (-388 (-895 (-531))))) 73)) (-3206 (((-1189) $) 63)) (-2265 (((-806) $) 50) (($ (-598 (-311))) 57) (($ (-311)) 46) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 55) (($ (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) 47))) -(((-81 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649))))))) (-1102)) (T -81)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) (-5 *1 (-81 *3)) (-14 *3 (-1102))))) -(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649))))))) -((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 112) (((-3 $ "failed") (-639 (-297 (-531)))) 100) (((-3 $ "failed") (-639 (-895 (-360)))) 134) (((-3 $ "failed") (-639 (-895 (-531)))) 123) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 88) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 74)) (-2523 (($ (-639 (-297 (-360)))) 108) (($ (-639 (-297 (-531)))) 96) (($ (-639 (-895 (-360)))) 130) (($ (-639 (-895 (-531)))) 119) (($ (-639 (-388 (-895 (-360))))) 84) (($ (-639 (-388 (-895 (-531))))) 67)) (-3206 (((-1189) $) 59)) (-2265 (((-806) $) 53) (($ (-598 (-311))) 47) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 44) (($ (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) 45))) -(((-82 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649))))))) (-1102)) (T -82)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) (-5 *1 (-82 *3)) (-14 *3 (-1102))))) -(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 104) (((-3 $ "failed") (-1184 (-297 (-531)))) 93) (((-3 $ "failed") (-1184 (-895 (-360)))) 124) (((-3 $ "failed") (-1184 (-895 (-531)))) 114) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 82) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 69)) (-2523 (($ (-1184 (-297 (-360)))) 100) (($ (-1184 (-297 (-531)))) 89) (($ (-1184 (-895 (-360)))) 120) (($ (-1184 (-895 (-531)))) 110) (($ (-1184 (-388 (-895 (-360))))) 78) (($ (-1184 (-388 (-895 (-531))))) 62)) (-3206 (((-1189) $) 46)) (-2265 (((-806) $) 40) (($ (-598 (-311))) 49) (($ (-311)) 36) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 52) (($ (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) 37))) -(((-83 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649))))))) (-1102)) (T -83)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) (-5 *1 (-83 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649))))))) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 79) (((-3 $ "failed") (-1184 (-297 (-531)))) 68) (((-3 $ "failed") (-1184 (-895 (-360)))) 99) (((-3 $ "failed") (-1184 (-895 (-531)))) 89) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 57) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 44)) (-2523 (($ (-1184 (-297 (-360)))) 75) (($ (-1184 (-297 (-531)))) 64) (($ (-1184 (-895 (-360)))) 95) (($ (-1184 (-895 (-531)))) 85) (($ (-1184 (-388 (-895 (-360))))) 53) (($ (-1184 (-388 (-895 (-531))))) 37)) (-3206 (((-1189) $) 125)) (-2265 (((-806) $) 119) (($ (-598 (-311))) 110) (($ (-311)) 116) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 114) (($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) 36))) -(((-84 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))) (-1102)) (T -84)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) (-5 *1 (-84 *3)) (-14 *3 (-1102))))) -(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))) -((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 113) (((-3 $ "failed") (-639 (-297 (-531)))) 101) (((-3 $ "failed") (-639 (-895 (-360)))) 135) (((-3 $ "failed") (-639 (-895 (-531)))) 124) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 89) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 75)) (-2523 (($ (-639 (-297 (-360)))) 109) (($ (-639 (-297 (-531)))) 97) (($ (-639 (-895 (-360)))) 131) (($ (-639 (-895 (-531)))) 120) (($ (-639 (-388 (-895 (-360))))) 85) (($ (-639 (-388 (-895 (-531))))) 68)) (-3206 (((-1189) $) 59)) (-2265 (((-806) $) 53) (($ (-598 (-311))) 43) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 48) (($ (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649)))) 44))) -(((-85 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649))))))) (-1102)) (T -85)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649)))) (-5 *1 (-85 *3)) (-14 *3 (-1102))))) -(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649))))))) -((-3206 (((-1189) $) 44)) (-2265 (((-806) $) 38) (($ (-1184 (-649))) 92) (($ (-598 (-311))) 30) (($ (-311)) 35) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 33))) -(((-86 |#1|) (-420) (-1102)) (T -86)) -NIL -(-420) -((-3154 (((-3 $ "failed") (-297 (-360))) 47) (((-3 $ "failed") (-297 (-531))) 52) (((-3 $ "failed") (-895 (-360))) 56) (((-3 $ "failed") (-895 (-531))) 60) (((-3 $ "failed") (-388 (-895 (-360)))) 42) (((-3 $ "failed") (-388 (-895 (-531)))) 35)) (-2523 (($ (-297 (-360))) 45) (($ (-297 (-531))) 50) (($ (-895 (-360))) 54) (($ (-895 (-531))) 58) (($ (-388 (-895 (-360)))) 40) (($ (-388 (-895 (-531)))) 32)) (-3206 (((-1189) $) 90)) (-2265 (((-806) $) 84) (($ (-598 (-311))) 78) (($ (-311)) 81) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 76) (($ (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))) 31))) -(((-87 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))))) (-1102)) (T -87)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))) (-5 *1 (-87 *3)) (-14 *3 (-1102))))) -(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))))) -((-1852 (((-1184 (-639 |#1|)) (-639 |#1|)) 54)) (-4232 (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 (-598 (-864))))) |#2| (-864)) 44)) (-1455 (((-2 (|:| |minor| (-598 (-864))) (|:| -2723 |#2|) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 |#2|))) |#2| (-864)) 65 (|has| |#1| (-344))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -4232 ((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 (-598 (-864))))) |#2| (-864))) (-15 -1852 ((-1184 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-344)) (-15 -1455 ((-2 (|:| |minor| (-598 (-864))) (|:| -2723 |#2|) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 |#2|))) |#2| (-864))) |%noBranch|)) (-523) (-609 |#1|)) (T -88)) -((-1455 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |minor| (-598 (-864))) (|:| -2723 *3) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-639 *4)) (-4 *5 (-609 *4)))) (-4232 (*1 *2 *3 *4) (-12 (-4 *5 (-523)) (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 (-598 (-864)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5))))) -(-10 -7 (-15 -4232 ((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 (-598 (-864))))) |#2| (-864))) (-15 -1852 ((-1184 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-344)) (-15 -1455 ((-2 (|:| |minor| (-598 (-864))) (|:| -2723 |#2|) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 |#2|))) |#2| (-864))) |%noBranch|)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1573 ((|#1| $) 35)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-3196 ((|#1| |#1| $) 30)) (-4205 ((|#1| $) 28)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) NIL)) (-3944 (($ |#1| $) 31)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4192 ((|#1| $) 29)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 16)) (-3781 (($) 39)) (-1216 (((-721) $) 26)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 15)) (-2265 (((-806) $) 25 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) NIL)) (-3170 (($ (-598 |#1|)) 37)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 13 (|has| |#1| (-1030)))) (-2167 (((-721) $) 10 (|has| $ (-6 -4273))))) -(((-89 |#1|) (-13 (-1050 |#1|) (-10 -8 (-15 -3170 ($ (-598 |#1|))))) (-1030)) (T -89)) -((-3170 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-89 *3))))) -(-13 (-1050 |#1|) (-10 -8 (-15 -3170 ($ (-598 |#1|))))) -((-2265 (((-806) $) 12) (((-1107) $) 8))) -(((-90 |#1|) (-10 -8 (-15 -2265 ((-1107) |#1|)) (-15 -2265 ((-806) |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -2265 ((-1107) |#1|)) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (((-1107) $) 14)) (-2148 (((-110) $ $) 6))) -(((-91) (-133)) (T -91)) -NIL -(-13 (-1030) (-572 (-1107))) -(((-99) . T) ((-572 (-806)) . T) ((-572 (-1107)) . T) ((-1030) . T)) -((-2318 (($ $) 10)) (-2331 (($ $) 12))) -(((-92 |#1|) (-10 -8 (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|))) -((-2292 (($ $) 11)) (-2266 (($ $) 10)) (-2318 (($ $) 9)) (-2331 (($ $) 8)) (-2305 (($ $) 7)) (-2279 (($ $) 6))) -(((-93) (-133)) (T -93)) -((-2292 (*1 *1 *1) (-4 *1 (-93))) (-2266 (*1 *1 *1) (-4 *1 (-93))) (-2318 (*1 *1 *1) (-4 *1 (-93))) (-2331 (*1 *1 *1) (-4 *1 (-93))) (-2305 (*1 *1 *1) (-4 *1 (-93))) (-2279 (*1 *1 *1) (-4 *1 (-93)))) -(-13 (-10 -8 (-15 -2279 ($ $)) (-15 -2305 ($ $)) (-15 -2331 ($ $)) (-15 -2318 ($ $)) (-15 -2266 ($ $)) (-15 -2292 ($ $)))) -((-2247 (((-110) $ $) NIL)) (-3319 (((-360) (-1085) (-360)) 42) (((-360) (-1085) (-1085) (-360)) 41)) (-3377 (((-360) (-360)) 33)) (-3687 (((-1189)) 36)) (-1521 (((-1085) $) NIL)) (-2724 (((-360) (-1085) (-1085)) 46) (((-360) (-1085)) 48)) (-2529 (((-1049) $) NIL)) (-2412 (((-360) (-1085) (-1085)) 47)) (-1801 (((-360) (-1085) (-1085)) 49) (((-360) (-1085)) 50)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-94) (-13 (-1030) (-10 -7 (-15 -2724 ((-360) (-1085) (-1085))) (-15 -2724 ((-360) (-1085))) (-15 -1801 ((-360) (-1085) (-1085))) (-15 -1801 ((-360) (-1085))) (-15 -2412 ((-360) (-1085) (-1085))) (-15 -3687 ((-1189))) (-15 -3377 ((-360) (-360))) (-15 -3319 ((-360) (-1085) (-360))) (-15 -3319 ((-360) (-1085) (-1085) (-360))) (-6 -4273)))) (T -94)) -((-2724 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-1801 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2412 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3687 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-94)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))) (-3319 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94)))) (-3319 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94))))) -(-13 (-1030) (-10 -7 (-15 -2724 ((-360) (-1085) (-1085))) (-15 -2724 ((-360) (-1085))) (-15 -1801 ((-360) (-1085) (-1085))) (-15 -1801 ((-360) (-1085))) (-15 -2412 ((-360) (-1085) (-1085))) (-15 -3687 ((-1189))) (-15 -3377 ((-360) (-360))) (-15 -3319 ((-360) (-1085) (-360))) (-15 -3319 ((-360) (-1085) (-1085) (-360))) (-6 -4273))) -NIL -(((-95) (-133)) (T -95)) -NIL -(-13 (-10 -7 (-6 -4273) (-6 (-4275 "*")) (-6 -4274) (-6 -4270) (-6 -4268) (-6 -4267) (-6 -4266) (-6 -4271) (-6 -4265) (-6 -4264) (-6 -4263) (-6 -4262) (-6 -4261) (-6 -4269) (-6 -4272) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4260))) -((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-3301 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-531))) 22)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 14)) (-2529 (((-1049) $) NIL)) (-1785 ((|#1| $ |#1|) 11)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 20)) (-3050 (($) 8 T CONST)) (-2148 (((-110) $ $) 10)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) 28) (($ $ (-721)) NIL) (($ $ (-531)) 16)) (* (($ $ $) 29))) -(((-96 |#1|) (-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -3301 ($ (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1| (-531)))))) (-986)) (T -96)) -((-3301 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3)))) (-3301 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-96 *3))))) -(-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -3301 ($ (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1| (-531)))))) -((-1287 (((-399 |#2|) |#2| (-598 |#2|)) 10) (((-399 |#2|) |#2| |#2|) 11))) -(((-97 |#1| |#2|) (-10 -7 (-15 -1287 ((-399 |#2|) |#2| |#2|)) (-15 -1287 ((-399 |#2|) |#2| (-598 |#2|)))) (-13 (-432) (-140)) (-1160 |#1|)) (T -97)) -((-1287 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))) (-1287 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -1287 ((-399 |#2|) |#2| |#2|)) (-15 -1287 ((-399 |#2|) |#2| (-598 |#2|)))) -((-2247 (((-110) $ $) 10))) -(((-98 |#1|) (-10 -8 (-15 -2247 ((-110) |#1| |#1|))) (-99)) (T -98)) -NIL -(-10 -8 (-15 -2247 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-2148 (((-110) $ $) 6))) -(((-99) (-133)) (T -99)) -((-2247 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))) -(-13 (-10 -8 (-15 -2148 ((-110) $ $)) (-15 -2247 ((-110) $ $)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) 13 (|has| $ (-6 -4274)))) (-3303 (($ $ $) NIL (|has| $ (-6 -4274)))) (-1508 (($ $ $) NIL (|has| $ (-6 -4274)))) (-3708 (($ $ (-598 |#1|)) 15)) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 11)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 17)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3370 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3724 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-598 |#1|) |#1| |#1| |#1|)) 35)) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 10)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) 12)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 9)) (-3781 (($) 16)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3715 (($ (-721) |#1|) 19)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -3715 ($ (-721) |#1|)) (-15 -3708 ($ $ (-598 |#1|))) (-15 -3370 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3370 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 (-598 |#1|) |#1| |#1| |#1|))))) (-1030)) (T -100)) -((-3715 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-100 *3)) (-4 *3 (-1030)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1030)))) (-3370 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3)))) (-3724 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-100 *2)))) (-3724 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-598 *2) *2 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-100 *2))))) -(-13 (-123 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -3715 ($ (-721) |#1|)) (-15 -3708 ($ $ (-598 |#1|))) (-15 -3370 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3370 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 (-598 |#1|) |#1| |#1| |#1|))))) -((-3736 ((|#3| |#2| |#2|) 29)) (-2962 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4275 "*"))))) (-1316 ((|#3| |#2| |#2|) 30)) (-2885 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4275 "*")))))) -(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3736 (|#3| |#2| |#2|)) (-15 -1316 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4275 "*"))) (PROGN (-15 -2962 (|#1| |#2| |#2|)) (-15 -2885 (|#1| |#2|))) |%noBranch|)) (-986) (-1160 |#1|) (-637 |#1| |#4| |#5|) (-354 |#1|) (-354 |#1|)) (T -101)) -((-2885 (*1 *2 *3) (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2)) (-4 *4 (-637 *2 *5 *6)))) (-2962 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2)) (-4 *4 (-637 *2 *5 *6)))) (-1316 (*1 *2 *3 *3) (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))) (-3736 (*1 *2 *3 *3) (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))))) -(-10 -7 (-15 -3736 (|#3| |#2| |#2|)) (-15 -1316 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4275 "*"))) (PROGN (-15 -2962 (|#1| |#2| |#2|)) (-15 -2885 (|#1| |#2|))) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3468 (((-598 (-1102))) 33)) (-4246 (((-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208)))) (-1102)) 35)) (-2148 (((-110) $ $) NIL))) -(((-102) (-13 (-1030) (-10 -7 (-15 -3468 ((-598 (-1102)))) (-15 -4246 ((-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208)))) (-1102))) (-6 -4273)))) (T -102)) -((-3468 (*1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-102)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208))))) (-5 *1 (-102))))) -(-13 (-1030) (-10 -7 (-15 -3468 ((-598 (-1102)))) (-15 -4246 ((-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208)))) (-1102))) (-6 -4273))) -((-2524 (($ (-598 |#2|)) 11))) -(((-103 |#1| |#2|) (-10 -8 (-15 -2524 (|#1| (-598 |#2|)))) (-104 |#2|) (-1138)) (T -103)) -NIL -(-10 -8 (-15 -2524 (|#1| (-598 |#2|)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-104 |#1|) (-133) (-1138)) (T -104)) -((-2524 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-104 *3)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))) (-3944 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138))))) -(-13 (-468 |t#1|) (-10 -8 (-6 -4274) (-15 -2524 ($ (-598 |t#1|))) (-15 -4192 (|t#1| $)) (-15 -3944 ($ |t#1| $)) (-15 -3540 (|t#1| $)))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-531) $) NIL (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) NIL)) (-2943 (((-531) $) NIL (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 8) (($ (-531)) NIL) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL) (((-945 2) $) 10)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-531) $) NIL (|has| (-531) (-516)))) (-1608 (($ (-388 (-531))) 9)) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2263 (($ $ $) NIL) (($ (-531) (-531)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL))) -(((-105) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 2) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1608 ($ (-388 (-531))))))) (T -105)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-945 2)) (-5 *1 (-105)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105))))) -(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 2) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1608 ($ (-388 (-531)))))) -((-2149 (((-598 (-908)) $) 14)) (-3955 (((-1102) $) 10)) (-2265 (((-806) $) 23)) (-1885 (($ (-1102) (-598 (-908))) 15))) -(((-106) (-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-598 (-908)) $)) (-15 -1885 ($ (-1102) (-598 (-908))))))) (T -106)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-106)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-598 (-908))) (-5 *1 (-106)))) (-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-106))))) -(-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-598 (-908)) $)) (-15 -1885 ($ (-1102) (-598 (-908)))))) -((-2247 (((-110) $ $) NIL)) (-2618 (((-1049) $ (-1049)) 24)) (-1743 (($ $ (-1085)) 17)) (-1616 (((-3 (-1049) "failed") $) 23)) (-3641 (((-1049) $) 21)) (-4021 (((-1049) $ (-1049)) 26)) (-1976 (((-1049) $) 25)) (-1833 (($ (-369)) NIL) (($ (-369) (-1085)) 16)) (-3955 (((-369) $) NIL)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-4074 (($ $) 18)) (-2148 (((-110) $ $) NIL))) -(((-107) (-13 (-345 (-369) (-1049)) (-10 -8 (-15 -1616 ((-3 (-1049) "failed") $)) (-15 -1976 ((-1049) $)) (-15 -4021 ((-1049) $ (-1049)))))) (T -107)) -((-1616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-107)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-107)))) (-4021 (*1 *2 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-107))))) -(-13 (-345 (-369) (-1049)) (-10 -8 (-15 -1616 ((-3 (-1049) "failed") $)) (-15 -1976 ((-1049) $)) (-15 -4021 ((-1049) $ (-1049))))) -((-2247 (((-110) $ $) NIL)) (-1813 (($ $) NIL)) (-3082 (($ $ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| (-110) (-797))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-110) (-797)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-110) $ (-1151 (-531)) (-110)) NIL (|has| $ (-6 -4274))) (((-110) $ (-531) (-110)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-1760 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2693 (((-110) $ (-531) (-110)) NIL (|has| $ (-6 -4274)))) (-2627 (((-110) $ (-531)) NIL)) (-1976 (((-531) (-110) $ (-531)) NIL (|has| (-110) (-1030))) (((-531) (-110) $) NIL (|has| (-110) (-1030))) (((-531) (-1 (-110) (-110)) $) NIL)) (-2227 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-2726 (($ $ $) NIL)) (-3745 (($ $) NIL)) (-4178 (($ $ $) NIL)) (-3010 (($ (-721) (-110)) 8)) (-3232 (($ $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL)) (-3508 (($ $ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2445 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL)) (-2680 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ (-110) $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-110) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-3742 (($ $ (-110)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-110)) (-598 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-598 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-3163 (((-598 (-110)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (($ $ (-1151 (-531))) NIL) (((-110) $ (-531)) NIL) (((-110) $ (-531) (-110)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2539 (((-721) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030)))) (((-721) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-110) (-573 (-507))))) (-2274 (($ (-598 (-110))) NIL)) (-3536 (($ (-598 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2265 (((-806) $) NIL)) (-2138 (($ (-721) (-110)) 9)) (-2060 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-3427 (($ $ $) NIL)) (-1868 (($ $ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-1854 (($ $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-108) (-13 (-121) (-10 -8 (-15 -2138 ($ (-721) (-110)))))) (T -108)) -((-2138 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-110)) (-5 *1 (-108))))) -(-13 (-121) (-10 -8 (-15 -2138 ($ (-721) (-110))))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-109 |#1| |#2|) (-133) (-986) (-986)) (T -109)) -NIL -(-13 (-601 |t#1|) (-992 |t#2|) (-10 -7 (-6 -4268) (-6 -4267))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-992 |#2|) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-1813 (($ $) 10)) (-3082 (($ $ $) 15)) (-3413 (($) 7 T CONST)) (-3948 (($ $) 6)) (-3006 (((-721)) 24)) (-1381 (($) 30)) (-2726 (($ $ $) 13)) (-3745 (($ $) 9)) (-4178 (($ $ $) 16)) (-3232 (($ $ $) 17)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2211 (((-864) $) 29)) (-1521 (((-1085) $) NIL)) (-1889 (($ (-864)) 28)) (-3051 (($ $ $) 20)) (-2529 (((-1049) $) NIL)) (-2120 (($) 8 T CONST)) (-3076 (($ $ $) 21)) (-3318 (((-507) $) 36)) (-2265 (((-806) $) 39)) (-3427 (($ $ $) 11)) (-1868 (($ $ $) 14)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 19)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 22)) (-1854 (($ $ $) 12))) -(((-110) (-13 (-797) (-349) (-614) (-910) (-573 (-507)) (-10 -8 (-15 -3413 ($) -2651) (-15 -2120 ($) -2651) (-15 -3082 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3948 ($ $))))) (T -110)) -((-3413 (*1 *1) (-5 *1 (-110))) (-2120 (*1 *1) (-5 *1 (-110))) (-3082 (*1 *1 *1 *1) (-5 *1 (-110))) (-3232 (*1 *1 *1 *1) (-5 *1 (-110))) (-4178 (*1 *1 *1 *1) (-5 *1 (-110))) (-3948 (*1 *1 *1) (-5 *1 (-110)))) -(-13 (-797) (-349) (-614) (-910) (-573 (-507)) (-10 -8 (-15 -3413 ($) -2651) (-15 -2120 ($) -2651) (-15 -3082 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3948 ($ $)))) -((-2678 (((-3 (-1 |#1| (-598 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-598 |#1|))) 11) (((-3 |#1| "failed") (-112) (-598 |#1|)) 21)) (-2365 (((-3 (-598 (-1 |#1| (-598 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-598 (-1 |#1| (-598 |#1|)))) 26)) (-3904 (((-112) |#1|) 56 (|has| |#1| (-797)))) (-2763 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-797))))) -(((-111 |#1|) (-10 -7 (-15 -2678 ((-3 |#1| "failed") (-112) (-598 |#1|))) (-15 -2678 ((-112) (-112) (-1 |#1| (-598 |#1|)))) (-15 -2678 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2678 ((-3 (-1 |#1| (-598 |#1|)) "failed") (-112))) (-15 -2365 ((-112) (-112) (-598 (-1 |#1| (-598 |#1|))))) (-15 -2365 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2365 ((-3 (-598 (-1 |#1| (-598 |#1|))) "failed") (-112))) (IF (|has| |#1| (-797)) (PROGN (-15 -3904 ((-112) |#1|)) (-15 -2763 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1030)) (T -111)) -((-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1030)) (-4 *2 (-797)) (-5 *1 (-111 *2)))) (-3904 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-797)) (-4 *3 (-1030)))) (-2365 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-1 *4 (-598 *4)))) (-5 *1 (-111 *4)) (-4 *4 (-1030)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 (-1 *4 (-598 *4)))) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2678 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-598 *4))) (-5 *1 (-111 *4)) (-4 *4 (-1030)))) (-2678 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2678 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-598 *4))) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2678 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-598 *2)) (-5 *1 (-111 *2)) (-4 *2 (-1030))))) -(-10 -7 (-15 -2678 ((-3 |#1| "failed") (-112) (-598 |#1|))) (-15 -2678 ((-112) (-112) (-1 |#1| (-598 |#1|)))) (-15 -2678 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2678 ((-3 (-1 |#1| (-598 |#1|)) "failed") (-112))) (-15 -2365 ((-112) (-112) (-598 (-1 |#1| (-598 |#1|))))) (-15 -2365 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2365 ((-3 (-598 (-1 |#1| (-598 |#1|))) "failed") (-112))) (IF (|has| |#1| (-797)) (PROGN (-15 -3904 ((-112) |#1|)) (-15 -2763 ((-3 |#1| "failed") (-112)))) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-3449 (((-721) $) 72) (($ $ (-721)) 30)) (-4169 (((-110) $) 32)) (-4199 (($ $ (-1085) (-724)) 26)) (-1965 (($ $ (-44 (-1085) (-724))) 15)) (-1219 (((-3 (-724) "failed") $ (-1085)) 25)) (-2149 (((-44 (-1085) (-724)) $) 14)) (-3254 (($ (-1102)) 17) (($ (-1102) (-721)) 22)) (-1574 (((-110) $) 31)) (-2304 (((-110) $) 33)) (-3955 (((-1102) $) 8)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-4247 (((-110) $ (-1102)) 10)) (-4234 (($ $ (-1 (-507) (-598 (-507)))) 52) (((-3 (-1 (-507) (-598 (-507))) "failed") $) 56)) (-2529 (((-1049) $) NIL)) (-3780 (((-110) $ (-1085)) 29)) (-2860 (($ $ (-1 (-110) $ $)) 35)) (-2286 (((-3 (-1 (-806) (-598 (-806))) "failed") $) 54) (($ $ (-1 (-806) (-598 (-806)))) 41) (($ $ (-1 (-806) (-806))) 43)) (-1648 (($ $ (-1085)) 45)) (-2480 (($ $) 63)) (-1948 (($ $ (-1 (-110) $ $)) 36)) (-2265 (((-806) $) 48)) (-3973 (($ $ (-1085)) 27)) (-3219 (((-3 (-721) "failed") $) 58)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 71)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 79))) -(((-112) (-13 (-797) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-44 (-1085) (-724)) $)) (-15 -2480 ($ $)) (-15 -3254 ($ (-1102))) (-15 -3254 ($ (-1102) (-721))) (-15 -3219 ((-3 (-721) "failed") $)) (-15 -1574 ((-110) $)) (-15 -4169 ((-110) $)) (-15 -2304 ((-110) $)) (-15 -3449 ((-721) $)) (-15 -3449 ($ $ (-721))) (-15 -2860 ($ $ (-1 (-110) $ $))) (-15 -1948 ($ $ (-1 (-110) $ $))) (-15 -2286 ((-3 (-1 (-806) (-598 (-806))) "failed") $)) (-15 -2286 ($ $ (-1 (-806) (-598 (-806))))) (-15 -2286 ($ $ (-1 (-806) (-806)))) (-15 -4234 ($ $ (-1 (-507) (-598 (-507))))) (-15 -4234 ((-3 (-1 (-507) (-598 (-507))) "failed") $)) (-15 -4247 ((-110) $ (-1102))) (-15 -3780 ((-110) $ (-1085))) (-15 -3973 ($ $ (-1085))) (-15 -1648 ($ $ (-1085))) (-15 -1219 ((-3 (-724) "failed") $ (-1085))) (-15 -4199 ($ $ (-1085) (-724))) (-15 -1965 ($ $ (-44 (-1085) (-724))))))) (T -112)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-112)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112)))) (-2480 (*1 *1 *1) (-5 *1 (-112))) (-3254 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-112)))) (-3254 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *1 (-112)))) (-3219 (*1 *2 *1) (|partial| -12 (-5 *2 (-721)) (-5 *1 (-112)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-112)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-112)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-1948 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2286 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-806))) (-5 *1 (-112)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112)))) (-4234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3780 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112)))) (-1219 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-724)) (-5 *1 (-112)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-724)) (-5 *1 (-112)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112))))) -(-13 (-797) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-44 (-1085) (-724)) $)) (-15 -2480 ($ $)) (-15 -3254 ($ (-1102))) (-15 -3254 ($ (-1102) (-721))) (-15 -3219 ((-3 (-721) "failed") $)) (-15 -1574 ((-110) $)) (-15 -4169 ((-110) $)) (-15 -2304 ((-110) $)) (-15 -3449 ((-721) $)) (-15 -3449 ($ $ (-721))) (-15 -2860 ($ $ (-1 (-110) $ $))) (-15 -1948 ($ $ (-1 (-110) $ $))) (-15 -2286 ((-3 (-1 (-806) (-598 (-806))) "failed") $)) (-15 -2286 ($ $ (-1 (-806) (-598 (-806))))) (-15 -2286 ($ $ (-1 (-806) (-806)))) (-15 -4234 ($ $ (-1 (-507) (-598 (-507))))) (-15 -4234 ((-3 (-1 (-507) (-598 (-507))) "failed") $)) (-15 -4247 ((-110) $ (-1102))) (-15 -3780 ((-110) $ (-1085))) (-15 -3973 ($ $ (-1085))) (-15 -1648 ($ $ (-1085))) (-15 -1219 ((-3 (-724) "failed") $ (-1085))) (-15 -4199 ($ $ (-1085) (-724))) (-15 -1965 ($ $ (-44 (-1085) (-724)))))) -((-3138 (((-531) |#2|) 37))) -(((-113 |#1| |#2|) (-10 -7 (-15 -3138 ((-531) |#2|))) (-13 (-344) (-977 (-388 (-531)))) (-1160 |#1|)) (T -113)) -((-3138 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-977 (-388 *2)))) (-5 *2 (-531)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -3138 ((-531) |#2|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $ (-531)) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3071 (($ (-1098 (-531)) (-531)) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3649 (($ $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3617 (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 (((-531)) NIL)) (-3045 (((-531) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1846 (($ $ (-531)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-1083 (-531)) $) NIL)) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-4148 (((-531) $ (-531)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL))) -(((-114 |#1|) (-812 |#1|) (-531)) (T -114)) -NIL -(-812 |#1|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-114 |#1|) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-114 |#1|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-114 |#1|) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-114 |#1|) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-114 |#1|) (-977 (-531))))) (-2523 (((-114 |#1|) $) NIL) (((-1102) $) NIL (|has| (-114 |#1|) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-114 |#1|) (-977 (-531)))) (((-531) $) NIL (|has| (-114 |#1|) (-977 (-531))))) (-2581 (($ $) NIL) (($ (-531) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-114 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-114 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-114 |#1|))) (|:| |vec| (-1184 (-114 |#1|)))) (-639 $) (-1184 $)) NIL) (((-639 (-114 |#1|)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-114 |#1|) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-114 |#1|) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-114 |#1|) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-114 |#1|) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-114 |#1|) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1078)))) (-2985 (((-110) $) NIL (|has| (-114 |#1|) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-114 |#1|) (-797)))) (-1241 (($ $ $) NIL (|has| (-114 |#1|) (-797)))) (-3261 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-114 |#1|) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-114 |#1|) (-289)))) (-2943 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-114 |#1|)) (-598 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-276 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-598 (-276 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-598 (-1102)) (-598 (-114 |#1|))) NIL (|has| (-114 |#1|) (-492 (-1102) (-114 |#1|)))) (($ $ (-1102) (-114 |#1|)) NIL (|has| (-114 |#1|) (-492 (-1102) (-114 |#1|))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-268 (-114 |#1|) (-114 |#1|))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-721)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-114 |#1|) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-114 |#1|) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-114 |#1|) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-114 |#1|) (-573 (-507)))) (((-360) $) NIL (|has| (-114 |#1|) (-962))) (((-208) $) NIL (|has| (-114 |#1|) (-962)))) (-3591 (((-163 (-388 (-531))) $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-114 |#1|)) NIL) (($ (-1102)) NIL (|has| (-114 |#1|) (-977 (-1102))))) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-852))) (|has| (-114 |#1|) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-516)))) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ (-531)) NIL)) (-1620 (($ $) NIL (|has| (-114 |#1|) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-721)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2263 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL))) -(((-115 |#1|) (-13 (-934 (-114 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) (-531)) (T -115)) -((-4148 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-531)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-115 *3)) (-14 *3 (-531)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-531)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-115 *3)) (-14 *3 *2)))) -(-13 (-934 (-114 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) -((-2454 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1555 (((-598 $) $) 27)) (-1478 (((-110) $ $) 32)) (-1883 (((-110) |#2| $) 36)) (-2132 (((-598 |#2|) $) 22)) (-2672 (((-110) $) 16)) (-1785 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2930 (((-110) $) 45)) (-2265 (((-806) $) 41)) (-3495 (((-598 $) $) 28)) (-2148 (((-110) $ $) 34)) (-2167 (((-721) $) 43))) -(((-116 |#1| |#2|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2454 (|#1| |#1| "right" |#1|)) (-15 -2454 (|#1| |#1| "left" |#1|)) (-15 -1785 (|#1| |#1| "right")) (-15 -1785 (|#1| |#1| "left")) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2132 ((-598 |#2|) |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2167 ((-721) |#1|))) (-117 |#2|) (-1138)) (T -116)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2454 (|#1| |#1| "right" |#1|)) (-15 -2454 (|#1| |#1| "left" |#1|)) (-15 -1785 (|#1| |#1| "right")) (-15 -1785 (|#1| |#1| "left")) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2132 ((-598 |#2|) |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2167 ((-721) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 52 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 54 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) (($ $ "left" $) 55 (|has| $ (-6 -4274))) (($ $ "right" $) 53 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3157 (($ $) 57)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-3144 (($ $) 59)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-117 |#1|) (-133) (-1138)) (T -117)) -((-3144 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-2454 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-1508 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138)))) (-2454 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-3303 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138))))) -(-13 (-951 |t#1|) (-10 -8 (-15 -3144 ($ $)) (-15 -1785 ($ $ "left")) (-15 -3157 ($ $)) (-15 -1785 ($ $ "right")) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2454 ($ $ "left" $)) (-15 -1508 ($ $ $)) (-15 -2454 ($ $ "right" $)) (-15 -3303 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-1537 (((-110) |#1|) 24)) (-3365 (((-721) (-721)) 23) (((-721)) 22)) (-2332 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26))) -(((-118 |#1|) (-10 -7 (-15 -2332 ((-110) |#1|)) (-15 -2332 ((-110) |#1| (-110))) (-15 -3365 ((-721))) (-15 -3365 ((-721) (-721))) (-15 -1537 ((-110) |#1|))) (-1160 (-531))) (T -118)) -((-1537 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-3365 (*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-3365 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-2332 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-2332 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531)))))) -(-10 -7 (-15 -2332 ((-110) |#1|)) (-15 -2332 ((-110) |#1| (-110))) (-15 -3365 ((-721))) (-15 -3365 ((-721) (-721))) (-15 -1537 ((-110) |#1|))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 15)) (-2040 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3303 (($ $ $) 18 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 20 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 17)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 23)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 19)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1719 (($ |#1| $) 24)) (-3944 (($ |#1| $) 10)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 8)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2593 (($ (-598 |#1|)) 12)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -2593 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)) (-15 -1719 ($ |#1| $)) (-15 -2040 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-797)) (T -119)) -((-2593 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-119 *3)))) (-3944 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797)))) (-1719 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797)))) (-2040 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-797))))) -(-13 (-123 |#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -2593 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)) (-15 -1719 ($ |#1| $)) (-15 -2040 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1813 (($ $) 13)) (-3745 (($ $) 11)) (-4178 (($ $ $) 23)) (-3232 (($ $ $) 21)) (-1868 (($ $ $) 19)) (-1854 (($ $ $) 17))) -(((-120 |#1|) (-10 -8 (-15 -4178 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -1813 (|#1| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|))) (-121)) (T -120)) -NIL -(-10 -8 (-15 -4178 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -1813 (|#1| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-1813 (($ $) 103)) (-3082 (($ $ $) 25)) (-3137 (((-1189) $ (-531) (-531)) 66 (|has| $ (-6 -4274)))) (-3202 (((-110) $) 98 (|has| (-110) (-797))) (((-110) (-1 (-110) (-110) (-110)) $) 92)) (-2375 (($ $) 102 (-12 (|has| (-110) (-797)) (|has| $ (-6 -4274)))) (($ (-1 (-110) (-110) (-110)) $) 101 (|has| $ (-6 -4274)))) (-1332 (($ $) 97 (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $) 91)) (-4058 (((-110) $ (-721)) 37)) (-2454 (((-110) $ (-1151 (-531)) (-110)) 88 (|has| $ (-6 -4274))) (((-110) $ (-531) (-110)) 54 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-110)) $) 71 (|has| $ (-6 -4273)))) (-4082 (($) 38 T CONST)) (-4106 (($ $) 100 (|has| $ (-6 -4274)))) (-1828 (($ $) 90)) (-3086 (($ $) 68 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4273))) (($ (-110) $) 69 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-1760 (((-110) (-1 (-110) (-110) (-110)) $) 74 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 73 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 70 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-2693 (((-110) $ (-531) (-110)) 53 (|has| $ (-6 -4274)))) (-2627 (((-110) $ (-531)) 55)) (-1976 (((-531) (-110) $ (-531)) 95 (|has| (-110) (-1030))) (((-531) (-110) $) 94 (|has| (-110) (-1030))) (((-531) (-1 (-110) (-110)) $) 93)) (-2227 (((-598 (-110)) $) 45 (|has| $ (-6 -4273)))) (-2726 (($ $ $) 26)) (-3745 (($ $) 30)) (-4178 (($ $ $) 28)) (-3010 (($ (-721) (-110)) 77)) (-3232 (($ $ $) 29)) (-3280 (((-110) $ (-721)) 36)) (-3804 (((-531) $) 63 (|has| (-531) (-797)))) (-4103 (($ $ $) 13)) (-3508 (($ $ $) 96 (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $ $) 89)) (-2445 (((-598 (-110)) $) 46 (|has| $ (-6 -4273)))) (-1883 (((-110) (-110) $) 48 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 62 (|has| (-531) (-797)))) (-1241 (($ $ $) 14)) (-2680 (($ (-1 (-110) (-110)) $) 41 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-110) (-110) (-110)) $ $) 82) (($ (-1 (-110) (-110)) $) 40)) (-3332 (((-110) $ (-721)) 35)) (-1521 (((-1085) $) 9)) (-4059 (($ $ $ (-531)) 87) (($ (-110) $ (-531)) 86)) (-3765 (((-598 (-531)) $) 60)) (-3059 (((-110) (-531) $) 59)) (-2529 (((-1049) $) 10)) (-3046 (((-110) $) 64 (|has| (-531) (-797)))) (-4190 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 75)) (-3742 (($ $ (-110)) 65 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-110)) (-598 (-110))) 52 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-110) (-110)) 51 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-276 (-110))) 50 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-598 (-276 (-110)))) 49 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))))) (-2019 (((-110) $ $) 31)) (-1545 (((-110) (-110) $) 61 (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-3163 (((-598 (-110)) $) 58)) (-1589 (((-110) $) 34)) (-3781 (($) 33)) (-1785 (($ $ (-1151 (-531))) 83) (((-110) $ (-531)) 57) (((-110) $ (-531) (-110)) 56)) (-1723 (($ $ (-1151 (-531))) 85) (($ $ (-531)) 84)) (-2539 (((-721) (-110) $) 47 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) 99 (|has| $ (-6 -4274)))) (-2480 (($ $) 32)) (-3318 (((-507) $) 67 (|has| (-110) (-573 (-507))))) (-2274 (($ (-598 (-110))) 76)) (-3536 (($ (-598 $)) 81) (($ $ $) 80) (($ (-110) $) 79) (($ $ (-110)) 78)) (-2265 (((-806) $) 11)) (-2060 (((-110) (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4273)))) (-3427 (($ $ $) 27)) (-1868 (($ $ $) 105)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-1854 (($ $ $) 104)) (-2167 (((-721) $) 39 (|has| $ (-6 -4273))))) -(((-121) (-133)) (T -121)) -((-3745 (*1 *1 *1) (-4 *1 (-121))) (-3232 (*1 *1 *1 *1) (-4 *1 (-121))) (-4178 (*1 *1 *1 *1) (-4 *1 (-121))) (-3427 (*1 *1 *1 *1) (-4 *1 (-121))) (-2726 (*1 *1 *1 *1) (-4 *1 (-121))) (-3082 (*1 *1 *1 *1) (-4 *1 (-121)))) -(-13 (-797) (-614) (-19 (-110)) (-10 -8 (-15 -3745 ($ $)) (-15 -3232 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3082 ($ $ $)))) -(((-33) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 #0=(-110)) . T) ((-573 (-507)) |has| (-110) (-573 (-507))) ((-268 #1=(-531) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))) ((-354 #0#) . T) ((-468 #0#) . T) ((-564 #1# #0#) . T) ((-492 #0# #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))) ((-604 #0#) . T) ((-614) . T) ((-19 #0#) . T) ((-797) . T) ((-1030) . T) ((-1138) . T)) -((-2680 (($ (-1 |#2| |#2|) $) 22)) (-2480 (($ $) 16)) (-2167 (((-721) $) 24))) -(((-122 |#1| |#2|) (-10 -8 (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -2480 (|#1| |#1|))) (-123 |#2|) (-1030)) (T -122)) -NIL -(-10 -8 (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -2480 (|#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 52 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 54 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) (($ $ "left" $) 55 (|has| $ (-6 -4274))) (($ $ "right" $) 53 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3157 (($ $) 57)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 60)) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-3144 (($ $) 59)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-123 |#1|) (-133) (-1030)) (T -123)) -((-1523 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1030))))) -(-13 (-117 |t#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1523 ($ $ |t#1| $)))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-117 |#1|) . T) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 15)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) 19 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 20 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 18 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 21)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3944 (($ |#1| $) 10)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 8)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 17)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1877 (($ (-598 |#1|)) 12)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4274) (-15 -1877 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)))) (-797)) (T -124)) -((-1877 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-124 *3)))) (-3944 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-797))))) -(-13 (-123 |#1|) (-10 -8 (-6 -4274) (-15 -1877 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 24)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) 26 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 30 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 28 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 20)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 15)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 19)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) 21)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 18)) (-3781 (($) 11)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3521 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 10 (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -3521 ($ |#1|)) (-15 -3521 ($ $ |#1| $)))) (-1030)) (T -125)) -((-3521 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030)))) (-3521 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030))))) -(-13 (-123 |#1|) (-10 -8 (-15 -3521 ($ |#1|)) (-15 -3521 ($ $ |#1| $)))) -((-2247 (((-110) $ $) NIL (|has| (-127) (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) (-127) (-127)) $) NIL) (((-110) $) NIL (|has| (-127) (-797)))) (-2375 (($ (-1 (-110) (-127) (-127)) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-127) (-797))))) (-1332 (($ (-1 (-110) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-127) $ (-531) (-127)) NIL (|has| $ (-6 -4274))) (((-127) $ (-1151 (-531)) (-127)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-2283 (($ (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030)))) (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4273))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-127) $ (-531) (-127)) NIL (|has| $ (-6 -4274)))) (-2627 (((-127) $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) (-127)) $) NIL) (((-531) (-127) $) NIL (|has| (-127) (-1030))) (((-531) (-127) $ (-531)) NIL (|has| (-127) (-1030)))) (-2227 (((-598 (-127)) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-127)) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-127) (-797)))) (-3508 (($ (-1 (-110) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-797)))) (-2445 (((-598 (-127)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-127) (-797)))) (-2680 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| (-127) (-1030)))) (-4059 (($ (-127) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| (-127) (-1030)))) (-3046 (((-127) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-127) "failed") (-1 (-110) (-127)) $) NIL)) (-3742 (($ $ (-127)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-127)))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030)))) (($ $ (-276 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030)))) (($ $ (-598 (-127)) (-598 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-3163 (((-598 (-127)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-127) $ (-531) (-127)) NIL) (((-127) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273))) (((-721) (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-127) (-573 (-507))))) (-2274 (($ (-598 (-127))) NIL)) (-3536 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| (-127) (-572 (-806))))) (-2060 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2148 (((-110) $ $) NIL (|has| (-127) (-1030)))) (-2195 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-126) (-19 (-127))) (T -126)) -NIL -(-19 (-127)) -((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 12) (((-721) $) 9) (($ (-721)) 8)) (-1256 (($ (-721)) 7)) (-3828 (($ $ $) 16)) (-1845 (($ $ $) 15)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 14))) -(((-127) (-13 (-797) (-572 (-721)) (-10 -8 (-15 -1256 ($ (-721))) (-15 -2265 ($ (-721))) (-15 -1845 ($ $ $)) (-15 -3828 ($ $ $))))) (T -127)) -((-1256 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127)))) (-1845 (*1 *1 *1 *1) (-5 *1 (-127))) (-3828 (*1 *1 *1 *1) (-5 *1 (-127)))) -(-13 (-797) (-572 (-721)) (-10 -8 (-15 -1256 ($ (-721))) (-15 -2265 ($ (-721))) (-15 -1845 ($ $ $)) (-15 -3828 ($ $ $)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15))) -(((-128) (-133)) (T -128)) -((-2128 (*1 *1 *1 *1) (|partial| -4 *1 (-128)))) -(-13 (-23) (-10 -8 (-15 -2128 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-2310 (((-1189) $ (-721)) 19)) (-1976 (((-721) $) 20)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18))) -(((-129) (-133)) (T -129)) -((-1976 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-721)))) (-2310 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-721)) (-5 *2 (-1189))))) -(-13 (-797) (-10 -8 (-15 -1976 ((-721) $)) (-15 -2310 ((-1189) $ (-721))))) -(((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 34)) (-3019 (((-110) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-721) "failed") $) 40)) (-2523 (((-721) $) 38)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1386 (((-110)) 41)) (-2898 (((-110) (-110)) 43)) (-2311 (((-110) $) 24)) (-3768 (((-110) $) 37)) (-2265 (((-806) $) 22) (($ (-721)) 14)) (-3035 (($) 12 T CONST)) (-3050 (($) 11 T CONST)) (-2623 (($ (-721)) 15)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 25)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 26)) (-2250 (((-3 $ "failed") $ $) 30)) (-2237 (($ $ $) 28)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL) (($ $ $) 36)) (* (($ (-721) $) 33) (($ (-864) $) NIL) (($ $ $) 31))) -(((-130) (-13 (-797) (-23) (-677) (-977 (-721)) (-10 -8 (-6 (-4275 "*")) (-15 -2250 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2623 ($ (-721))) (-15 -2311 ((-110) $)) (-15 -3768 ((-110) $)) (-15 -1386 ((-110))) (-15 -2898 ((-110) (-110)))))) (T -130)) -((-2250 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-130)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1386 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130))))) -(-13 (-797) (-23) (-677) (-977 (-721)) (-10 -8 (-6 (-4275 "*")) (-15 -2250 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2623 ($ (-721))) (-15 -2311 ((-110) $)) (-15 -3768 ((-110) $)) (-15 -1386 ((-110))) (-15 -2898 ((-110) (-110))))) -((-3186 (((-132 |#1| |#2| |#4|) (-598 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-3261 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18))) -(((-131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3186 ((-132 |#1| |#2| |#4|) (-598 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3261 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-531) (-721) (-162) (-162)) (T -131)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531)) (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531)) (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8))))) -(-10 -7 (-15 -3186 ((-132 |#1| |#2| |#4|) (-598 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3261 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) -((-2247 (((-110) $ $) NIL)) (-3700 (($ (-598 |#3|)) 40)) (-2096 (($ $) 99) (($ $ (-531) (-531)) 98)) (-4082 (($) 17)) (-3154 (((-3 |#3| "failed") $) 60)) (-2523 ((|#3| $) NIL)) (-4130 (($ $ (-598 (-531))) 100)) (-3172 (((-598 |#3|) $) 36)) (-2277 (((-721) $) 44)) (-3488 (($ $ $) 93)) (-3612 (($) 43)) (-1521 (((-1085) $) NIL)) (-1258 (($) 16)) (-2529 (((-1049) $) NIL)) (-1785 ((|#3| $) 46) ((|#3| $ (-531)) 47) ((|#3| $ (-531) (-531)) 48) ((|#3| $ (-531) (-531) (-531)) 49) ((|#3| $ (-531) (-531) (-531) (-531)) 50) ((|#3| $ (-598 (-531))) 52)) (-2012 (((-721) $) 45)) (-2994 (($ $ (-531) $ (-531)) 94) (($ $ (-531) (-531)) 96)) (-2265 (((-806) $) 67) (($ |#3|) 68) (($ (-223 |#2| |#3|)) 75) (($ (-1069 |#2| |#3|)) 78) (($ (-598 |#3|)) 53) (($ (-598 $)) 58)) (-3035 (($) 69 T CONST)) (-3050 (($) 70 T CONST)) (-2148 (((-110) $ $) 80)) (-2250 (($ $) 86) (($ $ $) 84)) (-2237 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-531)) 89) (($ (-531) $) 88) (($ $ $) 95))) -(((-132 |#1| |#2| |#3|) (-13 (-445 |#3| (-721)) (-450 (-531) (-721)) (-10 -8 (-15 -2265 ($ (-223 |#2| |#3|))) (-15 -2265 ($ (-1069 |#2| |#3|))) (-15 -2265 ($ (-598 |#3|))) (-15 -2265 ($ (-598 $))) (-15 -2277 ((-721) $)) (-15 -1785 (|#3| $)) (-15 -1785 (|#3| $ (-531))) (-15 -1785 (|#3| $ (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-598 (-531)))) (-15 -3488 ($ $ $)) (-15 * ($ $ $)) (-15 -2994 ($ $ (-531) $ (-531))) (-15 -2994 ($ $ (-531) (-531))) (-15 -2096 ($ $)) (-15 -2096 ($ $ (-531) (-531))) (-15 -4130 ($ $ (-598 (-531)))) (-15 -1258 ($)) (-15 -3612 ($)) (-15 -3172 ((-598 |#3|) $)) (-15 -3700 ($ (-598 |#3|))) (-15 -4082 ($)))) (-531) (-721) (-162)) (T -132)) -((-3488 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1069 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 *2) (-4 *5 (-162)))) (-1785 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-531)) (-14 *4 (-721)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-598 (-531))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-531)) (-14 *5 (-721)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-2994 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-721)) (-4 *5 (-162)))) (-2994 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-721)) (-4 *5 (-162)))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-2096 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-721)) (-4 *5 (-162)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) (-1258 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-3612 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-598 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)))) (-4082 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162))))) -(-13 (-445 |#3| (-721)) (-450 (-531) (-721)) (-10 -8 (-15 -2265 ($ (-223 |#2| |#3|))) (-15 -2265 ($ (-1069 |#2| |#3|))) (-15 -2265 ($ (-598 |#3|))) (-15 -2265 ($ (-598 $))) (-15 -2277 ((-721) $)) (-15 -1785 (|#3| $)) (-15 -1785 (|#3| $ (-531))) (-15 -1785 (|#3| $ (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-598 (-531)))) (-15 -3488 ($ $ $)) (-15 * ($ $ $)) (-15 -2994 ($ $ (-531) $ (-531))) (-15 -2994 ($ $ (-531) (-531))) (-15 -2096 ($ $)) (-15 -2096 ($ $ (-531) (-531))) (-15 -4130 ($ $ (-598 (-531)))) (-15 -1258 ($)) (-15 -3612 ($)) (-15 -3172 ((-598 |#3|) $)) (-15 -3700 ($ (-598 |#3|))) (-15 -4082 ($)))) -((-2265 (((-806) $) 7))) -(((-133) (-572 (-806))) (T -133)) -NIL -(-572 (-806)) -((-2247 (((-110) $ $) NIL)) (-4102 (($) 15 T CONST)) (-3847 (($) NIL (|has| (-137) (-349)))) (-4210 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-3252 (($ $ $) NIL)) (-3890 (((-110) $ $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| (-137) (-349)))) (-1245 (($) NIL) (($ (-598 (-137))) NIL)) (-2245 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2717 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (($ (-137) $) 51 (|has| $ (-6 -4273)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-1381 (($) NIL (|has| (-137) (-349)))) (-2227 (((-598 (-137)) $) 60 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-4103 (((-137) $) NIL (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-1241 (((-137) $) NIL (|has| (-137) (-797)))) (-2680 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) 55)) (-2559 (($) 16 T CONST)) (-2211 (((-864) $) NIL (|has| (-137) (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 29)) (-3540 (((-137) $) 52)) (-3944 (($ (-137) $) 50)) (-1889 (($ (-864)) NIL (|has| (-137) (-349)))) (-3863 (($) 14 T CONST)) (-2529 (((-1049) $) NIL)) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-4192 (((-137) $) 53)) (-2294 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-137)) (-598 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 48)) (-2769 (($) 13 T CONST)) (-1786 (($ $ $) 31) (($ $ (-137)) NIL)) (-2543 (($ (-598 (-137))) NIL) (($) NIL)) (-2539 (((-721) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (((-721) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-1085) $) 36) (((-507) $) NIL (|has| (-137) (-573 (-507)))) (((-598 (-137)) $) 34)) (-2274 (($ (-598 (-137))) NIL)) (-1595 (($ $) 32 (|has| (-137) (-349)))) (-2265 (((-806) $) 46)) (-1859 (($ (-1085)) 12) (($ (-598 (-137))) 43)) (-4112 (((-721) $) NIL)) (-3445 (($) 49) (($ (-598 (-137))) NIL)) (-2524 (($ (-598 (-137))) NIL)) (-2060 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-3927 (($) 19 T CONST)) (-1556 (($) 18 T CONST)) (-2148 (((-110) $ $) 22)) (-2167 (((-721) $) 47 (|has| $ (-6 -4273))))) -(((-134) (-13 (-1030) (-573 (-1085)) (-406 (-137)) (-573 (-598 (-137))) (-10 -8 (-15 -1859 ($ (-1085))) (-15 -1859 ($ (-598 (-137)))) (-15 -2769 ($) -2651) (-15 -3863 ($) -2651) (-15 -4102 ($) -2651) (-15 -2559 ($) -2651) (-15 -1556 ($) -2651) (-15 -3927 ($) -2651)))) (T -134)) -((-1859 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-134)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-598 (-137))) (-5 *1 (-134)))) (-2769 (*1 *1) (-5 *1 (-134))) (-3863 (*1 *1) (-5 *1 (-134))) (-4102 (*1 *1) (-5 *1 (-134))) (-2559 (*1 *1) (-5 *1 (-134))) (-1556 (*1 *1) (-5 *1 (-134))) (-3927 (*1 *1) (-5 *1 (-134)))) -(-13 (-1030) (-573 (-1085)) (-406 (-137)) (-573 (-598 (-137))) (-10 -8 (-15 -1859 ($ (-1085))) (-15 -1859 ($ (-598 (-137)))) (-15 -2769 ($) -2651) (-15 -3863 ($) -2651) (-15 -4102 ($) -2651) (-15 -2559 ($) -2651) (-15 -1556 ($) -2651) (-15 -3927 ($) -2651))) -((-1682 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2807 ((|#1| |#3|) 9)) (-1349 ((|#3| |#3|) 15))) -(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-523) (-934 |#1|) (-354 |#2|)) (T -135)) -((-1682 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-354 *5)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-354 *4)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-354 *4))))) -(-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2555 (($ $ $) 8)) (-1569 (($ $) 7)) (-2589 (($ $ $) 6))) -(((-136) (-133)) (T -136)) -((-2555 (*1 *1 *1 *1) (-4 *1 (-136))) (-1569 (*1 *1 *1) (-4 *1 (-136))) (-2589 (*1 *1 *1 *1) (-4 *1 (-136)))) -(-13 (-10 -8 (-15 -2589 ($ $ $)) (-15 -1569 ($ $)) (-15 -2555 ($ $ $)))) -((-2247 (((-110) $ $) NIL)) (-2117 (((-110) $) 30)) (-4102 (($ $) 43)) (-2108 (($) 17)) (-3006 (((-721)) 10)) (-1381 (($) 16)) (-3651 (($) 18)) (-3725 (((-721) $) 14)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2458 (((-110) $) 32)) (-2559 (($ $) 44)) (-2211 (((-864) $) 15)) (-1521 (((-1085) $) 38)) (-1889 (($ (-864)) 13)) (-3644 (((-110) $) 28)) (-2529 (((-1049) $) NIL)) (-1820 (($) 19)) (-4145 (((-110) $) 26)) (-2265 (((-806) $) 21)) (-2899 (($ (-721)) 11) (($ (-1085)) 42)) (-2150 (((-110) $) 36)) (-3477 (((-110) $) 34)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 7)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 8))) -(((-137) (-13 (-791) (-10 -8 (-15 -3725 ((-721) $)) (-15 -2899 ($ (-721))) (-15 -2899 ($ (-1085))) (-15 -2108 ($)) (-15 -3651 ($)) (-15 -1820 ($)) (-15 -4102 ($ $)) (-15 -2559 ($ $)) (-15 -4145 ((-110) $)) (-15 -3644 ((-110) $)) (-15 -3477 ((-110) $)) (-15 -2117 ((-110) $)) (-15 -2458 ((-110) $)) (-15 -2150 ((-110) $))))) (T -137)) -((-3725 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-137)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-137)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-137)))) (-2108 (*1 *1) (-5 *1 (-137))) (-3651 (*1 *1) (-5 *1 (-137))) (-1820 (*1 *1) (-5 *1 (-137))) (-4102 (*1 *1 *1) (-5 *1 (-137))) (-2559 (*1 *1 *1) (-5 *1 (-137))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) -(-13 (-791) (-10 -8 (-15 -3725 ((-721) $)) (-15 -2899 ($ (-721))) (-15 -2899 ($ (-1085))) (-15 -2108 ($)) (-15 -3651 ($)) (-15 -1820 ($)) (-15 -4102 ($ $)) (-15 -2559 ($ $)) (-15 -4145 ((-110) $)) (-15 -3644 ((-110) $)) (-15 -3477 ((-110) $)) (-15 -2117 ((-110) $)) (-15 -2458 ((-110) $)) (-15 -2150 ((-110) $)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2750 (((-3 $ "failed") $) 33)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-138) (-133)) (T -138)) -((-2750 (*1 *1 *1) (|partial| -4 *1 (-138)))) -(-13 (-986) (-10 -8 (-15 -2750 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3369 ((|#1| (-639 |#1|) |#1|) 19))) -(((-139 |#1|) (-10 -7 (-15 -3369 (|#1| (-639 |#1|) |#1|))) (-162)) (T -139)) -((-3369 (*1 *2 *3 *2) (-12 (-5 *3 (-639 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))) -(-10 -7 (-15 -3369 (|#1| (-639 |#1|) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-140) (-133)) (T -140)) -NIL -(-13 (-986)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-4196 (((-2 (|:| -1790 (-721)) (|:| -2005 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-721)) 70)) (-2024 (((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-721))) "failed") |#3|) 52)) (-4119 (((-2 (|:| -2005 (-388 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4229 ((|#1| |#3| |#3|) 40)) (-4115 ((|#3| |#3| (-388 |#2|) (-388 |#2|)) 19)) (-2785 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-721))) |#3| |#3|) 49))) -(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4119 ((-2 (|:| -2005 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2024 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-721))) "failed") |#3|)) (-15 -4196 ((-2 (|:| -1790 (-721)) (|:| -2005 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-721))) (-15 -4229 (|#1| |#3| |#3|)) (-15 -4115 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2785 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-721))) |#3| |#3|))) (-1142) (-1160 |#1|) (-1160 (-388 |#2|))) (T -141)) -((-2785 (*1 *2 *3 *3) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) (|:| |c2| (-388 *5)) (|:| |deg| (-721)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))) (-4115 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1160 *3)))) (-4229 (*1 *2 *3 *3) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-1142)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1160 (-388 *4))))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *6)) (-4 *5 (-1142)) (-4 *6 (-1160 *5)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-721)) (-4 *7 (-1160 *3)))) (-2024 (*1 *2 *3) (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-721)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -2005 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5)))))) -(-10 -7 (-15 -4119 ((-2 (|:| -2005 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2024 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-721))) "failed") |#3|)) (-15 -4196 ((-2 (|:| -1790 (-721)) (|:| -2005 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-721))) (-15 -4229 (|#1| |#3| |#3|)) (-15 -4115 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2785 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-721))) |#3| |#3|))) -((-4197 (((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)) 32))) -(((-142 |#1| |#2|) (-10 -7 (-15 -4197 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)))) (-516) (-156 |#1|)) (T -142)) -((-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5)) (-4 *5 (-156 *4)) (-4 *4 (-516)) (-5 *1 (-142 *4 *5))))) -(-10 -7 (-15 -4197 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)))) -((-2177 (($ (-1 (-110) |#2|) $) 29)) (-3086 (($ $) 36)) (-2283 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-1760 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4190 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-2294 (((-110) (-1 (-110) |#2|) $) 16)) (-2539 (((-721) (-1 (-110) |#2|) $) 14) (((-721) |#2| $) NIL)) (-2060 (((-110) (-1 (-110) |#2|) $) 15)) (-2167 (((-721) $) 11))) -(((-143 |#1| |#2|) (-10 -8 (-15 -3086 (|#1| |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|))) (-144 |#2|) (-1138)) (T -143)) -NIL -(-10 -8 (-15 -3086 (|#1| |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2177 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 41 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273))) (($ |#1| $) 42 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 40 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 49)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-144 |#1|) (-133) (-1138)) (T -144)) -((-2274 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-144 *3)))) (-4190 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-1760 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-1760 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3)) (-4 *3 (-1138)))) (-2177 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3)) (-4 *3 (-1138)))) (-1760 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-2283 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) (-3086 (*1 *1 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)) (-4 *2 (-1030))))) -(-13 (-468 |t#1|) (-10 -8 (-15 -2274 ($ (-598 |t#1|))) (-15 -4190 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4273)) (PROGN (-15 -1760 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1760 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2283 ($ (-1 (-110) |t#1|) $)) (-15 -2177 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -1760 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2283 ($ |t#1| $)) (-15 -3086 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) 86)) (-3481 (((-110) $) NIL)) (-2669 (($ |#2| (-598 (-864))) 56)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1307 (($ (-864)) 47)) (-2190 (((-130)) 23)) (-2265 (((-806) $) 69) (($ (-531)) 45) (($ |#2|) 46)) (-3188 ((|#2| $ (-598 (-864))) 59)) (-2284 (((-721)) 20)) (-3035 (($) 40 T CONST)) (-3050 (($) 43 T CONST)) (-2148 (((-110) $ $) 26)) (-2263 (($ $ |#2|) NIL)) (-2250 (($ $) 34) (($ $ $) 32)) (-2237 (($ $ $) 30)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-145 |#1| |#2| |#3|) (-13 (-986) (-37 |#2|) (-1191 |#2|) (-10 -8 (-15 -1307 ($ (-864))) (-15 -2669 ($ |#2| (-598 (-864)))) (-15 -3188 (|#2| $ (-598 (-864)))) (-15 -3622 ((-3 $ "failed") $)))) (-864) (-344) (-935 |#1| |#2|)) (T -145)) -((-3622 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-864)) (-4 *3 (-344)) (-14 *4 (-935 *2 *3)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344)) (-14 *5 (-935 *3 *4)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-864))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-864)) (-4 *2 (-344)) (-14 *5 (-935 *4 *2)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-598 (-864))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-864)) (-14 *5 (-935 *4 *2))))) -(-13 (-986) (-37 |#2|) (-1191 |#2|) (-10 -8 (-15 -1307 ($ (-864))) (-15 -2669 ($ |#2| (-598 (-864)))) (-15 -3188 (|#2| $ (-598 (-864)))) (-15 -3622 ((-3 $ "failed") $)))) -((-1390 (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))) (-208) (-208) (-208) (-208)) 38)) (-3701 (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531))) 63) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870)) 64)) (-4077 (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208))))) 67) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-886 (-208)))) 66) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531))) 58) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870)) 59))) -(((-146) (-10 -7 (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -1390 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))) (-208) (-208) (-208) (-208))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-886 (-208))))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))))))) (T -146)) -((-4077 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 (-208))))))) (-4077 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)) (-5 *3 (-598 (-886 (-208)))))) (-1390 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-208)) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 *4)))) (|:| |xValues| (-1025 *4)) (|:| |yValues| (-1025 *4)))) (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 *4)))))) (-3701 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531))) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))) (-4077 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531))) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146))))) -(-10 -7 (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -1390 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))) (-208) (-208) (-208) (-208))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-886 (-208))))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208))))))) -((-2923 (((-598 (-159 |#2|)) |#1| |#2|) 45))) -(((-147 |#1| |#2|) (-10 -7 (-15 -2923 ((-598 (-159 |#2|)) |#1| |#2|))) (-1160 (-159 (-531))) (-13 (-344) (-795))) (T -147)) -((-2923 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-159 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1160 (-159 (-531)))) (-4 *4 (-13 (-344) (-795)))))) -(-10 -7 (-15 -2923 ((-598 (-159 |#2|)) |#1| |#2|))) -((-2247 (((-110) $ $) NIL)) (-2668 (($) 15)) (-1604 (($) 14)) (-3159 (((-864)) 22)) (-1521 (((-1085) $) NIL)) (-2697 (((-531) $) 19)) (-2529 (((-1049) $) NIL)) (-3165 (($) 16)) (-2677 (($ (-531)) 23)) (-2265 (((-806) $) 29)) (-3387 (($) 17)) (-2148 (((-110) $ $) 13)) (-2237 (($ $ $) 11)) (* (($ (-864) $) 21) (($ (-208) $) 8))) -(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-864) $)) (-15 * ($ (-208) $)) (-15 -2237 ($ $ $)) (-15 -1604 ($)) (-15 -2668 ($)) (-15 -3165 ($)) (-15 -3387 ($)) (-15 -2697 ((-531) $)) (-15 -3159 ((-864))) (-15 -2677 ($ (-531)))))) (T -148)) -((-2237 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) (-1604 (*1 *1) (-5 *1 (-148))) (-2668 (*1 *1) (-5 *1 (-148))) (-3165 (*1 *1) (-5 *1 (-148))) (-3387 (*1 *1) (-5 *1 (-148))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-148)))) (-3159 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-148)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-148))))) -(-13 (-25) (-10 -8 (-15 * ($ (-864) $)) (-15 * ($ (-208) $)) (-15 -2237 ($ $ $)) (-15 -1604 ($)) (-15 -2668 ($)) (-15 -3165 ($)) (-15 -3387 ($)) (-15 -2697 ((-531) $)) (-15 -3159 ((-864))) (-15 -2677 ($ (-531))))) -((-2423 ((|#2| |#2| (-1023 |#2|)) 88) ((|#2| |#2| (-1102)) 68)) (-3488 ((|#2| |#2| (-1023 |#2|)) 87) ((|#2| |#2| (-1102)) 67)) (-2555 ((|#2| |#2| |#2|) 27)) (-3254 (((-112) (-112)) 99)) (-3952 ((|#2| (-598 |#2|)) 117)) (-2474 ((|#2| (-598 |#2|)) 135)) (-3822 ((|#2| (-598 |#2|)) 125)) (-3722 ((|#2| |#2|) 123)) (-2663 ((|#2| (-598 |#2|)) 111)) (-4054 ((|#2| (-598 |#2|)) 112)) (-3094 ((|#2| (-598 |#2|)) 133)) (-2616 ((|#2| |#2| (-1102)) 56) ((|#2| |#2|) 55)) (-1569 ((|#2| |#2|) 23)) (-2589 ((|#2| |#2| |#2|) 26)) (-3167 (((-110) (-112)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-149 |#1| |#2|) (-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2|)) (-15 -2555 (|#2| |#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2616 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1023 |#2|))) (-15 -3488 (|#2| |#2| (-1102))) (-15 -3488 (|#2| |#2| (-1023 |#2|))) (-15 -3722 (|#2| |#2|)) (-15 -3094 (|#2| (-598 |#2|))) (-15 -3822 (|#2| (-598 |#2|))) (-15 -2474 (|#2| (-598 |#2|))) (-15 -2663 (|#2| (-598 |#2|))) (-15 -4054 (|#2| (-598 |#2|))) (-15 -3952 (|#2| (-598 |#2|)))) (-13 (-797) (-523)) (-411 |#1|)) (T -149)) -((-3952 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2616 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2555 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2589 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *4)) (-4 *4 (-411 *3)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4))))) -(-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2|)) (-15 -2555 (|#2| |#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2616 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1023 |#2|))) (-15 -3488 (|#2| |#2| (-1102))) (-15 -3488 (|#2| |#2| (-1023 |#2|))) (-15 -3722 (|#2| |#2|)) (-15 -3094 (|#2| (-598 |#2|))) (-15 -3822 (|#2| (-598 |#2|))) (-15 -2474 (|#2| (-598 |#2|))) (-15 -2663 (|#2| (-598 |#2|))) (-15 -4054 (|#2| (-598 |#2|))) (-15 -3952 (|#2| (-598 |#2|)))) -((-1695 ((|#1| |#1| |#1|) 53)) (-3994 ((|#1| |#1| |#1|) 50)) (-2555 ((|#1| |#1| |#1|) 44)) (-2641 ((|#1| |#1|) 35)) (-3379 ((|#1| |#1| (-598 |#1|)) 43)) (-1569 ((|#1| |#1|) 37)) (-2589 ((|#1| |#1| |#1|) 40))) -(((-150 |#1|) (-10 -7 (-15 -2589 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3379 (|#1| |#1| (-598 |#1|))) (-15 -2641 (|#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -3994 (|#1| |#1| |#1|)) (-15 -1695 (|#1| |#1| |#1|))) (-516)) (T -150)) -((-1695 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-3994 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-2555 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-2641 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-3379 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-516)) (-5 *1 (-150 *2)))) (-1569 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-2589 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))) -(-10 -7 (-15 -2589 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3379 (|#1| |#1| (-598 |#1|))) (-15 -2641 (|#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -3994 (|#1| |#1| |#1|)) (-15 -1695 (|#1| |#1| |#1|))) -((-2423 (($ $ (-1102)) 12) (($ $ (-1023 $)) 11)) (-3488 (($ $ (-1102)) 10) (($ $ (-1023 $)) 9)) (-2555 (($ $ $) 8)) (-2616 (($ $) 14) (($ $ (-1102)) 13)) (-1569 (($ $) 7)) (-2589 (($ $ $) 6))) -(((-151) (-133)) (T -151)) -((-2616 (*1 *1 *1) (-4 *1 (-151))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) (-2423 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151)))) (-3488 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151))))) -(-13 (-136) (-10 -8 (-15 -2616 ($ $)) (-15 -2616 ($ $ (-1102))) (-15 -2423 ($ $ (-1102))) (-15 -2423 ($ $ (-1023 $))) (-15 -3488 ($ $ (-1102))) (-15 -3488 ($ $ (-1023 $))))) -(((-136) . T)) -((-2247 (((-110) $ $) NIL)) (-1443 (($ (-531)) 13) (($ $ $) 14)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 17)) (-2148 (((-110) $ $) 9))) -(((-152) (-13 (-1030) (-10 -8 (-15 -1443 ($ (-531))) (-15 -1443 ($ $ $))))) (T -152)) -((-1443 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-152)))) (-1443 (*1 *1 *1 *1) (-5 *1 (-152)))) -(-13 (-1030) (-10 -8 (-15 -1443 ($ (-531))) (-15 -1443 ($ $ $)))) -((-3254 (((-112) (-1102)) 97))) -(((-153) (-10 -7 (-15 -3254 ((-112) (-1102))))) (T -153)) -((-3254 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-153))))) -(-10 -7 (-15 -3254 ((-112) (-1102)))) -((-2780 ((|#3| |#3|) 19))) -(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -2780 (|#3| |#3|))) (-986) (-1160 |#1|) (-1160 |#2|)) (T -154)) -((-2780 (*1 *2 *2) (-12 (-4 *3 (-986)) (-4 *4 (-1160 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1160 *4))))) -(-10 -7 (-15 -2780 (|#3| |#3|))) -((-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 217)) (-1354 ((|#2| $) 96)) (-2367 (($ $) 247)) (-2218 (($ $) 241)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 40)) (-2343 (($ $) 245)) (-2198 (($ $) 239)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 139)) (-3650 (($ $ $) 222)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 155) (((-639 |#2|) (-639 $)) 149)) (-1760 (($ (-1098 |#2|)) 119) (((-3 $ "failed") (-388 (-1098 |#2|))) NIL)) (-3622 (((-3 $ "failed") $) 209)) (-1609 (((-3 (-388 (-531)) "failed") $) 199)) (-3004 (((-110) $) 194)) (-2727 (((-388 (-531)) $) 197)) (-2277 (((-864)) 89)) (-3630 (($ $ $) 224)) (-3389 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1880 (($) 236)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 186) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 191)) (-1899 ((|#2| $) 94)) (-1233 (((-1098 |#2|) $) 121)) (-3261 (($ (-1 |#2| |#2|) $) 102)) (-2076 (($ $) 238)) (-1749 (((-1098 |#2|) $) 120)) (-2422 (($ $) 202)) (-2215 (($) 97)) (-3799 (((-399 (-1098 $)) (-1098 $)) 88)) (-2894 (((-399 (-1098 $)) (-1098 $)) 57)) (-3609 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2798 (($ $) 237)) (-4100 (((-721) $) 219)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 229)) (-3176 ((|#2| (-1184 $)) NIL) ((|#2|) 91)) (-3352 (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-3608 (((-1098 |#2|)) 114)) (-2356 (($ $) 246)) (-2210 (($ $) 240)) (-3348 (((-1184 |#2|) $ (-1184 $)) 128) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $) 110) (((-639 |#2|) (-1184 $)) NIL)) (-3318 (((-1184 |#2|) $) NIL) (($ (-1184 |#2|)) NIL) (((-1098 |#2|) $) NIL) (($ (-1098 |#2|)) NIL) (((-835 (-531)) $) 177) (((-835 (-360)) $) 181) (((-159 (-360)) $) 167) (((-159 (-208)) $) 162) (((-507) $) 173)) (-4164 (($ $) 98)) (-2265 (((-806) $) 138) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-388 (-531))) NIL) (($ $) NIL)) (-3369 (((-1098 |#2|) $) 23)) (-2284 (((-721)) 100)) (-2442 (($ $) 250)) (-2292 (($ $) 244)) (-2416 (($ $) 248)) (-2266 (($ $) 242)) (-3662 ((|#2| $) 233)) (-2429 (($ $) 249)) (-2279 (($ $) 243)) (-1620 (($ $) 157)) (-2148 (((-110) $ $) 104)) (-2174 (((-110) $ $) 193)) (-2250 (($ $) 106) (($ $ $) NIL)) (-2237 (($ $ $) 105)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-388 (-531))) 267) (($ $ $) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL))) -(((-155 |#1| |#2|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -2265 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-159 (-208)) |#1|)) (-15 -3318 ((-159 (-360)) |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1880 (|#1|)) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -3389 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3662 (|#2| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4164 (|#1| |#1|)) (-15 -2215 (|#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -1760 ((-3 |#1| "failed") (-388 (-1098 |#2|)))) (-15 -1749 ((-1098 |#2|) |#1|)) (-15 -3318 (|#1| (-1098 |#2|))) (-15 -1760 (|#1| (-1098 |#2|))) (-15 -3608 ((-1098 |#2|))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -3369 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1899 (|#2| |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2277 ((-864))) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155)) -((-2284 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-2277 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-864)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-3176 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-3608 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1098 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4))))) -(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -2265 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-159 (-208)) |#1|)) (-15 -3318 ((-159 (-360)) |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1880 (|#1|)) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -3389 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3662 (|#2| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4164 (|#1| |#1|)) (-15 -2215 (|#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -1760 ((-3 |#1| "failed") (-388 (-1098 |#2|)))) (-15 -1749 ((-1098 |#2|) |#1|)) (-15 -3318 (|#1| (-1098 |#2|))) (-15 -1760 (|#1| (-1098 |#2|))) (-15 -3608 ((-1098 |#2|))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -3369 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1899 (|#2| |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2277 ((-864))) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 91 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-3258 (($ $) 92 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2921 (((-110) $) 94 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-1849 (((-639 |#1|) (-1184 $)) 44) (((-639 |#1|)) 59)) (-1354 ((|#1| $) 50)) (-2367 (($ $) 225 (|has| |#1| (-1124)))) (-2218 (($ $) 208 (|has| |#1| (-1124)))) (-3646 (((-1112 (-864) (-721)) (-531)) 144 (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 239 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-3240 (($ $) 111 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2956 (((-399 $) $) 112 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2563 (($ $) 238 (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 242 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2760 (((-110) $ $) 102 (|has| |#1| (-289)))) (-3006 (((-721)) 85 (|has| |#1| (-349)))) (-2343 (($ $) 224 (|has| |#1| (-1124)))) (-2198 (($ $) 209 (|has| |#1| (-1124)))) (-2391 (($ $) 223 (|has| |#1| (-1124)))) (-2241 (($ $) 210 (|has| |#1| (-1124)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 166 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 164 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 163)) (-2523 (((-531) $) 167 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 165 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 162)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46) (($ (-1184 |#1|)) 62)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3650 (($ $ $) 106 (|has| |#1| (-289)))) (-1982 (((-639 |#1|) $ (-1184 $)) 51) (((-639 |#1|) $) 57)) (-3073 (((-639 (-531)) (-639 $)) 161 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 160 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 159) (((-639 |#1|) (-639 $)) 158)) (-1760 (($ (-1098 |#1|)) 155) (((-3 $ "failed") (-388 (-1098 |#1|))) 152 (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) 32)) (-2577 ((|#1| $) 250)) (-1609 (((-3 (-388 (-531)) "failed") $) 243 (|has| |#1| (-516)))) (-3004 (((-110) $) 245 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 244 (|has| |#1| (-516)))) (-2277 (((-864)) 52)) (-1381 (($) 88 (|has| |#1| (-349)))) (-3630 (($ $ $) 105 (|has| |#1| (-289)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 100 (|has| |#1| (-289)))) (-1806 (($) 146 (|has| |#1| (-330)))) (-1971 (((-110) $) 147 (|has| |#1| (-330)))) (-3493 (($ $ (-721)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-2534 (((-110) $) 113 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-3389 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-995)) (|has| |#1| (-1124))))) (-1880 (($) 235 (|has| |#1| (-1124)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 258 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 257 (|has| |#1| (-829 (-360))))) (-3617 (((-864) $) 149 (|has| |#1| (-330))) (((-783 (-864)) $) 135 (|has| |#1| (-330)))) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 237 (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-1899 ((|#1| $) 49)) (-2342 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 109 (|has| |#1| (-289)))) (-1233 (((-1098 |#1|) $) 42 (|has| |#1| (-344)))) (-4103 (($ $ $) 204 (|has| |#1| (-797)))) (-1241 (($ $ $) 203 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 259)) (-2211 (((-864) $) 87 (|has| |#1| (-349)))) (-2076 (($ $) 232 (|has| |#1| (-1124)))) (-1749 (((-1098 |#1|) $) 153)) (-2078 (($ (-598 $)) 98 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (($ $ $) 97 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 114 (|has| |#1| (-344)))) (-3788 (($) 140 (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) 86 (|has| |#1| (-349)))) (-2215 (($) 254)) (-2590 ((|#1| $) 251)) (-2529 (((-1049) $) 10)) (-1861 (($) 157)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 99 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2109 (($ (-598 $)) 96 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (($ $ $) 95 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 143 (|has| |#1| (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 241 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2894 (((-399 (-1098 $)) (-1098 $)) 240 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2552 (((-399 $) $) 110 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 107 (|has| |#1| (-289)))) (-3609 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 90 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 101 (|has| |#1| (-289)))) (-2798 (($ $) 233 (|has| |#1| (-1124)))) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 265 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 263 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 262 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 261 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 260 (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) 103 (|has| |#1| (-289)))) (-1785 (($ $ |#1|) 266 (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 104 (|has| |#1| (-289)))) (-3176 ((|#1| (-1184 $)) 45) ((|#1|) 58)) (-2350 (((-721) $) 148 (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) 136 (|has| |#1| (-330)))) (-3352 (($ $ (-1 |#1| |#1|) (-721)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-598 (-1102)) (-598 (-721))) 127 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 128 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 129 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 130 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 132 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 134 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-3608 (((-1098 |#1|)) 156)) (-2403 (($ $) 222 (|has| |#1| (-1124)))) (-2253 (($ $) 211 (|has| |#1| (-1124)))) (-2498 (($) 145 (|has| |#1| (-330)))) (-2379 (($ $) 221 (|has| |#1| (-1124)))) (-2229 (($ $) 212 (|has| |#1| (-1124)))) (-2356 (($ $) 220 (|has| |#1| (-1124)))) (-2210 (($ $) 213 (|has| |#1| (-1124)))) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47) (((-1184 |#1|) $) 64) (((-639 |#1|) (-1184 $)) 63)) (-3318 (((-1184 |#1|) $) 61) (($ (-1184 |#1|)) 60) (((-1098 |#1|) $) 168) (($ (-1098 |#1|)) 154) (((-835 (-531)) $) 256 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 255 (|has| |#1| (-573 (-835 (-360))))) (((-159 (-360)) $) 207 (|has| |#1| (-962))) (((-159 (-208)) $) 206 (|has| |#1| (-962))) (((-507) $) 205 (|has| |#1| (-573 (-507))))) (-4164 (($ $) 253)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 142 (-1435 (-3427 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (|has| |#1| (-330))))) (-4157 (($ |#1| |#1|) 252)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ (-388 (-531))) 84 (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531)))))) (($ $) 89 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2750 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (-1435 (-3427 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (|has| |#1| (-138))))) (-3369 (((-1098 |#1|) $) 43)) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 65)) (-2442 (($ $) 231 (|has| |#1| (-1124)))) (-2292 (($ $) 219 (|has| |#1| (-1124)))) (-2587 (((-110) $ $) 93 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2416 (($ $) 230 (|has| |#1| (-1124)))) (-2266 (($ $) 218 (|has| |#1| (-1124)))) (-2468 (($ $) 229 (|has| |#1| (-1124)))) (-2318 (($ $) 217 (|has| |#1| (-1124)))) (-3662 ((|#1| $) 247 (|has| |#1| (-1124)))) (-2753 (($ $) 228 (|has| |#1| (-1124)))) (-2331 (($ $) 216 (|has| |#1| (-1124)))) (-2456 (($ $) 227 (|has| |#1| (-1124)))) (-2305 (($ $) 215 (|has| |#1| (-1124)))) (-2429 (($ $) 226 (|has| |#1| (-1124)))) (-2279 (($ $) 214 (|has| |#1| (-1124)))) (-1620 (($ $) 248 (|has| |#1| (-995)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#1| |#1|) (-721)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-598 (-1102)) (-598 (-721))) 123 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 124 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 125 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 126 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 131 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 133 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2207 (((-110) $ $) 201 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 200 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 202 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 199 (|has| |#1| (-797)))) (-2263 (($ $ $) 118 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-388 (-531))) 236 (-12 (|has| |#1| (-943)) (|has| |#1| (-1124)))) (($ $ $) 234 (|has| |#1| (-1124))) (($ $ (-531)) 115 (|has| |#1| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-531)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-531))) 116 (|has| |#1| (-344))))) -(((-156 |#1|) (-133) (-162)) (T -156)) -((-1899 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2215 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4164 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4157 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2590 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1124)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-995)) (-4 *3 (-1124)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531)))))) -(-13 (-675 |t#1| (-1098 |t#1|)) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-381 |t#1|) (-827 |t#1|) (-358 |t#1|) (-162) (-10 -8 (-6 -4157) (-15 -2215 ($)) (-15 -4164 ($ $)) (-15 -4157 ($ |t#1| |t#1|)) (-15 -2590 (|t#1| $)) (-15 -2577 (|t#1| $)) (-15 -1899 (|t#1| $)) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-523)) (-15 -3609 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-6 -4272)) (-6 -4272) |%noBranch|) (IF (|has| |t#1| (-6 -4269)) (-6 -4269) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-573 (-159 (-208)))) (-6 (-573 (-159 (-360))))) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -1620 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1124)) (PROGN (-6 (-1124)) (-15 -3662 (|t#1| $)) (IF (|has| |t#1| (-943)) (-6 (-943)) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -3389 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-852)) (IF (|has| |t#1| (-289)) (-6 (-852)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-34) |has| |#1| (-1124)) ((-93) |has| |#1| (-1124)) ((-99) . T) ((-109 #0# #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 (-159 (-208))) |has| |#1| (-962)) ((-573 (-159 (-360))) |has| |#1| (-962)) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-573 #1=(-1098 |#1|)) . T) ((-214 |#1|) . T) ((-216) -1435 (|has| |#1| (-330)) (|has| |#1| (-216))) ((-226) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-266) |has| |#1| (-1124)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-289) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1435 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| #1#) . T) ((-390 |#1| #1#) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-471) |has| |#1| (-1124)) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-601 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-668 |#1|) . T) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-675 |#1| #1#) . T) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-852) -12 (|has| |#1| (-289)) (|has| |#1| (-852))) ((-863) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-943) -12 (|has| |#1| (-943)) (|has| |#1| (-1124))) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-330)) ((-1124) |has| |#1| (-1124)) ((-1127) |has| |#1| (-1124)) ((-1138) . T) ((-1142) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) -((-2552 (((-399 |#2|) |#2|) 63))) -(((-157 |#1| |#2|) (-10 -7 (-15 -2552 ((-399 |#2|) |#2|))) (-289) (-1160 (-159 |#1|))) (T -157)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1160 (-159 *4)))))) -(-10 -7 (-15 -2552 ((-399 |#2|) |#2|))) -((-3261 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14))) -(((-158 |#1| |#2|) (-10 -7 (-15 -3261 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-162) (-162)) (T -158)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6))))) -(-10 -7 (-15 -3261 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 33)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-3258 (($ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-2921 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-1849 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) NIL)) (-1354 ((|#1| $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-1124)))) (-2218 (($ $) NIL (|has| |#1| (-1124)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-3240 (($ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2956 (((-399 $) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2563 (($ $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-289)))) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-2343 (($ $) NIL (|has| |#1| (-1124)))) (-2198 (($ $) NIL (|has| |#1| (-1124)))) (-2391 (($ $) NIL (|has| |#1| (-1124)))) (-2241 (($ $) NIL (|has| |#1| (-1124)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|) (-1184 $)) NIL) (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3650 (($ $ $) NIL (|has| |#1| (-289)))) (-1982 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-1760 (($ (-1098 |#1|)) NIL) (((-3 $ "failed") (-388 (-1098 |#1|))) NIL (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2577 ((|#1| $) 13)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-516)))) (-3004 (((-110) $) NIL (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| |#1| (-516)))) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL (|has| |#1| (-289)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-289)))) (-1806 (($) NIL (|has| |#1| (-330)))) (-1971 (((-110) $) NIL (|has| |#1| (-330)))) (-3493 (($ $ (-721)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-2534 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-3389 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1124))))) (-1880 (($) NIL (|has| |#1| (-1124)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| |#1| (-829 (-360))))) (-3617 (((-864) $) NIL (|has| |#1| (-330))) (((-783 (-864)) $) NIL (|has| |#1| (-330)))) (-3481 (((-110) $) 35)) (-2249 (($ $ (-531)) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-1899 ((|#1| $) 46)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-289)))) (-1233 (((-1098 |#1|) $) NIL (|has| |#1| (-344)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-2076 (($ $) NIL (|has| |#1| (-1124)))) (-1749 (((-1098 |#1|) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-3788 (($) NIL (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-2215 (($) NIL)) (-2590 ((|#1| $) 15)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-289)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2552 (((-399 $) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-289)))) (-3609 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 47 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-289)))) (-2798 (($ $) NIL (|has| |#1| (-1124)))) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) NIL (|has| |#1| (-289)))) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-289)))) (-3176 ((|#1| (-1184 $)) NIL) ((|#1|) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) NIL (|has| |#1| (-330)))) (-3352 (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3608 (((-1098 |#1|)) NIL)) (-2403 (($ $) NIL (|has| |#1| (-1124)))) (-2253 (($ $) NIL (|has| |#1| (-1124)))) (-2498 (($) NIL (|has| |#1| (-330)))) (-2379 (($ $) NIL (|has| |#1| (-1124)))) (-2229 (($ $) NIL (|has| |#1| (-1124)))) (-2356 (($ $) NIL (|has| |#1| (-1124)))) (-2210 (($ $) NIL (|has| |#1| (-1124)))) (-3348 (((-1184 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) (-1184 $) (-1184 $)) NIL) (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-3318 (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL) (((-1098 |#1|) $) NIL) (($ (-1098 |#1|)) NIL) (((-835 (-531)) $) NIL (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#1| (-573 (-835 (-360))))) (((-159 (-360)) $) NIL (|has| |#1| (-962))) (((-159 (-208)) $) NIL (|has| |#1| (-962))) (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-4164 (($ $) 45)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-330))))) (-4157 (($ |#1| |#1|) 37)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) 36) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-2750 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-3369 (((-1098 |#1|) $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL)) (-2442 (($ $) NIL (|has| |#1| (-1124)))) (-2292 (($ $) NIL (|has| |#1| (-1124)))) (-2587 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-2416 (($ $) NIL (|has| |#1| (-1124)))) (-2266 (($ $) NIL (|has| |#1| (-1124)))) (-2468 (($ $) NIL (|has| |#1| (-1124)))) (-2318 (($ $) NIL (|has| |#1| (-1124)))) (-3662 ((|#1| $) NIL (|has| |#1| (-1124)))) (-2753 (($ $) NIL (|has| |#1| (-1124)))) (-2331 (($ $) NIL (|has| |#1| (-1124)))) (-2456 (($ $) NIL (|has| |#1| (-1124)))) (-2305 (($ $) NIL (|has| |#1| (-1124)))) (-2429 (($ $) NIL (|has| |#1| (-1124)))) (-2279 (($ $) NIL (|has| |#1| (-1124)))) (-1620 (($ $) NIL (|has| |#1| (-995)))) (-3035 (($) 28 T CONST)) (-3050 (($) 30 T CONST)) (-4231 (((-1085) $) 23 (|has| |#1| (-778))) (((-1085) $ (-110)) 25 (|has| |#1| (-778))) (((-1189) (-772) $) 26 (|has| |#1| (-778))) (((-1189) (-772) $ (-110)) 27 (|has| |#1| (-778)))) (-4020 (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 39)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-388 (-531))) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-1124)))) (($ $ $) NIL (|has| |#1| (-1124))) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-531))) NIL (|has| |#1| (-344))))) -(((-159 |#1|) (-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|))) (-162)) (T -159)) -NIL -(-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|))) -((-3318 (((-835 |#1|) |#3|) 22))) -(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -3318 ((-835 |#1|) |#3|))) (-1030) (-13 (-573 (-835 |#1|)) (-162)) (-156 |#2|)) (T -160)) -((-3318 (*1 *2 *3) (-12 (-4 *5 (-13 (-573 *2) (-162))) (-5 *2 (-835 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1030)) (-4 *3 (-156 *5))))) -(-10 -7 (-15 -3318 ((-835 |#1|) |#3|))) -((-2247 (((-110) $ $) NIL)) (-3183 (((-110) $) 9)) (-2902 (((-110) $ (-110)) 11)) (-3010 (($) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2480 (($ $) 13)) (-2265 (((-806) $) 17)) (-1934 (((-110) $) 8)) (-2259 (((-110) $ (-110)) 10)) (-2148 (((-110) $ $) NIL))) -(((-161) (-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1934 ((-110) $)) (-15 -3183 ((-110) $)) (-15 -2259 ((-110) $ (-110))) (-15 -2902 ((-110) $ (-110))) (-15 -2480 ($ $))))) (T -161)) -((-3010 (*1 *1) (-5 *1 (-161))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2259 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2902 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2480 (*1 *1 *1) (-5 *1 (-161)))) -(-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1934 ((-110) $)) (-15 -3183 ((-110) $)) (-15 -2259 ((-110) $ (-110))) (-15 -2902 ((-110) $ (-110))) (-15 -2480 ($ $)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-162) (-133)) (T -162)) -NIL -(-13 (-986) (-109 $ $) (-10 -7 (-6 (-4275 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 ((|#1| $) 75)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-3748 (($ $) 19)) (-3193 (($ |#1| (-1083 |#1|)) 48)) (-3622 (((-3 $ "failed") $) 117)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1270 (((-1083 |#1|) $) 82)) (-1996 (((-1083 |#1|) $) 79)) (-3315 (((-1083 |#1|) $) 80)) (-3481 (((-110) $) NIL)) (-1776 (((-1083 |#1|) $) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-1846 (($ $ (-531)) 91)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1278 (((-1083 |#1|) $) 89)) (-4217 (((-1083 (-388 |#1|)) $) 14)) (-3591 (($ (-388 |#1|)) 17) (($ |#1| (-1083 |#1|) (-1083 |#1|)) 38)) (-3437 (($ $) 93)) (-2265 (((-806) $) 127) (($ (-531)) 51) (($ |#1|) 52) (($ (-388 |#1|)) 36) (($ (-388 (-531))) NIL) (($ $) NIL)) (-2284 (((-721)) 64)) (-2587 (((-110) $ $) NIL)) (-3273 (((-1083 (-388 |#1|)) $) 18)) (-3035 (($) 25 T CONST)) (-3050 (($) 28 T CONST)) (-2148 (((-110) $ $) 35)) (-2263 (($ $ $) 115)) (-2250 (($ $) 106) (($ $ $) 103)) (-2237 (($ $ $) 101)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-388 |#1|) $) 111) (($ $ (-388 |#1|)) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL))) -(((-163 |#1|) (-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -3591 ($ (-388 |#1|))) (-15 -3591 ($ |#1| (-1083 |#1|) (-1083 |#1|))) (-15 -3193 ($ |#1| (-1083 |#1|))) (-15 -1996 ((-1083 |#1|) $)) (-15 -3315 ((-1083 |#1|) $)) (-15 -1270 ((-1083 |#1|) $)) (-15 -1317 (|#1| $)) (-15 -3748 ($ $)) (-15 -3273 ((-1083 (-388 |#1|)) $)) (-15 -4217 ((-1083 (-388 |#1|)) $)) (-15 -1776 ((-1083 |#1|) $)) (-15 -1278 ((-1083 |#1|) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $)))) (-289)) (T -163)) -((-3591 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) (-3591 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1317 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-3748 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1278 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))) -(-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -3591 ($ (-388 |#1|))) (-15 -3591 ($ |#1| (-1083 |#1|) (-1083 |#1|))) (-15 -3193 ($ |#1| (-1083 |#1|))) (-15 -1996 ((-1083 |#1|) $)) (-15 -3315 ((-1083 |#1|) $)) (-15 -1270 ((-1083 |#1|) $)) (-15 -1317 (|#1| $)) (-15 -3748 ($ $)) (-15 -3273 ((-1083 (-388 |#1|)) $)) (-15 -4217 ((-1083 (-388 |#1|)) $)) (-15 -1776 ((-1083 |#1|) $)) (-15 -1278 ((-1083 |#1|) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $)))) -((-1237 (($ (-106) $) 13)) (-2933 (((-3 (-106) "failed") (-1102) $) 12)) (-2265 (((-806) $) 16)) (-1541 (((-598 (-106)) $) 8))) -(((-164) (-13 (-572 (-806)) (-10 -8 (-15 -1541 ((-598 (-106)) $)) (-15 -1237 ($ (-106) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $))))) (T -164)) -((-1541 (*1 *2 *1) (-12 (-5 *2 (-598 (-106))) (-5 *1 (-164)))) (-1237 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-2933 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-164))))) -(-13 (-572 (-806)) (-10 -8 (-15 -1541 ((-598 (-106)) $)) (-15 -1237 ($ (-106) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $)))) -((-1882 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 40)) (-2006 (((-886 |#1|) (-886 |#1|)) 19)) (-3784 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 36)) (-3689 (((-886 |#1|) (-886 |#1|)) 17)) (-1980 (((-886 |#1|) (-886 |#1|)) 25)) (-1961 (((-886 |#1|) (-886 |#1|)) 24)) (-2712 (((-886 |#1|) (-886 |#1|)) 23)) (-4227 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 37)) (-2573 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 35)) (-3751 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 34)) (-2601 (((-886 |#1|) (-886 |#1|)) 18)) (-3204 (((-1 (-886 |#1|) (-886 |#1|)) |#1| |#1|) 43)) (-3473 (((-886 |#1|) (-886 |#1|)) 8)) (-4105 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 39)) (-2557 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 38))) -(((-165 |#1|) (-10 -7 (-15 -3473 ((-886 |#1|) (-886 |#1|))) (-15 -3689 ((-886 |#1|) (-886 |#1|))) (-15 -2601 ((-886 |#1|) (-886 |#1|))) (-15 -2006 ((-886 |#1|) (-886 |#1|))) (-15 -2712 ((-886 |#1|) (-886 |#1|))) (-15 -1961 ((-886 |#1|) (-886 |#1|))) (-15 -1980 ((-886 |#1|) (-886 |#1|))) (-15 -3751 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2573 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3784 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4227 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2557 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4105 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -1882 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3204 ((-1 (-886 |#1|) (-886 |#1|)) |#1| |#1|))) (-13 (-344) (-1124) (-943))) (T -165)) -((-3204 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-1882 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-4105 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-2557 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-4227 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-3784 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-2573 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-3751 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3))))) -(-10 -7 (-15 -3473 ((-886 |#1|) (-886 |#1|))) (-15 -3689 ((-886 |#1|) (-886 |#1|))) (-15 -2601 ((-886 |#1|) (-886 |#1|))) (-15 -2006 ((-886 |#1|) (-886 |#1|))) (-15 -2712 ((-886 |#1|) (-886 |#1|))) (-15 -1961 ((-886 |#1|) (-886 |#1|))) (-15 -1980 ((-886 |#1|) (-886 |#1|))) (-15 -3751 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2573 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3784 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4227 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2557 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4105 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -1882 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3204 ((-1 (-886 |#1|) (-886 |#1|)) |#1| |#1|))) -((-3369 ((|#2| |#3|) 27))) -(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -3369 (|#2| |#3|))) (-162) (-1160 |#1|) (-675 |#1| |#2|)) (T -166)) -((-3369 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1160 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-675 *4 *2))))) -(-10 -7 (-15 -3369 (|#2| |#3|))) -((-2792 (((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)) 47 (|has| (-895 |#2|) (-829 |#1|))))) -(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-895 |#2|) (-829 |#1|)) (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) |%noBranch|)) (-1030) (-13 (-829 |#1|) (-162)) (-156 |#2|)) (T -167)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *3 (-156 *6)) (-4 (-895 *6) (-829 *5)) (-4 *6 (-13 (-829 *5) (-162))) (-5 *1 (-167 *5 *6 *3))))) -(-10 -7 (IF (|has| (-895 |#2|) (-829 |#1|)) (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) |%noBranch|)) -((-3703 (((-598 |#1|) (-598 |#1|) |#1|) 38)) (-3397 (((-598 |#1|) |#1| (-598 |#1|)) 19)) (-1850 (((-598 |#1|) (-598 (-598 |#1|)) (-598 |#1|)) 33) ((|#1| (-598 |#1|) (-598 |#1|)) 31))) -(((-168 |#1|) (-10 -7 (-15 -3397 ((-598 |#1|) |#1| (-598 |#1|))) (-15 -1850 (|#1| (-598 |#1|) (-598 |#1|))) (-15 -1850 ((-598 |#1|) (-598 (-598 |#1|)) (-598 |#1|))) (-15 -3703 ((-598 |#1|) (-598 |#1|) |#1|))) (-289)) (T -168)) -((-3703 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))) (-1850 (*1 *2 *3 *2) (-12 (-5 *3 (-598 (-598 *4))) (-5 *2 (-598 *4)) (-4 *4 (-289)) (-5 *1 (-168 *4)))) (-1850 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) (-3397 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3))))) -(-10 -7 (-15 -3397 ((-598 |#1|) |#1| (-598 |#1|))) (-15 -1850 (|#1| (-598 |#1|) (-598 |#1|))) (-15 -1850 ((-598 |#1|) (-598 (-598 |#1|)) (-598 |#1|))) (-15 -3703 ((-598 |#1|) (-598 |#1|) |#1|))) -((-3139 (((-2 (|:| |start| |#2|) (|:| -2721 (-399 |#2|))) |#2|) 61)) (-3132 ((|#1| |#1|) 54)) (-1265 (((-159 |#1|) |#2|) 84)) (-2401 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2832 ((|#2| |#2|) 83)) (-3321 (((-399 |#2|) |#2| |#1|) 113) (((-399 |#2|) |#2| |#1| (-110)) 81)) (-1899 ((|#1| |#2|) 112)) (-2541 ((|#2| |#2|) 119)) (-2552 (((-399 |#2|) |#2|) 134) (((-399 |#2|) |#2| |#1|) 32) (((-399 |#2|) |#2| |#1| (-110)) 133)) (-2685 (((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2|) 132) (((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2| (-110)) 76)) (-2923 (((-598 (-159 |#1|)) |#2| |#1|) 40) (((-598 (-159 |#1|)) |#2|) 41))) -(((-169 |#1| |#2|) (-10 -7 (-15 -2923 ((-598 (-159 |#1|)) |#2|)) (-15 -2923 ((-598 (-159 |#1|)) |#2| |#1|)) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2| (-110))) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2|)) (-15 -2552 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2552 ((-399 |#2|) |#2| |#1|)) (-15 -2552 ((-399 |#2|) |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -1899 (|#1| |#2|)) (-15 -3321 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3321 ((-399 |#2|) |#2| |#1|)) (-15 -2832 (|#2| |#2|)) (-15 -2401 (|#1| |#2| |#1|)) (-15 -2401 (|#1| |#2|)) (-15 -1265 ((-159 |#1|) |#2|)) (-15 -3132 (|#1| |#1|)) (-15 -3139 ((-2 (|:| |start| |#2|) (|:| -2721 (-399 |#2|))) |#2|))) (-13 (-344) (-795)) (-1160 (-159 |#1|))) (T -169)) -((-3139 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-2 (|:| |start| *3) (|:| -2721 (-399 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-3132 (*1 *2 *2) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-1265 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-795))) (-4 *3 (-1160 *2)))) (-2401 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-2401 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1160 (-159 *3))))) (-3321 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-3321 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-1899 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1160 (-159 *3))))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2552 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2552 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2685 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-795))) (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1160 (-159 *5))))) (-2923 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))) -(-10 -7 (-15 -2923 ((-598 (-159 |#1|)) |#2|)) (-15 -2923 ((-598 (-159 |#1|)) |#2| |#1|)) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2| (-110))) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2|)) (-15 -2552 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2552 ((-399 |#2|) |#2| |#1|)) (-15 -2552 ((-399 |#2|) |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -1899 (|#1| |#2|)) (-15 -3321 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3321 ((-399 |#2|) |#2| |#1|)) (-15 -2832 (|#2| |#2|)) (-15 -2401 (|#1| |#2| |#1|)) (-15 -2401 (|#1| |#2|)) (-15 -1265 ((-159 |#1|) |#2|)) (-15 -3132 (|#1| |#1|)) (-15 -3139 ((-2 (|:| |start| |#2|) (|:| -2721 (-399 |#2|))) |#2|))) -((-1532 (((-3 |#2| "failed") |#2|) 14)) (-3842 (((-721) |#2|) 16)) (-1360 ((|#2| |#2| |#2|) 18))) -(((-170 |#1| |#2|) (-10 -7 (-15 -1532 ((-3 |#2| "failed") |#2|)) (-15 -3842 ((-721) |#2|)) (-15 -1360 (|#2| |#2| |#2|))) (-1138) (-626 |#1|)) (T -170)) -((-1360 (*1 *2 *2 *2) (-12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) (-4 *2 (-626 *3)))) (-3842 (*1 *2 *3) (-12 (-4 *4 (-1138)) (-5 *2 (-721)) (-5 *1 (-170 *4 *3)) (-4 *3 (-626 *4)))) (-1532 (*1 *2 *2) (|partial| -12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) (-4 *2 (-626 *3))))) -(-10 -7 (-15 -1532 ((-3 |#2| "failed") |#2|)) (-15 -3842 ((-721) |#2|)) (-15 -1360 (|#2| |#2| |#2|))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1295 (((-1102) $) 10)) (-2265 (((-806) $) 17)) (-2687 (((-598 (-1107)) $) 12)) (-2148 (((-110) $ $) 15))) -(((-171) (-13 (-1030) (-10 -8 (-15 -1295 ((-1102) $)) (-15 -2687 ((-598 (-1107)) $))))) (T -171)) -((-1295 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-171)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-171))))) -(-13 (-1030) (-10 -8 (-15 -1295 ((-1102) $)) (-15 -2687 ((-598 (-1107)) $)))) -((-1709 ((|#2| |#2|) 28)) (-4209 (((-110) |#2|) 19)) (-2577 (((-297 |#1|) |#2|) 12)) (-2590 (((-297 |#1|) |#2|) 14)) (-1824 ((|#2| |#2| (-1102)) 68) ((|#2| |#2|) 69)) (-1284 (((-159 (-297 |#1|)) |#2|) 10)) (-1703 ((|#2| |#2| (-1102)) 65) ((|#2| |#2|) 59))) -(((-172 |#1| |#2|) (-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -2577 ((-297 |#1|) |#2|)) (-15 -2590 ((-297 |#1|) |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1284 ((-159 (-297 |#1|)) |#2|))) (-13 (-523) (-797) (-977 (-531))) (-13 (-27) (-1124) (-411 (-159 |#1|)))) (T -172)) -((-1284 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-2590 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1703 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) (-1824 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3))))))) -(-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -2577 ((-297 |#1|) |#2|)) (-15 -2590 ((-297 |#1|) |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1284 ((-159 (-297 |#1|)) |#2|))) -((-4037 (((-1184 (-639 (-895 |#1|))) (-1184 (-639 |#1|))) 24)) (-2265 (((-1184 (-639 (-388 (-895 |#1|)))) (-1184 (-639 |#1|))) 33))) -(((-173 |#1|) (-10 -7 (-15 -4037 ((-1184 (-639 (-895 |#1|))) (-1184 (-639 |#1|)))) (-15 -2265 ((-1184 (-639 (-388 (-895 |#1|)))) (-1184 (-639 |#1|))))) (-162)) (T -173)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162)) (-5 *2 (-1184 (-639 (-388 (-895 *4))))) (-5 *1 (-173 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162)) (-5 *2 (-1184 (-639 (-895 *4)))) (-5 *1 (-173 *4))))) -(-10 -7 (-15 -4037 ((-1184 (-639 (-895 |#1|))) (-1184 (-639 |#1|)))) (-15 -2265 ((-1184 (-639 (-388 (-895 |#1|)))) (-1184 (-639 |#1|))))) -((-1919 (((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531)))) 66)) (-3114 (((-1104 (-388 (-531))) (-598 (-531)) (-598 (-531))) 75)) (-2432 (((-1104 (-388 (-531))) (-531)) 40)) (-3083 (((-1104 (-388 (-531))) (-531)) 52)) (-4115 (((-388 (-531)) (-1104 (-388 (-531)))) 62)) (-2812 (((-1104 (-388 (-531))) (-531)) 32)) (-3161 (((-1104 (-388 (-531))) (-531)) 48)) (-4201 (((-1104 (-388 (-531))) (-531)) 46)) (-3657 (((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531)))) 60)) (-3437 (((-1104 (-388 (-531))) (-531)) 25)) (-3710 (((-388 (-531)) (-1104 (-388 (-531))) (-1104 (-388 (-531)))) 64)) (-3224 (((-1104 (-388 (-531))) (-531)) 30)) (-1779 (((-1104 (-388 (-531))) (-598 (-531))) 72))) -(((-174) (-10 -7 (-15 -3437 ((-1104 (-388 (-531))) (-531))) (-15 -2432 ((-1104 (-388 (-531))) (-531))) (-15 -2812 ((-1104 (-388 (-531))) (-531))) (-15 -3224 ((-1104 (-388 (-531))) (-531))) (-15 -4201 ((-1104 (-388 (-531))) (-531))) (-15 -3161 ((-1104 (-388 (-531))) (-531))) (-15 -3083 ((-1104 (-388 (-531))) (-531))) (-15 -3710 ((-388 (-531)) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -3657 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -4115 ((-388 (-531)) (-1104 (-388 (-531))))) (-15 -1919 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -1779 ((-1104 (-388 (-531))) (-598 (-531)))) (-15 -3114 ((-1104 (-388 (-531))) (-598 (-531)) (-598 (-531)))))) (T -174)) -((-3114 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531))) (-5 *1 (-174)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531))) (-5 *1 (-174)))) (-3083 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-3161 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-2432 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))) -(-10 -7 (-15 -3437 ((-1104 (-388 (-531))) (-531))) (-15 -2432 ((-1104 (-388 (-531))) (-531))) (-15 -2812 ((-1104 (-388 (-531))) (-531))) (-15 -3224 ((-1104 (-388 (-531))) (-531))) (-15 -4201 ((-1104 (-388 (-531))) (-531))) (-15 -3161 ((-1104 (-388 (-531))) (-531))) (-15 -3083 ((-1104 (-388 (-531))) (-531))) (-15 -3710 ((-388 (-531)) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -3657 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -4115 ((-388 (-531)) (-1104 (-388 (-531))))) (-15 -1919 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -1779 ((-1104 (-388 (-531))) (-598 (-531)))) (-15 -3114 ((-1104 (-388 (-531))) (-598 (-531)) (-598 (-531))))) -((-3217 (((-399 (-1098 (-531))) (-531)) 28)) (-3234 (((-598 (-1098 (-531))) (-531)) 23)) (-3913 (((-1098 (-531)) (-531)) 21))) -(((-175) (-10 -7 (-15 -3234 ((-598 (-1098 (-531))) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -3217 ((-399 (-1098 (-531))) (-531))))) (T -175)) -((-3217 (*1 *2 *3) (-12 (-5 *2 (-399 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-175)) (-5 *3 (-531)))) (-3234 (*1 *2 *3) (-12 (-5 *2 (-598 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531))))) -(-10 -7 (-15 -3234 ((-598 (-1098 (-531))) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -3217 ((-399 (-1098 (-531))) (-531)))) -((-3195 (((-1083 (-208)) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 105)) (-4022 (((-598 (-1085)) (-1083 (-208))) NIL)) (-1259 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 81)) (-1606 (((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208)))) NIL)) (-3127 (((-598 (-1085)) (-598 (-208))) NIL)) (-1325 (((-208) (-1025 (-790 (-208)))) 24)) (-2766 (((-208) (-1025 (-790 (-208)))) 25)) (-2575 (((-360) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 98)) (-1450 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1890 (((-1085) (-208)) NIL)) (-3049 (((-1085) (-598 (-1085))) 20)) (-1538 (((-975) (-1102) (-1102) (-975)) 13))) -(((-176) (-10 -7 (-15 -1259 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1450 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2575 ((-360) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -3049 ((-1085) (-598 (-1085)))) (-15 -1538 ((-975) (-1102) (-1102) (-975))))) (T -176)) -((-1538 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-176)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-176)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-176)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-176)))) (-1606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102)) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-176)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-176)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176))))) -(-10 -7 (-15 -1259 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1450 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2575 ((-360) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -3049 ((-1085) (-598 (-1085)))) (-15 -1538 ((-975) (-1102) (-1102) (-975)))) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 55) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-177) (-737)) (T -177)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 60) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-178) (-737)) (T -178)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 69) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-179) (-737)) (T -179)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 56) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-180) (-737)) (T -180)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 67) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 38) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-181) (-737)) (T -181)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 73) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-182) (-737)) (T -182)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 80) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 44) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-183) (-737)) (T -183)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 70) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-184) (-737)) (T -184)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 66)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-185) (-737)) (T -185)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 63)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-186) (-737)) (T -186)) -NIL -(-737) -((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 90) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 78) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-187) (-737)) (T -187)) -NIL -(-737) -((-2865 (((-3 (-2 (|:| -4155 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 85)) (-3817 (((-531) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-3102 (((-3 (-598 (-208)) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 73))) -(((-188) (-10 -7 (-15 -2865 ((-3 (-2 (|:| -4155 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3102 ((-3 (-598 (-208)) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3817 ((-531) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -188)) -((-3817 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-531)) (-5 *1 (-188)))) (-3102 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-188)))) (-2865 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -4155 (-112)) (|:| |w| (-208)))) (-5 *1 (-188))))) -(-10 -7 (-15 -2865 ((-3 (-2 (|:| -4155 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3102 ((-3 (-598 (-208)) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3817 ((-531) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) -((-4093 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-1698 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 130)) (-3423 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-639 (-297 (-208)))) 89)) (-2030 (((-360) (-639 (-297 (-208)))) 113)) (-1487 (((-639 (-297 (-208))) (-1184 (-297 (-208))) (-598 (-1102))) 110)) (-3126 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 30)) (-3640 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 43)) (-4115 (((-639 (-297 (-208))) (-639 (-297 (-208))) (-598 (-1102)) (-1184 (-297 (-208)))) 102)) (-3420 (((-360) (-360) (-598 (-360))) 107) (((-360) (-360) (-360)) 105)) (-3874 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36))) -(((-189) (-10 -7 (-15 -3420 ((-360) (-360) (-360))) (-15 -3420 ((-360) (-360) (-598 (-360)))) (-15 -2030 ((-360) (-639 (-297 (-208))))) (-15 -1487 ((-639 (-297 (-208))) (-1184 (-297 (-208))) (-598 (-1102)))) (-15 -4115 ((-639 (-297 (-208))) (-639 (-297 (-208))) (-598 (-1102)) (-1184 (-297 (-208))))) (-15 -3423 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-639 (-297 (-208))))) (-15 -1698 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4093 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3640 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3874 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3126 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -189)) -((-3126 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-639 (-297 (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-4115 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-639 (-297 (-208)))) (-5 *3 (-598 (-1102))) (-5 *4 (-1184 (-297 (-208)))) (-5 *1 (-189)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102))) (-5 *2 (-639 (-297 (-208)))) (-5 *1 (-189)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-639 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3420 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3420 (*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189))))) -(-10 -7 (-15 -3420 ((-360) (-360) (-360))) (-15 -3420 ((-360) (-360) (-598 (-360)))) (-15 -2030 ((-360) (-639 (-297 (-208))))) (-15 -1487 ((-639 (-297 (-208))) (-1184 (-297 (-208))) (-598 (-1102)))) (-15 -4115 ((-639 (-297 (-208))) (-639 (-297 (-208))) (-598 (-1102)) (-1184 (-297 (-208))))) (-15 -3423 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-639 (-297 (-208))))) (-15 -1698 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4093 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3640 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3874 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3126 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) -((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 64)) (-2148 (((-110) $ $) NIL))) -(((-190) (-750)) (T -190)) -NIL -(-750) -((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 62)) (-2148 (((-110) $ $) NIL))) -(((-191) (-750)) (T -191)) -NIL -(-750) -((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 66)) (-2148 (((-110) $ $) NIL))) -(((-192) (-750)) (T -192)) -NIL -(-750) -((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 46)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 75)) (-2148 (((-110) $ $) NIL))) -(((-193) (-750)) (T -193)) -NIL -(-750) -((-3798 (((-598 (-1102)) (-1102) (-721)) 23)) (-2112 (((-297 (-208)) (-297 (-208))) 31)) (-3247 (((-110) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 74)) (-4203 (((-110) (-208) (-208) (-598 (-297 (-208)))) 45))) -(((-194) (-10 -7 (-15 -3798 ((-598 (-1102)) (-1102) (-721))) (-15 -2112 ((-297 (-208)) (-297 (-208)))) (-15 -4203 ((-110) (-208) (-208) (-598 (-297 (-208))))) (-15 -3247 ((-110) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))))) (T -194)) -((-3247 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-4203 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-598 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-194)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-598 (-1102))) (-5 *1 (-194)) (-5 *3 (-1102))))) -(-10 -7 (-15 -3798 ((-598 (-1102)) (-1102) (-721))) (-15 -2112 ((-297 (-208)) (-297 (-208)))) (-15 -4203 ((-110) (-208) (-208) (-598 (-297 (-208))))) (-15 -3247 ((-110) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))))) -((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 26)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-1932 (((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 57)) (-2148 (((-110) $ $) NIL))) -(((-195) (-838)) (T -195)) -NIL -(-838) -((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-1932 (((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) NIL)) (-2148 (((-110) $ $) NIL))) -(((-196) (-838)) (T -196)) -NIL -(-838) -((-2247 (((-110) $ $) NIL)) (-2454 ((|#2| $ (-721) |#2|) 11)) (-3010 (($) 8)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#2| $ (-721)) 10)) (-2265 (((-806) $) 18)) (-2148 (((-110) $ $) 13))) -(((-197 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1785 (|#2| $ (-721))) (-15 -2454 (|#2| $ (-721) |#2|)))) (-864) (-1030)) (T -197)) -((-3010 (*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-864)) (-4 *3 (-1030)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *2 (-1030)) (-5 *1 (-197 *4 *2)) (-14 *4 (-864)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-197 *4 *2)) (-14 *4 (-864)) (-4 *2 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1785 (|#2| $ (-721))) (-15 -2454 (|#2| $ (-721) |#2|)))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3403 (((-1189) $) 36) (((-1189) $ (-864) (-864)) 38)) (-1785 (($ $ (-931)) 19) (((-228 (-1085)) $ (-1102)) 15)) (-2286 (((-1189) $) 34)) (-2265 (((-806) $) 31) (($ (-598 |#1|)) 8)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $ $) 27)) (-2237 (($ $ $) 22))) -(((-198 |#1|) (-13 (-1030) (-10 -8 (-15 -1785 ($ $ (-931))) (-15 -1785 ((-228 (-1085)) $ (-1102))) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2265 ($ (-598 |#1|))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -3403 ((-1189) $ (-864) (-864))))) (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))) (T -198)) -((-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-228 (-1085))) (-5 *1 (-198 *4)) (-4 *4 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ *3)) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-2237 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-2250 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))) (-5 *1 (-198 *3)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) (-15 -3403 (*2 $))))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) (-15 -3403 (*2 $))))))) (-3403 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-198 *4)) (-4 *4 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) (-15 -3403 (*2 $)))))))) -(-13 (-1030) (-10 -8 (-15 -1785 ($ $ (-931))) (-15 -1785 ((-228 (-1085)) $ (-1102))) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2265 ($ (-598 |#1|))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -3403 ((-1189) $ (-864) (-864))))) -((-3489 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3489 (|#2| |#4| (-1 |#2| |#2|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -199)) -((-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1160 (-388 *2))) (-4 *2 (-1160 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6))))) -(-10 -7 (-15 -3489 (|#2| |#4| (-1 |#2| |#2|)))) -((-1505 ((|#2| |#2| (-721) |#2|) 42)) (-2297 ((|#2| |#2| (-721) |#2|) 38)) (-4215 (((-598 |#2|) (-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|)))) 57)) (-2204 (((-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))) |#2|) 53)) (-3779 (((-110) |#2|) 50)) (-4184 (((-399 |#2|) |#2|) 77)) (-2552 (((-399 |#2|) |#2|) 76)) (-3180 ((|#2| |#2| (-721) |#2|) 36)) (-1401 (((-2 (|:| |cont| |#1|) (|:| -2721 (-598 (-2 (|:| |irr| |#2|) (|:| -2460 (-531)))))) |#2| (-110)) 69))) -(((-200 |#1| |#2|) (-10 -7 (-15 -2552 ((-399 |#2|) |#2|)) (-15 -4184 ((-399 |#2|) |#2|)) (-15 -1401 ((-2 (|:| |cont| |#1|) (|:| -2721 (-598 (-2 (|:| |irr| |#2|) (|:| -2460 (-531)))))) |#2| (-110))) (-15 -2204 ((-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))) |#2|)) (-15 -4215 ((-598 |#2|) (-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))))) (-15 -3180 (|#2| |#2| (-721) |#2|)) (-15 -2297 (|#2| |#2| (-721) |#2|)) (-15 -1505 (|#2| |#2| (-721) |#2|)) (-15 -3779 ((-110) |#2|))) (-330) (-1160 |#1|)) (T -200)) -((-3779 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))) (-1505 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1160 *4)))) (-2297 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1160 *4)))) (-3180 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1160 *4)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *5)))) (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *2 (-598 *5)) (-5 *1 (-200 *4 *5)))) (-2204 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *3)))) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-330)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-200 *5 *3)) (-4 *3 (-1160 *5)))) (-4184 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -2552 ((-399 |#2|) |#2|)) (-15 -4184 ((-399 |#2|) |#2|)) (-15 -1401 ((-2 (|:| |cont| |#1|) (|:| -2721 (-598 (-2 (|:| |irr| |#2|) (|:| -2460 (-531)))))) |#2| (-110))) (-15 -2204 ((-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))) |#2|)) (-15 -4215 ((-598 |#2|) (-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))))) (-15 -3180 (|#2| |#2| (-721) |#2|)) (-15 -2297 (|#2| |#2| (-721) |#2|)) (-15 -1505 (|#2| |#2| (-721) |#2|)) (-15 -3779 ((-110) |#2|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-531) $) NIL (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) NIL)) (-2943 (((-531) $) NIL (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) NIL)) (-2964 (($ (-388 (-531))) 9)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 8) (($ (-531)) NIL) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL) (((-945 10) $) 10)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-531) $) NIL (|has| (-531) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2263 (($ $ $) NIL) (($ (-531) (-531)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL))) -(((-201) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 10) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -2964 ($ (-388 (-531))))))) (T -201)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-945 10)) (-5 *1 (-201)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201))))) -(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 10) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -2964 ($ (-388 (-531)))))) -((-1788 (((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)) (-1085)) 28) (((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|))) 24)) (-3623 (((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1102) (-790 |#2|) (-790 |#2|) (-110)) 17))) -(((-202 |#1| |#2|) (-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)))) (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)) (-1085))) (-15 -3623 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1102) (-790 |#2|) (-790 |#2|) (-110)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-29 |#1|))) (T -202)) -((-3623 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1102)) (-5 *6 (-110)) (-4 *7 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-4 *3 (-13 (-1124) (-902) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *7 *3)) (-5 *5 (-790 *3)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1023 (-790 *3))) (-5 *5 (-1085)) (-4 *3 (-13 (-1124) (-902) (-29 *6))) (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6 *3)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-790 *3))) (-4 *3 (-13 (-1124) (-902) (-29 *5))) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5 *3))))) -(-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)))) (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)) (-1085))) (-15 -3623 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1102) (-790 |#2|) (-790 |#2|) (-110)))) -((-1788 (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))) (-1085)) 46) (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|))))) 43) (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))) (-1085)) 47) (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|)))) 20))) -(((-203 |#1|) (-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))) (-1085))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))) (-1085)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (T -203)) -((-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1023 (-790 (-388 (-895 *6))))) (-5 *5 (-1085)) (-5 *3 (-388 (-895 *6))) (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-790 (-388 (-895 *5))))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1023 (-790 (-297 *6)))) (-5 *5 (-1085)) (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1023 (-790 (-297 *5)))) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5))))) -(-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))) (-1085))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))) (-1085)))) -((-1760 (((-2 (|:| -2451 (-1098 |#1|)) (|:| |deg| (-864))) (-1098 |#1|)) 21)) (-2140 (((-598 (-297 |#2|)) (-297 |#2|) (-864)) 42))) -(((-204 |#1| |#2|) (-10 -7 (-15 -1760 ((-2 (|:| -2451 (-1098 |#1|)) (|:| |deg| (-864))) (-1098 |#1|))) (-15 -2140 ((-598 (-297 |#2|)) (-297 |#2|) (-864)))) (-986) (-13 (-523) (-797))) (T -204)) -((-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *6 (-13 (-523) (-797))) (-5 *2 (-598 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6)) (-4 *5 (-986)))) (-1760 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-2 (|:| -2451 (-1098 *4)) (|:| |deg| (-864)))) (-5 *1 (-204 *4 *5)) (-5 *3 (-1098 *4)) (-4 *5 (-13 (-523) (-797)))))) -(-10 -7 (-15 -1760 ((-2 (|:| -2451 (-1098 |#1|)) (|:| |deg| (-864))) (-1098 |#1|))) (-15 -2140 ((-598 (-297 |#2|)) (-297 |#2|) (-864)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2628 ((|#1| $) NIL)) (-1573 ((|#1| $) 25)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2978 (($ $) NIL)) (-4106 (($ $) 31)) (-3196 ((|#1| |#1| $) NIL)) (-4205 ((|#1| $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2428 (((-721) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) NIL)) (-2472 ((|#1| |#1| $) 28)) (-2676 ((|#1| |#1| $) 30)) (-3944 (($ |#1| $) NIL)) (-4194 (((-721) $) 27)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2572 ((|#1| $) NIL)) (-3966 ((|#1| $) 26)) (-1388 ((|#1| $) 24)) (-4192 ((|#1| $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-3969 ((|#1| |#1| $) NIL)) (-1589 (((-110) $) 9)) (-3781 (($) NIL)) (-2329 ((|#1| $) NIL)) (-1419 (($) NIL) (($ (-598 |#1|)) 16)) (-1216 (((-721) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3142 ((|#1| $) 13)) (-2524 (($ (-598 |#1|)) NIL)) (-3052 ((|#1| $) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-205 |#1|) (-13 (-236 |#1|) (-10 -8 (-15 -1419 ($ (-598 |#1|))))) (-1030)) (T -205)) -((-1419 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-205 *3))))) -(-13 (-236 |#1|) (-10 -8 (-15 -1419 ($ (-598 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3395 (($ (-297 |#1|)) 23)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1922 (((-110) $) NIL)) (-3154 (((-3 (-297 |#1|) "failed") $) NIL)) (-2523 (((-297 |#1|) $) NIL)) (-2500 (($ $) 31)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-3261 (($ (-1 (-297 |#1|) (-297 |#1|)) $) NIL)) (-2475 (((-297 |#1|) $) NIL)) (-2728 (($ $) 30)) (-1521 (((-1085) $) NIL)) (-1777 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($ (-721)) NIL)) (-2787 (($ $) 32)) (-2012 (((-531) $) NIL)) (-2265 (((-806) $) 57) (($ (-531)) NIL) (($ (-297 |#1|)) NIL)) (-3188 (((-297 |#1|) $ $) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) 25 T CONST)) (-3050 (($) 50 T CONST)) (-2148 (((-110) $ $) 28)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 19)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 24) (($ (-297 |#1|) $) 18))) -(((-206 |#1| |#2|) (-13 (-576 (-297 |#1|)) (-977 (-297 |#1|)) (-10 -8 (-15 -2475 ((-297 |#1|) $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 ((-297 |#1|) $ $)) (-15 -1861 ($ (-721))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3261 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -3395 ($ (-297 |#1|))) (-15 -2787 ($ $)))) (-13 (-986) (-797)) (-598 (-1102))) (T -206)) -((-2475 (*1 *2 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) (-14 *3 (-598 (-1102))))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) (-14 *3 (-598 (-1102))))) (-3188 (*1 *2 *1 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-986) (-797))) (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102))))) (-3395 (*1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-986) (-797))) (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102))))) (-2787 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) (-14 *3 (-598 (-1102)))))) -(-13 (-576 (-297 |#1|)) (-977 (-297 |#1|)) (-10 -8 (-15 -2475 ((-297 |#1|) $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 ((-297 |#1|) $ $)) (-15 -1861 ($ (-721))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3261 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -3395 ($ (-297 |#1|))) (-15 -2787 ($ $)))) -((-3719 (((-110) (-1085)) 22)) (-3207 (((-3 (-790 |#2|) "failed") (-571 |#2|) |#2| (-790 |#2|) (-790 |#2|) (-110)) 32)) (-2752 (((-3 (-110) "failed") (-1098 |#2|) (-790 |#2|) (-790 |#2|) (-110)) 73) (((-3 (-110) "failed") (-895 |#1|) (-1102) (-790 |#2|) (-790 |#2|) (-110)) 74))) -(((-207 |#1| |#2|) (-10 -7 (-15 -3719 ((-110) (-1085))) (-15 -3207 ((-3 (-790 |#2|) "failed") (-571 |#2|) |#2| (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-895 |#1|) (-1102) (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-1098 |#2|) (-790 |#2|) (-790 |#2|) (-110)))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-29 |#1|))) (T -207)) -((-2752 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1098 *6)) (-5 *4 (-790 *6)) (-4 *6 (-13 (-1124) (-29 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-207 *5 *6)))) (-2752 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-895 *6)) (-5 *4 (-1102)) (-5 *5 (-790 *7)) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *7 (-13 (-1124) (-29 *6))) (-5 *1 (-207 *6 *7)))) (-3207 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-790 *4)) (-5 *3 (-571 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1124) (-29 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-207 *6 *4)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1124) (-29 *4)))))) -(-10 -7 (-15 -3719 ((-110) (-1085))) (-15 -3207 ((-3 (-790 |#2|) "failed") (-571 |#2|) |#2| (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-895 |#1|) (-1102) (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-1098 |#2|) (-790 |#2|) (-790 |#2|) (-110)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 89)) (-1317 (((-531) $) 99)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2796 (($ $) NIL)) (-2367 (($ $) 77)) (-2218 (($ $) 65)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) 56)) (-2760 (((-110) $ $) NIL)) (-2343 (($ $) 75)) (-2198 (($ $) 63)) (-3459 (((-531) $) 116)) (-2391 (($ $) 80)) (-2241 (($ $) 67)) (-4082 (($) NIL T CONST)) (-1694 (($ $) NIL)) (-3154 (((-3 (-531) "failed") $) 115) (((-3 (-388 (-531)) "failed") $) 112)) (-2523 (((-531) $) 113) (((-388 (-531)) $) 110)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 92)) (-1525 (((-388 (-531)) $ (-721)) 108) (((-388 (-531)) $ (-721) (-721)) 107)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3963 (((-864)) 29) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-1599 (((-110) $) NIL)) (-1880 (($) 39)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL)) (-3617 (((-531) $) 35)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-1899 (($ $) NIL)) (-2985 (((-110) $) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) 53) (($) 34 (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-1241 (($ $ $) 52) (($) 33 (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-2580 (((-531) $) 27)) (-3738 (($ $) 30)) (-1835 (($ $) 57)) (-2076 (($ $) 62)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3704 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-2529 (((-1049) $) NIL) (((-531) $) 90)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL)) (-2943 (($ $) NIL)) (-2947 (($ (-531) (-531)) NIL) (($ (-531) (-531) (-864)) 100)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1790 (((-531) $) 28)) (-3696 (($) 38)) (-2798 (($ $) 61)) (-4100 (((-721) $) NIL)) (-3879 (((-1085) (-1085)) 8)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-864)) NIL) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3352 (($ $ (-721)) NIL) (($ $) 93)) (-3529 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-2403 (($ $) 78)) (-2253 (($ $) 68)) (-2379 (($ $) 79)) (-2229 (($ $) 66)) (-2356 (($ $) 76)) (-2210 (($ $) 64)) (-3318 (((-360) $) 104) (((-208) $) 101) (((-835 (-360)) $) NIL) (((-507) $) 45)) (-2265 (((-806) $) 42) (($ (-531)) 60) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-531)) 60) (($ (-388 (-531))) NIL)) (-2284 (((-721)) NIL)) (-3831 (($ $) NIL)) (-2138 (((-864)) 32) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3276 (((-864)) 25)) (-2442 (($ $) 83)) (-2292 (($ $) 71) (($ $ $) 109)) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) 81)) (-2266 (($ $) 69)) (-2468 (($ $) 86)) (-2318 (($ $) 74)) (-2753 (($ $) 84)) (-2331 (($ $) 72)) (-2456 (($ $) 85)) (-2305 (($ $) 73)) (-2429 (($ $) 82)) (-2279 (($ $) 70)) (-1620 (($ $) 117)) (-3035 (($) 36 T CONST)) (-3050 (($) 37 T CONST)) (-4231 (((-1085) $) 19) (((-1085) $ (-110)) 21) (((-1189) (-772) $) 22) (((-1189) (-772) $ (-110)) 23)) (-3926 (($ $) 96)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-1312 (($ $ $) 98)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 54)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 46)) (-2263 (($ $ $) 87) (($ $ (-531)) 55)) (-2250 (($ $) 47) (($ $ $) 49)) (-2237 (($ $ $) 48)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 58) (($ $ (-388 (-531))) 129) (($ $ $) 59)) (* (($ (-864) $) 31) (($ (-721) $) NIL) (($ (-531) $) 51) (($ $ $) 50) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-208) (-13 (-385) (-216) (-778) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -3696 ($)) (-15 -2529 ((-531) $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -2292 ($ $ $)) (-15 -3926 ($ $)) (-15 -1312 ($ $ $)) (-15 -3879 ((-1085) (-1085))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721)))))) (T -208)) -((** (*1 *1 *1 *1) (-5 *1 (-208))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-208)))) (-3696 (*1 *1) (-5 *1 (-208))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-208)))) (-3738 (*1 *1 *1) (-5 *1 (-208))) (-1835 (*1 *1 *1) (-5 *1 (-208))) (-2292 (*1 *1 *1 *1) (-5 *1 (-208))) (-3926 (*1 *1 *1) (-5 *1 (-208))) (-1312 (*1 *1 *1 *1) (-5 *1 (-208))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-208)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208)))) (-1525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208))))) -(-13 (-385) (-216) (-778) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -3696 ($)) (-15 -2529 ((-531) $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -2292 ($ $ $)) (-15 -3926 ($ $)) (-15 -1312 ($ $ $)) (-15 -3879 ((-1085) (-1085))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721))))) -((-1690 (((-159 (-208)) (-721) (-159 (-208))) 11) (((-208) (-721) (-208)) 12)) (-3456 (((-159 (-208)) (-159 (-208))) 13) (((-208) (-208)) 14)) (-3976 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 19) (((-208) (-208) (-208)) 22)) (-2188 (((-159 (-208)) (-159 (-208))) 25) (((-208) (-208)) 24)) (-3031 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 43) (((-208) (-208) (-208)) 35)) (-2143 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 48) (((-208) (-208) (-208)) 45)) (-1702 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 15) (((-208) (-208) (-208)) 16)) (-2081 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 17) (((-208) (-208) (-208)) 18)) (-3558 (((-159 (-208)) (-159 (-208))) 60) (((-208) (-208)) 59)) (-2336 (((-208) (-208)) 54) (((-159 (-208)) (-159 (-208))) 58)) (-3926 (((-159 (-208)) (-159 (-208))) 8) (((-208) (-208)) 9)) (-1312 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 30) (((-208) (-208) (-208)) 26))) -(((-209) (-10 -7 (-15 -3926 ((-208) (-208))) (-15 -3926 ((-159 (-208)) (-159 (-208)))) (-15 -1312 ((-208) (-208) (-208))) (-15 -1312 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3456 ((-208) (-208))) (-15 -3456 ((-159 (-208)) (-159 (-208)))) (-15 -2188 ((-208) (-208))) (-15 -2188 ((-159 (-208)) (-159 (-208)))) (-15 -1690 ((-208) (-721) (-208))) (-15 -1690 ((-159 (-208)) (-721) (-159 (-208)))) (-15 -1702 ((-208) (-208) (-208))) (-15 -1702 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3031 ((-208) (-208) (-208))) (-15 -3031 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2081 ((-208) (-208) (-208))) (-15 -2081 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2143 ((-208) (-208) (-208))) (-15 -2143 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2336 ((-159 (-208)) (-159 (-208)))) (-15 -2336 ((-208) (-208))) (-15 -3558 ((-208) (-208))) (-15 -3558 ((-159 (-208)) (-159 (-208)))) (-15 -3976 ((-208) (-208) (-208))) (-15 -3976 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))) (T -209)) -((-3976 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3976 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2143 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2143 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1702 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1702 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1690 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-208))) (-5 *3 (-721)) (-5 *1 (-209)))) (-1690 (*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-721)) (-5 *1 (-209)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1312 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1312 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))) -(-10 -7 (-15 -3926 ((-208) (-208))) (-15 -3926 ((-159 (-208)) (-159 (-208)))) (-15 -1312 ((-208) (-208) (-208))) (-15 -1312 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3456 ((-208) (-208))) (-15 -3456 ((-159 (-208)) (-159 (-208)))) (-15 -2188 ((-208) (-208))) (-15 -2188 ((-159 (-208)) (-159 (-208)))) (-15 -1690 ((-208) (-721) (-208))) (-15 -1690 ((-159 (-208)) (-721) (-159 (-208)))) (-15 -1702 ((-208) (-208) (-208))) (-15 -1702 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3031 ((-208) (-208) (-208))) (-15 -3031 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2081 ((-208) (-208) (-208))) (-15 -2081 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2143 ((-208) (-208) (-208))) (-15 -2143 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2336 ((-159 (-208)) (-159 (-208)))) (-15 -2336 ((-208) (-208))) (-15 -3558 ((-208) (-208))) (-15 -3558 ((-159 (-208)) (-159 (-208)))) (-15 -3976 ((-208) (-208) (-208))) (-15 -3976 ((-159 (-208)) (-159 (-208)) (-159 (-208))))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) NIL)) (-1761 (($ $ $) NIL)) (-2096 (($ (-1184 |#1|)) NIL) (($ $) NIL)) (-2161 (($ |#1| |#1| |#1|) 32)) (-2719 (((-110) $) NIL)) (-3034 (($ $ (-531) (-531)) NIL)) (-1987 (($ $ (-531) (-531)) NIL)) (-2159 (($ $ (-531) (-531) (-531) (-531)) NIL)) (-2870 (($ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3680 (($ $ (-531) (-531) $) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) NIL)) (-2398 (($ $ (-531) (-1184 |#1|)) NIL)) (-3492 (($ $ (-531) (-1184 |#1|)) NIL)) (-3030 (($ |#1| |#1| |#1|) 31)) (-3264 (($ (-721) |#1|) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) NIL (|has| |#1| (-289)))) (-4011 (((-1184 |#1|) $ (-531)) NIL)) (-3826 (($ |#1|) 30)) (-1378 (($ |#1|) 29)) (-2863 (($ |#1|) 28)) (-2277 (((-721) $) NIL (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-4091 (((-721) $) NIL (|has| |#1| (-523)))) (-3001 (((-598 (-1184 |#1|)) $) NIL (|has| |#1| (-523)))) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#1| $) NIL (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#1|))) 11)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3924 (((-598 (-598 |#1|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-4132 (($) 12)) (-2069 (($ $ $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531))) NIL)) (-3223 (($ (-598 |#1|)) NIL) (($ (-598 $)) NIL)) (-1439 (((-110) $) NIL)) (-3253 ((|#1| $) NIL (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-1184 |#1|) $ (-531)) NIL)) (-2265 (($ (-1184 |#1|)) NIL) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-531) $) NIL) (((-1184 |#1|) $ (-1184 |#1|)) 15) (((-1184 |#1|) (-1184 |#1|) $) NIL) (((-886 |#1|) $ (-886 |#1|)) 20)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-210 |#1|) (-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 * ((-886 |#1|) $ (-886 |#1|))) (-15 -4132 ($)) (-15 -2863 ($ |#1|)) (-15 -1378 ($ |#1|)) (-15 -3826 ($ |#1|)) (-15 -3030 ($ |#1| |#1| |#1|)) (-15 -2161 ($ |#1| |#1| |#1|)))) (-13 (-344) (-1124))) (T -210)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124))) (-5 *1 (-210 *3)))) (-4132 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-2863 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-1378 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-3826 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-3030 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-2161 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))) -(-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 * ((-886 |#1|) $ (-886 |#1|))) (-15 -4132 ($)) (-15 -2863 ($ |#1|)) (-15 -1378 ($ |#1|)) (-15 -3826 ($ |#1|)) (-15 -3030 ($ |#1| |#1| |#1|)) (-15 -2161 ($ |#1| |#1| |#1|)))) -((-2245 (($ (-1 (-110) |#2|) $) 16)) (-2717 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-2543 (($) NIL) (($ (-598 |#2|)) 11)) (-2148 (((-110) $ $) 23))) -(((-211 |#1| |#2|) (-10 -8 (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-212 |#2|) (-1030)) (T -211)) -NIL -(-10 -8 (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-212 |#1|) (-133) (-1030)) (T -212)) -NIL -(-13 (-218 |t#1|)) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-3352 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) 11) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) 19) (($ $ (-721)) NIL) (($ $) 16)) (-4020 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-721)) 14) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL))) -(((-213 |#1| |#2|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1102))) (-15 -4020 (|#1| |#1| (-598 (-1102)))) (-15 -4020 (|#1| |#1| (-1102) (-721))) (-15 -4020 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|)))) (-214 |#2|) (-986)) (T -213)) -NIL -(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1102))) (-15 -4020 (|#1| |#1| (-598 (-1102)))) (-15 -4020 (|#1| |#1| (-1102) (-721))) (-15 -4020 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-721)) 49) (($ $ (-598 (-1102)) (-598 (-721))) 42 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 41 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 40 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 39 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 37 (|has| |#1| (-216))) (($ $) 35 (|has| |#1| (-216)))) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-721)) 47) (($ $ (-598 (-1102)) (-598 (-721))) 46 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 45 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 44 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 43 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 38 (|has| |#1| (-216))) (($ $) 36 (|has| |#1| (-216)))) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-214 |#1|) (-133) (-986)) (T -214)) -((-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986)))) (-3352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4)) (-4 *4 (-986)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4)) (-4 *4 (-986))))) -(-13 (-986) (-10 -8 (-15 -3352 ($ $ (-1 |t#1| |t#1|))) (-15 -3352 ($ $ (-1 |t#1| |t#1|) (-721))) (-15 -4020 ($ $ (-1 |t#1| |t#1|))) (-15 -4020 ($ $ (-1 |t#1| |t#1|) (-721))) (IF (|has| |t#1| (-216)) (-6 (-216)) |%noBranch|) (IF (|has| |t#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-216) |has| |#1| (-216)) ((-601 $) . T) ((-677) . T) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3352 (($ $) NIL) (($ $ (-721)) 10)) (-4020 (($ $) 8) (($ $ (-721)) 12))) -(((-215 |#1|) (-10 -8 (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1|))) (-216)) (T -215)) -NIL -(-10 -8 (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $) 36) (($ $ (-721)) 34)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 35) (($ $ (-721)) 33)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-216) (-133)) (T -216)) -((-3352 (*1 *1 *1) (-4 *1 (-216))) (-4020 (*1 *1 *1) (-4 *1 (-216))) (-3352 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721)))) (-4020 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721))))) -(-13 (-986) (-10 -8 (-15 -3352 ($ $)) (-15 -4020 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -4020 ($ $ (-721))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2543 (($) 12) (($ (-598 |#2|)) NIL)) (-2480 (($ $) 14)) (-2274 (($ (-598 |#2|)) 10)) (-2265 (((-806) $) 21))) -(((-217 |#1| |#2|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2480 (|#1| |#1|))) (-218 |#2|) (-1030)) (T -217)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2480 (|#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-218 |#1|) (-133) (-1030)) (T -218)) -((-2543 (*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1030)))) (-2543 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-218 *3)))) (-2717 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-218 *2)) (-4 *2 (-1030)))) (-2717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3)) (-4 *3 (-1030)))) (-2245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3)) (-4 *3 (-1030))))) -(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -2543 ($)) (-15 -2543 ($ (-598 |t#1|))) (IF (|has| $ (-6 -4273)) (PROGN (-15 -2717 ($ |t#1| $)) (-15 -2717 ($ (-1 (-110) |t#1|) $)) (-15 -2245 ($ (-1 (-110) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2075 (((-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721))))) (-276 (-895 (-531)))) 27))) -(((-219) (-10 -7 (-15 -2075 ((-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721))))) (-276 (-895 (-531))))))) (T -219)) -((-2075 (*1 *2 *3) (-12 (-5 *3 (-276 (-895 (-531)))) (-5 *2 (-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721)))))) (-5 *1 (-219))))) -(-10 -7 (-15 -2075 ((-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721))))) (-276 (-895 (-531)))))) -((-3006 (((-721)) 51)) (-3073 (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) 49) (((-639 |#3|) (-639 $)) 41) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-2190 (((-130)) 57)) (-3352 (($ $ (-1 |#3| |#3|) (-721)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-2265 (((-1184 |#3|) $) NIL) (($ |#3|) NIL) (((-806) $) NIL) (($ (-531)) 12) (($ (-388 (-531))) NIL)) (-2284 (((-721)) 15)) (-2263 (($ $ |#3|) 54))) -(((-220 |#1| |#2| |#3|) (-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)) (-15 -2284 ((-721))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3006 ((-721))) (-15 -2263 (|#1| |#1| |#3|)) (-15 -2190 ((-130))) (-15 -2265 ((-1184 |#3|) |#1|))) (-221 |#2| |#3|) (-721) (-1138)) (T -220)) -((-2190 (*1 *2) (-12 (-14 *4 (-721)) (-4 *5 (-1138)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3006 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-2284 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))) -(-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)) (-15 -2284 ((-721))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3006 ((-721))) (-15 -2263 (|#1| |#1| |#3|)) (-15 -2190 ((-130))) (-15 -2265 ((-1184 |#3|) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#2| (-1030)))) (-3019 (((-110) $) 72 (|has| |#2| (-128)))) (-1685 (($ (-864)) 125 (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3818 (($ $ $) 121 (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) 8)) (-3006 (((-721)) 107 (|has| |#2| (-349)))) (-3459 (((-531) $) 119 (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) 52 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3154 (((-3 (-531) "failed") $) 67 (-3427 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) 64 (-3427 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1030)))) (-2523 (((-531) $) 68 (-3427 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) 65 (-3427 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) 60 (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) 106 (-3427 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 105 (-3427 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 104 (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) 103 (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) 79 (|has| |#2| (-677)))) (-1381 (($) 110 (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) 51)) (-1599 (((-110) $) 117 (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) 30 (|has| $ (-6 -4273)))) (-3481 (((-110) $) 81 (|has| |#2| (-677)))) (-2985 (((-110) $) 118 (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 116 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2445 (((-598 |#2|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 115 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2680 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) 35)) (-2211 (((-864) $) 109 (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-1889 (($ (-864)) 108 (|has| |#2| (-349)))) (-2529 (((-1049) $) 21 (|has| |#2| (-1030)))) (-3046 ((|#2| $) 42 (|has| (-531) (-797)))) (-3742 (($ $ |#2|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ (-531) |#2|) 50) ((|#2| $ (-531)) 49)) (-3225 ((|#2| $ $) 124 (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) 126)) (-2190 (((-130)) 123 (|has| |#2| (-344)))) (-3352 (($ $) 98 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) 96 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) 94 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) 93 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) 92 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) 91 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) 84 (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4273))) (((-721) |#2| $) 28 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-1184 |#2|) $) 127) (($ (-531)) 66 (-1435 (-3427 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) 63 (-3427 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) 62 (|has| |#2| (-1030))) (((-806) $) 18 (|has| |#2| (-572 (-806))))) (-2284 (((-721)) 102 (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4273)))) (-1620 (($ $) 120 (|has| |#2| (-795)))) (-3035 (($) 71 (|has| |#2| (-128)) CONST)) (-3050 (($) 82 (|has| |#2| (-677)) CONST)) (-4020 (($ $) 97 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) 95 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) 90 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) 89 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) 88 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) 87 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) 86 (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-986)))) (-2207 (((-110) $ $) 113 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2184 (((-110) $ $) 112 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2148 (((-110) $ $) 20 (|has| |#2| (-1030)))) (-2195 (((-110) $ $) 114 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2174 (((-110) $ $) 111 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2263 (($ $ |#2|) 122 (|has| |#2| (-344)))) (-2250 (($ $ $) 100 (|has| |#2| (-986))) (($ $) 99 (|has| |#2| (-986)))) (-2237 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-721)) 80 (|has| |#2| (-677))) (($ $ (-864)) 77 (|has| |#2| (-677)))) (* (($ (-531) $) 101 (|has| |#2| (-986))) (($ $ $) 78 (|has| |#2| (-677))) (($ $ |#2|) 76 (|has| |#2| (-677))) (($ |#2| $) 75 (|has| |#2| (-677))) (($ (-721) $) 73 (|has| |#2| (-128))) (($ (-864) $) 70 (|has| |#2| (-25)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-221 |#1| |#2|) (-133) (-721) (-1138)) (T -221)) -((-2602 (*1 *1 *2) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1138)) (-4 *1 (-221 *3 *4)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-221 *3 *4)) (-4 *4 (-986)) (-4 *4 (-1138)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677))))) -(-13 (-564 (-531) |t#2|) (-572 (-1184 |t#2|)) (-10 -8 (-6 -4273) (-15 -2602 ($ (-1184 |t#2|))) (IF (|has| |t#2| (-1030)) (-6 (-392 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-986)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-214 |t#2|)) (-6 (-358 |t#2|)) (-15 -1685 ($ (-864))) (-15 -3225 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-677)) (PROGN (-6 (-677)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4270)) (-6 -4270) |%noBranch|) (IF (|has| |t#2| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#2| (-743)) (-6 (-743)) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-1191 |t#2|)) |%noBranch|))) -(((-21) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-23) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -1435 (|has| |#2| (-1030)) (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-677)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -1435 (|has| |#2| (-986)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-677)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-572 (-806))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-572 (-1184 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-214 |#2|) |has| |#2| (-986)) ((-216) -12 (|has| |#2| (-216)) (|has| |#2| (-986))) ((-268 #0=(-531) |#2|) . T) ((-270 #0# |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-349) |has| |#2| (-349)) ((-358 |#2|) |has| |#2| (-986)) ((-392 |#2|) |has| |#2| (-1030)) ((-468 |#2|) . T) ((-564 #0# |#2|) . T) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-601 |#2|) -1435 (|has| |#2| (-986)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-601 $) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-162))) ((-594 (-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986))) ((-594 |#2|) |has| |#2| (-986)) ((-668 |#2|) -1435 (|has| |#2| (-344)) (|has| |#2| (-162))) ((-677) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-677)) (|has| |#2| (-162))) ((-741) |has| |#2| (-795)) ((-742) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-743) |has| |#2| (-743)) ((-744) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-745) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-795) |has| |#2| (-795)) ((-797) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-843 (-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986))) ((-977 (-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030))) ((-977 (-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) ((-977 |#2|) |has| |#2| (-1030)) ((-992 |#2|) -1435 (|has| |#2| (-986)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-992 $) |has| |#2| (-162)) ((-986) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-162))) ((-993) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-162))) ((-1042) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-677)) (|has| |#2| (-162))) ((-1030) -1435 (|has| |#2| (-1030)) (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-677)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1138) . T) ((-1191 |#2|) |has| |#2| (-344))) -((-3203 (((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 21)) (-1760 ((|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 23)) (-3261 (((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)) 18))) -(((-222 |#1| |#2| |#3|) (-10 -7 (-15 -3203 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -1760 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3261 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)))) (-721) (-1138) (-1138)) (T -222)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-5 *2 (-223 *5 *7)) (-5 *1 (-222 *5 *6 *7)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721)) (-4 *6 (-1138)) (-4 *2 (-1138)) (-5 *1 (-222 *5 *6 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-721)) (-4 *7 (-1138)) (-4 *5 (-1138)) (-5 *2 (-223 *6 *5)) (-5 *1 (-222 *6 *7 *5))))) -(-10 -7 (-15 -3203 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -1760 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3261 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)))) -((-2247 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-3019 (((-110) $) NIL (|has| |#2| (-128)))) (-1685 (($ (-864)) 56 (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) 60 (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) 17)) (-3006 (((-721)) NIL (|has| |#2| (-349)))) (-3459 (((-531) $) NIL (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) 27 (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) NIL (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) 53 (|has| |#2| (-677)))) (-1381 (($) NIL (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) 51)) (-1599 (((-110) $) NIL (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) 15 (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#2| (-677)))) (-2985 (((-110) $) NIL (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 20 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 (((-531) $) 50 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) 41)) (-2211 (((-864) $) NIL (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#2| (-349)))) (-2529 (((-1049) $) NIL (|has| |#2| (-1030)))) (-3046 ((|#2| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) 21)) (-3225 ((|#2| $ $) NIL (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) 18)) (-2190 (((-130)) NIL (|has| |#2| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#2|) $) 10) (($ (-531)) NIL (-1435 (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) 13 (|has| |#2| (-1030))) (((-806) $) NIL (|has| |#2| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#2| (-795)))) (-3035 (($) 35 (|has| |#2| (-128)) CONST)) (-3050 (($) 38 (|has| |#2| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2148 (((-110) $ $) 26 (|has| |#2| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2174 (((-110) $ $) 58 (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $ $) NIL (|has| |#2| (-986))) (($ $) NIL (|has| |#2| (-986)))) (-2237 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-721)) NIL (|has| |#2| (-677))) (($ $ (-864)) NIL (|has| |#2| (-677)))) (* (($ (-531) $) NIL (|has| |#2| (-986))) (($ $ $) 44 (|has| |#2| (-677))) (($ $ |#2|) 42 (|has| |#2| (-677))) (($ |#2| $) 43 (|has| |#2| (-677))) (($ (-721) $) NIL (|has| |#2| (-128))) (($ (-864) $) NIL (|has| |#2| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-223 |#1| |#2|) (-221 |#1| |#2|) (-721) (-1138)) (T -223)) -NIL -(-221 |#1| |#2|) -((-3956 (((-531) (-598 (-1085))) 24) (((-531) (-1085)) 19)) (-2487 (((-1189) (-598 (-1085))) 29) (((-1189) (-1085)) 28)) (-4179 (((-1085)) 14)) (-1291 (((-1085) (-531) (-1085)) 16)) (-3840 (((-598 (-1085)) (-598 (-1085)) (-531) (-1085)) 25) (((-1085) (-1085) (-531) (-1085)) 23)) (-1667 (((-598 (-1085)) (-598 (-1085))) 13) (((-598 (-1085)) (-1085)) 11))) -(((-224) (-10 -7 (-15 -1667 ((-598 (-1085)) (-1085))) (-15 -1667 ((-598 (-1085)) (-598 (-1085)))) (-15 -4179 ((-1085))) (-15 -1291 ((-1085) (-531) (-1085))) (-15 -3840 ((-1085) (-1085) (-531) (-1085))) (-15 -3840 ((-598 (-1085)) (-598 (-1085)) (-531) (-1085))) (-15 -2487 ((-1189) (-1085))) (-15 -2487 ((-1189) (-598 (-1085)))) (-15 -3956 ((-531) (-1085))) (-15 -3956 ((-531) (-598 (-1085)))))) (T -224)) -((-3956 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-531)) (-5 *1 (-224)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-224)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1189)) (-5 *1 (-224)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-224)))) (-3840 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-598 (-1085))) (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *1 (-224)))) (-3840 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224)))) (-1291 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224)))) (-4179 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-224)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)))) (-1667 (*1 *2 *3) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)) (-5 *3 (-1085))))) -(-10 -7 (-15 -1667 ((-598 (-1085)) (-1085))) (-15 -1667 ((-598 (-1085)) (-598 (-1085)))) (-15 -4179 ((-1085))) (-15 -1291 ((-1085) (-531) (-1085))) (-15 -3840 ((-1085) (-1085) (-531) (-1085))) (-15 -3840 ((-598 (-1085)) (-598 (-1085)) (-531) (-1085))) (-15 -2487 ((-1189) (-1085))) (-15 -2487 ((-1189) (-598 (-1085)))) (-15 -3956 ((-531) (-1085))) (-15 -3956 ((-531) (-598 (-1085))))) -((** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 16)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ (-388 (-531)) $) 23) (($ $ (-388 (-531))) NIL))) -(((-225 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-226)) (T -225)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 37)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 41)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 38)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ (-388 (-531)) $) 40) (($ $ (-388 (-531))) 39))) -(((-226) (-133)) (T -226)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-531)))) (-2422 (*1 *1 *1) (-4 *1 (-226)))) -(-13 (-272) (-37 (-388 (-531))) (-10 -8 (-15 ** ($ $ (-531))) (-15 -2422 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-272) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-677) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-2072 (($ $) 57)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-3560 (($ $ $) 53 (|has| $ (-6 -4274)))) (-2179 (($ $ $) 52 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3396 (($ $) 56)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3566 (($ $) 55)) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 59)) (-3162 (($ $) 58)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-1818 (($ $ $) 54 (|has| $ (-6 -4274)))) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-227 |#1|) (-133) (-1138)) (T -227)) -((-2309 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3566 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3560 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-2179 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138))))) -(-13 (-951 |t#1|) (-10 -8 (-15 -2309 (|t#1| $)) (-15 -3162 ($ $)) (-15 -2072 ($ $)) (-15 -3396 ($ $)) (-15 -3566 ($ $)) (IF (|has| $ (-6 -4274)) (PROGN (-15 -1818 ($ $ $)) (-15 -3560 ($ $ $)) (-15 -2179 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) 10 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) NIL (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "rest" $) NIL (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3062 (($ $) NIL) (($ $ (-721)) NIL)) (-2705 (($ $) NIL (|has| |#1| (-1030)))) (-3086 (($ $) 7 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030))) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3508 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2907 (($ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) NIL) ((|#1| $ (-531) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-721) $ "count") 16)) (-2357 (((-531) $ $) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-3929 (($ (-598 |#1|)) 22)) (-2930 (((-110) $) NIL)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1818 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3536 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-598 $)) NIL) (($ $ |#1|) NIL)) (-2265 (($ (-598 |#1|)) 17) (((-598 |#1|) $) 18) (((-806) $) 21 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 14 (|has| $ (-6 -4273))))) -(((-228 |#1|) (-13 (-619 |#1|) (-10 -8 (-15 -2265 ($ (-598 |#1|))) (-15 -2265 ((-598 |#1|) $)) (-15 -3929 ($ (-598 |#1|))) (-15 -1785 ($ $ "unique")) (-15 -1785 ($ $ "sort")) (-15 -1785 ((-721) $ "count")))) (-797)) (T -228)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-228 *3)) (-4 *3 (-797)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-797)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-797)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-721)) (-5 *1 (-228 *4)) (-4 *4 (-797))))) -(-13 (-619 |#1|) (-10 -8 (-15 -2265 ($ (-598 |#1|))) (-15 -2265 ((-598 |#1|) $)) (-15 -3929 ($ (-598 |#1|))) (-15 -1785 ($ $ "unique")) (-15 -1785 ($ $ "sort")) (-15 -1785 ((-721) $ "count")))) -((-1351 (((-3 (-721) "failed") |#1| |#1| (-721)) 27))) -(((-229 |#1|) (-10 -7 (-15 -1351 ((-3 (-721) "failed") |#1| |#1| (-721)))) (-13 (-677) (-349) (-10 -7 (-15 ** (|#1| |#1| (-531)))))) (T -229)) -((-1351 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-721)) (-4 *3 (-13 (-677) (-349) (-10 -7 (-15 ** (*3 *3 (-531)))))) (-5 *1 (-229 *3))))) -(-10 -7 (-15 -1351 ((-3 (-721) "failed") |#1| |#1| (-721)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-808 |#1|)) $) NIL)) (-2516 (((-1098 $) $ (-808 |#1|)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2701 (($ $ (-598 (-531))) NIL)) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-223 (-2167 |#1|) (-721)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) NIL) (($ (-1098 $) (-808 |#1|)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-223 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 (((-223 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-223 (-2167 |#1|) (-721)) (-223 (-2167 |#1|) (-721))) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) NIL) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) NIL) (($ $ (-808 |#1|) $) NIL) (($ $ (-598 (-808 |#1|)) (-598 $)) NIL)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 (((-223 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-808 |#1|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-223 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-230 |#1| |#2|) (-13 (-892 |#2| (-223 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) (-598 (-1102)) (-986)) (T -230)) -((-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-230 *3 *4)) (-14 *3 (-598 (-1102))) (-4 *4 (-986))))) -(-13 (-892 |#2| (-223 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) -((-2247 (((-110) $ $) NIL)) (-1334 (((-1189) $) 15)) (-1544 (((-171) $) 9)) (-2633 (($ (-171)) 10)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-2148 (((-110) $ $) 13))) -(((-231) (-13 (-1030) (-10 -8 (-15 -1544 ((-171) $)) (-15 -2633 ($ (-171))) (-15 -1334 ((-1189) $))))) (T -231)) -((-1544 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-231))))) -(-13 (-1030) (-10 -8 (-15 -1544 ((-171) $)) (-15 -2633 ($ (-171))) (-15 -1334 ((-1189) $)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1685 (($ (-864)) NIL (|has| |#4| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#4| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#4| (-349)))) (-3459 (((-531) $) NIL (|has| |#4| (-795)))) (-2454 ((|#4| $ (-531) |#4|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1030))) (((-3 (-531) "failed") $) NIL (-12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))) (-2523 ((|#4| $) NIL (|has| |#4| (-1030))) (((-531) $) NIL (-12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))) (-3073 (((-2 (|:| -1751 (-639 |#4|)) (|:| |vec| (-1184 |#4|))) (-639 $) (-1184 $)) NIL (|has| |#4| (-986))) (((-639 |#4|) (-639 $)) NIL (|has| |#4| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (-1381 (($) NIL (|has| |#4| (-349)))) (-2693 ((|#4| $ (-531) |#4|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#4| $ (-531)) NIL)) (-1599 (((-110) $) NIL (|has| |#4| (-795)))) (-2227 (((-598 |#4|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (-2985 (((-110) $) NIL (|has| |#4| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2445 (((-598 |#4|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2680 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#4| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#4| (-349)))) (-2529 (((-1049) $) NIL)) (-3046 ((|#4| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#4|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-3163 (((-598 |#4|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#4| $ (-531) |#4|) NIL) ((|#4| $ (-531)) 12)) (-3225 ((|#4| $ $) NIL (|has| |#4| (-986)))) (-2602 (($ (-1184 |#4|)) NIL)) (-2190 (((-130)) NIL (|has| |#4| (-344)))) (-3352 (($ $ (-1 |#4| |#4|) (-721)) NIL (|has| |#4| (-986))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986))))) (-2539 (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#4|) $) NIL) (((-806) $) NIL) (($ |#4|) NIL (|has| |#4| (-1030))) (($ (-531)) NIL (-1435 (-12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030))) (|has| |#4| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))) (-2284 (((-721)) NIL (|has| |#4| (-986)))) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#4| (-795)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) CONST)) (-4020 (($ $ (-1 |#4| |#4|) (-721)) NIL (|has| |#4| (-986))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986))))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2174 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2263 (($ $ |#4|) NIL (|has| |#4| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986))))) (($ $ (-864)) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (* (($ |#2| $) 14) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-677))) (($ |#4| $) NIL (|has| |#4| (-677))) (($ $ $) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-232 |#1| |#2| |#3| |#4|) (-13 (-221 |#1| |#4|) (-601 |#2|) (-601 |#3|)) (-864) (-986) (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-601 |#2|)) (T -232)) -NIL -(-13 (-221 |#1| |#4|) (-601 |#2|) (-601 |#3|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1685 (($ (-864)) NIL (|has| |#3| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#3| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#3| (-349)))) (-3459 (((-531) $) NIL (|has| |#3| (-795)))) (-2454 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1030))) (((-3 (-531) "failed") $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))) (-2523 ((|#3| $) NIL (|has| |#3| (-1030))) (((-531) $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))) (-3073 (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) NIL (|has| |#3| (-986))) (((-639 |#3|) (-639 $)) NIL (|has| |#3| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (-1381 (($) NIL (|has| |#3| (-349)))) (-2693 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#3| $ (-531)) NIL)) (-1599 (((-110) $) NIL (|has| |#3| (-795)))) (-2227 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (-2985 (((-110) $) NIL (|has| |#3| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2445 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2680 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#3| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#3| (-349)))) (-2529 (((-1049) $) NIL)) (-3046 ((|#3| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#3|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 |#3|) (-598 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-3163 (((-598 |#3|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#3| $ (-531) |#3|) NIL) ((|#3| $ (-531)) 11)) (-3225 ((|#3| $ $) NIL (|has| |#3| (-986)))) (-2602 (($ (-1184 |#3|)) NIL)) (-2190 (((-130)) NIL (|has| |#3| (-344)))) (-3352 (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986))))) (-2539 (((-721) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273))) (((-721) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#3|) $) NIL) (((-806) $) NIL) (($ |#3|) NIL (|has| |#3| (-1030))) (($ (-531)) NIL (-1435 (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (|has| |#3| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))) (-2284 (((-721)) NIL (|has| |#3| (-986)))) (-2060 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#3| (-795)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) CONST)) (-4020 (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986))))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2174 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2263 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986))))) (($ $ (-864)) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (* (($ |#2| $) 13) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-677))) (($ |#3| $) NIL (|has| |#3| (-677))) (($ $ $) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-233 |#1| |#2| |#3|) (-13 (-221 |#1| |#3|) (-601 |#2|)) (-721) (-986) (-601 |#2|)) (T -233)) -NIL -(-13 (-221 |#1| |#3|) (-601 |#2|)) -((-1584 (((-598 (-721)) $) 47) (((-598 (-721)) $ |#3|) 50)) (-3449 (((-721) $) 49) (((-721) $ |#3|) 52)) (-1524 (($ $) 65)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3617 (((-721) $ |#3|) 39) (((-721) $) 36)) (-4252 (((-1 $ (-721)) |#3|) 15) (((-1 $ (-721)) $) 77)) (-2941 ((|#4| $) 58)) (-1921 (((-110) $) 56)) (-2319 (($ $) 64)) (-4115 (($ $ (-598 (-276 $))) 97) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-598 |#4|) (-598 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-598 |#4|) (-598 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-598 |#3|) (-598 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-598 |#3|) (-598 |#2|)) 84)) (-3352 (($ $ |#4|) NIL) (($ $ (-598 |#4|)) NIL) (($ $ |#4| (-721)) NIL) (($ $ (-598 |#4|) (-598 (-721))) NIL) (($ $) NIL) (($ $ (-721)) NIL) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3288 (((-598 |#3|) $) 75)) (-2012 ((|#5| $) NIL) (((-721) $ |#4|) NIL) (((-598 (-721)) $ (-598 |#4|)) NIL) (((-721) $ |#3|) 44)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-388 (-531))) NIL) (($ $) NIL))) -(((-234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#3| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#3| |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2941 (|#4| |#1|)) (-15 -1921 ((-110) |#1|)) (-15 -3449 ((-721) |#1| |#3|)) (-15 -1584 ((-598 (-721)) |#1| |#3|)) (-15 -3449 ((-721) |#1|)) (-15 -1584 ((-598 (-721)) |#1|)) (-15 -2012 ((-721) |#1| |#3|)) (-15 -3617 ((-721) |#1|)) (-15 -3617 ((-721) |#1| |#3|)) (-15 -3288 ((-598 |#3|) |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#3|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 |#4|))) (-15 -2012 ((-721) |#1| |#4|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 (|#5| |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3352 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#4| (-721))) (-15 -3352 (|#1| |#1| (-598 |#4|))) (-15 -3352 (|#1| |#1| |#4|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-235 |#2| |#3| |#4| |#5|) (-986) (-797) (-248 |#3|) (-743)) (T -234)) -NIL -(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#3| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#3| |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2941 (|#4| |#1|)) (-15 -1921 ((-110) |#1|)) (-15 -3449 ((-721) |#1| |#3|)) (-15 -1584 ((-598 (-721)) |#1| |#3|)) (-15 -3449 ((-721) |#1|)) (-15 -1584 ((-598 (-721)) |#1|)) (-15 -2012 ((-721) |#1| |#3|)) (-15 -3617 ((-721) |#1|)) (-15 -3617 ((-721) |#1| |#3|)) (-15 -3288 ((-598 |#3|) |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#3|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 |#4|))) (-15 -2012 ((-721) |#1| |#4|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 (|#5| |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3352 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#4| (-721))) (-15 -3352 (|#1| |#1| (-598 |#4|))) (-15 -3352 (|#1| |#1| |#4|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1584 (((-598 (-721)) $) 212) (((-598 (-721)) $ |#2|) 210)) (-3449 (((-721) $) 211) (((-721) $ |#2|) 209)) (-2695 (((-598 |#3|) $) 108)) (-2516 (((-1098 $) $ |#3|) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 |#3|)) 109)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-1524 (($ $) 205)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) ((|#3| $) 133) ((|#2| $) 218)) (-3115 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2500 (($ $) 152)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-2490 (($ $ |#1| |#4| $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| |#3| (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| |#3| (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ |#2|) 215) (((-721) $) 214)) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-2682 (($ (-1098 |#1|) |#3|) 115) (($ (-1098 $) |#3|) 114)) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| |#4|) 151) (($ $ |#3| (-721)) 117) (($ $ (-598 |#3|) (-598 (-721))) 116)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 118)) (-3005 ((|#4| $) 168) (((-721) $ |#3|) 120) (((-598 (-721)) $ (-598 |#3|)) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 |#4| |#4|) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-4252 (((-1 $ (-721)) |#2|) 217) (((-1 $ (-721)) $) 204 (|has| |#1| (-216)))) (-3471 (((-3 |#3| "failed") $) 121)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146)) (-2941 ((|#3| $) 207)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1521 (((-1085) $) 9)) (-1921 (((-110) $) 208)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) 111)) (-2319 (($ $) 206)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-598 |#3|) (-598 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-598 |#3|) (-598 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 $)) 202 (|has| |#1| (-216))) (($ $ |#2| |#1|) 201 (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 |#1|)) 200 (|has| |#1| (-216)))) (-3176 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3352 (($ $ |#3|) 40) (($ $ (-598 |#3|)) 39) (($ $ |#3| (-721)) 38) (($ $ (-598 |#3|) (-598 (-721))) 37) (($ $) 236 (|has| |#1| (-216))) (($ $ (-721)) 234 (|has| |#1| (-216))) (($ $ (-1102)) 232 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 231 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 230 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 229 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3288 (((-598 |#2|) $) 216)) (-2012 ((|#4| $) 148) (((-721) $ |#3|) 128) (((-598 (-721)) $ (-598 |#3|)) 127) (((-721) $ |#2|) 213)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| |#3| (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| |#3| (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| |#3| (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531)))))) (($ $) 83 (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ |#4|) 153) (($ $ |#3| (-721)) 126) (($ $ (-598 |#3|) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#3|) 36) (($ $ (-598 |#3|)) 35) (($ $ |#3| (-721)) 34) (($ $ (-598 |#3|) (-598 (-721))) 33) (($ $) 235 (|has| |#1| (-216))) (($ $ (-721)) 233 (|has| |#1| (-216))) (($ $ (-1102)) 228 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 227 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 226 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 225 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-235 |#1| |#2| |#3| |#4|) (-133) (-986) (-797) (-248 |t#2|) (-743)) (T -235)) -((-4252 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *4 *3 *5 *6)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 *4)))) (-3617 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 (-721))))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721)))) (-1584 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-598 (-721))))) (-3449 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-110)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-4 *2 (-248 *4)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797)) (-4 *4 (-248 *3)) (-4 *5 (-743)))) (-1524 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797)) (-4 *4 (-248 *3)) (-4 *5 (-743)))) (-4252 (*1 *2 *1) (-12 (-4 *3 (-216)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *3 *4 *5 *6))))) -(-13 (-892 |t#1| |t#4| |t#3|) (-214 |t#1|) (-977 |t#2|) (-10 -8 (-15 -4252 ((-1 $ (-721)) |t#2|)) (-15 -3288 ((-598 |t#2|) $)) (-15 -3617 ((-721) $ |t#2|)) (-15 -3617 ((-721) $)) (-15 -2012 ((-721) $ |t#2|)) (-15 -1584 ((-598 (-721)) $)) (-15 -3449 ((-721) $)) (-15 -1584 ((-598 (-721)) $ |t#2|)) (-15 -3449 ((-721) $ |t#2|)) (-15 -1921 ((-110) $)) (-15 -2941 (|t#3| $)) (-15 -2319 ($ $)) (-15 -1524 ($ $)) (IF (|has| |t#1| (-216)) (PROGN (-6 (-492 |t#2| |t#1|)) (-6 (-492 |t#2| $)) (-6 (-291 $)) (-15 -4252 ((-1 $ (-721)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#4|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432))) ((-492 |#2| |#1|) |has| |#1| (-216)) ((-492 |#2| $) |has| |#1| (-216)) ((-492 |#3| |#1|) . T) ((-492 |#3| $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-843 |#3|) . T) ((-829 (-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) ((-892 |#1| |#4| |#3|) . T) ((-852) |has| |#1| (-852)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-977 |#2|) . T) ((-977 |#3|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) |has| |#1| (-852))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-2628 ((|#1| $) 54)) (-1573 ((|#1| $) 44)) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2978 (($ $) 60)) (-4106 (($ $) 48)) (-3196 ((|#1| |#1| $) 46)) (-4205 ((|#1| $) 45)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2428 (((-721) $) 61)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-2472 ((|#1| |#1| $) 52)) (-2676 ((|#1| |#1| $) 51)) (-3944 (($ |#1| $) 40)) (-4194 (((-721) $) 55)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2572 ((|#1| $) 62)) (-3966 ((|#1| $) 50)) (-1388 ((|#1| $) 49)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-3969 ((|#1| |#1| $) 58)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2329 ((|#1| $) 59)) (-1419 (($) 57) (($ (-598 |#1|)) 56)) (-1216 (((-721) $) 43)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3142 ((|#1| $) 53)) (-2524 (($ (-598 |#1|)) 42)) (-3052 ((|#1| $) 63)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-236 |#1|) (-133) (-1138)) (T -236)) -((-1419 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-1419 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-236 *3)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-2472 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-2676 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-4106 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(-13 (-1050 |t#1|) (-936 |t#1|) (-10 -8 (-15 -1419 ($)) (-15 -1419 ($ (-598 |t#1|))) (-15 -4194 ((-721) $)) (-15 -2628 (|t#1| $)) (-15 -3142 (|t#1| $)) (-15 -2472 (|t#1| |t#1| $)) (-15 -2676 (|t#1| |t#1| $)) (-15 -3966 (|t#1| $)) (-15 -1388 (|t#1| $)) (-15 -4106 ($ $)))) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-936 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1050 |#1|) . T) ((-1138) . T)) -((-1944 (((-1 (-886 (-208)) (-208) (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 139)) (-1985 (((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360))) 160) (((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 158) (((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 163) (((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 159) (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 150) (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 149) (((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360))) 129) (((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245))) 127) (((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360))) 128) (((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245))) 125)) (-1942 (((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360))) 162) (((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 161) (((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 165) (((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 164) (((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 152) (((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 151) (((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360))) 135) (((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245))) 134) (((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360))) 133) (((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245))) 132) (((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360))) 100) (((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245))) 99) (((-1185) (-1 (-208) (-208)) (-1025 (-360))) 96) (((-1185) (-1 (-208) (-208)) (-1025 (-360)) (-598 (-245))) 95))) -(((-237) (-10 -7 (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1944 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -237)) -((-1944 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208) (-208))) (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1185)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1185)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237))))) -(-10 -7 (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1944 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))))) -((-1942 (((-1185) (-276 |#2|) (-1102) (-1102) (-598 (-245))) 96))) -(((-238 |#1| |#2|) (-10 -7 (-15 -1942 ((-1185) (-276 |#2|) (-1102) (-1102) (-598 (-245))))) (-13 (-523) (-797) (-977 (-531))) (-411 |#1|)) (T -238)) -((-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-1102)) (-5 *5 (-598 (-245))) (-4 *7 (-411 *6)) (-4 *6 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-1185)) (-5 *1 (-238 *6 *7))))) -(-10 -7 (-15 -1942 ((-1185) (-276 |#2|) (-1102) (-1102) (-598 (-245))))) -((-2095 (((-531) (-531)) 50)) (-1936 (((-531) (-531)) 51)) (-3432 (((-208) (-208)) 52)) (-1897 (((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208))) 49)) (-3918 (((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)) (-110)) 47))) -(((-239) (-10 -7 (-15 -3918 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)) (-110))) (-15 -1897 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -2095 ((-531) (-531))) (-15 -1936 ((-531) (-531))) (-15 -3432 ((-208) (-208))))) (T -239)) -((-3432 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))) (-1936 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239)))) (-1897 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208))) (-5 *2 (-1186)) (-5 *1 (-239)))) (-3918 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208))) (-5 *5 (-110)) (-5 *2 (-1186)) (-5 *1 (-239))))) -(-10 -7 (-15 -3918 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)) (-110))) (-15 -1897 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -2095 ((-531) (-531))) (-15 -1936 ((-531) (-531))) (-15 -3432 ((-208) (-208)))) -((-2265 (((-1023 (-360)) (-1023 (-297 |#1|))) 16))) -(((-240 |#1|) (-10 -7 (-15 -2265 ((-1023 (-360)) (-1023 (-297 |#1|))))) (-13 (-797) (-523) (-573 (-360)))) (T -240)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-1023 (-297 *4))) (-4 *4 (-13 (-797) (-523) (-573 (-360)))) (-5 *2 (-1023 (-360))) (-5 *1 (-240 *4))))) -(-10 -7 (-15 -2265 ((-1023 (-360)) (-1023 (-297 |#1|))))) -((-1985 (((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360))) 71) (((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 70) (((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360))) 61) (((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 60) (((-1062 (-208)) (-822 |#1|) (-1023 (-360))) 52) (((-1062 (-208)) (-822 |#1|) (-1023 (-360)) (-598 (-245))) 51)) (-1942 (((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360))) 74) (((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 73) (((-1186) |#1| (-1023 (-360)) (-1023 (-360))) 64) (((-1186) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 63) (((-1186) (-822 |#1|) (-1023 (-360))) 56) (((-1186) (-822 |#1|) (-1023 (-360)) (-598 (-245))) 55) (((-1185) (-820 |#1|) (-1023 (-360))) 43) (((-1185) (-820 |#1|) (-1023 (-360)) (-598 (-245))) 42) (((-1185) |#1| (-1023 (-360))) 35) (((-1185) |#1| (-1023 (-360)) (-598 (-245))) 34))) -(((-241 |#1|) (-10 -7 (-15 -1942 ((-1185) |#1| (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) |#1| (-1023 (-360)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360))))) (-13 (-573 (-507)) (-1030))) (T -241)) -((-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *5)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *5)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *6)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1186)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *5)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *5)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185)) (-5 *1 (-241 *5)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185)) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1185)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030)))))) -(-10 -7 (-15 -1942 ((-1185) |#1| (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) |#1| (-1023 (-360)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360))))) -((-1942 (((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)) (-598 (-245))) 23) (((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208))) 24) (((-1185) (-598 (-886 (-208))) (-598 (-245))) 16) (((-1185) (-598 (-886 (-208)))) 17) (((-1185) (-598 (-208)) (-598 (-208)) (-598 (-245))) 20) (((-1185) (-598 (-208)) (-598 (-208))) 21))) -(((-242) (-10 -7 (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)) (-598 (-245)))) (-15 -1942 ((-1185) (-598 (-886 (-208))))) (-15 -1942 ((-1185) (-598 (-886 (-208))) (-598 (-245)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)) (-598 (-245)))))) (T -242)) -((-1942 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1186)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-242)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *2 (-1185)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1185)) (-5 *1 (-242))))) -(-10 -7 (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)) (-598 (-245)))) (-15 -1942 ((-1185) (-598 (-886 (-208))))) (-15 -1942 ((-1185) (-598 (-886 (-208))) (-598 (-245)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)) (-598 (-245))))) -((-2010 (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-598 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 26)) (-2444 (((-864) (-598 (-245)) (-864)) 53)) (-3496 (((-864) (-598 (-245)) (-864)) 52)) (-1247 (((-598 (-360)) (-598 (-245)) (-598 (-360))) 69)) (-2420 (((-360) (-598 (-245)) (-360)) 58)) (-3327 (((-864) (-598 (-245)) (-864)) 54)) (-1597 (((-110) (-598 (-245)) (-110)) 28)) (-1285 (((-1085) (-598 (-245)) (-1085)) 20)) (-2698 (((-1085) (-598 (-245)) (-1085)) 27)) (-2108 (((-1062 (-208)) (-598 (-245))) 47)) (-2652 (((-598 (-1025 (-360))) (-598 (-245)) (-598 (-1025 (-360)))) 41)) (-4166 (((-817) (-598 (-245)) (-817)) 33)) (-3088 (((-817) (-598 (-245)) (-817)) 34)) (-4096 (((-1 (-886 (-208)) (-886 (-208))) (-598 (-245)) (-1 (-886 (-208)) (-886 (-208)))) 64)) (-3980 (((-110) (-598 (-245)) (-110)) 16)) (-3262 (((-110) (-598 (-245)) (-110)) 15))) -(((-243) (-10 -7 (-15 -3262 ((-110) (-598 (-245)) (-110))) (-15 -3980 ((-110) (-598 (-245)) (-110))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-598 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ((-1085) (-598 (-245)) (-1085))) (-15 -2698 ((-1085) (-598 (-245)) (-1085))) (-15 -1597 ((-110) (-598 (-245)) (-110))) (-15 -4166 ((-817) (-598 (-245)) (-817))) (-15 -3088 ((-817) (-598 (-245)) (-817))) (-15 -2652 ((-598 (-1025 (-360))) (-598 (-245)) (-598 (-1025 (-360))))) (-15 -3496 ((-864) (-598 (-245)) (-864))) (-15 -2444 ((-864) (-598 (-245)) (-864))) (-15 -2108 ((-1062 (-208)) (-598 (-245)))) (-15 -3327 ((-864) (-598 (-245)) (-864))) (-15 -2420 ((-360) (-598 (-245)) (-360))) (-15 -4096 ((-1 (-886 (-208)) (-886 (-208))) (-598 (-245)) (-1 (-886 (-208)) (-886 (-208))))) (-15 -1247 ((-598 (-360)) (-598 (-245)) (-598 (-360)))))) (T -243)) -((-1247 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-360))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-4096 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2420 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-243)))) (-2444 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3496 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2652 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3088 (*1 *2 *3 *2) (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-4166 (*1 *2 *3 *2) (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-1285 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2010 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))) -(-10 -7 (-15 -3262 ((-110) (-598 (-245)) (-110))) (-15 -3980 ((-110) (-598 (-245)) (-110))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-598 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ((-1085) (-598 (-245)) (-1085))) (-15 -2698 ((-1085) (-598 (-245)) (-1085))) (-15 -1597 ((-110) (-598 (-245)) (-110))) (-15 -4166 ((-817) (-598 (-245)) (-817))) (-15 -3088 ((-817) (-598 (-245)) (-817))) (-15 -2652 ((-598 (-1025 (-360))) (-598 (-245)) (-598 (-1025 (-360))))) (-15 -3496 ((-864) (-598 (-245)) (-864))) (-15 -2444 ((-864) (-598 (-245)) (-864))) (-15 -2108 ((-1062 (-208)) (-598 (-245)))) (-15 -3327 ((-864) (-598 (-245)) (-864))) (-15 -2420 ((-360) (-598 (-245)) (-360))) (-15 -4096 ((-1 (-886 (-208)) (-886 (-208))) (-598 (-245)) (-1 (-886 (-208)) (-886 (-208))))) (-15 -1247 ((-598 (-360)) (-598 (-245)) (-598 (-360))))) -((-1908 (((-3 |#1| "failed") (-598 (-245)) (-1102)) 17))) -(((-244 |#1|) (-10 -7 (-15 -1908 ((-3 |#1| "failed") (-598 (-245)) (-1102)))) (-1138)) (T -244)) -((-1908 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *1 (-244 *2)) (-4 *2 (-1138))))) -(-10 -7 (-15 -1908 ((-3 |#1| "failed") (-598 (-245)) (-1102)))) -((-2247 (((-110) $ $) NIL)) (-2010 (($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 15)) (-2444 (($ (-864)) 76)) (-3496 (($ (-864)) 75)) (-3887 (($ (-598 (-360))) 82)) (-2420 (($ (-360)) 58)) (-3327 (($ (-864)) 77)) (-1597 (($ (-110)) 23)) (-1285 (($ (-1085)) 18)) (-2698 (($ (-1085)) 19)) (-2108 (($ (-1062 (-208))) 71)) (-2652 (($ (-598 (-1025 (-360)))) 67)) (-2368 (($ (-598 (-1025 (-360)))) 59) (($ (-598 (-1025 (-388 (-531))))) 66)) (-2374 (($ (-360)) 29) (($ (-817)) 33)) (-2267 (((-110) (-598 $) (-1102)) 91)) (-1908 (((-3 (-51) "failed") (-598 $) (-1102)) 93)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1575 (($ (-360)) 34) (($ (-817)) 35)) (-3348 (($ (-1 (-886 (-208)) (-886 (-208)))) 57)) (-4096 (($ (-1 (-886 (-208)) (-886 (-208)))) 78)) (-2027 (($ (-1 (-208) (-208))) 39) (($ (-1 (-208) (-208) (-208))) 43) (($ (-1 (-208) (-208) (-208) (-208))) 47)) (-2265 (((-806) $) 87)) (-4077 (($ (-110)) 24) (($ (-598 (-1025 (-360)))) 52)) (-3262 (($ (-110)) 25)) (-2148 (((-110) $ $) 89))) -(((-245) (-13 (-1030) (-10 -8 (-15 -3262 ($ (-110))) (-15 -4077 ($ (-110))) (-15 -2010 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ($ (-1085))) (-15 -2698 ($ (-1085))) (-15 -1597 ($ (-110))) (-15 -4077 ($ (-598 (-1025 (-360))))) (-15 -3348 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -2374 ($ (-360))) (-15 -2374 ($ (-817))) (-15 -1575 ($ (-360))) (-15 -1575 ($ (-817))) (-15 -2027 ($ (-1 (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -2420 ($ (-360))) (-15 -2368 ($ (-598 (-1025 (-360))))) (-15 -2368 ($ (-598 (-1025 (-388 (-531)))))) (-15 -2652 ($ (-598 (-1025 (-360))))) (-15 -2108 ($ (-1062 (-208)))) (-15 -3496 ($ (-864))) (-15 -2444 ($ (-864))) (-15 -3327 ($ (-864))) (-15 -4096 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -3887 ($ (-598 (-360)))) (-15 -1908 ((-3 (-51) "failed") (-598 $) (-1102))) (-15 -2267 ((-110) (-598 $) (-1102)))))) (T -245)) -((-3262 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-245)))) (-1285 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245)))) (-2698 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-388 (-531))))) (-5 *1 (-245)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-245)))) (-3496 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))) (-3327 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-245)))) (-1908 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-51)) (-5 *1 (-245)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-110)) (-5 *1 (-245))))) -(-13 (-1030) (-10 -8 (-15 -3262 ($ (-110))) (-15 -4077 ($ (-110))) (-15 -2010 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ($ (-1085))) (-15 -2698 ($ (-1085))) (-15 -1597 ($ (-110))) (-15 -4077 ($ (-598 (-1025 (-360))))) (-15 -3348 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -2374 ($ (-360))) (-15 -2374 ($ (-817))) (-15 -1575 ($ (-360))) (-15 -1575 ($ (-817))) (-15 -2027 ($ (-1 (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -2420 ($ (-360))) (-15 -2368 ($ (-598 (-1025 (-360))))) (-15 -2368 ($ (-598 (-1025 (-388 (-531)))))) (-15 -2652 ($ (-598 (-1025 (-360))))) (-15 -2108 ($ (-1062 (-208)))) (-15 -3496 ($ (-864))) (-15 -2444 ($ (-864))) (-15 -3327 ($ (-864))) (-15 -4096 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -3887 ($ (-598 (-360)))) (-15 -1908 ((-3 (-51) "failed") (-598 $) (-1102))) (-15 -2267 ((-110) (-598 $) (-1102))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1584 (((-598 (-721)) $) NIL) (((-598 (-721)) $ |#2|) NIL)) (-3449 (((-721) $) NIL) (((-721) $ |#2|) NIL)) (-2695 (((-598 |#3|) $) NIL)) (-2516 (((-1098 $) $ |#3|) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 |#3|)) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-1524 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1054 |#1| |#2|) "failed") $) 21)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1054 |#1| |#2|) $) NIL)) (-3115 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 |#3|) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))))) (-3617 (((-721) $ |#2|) NIL) (((-721) $) 10)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) |#3|) NIL) (($ (-1098 $) |#3|) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) NIL)) (-3005 (((-503 |#3|) $) NIL) (((-721) $ |#3|) NIL) (((-598 (-721)) $ (-598 |#3|)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 |#3|) (-503 |#3|)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-4252 (((-1 $ (-721)) |#2|) NIL) (((-1 $ (-721)) $) NIL (|has| |#1| (-216)))) (-3471 (((-3 |#3| "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2941 ((|#3| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1921 (((-110) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) NIL)) (-2319 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-598 |#3|) (-598 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-598 |#3|) (-598 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 $)) NIL (|has| |#1| (-216))) (($ $ |#2| |#1|) NIL (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 |#1|)) NIL (|has| |#1| (-216)))) (-3176 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-3352 (($ $ |#3|) NIL) (($ $ (-598 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3288 (((-598 |#2|) $) NIL)) (-2012 (((-503 |#3|) $) NIL) (((-721) $ |#3|) NIL) (((-598 (-721)) $ (-598 |#3|)) NIL) (((-721) $ |#2|) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1054 |#1| |#2|)) 30) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ |#3|) NIL) (($ $ (-598 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-246 |#1| |#2| |#3|) (-13 (-235 |#1| |#2| |#3| (-503 |#3|)) (-977 (-1054 |#1| |#2|))) (-986) (-797) (-248 |#2|)) (T -246)) -NIL -(-13 (-235 |#1| |#2| |#3| (-503 |#3|)) (-977 (-1054 |#1| |#2|))) -((-3449 (((-721) $) 30)) (-3154 (((-3 |#2| "failed") $) 17)) (-2523 ((|#2| $) 27)) (-3352 (($ $) 12) (($ $ (-721)) 15)) (-2265 (((-806) $) 26) (($ |#2|) 10)) (-2148 (((-110) $ $) 20)) (-2174 (((-110) $ $) 29))) -(((-247 |#1| |#2|) (-10 -8 (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3449 ((-721) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-248 |#2|) (-797)) (T -247)) -NIL -(-10 -8 (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3449 ((-721) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3449 (((-721) $) 22)) (-3524 ((|#1| $) 23)) (-3154 (((-3 |#1| "failed") $) 27)) (-2523 ((|#1| $) 26)) (-3617 (((-721) $) 24)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-4252 (($ |#1| (-721)) 25)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $) 21) (($ $ (-721)) 20)) (-2265 (((-806) $) 11) (($ |#1|) 28)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18))) -(((-248 |#1|) (-133) (-797)) (T -248)) -((-2265 (*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-4252 (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3352 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-248 *3)) (-4 *3 (-797))))) -(-13 (-797) (-977 |t#1|) (-10 -8 (-15 -4252 ($ |t#1| (-721))) (-15 -3617 ((-721) $)) (-15 -3524 (|t#1| $)) (-15 -3449 ((-721) $)) (-15 -3352 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -2265 ($ |t#1|)))) -(((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-977 |#1|) . T) ((-1030) . T)) -((-2695 (((-598 (-1102)) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 41)) (-3798 (((-598 (-1102)) (-297 (-208)) (-721)) 80)) (-1684 (((-3 (-297 (-208)) "failed") (-297 (-208))) 51)) (-1895 (((-297 (-208)) (-297 (-208))) 67)) (-2208 (((-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 26)) (-3406 (((-110) (-598 (-297 (-208)))) 84)) (-2015 (((-110) (-297 (-208))) 24)) (-2201 (((-598 (-1085)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) 106)) (-1403 (((-598 (-297 (-208))) (-598 (-297 (-208)))) 88)) (-2258 (((-598 (-297 (-208))) (-598 (-297 (-208)))) 86)) (-2571 (((-639 (-208)) (-598 (-297 (-208))) (-721)) 95)) (-3283 (((-110) (-297 (-208))) 20) (((-110) (-598 (-297 (-208)))) 85)) (-2041 (((-598 (-208)) (-598 (-790 (-208))) (-208)) 14)) (-3562 (((-360) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 101)) (-3625 (((-975) (-1102) (-975)) 34))) -(((-249) (-10 -7 (-15 -2041 ((-598 (-208)) (-598 (-790 (-208))) (-208))) (-15 -2208 ((-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -1684 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -1895 ((-297 (-208)) (-297 (-208)))) (-15 -3406 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-297 (-208)))) (-15 -2571 ((-639 (-208)) (-598 (-297 (-208))) (-721))) (-15 -2258 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -1403 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -2015 ((-110) (-297 (-208)))) (-15 -2695 ((-598 (-1102)) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -3798 ((-598 (-1102)) (-297 (-208)) (-721))) (-15 -3625 ((-975) (-1102) (-975))) (-15 -3562 ((-360) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2201 ((-598 (-1085)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))))) (T -249)) -((-2201 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) (-5 *2 (-598 (-1085))) (-5 *1 (-249)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-360)) (-5 *1 (-249)))) (-3625 (*1 *2 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-249)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-721)) (-5 *2 (-598 (-1102))) (-5 *1 (-249)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-598 (-1102))) (-5 *1 (-249)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *4 (-721)) (-5 *2 (-639 (-208))) (-5 *1 (-249)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-1684 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-2208 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *1 (-249)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-790 (-208)))) (-5 *4 (-208)) (-5 *2 (-598 *4)) (-5 *1 (-249))))) -(-10 -7 (-15 -2041 ((-598 (-208)) (-598 (-790 (-208))) (-208))) (-15 -2208 ((-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -1684 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -1895 ((-297 (-208)) (-297 (-208)))) (-15 -3406 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-297 (-208)))) (-15 -2571 ((-639 (-208)) (-598 (-297 (-208))) (-721))) (-15 -2258 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -1403 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -2015 ((-110) (-297 (-208)))) (-15 -2695 ((-598 (-1102)) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -3798 ((-598 (-1102)) (-297 (-208)) (-721))) (-15 -3625 ((-975) (-1102) (-975))) (-15 -3562 ((-360) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2201 ((-598 (-1085)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))))) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 44)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 26) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-250) (-786)) (T -250)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 58) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 54)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 34) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 36)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-251) (-786)) (T -251)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 76) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 73)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 44) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 55)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-252) (-786)) (T -252)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 50)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 31) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-253) (-786)) (T -253)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 50)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 28) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-254) (-786)) (T -254)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 73)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 28) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-255) (-786)) (T -255)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 77)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 25) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-256) (-786)) (T -256)) -NIL -(-786) -((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3631 (((-598 (-531)) $) 19)) (-2012 (((-721) $) 17)) (-2265 (((-806) $) 23) (($ (-598 (-531))) 15)) (-2337 (($ (-721)) 20)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 9)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 11))) -(((-257) (-13 (-797) (-10 -8 (-15 -2265 ($ (-598 (-531)))) (-15 -2012 ((-721) $)) (-15 -3631 ((-598 (-531)) $)) (-15 -2337 ($ (-721)))))) (T -257)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-257)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-257))))) -(-13 (-797) (-10 -8 (-15 -2265 ($ (-598 (-531)))) (-15 -2012 ((-721) $)) (-15 -3631 ((-598 (-531)) $)) (-15 -2337 ($ (-721))))) -((-2367 ((|#2| |#2|) 77)) (-2218 ((|#2| |#2|) 65)) (-2013 (((-3 |#2| "failed") |#2| (-598 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-2343 ((|#2| |#2|) 75)) (-2198 ((|#2| |#2|) 63)) (-2391 ((|#2| |#2|) 79)) (-2241 ((|#2| |#2|) 67)) (-1880 ((|#2|) 46)) (-3254 (((-112) (-112)) 95)) (-2076 ((|#2| |#2|) 61)) (-3399 (((-110) |#2|) 134)) (-1829 ((|#2| |#2|) 181)) (-1617 ((|#2| |#2|) 157)) (-3898 ((|#2|) 59)) (-3528 ((|#2|) 58)) (-3833 ((|#2| |#2|) 177)) (-2199 ((|#2| |#2|) 153)) (-1330 ((|#2| |#2|) 185)) (-3891 ((|#2| |#2|) 161)) (-3055 ((|#2| |#2|) 149)) (-2514 ((|#2| |#2|) 151)) (-3078 ((|#2| |#2|) 187)) (-2230 ((|#2| |#2|) 163)) (-2640 ((|#2| |#2|) 183)) (-2814 ((|#2| |#2|) 159)) (-4089 ((|#2| |#2|) 179)) (-1324 ((|#2| |#2|) 155)) (-1336 ((|#2| |#2|) 193)) (-2238 ((|#2| |#2|) 169)) (-3143 ((|#2| |#2|) 189)) (-2399 ((|#2| |#2|) 165)) (-3218 ((|#2| |#2|) 197)) (-2449 ((|#2| |#2|) 173)) (-3181 ((|#2| |#2|) 199)) (-3669 ((|#2| |#2|) 175)) (-3290 ((|#2| |#2|) 195)) (-3173 ((|#2| |#2|) 171)) (-3021 ((|#2| |#2|) 191)) (-4015 ((|#2| |#2|) 167)) (-2798 ((|#2| |#2|) 62)) (-2403 ((|#2| |#2|) 80)) (-2253 ((|#2| |#2|) 68)) (-2379 ((|#2| |#2|) 78)) (-2229 ((|#2| |#2|) 66)) (-2356 ((|#2| |#2|) 76)) (-2210 ((|#2| |#2|) 64)) (-3167 (((-110) (-112)) 93)) (-2442 ((|#2| |#2|) 83)) (-2292 ((|#2| |#2|) 71)) (-2416 ((|#2| |#2|) 81)) (-2266 ((|#2| |#2|) 69)) (-2468 ((|#2| |#2|) 85)) (-2318 ((|#2| |#2|) 73)) (-2753 ((|#2| |#2|) 86)) (-2331 ((|#2| |#2|) 74)) (-2456 ((|#2| |#2|) 84)) (-2305 ((|#2| |#2|) 72)) (-2429 ((|#2| |#2|) 82)) (-2279 ((|#2| |#2|) 70))) -(((-258 |#1| |#2|) (-10 -7 (-15 -2798 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2210 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -1880 (|#2|)) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -3528 (|#2|)) (-15 -3898 (|#2|)) (-15 -2514 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -1324 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -1330 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#2| (-598 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3399 ((-110) |#2|))) (-13 (-797) (-523)) (-13 (-411 |#1|) (-943))) (T -258)) -((-3399 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) (-4 *3 (-13 (-411 *4) (-943))))) (-2013 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-598 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-411 *4) (-943))) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-258 *4 *2)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3290 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2449 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2399 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1324 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2514 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3898 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-797) (-523))))) (-3528 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-797) (-523))))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *4)) (-4 *4 (-13 (-411 *3) (-943))))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-943))))) (-1880 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-797) (-523))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943)))))) -(-10 -7 (-15 -2798 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2210 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -1880 (|#2|)) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -3528 (|#2|)) (-15 -3898 (|#2|)) (-15 -2514 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -1324 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -1330 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#2| (-598 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3399 ((-110) |#2|))) -((-2119 (((-3 |#2| "failed") (-598 (-571 |#2|)) |#2| (-1102)) 135)) (-2219 ((|#2| (-388 (-531)) |#2|) 51)) (-2026 ((|#2| |#2| (-571 |#2|)) 128)) (-3414 (((-2 (|:| |func| |#2|) (|:| |kers| (-598 (-571 |#2|))) (|:| |vals| (-598 |#2|))) |#2| (-1102)) 127)) (-1319 ((|#2| |#2| (-1102)) 20) ((|#2| |#2|) 23)) (-2748 ((|#2| |#2| (-1102)) 141) ((|#2| |#2|) 139))) -(((-259 |#1| |#2|) (-10 -7 (-15 -2748 (|#2| |#2|)) (-15 -2748 (|#2| |#2| (-1102))) (-15 -3414 ((-2 (|:| |func| |#2|) (|:| |kers| (-598 (-571 |#2|))) (|:| |vals| (-598 |#2|))) |#2| (-1102))) (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1102))) (-15 -2119 ((-3 |#2| "failed") (-598 (-571 |#2|)) |#2| (-1102))) (-15 -2026 (|#2| |#2| (-571 |#2|))) (-15 -2219 (|#2| (-388 (-531)) |#2|))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -259)) -((-2219 (*1 *2 *3 *2) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-2026 (*1 *2 *2 *3) (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)))) (-2119 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-1102)) (-4 *2 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *5 *2)))) (-1319 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-598 (-571 *3))) (|:| |vals| (-598 *3)))) (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2748 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))) -(-10 -7 (-15 -2748 (|#2| |#2|)) (-15 -2748 (|#2| |#2| (-1102))) (-15 -3414 ((-2 (|:| |func| |#2|) (|:| |kers| (-598 (-571 |#2|))) (|:| |vals| (-598 |#2|))) |#2| (-1102))) (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1102))) (-15 -2119 ((-3 |#2| "failed") (-598 (-571 |#2|)) |#2| (-1102))) (-15 -2026 (|#2| |#2| (-571 |#2|))) (-15 -2219 (|#2| (-388 (-531)) |#2|))) -((-3511 (((-3 |#3| "failed") |#3|) 110)) (-2367 ((|#3| |#3|) 131)) (-1752 (((-3 |#3| "failed") |#3|) 82)) (-2218 ((|#3| |#3|) 121)) (-3712 (((-3 |#3| "failed") |#3|) 58)) (-2343 ((|#3| |#3|) 129)) (-1704 (((-3 |#3| "failed") |#3|) 46)) (-2198 ((|#3| |#3|) 119)) (-3605 (((-3 |#3| "failed") |#3|) 112)) (-2391 ((|#3| |#3|) 133)) (-3343 (((-3 |#3| "failed") |#3|) 84)) (-2241 ((|#3| |#3|) 123)) (-1631 (((-3 |#3| "failed") |#3| (-721)) 36)) (-2121 (((-3 |#3| "failed") |#3|) 74)) (-2076 ((|#3| |#3|) 118)) (-2340 (((-3 |#3| "failed") |#3|) 44)) (-2798 ((|#3| |#3|) 117)) (-4063 (((-3 |#3| "failed") |#3|) 113)) (-2403 ((|#3| |#3|) 134)) (-2504 (((-3 |#3| "failed") |#3|) 85)) (-2253 ((|#3| |#3|) 124)) (-4202 (((-3 |#3| "failed") |#3|) 111)) (-2379 ((|#3| |#3|) 132)) (-1227 (((-3 |#3| "failed") |#3|) 83)) (-2229 ((|#3| |#3|) 122)) (-4068 (((-3 |#3| "failed") |#3|) 60)) (-2356 ((|#3| |#3|) 130)) (-1492 (((-3 |#3| "failed") |#3|) 48)) (-2210 ((|#3| |#3|) 120)) (-2366 (((-3 |#3| "failed") |#3|) 66)) (-2442 ((|#3| |#3|) 137)) (-1742 (((-3 |#3| "failed") |#3|) 104)) (-2292 ((|#3| |#3|) 142)) (-1467 (((-3 |#3| "failed") |#3|) 62)) (-2416 ((|#3| |#3|) 135)) (-2679 (((-3 |#3| "failed") |#3|) 50)) (-2266 ((|#3| |#3|) 125)) (-3446 (((-3 |#3| "failed") |#3|) 70)) (-2468 ((|#3| |#3|) 139)) (-3965 (((-3 |#3| "failed") |#3|) 54)) (-2318 ((|#3| |#3|) 127)) (-1497 (((-3 |#3| "failed") |#3|) 72)) (-2753 ((|#3| |#3|) 140)) (-3531 (((-3 |#3| "failed") |#3|) 56)) (-2331 ((|#3| |#3|) 128)) (-4183 (((-3 |#3| "failed") |#3|) 68)) (-2456 ((|#3| |#3|) 138)) (-1823 (((-3 |#3| "failed") |#3|) 107)) (-2305 ((|#3| |#3|) 143)) (-2002 (((-3 |#3| "failed") |#3|) 64)) (-2429 ((|#3| |#3|) 136)) (-4154 (((-3 |#3| "failed") |#3|) 52)) (-2279 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-531))) 40 (|has| |#1| (-344))))) -(((-260 |#1| |#2| |#3|) (-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|)))) (-37 (-388 (-531))) (-1175 |#1|) (-1146 |#1| |#2|)) (T -260)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1175 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1146 *4 *5)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))) -(-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|)))) -((-3511 (((-3 |#3| "failed") |#3|) 66)) (-2367 ((|#3| |#3|) 129)) (-1752 (((-3 |#3| "failed") |#3|) 50)) (-2218 ((|#3| |#3|) 117)) (-3712 (((-3 |#3| "failed") |#3|) 62)) (-2343 ((|#3| |#3|) 127)) (-1704 (((-3 |#3| "failed") |#3|) 46)) (-2198 ((|#3| |#3|) 115)) (-3605 (((-3 |#3| "failed") |#3|) 70)) (-2391 ((|#3| |#3|) 131)) (-3343 (((-3 |#3| "failed") |#3|) 54)) (-2241 ((|#3| |#3|) 119)) (-1631 (((-3 |#3| "failed") |#3| (-721)) 35)) (-2121 (((-3 |#3| "failed") |#3|) 44)) (-2076 ((|#3| |#3|) 104)) (-2340 (((-3 |#3| "failed") |#3|) 42)) (-2798 ((|#3| |#3|) 114)) (-4063 (((-3 |#3| "failed") |#3|) 72)) (-2403 ((|#3| |#3|) 132)) (-2504 (((-3 |#3| "failed") |#3|) 56)) (-2253 ((|#3| |#3|) 120)) (-4202 (((-3 |#3| "failed") |#3|) 68)) (-2379 ((|#3| |#3|) 130)) (-1227 (((-3 |#3| "failed") |#3|) 52)) (-2229 ((|#3| |#3|) 118)) (-4068 (((-3 |#3| "failed") |#3|) 64)) (-2356 ((|#3| |#3|) 128)) (-1492 (((-3 |#3| "failed") |#3|) 48)) (-2210 ((|#3| |#3|) 116)) (-2366 (((-3 |#3| "failed") |#3|) 74)) (-2442 ((|#3| |#3|) 135)) (-1742 (((-3 |#3| "failed") |#3|) 58)) (-2292 ((|#3| |#3|) 123)) (-1467 (((-3 |#3| "failed") |#3|) 105)) (-2416 ((|#3| |#3|) 133)) (-2679 (((-3 |#3| "failed") |#3|) 94)) (-2266 ((|#3| |#3|) 121)) (-3446 (((-3 |#3| "failed") |#3|) 109)) (-2468 ((|#3| |#3|) 137)) (-3965 (((-3 |#3| "failed") |#3|) 101)) (-2318 ((|#3| |#3|) 125)) (-1497 (((-3 |#3| "failed") |#3|) 110)) (-2753 ((|#3| |#3|) 138)) (-3531 (((-3 |#3| "failed") |#3|) 103)) (-2331 ((|#3| |#3|) 126)) (-4183 (((-3 |#3| "failed") |#3|) 76)) (-2456 ((|#3| |#3|) 136)) (-1823 (((-3 |#3| "failed") |#3|) 60)) (-2305 ((|#3| |#3|) 124)) (-2002 (((-3 |#3| "failed") |#3|) 106)) (-2429 ((|#3| |#3|) 134)) (-4154 (((-3 |#3| "failed") |#3|) 97)) (-2279 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-388 (-531))) 40 (|has| |#1| (-344))))) -(((-261 |#1| |#2| |#3| |#4|) (-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|)))) (-37 (-388 (-531))) (-1144 |#1|) (-1167 |#1| |#2|) (-925 |#2|)) (T -261)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1144 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1167 *4 *5)) (-4 *6 (-925 *5)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))) -(-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|)))) -((-3257 (((-110) $) 19)) (-1509 (((-171) $) 7)) (-1715 (((-3 (-1102) "failed") $) 14)) (-3846 (((-3 (-598 $) "failed") $) NIL)) (-2051 (((-3 (-1102) "failed") $) 21)) (-1624 (((-3 (-1034) "failed") $) 17)) (-3012 (((-110) $) 15)) (-2265 (((-806) $) NIL)) (-1341 (((-110) $) 9))) -(((-262) (-13 (-572 (-806)) (-10 -8 (-15 -1509 ((-171) $)) (-15 -3012 ((-110) $)) (-15 -1624 ((-3 (-1034) "failed") $)) (-15 -3257 ((-110) $)) (-15 -2051 ((-3 (-1102) "failed") $)) (-15 -1341 ((-110) $)) (-15 -1715 ((-3 (-1102) "failed") $)) (-15 -3846 ((-3 (-598 $) "failed") $))))) (T -262)) -((-1509 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-262)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-2051 (*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-1715 (*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262)))) (-3846 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-262))) (-5 *1 (-262))))) -(-13 (-572 (-806)) (-10 -8 (-15 -1509 ((-171) $)) (-15 -3012 ((-110) $)) (-15 -1624 ((-3 (-1034) "failed") $)) (-15 -3257 ((-110) $)) (-15 -2051 ((-3 (-1102) "failed") $)) (-15 -1341 ((-110) $)) (-15 -1715 ((-3 (-1102) "failed") $)) (-15 -3846 ((-3 (-598 $) "failed") $)))) -((-2177 (($ (-1 (-110) |#2|) $) 24)) (-3086 (($ $) 36)) (-2717 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-2283 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-3611 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4059 (($ |#2| $ (-531)) 20) (($ $ $ (-531)) 22)) (-1723 (($ $ (-531)) 11) (($ $ (-1151 (-531))) 14)) (-1818 (($ $ |#2|) 30) (($ $ $) NIL)) (-3536 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-598 $)) NIL))) -(((-263 |#1| |#2|) (-10 -8 (-15 -3611 (|#1| |#1| |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -3086 (|#1| |#1|))) (-264 |#2|) (-1138)) (T -263)) -NIL -(-10 -8 (-15 -3611 (|#1| |#1| |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -3086 (|#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) 85)) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 83 (|has| |#1| (-1030)))) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1030)))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-3611 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3944 (($ |#1| $ (-531)) 88) (($ $ $ (-531)) 87)) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1551 (($ $ (-531)) 91) (($ $ (-1151 (-531))) 90)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-1818 (($ $ |#1|) 93) (($ $ $) 92)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-264 |#1|) (-133) (-1138)) (T -264)) -((-1818 (*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-2717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-3944 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-264 *2)) (-4 *2 (-1138)))) (-3944 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-3611 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-2245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-2717 (*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) (-3611 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-797))))) -(-13 (-604 |t#1|) (-10 -8 (-6 -4274) (-15 -1818 ($ $ |t#1|)) (-15 -1818 ($ $ $)) (-15 -1551 ($ $ (-531))) (-15 -1551 ($ $ (-1151 (-531)))) (-15 -2717 ($ (-1 (-110) |t#1|) $)) (-15 -3944 ($ |t#1| $ (-531))) (-15 -3944 ($ $ $ (-531))) (-15 -3611 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -2245 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2717 ($ |t#1| $)) (-15 -2705 ($ $))) |%noBranch|) (IF (|has| |t#1| (-797)) (-15 -3611 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) +((-1538 (((-111) $) 12)) (-1612 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-391 (-537)) $) 25) (($ $ (-391 (-537))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -1538 ((-111) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-46 |#2| |#3|) (-998) (-752)) (T -45)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -1538 ((-111) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-2872 ((|#2| $) 62)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-46 |#1| |#2|) (-134) (-998) (-752)) (T -46)) +((-3912 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-3901 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-111)))) (-3733 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-3500 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *2 (-347))))) +(-13 (-998) (-110 |t#1| |t#1|) (-10 -8 (-15 -3912 (|t#1| $)) (-15 -3901 ($ $)) (-15 -2872 (|t#2| $)) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -1538 ((-111) $)) (-15 -3733 ($ |t#1| |t#2|)) (-15 -3940 ($ $)) (-15 -3500 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-347)) (-15 -2340 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-6 (-163)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-529)) (-6 (-529)) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (-6 (-37 (-391 (-537)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-274) |has| |#1| (-529)) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3753 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-2652 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1656 (((-111) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3852 (((-606 (-578 $)) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1974 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-4190 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-578 $) $) NIL) (((-537) $) NIL) (((-391 (-537)) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-391 (-537)))) (|:| |vec| (-1200 (-391 (-537))))) (-649 $) (-1200 $)) NIL) (((-649 (-391 (-537))) (-649 $)) NIL)) (-3195 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) NIL)) (-2836 (((-111) $) 14)) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-3301 (((-1069 (-537) (-578 $)) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2055 (((-1113 $) (-1113 $) (-578 $)) NIL) (((-1113 $) (-1113 $) (-606 (-578 $))) NIL) (($ $ (-578 $)) NIL) (($ $ (-606 (-578 $))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2040 (((-1113 $) (-578 $)) NIL (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) NIL)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) NIL)) (-3381 (($ (-113) $) NIL) (($ (-113) (-606 $)) NIL)) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) NIL)) (-3865 (($ $) NIL)) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1930 (((-731) $) NIL)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3315 (((-1069 (-537) (-578 $)) $) NIL)) (-2529 (($ $) NIL (|has| $ (-998)))) (-3996 (((-363) $) NIL) (((-210) $) NIL) (((-160 (-363)) $) NIL)) (-2341 (((-816) $) NIL) (($ (-578 $)) NIL) (($ (-391 (-537))) NIL) (($ $) NIL) (($ (-537)) NIL) (($ (-1069 (-537) (-578 $))) NIL)) (-3654 (((-731)) NIL)) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2336 (((-111) (-113)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 7 T CONST)) (-2943 (($) 12 T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 16)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $ $) 15) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-391 (-537))) NIL) (($ $ (-537)) NIL) (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ $ $) NIL) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) +(((-47) (-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $))))))) (T -47)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) (-3195 (*1 *1 *1) (-5 *1 (-47))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-578 (-47))) (-5 *1 (-47)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-606 (-578 (-47)))) (-5 *1 (-47)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-47))) (-5 *1 (-47)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-47)))) (-5 *1 (-47))))) +(-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $)))))) +((-2330 (((-111) $ $) NIL)) (-1520 (((-606 (-1117)) $) 17)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-3936 (((-1122) $) 18)) (-2244 (((-111) $ $) NIL))) +(((-48) (-13 (-1045) (-10 -8 (-15 -1520 ((-606 (-1117)) $)) (-15 -3936 ((-1122) $))))) (T -48)) +((-1520 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-48)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-48))))) +(-13 (-1045) (-10 -8 (-15 -1520 ((-606 (-1117)) $)) (-15 -3936 ((-1122) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 61)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-2615 (((-111) $) 20)) (-1516 (((-3 |#1| "failed") $) 23)) (-3958 ((|#1| $) 24)) (-3940 (($ $) 28)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3912 ((|#1| $) 21)) (-2695 (($ $) 50)) (-1654 (((-1100) $) NIL)) (-1611 (((-111) $) 30)) (-2528 (((-1064) $) NIL)) (-1524 (($ (-731)) 48)) (-4185 (($ (-606 (-537))) 49)) (-2872 (((-731) $) 31)) (-2341 (((-816) $) 64) (($ (-537)) 45) (($ |#1|) 43)) (-3500 ((|#1| $ $) 19)) (-3654 (((-731)) 47)) (-2928 (($) 32 T CONST)) (-2943 (($) 14 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 40)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-49 |#1| |#2|) (-13 (-583 |#1|) (-989 |#1|) (-10 -8 (-15 -3912 (|#1| $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 (|#1| $ $)) (-15 -1524 ($ (-731))) (-15 -4185 ($ (-606 (-537)))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-731) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)))) (-998) (-606 (-1117))) (T -49)) +((-3912 (*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) (-2695 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) (-3500 (*1 *2 *1 *1) (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-49 *3 *4)) (-14 *4 (-606 (-1117)))))) +(-13 (-583 |#1|) (-989 |#1|) (-10 -8 (-15 -3912 (|#1| $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 (|#1| $ $)) (-15 -1524 ($ (-731))) (-15 -4185 ($ (-606 (-537)))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-731) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)))) +((-2615 (((-111) (-51)) 13)) (-1516 (((-3 |#1| "failed") (-51)) 21)) (-3958 ((|#1| (-51)) 22)) (-2341 (((-51) |#1|) 18))) +(((-50 |#1|) (-10 -7 (-15 -2341 ((-51) |#1|)) (-15 -1516 ((-3 |#1| "failed") (-51))) (-15 -2615 ((-111) (-51))) (-15 -3958 (|#1| (-51)))) (-1154)) (T -50)) +((-3958 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-111)) (-5 *1 (-50 *4)) (-4 *4 (-1154)))) (-1516 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1154))))) +(-10 -7 (-15 -2341 ((-51) |#1|)) (-15 -1516 ((-3 |#1| "failed") (-51))) (-15 -2615 ((-111) (-51))) (-15 -3958 (|#1| (-51)))) +((-2330 (((-111) $ $) NIL)) (-3011 (((-1100) (-111)) 25)) (-1404 (((-816) $) 24)) (-3833 (((-734) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2248 (((-816) $) 16)) (-1260 (((-1049) $) 14)) (-2341 (((-816) $) 32)) (-3639 (($ (-1049) (-734)) 33)) (-2244 (((-111) $ $) 18))) +(((-51) (-13 (-1045) (-10 -8 (-15 -3639 ($ (-1049) (-734))) (-15 -2248 ((-816) $)) (-15 -1404 ((-816) $)) (-15 -1260 ((-1049) $)) (-15 -3833 ((-734) $)) (-15 -3011 ((-1100) (-111)))))) (T -51)) +((-3639 (*1 *1 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-734)) (-5 *1 (-51)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-51)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-734)) (-5 *1 (-51)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1100)) (-5 *1 (-51))))) +(-13 (-1045) (-10 -8 (-15 -3639 ($ (-1049) (-734))) (-15 -2248 ((-816) $)) (-15 -1404 ((-816) $)) (-15 -1260 ((-1049) $)) (-15 -3833 ((-734) $)) (-15 -3011 ((-1100) (-111))))) +((-3127 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -3127 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-998) (-609 |#1|) (-809 |#1|)) (T -52)) +((-3127 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-609 *5)) (-4 *5 (-998)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-809 *5))))) +(-10 -7 (-15 -3127 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1850 ((|#3| |#3| (-606 (-1117))) 35)) (-2365 ((|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3| (-874)) 22) ((|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3|)) (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3| (-874))) (-15 -1850 (|#3| |#3| (-606 (-1117))))) (-1045) (-13 (-998) (-839 |#1|) (-807) (-580 (-845 |#1|))) (-13 (-414 |#2|) (-839 |#1|) (-580 (-845 |#1|)))) (T -53)) +((-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) (-2365 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-606 (-1021 *5 *6 *2))) (-5 *4 (-874)) (-4 *5 (-1045)) (-4 *6 (-13 (-998) (-839 *5) (-807) (-580 (-845 *5)))) (-4 *2 (-13 (-414 *6) (-839 *5) (-580 (-845 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2365 (*1 *2 *3 *2) (-12 (-5 *3 (-606 (-1021 *4 *5 *2))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3|)) (-15 -2365 (|#3| (-606 (-1021 |#1| |#2| |#3|)) |#3| (-874))) (-15 -1850 (|#3| |#3| (-606 (-1117))))) +((-2506 (((-111) $ (-731)) 23)) (-2720 (($ $ (-537) |#3|) 46)) (-2573 (($ $ (-537) |#4|) 50)) (-2964 ((|#3| $ (-537)) 59)) (-3661 (((-606 |#2|) $) 30)) (-1642 (((-111) $ (-731)) 25)) (-3122 (((-111) |#2| $) 54)) (-4081 (($ (-1 |#2| |#2|) $) 37)) (-1612 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2489 (((-111) $ (-731)) 24)) (-3040 (($ $ |#2|) 34)) (-3206 (((-111) (-1 (-111) |#2|) $) 19)) (-1922 ((|#2| $ (-537) (-537)) NIL) ((|#2| $ (-537) (-537) |#2|) 27)) (-2539 (((-731) (-1 (-111) |#2|) $) 28) (((-731) |#2| $) 56)) (-2494 (($ $) 33)) (-2198 ((|#4| $ (-537)) 62)) (-2341 (((-816) $) 68)) (-2030 (((-111) (-1 (-111) |#2|) $) 18)) (-2244 (((-111) $ $) 53)) (-2258 (((-731) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2573 (|#1| |#1| (-537) |#4|)) (-15 -2720 (|#1| |#1| (-537) |#3|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2198 (|#4| |#1| (-537))) (-15 -2964 (|#3| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2494 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1154) (-357 |#2|) (-357 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2573 (|#1| |#1| (-537) |#4|)) (-15 -2720 (|#1| |#1| (-537) |#3|)) (-15 -3661 ((-606 |#2|) |#1|)) (-15 -2198 (|#4| |#1| (-537))) (-15 -2964 (|#3| |#1| (-537))) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731))) (-15 -2494 (|#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) (-537) |#1|) 44)) (-2720 (($ $ (-537) |#2|) 42)) (-2573 (($ $ (-537) |#3|) 41)) (-3832 (($) 7 T CONST)) (-2964 ((|#2| $ (-537)) 46)) (-4091 ((|#1| $ (-537) (-537) |#1|) 43)) (-4030 ((|#1| $ (-537) (-537)) 48)) (-3661 (((-606 |#1|) $) 30)) (-2931 (((-731) $) 51)) (-3157 (($ (-731) (-731) |#1|) 57)) (-2945 (((-731) $) 50)) (-1642 (((-111) $ (-731)) 9)) (-4111 (((-537) $) 55)) (-2454 (((-537) $) 53)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 54)) (-2485 (((-537) $) 52)) (-4081 (($ (-1 |#1| |#1|) $) 34)) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) 56)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) (-537)) 49) ((|#1| $ (-537) (-537) |#1|) 47)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2198 ((|#3| $ (-537)) 45)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-55 |#1| |#2| |#3|) (-134) (-1154) (-357 |t#1|) (-357 |t#1|)) (T -55)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3157 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-731)) (-4 *3 (-1154)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3040 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1154)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-537)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-731)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-731)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1154)))) (-4030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1154)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1154)) (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-606 *3)))) (-2476 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-4091 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1154)) (-4 *3 (-357 *4)) (-4 *5 (-357 *4)))) (-2573 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1154)) (-4 *5 (-357 *4)) (-4 *3 (-357 *4)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-1612 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) +(-13 (-471 |t#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -3157 ($ (-731) (-731) |t#1|)) (-15 -3040 ($ $ |t#1|)) (-15 -4111 ((-537) $)) (-15 -3126 ((-537) $)) (-15 -2454 ((-537) $)) (-15 -2485 ((-537) $)) (-15 -2931 ((-731) $)) (-15 -2945 ((-731) $)) (-15 -1922 (|t#1| $ (-537) (-537))) (-15 -4030 (|t#1| $ (-537) (-537))) (-15 -1922 (|t#1| $ (-537) (-537) |t#1|)) (-15 -2964 (|t#2| $ (-537))) (-15 -2198 (|t#3| $ (-537))) (-15 -3661 ((-606 |t#1|) $)) (-15 -2476 (|t#1| $ (-537) (-537) |t#1|)) (-15 -4091 (|t#1| $ (-537) (-537) |t#1|)) (-15 -2720 ($ $ (-537) |t#2|)) (-15 -2573 ($ $ (-537) |t#3|)) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -4081 ($ (-1 |t#1| |t#1|) $)) (-15 -1612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1612 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2547 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1612 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-56 |#1| |#2|) (-10 -7 (-15 -2547 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1154) (-1154)) (T -56)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-56 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) +(-10 -7 (-15 -2547 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1612 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 11 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3813 (($ (-606 |#1|)) 13) (($ (-731) |#1|) 14)) (-3157 (($ (-731) |#1|) 9)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 7)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3813 ($ (-606 |#1|))) (-15 -3813 ($ (-731) |#1|)))) (-1154)) (T -57)) +((-3813 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-57 *3)))) (-3813 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-57 *3)) (-4 *3 (-1154))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3813 ($ (-606 |#1|))) (-15 -3813 ($ (-731) |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL)) (-2720 (($ $ (-537) (-57 |#1|)) NIL)) (-2573 (($ $ (-537) (-57 |#1|)) NIL)) (-3832 (($) NIL T CONST)) (-2964 (((-57 |#1|) $ (-537)) NIL)) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-57 |#1|) $ (-537)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4301))) (-1154)) (T -58)) +NIL +(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4301))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 74) (((-3 $ "failed") (-1200 (-300 (-537)))) 63) (((-3 $ "failed") (-1200 (-905 (-363)))) 94) (((-3 $ "failed") (-1200 (-905 (-537)))) 84) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 52) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 39)) (-3958 (($ (-1200 (-300 (-363)))) 70) (($ (-1200 (-300 (-537)))) 59) (($ (-1200 (-905 (-363)))) 90) (($ (-1200 (-905 (-537)))) 80) (($ (-1200 (-391 (-905 (-363))))) 48) (($ (-1200 (-391 (-905 (-537))))) 32)) (-3322 (((-1205) $) 120)) (-2341 (((-816) $) 113) (($ (-606 (-314))) 103) (($ (-314)) 97) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 101) (($ (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659)))) 31))) +(((-59 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659))))))) (-1117)) (T -59)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659)))) (-5 *1 (-59 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2350) (-659))))))) +((-3322 (((-1205) $) 53) (((-1205)) 54)) (-2341 (((-816) $) 50))) +(((-60 |#1|) (-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) (-1117)) (T -60)) +((-3322 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-60 *3)) (-14 *3 (-1117))))) +(-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 144) (((-3 $ "failed") (-1200 (-300 (-537)))) 134) (((-3 $ "failed") (-1200 (-905 (-363)))) 164) (((-3 $ "failed") (-1200 (-905 (-537)))) 154) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 123) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 111)) (-3958 (($ (-1200 (-300 (-363)))) 140) (($ (-1200 (-300 (-537)))) 130) (($ (-1200 (-905 (-363)))) 160) (($ (-1200 (-905 (-537)))) 150) (($ (-1200 (-391 (-905 (-363))))) 119) (($ (-1200 (-391 (-905 (-537))))) 104)) (-3322 (((-1205) $) 97)) (-2341 (((-816) $) 91) (($ (-606 (-314))) 29) (($ (-314)) 34) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 32) (($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) 89))) +(((-61 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) (-1117)) (T -61)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) (-5 *1 (-61 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) +((-1516 (((-3 $ "failed") (-300 (-363))) 41) (((-3 $ "failed") (-300 (-537))) 46) (((-3 $ "failed") (-905 (-363))) 50) (((-3 $ "failed") (-905 (-537))) 54) (((-3 $ "failed") (-391 (-905 (-363)))) 36) (((-3 $ "failed") (-391 (-905 (-537)))) 29)) (-3958 (($ (-300 (-363))) 39) (($ (-300 (-537))) 44) (($ (-905 (-363))) 48) (($ (-905 (-537))) 52) (($ (-391 (-905 (-363)))) 34) (($ (-391 (-905 (-537)))) 26)) (-3322 (((-1205) $) 76)) (-2341 (((-816) $) 69) (($ (-606 (-314))) 61) (($ (-314)) 66) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 64) (($ (-323 (-2350 (QUOTE X)) (-2350) (-659))) 25))) +(((-62 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350) (-659)))))) (-1117)) (T -62)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350 (QUOTE X)) (-2350) (-659))) (-5 *1 (-62 *3)) (-14 *3 (-1117))))) +(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350) (-659)))))) +((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 109) (((-3 $ "failed") (-649 (-300 (-537)))) 97) (((-3 $ "failed") (-649 (-905 (-363)))) 131) (((-3 $ "failed") (-649 (-905 (-537)))) 120) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 85) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 71)) (-3958 (($ (-649 (-300 (-363)))) 105) (($ (-649 (-300 (-537)))) 93) (($ (-649 (-905 (-363)))) 127) (($ (-649 (-905 (-537)))) 116) (($ (-649 (-391 (-905 (-363))))) 81) (($ (-649 (-391 (-905 (-537))))) 64)) (-3322 (((-1205) $) 139)) (-2341 (((-816) $) 133) (($ (-606 (-314))) 28) (($ (-314)) 33) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 31) (($ (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659)))) 54))) +(((-63 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659))))))) (-1117)) (T -63)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659)))) (-5 *1 (-63 *3)) (-14 *3 (-1117))))) +(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350) (-2350 (QUOTE X) (QUOTE HESS)) (-659))))))) +((-1516 (((-3 $ "failed") (-300 (-363))) 59) (((-3 $ "failed") (-300 (-537))) 64) (((-3 $ "failed") (-905 (-363))) 68) (((-3 $ "failed") (-905 (-537))) 72) (((-3 $ "failed") (-391 (-905 (-363)))) 54) (((-3 $ "failed") (-391 (-905 (-537)))) 47)) (-3958 (($ (-300 (-363))) 57) (($ (-300 (-537))) 62) (($ (-905 (-363))) 66) (($ (-905 (-537))) 70) (($ (-391 (-905 (-363)))) 52) (($ (-391 (-905 (-537)))) 44)) (-3322 (((-1205) $) 81)) (-2341 (((-816) $) 75) (($ (-606 (-314))) 28) (($ (-314)) 33) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 31) (($ (-323 (-2350) (-2350 (QUOTE XC)) (-659))) 39))) +(((-64 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE XC)) (-659)))))) (-1117)) (T -64)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350) (-2350 (QUOTE XC)) (-659))) (-5 *1 (-64 *3)) (-14 *3 (-1117))))) +(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE XC)) (-659)))))) +((-3322 (((-1205) $) 63)) (-2341 (((-816) $) 57) (($ (-649 (-659))) 49) (($ (-606 (-314))) 48) (($ (-314)) 55) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 53))) +(((-65 |#1|) (-367) (-1117)) (T -65)) +NIL +(-367) +((-3322 (((-1205) $) 64)) (-2341 (((-816) $) 58) (($ (-649 (-659))) 50) (($ (-606 (-314))) 49) (($ (-314)) 52) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 55))) +(((-66 |#1|) (-367) (-1117)) (T -66)) +NIL +(-367) +((-3322 (((-1205) $) NIL) (((-1205)) 32)) (-2341 (((-816) $) NIL))) +(((-67 |#1|) (-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) (-1117)) (T -67)) +((-3322 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-67 *3)) (-14 *3 (-1117))))) +(-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) +((-3322 (((-1205) $) 73)) (-2341 (((-816) $) 67) (($ (-649 (-659))) 59) (($ (-606 (-314))) 61) (($ (-314)) 64) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 58))) +(((-68 |#1|) (-367) (-1117)) (T -68)) +NIL +(-367) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 103) (((-3 $ "failed") (-1200 (-300 (-537)))) 92) (((-3 $ "failed") (-1200 (-905 (-363)))) 123) (((-3 $ "failed") (-1200 (-905 (-537)))) 113) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 81) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 68)) (-3958 (($ (-1200 (-300 (-363)))) 99) (($ (-1200 (-300 (-537)))) 88) (($ (-1200 (-905 (-363)))) 119) (($ (-1200 (-905 (-537)))) 109) (($ (-1200 (-391 (-905 (-363))))) 77) (($ (-1200 (-391 (-905 (-537))))) 61)) (-3322 (((-1205) $) 136)) (-2341 (((-816) $) 130) (($ (-606 (-314))) 125) (($ (-314)) 128) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 53) (($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) 54))) +(((-69 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) (-1117)) (T -69)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) (-5 *1 (-69 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) +((-3322 (((-1205) $) 32) (((-1205)) 31)) (-2341 (((-816) $) 35))) +(((-70 |#1|) (-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) (-1117)) (T -70)) +((-3322 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-70 *3)) (-14 *3 (-1117))))) +(-13 (-379) (-10 -7 (-15 -3322 ((-1205))))) +((-3322 (((-1205) $) 63)) (-2341 (((-816) $) 57) (($ (-649 (-659))) 49) (($ (-606 (-314))) 51) (($ (-314)) 54) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 48))) +(((-71 |#1|) (-367) (-1117)) (T -71)) +NIL +(-367) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 125) (((-3 $ "failed") (-1200 (-300 (-537)))) 115) (((-3 $ "failed") (-1200 (-905 (-363)))) 145) (((-3 $ "failed") (-1200 (-905 (-537)))) 135) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 105) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 93)) (-3958 (($ (-1200 (-300 (-363)))) 121) (($ (-1200 (-300 (-537)))) 111) (($ (-1200 (-905 (-363)))) 141) (($ (-1200 (-905 (-537)))) 131) (($ (-1200 (-391 (-905 (-363))))) 101) (($ (-1200 (-391 (-905 (-537))))) 86)) (-3322 (((-1205) $) 78)) (-2341 (((-816) $) 27) (($ (-606 (-314))) 68) (($ (-314)) 64) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 71) (($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) 65))) +(((-72 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) (-1117)) (T -72)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) (-5 *1 (-72 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 130) (((-3 $ "failed") (-1200 (-300 (-537)))) 119) (((-3 $ "failed") (-1200 (-905 (-363)))) 150) (((-3 $ "failed") (-1200 (-905 (-537)))) 140) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 108) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 95)) (-3958 (($ (-1200 (-300 (-363)))) 126) (($ (-1200 (-300 (-537)))) 115) (($ (-1200 (-905 (-363)))) 146) (($ (-1200 (-905 (-537)))) 136) (($ (-1200 (-391 (-905 (-363))))) 104) (($ (-1200 (-391 (-905 (-537))))) 88)) (-3322 (((-1205) $) 79)) (-2341 (((-816) $) 71) (($ (-606 (-314))) NIL) (($ (-314)) NIL) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) NIL) (($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659)))) 66))) +(((-73 |#1| |#2| |#3|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659))))))) (-1117) (-1117) (-1117)) (T -73)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) (-14 *5 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE EPS)) (-2350 (QUOTE -4142)) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 134) (((-3 $ "failed") (-1200 (-300 (-537)))) 123) (((-3 $ "failed") (-1200 (-905 (-363)))) 154) (((-3 $ "failed") (-1200 (-905 (-537)))) 144) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 112) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 99)) (-3958 (($ (-1200 (-300 (-363)))) 130) (($ (-1200 (-300 (-537)))) 119) (($ (-1200 (-905 (-363)))) 150) (($ (-1200 (-905 (-537)))) 140) (($ (-1200 (-391 (-905 (-363))))) 108) (($ (-1200 (-391 (-905 (-537))))) 92)) (-3322 (((-1205) $) 83)) (-2341 (((-816) $) 75) (($ (-606 (-314))) NIL) (($ (-314)) NIL) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) NIL) (($ (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659)))) 70))) +(((-74 |#1| |#2| |#3|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659))))))) (-1117) (-1117) (-1117)) (T -74)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) (-14 *5 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE EPS)) (-2350 (QUOTE YA) (QUOTE YB)) (-659))))))) +((-1516 (((-3 $ "failed") (-300 (-363))) 82) (((-3 $ "failed") (-300 (-537))) 87) (((-3 $ "failed") (-905 (-363))) 91) (((-3 $ "failed") (-905 (-537))) 95) (((-3 $ "failed") (-391 (-905 (-363)))) 77) (((-3 $ "failed") (-391 (-905 (-537)))) 70)) (-3958 (($ (-300 (-363))) 80) (($ (-300 (-537))) 85) (($ (-905 (-363))) 89) (($ (-905 (-537))) 93) (($ (-391 (-905 (-363)))) 75) (($ (-391 (-905 (-537)))) 67)) (-3322 (((-1205) $) 62)) (-2341 (((-816) $) 50) (($ (-606 (-314))) 46) (($ (-314)) 56) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 54) (($ (-323 (-2350) (-2350 (QUOTE X)) (-659))) 47))) +(((-75 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) (-1117)) (T -75)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350) (-2350 (QUOTE X)) (-659))) (-5 *1 (-75 *3)) (-14 *3 (-1117))))) +(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) +((-1516 (((-3 $ "failed") (-300 (-363))) 46) (((-3 $ "failed") (-300 (-537))) 51) (((-3 $ "failed") (-905 (-363))) 55) (((-3 $ "failed") (-905 (-537))) 59) (((-3 $ "failed") (-391 (-905 (-363)))) 41) (((-3 $ "failed") (-391 (-905 (-537)))) 34)) (-3958 (($ (-300 (-363))) 44) (($ (-300 (-537))) 49) (($ (-905 (-363))) 53) (($ (-905 (-537))) 57) (($ (-391 (-905 (-363)))) 39) (($ (-391 (-905 (-537)))) 31)) (-3322 (((-1205) $) 80)) (-2341 (((-816) $) 74) (($ (-606 (-314))) 66) (($ (-314)) 71) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 69) (($ (-323 (-2350) (-2350 (QUOTE X)) (-659))) 30))) +(((-76 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) (-1117)) (T -76)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350) (-2350 (QUOTE X)) (-659))) (-5 *1 (-76 *3)) (-14 *3 (-1117))))) +(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350) (-2350 (QUOTE X)) (-659)))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 89) (((-3 $ "failed") (-1200 (-300 (-537)))) 78) (((-3 $ "failed") (-1200 (-905 (-363)))) 109) (((-3 $ "failed") (-1200 (-905 (-537)))) 99) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 67) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 54)) (-3958 (($ (-1200 (-300 (-363)))) 85) (($ (-1200 (-300 (-537)))) 74) (($ (-1200 (-905 (-363)))) 105) (($ (-1200 (-905 (-537)))) 95) (($ (-1200 (-391 (-905 (-363))))) 63) (($ (-1200 (-391 (-905 (-537))))) 47)) (-3322 (((-1205) $) 125)) (-2341 (((-816) $) 119) (($ (-606 (-314))) 112) (($ (-314)) 37) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 115) (($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) 38))) +(((-77 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) (-1117)) (T -77)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659)))) (-5 *1 (-77 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE XC)) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 142) (((-3 $ "failed") (-1200 (-300 (-537)))) 132) (((-3 $ "failed") (-1200 (-905 (-363)))) 162) (((-3 $ "failed") (-1200 (-905 (-537)))) 152) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 122) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 110)) (-3958 (($ (-1200 (-300 (-363)))) 138) (($ (-1200 (-300 (-537)))) 128) (($ (-1200 (-905 (-363)))) 158) (($ (-1200 (-905 (-537)))) 148) (($ (-1200 (-391 (-905 (-363))))) 118) (($ (-1200 (-391 (-905 (-537))))) 103)) (-3322 (((-1205) $) 96)) (-2341 (((-816) $) 90) (($ (-606 (-314))) 81) (($ (-314)) 88) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 86) (($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) 82))) +(((-78 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) (-1117)) (T -78)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) (-5 *1 (-78 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 78) (((-3 $ "failed") (-1200 (-300 (-537)))) 67) (((-3 $ "failed") (-1200 (-905 (-363)))) 98) (((-3 $ "failed") (-1200 (-905 (-537)))) 88) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 56) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 43)) (-3958 (($ (-1200 (-300 (-363)))) 74) (($ (-1200 (-300 (-537)))) 63) (($ (-1200 (-905 (-363)))) 94) (($ (-1200 (-905 (-537)))) 84) (($ (-1200 (-391 (-905 (-363))))) 52) (($ (-1200 (-391 (-905 (-537))))) 36)) (-3322 (((-1205) $) 124)) (-2341 (((-816) $) 118) (($ (-606 (-314))) 109) (($ (-314)) 115) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 113) (($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) 35))) +(((-79 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) (-1117)) (T -79)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659)))) (-5 *1 (-79 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350) (-2350 (QUOTE X)) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 95) (((-3 $ "failed") (-1200 (-300 (-537)))) 84) (((-3 $ "failed") (-1200 (-905 (-363)))) 115) (((-3 $ "failed") (-1200 (-905 (-537)))) 105) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 73) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 60)) (-3958 (($ (-1200 (-300 (-363)))) 91) (($ (-1200 (-300 (-537)))) 80) (($ (-1200 (-905 (-363)))) 111) (($ (-1200 (-905 (-537)))) 101) (($ (-1200 (-391 (-905 (-363))))) 69) (($ (-1200 (-391 (-905 (-537))))) 53)) (-3322 (((-1205) $) 45)) (-2341 (((-816) $) 39) (($ (-606 (-314))) 29) (($ (-314)) 32) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 35) (($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) 30))) +(((-80 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) (-1117)) (T -80)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) (-5 *1 (-80 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) +((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 115) (((-3 $ "failed") (-649 (-300 (-537)))) 104) (((-3 $ "failed") (-649 (-905 (-363)))) 137) (((-3 $ "failed") (-649 (-905 (-537)))) 126) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 93) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 80)) (-3958 (($ (-649 (-300 (-363)))) 111) (($ (-649 (-300 (-537)))) 100) (($ (-649 (-905 (-363)))) 133) (($ (-649 (-905 (-537)))) 122) (($ (-649 (-391 (-905 (-363))))) 89) (($ (-649 (-391 (-905 (-537))))) 73)) (-3322 (((-1205) $) 63)) (-2341 (((-816) $) 50) (($ (-606 (-314))) 57) (($ (-314)) 46) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 55) (($ (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) 47))) +(((-81 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) (-1117)) (T -81)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659)))) (-5 *1 (-81 *3)) (-14 *3 (-1117))))) +(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X) (QUOTE -4142)) (-2350) (-659))))))) +((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 112) (((-3 $ "failed") (-649 (-300 (-537)))) 100) (((-3 $ "failed") (-649 (-905 (-363)))) 134) (((-3 $ "failed") (-649 (-905 (-537)))) 123) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 88) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 74)) (-3958 (($ (-649 (-300 (-363)))) 108) (($ (-649 (-300 (-537)))) 96) (($ (-649 (-905 (-363)))) 130) (($ (-649 (-905 (-537)))) 119) (($ (-649 (-391 (-905 (-363))))) 84) (($ (-649 (-391 (-905 (-537))))) 67)) (-3322 (((-1205) $) 59)) (-2341 (((-816) $) 53) (($ (-606 (-314))) 47) (($ (-314)) 50) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 44) (($ (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) 45))) +(((-82 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) (-1117)) (T -82)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) (-5 *1 (-82 *3)) (-14 *3 (-1117))))) +(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 104) (((-3 $ "failed") (-1200 (-300 (-537)))) 93) (((-3 $ "failed") (-1200 (-905 (-363)))) 124) (((-3 $ "failed") (-1200 (-905 (-537)))) 114) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 82) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 69)) (-3958 (($ (-1200 (-300 (-363)))) 100) (($ (-1200 (-300 (-537)))) 89) (($ (-1200 (-905 (-363)))) 120) (($ (-1200 (-905 (-537)))) 110) (($ (-1200 (-391 (-905 (-363))))) 78) (($ (-1200 (-391 (-905 (-537))))) 62)) (-3322 (((-1205) $) 46)) (-2341 (((-816) $) 40) (($ (-606 (-314))) 49) (($ (-314)) 36) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 52) (($ (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) 37))) +(((-83 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) (-1117)) (T -83)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659)))) (-5 *1 (-83 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350) (-659))))))) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 79) (((-3 $ "failed") (-1200 (-300 (-537)))) 68) (((-3 $ "failed") (-1200 (-905 (-363)))) 99) (((-3 $ "failed") (-1200 (-905 (-537)))) 89) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 57) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 44)) (-3958 (($ (-1200 (-300 (-363)))) 75) (($ (-1200 (-300 (-537)))) 64) (($ (-1200 (-905 (-363)))) 95) (($ (-1200 (-905 (-537)))) 85) (($ (-1200 (-391 (-905 (-363))))) 53) (($ (-1200 (-391 (-905 (-537))))) 37)) (-3322 (((-1205) $) 125)) (-2341 (((-816) $) 119) (($ (-606 (-314))) 110) (($ (-314)) 116) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 114) (($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) 36))) +(((-84 |#1|) (-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) (-1117)) (T -84)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))) (-5 *1 (-84 *3)) (-14 *3 (-1117))))) +(-13 (-424) (-10 -8 (-15 -2341 ($ (-1200 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))))))) +((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 113) (((-3 $ "failed") (-649 (-300 (-537)))) 101) (((-3 $ "failed") (-649 (-905 (-363)))) 135) (((-3 $ "failed") (-649 (-905 (-537)))) 124) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 89) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 75)) (-3958 (($ (-649 (-300 (-363)))) 109) (($ (-649 (-300 (-537)))) 97) (($ (-649 (-905 (-363)))) 131) (($ (-649 (-905 (-537)))) 120) (($ (-649 (-391 (-905 (-363))))) 85) (($ (-649 (-391 (-905 (-537))))) 68)) (-3322 (((-1205) $) 59)) (-2341 (((-816) $) 53) (($ (-606 (-314))) 43) (($ (-314)) 50) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 48) (($ (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659)))) 44))) +(((-85 |#1|) (-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659))))))) (-1117)) (T -85)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659)))) (-5 *1 (-85 *3)) (-14 *3 (-1117))))) +(-13 (-368) (-10 -8 (-15 -2341 ($ (-649 (-323 (-2350 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2350) (-659))))))) +((-3322 (((-1205) $) 44)) (-2341 (((-816) $) 38) (($ (-1200 (-659))) 92) (($ (-606 (-314))) 30) (($ (-314)) 35) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 33))) +(((-86 |#1|) (-423) (-1117)) (T -86)) +NIL +(-423) +((-1516 (((-3 $ "failed") (-300 (-363))) 47) (((-3 $ "failed") (-300 (-537))) 52) (((-3 $ "failed") (-905 (-363))) 56) (((-3 $ "failed") (-905 (-537))) 60) (((-3 $ "failed") (-391 (-905 (-363)))) 42) (((-3 $ "failed") (-391 (-905 (-537)))) 35)) (-3958 (($ (-300 (-363))) 45) (($ (-300 (-537))) 50) (($ (-905 (-363))) 54) (($ (-905 (-537))) 58) (($ (-391 (-905 (-363)))) 40) (($ (-391 (-905 (-537)))) 32)) (-3322 (((-1205) $) 90)) (-2341 (((-816) $) 84) (($ (-606 (-314))) 78) (($ (-314)) 81) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 76) (($ (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))) 31))) +(((-87 |#1|) (-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))))) (-1117)) (T -87)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659))) (-5 *1 (-87 *3)) (-14 *3 (-1117))))) +(-13 (-380) (-10 -8 (-15 -2341 ($ (-323 (-2350 (QUOTE X)) (-2350 (QUOTE -4142)) (-659)))))) +((-3866 (((-1200 (-649 |#1|)) (-649 |#1|)) 54)) (-1496 (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 (-606 (-874))))) |#2| (-874)) 44)) (-2459 (((-2 (|:| |minor| (-606 (-874))) (|:| -4113 |#2|) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 |#2|))) |#2| (-874)) 65 (|has| |#1| (-347))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1496 ((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 (-606 (-874))))) |#2| (-874))) (-15 -3866 ((-1200 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-347)) (-15 -2459 ((-2 (|:| |minor| (-606 (-874))) (|:| -4113 |#2|) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 |#2|))) |#2| (-874))) |%noBranch|)) (-529) (-617 |#1|)) (T -88)) +((-2459 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |minor| (-606 (-874))) (|:| -4113 *3) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-649 *4)) (-4 *5 (-617 *4)))) (-1496 (*1 *2 *3 *4) (-12 (-4 *5 (-529)) (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 (-606 (-874)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5))))) +(-10 -7 (-15 -1496 ((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 (-606 (-874))))) |#2| (-874))) (-15 -3866 ((-1200 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-347)) (-15 -2459 ((-2 (|:| |minor| (-606 (-874))) (|:| -4113 |#2|) (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 |#2|))) |#2| (-874))) |%noBranch|)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2992 ((|#1| $) 35)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-2993 ((|#1| |#1| $) 30)) (-3444 ((|#1| $) 28)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) NIL)) (-3499 (($ |#1| $) 31)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1599 ((|#1| $) 29)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 16)) (-3425 (($) 39)) (-3731 (((-731) $) 26)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 15)) (-2341 (((-816) $) 25 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) NIL)) (-2538 (($ (-606 |#1|)) 37)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 13 (|has| |#1| (-1045)))) (-2258 (((-731) $) 10 (|has| $ (-6 -4300))))) +(((-89 |#1|) (-13 (-1065 |#1|) (-10 -8 (-15 -2538 ($ (-606 |#1|))))) (-1045)) (T -89)) +((-2538 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-89 *3))))) +(-13 (-1065 |#1|) (-10 -8 (-15 -2538 ($ (-606 |#1|))))) +((-2341 (((-816) $) 12) (((-1122) $) 8))) +(((-90 |#1|) (-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (((-1122) $) 14)) (-2244 (((-111) $ $) 6))) +(((-91) (-134)) (T -91)) +NIL +(-13 (-1045) (-579 (-1122))) +(((-100) . T) ((-579 (-816)) . T) ((-579 (-1122)) . T) ((-1045) . T)) +((-1352 (($ $) 10)) (-1365 (($ $) 12))) +(((-92 |#1|) (-10 -8 (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|))) +((-1328 (($ $) 11)) (-1300 (($ $) 10)) (-1352 (($ $) 9)) (-1365 (($ $) 8)) (-1340 (($ $) 7)) (-1314 (($ $) 6))) +(((-93) (-134)) (T -93)) +((-1328 (*1 *1 *1) (-4 *1 (-93))) (-1300 (*1 *1 *1) (-4 *1 (-93))) (-1352 (*1 *1 *1) (-4 *1 (-93))) (-1365 (*1 *1 *1) (-4 *1 (-93))) (-1340 (*1 *1 *1) (-4 *1 (-93))) (-1314 (*1 *1 *1) (-4 *1 (-93)))) +(-13 (-10 -8 (-15 -1314 ($ $)) (-15 -1340 ($ $)) (-15 -1365 ($ $)) (-15 -1352 ($ $)) (-15 -1300 ($ $)) (-15 -1328 ($ $)))) +((-2330 (((-111) $ $) NIL)) (-3923 (((-1122) $) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-94) (-13 (-1029) (-10 -8 (-15 -3923 ((-1122) $))))) (T -94)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-94))))) +(-13 (-1029) (-10 -8 (-15 -3923 ((-1122) $)))) +((-2330 (((-111) $ $) NIL)) (-1390 (((-363) (-1100) (-363)) 42) (((-363) (-1100) (-1100) (-363)) 41)) (-4234 (((-363) (-363)) 33)) (-3051 (((-1205)) 36)) (-1654 (((-1100) $) NIL)) (-2439 (((-363) (-1100) (-1100)) 46) (((-363) (-1100)) 48)) (-2528 (((-1064) $) NIL)) (-1356 (((-363) (-1100) (-1100)) 47)) (-1946 (((-363) (-1100) (-1100)) 49) (((-363) (-1100)) 50)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-95) (-13 (-1045) (-10 -7 (-15 -2439 ((-363) (-1100) (-1100))) (-15 -2439 ((-363) (-1100))) (-15 -1946 ((-363) (-1100) (-1100))) (-15 -1946 ((-363) (-1100))) (-15 -1356 ((-363) (-1100) (-1100))) (-15 -3051 ((-1205))) (-15 -4234 ((-363) (-363))) (-15 -1390 ((-363) (-1100) (-363))) (-15 -1390 ((-363) (-1100) (-1100) (-363))) (-6 -4300)))) (T -95)) +((-2439 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1946 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-1356 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) (-3051 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-95)))) (-4234 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95)))) (-1390 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95)))) (-1390 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95))))) +(-13 (-1045) (-10 -7 (-15 -2439 ((-363) (-1100) (-1100))) (-15 -2439 ((-363) (-1100))) (-15 -1946 ((-363) (-1100) (-1100))) (-15 -1946 ((-363) (-1100))) (-15 -1356 ((-363) (-1100) (-1100))) (-15 -3051 ((-1205))) (-15 -4234 ((-363) (-363))) (-15 -1390 ((-363) (-1100) (-363))) (-15 -1390 ((-363) (-1100) (-1100) (-363))) (-6 -4300))) +NIL +(((-96) (-134)) (T -96)) +NIL +(-13 (-10 -7 (-6 -4300) (-6 (-4302 "*")) (-6 -4301) (-6 -4297) (-6 -4295) (-6 -4294) (-6 -4293) (-6 -4298) (-6 -4292) (-6 -4291) (-6 -4290) (-6 -4289) (-6 -4288) (-6 -4296) (-6 -4299) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4287))) +((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-3034 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-537))) 22)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 14)) (-2528 (((-1064) $) NIL)) (-1922 ((|#1| $ |#1|) 11)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 20)) (-2943 (($) 8 T CONST)) (-2244 (((-111) $ $) 10)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) 28) (($ $ (-731)) NIL) (($ $ (-537)) 16)) (* (($ $ $) 29))) +(((-97 |#1|) (-13 (-456) (-270 |#1| |#1|) (-10 -8 (-15 -3034 ($ (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1| (-537)))))) (-998)) (T -97)) +((-3034 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3)))) (-3034 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3)))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-97 *3))))) +(-13 (-456) (-270 |#1| |#1|) (-10 -8 (-15 -3034 ($ (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3034 ($ (-1 |#1| |#1| (-537)))))) +((-3297 (((-402 |#2|) |#2| (-606 |#2|)) 10) (((-402 |#2|) |#2| |#2|) 11))) +(((-98 |#1| |#2|) (-10 -7 (-15 -3297 ((-402 |#2|) |#2| |#2|)) (-15 -3297 ((-402 |#2|) |#2| (-606 |#2|)))) (-13 (-435) (-141)) (-1176 |#1|)) (T -98)) +((-3297 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-13 (-435) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-98 *5 *3)))) (-3297 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-435) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-98 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -3297 ((-402 |#2|) |#2| |#2|)) (-15 -3297 ((-402 |#2|) |#2| (-606 |#2|)))) +((-2330 (((-111) $ $) 10))) +(((-99 |#1|) (-10 -8 (-15 -2330 ((-111) |#1| |#1|))) (-100)) (T -99)) +NIL +(-10 -8 (-15 -2330 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-2244 (((-111) $ $) 6))) +(((-100) (-134)) (T -100)) +((-2330 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) (-2244 (*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111))))) +(-13 (-10 -8 (-15 -2244 ((-111) $ $)) (-15 -2330 ((-111) $ $)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) 13 (|has| $ (-6 -4301)))) (-3271 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2980 (($ $ $) NIL (|has| $ (-6 -4301)))) (-3091 (($ $ (-606 |#1|)) 15)) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 11)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 17)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1740 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2156 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-606 |#1|) |#1| |#1| |#1|)) 35)) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 10)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) 12)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 9)) (-3425 (($) 16)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2508 (($ (-731) |#1|) 19)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-101 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2508 ($ (-731) |#1|)) (-15 -3091 ($ $ (-606 |#1|))) (-15 -1740 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1740 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 (-606 |#1|) |#1| |#1| |#1|))))) (-1045)) (T -101)) +((-2508 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-101 *3)) (-4 *3 (-1045)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3)))) (-1740 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1045)))) (-1740 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-101 *2)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-606 *2) *2 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-101 *2))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2508 ($ (-731) |#1|)) (-15 -3091 ($ $ (-606 |#1|))) (-15 -1740 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1740 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2156 ($ $ |#1| (-1 (-606 |#1|) |#1| |#1| |#1|))))) +((-3765 ((|#3| |#2| |#2|) 29)) (-1799 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4302 "*"))))) (-2403 ((|#3| |#2| |#2|) 30)) (-3715 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4302 "*")))))) +(((-102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3765 (|#3| |#2| |#2|)) (-15 -2403 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4302 "*"))) (PROGN (-15 -1799 (|#1| |#2| |#2|)) (-15 -3715 (|#1| |#2|))) |%noBranch|)) (-998) (-1176 |#1|) (-647 |#1| |#4| |#5|) (-357 |#1|) (-357 |#1|)) (T -102)) +((-3715 (*1 *2 *3) (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) (-4 *4 (-647 *2 *5 *6)))) (-1799 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) (-4 *4 (-647 *2 *5 *6)))) (-2403 (*1 *2 *3 *3) (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)))) (-3765 (*1 *2 *3 *3) (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4))))) +(-10 -7 (-15 -3765 (|#3| |#2| |#2|)) (-15 -2403 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4302 "*"))) (PROGN (-15 -1799 (|#1| |#2| |#2|)) (-15 -3715 (|#1| |#2|))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2220 (((-606 (-1117))) 33)) (-3083 (((-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210)))) (-1117)) 35)) (-2244 (((-111) $ $) NIL))) +(((-103) (-13 (-1045) (-10 -7 (-15 -2220 ((-606 (-1117)))) (-15 -3083 ((-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210)))) (-1117))) (-6 -4300)))) (T -103)) +((-2220 (*1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-103)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210))))) (-5 *1 (-103))))) +(-13 (-1045) (-10 -7 (-15 -2220 ((-606 (-1117)))) (-15 -3083 ((-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) (|:| |singularities| (-1098 (-210)))) (-1117))) (-6 -4300))) +((-2753 (($ (-606 |#2|)) 11))) +(((-104 |#1| |#2|) (-10 -8 (-15 -2753 (|#1| (-606 |#2|)))) (-105 |#2|) (-1154)) (T -104)) +NIL +(-10 -8 (-15 -2753 (|#1| (-606 |#2|)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-105 |#1|) (-134) (-1154)) (T -105)) +((-2753 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-105 *3)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154)))) (-3499 (*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154))))) +(-13 (-471 |t#1|) (-10 -8 (-6 -4301) (-15 -2753 ($ (-606 |t#1|))) (-15 -1599 (|t#1| $)) (-15 -3499 ($ |t#1| $)) (-15 -2783 (|t#1| $)))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-537) $) NIL (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) NIL)) (-3830 (((-537) $) NIL (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 8) (($ (-537)) NIL) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL) (((-956 2) $) 10)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-537) $) NIL (|has| (-537) (-522)))) (-2398 (($ (-391 (-537))) 9)) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2340 (($ $ $) NIL) (($ (-537) (-537)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL))) +(((-106) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 2) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2398 ($ (-391 (-537))))))) (T -106)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-956 2)) (-5 *1 (-106)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106))))) +(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 2) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2398 ($ (-391 (-537)))))) +((-1813 (((-606 (-918)) $) 14)) (-3923 (((-1117) $) 10)) (-2341 (((-816) $) 23)) (-3279 (($ (-1117) (-606 (-918))) 15))) +(((-107) (-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-606 (-918)) $)) (-15 -3279 ($ (-1117) (-606 (-918))))))) (T -107)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-107)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-606 (-918))) (-5 *1 (-107)))) (-3279 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-107))))) +(-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-606 (-918)) $)) (-15 -3279 ($ (-1117) (-606 (-918)))))) +((-2330 (((-111) $ $) NIL)) (-3160 (((-1064) $ (-1064)) 24)) (-1898 (($ $ (-1100)) 17)) (-2012 (((-3 (-1064) "failed") $) 23)) (-2151 (((-1064) $) 21)) (-2612 (((-1064) $ (-1064)) 26)) (-2299 (((-1064) $) 25)) (-3309 (($ (-372)) NIL) (($ (-372) (-1100)) 16)) (-3923 (((-372) $) NIL)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1338 (($ $) 18)) (-2244 (((-111) $ $) NIL))) +(((-108) (-13 (-348 (-372) (-1064)) (-10 -8 (-15 -2012 ((-3 (-1064) "failed") $)) (-15 -2299 ((-1064) $)) (-15 -2612 ((-1064) $ (-1064)))))) (T -108)) +((-2012 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-108)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-108)))) (-2612 (*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-108))))) +(-13 (-348 (-372) (-1064)) (-10 -8 (-15 -2012 ((-3 (-1064) "failed") $)) (-15 -2299 ((-1064) $)) (-15 -2612 ((-1064) $ (-1064))))) +((-2330 (((-111) $ $) NIL)) (-3284 (($ $) NIL)) (-1435 (($ $ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| (-111) (-807))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-111) (-807)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-111) $ (-1167 (-537)) (-111)) NIL (|has| $ (-6 -4301))) (((-111) $ (-537) (-111)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2355 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3195 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-4091 (((-111) $ (-537) (-111)) NIL (|has| $ (-6 -4301)))) (-4030 (((-111) $ (-537)) NIL)) (-2299 (((-537) (-111) $ (-537)) NIL (|has| (-111) (-1045))) (((-537) (-111) $) NIL (|has| (-111) (-1045))) (((-537) (-1 (-111) (-111)) $) NIL)) (-3661 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-2681 (($ $ $) NIL)) (-3679 (($ $) NIL)) (-3897 (($ $ $) NIL)) (-3157 (($ (-731) (-111)) 8)) (-1810 (($ $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL)) (-1470 (($ $ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3703 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL)) (-4081 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ (-111) $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-111) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-3040 (($ $ (-111)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-111)) (-606 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-606 (-278 (-111)))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3010 (((-606 (-111)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (($ $ (-1167 (-537))) NIL) (((-111) $ (-537)) NIL) (((-111) $ (-537) (-111)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2539 (((-731) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045)))) (((-731) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-111) (-580 (-513))))) (-2350 (($ (-606 (-111))) NIL)) (-3434 (($ (-606 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-2341 (((-816) $) NIL)) (-3272 (($ (-731) (-111)) 9)) (-2030 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3319 (($ $ $) NIL)) (-1512 (($ $ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-1501 (($ $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-109) (-13 (-122) (-10 -8 (-15 -3272 ($ (-731) (-111)))))) (T -109)) +((-3272 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-111)) (-5 *1 (-109))))) +(-13 (-122) (-10 -8 (-15 -3272 ($ (-731) (-111))))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-110 |#1| |#2|) (-134) (-998) (-998)) (T -110)) +NIL +(-13 (-609 |t#1|) (-1004 |t#2|) (-10 -7 (-6 -4295) (-6 -4294))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-1004 |#2|) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3284 (($ $) 10)) (-1435 (($ $ $) 15)) (-3300 (($) 7 T CONST)) (-2288 (($ $) 6)) (-3151 (((-731)) 24)) (-1618 (($) 30)) (-2681 (($ $ $) 13)) (-3679 (($ $) 9)) (-3897 (($ $ $) 16)) (-1810 (($ $ $) 17)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2334 (((-874) $) 29)) (-1654 (((-1100) $) NIL)) (-2009 (($ (-874)) 28)) (-1408 (($ $ $) 20)) (-2528 (((-1064) $) NIL)) (-2221 (($) 8 T CONST)) (-4058 (($ $ $) 21)) (-3996 (((-513) $) 36)) (-2341 (((-816) $) 39)) (-3319 (($ $ $) 11)) (-1512 (($ $ $) 14)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 19)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 22)) (-1501 (($ $ $) 12))) +(((-111) (-13 (-807) (-352) (-622) (-920) (-580 (-513)) (-10 -8 (-15 -3300 ($) -2787) (-15 -2221 ($) -2787) (-15 -1435 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -2288 ($ $))))) (T -111)) +((-3300 (*1 *1) (-5 *1 (-111))) (-2221 (*1 *1) (-5 *1 (-111))) (-1435 (*1 *1 *1 *1) (-5 *1 (-111))) (-1810 (*1 *1 *1 *1) (-5 *1 (-111))) (-3897 (*1 *1 *1 *1) (-5 *1 (-111))) (-2288 (*1 *1 *1) (-5 *1 (-111)))) +(-13 (-807) (-352) (-622) (-920) (-580 (-513)) (-10 -8 (-15 -3300 ($) -2787) (-15 -2221 ($) -2787) (-15 -1435 ($ $ $)) (-15 -1810 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -2288 ($ $)))) +((-3146 (((-3 (-1 |#1| (-606 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-606 |#1|))) 11) (((-3 |#1| "failed") (-113) (-606 |#1|)) 21)) (-1954 (((-3 (-606 (-1 |#1| (-606 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-606 (-1 |#1| (-606 |#1|)))) 26)) (-2655 (((-113) |#1|) 56 (|has| |#1| (-807)))) (-1375 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-807))))) +(((-112 |#1|) (-10 -7 (-15 -3146 ((-3 |#1| "failed") (-113) (-606 |#1|))) (-15 -3146 ((-113) (-113) (-1 |#1| (-606 |#1|)))) (-15 -3146 ((-113) (-113) (-1 |#1| |#1|))) (-15 -3146 ((-3 (-1 |#1| (-606 |#1|)) "failed") (-113))) (-15 -1954 ((-113) (-113) (-606 (-1 |#1| (-606 |#1|))))) (-15 -1954 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1954 ((-3 (-606 (-1 |#1| (-606 |#1|))) "failed") (-113))) (IF (|has| |#1| (-807)) (PROGN (-15 -2655 ((-113) |#1|)) (-15 -1375 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1045)) (T -112)) +((-1375 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1045)) (-4 *2 (-807)) (-5 *1 (-112 *2)))) (-2655 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-807)) (-4 *3 (-1045)))) (-1954 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-1 *4 (-606 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1045)))) (-1954 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-1954 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 (-1 *4 (-606 *4)))) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-3146 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-606 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1045)))) (-3146 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-3146 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-606 *4))) (-4 *4 (-1045)) (-5 *1 (-112 *4)))) (-3146 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-606 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1045))))) +(-10 -7 (-15 -3146 ((-3 |#1| "failed") (-113) (-606 |#1|))) (-15 -3146 ((-113) (-113) (-1 |#1| (-606 |#1|)))) (-15 -3146 ((-113) (-113) (-1 |#1| |#1|))) (-15 -3146 ((-3 (-1 |#1| (-606 |#1|)) "failed") (-113))) (-15 -1954 ((-113) (-113) (-606 (-1 |#1| (-606 |#1|))))) (-15 -1954 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1954 ((-3 (-606 (-1 |#1| (-606 |#1|))) "failed") (-113))) (IF (|has| |#1| (-807)) (PROGN (-15 -2655 ((-113) |#1|)) (-15 -1375 ((-3 |#1| "failed") (-113)))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-3073 (((-731) $) 72) (($ $ (-731)) 30)) (-4258 (((-111) $) 32)) (-4038 (($ $ (-1100) (-734)) 26)) (-3635 (($ $ (-44 (-1100) (-734))) 15)) (-1507 (((-3 (-734) "failed") $ (-1100)) 25)) (-1813 (((-44 (-1100) (-734)) $) 14)) (-3979 (($ (-1117)) 17) (($ (-1117) (-731)) 22)) (-3227 (((-111) $) 31)) (-2811 (((-111) $) 33)) (-3923 (((-1117) $) 8)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3215 (((-111) $ (-1117)) 10)) (-4255 (($ $ (-1 (-513) (-606 (-513)))) 52) (((-3 (-1 (-513) (-606 (-513))) "failed") $) 56)) (-2528 (((-1064) $) NIL)) (-3313 (((-111) $ (-1100)) 29)) (-3896 (($ $ (-1 (-111) $ $)) 35)) (-2356 (((-3 (-1 (-816) (-606 (-816))) "failed") $) 54) (($ $ (-1 (-816) (-606 (-816)))) 41) (($ $ (-1 (-816) (-816))) 43)) (-3384 (($ $ (-1100)) 45)) (-2494 (($ $) 63)) (-3493 (($ $ (-1 (-111) $ $)) 36)) (-2341 (((-816) $) 48)) (-3945 (($ $ (-1100)) 27)) (-4010 (((-3 (-731) "failed") $) 58)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 71)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 79))) +(((-113) (-13 (-807) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-44 (-1100) (-734)) $)) (-15 -2494 ($ $)) (-15 -3979 ($ (-1117))) (-15 -3979 ($ (-1117) (-731))) (-15 -4010 ((-3 (-731) "failed") $)) (-15 -3227 ((-111) $)) (-15 -4258 ((-111) $)) (-15 -2811 ((-111) $)) (-15 -3073 ((-731) $)) (-15 -3073 ($ $ (-731))) (-15 -3896 ($ $ (-1 (-111) $ $))) (-15 -3493 ($ $ (-1 (-111) $ $))) (-15 -2356 ((-3 (-1 (-816) (-606 (-816))) "failed") $)) (-15 -2356 ($ $ (-1 (-816) (-606 (-816))))) (-15 -2356 ($ $ (-1 (-816) (-816)))) (-15 -4255 ($ $ (-1 (-513) (-606 (-513))))) (-15 -4255 ((-3 (-1 (-513) (-606 (-513))) "failed") $)) (-15 -3215 ((-111) $ (-1117))) (-15 -3313 ((-111) $ (-1100))) (-15 -3945 ($ $ (-1100))) (-15 -3384 ($ $ (-1100))) (-15 -1507 ((-3 (-734) "failed") $ (-1100))) (-15 -4038 ($ $ (-1100) (-734))) (-15 -3635 ($ $ (-44 (-1100) (-734))))))) (T -113)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113)))) (-2494 (*1 *1 *1) (-5 *1 (-113))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) (-3979 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *1 (-113)))) (-4010 (*1 *2 *1) (|partial| -12 (-5 *2 (-731)) (-5 *1 (-113)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-4258 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) (-3896 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-3493 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-2356 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) (-2356 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-816))) (-5 *1 (-113)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113)))) (-4255 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113)))) (-3215 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-113)))) (-3313 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-113)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) (-1507 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-734)) (-5 *1 (-113)))) (-4038 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-734)) (-5 *1 (-113)))) (-3635 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113))))) +(-13 (-807) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -1813 ((-44 (-1100) (-734)) $)) (-15 -2494 ($ $)) (-15 -3979 ($ (-1117))) (-15 -3979 ($ (-1117) (-731))) (-15 -4010 ((-3 (-731) "failed") $)) (-15 -3227 ((-111) $)) (-15 -4258 ((-111) $)) (-15 -2811 ((-111) $)) (-15 -3073 ((-731) $)) (-15 -3073 ($ $ (-731))) (-15 -3896 ($ $ (-1 (-111) $ $))) (-15 -3493 ($ $ (-1 (-111) $ $))) (-15 -2356 ((-3 (-1 (-816) (-606 (-816))) "failed") $)) (-15 -2356 ($ $ (-1 (-816) (-606 (-816))))) (-15 -2356 ($ $ (-1 (-816) (-816)))) (-15 -4255 ($ $ (-1 (-513) (-606 (-513))))) (-15 -4255 ((-3 (-1 (-513) (-606 (-513))) "failed") $)) (-15 -3215 ((-111) $ (-1117))) (-15 -3313 ((-111) $ (-1100))) (-15 -3945 ($ $ (-1100))) (-15 -3384 ($ $ (-1100))) (-15 -1507 ((-3 (-734) "failed") $ (-1100))) (-15 -4038 ($ $ (-1100) (-734))) (-15 -3635 ($ $ (-44 (-1100) (-734)))))) +((-1396 (((-537) |#2|) 37))) +(((-114 |#1| |#2|) (-10 -7 (-15 -1396 ((-537) |#2|))) (-13 (-347) (-989 (-391 (-537)))) (-1176 |#1|)) (T -114)) +((-1396 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-989 (-391 *2)))) (-5 *2 (-537)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -1396 ((-537) |#2|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ (-537)) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1858 (($ (-1113 (-537)) (-537)) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4231 (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 (((-537)) NIL)) (-2089 (((-537) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1540 (($ $ (-537)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-1098 (-537)) $) NIL)) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-4150 (((-537) $ (-537)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) +(((-115 |#1|) (-822 |#1|) (-537)) (T -115)) +NIL +(-822 |#1|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-115 |#1|) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-115 |#1|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-115 |#1|) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-115 |#1|) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-115 |#1|) (-989 (-537))))) (-3958 (((-115 |#1|) $) NIL) (((-1117) $) NIL (|has| (-115 |#1|) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-115 |#1|) (-989 (-537)))) (((-537) $) NIL (|has| (-115 |#1|) (-989 (-537))))) (-4000 (($ $) NIL) (($ (-537) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-115 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-115 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-115 |#1|))) (|:| |vec| (-1200 (-115 |#1|)))) (-649 $) (-1200 $)) NIL) (((-649 (-115 |#1|)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-115 |#1|) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-115 |#1|) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-115 |#1|) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-115 |#1|) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-115 |#1|) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1093)))) (-2840 (((-111) $) NIL (|has| (-115 |#1|) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-115 |#1|) (-807)))) (-3889 (($ $ $) NIL (|has| (-115 |#1|) (-807)))) (-1612 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-115 |#1|) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-115 |#1|) (-291)))) (-3830 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-115 |#1|) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-115 |#1|)) (-606 (-115 |#1|))) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-278 (-115 |#1|))) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-606 (-278 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-293 (-115 |#1|)))) (($ $ (-606 (-1117)) (-606 (-115 |#1|))) NIL (|has| (-115 |#1|) (-495 (-1117) (-115 |#1|)))) (($ $ (-1117) (-115 |#1|)) NIL (|has| (-115 |#1|) (-495 (-1117) (-115 |#1|))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-270 (-115 |#1|) (-115 |#1|))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-115 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-115 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-731)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-115 |#1|) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-115 |#1|) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-115 |#1|) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-115 |#1|) (-580 (-513)))) (((-363) $) NIL (|has| (-115 |#1|) (-973))) (((-210) $) NIL (|has| (-115 |#1|) (-973)))) (-4225 (((-164 (-391 (-537))) $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-115 |#1|)) NIL) (($ (-1117)) NIL (|has| (-115 |#1|) (-989 (-1117))))) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-115 |#1|) (-862))) (|has| (-115 |#1|) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-522)))) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ (-537)) NIL)) (-2209 (($ $) NIL (|has| (-115 |#1|) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-115 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-115 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-115 |#1|) (-853 (-1117)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-731)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-115 |#1|) (-807)))) (-2340 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) +(((-116 |#1|) (-13 (-945 (-115 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) (-537)) (T -116)) +((-4150 (*1 *2 *1 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-537)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-116 *3)) (-14 *3 (-537)))) (-4000 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-537)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-116 *3)) (-14 *3 *2)))) +(-13 (-945 (-115 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) +((-2476 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2570 (((-606 $) $) 27)) (-3868 (((-111) $ $) 32)) (-3122 (((-111) |#2| $) 36)) (-3583 (((-606 |#2|) $) 22)) (-3862 (((-111) $) 16)) (-1922 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3335 (((-111) $) 45)) (-2341 (((-816) $) 41)) (-2804 (((-606 $) $) 28)) (-2244 (((-111) $ $) 34)) (-2258 (((-731) $) 43))) +(((-117 |#1| |#2|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2476 (|#1| |#1| "right" |#1|)) (-15 -2476 (|#1| |#1| "left" |#1|)) (-15 -1922 (|#1| |#1| "right")) (-15 -1922 (|#1| |#1| "left")) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3583 ((-606 |#2|) |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2258 ((-731) |#1|))) (-118 |#2|) (-1154)) (T -117)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2476 (|#1| |#1| "right" |#1|)) (-15 -2476 (|#1| |#1| "left" |#1|)) (-15 -1922 (|#1| |#1| "right")) (-15 -1922 (|#1| |#1| "left")) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3583 ((-606 |#2|) |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2258 ((-731) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 52 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 54 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) (($ $ "left" $) 55 (|has| $ (-6 -4301))) (($ $ "right" $) 53 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-3278 (($ $) 57)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3267 (($ $) 59)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-118 |#1|) (-134) (-1154)) (T -118)) +((-3267 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-3278 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-2476 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-2980 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154)))) (-2476 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) (-4 *3 (-1154)))) (-3271 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154))))) +(-13 (-962 |t#1|) (-10 -8 (-15 -3267 ($ $)) (-15 -1922 ($ $ "left")) (-15 -3278 ($ $)) (-15 -1922 ($ $ "right")) (IF (|has| $ (-6 -4301)) (PROGN (-15 -2476 ($ $ "left" $)) (-15 -2980 ($ $ $)) (-15 -2476 ($ $ "right" $)) (-15 -3271 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-4277 (((-111) |#1|) 24)) (-2389 (((-731) (-731)) 23) (((-731)) 22)) (-1391 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) +(((-119 |#1|) (-10 -7 (-15 -1391 ((-111) |#1|)) (-15 -1391 ((-111) |#1| (-111))) (-15 -2389 ((-731))) (-15 -2389 ((-731) (-731))) (-15 -4277 ((-111) |#1|))) (-1176 (-537))) (T -119)) +((-4277 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-2389 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-1391 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) +(-10 -7 (-15 -1391 ((-111) |#1|)) (-15 -1391 ((-111) |#1| (-111))) (-15 -2389 ((-731))) (-15 -2389 ((-731) (-731))) (-15 -4277 ((-111) |#1|))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 15)) (-3763 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-3271 (($ $ $) 18 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 20 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 17)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 23)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 19)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1613 (($ |#1| $) 24)) (-3499 (($ |#1| $) 10)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 8)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2622 (($ (-606 |#1|)) 12)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -2622 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)) (-15 -1613 ($ |#1| $)) (-15 -3763 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-807)) (T -120)) +((-2622 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-120 *3)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807)))) (-1613 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-807))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -2622 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)) (-15 -1613 ($ |#1| $)) (-15 -3763 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3284 (($ $) 13)) (-3679 (($ $) 11)) (-3897 (($ $ $) 23)) (-1810 (($ $ $) 21)) (-1512 (($ $ $) 19)) (-1501 (($ $ $) 17))) +(((-121 |#1|) (-10 -8 (-15 -3897 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|))) (-122)) (T -121)) +NIL +(-10 -8 (-15 -3897 (|#1| |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3284 (|#1| |#1|)) (-15 -1501 (|#1| |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-3284 (($ $) 103)) (-1435 (($ $ $) 25)) (-1279 (((-1205) $ (-537) (-537)) 66 (|has| $ (-6 -4301)))) (-2450 (((-111) $) 98 (|has| (-111) (-807))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-1543 (($ $) 102 (-12 (|has| (-111) (-807)) (|has| $ (-6 -4301)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4301)))) (-1566 (($ $) 97 (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-2506 (((-111) $ (-731)) 37)) (-2476 (((-111) $ (-1167 (-537)) (-111)) 88 (|has| $ (-6 -4301))) (((-111) $ (-537) (-111)) 54 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4300)))) (-3832 (($) 38 T CONST)) (-4146 (($ $) 100 (|has| $ (-6 -4301)))) (-3289 (($ $) 90)) (-3221 (($ $) 68 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4300))) (($ (-111) $) 69 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-3195 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-4091 (((-111) $ (-537) (-111)) 53 (|has| $ (-6 -4301)))) (-4030 (((-111) $ (-537)) 55)) (-2299 (((-537) (-111) $ (-537)) 95 (|has| (-111) (-1045))) (((-537) (-111) $) 94 (|has| (-111) (-1045))) (((-537) (-1 (-111) (-111)) $) 93)) (-3661 (((-606 (-111)) $) 45 (|has| $ (-6 -4300)))) (-2681 (($ $ $) 26)) (-3679 (($ $) 30)) (-3897 (($ $ $) 28)) (-3157 (($ (-731) (-111)) 77)) (-1810 (($ $ $) 29)) (-1642 (((-111) $ (-731)) 36)) (-1659 (((-537) $) 63 (|has| (-537) (-807)))) (-2444 (($ $ $) 13)) (-1470 (($ $ $) 96 (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-3703 (((-606 (-111)) $) 46 (|has| $ (-6 -4300)))) (-3122 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 62 (|has| (-537) (-807)))) (-3889 (($ $ $) 14)) (-4081 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-2489 (((-111) $ (-731)) 35)) (-1654 (((-1100) $) 9)) (-4049 (($ $ $ (-537)) 87) (($ (-111) $ (-537)) 86)) (-1270 (((-606 (-537)) $) 60)) (-1641 (((-111) (-537) $) 59)) (-2528 (((-1064) $) 10)) (-3188 (((-111) $) 64 (|has| (-537) (-807)))) (-1266 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-3040 (($ $ (-111)) 65 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-111)) (-606 (-111))) 52 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-278 (-111))) 50 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-606 (-278 (-111)))) 49 (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))))) (-2305 (((-111) $ $) 31)) (-2700 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3010 (((-606 (-111)) $) 58)) (-2193 (((-111) $) 34)) (-3425 (($) 33)) (-1922 (($ $ (-1167 (-537))) 83) (((-111) $ (-537)) 57) (((-111) $ (-537) (-111)) 56)) (-1856 (($ $ (-1167 (-537))) 85) (($ $ (-537)) 84)) (-2539 (((-731) (-111) $) 47 (-12 (|has| (-111) (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) 99 (|has| $ (-6 -4301)))) (-2494 (($ $) 32)) (-3996 (((-513) $) 67 (|has| (-111) (-580 (-513))))) (-2350 (($ (-606 (-111))) 76)) (-3434 (($ (-606 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-2341 (((-816) $) 11)) (-2030 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4300)))) (-3319 (($ $ $) 27)) (-1512 (($ $ $) 105)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-1501 (($ $ $) 104)) (-2258 (((-731) $) 39 (|has| $ (-6 -4300))))) +(((-122) (-134)) (T -122)) +((-3679 (*1 *1 *1) (-4 *1 (-122))) (-1810 (*1 *1 *1 *1) (-4 *1 (-122))) (-3897 (*1 *1 *1 *1) (-4 *1 (-122))) (-3319 (*1 *1 *1 *1) (-4 *1 (-122))) (-2681 (*1 *1 *1 *1) (-4 *1 (-122))) (-1435 (*1 *1 *1 *1) (-4 *1 (-122)))) +(-13 (-807) (-622) (-19 (-111)) (-10 -8 (-15 -3679 ($ $)) (-15 -1810 ($ $ $)) (-15 -3897 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -1435 ($ $ $)))) +(((-33) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 #0=(-111)) . T) ((-580 (-513)) |has| (-111) (-580 (-513))) ((-270 #1=(-537) #0#) . T) ((-272 #1# #0#) . T) ((-293 #0#) -12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))) ((-357 #0#) . T) ((-471 #0#) . T) ((-570 #1# #0#) . T) ((-495 #0# #0#) -12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))) ((-612 #0#) . T) ((-622) . T) ((-19 #0#) . T) ((-807) . T) ((-1045) . T) ((-1154) . T)) +((-4081 (($ (-1 |#2| |#2|) $) 22)) (-2494 (($ $) 16)) (-2258 (((-731) $) 24))) +(((-123 |#1| |#2|) (-10 -8 (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2494 (|#1| |#1|))) (-124 |#2|) (-1045)) (T -123)) +NIL +(-10 -8 (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2494 (|#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 52 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 54 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) (($ $ "left" $) 55 (|has| $ (-6 -4301))) (($ $ "right" $) 53 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-3278 (($ $) 57)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 60)) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3267 (($ $) 59)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-124 |#1|) (-134) (-1045)) (T -124)) +((-2913 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1045))))) +(-13 (-118 |t#1|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -2913 ($ $ |t#1| $)))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-118 |#1|) . T) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 15)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) 19 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 20 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 18 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 21)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3499 (($ |#1| $) 10)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 8)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 17)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1466 (($ (-606 |#1|)) 12)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4301) (-15 -1466 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)))) (-807)) (T -125)) +((-1466 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-125 *3)))) (-3499 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-807))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4301) (-15 -1466 ($ (-606 |#1|))) (-15 -3499 ($ |#1| $)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 24)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) 26 (|has| $ (-6 -4301)))) (-3271 (($ $ $) 30 (|has| $ (-6 -4301)))) (-2980 (($ $ $) 28 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 20)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2913 (($ $ |#1| $) 15)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 19)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) 21)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 18)) (-3425 (($) 11)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1923 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 10 (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -1923 ($ |#1|)) (-15 -1923 ($ $ |#1| $)))) (-1045)) (T -126)) +((-1923 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045)))) (-1923 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045))))) +(-13 (-124 |#1|) (-10 -8 (-15 -1923 ($ |#1|)) (-15 -1923 ($ $ |#1| $)))) +((-2330 (((-111) $ $) NIL (|has| (-128) (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) (-128) (-128)) $) NIL) (((-111) $) NIL (|has| (-128) (-807)))) (-1543 (($ (-1 (-111) (-128) (-128)) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-128) (-807))))) (-1566 (($ (-1 (-111) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-128) $ (-537) (-128)) NIL (|has| $ (-6 -4301))) (((-128) $ (-1167 (-537)) (-128)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-2355 (($ (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045)))) (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4300))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-128) $ (-537) (-128)) NIL (|has| $ (-6 -4301)))) (-4030 (((-128) $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) (-128)) $) NIL) (((-537) (-128) $) NIL (|has| (-128) (-1045))) (((-537) (-128) $ (-537)) NIL (|has| (-128) (-1045)))) (-3661 (((-606 (-128)) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-128)) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-128) (-807)))) (-1470 (($ (-1 (-111) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-807)))) (-3703 (((-606 (-128)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-128) (-807)))) (-4081 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| (-128) (-1045)))) (-4049 (($ (-128) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| (-128) (-1045)))) (-3188 (((-128) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-128) "failed") (-1 (-111) (-128)) $) NIL)) (-3040 (($ $ (-128)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-128)))) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045)))) (($ $ (-278 (-128))) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045)))) (($ $ (-606 (-128)) (-606 (-128))) NIL (-12 (|has| (-128) (-293 (-128))) (|has| (-128) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-3010 (((-606 (-128)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-128) $ (-537) (-128)) NIL) (((-128) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300))) (((-731) (-128) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-128) (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-128) (-580 (-513))))) (-2350 (($ (-606 (-128))) NIL)) (-3434 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| (-128) (-579 (-816))))) (-2030 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2244 (((-111) $ $) NIL (|has| (-128) (-1045)))) (-2282 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-128) (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-127) (-19 (-128))) (T -127)) +NIL +(-19 (-128)) +((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 12) (((-731) $) 9) (($ (-731)) 8)) (-4271 (($ (-731)) 7)) (-3775 (($ $ $) 16)) (-1976 (($ $ $) 15)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 14))) +(((-128) (-13 (-807) (-579 (-731)) (-10 -8 (-15 -4271 ($ (-731))) (-15 -2341 ($ (-731))) (-15 -1976 ($ $ $)) (-15 -3775 ($ $ $))))) (T -128)) +((-4271 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128)))) (-1976 (*1 *1 *1 *1) (-5 *1 (-128))) (-3775 (*1 *1 *1 *1) (-5 *1 (-128)))) +(-13 (-807) (-579 (-731)) (-10 -8 (-15 -4271 ($ (-731))) (-15 -2341 ($ (-731))) (-15 -1976 ($ $ $)) (-15 -3775 ($ $ $)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15))) +(((-129) (-134)) (T -129)) +((-3418 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) +(-13 (-23) (-10 -8 (-15 -3418 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-3219 (((-1205) $ (-731)) 19)) (-2299 (((-731) $) 20)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +(((-130) (-134)) (T -130)) +((-2299 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-731)))) (-3219 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-731)) (-5 *2 (-1205))))) +(-13 (-807) (-10 -8 (-15 -2299 ((-731) $)) (-15 -3219 ((-1205) $ (-731))))) +(((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 34)) (-1656 (((-111) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-731) "failed") $) 40)) (-3958 (((-731) $) 38)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3697 (((-111)) 41)) (-2598 (((-111) (-111)) 43)) (-3344 (((-111) $) 24)) (-1582 (((-111) $) 37)) (-2341 (((-816) $) 22) (($ (-731)) 14)) (-2928 (($) 12 T CONST)) (-2943 (($) 11 T CONST)) (-2906 (($ (-731)) 15)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 25)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 26)) (-2329 (((-3 $ "failed") $ $) 30)) (-2318 (($ $ $) 28)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL) (($ $ $) 36)) (* (($ (-731) $) 33) (($ (-874) $) NIL) (($ $ $) 31))) +(((-131) (-13 (-807) (-23) (-687) (-989 (-731)) (-10 -8 (-6 (-4302 "*")) (-15 -2329 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2906 ($ (-731))) (-15 -3344 ((-111) $)) (-15 -1582 ((-111) $)) (-15 -3697 ((-111))) (-15 -2598 ((-111) (-111)))))) (T -131)) +((-2329 (*1 *1 *1 *1) (|partial| -5 *1 (-131))) (** (*1 *1 *1 *1) (-5 *1 (-131))) (-2906 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-131)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-3697 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(-13 (-807) (-23) (-687) (-989 (-731)) (-10 -8 (-6 (-4302 "*")) (-15 -2329 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2906 ($ (-731))) (-15 -3344 ((-111) $)) (-15 -1582 ((-111) $)) (-15 -3697 ((-111))) (-15 -2598 ((-111) (-111))))) +((-2192 (((-133 |#1| |#2| |#4|) (-606 |#4|) (-133 |#1| |#2| |#3|)) 14)) (-1612 (((-133 |#1| |#2| |#4|) (-1 |#4| |#3|) (-133 |#1| |#2| |#3|)) 18))) +(((-132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2192 ((-133 |#1| |#2| |#4|) (-606 |#4|) (-133 |#1| |#2| |#3|))) (-15 -1612 ((-133 |#1| |#2| |#4|) (-1 |#4| |#3|) (-133 |#1| |#2| |#3|)))) (-537) (-731) (-163) (-163)) (T -132)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8))))) +(-10 -7 (-15 -2192 ((-133 |#1| |#2| |#4|) (-606 |#4|) (-133 |#1| |#2| |#3|))) (-15 -1612 ((-133 |#1| |#2| |#4|) (-1 |#4| |#3|) (-133 |#1| |#2| |#3|)))) +((-2330 (((-111) $ $) NIL)) (-3540 (($ (-606 |#3|)) 40)) (-3660 (($ $) 99) (($ $ (-537) (-537)) 98)) (-3832 (($) 17)) (-1516 (((-3 |#3| "failed") $) 60)) (-3958 ((|#3| $) NIL)) (-4048 (($ $ (-606 (-537))) 100)) (-2178 (((-606 |#3|) $) 36)) (-3705 (((-731) $) 44)) (-3371 (($ $ $) 93)) (-1758 (($) 43)) (-1654 (((-1100) $) NIL)) (-1534 (($) 16)) (-2528 (((-1064) $) NIL)) (-1922 ((|#3| $) 46) ((|#3| $ (-537)) 47) ((|#3| $ (-537) (-537)) 48) ((|#3| $ (-537) (-537) (-537)) 49) ((|#3| $ (-537) (-537) (-537) (-537)) 50) ((|#3| $ (-606 (-537))) 52)) (-2872 (((-731) $) 45)) (-2352 (($ $ (-537) $ (-537)) 94) (($ $ (-537) (-537)) 96)) (-2341 (((-816) $) 67) (($ |#3|) 68) (($ (-225 |#2| |#3|)) 75) (($ (-1084 |#2| |#3|)) 78) (($ (-606 |#3|)) 53) (($ (-606 $)) 58)) (-2928 (($) 69 T CONST)) (-2943 (($) 70 T CONST)) (-2244 (((-111) $ $) 80)) (-2329 (($ $) 86) (($ $ $) 84)) (-2318 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-537)) 89) (($ (-537) $) 88) (($ $ $) 95))) +(((-133 |#1| |#2| |#3|) (-13 (-448 |#3| (-731)) (-453 (-537) (-731)) (-10 -8 (-15 -2341 ($ (-225 |#2| |#3|))) (-15 -2341 ($ (-1084 |#2| |#3|))) (-15 -2341 ($ (-606 |#3|))) (-15 -2341 ($ (-606 $))) (-15 -3705 ((-731) $)) (-15 -1922 (|#3| $)) (-15 -1922 (|#3| $ (-537))) (-15 -1922 (|#3| $ (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-606 (-537)))) (-15 -3371 ($ $ $)) (-15 * ($ $ $)) (-15 -2352 ($ $ (-537) $ (-537))) (-15 -2352 ($ $ (-537) (-537))) (-15 -3660 ($ $)) (-15 -3660 ($ $ (-537) (-537))) (-15 -4048 ($ $ (-606 (-537)))) (-15 -1534 ($)) (-15 -1758 ($)) (-15 -2178 ((-606 |#3|) $)) (-15 -3540 ($ (-606 |#3|))) (-15 -3832 ($)))) (-537) (-731) (-163)) (T -133)) +((-3371 (*1 *1 *1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1084 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-133 *3 *4 *5))) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 *2) (-4 *5 (-163)))) (-1922 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-133 *3 *4 *2)) (-14 *3 (-537)) (-14 *4 (-731)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-731)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-606 (-537))) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) (-14 *4 (-537)) (-14 *5 (-731)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-2352 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-731)) (-4 *5 (-163)))) (-2352 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-731)) (-4 *5 (-163)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-3660 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-731)) (-4 *5 (-163)))) (-4048 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) (-1534 (*1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-1758 (*1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-606 *5)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) (-14 *4 (-731)))) (-3832 (*1 *1) (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) (-4 *4 (-163))))) +(-13 (-448 |#3| (-731)) (-453 (-537) (-731)) (-10 -8 (-15 -2341 ($ (-225 |#2| |#3|))) (-15 -2341 ($ (-1084 |#2| |#3|))) (-15 -2341 ($ (-606 |#3|))) (-15 -2341 ($ (-606 $))) (-15 -3705 ((-731) $)) (-15 -1922 (|#3| $)) (-15 -1922 (|#3| $ (-537))) (-15 -1922 (|#3| $ (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-537) (-537) (-537) (-537))) (-15 -1922 (|#3| $ (-606 (-537)))) (-15 -3371 ($ $ $)) (-15 * ($ $ $)) (-15 -2352 ($ $ (-537) $ (-537))) (-15 -2352 ($ $ (-537) (-537))) (-15 -3660 ($ $)) (-15 -3660 ($ $ (-537) (-537))) (-15 -4048 ($ $ (-606 (-537)))) (-15 -1534 ($)) (-15 -1758 ($)) (-15 -2178 ((-606 |#3|) $)) (-15 -3540 ($ (-606 |#3|))) (-15 -3832 ($)))) +((-2341 (((-816) $) 7))) +(((-134) (-579 (-816))) (T -134)) +NIL +(-579 (-816)) +((-2330 (((-111) $ $) NIL)) (-2099 (($) 15 T CONST)) (-1750 (($) NIL (|has| (-138) (-352)))) (-4221 (($ $ $) 17) (($ $ (-138)) NIL) (($ (-138) $) NIL)) (-2969 (($ $ $) NIL)) (-3495 (((-111) $ $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| (-138) (-352)))) (-1272 (($) NIL) (($ (-606 (-138))) NIL)) (-3435 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3026 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (($ (-138) $) 51 (|has| $ (-6 -4300)))) (-2355 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (($ (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-1618 (($) NIL (|has| (-138) (-352)))) (-3661 (((-606 (-138)) $) 60 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-2444 (((-138) $) NIL (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) 26 (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3889 (((-138) $) NIL (|has| (-138) (-807)))) (-4081 (($ (-1 (-138) (-138)) $) 59 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) 55)) (-2602 (($) 16 T CONST)) (-2334 (((-874) $) NIL (|has| (-138) (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 29)) (-2783 (((-138) $) 52)) (-3499 (($ (-138) $) 50)) (-2009 (($ (-874)) NIL (|has| (-138) (-352)))) (-3718 (($) 14 T CONST)) (-2528 (((-1064) $) NIL)) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-1599 (((-138) $) 53)) (-3206 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-138)) (-606 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-278 (-138)))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 48)) (-3670 (($) 13 T CONST)) (-2867 (($ $ $) 31) (($ $ (-138)) NIL)) (-1341 (($ (-606 (-138))) NIL) (($) NIL)) (-2539 (((-731) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (((-731) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-1100) $) 36) (((-513) $) NIL (|has| (-138) (-580 (-513)))) (((-606 (-138)) $) 34)) (-2350 (($ (-606 (-138))) NIL)) (-1583 (($ $) 32 (|has| (-138) (-352)))) (-2341 (((-816) $) 46)) (-3220 (($ (-1100)) 12) (($ (-606 (-138))) 43)) (-1627 (((-731) $) NIL)) (-3575 (($) 49) (($ (-606 (-138))) NIL)) (-2753 (($ (-606 (-138))) NIL)) (-2030 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-2645 (($) 19 T CONST)) (-2663 (($) 18 T CONST)) (-2244 (((-111) $ $) 22)) (-2258 (((-731) $) 47 (|has| $ (-6 -4300))))) +(((-135) (-13 (-1045) (-580 (-1100)) (-409 (-138)) (-580 (-606 (-138))) (-10 -8 (-15 -3220 ($ (-1100))) (-15 -3220 ($ (-606 (-138)))) (-15 -3670 ($) -2787) (-15 -3718 ($) -2787) (-15 -2099 ($) -2787) (-15 -2602 ($) -2787) (-15 -2663 ($) -2787) (-15 -2645 ($) -2787)))) (T -135)) +((-3220 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-135)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-606 (-138))) (-5 *1 (-135)))) (-3670 (*1 *1) (-5 *1 (-135))) (-3718 (*1 *1) (-5 *1 (-135))) (-2099 (*1 *1) (-5 *1 (-135))) (-2602 (*1 *1) (-5 *1 (-135))) (-2663 (*1 *1) (-5 *1 (-135))) (-2645 (*1 *1) (-5 *1 (-135)))) +(-13 (-1045) (-580 (-1100)) (-409 (-138)) (-580 (-606 (-138))) (-10 -8 (-15 -3220 ($ (-1100))) (-15 -3220 ($ (-606 (-138)))) (-15 -3670 ($) -2787) (-15 -3718 ($) -2787) (-15 -2099 ($) -2787) (-15 -2602 ($) -2787) (-15 -2663 ($) -2787) (-15 -2645 ($) -2787))) +((-1478 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1246 ((|#1| |#3|) 9)) (-4067 ((|#3| |#3|) 15))) +(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-529) (-945 |#1|) (-357 |#2|)) (T -136)) +((-1478 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-357 *5)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-136 *3 *4 *2)) (-4 *2 (-357 *4)))) (-1246 (*1 *2 *3) (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-357 *4))))) +(-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2967 (($ $ $) 8)) (-2871 (($ $) 7)) (-2360 (($ $ $) 6))) +(((-137) (-134)) (T -137)) +((-2967 (*1 *1 *1 *1) (-4 *1 (-137))) (-2871 (*1 *1 *1) (-4 *1 (-137))) (-2360 (*1 *1 *1 *1) (-4 *1 (-137)))) +(-13 (-10 -8 (-15 -2360 ($ $ $)) (-15 -2871 ($ $)) (-15 -2967 ($ $ $)))) +((-2330 (((-111) $ $) NIL)) (-1917 (((-111) $) 30)) (-2099 (($ $) 43)) (-2308 (($) 17)) (-3151 (((-731)) 10)) (-1618 (($) 16)) (-3649 (($) 18)) (-4074 (((-731) $) 14)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2260 (((-111) $) 32)) (-2602 (($ $) 44)) (-2334 (((-874) $) 15)) (-1654 (((-1100) $) 38)) (-2009 (($ (-874)) 13)) (-1268 (((-111) $) 28)) (-2528 (((-1064) $) NIL)) (-3343 (($) 19)) (-2486 (((-111) $) 26)) (-2341 (((-816) $) 21)) (-2816 (($ (-731)) 11) (($ (-1100)) 42)) (-1436 (((-111) $) 36)) (-3683 (((-111) $) 34)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 7)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 8))) +(((-138) (-13 (-801) (-10 -8 (-15 -4074 ((-731) $)) (-15 -2816 ($ (-731))) (-15 -2816 ($ (-1100))) (-15 -2308 ($)) (-15 -3649 ($)) (-15 -3343 ($)) (-15 -2099 ($ $)) (-15 -2602 ($ $)) (-15 -2486 ((-111) $)) (-15 -1268 ((-111) $)) (-15 -3683 ((-111) $)) (-15 -1917 ((-111) $)) (-15 -2260 ((-111) $)) (-15 -1436 ((-111) $))))) (T -138)) +((-4074 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-138)))) (-2816 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-138)))) (-2816 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-138)))) (-2308 (*1 *1) (-5 *1 (-138))) (-3649 (*1 *1) (-5 *1 (-138))) (-3343 (*1 *1) (-5 *1 (-138))) (-2099 (*1 *1 *1) (-5 *1 (-138))) (-2602 (*1 *1 *1) (-5 *1 (-138))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(-13 (-801) (-10 -8 (-15 -4074 ((-731) $)) (-15 -2816 ($ (-731))) (-15 -2816 ($ (-1100))) (-15 -2308 ($)) (-15 -3649 ($)) (-15 -3343 ($)) (-15 -2099 ($ $)) (-15 -2602 ($ $)) (-15 -2486 ((-111) $)) (-15 -1268 ((-111) $)) (-15 -3683 ((-111) $)) (-15 -1917 ((-111) $)) (-15 -2260 ((-111) $)) (-15 -1436 ((-111) $)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-2644 (((-3 $ "failed") $) 33)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-139) (-134)) (T -139)) +((-2644 (*1 *1 *1) (|partial| -4 *1 (-139)))) +(-13 (-998) (-10 -8 (-15 -2644 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2736 ((|#1| (-649 |#1|) |#1|) 19))) +(((-140 |#1|) (-10 -7 (-15 -2736 (|#1| (-649 |#1|) |#1|))) (-163)) (T -140)) +((-2736 (*1 *2 *3 *2) (-12 (-5 *3 (-649 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2))))) +(-10 -7 (-15 -2736 (|#1| (-649 |#1|) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-141) (-134)) (T -141)) +NIL +(-13 (-998)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1911 (((-2 (|:| -3283 (-731)) (|:| -3449 (-391 |#2|)) (|:| |radicand| |#2|)) (-391 |#2|) (-731)) 70)) (-2722 (((-3 (-2 (|:| |radicand| (-391 |#2|)) (|:| |deg| (-731))) "failed") |#3|) 52)) (-3859 (((-2 (|:| -3449 (-391 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4093 ((|#1| |#3| |#3|) 40)) (-4116 ((|#3| |#3| (-391 |#2|) (-391 |#2|)) 19)) (-1719 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| |deg| (-731))) |#3| |#3|) 49))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3859 ((-2 (|:| -3449 (-391 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2722 ((-3 (-2 (|:| |radicand| (-391 |#2|)) (|:| |deg| (-731))) "failed") |#3|)) (-15 -1911 ((-2 (|:| -3283 (-731)) (|:| -3449 (-391 |#2|)) (|:| |radicand| |#2|)) (-391 |#2|) (-731))) (-15 -4093 (|#1| |#3| |#3|)) (-15 -4116 (|#3| |#3| (-391 |#2|) (-391 |#2|))) (-15 -1719 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| |deg| (-731))) |#3| |#3|))) (-1158) (-1176 |#1|) (-1176 (-391 |#2|))) (T -142)) +((-1719 (*1 *2 *3 *3) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-391 *5)) (|:| |c2| (-391 *5)) (|:| |deg| (-731)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5))))) (-4116 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-391 *5)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1176 *3)))) (-4093 (*1 *2 *3 *3) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-1158)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-1176 (-391 *4))))) (-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-391 *6)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *6))) (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-731)) (-4 *7 (-1176 *3)))) (-2722 (*1 *2 *3) (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| |radicand| (-391 *5)) (|:| |deg| (-731)))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5))))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -3449 (-391 *5)) (|:| |poly| *3))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) +(-10 -7 (-15 -3859 ((-2 (|:| -3449 (-391 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2722 ((-3 (-2 (|:| |radicand| (-391 |#2|)) (|:| |deg| (-731))) "failed") |#3|)) (-15 -1911 ((-2 (|:| -3283 (-731)) (|:| -3449 (-391 |#2|)) (|:| |radicand| |#2|)) (-391 |#2|) (-731))) (-15 -4093 (|#1| |#3| |#3|)) (-15 -4116 (|#3| |#3| (-391 |#2|) (-391 |#2|))) (-15 -1719 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| |deg| (-731))) |#3| |#3|))) +((-2022 (((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)) 32))) +(((-143 |#1| |#2|) (-10 -7 (-15 -2022 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)))) (-522) (-157 |#1|)) (T -143)) +((-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) (-4 *5 (-157 *4)) (-4 *4 (-522)) (-5 *1 (-143 *4 *5))))) +(-10 -7 (-15 -2022 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)))) +((-1936 (($ (-1 (-111) |#2|) $) 29)) (-3221 (($ $) 36)) (-2355 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-3195 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1266 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-3206 (((-111) (-1 (-111) |#2|) $) 16)) (-2539 (((-731) (-1 (-111) |#2|) $) 14) (((-731) |#2| $) NIL)) (-2030 (((-111) (-1 (-111) |#2|) $) 15)) (-2258 (((-731) $) 11))) +(((-144 |#1| |#2|) (-10 -8 (-15 -3221 (|#1| |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) (-145 |#2|) (-1154)) (T -144)) +NIL +(-10 -8 (-15 -3221 (|#1| |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-1936 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 41 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300))) (($ |#1| $) 42 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 40 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 49)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-145 |#1|) (-134) (-1154)) (T -145)) +((-2350 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-145 *3)))) (-1266 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-3195 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-3195 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) (-4 *3 (-1154)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) (-4 *3 (-1154)))) (-3195 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)))) (-2355 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) (-3221 (*1 *1 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) (-4 *2 (-1045))))) +(-13 (-471 |t#1|) (-10 -8 (-15 -2350 ($ (-606 |t#1|))) (-15 -1266 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4300)) (PROGN (-15 -3195 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3195 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2355 ($ (-1 (-111) |t#1|) $)) (-15 -1936 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3195 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2355 ($ |t#1| $)) (-15 -3221 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) 86)) (-2836 (((-111) $) NIL)) (-3733 (($ |#2| (-606 (-874))) 56)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1363 (($ (-874)) 47)) (-1839 (((-131)) 23)) (-2341 (((-816) $) 69) (($ (-537)) 45) (($ |#2|) 46)) (-3500 ((|#2| $ (-606 (-874))) 59)) (-3654 (((-731)) 20)) (-2928 (($) 40 T CONST)) (-2943 (($) 43 T CONST)) (-2244 (((-111) $ $) 26)) (-2340 (($ $ |#2|) NIL)) (-2329 (($ $) 34) (($ $ $) 32)) (-2318 (($ $ $) 30)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-146 |#1| |#2| |#3|) (-13 (-998) (-37 |#2|) (-1207 |#2|) (-10 -8 (-15 -1363 ($ (-874))) (-15 -3733 ($ |#2| (-606 (-874)))) (-15 -3500 (|#2| $ (-606 (-874)))) (-15 -3490 ((-3 $ "failed") $)))) (-874) (-347) (-946 |#1| |#2|)) (T -146)) +((-3490 (*1 *1 *1) (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-874)) (-4 *3 (-347)) (-14 *4 (-946 *2 *3)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-347)) (-14 *5 (-946 *3 *4)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-874))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-874)) (-4 *2 (-347)) (-14 *5 (-946 *4 *2)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-606 (-874))) (-4 *2 (-347)) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-874)) (-14 *5 (-946 *4 *2))))) +(-13 (-998) (-37 |#2|) (-1207 |#2|) (-10 -8 (-15 -1363 ($ (-874))) (-15 -3733 ($ |#2| (-606 (-874)))) (-15 -3500 (|#2| $ (-606 (-874)))) (-15 -3490 ((-3 $ "failed") $)))) +((-2857 (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))) (-210) (-210) (-210) (-210)) 38)) (-3647 (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537))) 63) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880)) 64)) (-1644 (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210))))) 67) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-896 (-210)))) 66) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537))) 58) (((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880)) 59))) +(((-147) (-10 -7 (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -2857 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))) (-210) (-210) (-210) (-210))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-896 (-210))))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))))))) (T -147)) +((-1644 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 (-210))))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)) (-5 *3 (-606 (-896 (-210)))))) (-2857 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-210)) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 *4)))) (|:| |xValues| (-1040 *4)) (|:| |yValues| (-1040 *4)))) (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 *4)))))) (-3647 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)))) (-1644 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) (-5 *1 (-147))))) +(-10 -7 (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880))) (-15 -3647 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-880) (-391 (-537)) (-391 (-537)))) (-15 -2857 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210)))) (-210) (-210) (-210) (-210))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-896 (-210))))) (-15 -1644 ((-2 (|:| |brans| (-606 (-606 (-896 (-210))))) (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210)))) (-606 (-606 (-896 (-210))))))) +((-2907 (((-606 (-160 |#2|)) |#1| |#2|) 45))) +(((-148 |#1| |#2|) (-10 -7 (-15 -2907 ((-606 (-160 |#2|)) |#1| |#2|))) (-1176 (-160 (-537))) (-13 (-347) (-805))) (T -148)) +((-2907 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-160 *4))) (-5 *1 (-148 *3 *4)) (-4 *3 (-1176 (-160 (-537)))) (-4 *4 (-13 (-347) (-805)))))) +(-10 -7 (-15 -2907 ((-606 (-160 |#2|)) |#1| |#2|))) +((-2330 (((-111) $ $) NIL)) (-3664 (($) 15)) (-3093 (($) 14)) (-3782 (((-874)) 22)) (-1654 (((-1100) $) NIL)) (-1826 (((-537) $) 19)) (-2528 (((-1064) $) NIL)) (-3250 (($) 16)) (-3053 (($ (-537)) 23)) (-2341 (((-816) $) 29)) (-3884 (($) 17)) (-2244 (((-111) $ $) 13)) (-2318 (($ $ $) 11)) (* (($ (-874) $) 21) (($ (-210) $) 8))) +(((-149) (-13 (-25) (-10 -8 (-15 * ($ (-874) $)) (-15 * ($ (-210) $)) (-15 -2318 ($ $ $)) (-15 -3093 ($)) (-15 -3664 ($)) (-15 -3250 ($)) (-15 -3884 ($)) (-15 -1826 ((-537) $)) (-15 -3782 ((-874))) (-15 -3053 ($ (-537)))))) (T -149)) +((-2318 (*1 *1 *1 *1) (-5 *1 (-149))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-149)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-149)))) (-3093 (*1 *1) (-5 *1 (-149))) (-3664 (*1 *1) (-5 *1 (-149))) (-3250 (*1 *1) (-5 *1 (-149))) (-3884 (*1 *1) (-5 *1 (-149))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-149)))) (-3782 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-149)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-149))))) +(-13 (-25) (-10 -8 (-15 * ($ (-874) $)) (-15 * ($ (-210) $)) (-15 -2318 ($ $ $)) (-15 -3093 ($)) (-15 -3664 ($)) (-15 -3250 ($)) (-15 -3884 ($)) (-15 -1826 ((-537) $)) (-15 -3782 ((-874))) (-15 -3053 ($ (-537))))) +((-2600 ((|#2| |#2| (-1038 |#2|)) 88) ((|#2| |#2| (-1117)) 68)) (-3371 ((|#2| |#2| (-1038 |#2|)) 87) ((|#2| |#2| (-1117)) 67)) (-2967 ((|#2| |#2| |#2|) 27)) (-3979 (((-113) (-113)) 99)) (-3013 ((|#2| (-606 |#2|)) 117)) (-4232 ((|#2| (-606 |#2|)) 135)) (-1386 ((|#2| (-606 |#2|)) 125)) (-1995 ((|#2| |#2|) 123)) (-1456 ((|#2| (-606 |#2|)) 111)) (-2426 ((|#2| (-606 |#2|)) 112)) (-2801 ((|#2| (-606 |#2|)) 133)) (-2939 ((|#2| |#2| (-1117)) 56) ((|#2| |#2|) 55)) (-2871 ((|#2| |#2|) 23)) (-2360 ((|#2| |#2| |#2|) 26)) (-2336 (((-111) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-150 |#1| |#2|) (-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -2360 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -2939 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1038 |#2|))) (-15 -3371 (|#2| |#2| (-1117))) (-15 -3371 (|#2| |#2| (-1038 |#2|))) (-15 -1995 (|#2| |#2|)) (-15 -2801 (|#2| (-606 |#2|))) (-15 -1386 (|#2| (-606 |#2|))) (-15 -4232 (|#2| (-606 |#2|))) (-15 -1456 (|#2| (-606 |#2|))) (-15 -2426 (|#2| (-606 |#2|))) (-15 -3013 (|#2| (-606 |#2|)))) (-13 (-807) (-529)) (-414 |#1|)) (T -150)) +((-3013 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) (-4 *4 (-13 (-807) (-529))))) (-1995 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-3371 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)))) (-3371 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) (-4 *2 (-414 *4)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) (-4 *2 (-414 *4)))) (-2939 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) (-4 *2 (-414 *4)))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-2871 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-2967 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) (-4 *2 (-414 *3)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *4)) (-4 *4 (-414 *3)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-150 *4 *5)) (-4 *5 (-414 *4))))) +(-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -2360 (|#2| |#2| |#2|)) (-15 -2967 (|#2| |#2| |#2|)) (-15 -2871 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -2939 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1117))) (-15 -2600 (|#2| |#2| (-1038 |#2|))) (-15 -3371 (|#2| |#2| (-1117))) (-15 -3371 (|#2| |#2| (-1038 |#2|))) (-15 -1995 (|#2| |#2|)) (-15 -2801 (|#2| (-606 |#2|))) (-15 -1386 (|#2| (-606 |#2|))) (-15 -4232 (|#2| (-606 |#2|))) (-15 -1456 (|#2| (-606 |#2|))) (-15 -2426 (|#2| (-606 |#2|))) (-15 -3013 (|#2| (-606 |#2|)))) +((-2814 ((|#1| |#1| |#1|) 53)) (-4117 ((|#1| |#1| |#1|) 50)) (-2967 ((|#1| |#1| |#1|) 44)) (-3211 ((|#1| |#1|) 35)) (-1419 ((|#1| |#1| (-606 |#1|)) 43)) (-2871 ((|#1| |#1|) 37)) (-2360 ((|#1| |#1| |#1|) 40))) +(((-151 |#1|) (-10 -7 (-15 -2360 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -1419 (|#1| |#1| (-606 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|))) (-522)) (T -151)) +((-2814 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-4117 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-2967 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-3211 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-1419 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-522)) (-5 *1 (-151 *2)))) (-2871 (*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) +(-10 -7 (-15 -2360 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -1419 (|#1| |#1| (-606 |#1|))) (-15 -3211 (|#1| |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|))) +((-2600 (($ $ (-1117)) 12) (($ $ (-1038 $)) 11)) (-3371 (($ $ (-1117)) 10) (($ $ (-1038 $)) 9)) (-2967 (($ $ $) 8)) (-2939 (($ $) 14) (($ $ (-1117)) 13)) (-2871 (($ $) 7)) (-2360 (($ $ $) 6))) +(((-152) (-134)) (T -152)) +((-2939 (*1 *1 *1) (-4 *1 (-152))) (-2939 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) (-2600 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) (-2600 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152)))) (-3371 (*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152))))) +(-13 (-137) (-10 -8 (-15 -2939 ($ $)) (-15 -2939 ($ $ (-1117))) (-15 -2600 ($ $ (-1117))) (-15 -2600 ($ $ (-1038 $))) (-15 -3371 ($ $ (-1117))) (-15 -3371 ($ $ (-1038 $))))) +(((-137) . T)) +((-2330 (((-111) $ $) NIL)) (-3860 (($ (-537)) 13) (($ $ $) 14)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 17)) (-2244 (((-111) $ $) 9))) +(((-153) (-13 (-1045) (-10 -8 (-15 -3860 ($ (-537))) (-15 -3860 ($ $ $))))) (T -153)) +((-3860 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-153)))) (-3860 (*1 *1 *1 *1) (-5 *1 (-153)))) +(-13 (-1045) (-10 -8 (-15 -3860 ($ (-537))) (-15 -3860 ($ $ $)))) +((-3979 (((-113) (-1117)) 97))) +(((-154) (-10 -7 (-15 -3979 ((-113) (-1117))))) (T -154)) +((-3979 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-113)) (-5 *1 (-154))))) +(-10 -7 (-15 -3979 ((-113) (-1117)))) +((-2413 ((|#3| |#3|) 19))) +(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -2413 (|#3| |#3|))) (-998) (-1176 |#1|) (-1176 |#2|)) (T -155)) +((-2413 (*1 *2 *2) (-12 (-4 *3 (-998)) (-4 *4 (-1176 *3)) (-5 *1 (-155 *3 *4 *2)) (-4 *2 (-1176 *4))))) +(-10 -7 (-15 -2413 (|#3| |#3|))) +((-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 217)) (-1428 ((|#2| $) 96)) (-1403 (($ $) 247)) (-1247 (($ $) 241)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 40)) (-1378 (($ $) 245)) (-4270 (($ $) 239)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 139)) (-3563 (($ $ $) 222)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 155) (((-649 |#2|) (-649 $)) 149)) (-3195 (($ (-1113 |#2|)) 119) (((-3 $ "failed") (-391 (-1113 |#2|))) NIL)) (-3490 (((-3 $ "failed") $) 209)) (-2484 (((-3 (-391 (-537)) "failed") $) 199)) (-1797 (((-111) $) 194)) (-2616 (((-391 (-537)) $) 197)) (-3705 (((-874)) 89)) (-3539 (($ $ $) 224)) (-4087 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3338 (($) 236)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 186) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 191)) (-2055 ((|#2| $) 94)) (-3199 (((-1113 |#2|) $) 121)) (-1612 (($ (-1 |#2| |#2|) $) 102)) (-2180 (($ $) 238)) (-3183 (((-1113 |#2|) $) 120)) (-3865 (($ $) 202)) (-2629 (($) 97)) (-1319 (((-402 (-1113 $)) (-1113 $)) 88)) (-3370 (((-402 (-1113 $)) (-1113 $)) 57)) (-3515 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4185 (($ $) 237)) (-1930 (((-731) $) 219)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 229)) (-2067 ((|#2| (-1200 $)) NIL) ((|#2|) 91)) (-3456 (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-2529 (((-1113 |#2|)) 114)) (-1389 (($ $) 246)) (-1234 (($ $) 240)) (-1484 (((-1200 |#2|) $ (-1200 $)) 128) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $) 110) (((-649 |#2|) (-1200 $)) NIL)) (-3996 (((-1200 |#2|) $) NIL) (($ (-1200 |#2|)) NIL) (((-1113 |#2|) $) NIL) (($ (-1113 |#2|)) NIL) (((-845 (-537)) $) 177) (((-845 (-363)) $) 181) (((-160 (-363)) $) 167) (((-160 (-210)) $) 162) (((-513) $) 173)) (-1978 (($ $) 98)) (-2341 (((-816) $) 138) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-391 (-537))) NIL) (($ $) NIL)) (-2736 (((-1113 |#2|) $) 23)) (-3654 (((-731)) 100)) (-1475 (($ $) 250)) (-1328 (($ $) 244)) (-1453 (($ $) 248)) (-1300 (($ $) 242)) (-2449 ((|#2| $) 233)) (-1465 (($ $) 249)) (-1314 (($ $) 243)) (-2209 (($ $) 157)) (-2244 (((-111) $ $) 104)) (-2263 (((-111) $ $) 193)) (-2329 (($ $) 106) (($ $ $) NIL)) (-2318 (($ $ $) 105)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-391 (-537))) 267) (($ $ $) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL))) +(((-156 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -2341 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-160 (-210)) |#1|)) (-15 -3996 ((-160 (-363)) |#1|)) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3338 (|#1|)) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -4087 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2449 (|#2| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1978 (|#1| |#1|)) (-15 -2629 (|#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3195 ((-3 |#1| "failed") (-391 (-1113 |#2|)))) (-15 -3183 ((-1113 |#2|) |#1|)) (-15 -3996 (|#1| (-1113 |#2|))) (-15 -3195 (|#1| (-1113 |#2|))) (-15 -2529 ((-1113 |#2|))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -2736 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2055 (|#2| |#1|)) (-15 -1428 (|#2| |#1|)) (-15 -3705 ((-874))) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-157 |#2|) (-163)) (T -156)) +((-3654 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-3705 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-874)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4)))) (-2067 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) (-2529 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1113 *4)) (-5 *1 (-156 *3 *4)) (-4 *3 (-157 *4))))) +(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -2341 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-160 (-210)) |#1|)) (-15 -3996 ((-160 (-363)) |#1|)) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3338 (|#1|)) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -4087 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2449 (|#2| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1978 (|#1| |#1|)) (-15 -2629 (|#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3195 ((-3 |#1| "failed") (-391 (-1113 |#2|)))) (-15 -3183 ((-1113 |#2|) |#1|)) (-15 -3996 (|#1| (-1113 |#2|))) (-15 -3195 (|#1| (-1113 |#2|))) (-15 -2529 ((-1113 |#2|))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -2736 ((-1113 |#2|) |#1|)) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2055 (|#2| |#1|)) (-15 -1428 (|#2| |#1|)) (-15 -3705 ((-874))) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 91 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-3377 (($ $) 92 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-4017 (((-111) $) 94 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-3623 (((-649 |#1|) (-1200 $)) 44) (((-649 |#1|)) 59)) (-1428 ((|#1| $) 50)) (-1403 (($ $) 225 (|has| |#1| (-1139)))) (-1247 (($ $) 208 (|has| |#1| (-1139)))) (-1387 (((-1127 (-874) (-731)) (-537)) 144 (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 239 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-1395 (($ $) 111 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-2414 (((-402 $) $) 112 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3633 (($ $) 238 (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 242 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-4099 (((-111) $ $) 102 (|has| |#1| (-291)))) (-3151 (((-731)) 85 (|has| |#1| (-352)))) (-1378 (($ $) 224 (|has| |#1| (-1139)))) (-4270 (($ $) 209 (|has| |#1| (-1139)))) (-1429 (($ $) 223 (|has| |#1| (-1139)))) (-1273 (($ $) 210 (|has| |#1| (-1139)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 166 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 164 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 163)) (-3958 (((-537) $) 167 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 165 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 162)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46) (($ (-1200 |#1|)) 62)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-333)))) (-3563 (($ $ $) 106 (|has| |#1| (-291)))) (-2664 (((-649 |#1|) $ (-1200 $)) 51) (((-649 |#1|) $) 57)) (-2053 (((-649 (-537)) (-649 $)) 161 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 160 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 159) (((-649 |#1|) (-649 $)) 158)) (-3195 (($ (-1113 |#1|)) 155) (((-3 $ "failed") (-391 (-1113 |#1|))) 152 (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) 32)) (-3645 ((|#1| $) 250)) (-2484 (((-3 (-391 (-537)) "failed") $) 243 (|has| |#1| (-522)))) (-1797 (((-111) $) 245 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 244 (|has| |#1| (-522)))) (-3705 (((-874)) 52)) (-1618 (($) 88 (|has| |#1| (-352)))) (-3539 (($ $ $) 105 (|has| |#1| (-291)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 100 (|has| |#1| (-291)))) (-4145 (($) 146 (|has| |#1| (-333)))) (-2974 (((-111) $) 147 (|has| |#1| (-333)))) (-2642 (($ $ (-731)) 138 (|has| |#1| (-333))) (($ $) 137 (|has| |#1| (-333)))) (-2639 (((-111) $) 113 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-4087 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1007)) (|has| |#1| (-1139))))) (-3338 (($) 235 (|has| |#1| (-1139)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 258 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 257 (|has| |#1| (-839 (-363))))) (-4231 (((-874) $) 149 (|has| |#1| (-333))) (((-793 (-874)) $) 135 (|has| |#1| (-333)))) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 237 (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2055 ((|#1| $) 49)) (-2824 (((-3 $ "failed") $) 139 (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 109 (|has| |#1| (-291)))) (-3199 (((-1113 |#1|) $) 42 (|has| |#1| (-347)))) (-2444 (($ $ $) 204 (|has| |#1| (-807)))) (-3889 (($ $ $) 203 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 259)) (-2334 (((-874) $) 87 (|has| |#1| (-352)))) (-2180 (($ $) 232 (|has| |#1| (-1139)))) (-3183 (((-1113 |#1|) $) 153)) (-2183 (($ (-606 $)) 98 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (($ $ $) 97 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 114 (|has| |#1| (-347)))) (-3956 (($) 140 (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) 86 (|has| |#1| (-352)))) (-2629 (($) 254)) (-3656 ((|#1| $) 251)) (-2528 (((-1064) $) 10)) (-1524 (($) 157)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 99 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-2211 (($ (-606 $)) 96 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (($ $ $) 95 (-1533 (|has| |#1| (-291)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 143 (|has| |#1| (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 241 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3370 (((-402 (-1113 $)) (-1113 $)) 240 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3622 (((-402 $) $) 110 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-291))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 107 (|has| |#1| (-291)))) (-3515 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 90 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 101 (|has| |#1| (-291)))) (-4185 (($ $) 233 (|has| |#1| (-1139)))) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 265 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 263 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 262 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 261 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 260 (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) 103 (|has| |#1| (-291)))) (-1922 (($ $ |#1|) 266 (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 104 (|has| |#1| (-291)))) (-2067 ((|#1| (-1200 $)) 45) ((|#1|) 58)) (-3030 (((-731) $) 148 (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) 136 (|has| |#1| (-333)))) (-3456 (($ $ (-1 |#1| |#1|) (-731)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-606 (-1117)) (-606 (-731))) 127 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 128 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 129 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 130 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 132 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))))) (($ $) 134 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347)))))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-347)))) (-2529 (((-1113 |#1|)) 156)) (-1441 (($ $) 222 (|has| |#1| (-1139)))) (-1286 (($ $) 211 (|has| |#1| (-1139)))) (-3553 (($) 145 (|has| |#1| (-333)))) (-1415 (($ $) 221 (|has| |#1| (-1139)))) (-1259 (($ $) 212 (|has| |#1| (-1139)))) (-1389 (($ $) 220 (|has| |#1| (-1139)))) (-1234 (($ $) 213 (|has| |#1| (-1139)))) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47) (((-1200 |#1|) $) 64) (((-649 |#1|) (-1200 $)) 63)) (-3996 (((-1200 |#1|) $) 61) (($ (-1200 |#1|)) 60) (((-1113 |#1|) $) 168) (($ (-1113 |#1|)) 154) (((-845 (-537)) $) 256 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 255 (|has| |#1| (-580 (-845 (-363))))) (((-160 (-363)) $) 207 (|has| |#1| (-973))) (((-160 (-210)) $) 206 (|has| |#1| (-973))) (((-513) $) 205 (|has| |#1| (-580 (-513))))) (-1978 (($ $) 253)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 142 (-1533 (-3319 (|has| $ (-139)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (|has| |#1| (-333))))) (-4161 (($ |#1| |#1|) 252)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ (-391 (-537))) 84 (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537)))))) (($ $) 89 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-2644 (($ $) 141 (|has| |#1| (-333))) (((-3 $ "failed") $) 41 (-1533 (-3319 (|has| $ (-139)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))) (|has| |#1| (-139))))) (-2736 (((-1113 |#1|) $) 43)) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 65)) (-1475 (($ $) 231 (|has| |#1| (-1139)))) (-1328 (($ $) 219 (|has| |#1| (-1139)))) (-3276 (((-111) $ $) 93 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862)))))) (-1453 (($ $) 230 (|has| |#1| (-1139)))) (-1300 (($ $) 218 (|has| |#1| (-1139)))) (-1495 (($ $) 229 (|has| |#1| (-1139)))) (-1352 (($ $) 217 (|has| |#1| (-1139)))) (-2449 ((|#1| $) 247 (|has| |#1| (-1139)))) (-4141 (($ $) 228 (|has| |#1| (-1139)))) (-1365 (($ $) 216 (|has| |#1| (-1139)))) (-1485 (($ $) 227 (|has| |#1| (-1139)))) (-1340 (($ $) 215 (|has| |#1| (-1139)))) (-1465 (($ $) 226 (|has| |#1| (-1139)))) (-1314 (($ $) 214 (|has| |#1| (-1139)))) (-2209 (($ $) 248 (|has| |#1| (-1007)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#1| |#1|) (-731)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-606 (-1117)) (-606 (-731))) 123 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 124 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 125 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 126 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 131 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))))) (($ $) 133 (-1533 (-3319 (|has| |#1| (-347)) (|has| |#1| (-218))) (|has| |#1| (-218)) (-3319 (|has| |#1| (-218)) (|has| |#1| (-347)))))) (-2293 (((-111) $ $) 201 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 200 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 202 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 199 (|has| |#1| (-807)))) (-2340 (($ $ $) 118 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-391 (-537))) 236 (-12 (|has| |#1| (-954)) (|has| |#1| (-1139)))) (($ $ $) 234 (|has| |#1| (-1139))) (($ $ (-537)) 115 (|has| |#1| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-391 (-537)) $) 117 (|has| |#1| (-347))) (($ $ (-391 (-537))) 116 (|has| |#1| (-347))))) +(((-157 |#1|) (-134) (-163)) (T -157)) +((-2055 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-2629 (*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-4161 (*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1139)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1007)) (-4 *3 (-1139)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537)))))) +(-13 (-685 |t#1| (-1113 |t#1|)) (-395 |t#1|) (-216 |t#1|) (-322 |t#1|) (-384 |t#1|) (-837 |t#1|) (-361 |t#1|) (-163) (-10 -8 (-6 -4161) (-15 -2629 ($)) (-15 -1978 ($ $)) (-15 -4161 ($ |t#1| |t#1|)) (-15 -3656 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -2055 (|t#1| $)) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-6 (-529)) (-15 -3515 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-6 -4299)) (-6 -4299) |%noBranch|) (IF (|has| |t#1| (-6 -4296)) (-6 -4296) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-347)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-973)) (PROGN (-6 (-580 (-160 (-210)))) (-6 (-580 (-160 (-363))))) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -2209 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1139)) (PROGN (-6 (-1139)) (-15 -2449 (|t#1| $)) (IF (|has| |t#1| (-954)) (-6 (-954)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -4087 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-862)) (IF (|has| |t#1| (-291)) (-6 (-862)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-37 |#1|) . T) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-34) |has| |#1| (-1139)) ((-93) |has| |#1| (-1139)) ((-100) . T) ((-110 #0# #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-333)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 (-160 (-210))) |has| |#1| (-973)) ((-580 (-160 (-363))) |has| |#1| (-973)) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-580 #1=(-1113 |#1|)) . T) ((-216 |#1|) . T) ((-218) -1533 (|has| |#1| (-333)) (|has| |#1| (-218))) ((-228) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-268) |has| |#1| (-1139)) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-291) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-347) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-386) |has| |#1| (-333)) ((-352) -1533 (|has| |#1| (-352)) (|has| |#1| (-333))) ((-333) |has| |#1| (-333)) ((-354 |#1| #1#) . T) ((-393 |#1| #1#) . T) ((-322 |#1|) . T) ((-361 |#1|) . T) ((-384 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-474) |has| |#1| (-1139)) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-609 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-678 |#1|) . T) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-685 |#1| #1#) . T) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-862) -12 (|has| |#1| (-291)) (|has| |#1| (-862))) ((-873) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (|has| |#1| (-291))) ((-954) -12 (|has| |#1| (-954)) (|has| |#1| (-1139))) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-333)) ((-1139) |has| |#1| (-1139)) ((-1142) |has| |#1| (-1139)) ((-1154) . T) ((-1158) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)) (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) +((-3622 (((-402 |#2|) |#2|) 63))) +(((-158 |#1| |#2|) (-10 -7 (-15 -3622 ((-402 |#2|) |#2|))) (-291) (-1176 (-160 |#1|))) (T -158)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-158 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) +(-10 -7 (-15 -3622 ((-402 |#2|) |#2|))) +((-1612 (((-160 |#2|) (-1 |#2| |#1|) (-160 |#1|)) 14))) +(((-159 |#1| |#2|) (-10 -7 (-15 -1612 ((-160 |#2|) (-1 |#2| |#1|) (-160 |#1|)))) (-163) (-163)) (T -159)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-160 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-5 *2 (-160 *6)) (-5 *1 (-159 *5 *6))))) +(-10 -7 (-15 -1612 ((-160 |#2|) (-1 |#2| |#1|) (-160 |#1|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 33)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-3377 (($ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-4017 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-3623 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) NIL)) (-1428 ((|#1| $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-1139)))) (-1247 (($ $) NIL (|has| |#1| (-1139)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-1395 (($ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-2414 (((-402 $) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3633 (($ $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-291)))) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-1378 (($ $) NIL (|has| |#1| (-1139)))) (-4270 (($ $) NIL (|has| |#1| (-1139)))) (-1429 (($ $) NIL (|has| |#1| (-1139)))) (-1273 (($ $) NIL (|has| |#1| (-1139)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|) (-1200 $)) NIL) (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-291)))) (-2664 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3195 (($ (-1113 |#1|)) NIL) (((-3 $ "failed") (-391 (-1113 |#1|))) NIL (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3645 ((|#1| $) 13)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-522)))) (-1797 (((-111) $) NIL (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| |#1| (-522)))) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL (|has| |#1| (-291)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-291)))) (-4145 (($) NIL (|has| |#1| (-333)))) (-2974 (((-111) $) NIL (|has| |#1| (-333)))) (-2642 (($ $ (-731)) NIL (|has| |#1| (-333))) (($ $) NIL (|has| |#1| (-333)))) (-2639 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-4087 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1007)) (|has| |#1| (-1139))))) (-3338 (($) NIL (|has| |#1| (-1139)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| |#1| (-839 (-363))))) (-4231 (((-874) $) NIL (|has| |#1| (-333))) (((-793 (-874)) $) NIL (|has| |#1| (-333)))) (-2836 (((-111) $) 35)) (-2590 (($ $ (-537)) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-1139))))) (-2055 ((|#1| $) 46)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-291)))) (-3199 (((-1113 |#1|) $) NIL (|has| |#1| (-347)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-2180 (($ $) NIL (|has| |#1| (-1139)))) (-3183 (((-1113 |#1|) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-291))) (($ $ $) NIL (|has| |#1| (-291)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3956 (($) NIL (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2629 (($) NIL)) (-3656 ((|#1| $) 15)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-291)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-291))) (($ $ $) NIL (|has| |#1| (-291)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#1| (-291)) (|has| |#1| (-862))))) (-3622 (((-402 $) $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-347))))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-291))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-291)))) (-3515 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 47 (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-291)))) (-4185 (($ $) NIL (|has| |#1| (-1139)))) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) NIL (|has| |#1| (-291)))) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-291)))) (-2067 ((|#1| (-1200 $)) NIL) ((|#1|) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) NIL (|has| |#1| (-333)))) (-3456 (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-2529 (((-1113 |#1|)) NIL)) (-1441 (($ $) NIL (|has| |#1| (-1139)))) (-1286 (($ $) NIL (|has| |#1| (-1139)))) (-3553 (($) NIL (|has| |#1| (-333)))) (-1415 (($ $) NIL (|has| |#1| (-1139)))) (-1259 (($ $) NIL (|has| |#1| (-1139)))) (-1389 (($ $) NIL (|has| |#1| (-1139)))) (-1234 (($ $) NIL (|has| |#1| (-1139)))) (-1484 (((-1200 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) (-1200 $) (-1200 $)) NIL) (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-3996 (((-1200 |#1|) $) NIL) (($ (-1200 |#1|)) NIL) (((-1113 |#1|) $) NIL) (($ (-1113 |#1|)) NIL) (((-845 (-537)) $) NIL (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#1| (-580 (-845 (-363))))) (((-160 (-363)) $) NIL (|has| |#1| (-973))) (((-160 (-210)) $) NIL (|has| |#1| (-973))) (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-1978 (($ $) 45)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-333))))) (-4161 (($ |#1| |#1|) 37)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) 36) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-2644 (($ $) NIL (|has| |#1| (-333))) (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-2736 (((-1113 |#1|) $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL)) (-1475 (($ $) NIL (|has| |#1| (-1139)))) (-1328 (($ $) NIL (|has| |#1| (-1139)))) (-3276 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-291)) (|has| |#1| (-862))) (|has| |#1| (-529))))) (-1453 (($ $) NIL (|has| |#1| (-1139)))) (-1300 (($ $) NIL (|has| |#1| (-1139)))) (-1495 (($ $) NIL (|has| |#1| (-1139)))) (-1352 (($ $) NIL (|has| |#1| (-1139)))) (-2449 ((|#1| $) NIL (|has| |#1| (-1139)))) (-4141 (($ $) NIL (|has| |#1| (-1139)))) (-1365 (($ $) NIL (|has| |#1| (-1139)))) (-1485 (($ $) NIL (|has| |#1| (-1139)))) (-1340 (($ $) NIL (|has| |#1| (-1139)))) (-1465 (($ $) NIL (|has| |#1| (-1139)))) (-1314 (($ $) NIL (|has| |#1| (-1139)))) (-2209 (($ $) NIL (|has| |#1| (-1007)))) (-2928 (($) 28 T CONST)) (-2943 (($) 30 T CONST)) (-1379 (((-1100) $) 23 (|has| |#1| (-788))) (((-1100) $ (-111)) 25 (|has| |#1| (-788))) (((-1205) (-782) $) 26 (|has| |#1| (-788))) (((-1205) (-782) $ (-111)) 27 (|has| |#1| (-788)))) (-4230 (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 39)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-391 (-537))) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-1139)))) (($ $ $) NIL (|has| |#1| (-1139))) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-347))) (($ $ (-391 (-537))) NIL (|has| |#1| (-347))))) +(((-160 |#1|) (-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) (-163)) (T -160)) +NIL +(-13 (-157 |#1|) (-10 -7 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) +((-3996 (((-845 |#1|) |#3|) 22))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -3996 ((-845 |#1|) |#3|))) (-1045) (-13 (-580 (-845 |#1|)) (-163)) (-157 |#2|)) (T -161)) +((-3996 (*1 *2 *3) (-12 (-4 *5 (-13 (-580 *2) (-163))) (-5 *2 (-845 *4)) (-5 *1 (-161 *4 *5 *3)) (-4 *4 (-1045)) (-4 *3 (-157 *5))))) +(-10 -7 (-15 -3996 ((-845 |#1|) |#3|))) +((-2330 (((-111) $ $) NIL)) (-3380 (((-111) $) 9)) (-1762 (((-111) $ (-111)) 11)) (-3157 (($) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2494 (($ $) 13)) (-2341 (((-816) $) 17)) (-4179 (((-111) $) 8)) (-2337 (((-111) $ (-111)) 10)) (-2244 (((-111) $ $) NIL))) +(((-162) (-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -4179 ((-111) $)) (-15 -3380 ((-111) $)) (-15 -2337 ((-111) $ (-111))) (-15 -1762 ((-111) $ (-111))) (-15 -2494 ($ $))))) (T -162)) +((-3157 (*1 *1) (-5 *1 (-162))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-2337 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-1762 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) (-2494 (*1 *1 *1) (-5 *1 (-162)))) +(-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -4179 ((-111) $)) (-15 -3380 ((-111) $)) (-15 -2337 ((-111) $ (-111))) (-15 -1762 ((-111) $ (-111))) (-15 -2494 ($ $)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-163) (-134)) (T -163)) +NIL +(-13 (-998) (-110 $ $) (-10 -7 (-6 (-4302 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 ((|#1| $) 75)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3192 (($ $) 19)) (-2788 (($ |#1| (-1098 |#1|)) 48)) (-3490 (((-3 $ "failed") $) 117)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2170 (((-1098 |#1|) $) 82)) (-1329 (((-1098 |#1|) $) 79)) (-4023 (((-1098 |#1|) $) 80)) (-2836 (((-111) $) NIL)) (-1515 (((-1098 |#1|) $) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-1540 (($ $ (-537)) 91)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3657 (((-1098 |#1|) $) 89)) (-3260 (((-1098 (-391 |#1|)) $) 14)) (-4225 (($ (-391 |#1|)) 17) (($ |#1| (-1098 |#1|) (-1098 |#1|)) 38)) (-1577 (($ $) 93)) (-2341 (((-816) $) 127) (($ (-537)) 51) (($ |#1|) 52) (($ (-391 |#1|)) 36) (($ (-391 (-537))) NIL) (($ $) NIL)) (-3654 (((-731)) 64)) (-3276 (((-111) $ $) NIL)) (-1948 (((-1098 (-391 |#1|)) $) 18)) (-2928 (($) 25 T CONST)) (-2943 (($) 28 T CONST)) (-2244 (((-111) $ $) 35)) (-2340 (($ $ $) 115)) (-2329 (($ $) 106) (($ $ $) 103)) (-2318 (($ $ $) 101)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-391 |#1|) $) 111) (($ $ (-391 |#1|)) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL))) +(((-164 |#1|) (-13 (-37 |#1|) (-37 (-391 |#1|)) (-347) (-10 -8 (-15 -4225 ($ (-391 |#1|))) (-15 -4225 ($ |#1| (-1098 |#1|) (-1098 |#1|))) (-15 -2788 ($ |#1| (-1098 |#1|))) (-15 -1329 ((-1098 |#1|) $)) (-15 -4023 ((-1098 |#1|) $)) (-15 -2170 ((-1098 |#1|) $)) (-15 -1874 (|#1| $)) (-15 -3192 ($ $)) (-15 -1948 ((-1098 (-391 |#1|)) $)) (-15 -3260 ((-1098 (-391 |#1|)) $)) (-15 -1515 ((-1098 |#1|) $)) (-15 -3657 ((-1098 |#1|) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)))) (-291)) (T -164)) +((-4225 (*1 *1 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-291)) (-5 *1 (-164 *3)))) (-4225 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2)))) (-2788 (*1 *1 *2 *3) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1874 (*1 *2 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) (-1577 (*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291))))) +(-13 (-37 |#1|) (-37 (-391 |#1|)) (-347) (-10 -8 (-15 -4225 ($ (-391 |#1|))) (-15 -4225 ($ |#1| (-1098 |#1|) (-1098 |#1|))) (-15 -2788 ($ |#1| (-1098 |#1|))) (-15 -1329 ((-1098 |#1|) $)) (-15 -4023 ((-1098 |#1|) $)) (-15 -2170 ((-1098 |#1|) $)) (-15 -1874 (|#1| $)) (-15 -3192 ($ $)) (-15 -1948 ((-1098 (-391 |#1|)) $)) (-15 -3260 ((-1098 (-391 |#1|)) $)) (-15 -1515 ((-1098 |#1|) $)) (-15 -3657 ((-1098 |#1|) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)))) +((-3969 (($ (-107) $) 13)) (-3124 (((-3 (-107) "failed") (-1117) $) 12)) (-2341 (((-816) $) 16)) (-3452 (((-606 (-107)) $) 8))) +(((-165) (-13 (-579 (-816)) (-10 -8 (-15 -3452 ((-606 (-107)) $)) (-15 -3969 ($ (-107) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $))))) (T -165)) +((-3452 (*1 *2 *1) (-12 (-5 *2 (-606 (-107))) (-5 *1 (-165)))) (-3969 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-165)))) (-3124 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-165))))) +(-13 (-579 (-816)) (-10 -8 (-15 -3452 ((-606 (-107)) $)) (-15 -3969 ($ (-107) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $)))) +((-3028 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 40)) (-3947 (((-896 |#1|) (-896 |#1|)) 19)) (-2517 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 36)) (-3791 (((-896 |#1|) (-896 |#1|)) 17)) (-2501 (((-896 |#1|) (-896 |#1|)) 25)) (-3440 (((-896 |#1|) (-896 |#1|)) 24)) (-3881 (((-896 |#1|) (-896 |#1|)) 23)) (-2056 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 37)) (-1542 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 35)) (-2322 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 34)) (-2264 (((-896 |#1|) (-896 |#1|)) 18)) (-1867 (((-1 (-896 |#1|) (-896 |#1|)) |#1| |#1|) 43)) (-1517 (((-896 |#1|) (-896 |#1|)) 8)) (-2234 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 39)) (-2451 (((-1 (-896 |#1|) (-896 |#1|)) |#1|) 38))) +(((-166 |#1|) (-10 -7 (-15 -1517 ((-896 |#1|) (-896 |#1|))) (-15 -3791 ((-896 |#1|) (-896 |#1|))) (-15 -2264 ((-896 |#1|) (-896 |#1|))) (-15 -3947 ((-896 |#1|) (-896 |#1|))) (-15 -3881 ((-896 |#1|) (-896 |#1|))) (-15 -3440 ((-896 |#1|) (-896 |#1|))) (-15 -2501 ((-896 |#1|) (-896 |#1|))) (-15 -2322 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1542 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2517 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2056 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2451 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2234 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -3028 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1867 ((-1 (-896 |#1|) (-896 |#1|)) |#1| |#1|))) (-13 (-347) (-1139) (-954))) (T -166)) +((-1867 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2234 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2451 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2056 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2517 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-1542 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2322 (*1 *2 *3) (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) (-4 *3 (-13 (-347) (-1139) (-954))))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3881 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) (-5 *1 (-166 *3))))) +(-10 -7 (-15 -1517 ((-896 |#1|) (-896 |#1|))) (-15 -3791 ((-896 |#1|) (-896 |#1|))) (-15 -2264 ((-896 |#1|) (-896 |#1|))) (-15 -3947 ((-896 |#1|) (-896 |#1|))) (-15 -3881 ((-896 |#1|) (-896 |#1|))) (-15 -3440 ((-896 |#1|) (-896 |#1|))) (-15 -2501 ((-896 |#1|) (-896 |#1|))) (-15 -2322 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1542 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2517 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2056 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2451 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -2234 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -3028 ((-1 (-896 |#1|) (-896 |#1|)) |#1|)) (-15 -1867 ((-1 (-896 |#1|) (-896 |#1|)) |#1| |#1|))) +((-2736 ((|#2| |#3|) 27))) +(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -2736 (|#2| |#3|))) (-163) (-1176 |#1|) (-685 |#1| |#2|)) (T -167)) +((-2736 (*1 *2 *3) (-12 (-4 *4 (-163)) (-4 *2 (-1176 *4)) (-5 *1 (-167 *4 *2 *3)) (-4 *3 (-685 *4 *2))))) +(-10 -7 (-15 -2736 (|#2| |#3|))) +((-4196 (((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)) 47 (|has| (-905 |#2|) (-839 |#1|))))) +(((-168 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-905 |#2|) (-839 |#1|)) (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) |%noBranch|)) (-1045) (-13 (-839 |#1|) (-163)) (-157 |#2|)) (T -168)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *3 (-157 *6)) (-4 (-905 *6) (-839 *5)) (-4 *6 (-13 (-839 *5) (-163))) (-5 *1 (-168 *5 *6 *3))))) +(-10 -7 (IF (|has| (-905 |#2|) (-839 |#1|)) (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) |%noBranch|)) +((-3854 (((-606 |#1|) (-606 |#1|) |#1|) 38)) (-4036 (((-606 |#1|) |#1| (-606 |#1|)) 19)) (-3747 (((-606 |#1|) (-606 (-606 |#1|)) (-606 |#1|)) 33) ((|#1| (-606 |#1|) (-606 |#1|)) 31))) +(((-169 |#1|) (-10 -7 (-15 -4036 ((-606 |#1|) |#1| (-606 |#1|))) (-15 -3747 (|#1| (-606 |#1|) (-606 |#1|))) (-15 -3747 ((-606 |#1|) (-606 (-606 |#1|)) (-606 |#1|))) (-15 -3854 ((-606 |#1|) (-606 |#1|) |#1|))) (-291)) (T -169)) +((-3854 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3)))) (-3747 (*1 *2 *3 *2) (-12 (-5 *3 (-606 (-606 *4))) (-5 *2 (-606 *4)) (-4 *4 (-291)) (-5 *1 (-169 *4)))) (-3747 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-169 *2)) (-4 *2 (-291)))) (-4036 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3))))) +(-10 -7 (-15 -4036 ((-606 |#1|) |#1| (-606 |#1|))) (-15 -3747 (|#1| (-606 |#1|) (-606 |#1|))) (-15 -3747 ((-606 |#1|) (-606 (-606 |#1|)) (-606 |#1|))) (-15 -3854 ((-606 |#1|) (-606 |#1|) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1796 (((-1153) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-170) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $))))) (T -170)) +((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-170)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-170))))) +(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $)))) +((-1610 (((-2 (|:| |start| |#2|) (|:| -3415 (-402 |#2|))) |#2|) 61)) (-3145 ((|#1| |#1|) 54)) (-2853 (((-160 |#1|) |#2|) 84)) (-1909 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3712 ((|#2| |#2|) 83)) (-3410 (((-402 |#2|) |#2| |#1|) 113) (((-402 |#2|) |#2| |#1| (-111)) 81)) (-2055 ((|#1| |#2|) 112)) (-4112 ((|#2| |#2|) 119)) (-3622 (((-402 |#2|) |#2|) 134) (((-402 |#2|) |#2| |#1|) 32) (((-402 |#2|) |#2| |#1| (-111)) 133)) (-3291 (((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2|) 132) (((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2| (-111)) 76)) (-2907 (((-606 (-160 |#1|)) |#2| |#1|) 40) (((-606 (-160 |#1|)) |#2|) 41))) +(((-171 |#1| |#2|) (-10 -7 (-15 -2907 ((-606 (-160 |#1|)) |#2|)) (-15 -2907 ((-606 (-160 |#1|)) |#2| |#1|)) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2| (-111))) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2|)) (-15 -3622 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3622 ((-402 |#2|) |#2| |#1|)) (-15 -3622 ((-402 |#2|) |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -2055 (|#1| |#2|)) (-15 -3410 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3410 ((-402 |#2|) |#2| |#1|)) (-15 -3712 (|#2| |#2|)) (-15 -1909 (|#1| |#2| |#1|)) (-15 -1909 (|#1| |#2|)) (-15 -2853 ((-160 |#1|) |#2|)) (-15 -3145 (|#1| |#1|)) (-15 -1610 ((-2 (|:| |start| |#2|) (|:| -3415 (-402 |#2|))) |#2|))) (-13 (-347) (-805)) (-1176 (-160 |#1|))) (T -171)) +((-1610 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-2 (|:| |start| *3) (|:| -3415 (-402 *3)))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3145 (*1 *2 *2) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-2853 (*1 *2 *3) (-12 (-5 *2 (-160 *4)) (-5 *1 (-171 *4 *3)) (-4 *4 (-13 (-347) (-805))) (-4 *3 (-1176 *2)))) (-1909 (*1 *2 *3) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-1909 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) (-4 *2 (-1176 (-160 *3))))) (-3410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-2055 (*1 *2 *3) (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) (-4 *3 (-1176 (-160 *2))))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) (-4 *2 (-1176 (-160 *3))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3622 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3291 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *4)))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-3291 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-347) (-805))) (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *5)))) (-5 *1 (-171 *5 *3)) (-4 *3 (-1176 (-160 *5))))) (-2907 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) +(-10 -7 (-15 -2907 ((-606 (-160 |#1|)) |#2|)) (-15 -2907 ((-606 (-160 |#1|)) |#2| |#1|)) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2| (-111))) (-15 -3291 ((-606 (-2 (|:| -3415 (-606 |#2|)) (|:| -3927 |#1|))) |#2| |#2|)) (-15 -3622 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3622 ((-402 |#2|) |#2| |#1|)) (-15 -3622 ((-402 |#2|) |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -2055 (|#1| |#2|)) (-15 -3410 ((-402 |#2|) |#2| |#1| (-111))) (-15 -3410 ((-402 |#2|) |#2| |#1|)) (-15 -3712 (|#2| |#2|)) (-15 -1909 (|#1| |#2| |#1|)) (-15 -1909 (|#1| |#2|)) (-15 -2853 ((-160 |#1|) |#2|)) (-15 -3145 (|#1| |#1|)) (-15 -1610 ((-2 (|:| |start| |#2|) (|:| -3415 (-402 |#2|))) |#2|))) +((-2032 (((-3 |#2| "failed") |#2|) 14)) (-2404 (((-731) |#2|) 16)) (-3565 ((|#2| |#2| |#2|) 18))) +(((-172 |#1| |#2|) (-10 -7 (-15 -2032 ((-3 |#2| "failed") |#2|)) (-15 -2404 ((-731) |#2|)) (-15 -3565 (|#2| |#2| |#2|))) (-1154) (-635 |#1|)) (T -172)) +((-3565 (*1 *2 *2 *2) (-12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) (-4 *2 (-635 *3)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-1154)) (-5 *2 (-731)) (-5 *1 (-172 *4 *3)) (-4 *3 (-635 *4)))) (-2032 (*1 *2 *2) (|partial| -12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) (-4 *2 (-635 *3))))) +(-10 -7 (-15 -2032 ((-3 |#2| "failed") |#2|)) (-15 -2404 ((-731) |#2|)) (-15 -3565 (|#2| |#2| |#2|))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2689 (((-1117) $) 10)) (-2341 (((-816) $) 17)) (-2920 (((-606 (-1122)) $) 12)) (-2244 (((-111) $ $) 15))) +(((-173) (-13 (-1045) (-10 -8 (-15 -2689 ((-1117) $)) (-15 -2920 ((-606 (-1122)) $))))) (T -173)) +((-2689 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-173)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-173))))) +(-13 (-1045) (-10 -8 (-15 -2689 ((-1117) $)) (-15 -2920 ((-606 (-1122)) $)))) +((-1860 ((|#2| |#2|) 28)) (-3928 (((-111) |#2|) 19)) (-3645 (((-300 |#1|) |#2|) 12)) (-3656 (((-300 |#1|) |#2|) 14)) (-2523 ((|#2| |#2| (-1117)) 68) ((|#2| |#2|) 69)) (-3082 (((-160 (-300 |#1|)) |#2|) 10)) (-2435 ((|#2| |#2| (-1117)) 65) ((|#2| |#2|) 59))) +(((-174 |#1| |#2|) (-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -3645 ((-300 |#1|) |#2|)) (-15 -3656 ((-300 |#1|) |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3082 ((-160 (-300 |#1|)) |#2|))) (-13 (-529) (-807) (-989 (-537))) (-13 (-27) (-1139) (-414 (-160 |#1|)))) (T -174)) +((-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-160 (-300 *4))) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-111)) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-3656 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-2435 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) (-2523 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3))))))) +(-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -3645 ((-300 |#1|) |#2|)) (-15 -3656 ((-300 |#1|) |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -1860 (|#2| |#2|)) (-15 -3082 ((-160 (-300 |#1|)) |#2|))) +((-3438 (((-1200 (-649 (-905 |#1|))) (-1200 (-649 |#1|))) 24)) (-2341 (((-1200 (-649 (-391 (-905 |#1|)))) (-1200 (-649 |#1|))) 33))) +(((-175 |#1|) (-10 -7 (-15 -3438 ((-1200 (-649 (-905 |#1|))) (-1200 (-649 |#1|)))) (-15 -2341 ((-1200 (-649 (-391 (-905 |#1|)))) (-1200 (-649 |#1|))))) (-163)) (T -175)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) (-5 *2 (-1200 (-649 (-391 (-905 *4))))) (-5 *1 (-175 *4)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) (-5 *2 (-1200 (-649 (-905 *4)))) (-5 *1 (-175 *4))))) +(-10 -7 (-15 -3438 ((-1200 (-649 (-905 |#1|))) (-1200 (-649 |#1|)))) (-15 -2341 ((-1200 (-649 (-391 (-905 |#1|)))) (-1200 (-649 |#1|))))) +((-2335 (((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537)))) 66)) (-2157 (((-1119 (-391 (-537))) (-606 (-537)) (-606 (-537))) 75)) (-2112 (((-1119 (-391 (-537))) (-537)) 40)) (-1462 (((-1119 (-391 (-537))) (-537)) 52)) (-4116 (((-391 (-537)) (-1119 (-391 (-537)))) 62)) (-3442 (((-1119 (-391 (-537))) (-537)) 32)) (-2768 (((-1119 (-391 (-537))) (-537)) 48)) (-4249 (((-1119 (-391 (-537))) (-537)) 46)) (-3049 (((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537)))) 60)) (-1577 (((-1119 (-391 (-537))) (-537)) 25)) (-3196 (((-391 (-537)) (-1119 (-391 (-537))) (-1119 (-391 (-537)))) 64)) (-3314 (((-1119 (-391 (-537))) (-537)) 30)) (-3578 (((-1119 (-391 (-537))) (-606 (-537))) 72))) +(((-176) (-10 -7 (-15 -1577 ((-1119 (-391 (-537))) (-537))) (-15 -2112 ((-1119 (-391 (-537))) (-537))) (-15 -3442 ((-1119 (-391 (-537))) (-537))) (-15 -3314 ((-1119 (-391 (-537))) (-537))) (-15 -4249 ((-1119 (-391 (-537))) (-537))) (-15 -2768 ((-1119 (-391 (-537))) (-537))) (-15 -1462 ((-1119 (-391 (-537))) (-537))) (-15 -3196 ((-391 (-537)) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3049 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -4116 ((-391 (-537)) (-1119 (-391 (-537))))) (-15 -2335 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3578 ((-1119 (-391 (-537))) (-606 (-537)))) (-15 -2157 ((-1119 (-391 (-537))) (-606 (-537)) (-606 (-537)))))) (T -176)) +((-2157 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-2335 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) (-5 *1 (-176)))) (-3049 (*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)))) (-3196 (*1 *2 *3 *3) (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) (-5 *1 (-176)))) (-1462 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-2768 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-4249 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-3314 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-2112 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) (-1577 (*1 *2 *3) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) +(-10 -7 (-15 -1577 ((-1119 (-391 (-537))) (-537))) (-15 -2112 ((-1119 (-391 (-537))) (-537))) (-15 -3442 ((-1119 (-391 (-537))) (-537))) (-15 -3314 ((-1119 (-391 (-537))) (-537))) (-15 -4249 ((-1119 (-391 (-537))) (-537))) (-15 -2768 ((-1119 (-391 (-537))) (-537))) (-15 -1462 ((-1119 (-391 (-537))) (-537))) (-15 -3196 ((-391 (-537)) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3049 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -4116 ((-391 (-537)) (-1119 (-391 (-537))))) (-15 -2335 ((-1119 (-391 (-537))) (-1119 (-391 (-537))) (-1119 (-391 (-537))))) (-15 -3578 ((-1119 (-391 (-537))) (-606 (-537)))) (-15 -2157 ((-1119 (-391 (-537))) (-606 (-537)) (-606 (-537))))) +((-3769 (((-402 (-1113 (-537))) (-537)) 28)) (-2001 (((-606 (-1113 (-537))) (-537)) 23)) (-1443 (((-1113 (-537)) (-537)) 21))) +(((-177) (-10 -7 (-15 -2001 ((-606 (-1113 (-537))) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -3769 ((-402 (-1113 (-537))) (-537))))) (T -177)) +((-3769 (*1 *2 *3) (-12 (-5 *2 (-402 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537)))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-177)) (-5 *3 (-537)))) (-2001 (*1 *2 *3) (-12 (-5 *2 (-606 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537))))) +(-10 -7 (-15 -2001 ((-606 (-1113 (-537))) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -3769 ((-402 (-1113 (-537))) (-537)))) +((-2881 (((-1098 (-210)) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 105)) (-2718 (((-606 (-1100)) (-1098 (-210))) NIL)) (-3417 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 81)) (-3326 (((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210)))) NIL)) (-3908 (((-606 (-1100)) (-606 (-210))) NIL)) (-2148 (((-210) (-1040 (-800 (-210)))) 24)) (-1590 (((-210) (-1040 (-800 (-210)))) 25)) (-3516 (((-363) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 98)) (-3107 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 42)) (-2442 (((-1100) (-210)) NIL)) (-4158 (((-1100) (-606 (-1100))) 20)) (-1359 (((-986) (-1117) (-1117) (-986)) 13))) +(((-178) (-10 -7 (-15 -3417 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3107 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3516 ((-363) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -4158 ((-1100) (-606 (-1100)))) (-15 -1359 ((-986) (-1117) (-1117) (-986))))) (T -178)) +((-1359 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-178)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-178)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-178)))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-178)))) (-3326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-178)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-178)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-178)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-178))))) +(-10 -7 (-15 -3417 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3107 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3516 ((-363) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -4158 ((-1100) (-606 (-1100)))) (-15 -1359 ((-986) (-1117) (-1117) (-986)))) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 55) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 32) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-179) (-747)) (T -179)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 60) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 41) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-180) (-747)) (T -180)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 69) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 40) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-181) (-747)) (T -181)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 56) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 34) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-182) (-747)) (T -182)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 67) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 38) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-183) (-747)) (T -183)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 73) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 36) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-184) (-747)) (T -184)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 80) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 44) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-185) (-747)) (T -185)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 70) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 40) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-186) (-747)) (T -186)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 66)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 32)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-187) (-747)) (T -187)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 63)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 34)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-188) (-747)) (T -188)) +NIL +(-747) +((-2330 (((-111) $ $) NIL)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 90) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 78) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-189) (-747)) (T -189)) +NIL +(-747) +((-3143 (((-3 (-2 (|:| -4157 (-113)) (|:| |w| (-210))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 85)) (-2083 (((-537) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 42)) (-2279 (((-3 (-606 (-210)) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 73))) +(((-190) (-10 -7 (-15 -3143 ((-3 (-2 (|:| -4157 (-113)) (|:| |w| (-210))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2279 ((-3 (-606 (-210)) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2083 ((-537) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -190)) +((-2083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-537)) (-5 *1 (-190)))) (-2279 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-190)))) (-3143 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -4157 (-113)) (|:| |w| (-210)))) (-5 *1 (-190))))) +(-10 -7 (-15 -3143 ((-3 (-2 (|:| -4157 (-113)) (|:| |w| (-210))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2279 ((-3 (-606 (-210)) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2083 ((-537) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) +((-2490 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 39)) (-3108 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 130)) (-2701 (((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-649 (-300 (-210)))) 89)) (-2179 (((-363) (-649 (-300 (-210)))) 113)) (-2302 (((-649 (-300 (-210))) (-1200 (-300 (-210))) (-606 (-1117))) 110)) (-3777 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 30)) (-2045 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 43)) (-4116 (((-649 (-300 (-210))) (-649 (-300 (-210))) (-606 (-1117)) (-1200 (-300 (-210)))) 102)) (-2446 (((-363) (-363) (-606 (-363))) 107) (((-363) (-363) (-363)) 105)) (-4248 (((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 36))) +(((-191) (-10 -7 (-15 -2446 ((-363) (-363) (-363))) (-15 -2446 ((-363) (-363) (-606 (-363)))) (-15 -2179 ((-363) (-649 (-300 (-210))))) (-15 -2302 ((-649 (-300 (-210))) (-1200 (-300 (-210))) (-606 (-1117)))) (-15 -4116 ((-649 (-300 (-210))) (-649 (-300 (-210))) (-606 (-1117)) (-1200 (-300 (-210))))) (-15 -2701 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-649 (-300 (-210))))) (-15 -3108 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2490 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2045 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -4248 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3777 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -191)) +((-3777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-191)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-649 (-300 (-210)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) (-5 *1 (-191)))) (-4116 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 (-300 (-210)))) (-5 *3 (-606 (-1117))) (-5 *4 (-1200 (-300 (-210)))) (-5 *1 (-191)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) (-5 *2 (-649 (-300 (-210)))) (-5 *1 (-191)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-649 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-363))) (-5 *2 (-363)) (-5 *1 (-191)))) (-2446 (*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-191))))) +(-10 -7 (-15 -2446 ((-363) (-363) (-363))) (-15 -2446 ((-363) (-363) (-606 (-363)))) (-15 -2179 ((-363) (-649 (-300 (-210))))) (-15 -2302 ((-649 (-300 (-210))) (-1200 (-300 (-210))) (-606 (-1117)))) (-15 -4116 ((-649 (-300 (-210))) (-649 (-300 (-210))) (-606 (-1117)) (-1200 (-300 (-210))))) (-15 -2701 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-649 (-300 (-210))))) (-15 -3108 ((-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363))) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2490 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2045 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -4248 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3777 ((-363) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) +((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 41)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 64)) (-2244 (((-111) $ $) NIL))) +(((-192) (-760)) (T -192)) +NIL +(-760) +((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 41)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 62)) (-2244 (((-111) $ $) NIL))) +(((-193) (-760)) (T -193)) +NIL +(-760) +((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 40)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 66)) (-2244 (((-111) $ $) NIL))) +(((-194) (-760)) (T -194)) +NIL +(-760) +((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 46)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 75)) (-2244 (((-111) $ $) NIL))) +(((-195) (-760)) (T -195)) +NIL +(-760) +((-2163 (((-606 (-1117)) (-1117) (-731)) 23)) (-2560 (((-300 (-210)) (-300 (-210))) 31)) (-3767 (((-111) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 74)) (-1461 (((-111) (-210) (-210) (-606 (-300 (-210)))) 45))) +(((-196) (-10 -7 (-15 -2163 ((-606 (-1117)) (-1117) (-731))) (-15 -2560 ((-300 (-210)) (-300 (-210)))) (-15 -1461 ((-111) (-210) (-210) (-606 (-300 (-210))))) (-15 -3767 ((-111) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))))) (T -196)) +((-3767 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *2 (-111)) (-5 *1 (-196)))) (-1461 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-606 (-300 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-196)))) (-2560 (*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-196)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-606 (-1117))) (-5 *1 (-196)) (-5 *3 (-1117))))) +(-10 -7 (-15 -2163 ((-606 (-1117)) (-1117) (-731))) (-15 -2560 ((-300 (-210)) (-300 (-210)))) (-15 -1461 ((-111) (-210) (-210) (-606 (-300 (-210))))) (-15 -3767 ((-111) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))))) +((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 26)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2158 (((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 57)) (-2244 (((-111) $ $) NIL))) +(((-197) (-848)) (T -197)) +NIL +(-848) +((-2330 (((-111) $ $) NIL)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2158 (((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) NIL)) (-2244 (((-111) $ $) NIL))) +(((-198) (-848)) (T -198)) +NIL +(-848) +((-2330 (((-111) $ $) NIL)) (-2476 ((|#2| $ (-731) |#2|) 11)) (-3157 (($) 8)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#2| $ (-731)) 10)) (-2341 (((-816) $) 18)) (-2244 (((-111) $ $) 13))) +(((-199 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -1922 (|#2| $ (-731))) (-15 -2476 (|#2| $ (-731) |#2|)))) (-874) (-1045)) (T -199)) +((-3157 (*1 *1) (-12 (-5 *1 (-199 *2 *3)) (-14 *2 (-874)) (-4 *3 (-1045)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *2 (-1045)) (-5 *1 (-199 *4 *2)) (-14 *4 (-874)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-199 *4 *2)) (-14 *4 (-874)) (-4 *2 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -3157 ($)) (-15 -1922 (|#2| $ (-731))) (-15 -2476 (|#2| $ (-731) |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3404 (((-1205) $) 36) (((-1205) $ (-874) (-874)) 38)) (-1922 (($ $ (-942)) 19) (((-230 (-1100)) $ (-1117)) 15)) (-2356 (((-1205) $) 34)) (-2341 (((-816) $) 31) (($ (-606 |#1|)) 8)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $ $) 27)) (-2318 (($ $ $) 22))) +(((-200 |#1|) (-13 (-1045) (-10 -8 (-15 -1922 ($ $ (-942))) (-15 -1922 ((-230 (-1100)) $ (-1117))) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2341 ($ (-606 |#1|))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -3404 ((-1205) $ (-874) (-874))))) (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))) (T -200)) +((-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-942)) (-5 *1 (-200 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-230 (-1100))) (-5 *1 (-200 *4)) (-4 *4 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ *3)) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-2318 (*1 *1 *1 *1) (-12 (-5 *1 (-200 *2)) (-4 *2 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-2329 (*1 *1 *1 *1) (-12 (-5 *1 (-200 *2)) (-4 *2 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $))))) (-5 *1 (-200 *3)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) (-15 -3404 (*2 $))))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) (-4 *3 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) (-15 -3404 (*2 $))))))) (-3404 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-200 *4)) (-4 *4 (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) (-15 -3404 (*2 $)))))))) +(-13 (-1045) (-10 -8 (-15 -1922 ($ $ (-942))) (-15 -1922 ((-230 (-1100)) $ (-1117))) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2341 ($ (-606 |#1|))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -3404 ((-1205) $ (-874) (-874))))) +((-2310 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2310 (|#2| |#4| (-1 |#2| |#2|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -201)) +((-2310 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-347)) (-4 *6 (-1176 (-391 *2))) (-4 *2 (-1176 *5)) (-5 *1 (-201 *5 *2 *6 *3)) (-4 *3 (-326 *5 *2 *6))))) +(-10 -7 (-15 -2310 (|#2| |#4| (-1 |#2| |#2|)))) +((-3982 ((|#2| |#2| (-731) |#2|) 42)) (-3475 ((|#2| |#2| (-731) |#2|) 38)) (-3149 (((-606 |#2|) (-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|)))) 57)) (-3752 (((-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))) |#2|) 53)) (-3224 (((-111) |#2|) 50)) (-3159 (((-402 |#2|) |#2|) 77)) (-3622 (((-402 |#2|) |#2|) 76)) (-4243 ((|#2| |#2| (-731) |#2|) 36)) (-2715 (((-2 (|:| |cont| |#1|) (|:| -3415 (-606 (-2 (|:| |irr| |#2|) (|:| -2430 (-537)))))) |#2| (-111)) 69))) +(((-202 |#1| |#2|) (-10 -7 (-15 -3622 ((-402 |#2|) |#2|)) (-15 -3159 ((-402 |#2|) |#2|)) (-15 -2715 ((-2 (|:| |cont| |#1|) (|:| -3415 (-606 (-2 (|:| |irr| |#2|) (|:| -2430 (-537)))))) |#2| (-111))) (-15 -3752 ((-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))) |#2|)) (-15 -3149 ((-606 |#2|) (-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))))) (-15 -4243 (|#2| |#2| (-731) |#2|)) (-15 -3475 (|#2| |#2| (-731) |#2|)) (-15 -3982 (|#2| |#2| (-731) |#2|)) (-15 -3224 ((-111) |#2|))) (-333) (-1176 |#1|)) (T -202)) +((-3224 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4)))) (-3982 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) (-4 *2 (-1176 *4)))) (-3475 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) (-4 *2 (-1176 *4)))) (-4243 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) (-4 *2 (-1176 *4)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *5)))) (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *2 (-606 *5)) (-5 *1 (-202 *4 *5)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *3)))) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-202 *5 *3)) (-4 *3 (-1176 *5)))) (-3159 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -3622 ((-402 |#2|) |#2|)) (-15 -3159 ((-402 |#2|) |#2|)) (-15 -2715 ((-2 (|:| |cont| |#1|) (|:| -3415 (-606 (-2 (|:| |irr| |#2|) (|:| -2430 (-537)))))) |#2| (-111))) (-15 -3752 ((-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))) |#2|)) (-15 -3149 ((-606 |#2|) (-606 (-2 (|:| |deg| (-731)) (|:| -1277 |#2|))))) (-15 -4243 (|#2| |#2| (-731) |#2|)) (-15 -3475 (|#2| |#2| (-731) |#2|)) (-15 -3982 (|#2| |#2| (-731) |#2|)) (-15 -3224 ((-111) |#2|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-537) $) NIL (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) NIL)) (-3830 (((-537) $) NIL (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) NIL)) (-1966 (($ (-391 (-537))) 9)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 8) (($ (-537)) NIL) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL) (((-956 10) $) 10)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-537) $) NIL (|has| (-537) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2340 (($ $ $) NIL) (($ (-537) (-537)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL))) +(((-203) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 10) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -1966 ($ (-391 (-537))))))) (T -203)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-956 10)) (-5 *1 (-203)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203))))) +(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 10) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -1966 ($ (-391 (-537)))))) +((-3092 (((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)) (-1100)) 28) (((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|))) 24)) (-3582 (((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117) (-800 |#2|) (-800 |#2|) (-111)) 17))) +(((-204 |#1| |#2|) (-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)))) (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)) (-1100))) (-15 -3582 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117) (-800 |#2|) (-800 |#2|) (-111)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-29 |#1|))) (T -204)) +((-3582 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1117)) (-5 *6 (-111)) (-4 *7 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-4 *3 (-13 (-1139) (-912) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-204 *7 *3)) (-5 *5 (-800 *3)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1038 (-800 *3))) (-5 *5 (-1100)) (-4 *3 (-13 (-1139) (-912) (-29 *6))) (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-204 *6 *3)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-800 *3))) (-4 *3 (-13 (-1139) (-912) (-29 *5))) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-204 *5 *3))))) +(-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)))) (-15 -3092 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1038 (-800 |#2|)) (-1100))) (-15 -3582 ((-3 (|:| |f1| (-800 |#2|)) (|:| |f2| (-606 (-800 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117) (-800 |#2|) (-800 |#2|) (-111)))) +((-3092 (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))) (-1100)) 46) (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|))))) 43) (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))) (-1100)) 47) (((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|)))) 20))) +(((-205 |#1|) (-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))) (-1100))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))) (-1100)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (T -205)) +((-3092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1038 (-800 (-391 (-905 *6))))) (-5 *5 (-1100)) (-5 *3 (-391 (-905 *6))) (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *6)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-800 (-391 (-905 *5))))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *5)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1038 (-800 (-300 *6)))) (-5 *5 (-1100)) (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *6)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1038 (-800 (-300 *5)))) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-205 *5))))) +(-10 -7 (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-300 |#1|))) (-1100))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))))) (-15 -3092 ((-3 (|:| |f1| (-800 (-300 |#1|))) (|:| |f2| (-606 (-800 (-300 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-391 (-905 |#1|)) (-1038 (-800 (-391 (-905 |#1|)))) (-1100)))) +((-3195 (((-2 (|:| -2990 (-1113 |#1|)) (|:| |deg| (-874))) (-1113 |#1|)) 21)) (-1905 (((-606 (-300 |#2|)) (-300 |#2|) (-874)) 42))) +(((-206 |#1| |#2|) (-10 -7 (-15 -3195 ((-2 (|:| -2990 (-1113 |#1|)) (|:| |deg| (-874))) (-1113 |#1|))) (-15 -1905 ((-606 (-300 |#2|)) (-300 |#2|) (-874)))) (-998) (-13 (-529) (-807))) (T -206)) +((-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *6 (-13 (-529) (-807))) (-5 *2 (-606 (-300 *6))) (-5 *1 (-206 *5 *6)) (-5 *3 (-300 *6)) (-4 *5 (-998)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-2 (|:| -2990 (-1113 *4)) (|:| |deg| (-874)))) (-5 *1 (-206 *4 *5)) (-5 *3 (-1113 *4)) (-4 *5 (-13 (-529) (-807)))))) +(-10 -7 (-15 -3195 ((-2 (|:| -2990 (-1113 |#1|)) (|:| |deg| (-874))) (-1113 |#1|))) (-15 -1905 ((-606 (-300 |#2|)) (-300 |#2|) (-874)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3259 ((|#1| $) NIL)) (-2992 ((|#1| $) 25)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3641 (($ $) NIL)) (-4146 (($ $) 31)) (-2993 ((|#1| |#1| $) NIL)) (-3444 ((|#1| $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3845 (((-731) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) NIL)) (-2224 ((|#1| |#1| $) 28)) (-2941 ((|#1| |#1| $) 30)) (-3499 (($ |#1| $) NIL)) (-2545 (((-731) $) 27)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1424 ((|#1| $) NIL)) (-1771 ((|#1| $) 26)) (-3919 ((|#1| $) 24)) (-1599 ((|#1| $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2051 ((|#1| |#1| $) NIL)) (-2193 (((-111) $) 9)) (-3425 (($) NIL)) (-4198 ((|#1| $) NIL)) (-3966 (($) NIL) (($ (-606 |#1|)) 16)) (-3731 (((-731) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-1921 ((|#1| $) 13)) (-2753 (($ (-606 |#1|)) NIL)) (-4247 ((|#1| $) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-207 |#1|) (-13 (-238 |#1|) (-10 -8 (-15 -3966 ($ (-606 |#1|))))) (-1045)) (T -207)) +((-3966 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-207 *3))))) +(-13 (-238 |#1|) (-10 -8 (-15 -3966 ($ (-606 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3933 (($ (-300 |#1|)) 23)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-2615 (((-111) $) NIL)) (-1516 (((-3 (-300 |#1|) "failed") $) NIL)) (-3958 (((-300 |#1|) $) NIL)) (-3940 (($ $) 31)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1612 (($ (-1 (-300 |#1|) (-300 |#1|)) $) NIL)) (-3912 (((-300 |#1|) $) NIL)) (-2695 (($ $) 30)) (-1654 (((-1100) $) NIL)) (-1611 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($ (-731)) NIL)) (-1928 (($ $) 32)) (-2872 (((-537) $) NIL)) (-2341 (((-816) $) 57) (($ (-537)) NIL) (($ (-300 |#1|)) NIL)) (-3500 (((-300 |#1|) $ $) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) 25 T CONST)) (-2943 (($) 50 T CONST)) (-2244 (((-111) $ $) 28)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 19)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 24) (($ (-300 |#1|) $) 18))) +(((-208 |#1| |#2|) (-13 (-583 (-300 |#1|)) (-989 (-300 |#1|)) (-10 -8 (-15 -3912 ((-300 |#1|) $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 ((-300 |#1|) $ $)) (-15 -1524 ($ (-731))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -1612 ($ (-1 (-300 |#1|) (-300 |#1|)) $)) (-15 -3933 ($ (-300 |#1|))) (-15 -1928 ($ $)))) (-13 (-998) (-807)) (-606 (-1117))) (T -208)) +((-3912 (*1 *2 *1) (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-2695 (*1 *1 *1) (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) (-14 *3 (-606 (-1117))))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) (-14 *3 (-606 (-1117))))) (-3500 (*1 *2 *1 *1) (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-300 *3) (-300 *3))) (-4 *3 (-13 (-998) (-807))) (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117))))) (-3933 (*1 *1 *2) (-12 (-5 *2 (-300 *3)) (-4 *3 (-13 (-998) (-807))) (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117))))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) (-14 *3 (-606 (-1117)))))) +(-13 (-583 (-300 |#1|)) (-989 (-300 |#1|)) (-10 -8 (-15 -3912 ((-300 |#1|) $)) (-15 -2695 ($ $)) (-15 -3940 ($ $)) (-15 -3500 ((-300 |#1|) $ $)) (-15 -1524 ($ (-731))) (-15 -1611 ((-111) $)) (-15 -2615 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -1612 ($ (-1 (-300 |#1|) (-300 |#1|)) $)) (-15 -3933 ($ (-300 |#1|))) (-15 -1928 ($ $)))) +((-1738 (((-111) (-1100)) 22)) (-2063 (((-3 (-800 |#2|) "failed") (-578 |#2|) |#2| (-800 |#2|) (-800 |#2|) (-111)) 32)) (-2714 (((-3 (-111) "failed") (-1113 |#2|) (-800 |#2|) (-800 |#2|) (-111)) 73) (((-3 (-111) "failed") (-905 |#1|) (-1117) (-800 |#2|) (-800 |#2|) (-111)) 74))) +(((-209 |#1| |#2|) (-10 -7 (-15 -1738 ((-111) (-1100))) (-15 -2063 ((-3 (-800 |#2|) "failed") (-578 |#2|) |#2| (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-905 |#1|) (-1117) (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-1113 |#2|) (-800 |#2|) (-800 |#2|) (-111)))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-29 |#1|))) (T -209)) +((-2714 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1113 *6)) (-5 *4 (-800 *6)) (-4 *6 (-13 (-1139) (-29 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-209 *5 *6)))) (-2714 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1117)) (-5 *5 (-800 *7)) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *7 (-13 (-1139) (-29 *6))) (-5 *1 (-209 *6 *7)))) (-2063 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-800 *4)) (-5 *3 (-578 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1139) (-29 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-209 *6 *4)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-111)) (-5 *1 (-209 *4 *5)) (-4 *5 (-13 (-1139) (-29 *4)))))) +(-10 -7 (-15 -1738 ((-111) (-1100))) (-15 -2063 ((-3 (-800 |#2|) "failed") (-578 |#2|) |#2| (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-905 |#1|) (-1117) (-800 |#2|) (-800 |#2|) (-111))) (-15 -2714 ((-3 (-111) "failed") (-1113 |#2|) (-800 |#2|) (-800 |#2|) (-111)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 89)) (-1874 (((-537) $) 99)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1586 (($ $) NIL)) (-1403 (($ $) 77)) (-1247 (($ $) 65)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) 56)) (-4099 (((-111) $ $) NIL)) (-1378 (($ $) 75)) (-4270 (($ $) 63)) (-2537 (((-537) $) 116)) (-1429 (($ $) 80)) (-1273 (($ $) 67)) (-3832 (($) NIL T CONST)) (-3981 (($ $) NIL)) (-1516 (((-3 (-537) "failed") $) 115) (((-3 (-391 (-537)) "failed") $) 112)) (-3958 (((-537) $) 113) (((-391 (-537)) $) 110)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 92)) (-1292 (((-391 (-537)) $ (-731)) 108) (((-391 (-537)) $ (-731) (-731)) 107)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2300 (((-874)) 29) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-3797 (((-111) $) NIL)) (-3338 (($) 39)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL)) (-4231 (((-537) $) 35)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2055 (($ $) NIL)) (-2840 (((-111) $) 88)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) 53) (($) 34 (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-3889 (($ $ $) 52) (($) 33 (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-4020 (((-537) $) 27)) (-3959 (($ $) 30)) (-1970 (($ $) 57)) (-2180 (($ $) 62)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3964 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-2528 (((-1064) $) NIL) (((-537) $) 90)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL)) (-3830 (($ $) NIL)) (-2851 (($ (-537) (-537)) NIL) (($ (-537) (-537) (-874)) 100)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3283 (((-537) $) 28)) (-3270 (($) 38)) (-4185 (($ $) 61)) (-1930 (((-731) $) NIL)) (-1754 (((-1100) (-1100)) 8)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-874)) NIL) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-3456 (($ $ (-731)) NIL) (($ $) 93)) (-1398 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-1441 (($ $) 78)) (-1286 (($ $) 68)) (-1415 (($ $) 79)) (-1259 (($ $) 66)) (-1389 (($ $) 76)) (-1234 (($ $) 64)) (-3996 (((-363) $) 104) (((-210) $) 101) (((-845 (-363)) $) NIL) (((-513) $) 45)) (-2341 (((-816) $) 42) (($ (-537)) 60) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-537)) 60) (($ (-391 (-537))) NIL)) (-3654 (((-731)) NIL)) (-3903 (($ $) NIL)) (-3272 (((-874)) 32) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-1605 (((-874)) 25)) (-1475 (($ $) 83)) (-1328 (($ $) 71) (($ $ $) 109)) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) 81)) (-1300 (($ $) 69)) (-1495 (($ $) 86)) (-1352 (($ $) 74)) (-4141 (($ $) 84)) (-1365 (($ $) 72)) (-1485 (($ $) 85)) (-1340 (($ $) 73)) (-1465 (($ $) 82)) (-1314 (($ $) 70)) (-2209 (($ $) 117)) (-2928 (($) 36 T CONST)) (-2943 (($) 37 T CONST)) (-1379 (((-1100) $) 19) (((-1100) $ (-111)) 21) (((-1205) (-782) $) 22) (((-1205) (-782) $ (-111)) 23)) (-2247 (($ $) 96)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2611 (($ $ $) 98)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 54)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 46)) (-2340 (($ $ $) 87) (($ $ (-537)) 55)) (-2329 (($ $) 47) (($ $ $) 49)) (-2318 (($ $ $) 48)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 58) (($ $ (-391 (-537))) 129) (($ $ $) 59)) (* (($ (-874) $) 31) (($ (-731) $) NIL) (($ (-537) $) 51) (($ $ $) 50) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-210) (-13 (-388) (-218) (-788) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -3270 ($)) (-15 -2528 ((-537) $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -1328 ($ $ $)) (-15 -2247 ($ $)) (-15 -2611 ($ $ $)) (-15 -1754 ((-1100) (-1100))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731)))))) (T -210)) +((** (*1 *1 *1 *1) (-5 *1 (-210))) (-2340 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) (-3270 (*1 *1) (-5 *1 (-210))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) (-3959 (*1 *1 *1) (-5 *1 (-210))) (-1970 (*1 *1 *1) (-5 *1 (-210))) (-1328 (*1 *1 *1 *1) (-5 *1 (-210))) (-2247 (*1 *1 *1) (-5 *1 (-210))) (-2611 (*1 *1 *1 *1) (-5 *1 (-210))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-210)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210)))) (-1292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210))))) +(-13 (-388) (-218) (-788) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -3270 ($)) (-15 -2528 ((-537) $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -1328 ($ $ $)) (-15 -2247 ($ $)) (-15 -2611 ($ $ $)) (-15 -1754 ((-1100) (-1100))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731))))) +((-3548 (((-160 (-210)) (-731) (-160 (-210))) 11) (((-210) (-731) (-210)) 12)) (-2286 (((-160 (-210)) (-160 (-210))) 13) (((-210) (-210)) 14)) (-1331 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 19) (((-210) (-210) (-210)) 22)) (-1593 (((-160 (-210)) (-160 (-210))) 25) (((-210) (-210)) 24)) (-3288 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 43) (((-210) (-210) (-210)) 35)) (-1961 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 48) (((-210) (-210) (-210)) 45)) (-2354 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 15) (((-210) (-210) (-210)) 16)) (-1716 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 17) (((-210) (-210) (-210)) 18)) (-2147 (((-160 (-210)) (-160 (-210))) 60) (((-210) (-210)) 59)) (-3502 (((-210) (-210)) 54) (((-160 (-210)) (-160 (-210))) 58)) (-2247 (((-160 (-210)) (-160 (-210))) 8) (((-210) (-210)) 9)) (-2611 (((-160 (-210)) (-160 (-210)) (-160 (-210))) 30) (((-210) (-210) (-210)) 26))) +(((-211) (-10 -7 (-15 -2247 ((-210) (-210))) (-15 -2247 ((-160 (-210)) (-160 (-210)))) (-15 -2611 ((-210) (-210) (-210))) (-15 -2611 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -2286 ((-210) (-210))) (-15 -2286 ((-160 (-210)) (-160 (-210)))) (-15 -1593 ((-210) (-210))) (-15 -1593 ((-160 (-210)) (-160 (-210)))) (-15 -3548 ((-210) (-731) (-210))) (-15 -3548 ((-160 (-210)) (-731) (-160 (-210)))) (-15 -2354 ((-210) (-210) (-210))) (-15 -2354 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3288 ((-210) (-210) (-210))) (-15 -3288 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1716 ((-210) (-210) (-210))) (-15 -1716 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1961 ((-210) (-210) (-210))) (-15 -1961 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3502 ((-160 (-210)) (-160 (-210)))) (-15 -3502 ((-210) (-210))) (-15 -2147 ((-210) (-210))) (-15 -2147 ((-160 (-210)) (-160 (-210)))) (-15 -1331 ((-210) (-210) (-210))) (-15 -1331 ((-160 (-210)) (-160 (-210)) (-160 (-210)))))) (T -211)) +((-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-3288 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-160 (-210))) (-5 *3 (-731)) (-5 *1 (-211)))) (-3548 (*1 *2 *3 *2) (-12 (-5 *2 (-210)) (-5 *3 (-731)) (-5 *1 (-211)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2611 (*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2611 (*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211))))) +(-10 -7 (-15 -2247 ((-210) (-210))) (-15 -2247 ((-160 (-210)) (-160 (-210)))) (-15 -2611 ((-210) (-210) (-210))) (-15 -2611 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -2286 ((-210) (-210))) (-15 -2286 ((-160 (-210)) (-160 (-210)))) (-15 -1593 ((-210) (-210))) (-15 -1593 ((-160 (-210)) (-160 (-210)))) (-15 -3548 ((-210) (-731) (-210))) (-15 -3548 ((-160 (-210)) (-731) (-160 (-210)))) (-15 -2354 ((-210) (-210) (-210))) (-15 -2354 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3288 ((-210) (-210) (-210))) (-15 -3288 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1716 ((-210) (-210) (-210))) (-15 -1716 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -1961 ((-210) (-210) (-210))) (-15 -1961 ((-160 (-210)) (-160 (-210)) (-160 (-210)))) (-15 -3502 ((-160 (-210)) (-160 (-210)))) (-15 -3502 ((-210) (-210))) (-15 -2147 ((-210) (-210))) (-15 -2147 ((-160 (-210)) (-160 (-210)))) (-15 -1331 ((-210) (-210) (-210))) (-15 -1331 ((-160 (-210)) (-160 (-210)) (-160 (-210))))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) NIL)) (-2417 (($ $ $) NIL)) (-3660 (($ (-1200 |#1|)) NIL) (($ $) NIL)) (-1825 (($ |#1| |#1| |#1|) 32)) (-3234 (((-111) $) NIL)) (-2324 (($ $ (-537) (-537)) NIL)) (-1731 (($ $ (-537) (-537)) NIL)) (-4068 (($ $ (-537) (-537) (-537) (-537)) NIL)) (-2723 (($ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3632 (($ $ (-537) (-537) $) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) NIL)) (-2720 (($ $ (-537) (-1200 |#1|)) NIL)) (-2573 (($ $ (-537) (-1200 |#1|)) NIL)) (-3190 (($ |#1| |#1| |#1|) 31)) (-3110 (($ (-731) |#1|) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) NIL (|has| |#1| (-291)))) (-2964 (((-1200 |#1|) $ (-537)) NIL)) (-3551 (($ |#1|) 30)) (-1354 (($ |#1|) 29)) (-2927 (($ |#1|) 28)) (-3705 (((-731) $) NIL (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2342 (((-731) $) NIL (|has| |#1| (-529)))) (-2630 (((-606 (-1200 |#1|)) $) NIL (|has| |#1| (-529)))) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#1| $) NIL (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#1|))) 11)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3156 (((-606 (-606 |#1|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) NIL (|has| |#1| (-347)))) (-4237 (($) 12)) (-3120 (($ $ $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537))) NIL)) (-3189 (($ (-606 |#1|)) NIL) (($ (-606 $)) NIL)) (-3400 (((-111) $) NIL)) (-3075 ((|#1| $) NIL (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-1200 |#1|) $ (-537)) NIL)) (-2341 (($ (-1200 |#1|)) NIL) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-537) $) NIL) (((-1200 |#1|) $ (-1200 |#1|)) 15) (((-1200 |#1|) (-1200 |#1|) $) NIL) (((-896 |#1|) $ (-896 |#1|)) 20)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-212 |#1|) (-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 * ((-896 |#1|) $ (-896 |#1|))) (-15 -4237 ($)) (-15 -2927 ($ |#1|)) (-15 -1354 ($ |#1|)) (-15 -3551 ($ |#1|)) (-15 -3190 ($ |#1| |#1| |#1|)) (-15 -1825 ($ |#1| |#1| |#1|)))) (-13 (-347) (-1139))) (T -212)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139))) (-5 *1 (-212 *3)))) (-4237 (*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-2927 (*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-1354 (*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-3551 (*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-3190 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) (-1825 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) +(-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 * ((-896 |#1|) $ (-896 |#1|))) (-15 -4237 ($)) (-15 -2927 ($ |#1|)) (-15 -1354 ($ |#1|)) (-15 -3551 ($ |#1|)) (-15 -3190 ($ |#1| |#1| |#1|)) (-15 -1825 ($ |#1| |#1| |#1|)))) +((-3435 (($ (-1 (-111) |#2|) $) 16)) (-3026 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-1341 (($) NIL) (($ (-606 |#2|)) 11)) (-2244 (((-111) $ $) 23))) +(((-213 |#1| |#2|) (-10 -8 (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-214 |#2|) (-1045)) (T -213)) +NIL +(-10 -8 (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-214 |#1|) (-134) (-1045)) (T -214)) +NIL +(-13 (-220 |t#1|)) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) 11) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) 19) (($ $ (-731)) NIL) (($ $) 16)) (-4230 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-731)) 14) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL))) +(((-215 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1117))) (-15 -4230 (|#1| |#1| (-606 (-1117)))) (-15 -4230 (|#1| |#1| (-1117) (-731))) (-15 -4230 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|)))) (-216 |#2|) (-998)) (T -215)) +NIL +(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1117))) (-15 -4230 (|#1| |#1| (-606 (-1117)))) (-15 -4230 (|#1| |#1| (-1117) (-731))) (-15 -4230 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -4230 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-731)) 49) (($ $ (-606 (-1117)) (-606 (-731))) 42 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 41 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 40 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 39 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 37 (|has| |#1| (-218))) (($ $) 35 (|has| |#1| (-218)))) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-731)) 47) (($ $ (-606 (-1117)) (-606 (-731))) 46 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 45 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 44 (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 43 (|has| |#1| (-853 (-1117)))) (($ $ (-731)) 38 (|has| |#1| (-218))) (($ $) 36 (|has| |#1| (-218)))) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-216 |#1|) (-134) (-998)) (T -216)) +((-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) (-4 *4 (-998)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) (-4 *4 (-998))))) +(-13 (-998) (-10 -8 (-15 -3456 ($ $ (-1 |t#1| |t#1|))) (-15 -3456 ($ $ (-1 |t#1| |t#1|) (-731))) (-15 -4230 ($ $ (-1 |t#1| |t#1|))) (-15 -4230 ($ $ (-1 |t#1| |t#1|) (-731))) (IF (|has| |t#1| (-218)) (-6 (-218)) |%noBranch|) (IF (|has| |t#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-218) |has| |#1| (-218)) ((-609 $) . T) ((-687) . T) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-3456 (($ $) NIL) (($ $ (-731)) 10)) (-4230 (($ $) 8) (($ $ (-731)) 12))) +(((-217 |#1|) (-10 -8 (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1|))) (-218)) (T -217)) +NIL +(-10 -8 (-15 -4230 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-731))) (-15 -4230 (|#1| |#1|)) (-15 -3456 (|#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $) 36) (($ $ (-731)) 34)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 35) (($ $ (-731)) 33)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-218) (-134)) (T -218)) +((-3456 (*1 *1 *1) (-4 *1 (-218))) (-4230 (*1 *1 *1) (-4 *1 (-218))) (-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731))))) +(-13 (-998) (-10 -8 (-15 -3456 ($ $)) (-15 -4230 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -4230 ($ $ (-731))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1341 (($) 12) (($ (-606 |#2|)) NIL)) (-2494 (($ $) 14)) (-2350 (($ (-606 |#2|)) 10)) (-2341 (((-816) $) 21))) +(((-219 |#1| |#2|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2494 (|#1| |#1|))) (-220 |#2|) (-1045)) (T -219)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1341 (|#1| (-606 |#2|))) (-15 -1341 (|#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2494 (|#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-220 |#1|) (-134) (-1045)) (T -220)) +((-1341 (*1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1045)))) (-1341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-220 *3)))) (-3026 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-220 *2)) (-4 *2 (-1045)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) (-4 *3 (-1045)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) (-4 *3 (-1045))))) +(-13 (-105 |t#1|) (-145 |t#1|) (-10 -8 (-15 -1341 ($)) (-15 -1341 ($ (-606 |t#1|))) (IF (|has| $ (-6 -4300)) (PROGN (-15 -3026 ($ |t#1| $)) (-15 -3026 ($ (-1 (-111) |t#1|) $)) (-15 -3435 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2468 (((-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731))))) (-278 (-905 (-537)))) 27))) +(((-221) (-10 -7 (-15 -2468 ((-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731))))) (-278 (-905 (-537))))))) (T -221)) +((-2468 (*1 *2 *3) (-12 (-5 *3 (-278 (-905 (-537)))) (-5 *2 (-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731)))))) (-5 *1 (-221))))) +(-10 -7 (-15 -2468 ((-2 (|:| |varOrder| (-606 (-1117))) (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) (|:| |hom| (-606 (-1200 (-731))))) (-278 (-905 (-537)))))) +((-3151 (((-731)) 51)) (-2053 (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) 49) (((-649 |#3|) (-649 $)) 41) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-1839 (((-131)) 57)) (-3456 (($ $ (-1 |#3| |#3|) (-731)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-2341 (((-1200 |#3|) $) NIL) (($ |#3|) NIL) (((-816) $) NIL) (($ (-537)) 12) (($ (-391 (-537))) NIL)) (-3654 (((-731)) 15)) (-2340 (($ $ |#3|) 54))) +(((-222 |#1| |#2| |#3|) (-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|)) (-15 -3654 ((-731))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -3151 ((-731))) (-15 -2340 (|#1| |#1| |#3|)) (-15 -1839 ((-131))) (-15 -2341 ((-1200 |#3|) |#1|))) (-223 |#2| |#3|) (-731) (-1154)) (T -222)) +((-1839 (*1 *2) (-12 (-14 *4 (-731)) (-4 *5 (-1154)) (-5 *2 (-131)) (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) (-3151 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) (-3654 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5))))) +(-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|)) (-15 -3654 ((-731))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -3151 ((-731))) (-15 -2340 (|#1| |#1| |#3|)) (-15 -1839 ((-131))) (-15 -2341 ((-1200 |#3|) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#2| (-1045)))) (-1656 (((-111) $) 72 (|has| |#2| (-129)))) (-3492 (($ (-874)) 125 (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2169 (($ $ $) 121 (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) 8)) (-3151 (((-731)) 107 (|has| |#2| (-352)))) (-2537 (((-537) $) 119 (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) 52 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-1516 (((-3 (-537) "failed") $) 67 (-3319 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) 64 (-3319 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1045)))) (-3958 (((-537) $) 68 (-3319 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) 65 (-3319 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) 60 (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) 106 (-3319 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 105 (-3319 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 104 (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) 103 (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) 79 (|has| |#2| (-687)))) (-1618 (($) 110 (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) 51)) (-3797 (((-111) $) 117 (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) 30 (|has| $ (-6 -4300)))) (-2836 (((-111) $) 81 (|has| |#2| (-687)))) (-2840 (((-111) $) 118 (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 116 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-3703 (((-606 |#2|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 115 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-4081 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) 35)) (-2334 (((-874) $) 109 (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2009 (($ (-874)) 108 (|has| |#2| (-352)))) (-2528 (((-1064) $) 21 (|has| |#2| (-1045)))) (-3188 ((|#2| $) 42 (|has| (-537) (-807)))) (-3040 (($ $ |#2|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) 26 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 23 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ (-537) |#2|) 50) ((|#2| $ (-537)) 49)) (-3416 ((|#2| $ $) 124 (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) 126)) (-1839 (((-131)) 123 (|has| |#2| (-347)))) (-3456 (($ $) 98 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) 96 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) 94 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) 93 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) 92 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) 91 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) 84 (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4300))) (((-731) |#2| $) 28 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-1200 |#2|) $) 127) (($ (-537)) 66 (-1533 (-3319 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) 63 (-3319 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) 62 (|has| |#2| (-1045))) (((-816) $) 18 (|has| |#2| (-579 (-816))))) (-3654 (((-731)) 102 (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4300)))) (-2209 (($ $) 120 (|has| |#2| (-805)))) (-2928 (($) 71 (|has| |#2| (-129)) CONST)) (-2943 (($) 82 (|has| |#2| (-687)) CONST)) (-4230 (($ $) 97 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) 95 (-3319 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) 90 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) 89 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) 88 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) 87 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) 86 (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-998)))) (-2293 (((-111) $ $) 113 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2271 (((-111) $ $) 112 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2244 (((-111) $ $) 20 (|has| |#2| (-1045)))) (-2282 (((-111) $ $) 114 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2263 (((-111) $ $) 111 (-1533 (|has| |#2| (-805)) (|has| |#2| (-753))))) (-2340 (($ $ |#2|) 122 (|has| |#2| (-347)))) (-2329 (($ $ $) 100 (|has| |#2| (-998))) (($ $) 99 (|has| |#2| (-998)))) (-2318 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-731)) 80 (|has| |#2| (-687))) (($ $ (-874)) 77 (|has| |#2| (-687)))) (* (($ (-537) $) 101 (|has| |#2| (-998))) (($ $ $) 78 (|has| |#2| (-687))) (($ $ |#2|) 76 (|has| |#2| (-687))) (($ |#2| $) 75 (|has| |#2| (-687))) (($ (-731) $) 73 (|has| |#2| (-129))) (($ (-874) $) 70 (|has| |#2| (-25)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-223 |#1| |#2|) (-134) (-731) (-1154)) (T -223)) +((-3668 (*1 *1 *2) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1154)) (-4 *1 (-223 *3 *4)))) (-3492 (*1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-223 *3 *4)) (-4 *4 (-998)) (-4 *4 (-1154)))) (-3416 (*1 *2 *1 *1) (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687))))) +(-13 (-570 (-537) |t#2|) (-579 (-1200 |t#2|)) (-10 -8 (-6 -4300) (-15 -3668 ($ (-1200 |t#2|))) (IF (|has| |t#2| (-1045)) (-6 (-395 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-998)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-216 |t#2|)) (-6 (-361 |t#2|)) (-15 -3492 ($ (-874))) (-15 -3416 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-687)) (PROGN (-6 (-687)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-352)) (-6 (-352)) |%noBranch|) (IF (|has| |t#2| (-163)) (PROGN (-6 (-37 |t#2|)) (-6 (-163))) |%noBranch|) (IF (|has| |t#2| (-6 -4297)) (-6 -4297) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-753)) (-6 (-753)) |%noBranch|) (IF (|has| |t#2| (-347)) (-6 (-1207 |t#2|)) |%noBranch|))) +(((-21) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-23) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-25) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) -1533 (|has| |#2| (-1045)) (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-687)) (|has| |#2| (-352)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -1533 (|has| |#2| (-998)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-110 $ $) |has| |#2| (-163)) ((-129) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129))) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-687)) (|has| |#2| (-352)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-579 (-816))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-579 (-1200 |#2|)) . T) ((-163) |has| |#2| (-163)) ((-216 |#2|) |has| |#2| (-998)) ((-218) -12 (|has| |#2| (-218)) (|has| |#2| (-998))) ((-270 #0=(-537) |#2|) . T) ((-272 #0# |#2|) . T) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-352) |has| |#2| (-352)) ((-361 |#2|) |has| |#2| (-998)) ((-395 |#2|) |has| |#2| (-1045)) ((-471 |#2|) . T) ((-570 #0# |#2|) . T) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-609 |#2|) -1533 (|has| |#2| (-998)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-609 $) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-163))) ((-602 (-537)) -12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998))) ((-602 |#2|) |has| |#2| (-998)) ((-678 |#2|) -1533 (|has| |#2| (-347)) (|has| |#2| (-163))) ((-687) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-687)) (|has| |#2| (-163))) ((-751) |has| |#2| (-805)) ((-752) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-753) |has| |#2| (-753)) ((-754) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-755) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-805) |has| |#2| (-805)) ((-807) -1533 (|has| |#2| (-805)) (|has| |#2| (-753))) ((-853 (-1117)) -12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998))) ((-989 (-391 (-537))) -12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045))) ((-989 (-537)) -12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) ((-989 |#2|) |has| |#2| (-1045)) ((-1004 |#2|) -1533 (|has| |#2| (-998)) (|has| |#2| (-347)) (|has| |#2| (-163))) ((-1004 $) |has| |#2| (-163)) ((-998) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-163))) ((-1005) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-163))) ((-1057) -1533 (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-687)) (|has| |#2| (-163))) ((-1045) -1533 (|has| |#2| (-1045)) (|has| |#2| (-998)) (|has| |#2| (-805)) (|has| |#2| (-753)) (|has| |#2| (-687)) (|has| |#2| (-352)) (|has| |#2| (-347)) (|has| |#2| (-163)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1154) . T) ((-1207 |#2|) |has| |#2| (-347))) +((-2547 (((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 21)) (-3195 ((|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|) 23)) (-1612 (((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)) 18))) +(((-224 |#1| |#2| |#3|) (-10 -7 (-15 -2547 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -3195 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -1612 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) (-731) (-1154) (-1154)) (T -224)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-5 *2 (-225 *5 *7)) (-5 *1 (-224 *5 *6 *7)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) (-4 *6 (-1154)) (-4 *2 (-1154)) (-5 *1 (-224 *5 *6 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-731)) (-4 *7 (-1154)) (-4 *5 (-1154)) (-5 *2 (-225 *6 *5)) (-5 *1 (-224 *6 *7 *5))))) +(-10 -7 (-15 -2547 ((-225 |#1| |#3|) (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -3195 (|#3| (-1 |#3| |#2| |#3|) (-225 |#1| |#2|) |#3|)) (-15 -1612 ((-225 |#1| |#3|) (-1 |#3| |#2|) (-225 |#1| |#2|)))) +((-2330 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-1656 (((-111) $) NIL (|has| |#2| (-129)))) (-3492 (($ (-874)) 56 (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) 60 (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) 17)) (-3151 (((-731)) NIL (|has| |#2| (-352)))) (-2537 (((-537) $) NIL (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) 27 (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) NIL (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) 53 (|has| |#2| (-687)))) (-1618 (($) NIL (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) 51)) (-3797 (((-111) $) NIL (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) 15 (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#2| (-687)))) (-2840 (((-111) $) NIL (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 20 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 (((-537) $) 50 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) 41)) (-2334 (((-874) $) NIL (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#2| (-352)))) (-2528 (((-1064) $) NIL (|has| |#2| (-1045)))) (-3188 ((|#2| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) 21)) (-3416 ((|#2| $ $) NIL (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) 18)) (-1839 (((-131)) NIL (|has| |#2| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#2|) $) 10) (($ (-537)) NIL (-1533 (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) 13 (|has| |#2| (-1045))) (((-816) $) NIL (|has| |#2| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#2| (-805)))) (-2928 (($) 35 (|has| |#2| (-129)) CONST)) (-2943 (($) 38 (|has| |#2| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2244 (((-111) $ $) 26 (|has| |#2| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2263 (((-111) $ $) 58 (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $ $) NIL (|has| |#2| (-998))) (($ $) NIL (|has| |#2| (-998)))) (-2318 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-731)) NIL (|has| |#2| (-687))) (($ $ (-874)) NIL (|has| |#2| (-687)))) (* (($ (-537) $) NIL (|has| |#2| (-998))) (($ $ $) 44 (|has| |#2| (-687))) (($ $ |#2|) 42 (|has| |#2| (-687))) (($ |#2| $) 43 (|has| |#2| (-687))) (($ (-731) $) NIL (|has| |#2| (-129))) (($ (-874) $) NIL (|has| |#2| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-225 |#1| |#2|) (-223 |#1| |#2|) (-731) (-1154)) (T -225)) +NIL +(-223 |#1| |#2|) +((-3358 (((-537) (-606 (-1100))) 24) (((-537) (-1100)) 19)) (-2672 (((-1205) (-606 (-1100))) 29) (((-1205) (-1100)) 28)) (-4003 (((-1100)) 14)) (-2456 (((-1100) (-537) (-1100)) 16)) (-2184 (((-606 (-1100)) (-606 (-1100)) (-537) (-1100)) 25) (((-1100) (-1100) (-537) (-1100)) 23)) (-1792 (((-606 (-1100)) (-606 (-1100))) 13) (((-606 (-1100)) (-1100)) 11))) +(((-226) (-10 -7 (-15 -1792 ((-606 (-1100)) (-1100))) (-15 -1792 ((-606 (-1100)) (-606 (-1100)))) (-15 -4003 ((-1100))) (-15 -2456 ((-1100) (-537) (-1100))) (-15 -2184 ((-1100) (-1100) (-537) (-1100))) (-15 -2184 ((-606 (-1100)) (-606 (-1100)) (-537) (-1100))) (-15 -2672 ((-1205) (-1100))) (-15 -2672 ((-1205) (-606 (-1100)))) (-15 -3358 ((-537) (-1100))) (-15 -3358 ((-537) (-606 (-1100)))))) (T -226)) +((-3358 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-537)) (-5 *1 (-226)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-226)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1205)) (-5 *1 (-226)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-226)))) (-2184 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-606 (-1100))) (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *1 (-226)))) (-2184 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226)))) (-2456 (*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226)))) (-4003 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-226)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)))) (-1792 (*1 *2 *3) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)) (-5 *3 (-1100))))) +(-10 -7 (-15 -1792 ((-606 (-1100)) (-1100))) (-15 -1792 ((-606 (-1100)) (-606 (-1100)))) (-15 -4003 ((-1100))) (-15 -2456 ((-1100) (-537) (-1100))) (-15 -2184 ((-1100) (-1100) (-537) (-1100))) (-15 -2184 ((-606 (-1100)) (-606 (-1100)) (-537) (-1100))) (-15 -2672 ((-1205) (-1100))) (-15 -2672 ((-1205) (-606 (-1100)))) (-15 -3358 ((-537) (-1100))) (-15 -3358 ((-537) (-606 (-1100))))) +((** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 16)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ (-391 (-537)) $) 23) (($ $ (-391 (-537))) NIL))) +(((-227 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-228)) (T -227)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 37)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 41)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 38)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ (-391 (-537)) $) 40) (($ $ (-391 (-537))) 39))) +(((-228) (-134)) (T -228)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-537)))) (-3865 (*1 *1 *1) (-4 *1 (-228)))) +(-13 (-274) (-37 (-391 (-537))) (-10 -8 (-15 ** ($ $ (-537))) (-15 -3865 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-274) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-687) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-4199 (($ $) 57)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-4133 (($ $ $) 53 (|has| $ (-6 -4301)))) (-3173 (($ $ $) 52 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-1720 (($ $) 56)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-2480 (($ $) 55)) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 59)) (-2876 (($ $) 58)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3115 (($ $ $) 54 (|has| $ (-6 -4301)))) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-229 |#1|) (-134) (-1154)) (T -229)) +((-2375 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-1720 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-4133 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154)))) (-3173 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154))))) +(-13 (-962 |t#1|) (-10 -8 (-15 -2375 (|t#1| $)) (-15 -2876 ($ $)) (-15 -4199 ($ $)) (-15 -1720 ($ $)) (-15 -2480 ($ $)) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3115 ($ $ $)) (-15 -4133 ($ $ $)) (-15 -3173 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) 10 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "rest" $) NIL (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3200 (($ $) NIL) (($ $ (-731)) NIL)) (-1376 (($ $) NIL (|has| |#1| (-1045)))) (-3221 (($ $) 7 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045))) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1470 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1285 (($ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) NIL) ((|#1| $ (-537) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-731) $ "count") 16)) (-2364 (((-537) $ $) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2267 (($ (-606 |#1|)) 22)) (-3335 (((-111) $) NIL)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3115 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3434 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-606 $)) NIL) (($ $ |#1|) NIL)) (-2341 (($ (-606 |#1|)) 17) (((-606 |#1|) $) 18) (((-816) $) 21 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 14 (|has| $ (-6 -4300))))) +(((-230 |#1|) (-13 (-627 |#1|) (-10 -8 (-15 -2341 ($ (-606 |#1|))) (-15 -2341 ((-606 |#1|) $)) (-15 -2267 ($ (-606 |#1|))) (-15 -1922 ($ $ "unique")) (-15 -1922 ($ $ "sort")) (-15 -1922 ((-731) $ "count")))) (-807)) (T -230)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-230 *3)) (-4 *3 (-807)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-230 *3)) (-4 *3 (-807)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-230 *3)) (-4 *3 (-807)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-731)) (-5 *1 (-230 *4)) (-4 *4 (-807))))) +(-13 (-627 |#1|) (-10 -8 (-15 -2341 ($ (-606 |#1|))) (-15 -2341 ((-606 |#1|) $)) (-15 -2267 ($ (-606 |#1|))) (-15 -1922 ($ $ "unique")) (-15 -1922 ($ $ "sort")) (-15 -1922 ((-731) $ "count")))) +((-2940 (((-3 (-731) "failed") |#1| |#1| (-731)) 27))) +(((-231 |#1|) (-10 -7 (-15 -2940 ((-3 (-731) "failed") |#1| |#1| (-731)))) (-13 (-687) (-352) (-10 -7 (-15 ** (|#1| |#1| (-537)))))) (T -231)) +((-2940 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-731)) (-4 *3 (-13 (-687) (-352) (-10 -7 (-15 ** (*3 *3 (-537)))))) (-5 *1 (-231 *3))))) +(-10 -7 (-15 -2940 ((-3 (-731) "failed") |#1| |#1| (-731)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-818 |#1|)) $) NIL)) (-3588 (((-1113 $) $ (-818 |#1|)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-2202 (($ $ (-606 (-537))) NIL)) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-225 (-2258 |#1|) (-731)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) NIL) (($ (-1113 $) (-818 |#1|)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-225 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 (((-225 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-225 (-2258 |#1|) (-731)) (-225 (-2258 |#1|) (-731))) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) NIL) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) NIL) (($ $ (-818 |#1|) $) NIL) (($ $ (-606 (-818 |#1|)) (-606 $)) NIL)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 (((-225 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-818 |#1|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-225 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-232 |#1| |#2|) (-13 (-902 |#2| (-225 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) (-606 (-1117)) (-998)) (T -232)) +((-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-232 *3 *4)) (-14 *3 (-606 (-1117))) (-4 *4 (-998))))) +(-13 (-902 |#2| (-225 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) +((-2330 (((-111) $ $) NIL)) (-1401 (((-1205) $) 15)) (-3804 (((-173) $) 9)) (-3659 (($ (-173)) 10)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-2244 (((-111) $ $) 13))) +(((-233) (-13 (-1045) (-10 -8 (-15 -3804 ((-173) $)) (-15 -3659 ($ (-173))) (-15 -1401 ((-1205) $))))) (T -233)) +((-3804 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-233)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-173)) (-5 *1 (-233)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-233))))) +(-13 (-1045) (-10 -8 (-15 -3804 ((-173) $)) (-15 -3659 ($ (-173))) (-15 -1401 ((-1205) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3492 (($ (-874)) NIL (|has| |#4| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#4| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#4| (-352)))) (-2537 (((-537) $) NIL (|has| |#4| (-805)))) (-2476 ((|#4| $ (-537) |#4|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1045))) (((-3 (-537) "failed") $) NIL (-12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045))))) (-3958 ((|#4| $) NIL (|has| |#4| (-1045))) (((-537) $) NIL (-12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045))))) (-2053 (((-2 (|:| -2756 (-649 |#4|)) (|:| |vec| (-1200 |#4|))) (-649 $) (-1200 $)) NIL (|has| |#4| (-998))) (((-649 |#4|) (-649 $)) NIL (|has| |#4| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (-1618 (($) NIL (|has| |#4| (-352)))) (-4091 ((|#4| $ (-537) |#4|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#4| $ (-537)) NIL)) (-3797 (((-111) $) NIL (|has| |#4| (-805)))) (-3661 (((-606 |#4|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (-2840 (((-111) $) NIL (|has| |#4| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-3703 (((-606 |#4|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-4081 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#4| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#4| (-352)))) (-2528 (((-1064) $) NIL)) (-3188 ((|#4| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#4|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-3010 (((-606 |#4|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#4| $ (-537) |#4|) NIL) ((|#4| $ (-537)) 12)) (-3416 ((|#4| $ $) NIL (|has| |#4| (-998)))) (-3668 (($ (-1200 |#4|)) NIL)) (-1839 (((-131)) NIL (|has| |#4| (-347)))) (-3456 (($ $ (-1 |#4| |#4|) (-731)) NIL (|has| |#4| (-998))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998)))) (($ $) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998))))) (-2539 (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#4|) $) NIL) (((-816) $) NIL) (($ |#4|) NIL (|has| |#4| (-1045))) (($ (-537)) NIL (-1533 (-12 (|has| |#4| (-989 (-537))) (|has| |#4| (-1045))) (|has| |#4| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#4| (-989 (-391 (-537)))) (|has| |#4| (-1045))))) (-3654 (((-731)) NIL (|has| |#4| (-998)))) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#4| (-805)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) CONST)) (-4230 (($ $ (-1 |#4| |#4|) (-731)) NIL (|has| |#4| (-998))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998)))) (($ $) NIL (-12 (|has| |#4| (-218)) (|has| |#4| (-998))))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2263 (((-111) $ $) NIL (-1533 (|has| |#4| (-753)) (|has| |#4| (-805))))) (-2340 (($ $ |#4|) NIL (|has| |#4| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998))))) (($ $ (-874)) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (* (($ |#2| $) 14) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-687))) (($ |#4| $) NIL (|has| |#4| (-687))) (($ $ $) NIL (-1533 (-12 (|has| |#4| (-218)) (|has| |#4| (-998))) (-12 (|has| |#4| (-602 (-537))) (|has| |#4| (-998))) (|has| |#4| (-687)) (-12 (|has| |#4| (-853 (-1117))) (|has| |#4| (-998)))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-234 |#1| |#2| |#3| |#4|) (-13 (-223 |#1| |#4|) (-609 |#2|) (-609 |#3|)) (-874) (-998) (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-609 |#2|)) (T -234)) +NIL +(-13 (-223 |#1| |#4|) (-609 |#2|) (-609 |#3|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3492 (($ (-874)) NIL (|has| |#3| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#3| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#3| (-352)))) (-2537 (((-537) $) NIL (|has| |#3| (-805)))) (-2476 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1045))) (((-3 (-537) "failed") $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045))))) (-3958 ((|#3| $) NIL (|has| |#3| (-1045))) (((-537) $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045))))) (-2053 (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) NIL (|has| |#3| (-998))) (((-649 |#3|) (-649 $)) NIL (|has| |#3| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (-1618 (($) NIL (|has| |#3| (-352)))) (-4091 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#3| $ (-537)) NIL)) (-3797 (((-111) $) NIL (|has| |#3| (-805)))) (-3661 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (-2840 (((-111) $) NIL (|has| |#3| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-3703 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-4081 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#3| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#3| (-352)))) (-2528 (((-1064) $) NIL)) (-3188 ((|#3| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#3|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#3|))) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 |#3|) (-606 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-3010 (((-606 |#3|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#3| $ (-537) |#3|) NIL) ((|#3| $ (-537)) 11)) (-3416 ((|#3| $ $) NIL (|has| |#3| (-998)))) (-3668 (($ (-1200 |#3|)) NIL)) (-1839 (((-131)) NIL (|has| |#3| (-347)))) (-3456 (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998))))) (-2539 (((-731) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300))) (((-731) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#3|) $) NIL) (((-816) $) NIL) (($ |#3|) NIL (|has| |#3| (-1045))) (($ (-537)) NIL (-1533 (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (|has| |#3| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045))))) (-3654 (((-731)) NIL (|has| |#3| (-998)))) (-2030 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#3| (-805)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) CONST)) (-4230 (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998))))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2263 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2340 (($ $ |#3|) NIL (|has| |#3| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998))))) (($ $ (-874)) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (* (($ |#2| $) 13) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-687))) (($ |#3| $) NIL (|has| |#3| (-687))) (($ $ $) NIL (-1533 (-12 (|has| |#3| (-218)) (|has| |#3| (-998))) (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998))) (|has| |#3| (-687)) (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-235 |#1| |#2| |#3|) (-13 (-223 |#1| |#3|) (-609 |#2|)) (-731) (-998) (-609 |#2|)) (T -235)) +NIL +(-13 (-223 |#1| |#3|) (-609 |#2|)) +((-2766 (((-606 (-731)) $) 47) (((-606 (-731)) $ |#3|) 50)) (-3073 (((-731) $) 49) (((-731) $ |#3|) 52)) (-1696 (($ $) 65)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4231 (((-731) $ |#3|) 39) (((-731) $) 36)) (-2441 (((-1 $ (-731)) |#3|) 15) (((-1 $ (-731)) $) 77)) (-1299 ((|#4| $) 58)) (-2518 (((-111) $) 56)) (-3744 (($ $) 64)) (-4116 (($ $ (-606 (-278 $))) 97) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-606 |#4|) (-606 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-606 |#4|) (-606 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-606 |#3|) (-606 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-606 |#3|) (-606 |#2|)) 84)) (-3456 (($ $ |#4|) NIL) (($ $ (-606 |#4|)) NIL) (($ $ |#4| (-731)) NIL) (($ $ (-606 |#4|) (-606 (-731))) NIL) (($ $) NIL) (($ $ (-731)) NIL) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4170 (((-606 |#3|) $) 75)) (-2872 ((|#5| $) NIL) (((-731) $ |#4|) NIL) (((-606 (-731)) $ (-606 |#4|)) NIL) (((-731) $ |#3|) 44)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-391 (-537))) NIL) (($ $) NIL))) +(((-236 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#3| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#3| |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -1299 (|#4| |#1|)) (-15 -2518 ((-111) |#1|)) (-15 -3073 ((-731) |#1| |#3|)) (-15 -2766 ((-606 (-731)) |#1| |#3|)) (-15 -3073 ((-731) |#1|)) (-15 -2766 ((-606 (-731)) |#1|)) (-15 -2872 ((-731) |#1| |#3|)) (-15 -4231 ((-731) |#1|)) (-15 -4231 ((-731) |#1| |#3|)) (-15 -4170 ((-606 |#3|) |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#3|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 |#4|))) (-15 -2872 ((-731) |#1| |#4|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 (|#5| |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3456 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#4| (-731))) (-15 -3456 (|#1| |#1| (-606 |#4|))) (-15 -3456 (|#1| |#1| |#4|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-237 |#2| |#3| |#4| |#5|) (-998) (-807) (-250 |#3|) (-753)) (T -236)) +NIL +(-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#3| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#3|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#3| |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -3744 (|#1| |#1|)) (-15 -1299 (|#4| |#1|)) (-15 -2518 ((-111) |#1|)) (-15 -3073 ((-731) |#1| |#3|)) (-15 -2766 ((-606 (-731)) |#1| |#3|)) (-15 -3073 ((-731) |#1|)) (-15 -2766 ((-606 (-731)) |#1|)) (-15 -2872 ((-731) |#1| |#3|)) (-15 -4231 ((-731) |#1|)) (-15 -4231 ((-731) |#1| |#3|)) (-15 -4170 ((-606 |#3|) |#1|)) (-15 -2441 ((-1 |#1| (-731)) |#3|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 |#4|))) (-15 -2872 ((-731) |#1| |#4|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 (|#5| |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3456 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#4| (-731))) (-15 -3456 (|#1| |#1| (-606 |#4|))) (-15 -3456 (|#1| |#1| |#4|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2766 (((-606 (-731)) $) 212) (((-606 (-731)) $ |#2|) 210)) (-3073 (((-731) $) 211) (((-731) $ |#2|) 209)) (-3757 (((-606 |#3|) $) 108)) (-3588 (((-1113 $) $ |#3|) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 |#3|)) 109)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-1696 (($ $) 205)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) ((|#3| $) 133) ((|#2| $) 218)) (-4086 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-3940 (($ $) 152)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ |#3|) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-3240 (($ $ |#1| |#4| $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| |#3| (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| |#3| (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ |#2|) 215) (((-731) $) 214)) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-3746 (($ (-1113 |#1|) |#3|) 115) (($ (-1113 $) |#3|) 114)) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| |#4|) 151) (($ $ |#3| (-731)) 117) (($ $ (-606 |#3|) (-606 (-731))) 116)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 118)) (-1883 ((|#4| $) 168) (((-731) $ |#3|) 120) (((-606 (-731)) $ (-606 |#3|)) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 |#4| |#4|) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-2441 (((-1 $ (-731)) |#2|) 217) (((-1 $ (-731)) $) 204 (|has| |#1| (-218)))) (-1310 (((-3 |#3| "failed") $) 121)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146)) (-1299 ((|#3| $) 207)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-1654 (((-1100) $) 9)) (-2518 (((-111) $) 208)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) 111)) (-3744 (($ $) 206)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-606 |#3|) (-606 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-606 |#3|) (-606 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 $)) 202 (|has| |#1| (-218))) (($ $ |#2| |#1|) 201 (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 |#1|)) 200 (|has| |#1| (-218)))) (-2067 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-3456 (($ $ |#3|) 40) (($ $ (-606 |#3|)) 39) (($ $ |#3| (-731)) 38) (($ $ (-606 |#3|) (-606 (-731))) 37) (($ $) 236 (|has| |#1| (-218))) (($ $ (-731)) 234 (|has| |#1| (-218))) (($ $ (-1117)) 232 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 231 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 230 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 229 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-4170 (((-606 |#2|) $) 216)) (-2872 ((|#4| $) 148) (((-731) $ |#3|) 128) (((-606 (-731)) $ (-606 |#3|)) 127) (((-731) $ |#2|) 213)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| |#3| (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| |#3| (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| |#3| (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ |#3|) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537)))))) (($ $) 83 (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ |#4|) 153) (($ $ |#3| (-731)) 126) (($ $ (-606 |#3|) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#3|) 36) (($ $ (-606 |#3|)) 35) (($ $ |#3| (-731)) 34) (($ $ (-606 |#3|) (-606 (-731))) 33) (($ $) 235 (|has| |#1| (-218))) (($ $ (-731)) 233 (|has| |#1| (-218))) (($ $ (-1117)) 228 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 227 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 226 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 225 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-237 |#1| |#2| |#3| |#4|) (-134) (-998) (-807) (-250 |t#2|) (-753)) (T -237)) +((-2441 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *4 *3 *5 *6)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 *4)))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 (-731))))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2766 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-606 (-731))))) (-3073 (*1 *2 *1 *3) (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-111)))) (-1299 (*1 *2 *1) (-12 (-4 *1 (-237 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-4 *2 (-250 *4)))) (-3744 (*1 *1 *1) (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) (-4 *4 (-250 *3)) (-4 *5 (-753)))) (-1696 (*1 *1 *1) (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) (-4 *4 (-250 *3)) (-4 *5 (-753)))) (-2441 (*1 *2 *1) (-12 (-4 *3 (-218)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *3 *4 *5 *6))))) +(-13 (-902 |t#1| |t#4| |t#3|) (-216 |t#1|) (-989 |t#2|) (-10 -8 (-15 -2441 ((-1 $ (-731)) |t#2|)) (-15 -4170 ((-606 |t#2|) $)) (-15 -4231 ((-731) $ |t#2|)) (-15 -4231 ((-731) $)) (-15 -2872 ((-731) $ |t#2|)) (-15 -2766 ((-606 (-731)) $)) (-15 -3073 ((-731) $)) (-15 -2766 ((-606 (-731)) $ |t#2|)) (-15 -3073 ((-731) $ |t#2|)) (-15 -2518 ((-111) $)) (-15 -1299 (|t#3| $)) (-15 -3744 ($ $)) (-15 -1696 ($ $)) (IF (|has| |t#1| (-218)) (PROGN (-6 (-495 |t#2| |t#1|)) (-6 (-495 |t#2| $)) (-6 (-293 $)) (-15 -2441 ((-1 $ (-731)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) ((-216 |#1|) . T) ((-218) |has| |#1| (-218)) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-293 $) . T) ((-310 |#1| |#4|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435))) ((-495 |#2| |#1|) |has| |#1| (-218)) ((-495 |#2| $) |has| |#1| (-218)) ((-495 |#3| |#1|) . T) ((-495 |#3| $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-853 |#3|) . T) ((-839 (-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) ((-902 |#1| |#4| |#3|) . T) ((-862) |has| |#1| (-862)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-989 |#2|) . T) ((-989 |#3|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) |has| |#1| (-862))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3259 ((|#1| $) 54)) (-2992 ((|#1| $) 44)) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3641 (($ $) 60)) (-4146 (($ $) 48)) (-2993 ((|#1| |#1| $) 46)) (-3444 ((|#1| $) 45)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3845 (((-731) $) 61)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-2224 ((|#1| |#1| $) 52)) (-2941 ((|#1| |#1| $) 51)) (-3499 (($ |#1| $) 40)) (-2545 (((-731) $) 55)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1424 ((|#1| $) 62)) (-1771 ((|#1| $) 50)) (-3919 ((|#1| $) 49)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2051 ((|#1| |#1| $) 58)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-4198 ((|#1| $) 59)) (-3966 (($) 57) (($ (-606 |#1|)) 56)) (-3731 (((-731) $) 43)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-1921 ((|#1| $) 53)) (-2753 (($ (-606 |#1|)) 42)) (-4247 ((|#1| $) 63)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-238 |#1|) (-134) (-1154)) (T -238)) +((-3966 (*1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-238 *3)))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-238 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-2224 (*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-2941 (*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(-13 (-1065 |t#1|) (-947 |t#1|) (-10 -8 (-15 -3966 ($)) (-15 -3966 ($ (-606 |t#1|))) (-15 -2545 ((-731) $)) (-15 -3259 (|t#1| $)) (-15 -1921 (|t#1| $)) (-15 -2224 (|t#1| |t#1| $)) (-15 -2941 (|t#1| |t#1| $)) (-15 -1771 (|t#1| $)) (-15 -3919 (|t#1| $)) (-15 -4146 ($ $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-947 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1065 |#1|) . T) ((-1154) . T)) +((-1406 (((-1 (-896 (-210)) (-210) (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))) 139)) (-3426 (((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363))) 160) (((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 158) (((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 163) (((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 159) (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 150) (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 149) (((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363))) 129) (((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247))) 127) (((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363))) 128) (((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247))) 125)) (-3390 (((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363))) 162) (((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 161) (((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 165) (((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 164) (((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363))) 152) (((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247))) 151) (((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363))) 135) (((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247))) 134) (((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363))) 133) (((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247))) 132) (((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363))) 100) (((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247))) 99) (((-1201) (-1 (-210) (-210)) (-1040 (-363))) 96) (((-1201) (-1 (-210) (-210)) (-1040 (-363)) (-606 (-247))) 95))) +(((-239) (-10 -7 (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -1406 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210) (-210)))))) (T -239)) +((-1406 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210) (-210))) (-5 *3 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *2 (-1201)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *2 (-1201)) (-5 *1 (-239)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239))))) +(-10 -7 (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-1 (-210) (-210)) (-1040 (-363)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 (-1 (-210) (-210))) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-363)) (-1040 (-363)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 (-1 (-210) (-210) (-210))) (-1040 (-363)) (-1040 (-363)))) (-15 -1406 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))))) +((-3390 (((-1201) (-278 |#2|) (-1117) (-1117) (-606 (-247))) 96))) +(((-240 |#1| |#2|) (-10 -7 (-15 -3390 ((-1201) (-278 |#2|) (-1117) (-1117) (-606 (-247))))) (-13 (-529) (-807) (-989 (-537))) (-414 |#1|)) (T -240)) +((-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-1117)) (-5 *5 (-606 (-247))) (-4 *7 (-414 *6)) (-4 *6 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-1201)) (-5 *1 (-240 *6 *7))))) +(-10 -7 (-15 -3390 ((-1201) (-278 |#2|) (-1117) (-1117) (-606 (-247))))) +((-3542 (((-537) (-537)) 50)) (-1357 (((-537) (-537)) 51)) (-4104 (((-210) (-210)) 52)) (-1836 (((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210))) 49)) (-3776 (((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)) (-111)) 47))) +(((-241) (-10 -7 (-15 -3776 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)) (-111))) (-15 -1836 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -3542 ((-537) (-537))) (-15 -1357 ((-537) (-537))) (-15 -4104 ((-210) (-210))))) (T -241)) +((-4104 (*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-241)))) (-1357 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241)))) (-3542 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241)))) (-1836 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) (-5 *2 (-1202)) (-5 *1 (-241)))) (-3776 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) (-5 *5 (-111)) (-5 *2 (-1202)) (-5 *1 (-241))))) +(-10 -7 (-15 -3776 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)) (-111))) (-15 -1836 ((-1202) (-1 (-160 (-210)) (-160 (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -3542 ((-537) (-537))) (-15 -1357 ((-537) (-537))) (-15 -4104 ((-210) (-210)))) +((-2341 (((-1038 (-363)) (-1038 (-300 |#1|))) 16))) +(((-242 |#1|) (-10 -7 (-15 -2341 ((-1038 (-363)) (-1038 (-300 |#1|))))) (-13 (-807) (-529) (-580 (-363)))) (T -242)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-1038 (-300 *4))) (-4 *4 (-13 (-807) (-529) (-580 (-363)))) (-5 *2 (-1038 (-363))) (-5 *1 (-242 *4))))) +(-10 -7 (-15 -2341 ((-1038 (-363)) (-1038 (-300 |#1|))))) +((-3426 (((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363))) 71) (((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 70) (((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363))) 61) (((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 60) (((-1077 (-210)) (-832 |#1|) (-1038 (-363))) 52) (((-1077 (-210)) (-832 |#1|) (-1038 (-363)) (-606 (-247))) 51)) (-3390 (((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363))) 74) (((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 73) (((-1202) |#1| (-1038 (-363)) (-1038 (-363))) 64) (((-1202) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247))) 63) (((-1202) (-832 |#1|) (-1038 (-363))) 56) (((-1202) (-832 |#1|) (-1038 (-363)) (-606 (-247))) 55) (((-1201) (-830 |#1|) (-1038 (-363))) 43) (((-1201) (-830 |#1|) (-1038 (-363)) (-606 (-247))) 42) (((-1201) |#1| (-1038 (-363))) 35) (((-1201) |#1| (-1038 (-363)) (-606 (-247))) 34))) +(((-243 |#1|) (-10 -7 (-15 -3390 ((-1201) |#1| (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) |#1| (-1038 (-363)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363))))) (-13 (-580 (-513)) (-1045))) (T -243)) +((-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *5)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *5)))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *6)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3390 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1202)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3390 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *5)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *5)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-830 *5)) (-5 *4 (-1038 (-363))) (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) (-5 *1 (-243 *5)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-830 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) (-5 *1 (-243 *6)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1201)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045)))))) +(-10 -7 (-15 -3390 ((-1201) |#1| (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) |#1| (-1038 (-363)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1201) (-830 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-832 |#1|) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-832 |#1|) (-1038 (-363)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) |#1| (-1038 (-363)) (-1038 (-363)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3390 ((-1202) (-835 |#1|) (-1038 (-363)) (-1038 (-363)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363)) (-606 (-247)))) (-15 -3426 ((-1077 (-210)) (-835 |#1|) (-1038 (-363)) (-1038 (-363))))) +((-3390 (((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)) (-606 (-247))) 23) (((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210))) 24) (((-1201) (-606 (-896 (-210))) (-606 (-247))) 16) (((-1201) (-606 (-896 (-210)))) 17) (((-1201) (-606 (-210)) (-606 (-210)) (-606 (-247))) 20) (((-1201) (-606 (-210)) (-606 (-210))) 21))) +(((-244) (-10 -7 (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)) (-606 (-247)))) (-15 -3390 ((-1201) (-606 (-896 (-210))))) (-15 -3390 ((-1201) (-606 (-896 (-210))) (-606 (-247)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)) (-606 (-247)))))) (T -244)) +((-3390 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1202)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-244)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *2 (-1201)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-244)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1201)) (-5 *1 (-244))))) +(-10 -7 (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1201) (-606 (-210)) (-606 (-210)) (-606 (-247)))) (-15 -3390 ((-1201) (-606 (-896 (-210))))) (-15 -3390 ((-1201) (-606 (-896 (-210))) (-606 (-247)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)))) (-15 -3390 ((-1202) (-606 (-210)) (-606 (-210)) (-606 (-210)) (-606 (-247))))) +((-3937 (((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) (-606 (-247)) (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) 26)) (-3590 (((-874) (-606 (-247)) (-874)) 53)) (-1811 (((-874) (-606 (-247)) (-874)) 52)) (-1547 (((-606 (-363)) (-606 (-247)) (-606 (-363))) 69)) (-2425 (((-363) (-606 (-247)) (-363)) 58)) (-3237 (((-874) (-606 (-247)) (-874)) 54)) (-3567 (((-111) (-606 (-247)) (-111)) 28)) (-1334 (((-1100) (-606 (-247)) (-1100)) 20)) (-1924 (((-1100) (-606 (-247)) (-1100)) 27)) (-2308 (((-1077 (-210)) (-606 (-247))) 47)) (-1751 (((-606 (-1040 (-363))) (-606 (-247)) (-606 (-1040 (-363)))) 41)) (-2164 (((-827) (-606 (-247)) (-827)) 33)) (-3496 (((-827) (-606 (-247)) (-827)) 34)) (-2658 (((-1 (-896 (-210)) (-896 (-210))) (-606 (-247)) (-1 (-896 (-210)) (-896 (-210)))) 64)) (-1724 (((-111) (-606 (-247)) (-111)) 16)) (-3922 (((-111) (-606 (-247)) (-111)) 15))) +(((-245) (-10 -7 (-15 -3922 ((-111) (-606 (-247)) (-111))) (-15 -1724 ((-111) (-606 (-247)) (-111))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) (-606 (-247)) (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ((-1100) (-606 (-247)) (-1100))) (-15 -1924 ((-1100) (-606 (-247)) (-1100))) (-15 -3567 ((-111) (-606 (-247)) (-111))) (-15 -2164 ((-827) (-606 (-247)) (-827))) (-15 -3496 ((-827) (-606 (-247)) (-827))) (-15 -1751 ((-606 (-1040 (-363))) (-606 (-247)) (-606 (-1040 (-363))))) (-15 -1811 ((-874) (-606 (-247)) (-874))) (-15 -3590 ((-874) (-606 (-247)) (-874))) (-15 -2308 ((-1077 (-210)) (-606 (-247)))) (-15 -3237 ((-874) (-606 (-247)) (-874))) (-15 -2425 ((-363) (-606 (-247)) (-363))) (-15 -2658 ((-1 (-896 (-210)) (-896 (-210))) (-606 (-247)) (-1 (-896 (-210)) (-896 (-210))))) (-15 -1547 ((-606 (-363)) (-606 (-247)) (-606 (-363)))))) (T -245)) +((-1547 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-363))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2658 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2425 (*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3237 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-245)))) (-3590 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1811 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3496 (*1 *2 *3 *2) (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-2164 (*1 *2 *3 *2) (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3567 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1924 (*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1334 (*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3937 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-1724 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) +(-10 -7 (-15 -3922 ((-111) (-606 (-247)) (-111))) (-15 -1724 ((-111) (-606 (-247)) (-111))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) (-606 (-247)) (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ((-1100) (-606 (-247)) (-1100))) (-15 -1924 ((-1100) (-606 (-247)) (-1100))) (-15 -3567 ((-111) (-606 (-247)) (-111))) (-15 -2164 ((-827) (-606 (-247)) (-827))) (-15 -3496 ((-827) (-606 (-247)) (-827))) (-15 -1751 ((-606 (-1040 (-363))) (-606 (-247)) (-606 (-1040 (-363))))) (-15 -1811 ((-874) (-606 (-247)) (-874))) (-15 -3590 ((-874) (-606 (-247)) (-874))) (-15 -2308 ((-1077 (-210)) (-606 (-247)))) (-15 -3237 ((-874) (-606 (-247)) (-874))) (-15 -2425 ((-363) (-606 (-247)) (-363))) (-15 -2658 ((-1 (-896 (-210)) (-896 (-210))) (-606 (-247)) (-1 (-896 (-210)) (-896 (-210))))) (-15 -1547 ((-606 (-363)) (-606 (-247)) (-606 (-363))))) +((-2026 (((-3 |#1| "failed") (-606 (-247)) (-1117)) 17))) +(((-246 |#1|) (-10 -7 (-15 -2026 ((-3 |#1| "failed") (-606 (-247)) (-1117)))) (-1154)) (T -246)) +((-2026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *1 (-246 *2)) (-4 *2 (-1154))))) +(-10 -7 (-15 -2026 ((-3 |#1| "failed") (-606 (-247)) (-1117)))) +((-2330 (((-111) $ $) NIL)) (-3937 (($ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) 15)) (-3590 (($ (-874)) 76)) (-1811 (($ (-874)) 75)) (-1397 (($ (-606 (-363))) 82)) (-2425 (($ (-363)) 58)) (-3237 (($ (-874)) 77)) (-3567 (($ (-111)) 23)) (-1334 (($ (-1100)) 18)) (-1924 (($ (-1100)) 19)) (-2308 (($ (-1077 (-210))) 71)) (-1751 (($ (-606 (-1040 (-363)))) 67)) (-2133 (($ (-606 (-1040 (-363)))) 59) (($ (-606 (-1040 (-391 (-537))))) 66)) (-1439 (($ (-363)) 29) (($ (-827)) 33)) (-1290 (((-111) (-606 $) (-1117)) 91)) (-2026 (((-3 (-51) "failed") (-606 $) (-1117)) 93)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3316 (($ (-363)) 34) (($ (-827)) 35)) (-1484 (($ (-1 (-896 (-210)) (-896 (-210)))) 57)) (-2658 (($ (-1 (-896 (-210)) (-896 (-210)))) 78)) (-1913 (($ (-1 (-210) (-210))) 39) (($ (-1 (-210) (-210) (-210))) 43) (($ (-1 (-210) (-210) (-210) (-210))) 47)) (-2341 (((-816) $) 87)) (-1644 (($ (-111)) 24) (($ (-606 (-1040 (-363)))) 52)) (-3922 (($ (-111)) 25)) (-2244 (((-111) $ $) 89))) +(((-247) (-13 (-1045) (-10 -8 (-15 -3922 ($ (-111))) (-15 -1644 ($ (-111))) (-15 -3937 ($ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ($ (-1100))) (-15 -1924 ($ (-1100))) (-15 -3567 ($ (-111))) (-15 -1644 ($ (-606 (-1040 (-363))))) (-15 -1484 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1439 ($ (-363))) (-15 -1439 ($ (-827))) (-15 -3316 ($ (-363))) (-15 -3316 ($ (-827))) (-15 -1913 ($ (-1 (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210) (-210)))) (-15 -2425 ($ (-363))) (-15 -2133 ($ (-606 (-1040 (-363))))) (-15 -2133 ($ (-606 (-1040 (-391 (-537)))))) (-15 -1751 ($ (-606 (-1040 (-363))))) (-15 -2308 ($ (-1077 (-210)))) (-15 -1811 ($ (-874))) (-15 -3590 ($ (-874))) (-15 -3237 ($ (-874))) (-15 -2658 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1397 ($ (-606 (-363)))) (-15 -2026 ((-3 (-51) "failed") (-606 $) (-1117))) (-15 -1290 ((-111) (-606 $) (-1117)))))) (T -247)) +((-3922 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *1 (-247)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247)))) (-3567 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247)))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-247)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210) (-210))) (-5 *1 (-247)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-247)))) (-2425 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-391 (-537))))) (-5 *1 (-247)))) (-1751 (*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-247)))) (-1811 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-247)))) (-2026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-51)) (-5 *1 (-247)))) (-1290 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-111)) (-5 *1 (-247))))) +(-13 (-1045) (-10 -8 (-15 -3922 ($ (-111))) (-15 -1644 ($ (-111))) (-15 -3937 ($ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -1334 ($ (-1100))) (-15 -1924 ($ (-1100))) (-15 -3567 ($ (-111))) (-15 -1644 ($ (-606 (-1040 (-363))))) (-15 -1484 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1439 ($ (-363))) (-15 -1439 ($ (-827))) (-15 -3316 ($ (-363))) (-15 -3316 ($ (-827))) (-15 -1913 ($ (-1 (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210)))) (-15 -1913 ($ (-1 (-210) (-210) (-210) (-210)))) (-15 -2425 ($ (-363))) (-15 -2133 ($ (-606 (-1040 (-363))))) (-15 -2133 ($ (-606 (-1040 (-391 (-537)))))) (-15 -1751 ($ (-606 (-1040 (-363))))) (-15 -2308 ($ (-1077 (-210)))) (-15 -1811 ($ (-874))) (-15 -3590 ($ (-874))) (-15 -3237 ($ (-874))) (-15 -2658 ($ (-1 (-896 (-210)) (-896 (-210))))) (-15 -1397 ($ (-606 (-363)))) (-15 -2026 ((-3 (-51) "failed") (-606 $) (-1117))) (-15 -1290 ((-111) (-606 $) (-1117))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2766 (((-606 (-731)) $) NIL) (((-606 (-731)) $ |#2|) NIL)) (-3073 (((-731) $) NIL) (((-731) $ |#2|) NIL)) (-3757 (((-606 |#3|) $) NIL)) (-3588 (((-1113 $) $ |#3|) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 |#3|)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1696 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1069 |#1| |#2|) "failed") $) 21)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1069 |#1| |#2|) $) NIL)) (-4086 (($ $ $ |#3|) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ |#3|) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 |#3|) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))))) (-4231 (((-731) $ |#2|) NIL) (((-731) $) 10)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) |#3|) NIL) (($ (-1113 $) |#3|) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) NIL)) (-1883 (((-509 |#3|) $) NIL) (((-731) $ |#3|) NIL) (((-606 (-731)) $ (-606 |#3|)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 |#3|) (-509 |#3|)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2441 (((-1 $ (-731)) |#2|) NIL) (((-1 $ (-731)) $) NIL (|has| |#1| (-218)))) (-1310 (((-3 |#3| "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1299 ((|#3| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2518 (((-111) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) NIL)) (-3744 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-606 |#3|) (-606 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-606 |#3|) (-606 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 $)) NIL (|has| |#1| (-218))) (($ $ |#2| |#1|) NIL (|has| |#1| (-218))) (($ $ (-606 |#2|) (-606 |#1|)) NIL (|has| |#1| (-218)))) (-2067 (($ $ |#3|) NIL (|has| |#1| (-163)))) (-3456 (($ $ |#3|) NIL) (($ $ (-606 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4170 (((-606 |#2|) $) NIL)) (-2872 (((-509 |#3|) $) NIL) (((-731) $ |#3|) NIL) (((-606 (-731)) $ (-606 |#3|)) NIL) (((-731) $ |#2|) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ |#3|) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1069 |#1| |#2|)) 30) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ |#3|) NIL) (($ $ (-606 |#3|)) NIL) (($ $ |#3| (-731)) NIL) (($ $ (-606 |#3|) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-248 |#1| |#2| |#3|) (-13 (-237 |#1| |#2| |#3| (-509 |#3|)) (-989 (-1069 |#1| |#2|))) (-998) (-807) (-250 |#2|)) (T -248)) +NIL +(-13 (-237 |#1| |#2| |#3| (-509 |#3|)) (-989 (-1069 |#1| |#2|))) +((-3073 (((-731) $) 30)) (-1516 (((-3 |#2| "failed") $) 17)) (-3958 ((|#2| $) 27)) (-3456 (($ $) 12) (($ $ (-731)) 15)) (-2341 (((-816) $) 26) (($ |#2|) 10)) (-2244 (((-111) $ $) 20)) (-2263 (((-111) $ $) 29))) +(((-249 |#1| |#2|) (-10 -8 (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3073 ((-731) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-250 |#2|) (-807)) (T -249)) +NIL +(-10 -8 (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3073 ((-731) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-3073 (((-731) $) 22)) (-1890 ((|#1| $) 23)) (-1516 (((-3 |#1| "failed") $) 27)) (-3958 ((|#1| $) 26)) (-4231 (((-731) $) 24)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-2441 (($ |#1| (-731)) 25)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $) 21) (($ $ (-731)) 20)) (-2341 (((-816) $) 11) (($ |#1|) 28)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +(((-250 |#1|) (-134) (-807)) (T -250)) +((-2341 (*1 *1 *2) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731)))) (-3456 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-250 *3)) (-4 *3 (-807))))) +(-13 (-807) (-989 |t#1|) (-10 -8 (-15 -2441 ($ |t#1| (-731))) (-15 -4231 ((-731) $)) (-15 -1890 (|t#1| $)) (-15 -3073 ((-731) $)) (-15 -3456 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -2341 ($ |t#1|)))) +(((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-989 |#1|) . T) ((-1045) . T)) +((-3757 (((-606 (-1117)) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 41)) (-2163 (((-606 (-1117)) (-300 (-210)) (-731)) 80)) (-1648 (((-3 (-300 (-210)) "failed") (-300 (-210))) 51)) (-2740 (((-300 (-210)) (-300 (-210))) 67)) (-3329 (((-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 26)) (-3591 (((-111) (-606 (-300 (-210)))) 84)) (-3169 (((-111) (-300 (-210))) 24)) (-3427 (((-606 (-1100)) (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) 106)) (-1805 (((-606 (-300 (-210))) (-606 (-300 (-210)))) 88)) (-2020 (((-606 (-300 (-210))) (-606 (-300 (-210)))) 86)) (-1280 (((-649 (-210)) (-606 (-300 (-210))) (-731)) 95)) (-1952 (((-111) (-300 (-210))) 20) (((-111) (-606 (-300 (-210)))) 85)) (-3869 (((-606 (-210)) (-606 (-800 (-210))) (-210)) 14)) (-1288 (((-363) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 101)) (-3810 (((-986) (-1117) (-986)) 34))) +(((-251) (-10 -7 (-15 -3869 ((-606 (-210)) (-606 (-800 (-210))) (-210))) (-15 -3329 ((-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -1648 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -2740 ((-300 (-210)) (-300 (-210)))) (-15 -3591 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-300 (-210)))) (-15 -1280 ((-649 (-210)) (-606 (-300 (-210))) (-731))) (-15 -2020 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -1805 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -3169 ((-111) (-300 (-210)))) (-15 -3757 ((-606 (-1117)) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2163 ((-606 (-1117)) (-300 (-210)) (-731))) (-15 -3810 ((-986) (-1117) (-986))) (-15 -1288 ((-363) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -3427 ((-606 (-1100)) (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))))))) (T -251)) +((-3427 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) (-5 *2 (-606 (-1100))) (-5 *1 (-251)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-363)) (-5 *1 (-251)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-251)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-731)) (-5 *2 (-606 (-1117))) (-5 *1 (-251)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-606 (-1117))) (-5 *1 (-251)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *4 (-731)) (-5 *2 (-649 (-210))) (-5 *1 (-251)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251)))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-251)))) (-1648 (*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-251)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *1 (-251)))) (-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-800 (-210)))) (-5 *4 (-210)) (-5 *2 (-606 *4)) (-5 *1 (-251))))) +(-10 -7 (-15 -3869 ((-606 (-210)) (-606 (-800 (-210))) (-210))) (-15 -3329 ((-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -1648 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -2740 ((-300 (-210)) (-300 (-210)))) (-15 -3591 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-606 (-300 (-210))))) (-15 -1952 ((-111) (-300 (-210)))) (-15 -1280 ((-649 (-210)) (-606 (-300 (-210))) (-731))) (-15 -2020 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -1805 ((-606 (-300 (-210))) (-606 (-300 (-210))))) (-15 -3169 ((-111) (-300 (-210)))) (-15 -3757 ((-606 (-1117)) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2163 ((-606 (-1117)) (-300 (-210)) (-731))) (-15 -3810 ((-986) (-1117) (-986))) (-15 -1288 ((-363) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -3427 ((-606 (-1100)) (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))))) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 44)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 26) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-252) (-796)) (T -252)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 58) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 54)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 34) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 36)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-253) (-796)) (T -253)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 76) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 73)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 44) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 55)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-254) (-796)) (T -254)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 50)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 31) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-255) (-796)) (T -255)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 50)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 28) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-256) (-796)) (T -256)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 73)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 28) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-257) (-796)) (T -257)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 77)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 25) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-258) (-796)) (T -258)) +NIL +(-796) +((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2382 (((-606 (-537)) $) 19)) (-2872 (((-731) $) 17)) (-2341 (((-816) $) 23) (($ (-606 (-537))) 15)) (-3606 (($ (-731)) 20)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 9)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 11))) +(((-259) (-13 (-807) (-10 -8 (-15 -2341 ($ (-606 (-537)))) (-15 -2872 ((-731) $)) (-15 -2382 ((-606 (-537)) $)) (-15 -3606 ($ (-731)))))) (T -259)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-259)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-259))))) +(-13 (-807) (-10 -8 (-15 -2341 ($ (-606 (-537)))) (-15 -2872 ((-731) $)) (-15 -2382 ((-606 (-537)) $)) (-15 -3606 ($ (-731))))) +((-1403 ((|#2| |#2|) 77)) (-1247 ((|#2| |#2|) 65)) (-2994 (((-3 |#2| "failed") |#2| (-606 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-1378 ((|#2| |#2|) 75)) (-4270 ((|#2| |#2|) 63)) (-1429 ((|#2| |#2|) 79)) (-1273 ((|#2| |#2|) 67)) (-3338 ((|#2|) 46)) (-3979 (((-113) (-113)) 95)) (-2180 ((|#2| |#2|) 61)) (-2968 (((-111) |#2|) 134)) (-4276 ((|#2| |#2|) 181)) (-2098 ((|#2| |#2|) 157)) (-3197 ((|#2|) 59)) (-1269 ((|#2|) 58)) (-2826 ((|#2| |#2|) 177)) (-1544 ((|#2| |#2|) 153)) (-2226 ((|#2| |#2|) 185)) (-3600 ((|#2| |#2|) 161)) (-1382 ((|#2| |#2|) 149)) (-1437 ((|#2| |#2|) 151)) (-4137 ((|#2| |#2|) 187)) (-1591 ((|#2| |#2|) 163)) (-3100 ((|#2| |#2|) 183)) (-1335 ((|#2| |#2|) 159)) (-3275 ((|#2| |#2|) 179)) (-1235 ((|#2| |#2|) 155)) (-1237 ((|#2| |#2|) 193)) (-2863 ((|#2| |#2|) 169)) (-2013 ((|#2| |#2|) 189)) (-2794 ((|#2| |#2|) 165)) (-3894 ((|#2| |#2|) 197)) (-2792 ((|#2| |#2|) 173)) (-1364 ((|#2| |#2|) 199)) (-1980 ((|#2| |#2|) 175)) (-1373 ((|#2| |#2|) 195)) (-1657 ((|#2| |#2|) 171)) (-3603 ((|#2| |#2|) 191)) (-3323 ((|#2| |#2|) 167)) (-4185 ((|#2| |#2|) 62)) (-1441 ((|#2| |#2|) 80)) (-1286 ((|#2| |#2|) 68)) (-1415 ((|#2| |#2|) 78)) (-1259 ((|#2| |#2|) 66)) (-1389 ((|#2| |#2|) 76)) (-1234 ((|#2| |#2|) 64)) (-2336 (((-111) (-113)) 93)) (-1475 ((|#2| |#2|) 83)) (-1328 ((|#2| |#2|) 71)) (-1453 ((|#2| |#2|) 81)) (-1300 ((|#2| |#2|) 69)) (-1495 ((|#2| |#2|) 85)) (-1352 ((|#2| |#2|) 73)) (-4141 ((|#2| |#2|) 86)) (-1365 ((|#2| |#2|) 74)) (-1485 ((|#2| |#2|) 84)) (-1340 ((|#2| |#2|) 72)) (-1465 ((|#2| |#2|) 82)) (-1314 ((|#2| |#2|) 70))) +(((-260 |#1| |#2|) (-10 -7 (-15 -4185 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -1259 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -1340 (|#2| |#2|)) (-15 -1352 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -1403 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -1441 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1465 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -3338 (|#2|)) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -1269 (|#2|)) (-15 -3197 (|#2|)) (-15 -1437 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2863 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -1980 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (-15 -3275 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -3603 (|#2| |#2|)) (-15 -1237 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -2994 ((-3 |#2| "failed") |#2| (-606 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2968 ((-111) |#2|))) (-13 (-807) (-529)) (-13 (-414 |#1|) (-954))) (T -260)) +((-2968 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-260 *4 *3)) (-4 *3 (-13 (-414 *4) (-954))))) (-2994 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-606 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-414 *4) (-954))) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-260 *4 *2)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1237 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3603 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4276 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3275 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2826 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1980 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2098 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1235 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-3197 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) (-4 *3 (-13 (-807) (-529))))) (-1269 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) (-4 *3 (-13 (-807) (-529))))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *4)) (-4 *4 (-13 (-414 *3) (-954))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-260 *4 *5)) (-4 *5 (-13 (-414 *4) (-954))))) (-3338 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) (-4 *3 (-13 (-807) (-529))))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1340 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954))))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) (-4 *2 (-13 (-414 *3) (-954)))))) +(-10 -7 (-15 -4185 (|#2| |#2|)) (-15 -2180 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1234 (|#2| |#2|)) (-15 -1247 (|#2| |#2|)) (-15 -1259 (|#2| |#2|)) (-15 -1273 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -1328 (|#2| |#2|)) (-15 -1340 (|#2| |#2|)) (-15 -1352 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1378 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -1403 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1429 (|#2| |#2|)) (-15 -1441 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1465 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -3338 (|#2|)) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -1269 (|#2|)) (-15 -3197 (|#2|)) (-15 -1437 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1235 (|#2| |#2|)) (-15 -2098 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2863 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -2792 (|#2| |#2|)) (-15 -1980 (|#2| |#2|)) (-15 -2826 (|#2| |#2|)) (-15 -3275 (|#2| |#2|)) (-15 -4276 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -3603 (|#2| |#2|)) (-15 -1237 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -2994 ((-3 |#2| "failed") |#2| (-606 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2968 ((-111) |#2|))) +((-2096 (((-3 |#2| "failed") (-606 (-578 |#2|)) |#2| (-1117)) 135)) (-1784 ((|#2| (-391 (-537)) |#2|) 51)) (-1815 ((|#2| |#2| (-578 |#2|)) 128)) (-3021 (((-2 (|:| |func| |#2|) (|:| |kers| (-606 (-578 |#2|))) (|:| |vals| (-606 |#2|))) |#2| (-1117)) 127)) (-2408 ((|#2| |#2| (-1117)) 20) ((|#2| |#2|) 23)) (-2477 ((|#2| |#2| (-1117)) 141) ((|#2| |#2|) 139))) +(((-261 |#1| |#2|) (-10 -7 (-15 -2477 (|#2| |#2|)) (-15 -2477 (|#2| |#2| (-1117))) (-15 -3021 ((-2 (|:| |func| |#2|) (|:| |kers| (-606 (-578 |#2|))) (|:| |vals| (-606 |#2|))) |#2| (-1117))) (-15 -2408 (|#2| |#2|)) (-15 -2408 (|#2| |#2| (-1117))) (-15 -2096 ((-3 |#2| "failed") (-606 (-578 |#2|)) |#2| (-1117))) (-15 -1815 (|#2| |#2| (-578 |#2|))) (-15 -1784 (|#2| (-391 (-537)) |#2|))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -261)) +((-1784 (*1 *2 *3 *2) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-1815 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)))) (-2096 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-1117)) (-4 *2 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *5 *2)))) (-2408 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-3021 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-606 (-578 *3))) (|:| |vals| (-606 *3)))) (-5 *1 (-261 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2477 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2477 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) +(-10 -7 (-15 -2477 (|#2| |#2|)) (-15 -2477 (|#2| |#2| (-1117))) (-15 -3021 ((-2 (|:| |func| |#2|) (|:| |kers| (-606 (-578 |#2|))) (|:| |vals| (-606 |#2|))) |#2| (-1117))) (-15 -2408 (|#2| |#2|)) (-15 -2408 (|#2| |#2| (-1117))) (-15 -2096 ((-3 |#2| "failed") (-606 (-578 |#2|)) |#2| (-1117))) (-15 -1815 (|#2| |#2| (-578 |#2|))) (-15 -1784 (|#2| (-391 (-537)) |#2|))) +((-3303 (((-3 |#3| "failed") |#3|) 110)) (-1403 ((|#3| |#3|) 131)) (-2838 (((-3 |#3| "failed") |#3|) 82)) (-1247 ((|#3| |#3|) 121)) (-2268 (((-3 |#3| "failed") |#3|) 58)) (-1378 ((|#3| |#3|) 129)) (-2515 (((-3 |#3| "failed") |#3|) 46)) (-4270 ((|#3| |#3|) 119)) (-2223 (((-3 |#3| "failed") |#3|) 112)) (-1429 ((|#3| |#3|) 133)) (-2213 (((-3 |#3| "failed") |#3|) 84)) (-1273 ((|#3| |#3|) 123)) (-1252 (((-3 |#3| "failed") |#3| (-731)) 36)) (-2197 (((-3 |#3| "failed") |#3|) 74)) (-2180 ((|#3| |#3|) 118)) (-3909 (((-3 |#3| "failed") |#3|) 44)) (-4185 ((|#3| |#3|) 117)) (-2775 (((-3 |#3| "failed") |#3|) 113)) (-1441 ((|#3| |#3|) 134)) (-1693 (((-3 |#3| "failed") |#3|) 85)) (-1286 ((|#3| |#3|) 124)) (-1348 (((-3 |#3| "failed") |#3|) 111)) (-1415 ((|#3| |#3|) 132)) (-1257 (((-3 |#3| "failed") |#3|) 83)) (-1259 ((|#3| |#3|) 122)) (-2075 (((-3 |#3| "failed") |#3|) 60)) (-1389 ((|#3| |#3|) 130)) (-2709 (((-3 |#3| "failed") |#3|) 48)) (-1234 ((|#3| |#3|) 120)) (-2054 (((-3 |#3| "failed") |#3|) 66)) (-1475 ((|#3| |#3|) 137)) (-1801 (((-3 |#3| "failed") |#3|) 104)) (-1328 ((|#3| |#3|) 142)) (-4069 (((-3 |#3| "failed") |#3|) 62)) (-1453 ((|#3| |#3|) 135)) (-3217 (((-3 |#3| "failed") |#3|) 50)) (-1300 ((|#3| |#3|) 125)) (-2815 (((-3 |#3| "failed") |#3|) 70)) (-1495 ((|#3| |#3|) 139)) (-2754 (((-3 |#3| "failed") |#3|) 54)) (-1352 ((|#3| |#3|) 127)) (-2000 (((-3 |#3| "failed") |#3|) 72)) (-4141 ((|#3| |#3|) 140)) (-3387 (((-3 |#3| "failed") |#3|) 56)) (-1365 ((|#3| |#3|) 128)) (-3074 (((-3 |#3| "failed") |#3|) 68)) (-1485 ((|#3| |#3|) 138)) (-4195 (((-3 |#3| "failed") |#3|) 107)) (-1340 ((|#3| |#3|) 143)) (-3653 (((-3 |#3| "failed") |#3|) 64)) (-1465 ((|#3| |#3|) 136)) (-2378 (((-3 |#3| "failed") |#3|) 52)) (-1314 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-391 (-537))) 40 (|has| |#1| (-347))))) +(((-262 |#1| |#2| |#3|) (-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) (-37 (-391 (-537))) (-1191 |#1|) (-1162 |#1| |#2|)) (T -262)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) (-4 *5 (-1191 *4)) (-5 *1 (-262 *4 *5 *2)) (-4 *2 (-1162 *4 *5)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1340 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4))))) +(-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) +((-3303 (((-3 |#3| "failed") |#3|) 66)) (-1403 ((|#3| |#3|) 129)) (-2838 (((-3 |#3| "failed") |#3|) 50)) (-1247 ((|#3| |#3|) 117)) (-2268 (((-3 |#3| "failed") |#3|) 62)) (-1378 ((|#3| |#3|) 127)) (-2515 (((-3 |#3| "failed") |#3|) 46)) (-4270 ((|#3| |#3|) 115)) (-2223 (((-3 |#3| "failed") |#3|) 70)) (-1429 ((|#3| |#3|) 131)) (-2213 (((-3 |#3| "failed") |#3|) 54)) (-1273 ((|#3| |#3|) 119)) (-1252 (((-3 |#3| "failed") |#3| (-731)) 35)) (-2197 (((-3 |#3| "failed") |#3|) 44)) (-2180 ((|#3| |#3|) 104)) (-3909 (((-3 |#3| "failed") |#3|) 42)) (-4185 ((|#3| |#3|) 114)) (-2775 (((-3 |#3| "failed") |#3|) 72)) (-1441 ((|#3| |#3|) 132)) (-1693 (((-3 |#3| "failed") |#3|) 56)) (-1286 ((|#3| |#3|) 120)) (-1348 (((-3 |#3| "failed") |#3|) 68)) (-1415 ((|#3| |#3|) 130)) (-1257 (((-3 |#3| "failed") |#3|) 52)) (-1259 ((|#3| |#3|) 118)) (-2075 (((-3 |#3| "failed") |#3|) 64)) (-1389 ((|#3| |#3|) 128)) (-2709 (((-3 |#3| "failed") |#3|) 48)) (-1234 ((|#3| |#3|) 116)) (-2054 (((-3 |#3| "failed") |#3|) 74)) (-1475 ((|#3| |#3|) 135)) (-1801 (((-3 |#3| "failed") |#3|) 58)) (-1328 ((|#3| |#3|) 123)) (-4069 (((-3 |#3| "failed") |#3|) 105)) (-1453 ((|#3| |#3|) 133)) (-3217 (((-3 |#3| "failed") |#3|) 94)) (-1300 ((|#3| |#3|) 121)) (-2815 (((-3 |#3| "failed") |#3|) 109)) (-1495 ((|#3| |#3|) 137)) (-2754 (((-3 |#3| "failed") |#3|) 101)) (-1352 ((|#3| |#3|) 125)) (-2000 (((-3 |#3| "failed") |#3|) 110)) (-4141 ((|#3| |#3|) 138)) (-3387 (((-3 |#3| "failed") |#3|) 103)) (-1365 ((|#3| |#3|) 126)) (-3074 (((-3 |#3| "failed") |#3|) 76)) (-1485 ((|#3| |#3|) 136)) (-4195 (((-3 |#3| "failed") |#3|) 60)) (-1340 ((|#3| |#3|) 124)) (-3653 (((-3 |#3| "failed") |#3|) 106)) (-1465 ((|#3| |#3|) 134)) (-2378 (((-3 |#3| "failed") |#3|) 97)) (-1314 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-391 (-537))) 40 (|has| |#1| (-347))))) +(((-263 |#1| |#2| |#3| |#4|) (-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) (-37 (-391 (-537))) (-1160 |#1|) (-1183 |#1| |#2|) (-936 |#2|)) (T -263)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) (-4 *5 (-1160 *4)) (-5 *1 (-263 *4 *5 *2 *6)) (-4 *2 (-1183 *4 *5)) (-4 *6 (-936 *5)))) (-4185 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-2180 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1234 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1247 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1259 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1273 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1328 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1340 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1378 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1429 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4))))) +(-13 (-936 |#3|) (-10 -7 (IF (|has| |#1| (-347)) (-15 ** (|#3| |#3| (-391 (-537)))) |%noBranch|) (-15 -4185 (|#3| |#3|)) (-15 -2180 (|#3| |#3|)) (-15 -4270 (|#3| |#3|)) (-15 -1234 (|#3| |#3|)) (-15 -1247 (|#3| |#3|)) (-15 -1259 (|#3| |#3|)) (-15 -1273 (|#3| |#3|)) (-15 -1286 (|#3| |#3|)) (-15 -1300 (|#3| |#3|)) (-15 -1314 (|#3| |#3|)) (-15 -1328 (|#3| |#3|)) (-15 -1340 (|#3| |#3|)) (-15 -1352 (|#3| |#3|)) (-15 -1365 (|#3| |#3|)) (-15 -1378 (|#3| |#3|)) (-15 -1389 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1429 (|#3| |#3|)) (-15 -1441 (|#3| |#3|)) (-15 -1453 (|#3| |#3|)) (-15 -1465 (|#3| |#3|)) (-15 -1475 (|#3| |#3|)) (-15 -1485 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)))) +((-3263 (((-111) $) 19)) (-1615 (((-173) $) 7)) (-4242 (((-3 (-1117) "failed") $) 14)) (-2735 (((-3 (-606 $) "failed") $) NIL)) (-2448 (((-3 (-1117) "failed") $) 21)) (-1305 (((-3 (-1049) "failed") $) 17)) (-2162 (((-111) $) 15)) (-2341 (((-816) $) NIL)) (-1759 (((-111) $) 9))) +(((-264) (-13 (-579 (-816)) (-10 -8 (-15 -1615 ((-173) $)) (-15 -2162 ((-111) $)) (-15 -1305 ((-3 (-1049) "failed") $)) (-15 -3263 ((-111) $)) (-15 -2448 ((-3 (-1117) "failed") $)) (-15 -1759 ((-111) $)) (-15 -4242 ((-3 (-1117) "failed") $)) (-15 -2735 ((-3 (-606 $) "failed") $))))) (T -264)) +((-1615 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-264)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) (-1305 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-264)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) (-2448 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) (-4242 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264)))) (-2735 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-264))) (-5 *1 (-264))))) +(-13 (-579 (-816)) (-10 -8 (-15 -1615 ((-173) $)) (-15 -2162 ((-111) $)) (-15 -1305 ((-3 (-1049) "failed") $)) (-15 -3263 ((-111) $)) (-15 -2448 ((-3 (-1117) "failed") $)) (-15 -1759 ((-111) $)) (-15 -4242 ((-3 (-1117) "failed") $)) (-15 -2735 ((-3 (-606 $) "failed") $)))) +((-1936 (($ (-1 (-111) |#2|) $) 24)) (-3221 (($ $) 36)) (-3026 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-2355 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-1646 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4049 (($ |#2| $ (-537)) 20) (($ $ $ (-537)) 22)) (-1856 (($ $ (-537)) 11) (($ $ (-1167 (-537))) 14)) (-3115 (($ $ |#2|) 30) (($ $ $) NIL)) (-3434 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-606 $)) NIL))) +(((-265 |#1| |#2|) (-10 -8 (-15 -1646 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3221 (|#1| |#1|))) (-266 |#2|) (-1154)) (T -265)) +NIL +(-10 -8 (-15 -1646 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2355 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -1936 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2355 (|#1| |#2| |#1|)) (-15 -3221 (|#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) 85)) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 83 (|has| |#1| (-1045)))) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1045)))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-1646 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-3499 (($ |#1| $ (-537)) 88) (($ $ $ (-537)) 87)) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-3282 (($ $ (-537)) 91) (($ $ (-1167 (-537))) 90)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3115 (($ $ |#1|) 93) (($ $ $) 92)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-266 |#1|) (-134) (-1154)) (T -266)) +((-3115 (*1 *1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3499 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-266 *2)) (-4 *2 (-1154)))) (-3499 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-1646 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) (-3026 (*1 *1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) (-1646 (*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-807))))) +(-13 (-612 |t#1|) (-10 -8 (-6 -4301) (-15 -3115 ($ $ |t#1|)) (-15 -3115 ($ $ $)) (-15 -3282 ($ $ (-537))) (-15 -3282 ($ $ (-1167 (-537)))) (-15 -3026 ($ (-1 (-111) |t#1|) $)) (-15 -3499 ($ |t#1| $ (-537))) (-15 -3499 ($ $ $ (-537))) (-15 -1646 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3435 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3026 ($ |t#1| $)) (-15 -1376 ($ $))) |%noBranch|) (IF (|has| |t#1| (-807)) (-15 -1646 ($ $ $)) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) ((** (($ $ $) 10))) -(((-265 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-266)) (T -265)) +(((-267 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-268)) (T -267)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2076 (($ $) 6)) (-2798 (($ $) 7)) (** (($ $ $) 8))) -(((-266) (-133)) (T -266)) -((** (*1 *1 *1 *1) (-4 *1 (-266))) (-2798 (*1 *1 *1) (-4 *1 (-266))) (-2076 (*1 *1 *1) (-4 *1 (-266)))) -(-13 (-10 -8 (-15 -2076 ($ $)) (-15 -2798 ($ $)) (-15 ** ($ $ $)))) -((-1239 (((-598 (-1083 |#1|)) (-1083 |#1|) |#1|) 35)) (-3610 ((|#2| |#2| |#1|) 38)) (-3820 ((|#2| |#2| |#1|) 40)) (-4123 ((|#2| |#2| |#1|) 39))) -(((-267 |#1| |#2|) (-10 -7 (-15 -3610 (|#2| |#2| |#1|)) (-15 -4123 (|#2| |#2| |#1|)) (-15 -3820 (|#2| |#2| |#1|)) (-15 -1239 ((-598 (-1083 |#1|)) (-1083 |#1|) |#1|))) (-344) (-1175 |#1|)) (T -267)) -((-1239 (*1 *2 *3 *4) (-12 (-4 *4 (-344)) (-5 *2 (-598 (-1083 *4))) (-5 *1 (-267 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-1175 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))) (-4123 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))) (-3610 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3))))) -(-10 -7 (-15 -3610 (|#2| |#2| |#1|)) (-15 -4123 (|#2| |#2| |#1|)) (-15 -3820 (|#2| |#2| |#1|)) (-15 -1239 ((-598 (-1083 |#1|)) (-1083 |#1|) |#1|))) -((-1785 ((|#2| $ |#1|) 6))) -(((-268 |#1| |#2|) (-133) (-1030) (-1138)) (T -268)) -((-1785 (*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138))))) -(-13 (-10 -8 (-15 -1785 (|t#2| $ |t#1|)))) -((-2693 ((|#3| $ |#2| |#3|) 12)) (-2627 ((|#3| $ |#2|) 10))) -(((-269 |#1| |#2| |#3|) (-10 -8 (-15 -2693 (|#3| |#1| |#2| |#3|)) (-15 -2627 (|#3| |#1| |#2|))) (-270 |#2| |#3|) (-1030) (-1138)) (T -269)) -NIL -(-10 -8 (-15 -2693 (|#3| |#1| |#2| |#3|)) (-15 -2627 (|#3| |#1| |#2|))) -((-2454 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4274)))) (-2693 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 11)) (-1785 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-270 |#1| |#2|) (-133) (-1030) (-1138)) (T -270)) -((-1785 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-2627 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-2693 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138))))) -(-13 (-268 |t#1| |t#2|) (-10 -8 (-15 -1785 (|t#2| $ |t#1| |t#2|)) (-15 -2627 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2454 (|t#2| $ |t#1| |t#2|)) (-15 -2693 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-268 |#1| |#2|) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 35)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 40)) (-3258 (($ $) 38)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) 33)) (-1760 (($ |#2| |#3|) 19)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 ((|#3| $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 20)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2966 (((-3 $ "failed") $ $) NIL)) (-4100 (((-721) $) 34)) (-1785 ((|#2| $ |#2|) 42)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 24)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 29 T CONST)) (-3050 (($) 36 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 37))) -(((-271 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-289) (-10 -8 (-15 -1406 (|#3| $)) (-15 -2265 (|#2| $)) (-15 -1760 ($ |#2| |#3|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)) (-15 -1785 (|#2| $ |#2|)))) (-162) (-1160 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -271)) -((-3622 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1406 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1160 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1760 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1160 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2422 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1785 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1160 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-289) (-10 -8 (-15 -1406 (|#3| $)) (-15 -2265 (|#2| $)) (-15 -1760 ($ |#2| |#3|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)) (-15 -1785 (|#2| $ |#2|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-272) (-133)) (T -272)) -NIL -(-13 (-986) (-109 $ $) (-10 -7 (-6 -4266))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2007 (($ (-1102) (-1102) (-1034) $) 17)) (-1339 (($ (-1102) (-598 (-908)) $) 22)) (-3699 (((-598 (-1017)) $) 10)) (-2129 (((-3 (-1034) "failed") (-1102) (-1102) $) 16)) (-3563 (((-3 (-598 (-908)) "failed") (-1102) $) 21)) (-3781 (($) 7)) (-3645 (($) 23)) (-2265 (((-806) $) 27)) (-3819 (($) 24))) -(((-273) (-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -3699 ((-598 (-1017)) $)) (-15 -2129 ((-3 (-1034) "failed") (-1102) (-1102) $)) (-15 -2007 ($ (-1102) (-1102) (-1034) $)) (-15 -3563 ((-3 (-598 (-908)) "failed") (-1102) $)) (-15 -1339 ($ (-1102) (-598 (-908)) $)) (-15 -3645 ($)) (-15 -3819 ($))))) (T -273)) -((-3781 (*1 *1) (-5 *1 (-273))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-598 (-1017))) (-5 *1 (-273)))) (-2129 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-273)))) (-2007 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-273)))) (-3563 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-598 (-908))) (-5 *1 (-273)))) (-1339 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-273)))) (-3645 (*1 *1) (-5 *1 (-273))) (-3819 (*1 *1) (-5 *1 (-273)))) -(-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -3699 ((-598 (-1017)) $)) (-15 -2129 ((-3 (-1034) "failed") (-1102) (-1102) $)) (-15 -2007 ($ (-1102) (-1102) (-1034) $)) (-15 -3563 ((-3 (-598 (-908)) "failed") (-1102) $)) (-15 -1339 ($ (-1102) (-598 (-908)) $)) (-15 -3645 ($)) (-15 -3819 ($)))) -((-3208 (((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))) 85)) (-3545 (((-598 (-639 (-388 (-895 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|)))))) (-639 (-388 (-895 |#1|)))) 80) (((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))) (-721) (-721)) 38)) (-1510 (((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))) 82)) (-2959 (((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|)))) 62)) (-4167 (((-598 (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (-639 (-388 (-895 |#1|)))) 61)) (-3369 (((-895 |#1|) (-639 (-388 (-895 |#1|)))) 50) (((-895 |#1|) (-639 (-388 (-895 |#1|))) (-1102)) 51))) -(((-274 |#1|) (-10 -7 (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))) (-1102))) (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))))) (-15 -4167 ((-598 (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (-639 (-388 (-895 |#1|))))) (-15 -2959 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))) (-721) (-721))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|)))))) (-639 (-388 (-895 |#1|))))) (-15 -3208 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|))))) (-15 -1510 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))))) (-432)) (T -274)) -((-1510 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-598 (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4)))))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-598 (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4)))))) (-3545 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 *4)))) (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5)))))) (-3545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-388 (-895 *6)) (-1092 (-1102) (-895 *6)))) (-5 *5 (-721)) (-4 *6 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *6))))) (-5 *1 (-274 *6)) (-5 *4 (-639 (-388 (-895 *6)))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5)))) (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5)))))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-4 *4 (-432)) (-5 *2 (-598 (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4))))) (-5 *1 (-274 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-5 *2 (-895 *4)) (-5 *1 (-274 *4)) (-4 *4 (-432)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-895 *5)))) (-5 *4 (-1102)) (-5 *2 (-895 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432))))) -(-10 -7 (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))) (-1102))) (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))))) (-15 -4167 ((-598 (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (-639 (-388 (-895 |#1|))))) (-15 -2959 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))) (-721) (-721))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|)))))) (-639 (-388 (-895 |#1|))))) (-15 -3208 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|))))) (-15 -1510 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))))) -((-3261 (((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)) 14))) -(((-275 |#1| |#2|) (-10 -7 (-15 -3261 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)))) (-1138) (-1138)) (T -275)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6))))) -(-10 -7 (-15 -3261 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3019 (((-110) $) NIL (|has| |#1| (-21)))) (-2780 (($ $) 12)) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3184 (($ $ $) 94 (|has| |#1| (-284)))) (-4082 (($) NIL (-1435 (|has| |#1| (-21)) (|has| |#1| (-677))) CONST)) (-3231 (($ $) 50 (|has| |#1| (-21)))) (-1886 (((-3 $ "failed") $) 61 (|has| |#1| (-677)))) (-1493 ((|#1| $) 11)) (-3622 (((-3 $ "failed") $) 59 (|has| |#1| (-677)))) (-3481 (((-110) $) NIL (|has| |#1| (-677)))) (-3261 (($ (-1 |#1| |#1|) $) 14)) (-1484 ((|#1| $) 10)) (-1762 (($ $) 49 (|has| |#1| (-21)))) (-2886 (((-3 $ "failed") $) 60 (|has| |#1| (-677)))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2422 (($ $) 63 (-1435 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1902 (((-598 $) $) 84 (|has| |#1| (-523)))) (-4115 (($ $ $) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 $)) 28 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-1102) |#1|) 17 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 21 (|has| |#1| (-492 (-1102) |#1|)))) (-1623 (($ |#1| |#1|) 9)) (-2190 (((-130)) 89 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 86 (|has| |#1| (-843 (-1102))))) (-4164 (($ $ $) NIL (|has| |#1| (-453)))) (-3214 (($ $ $) NIL (|has| |#1| (-453)))) (-2265 (($ (-531)) NIL (|has| |#1| (-986))) (((-110) $) 36 (|has| |#1| (-1030))) (((-806) $) 35 (|has| |#1| (-1030)))) (-2284 (((-721)) 66 (|has| |#1| (-986)))) (-3035 (($) 46 (|has| |#1| (-21)) CONST)) (-3050 (($) 56 (|has| |#1| (-677)) CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102))))) (-2148 (($ |#1| |#1|) 8) (((-110) $ $) 31 (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 91 (-1435 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2250 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2237 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-531)) NIL (|has| |#1| (-453))) (($ $ (-721)) NIL (|has| |#1| (-677))) (($ $ (-864)) NIL (|has| |#1| (-1042)))) (* (($ $ |#1|) 54 (|has| |#1| (-1042))) (($ |#1| $) 53 (|has| |#1| (-1042))) (($ $ $) 52 (|has| |#1| (-1042))) (($ (-531) $) 69 (|has| |#1| (-21))) (($ (-721) $) NIL (|has| |#1| (-21))) (($ (-864) $) NIL (|has| |#1| (-25))))) -(((-276 |#1|) (-13 (-1138) (-10 -8 (-15 -2148 ($ |#1| |#1|)) (-15 -1623 ($ |#1| |#1|)) (-15 -2780 ($ $)) (-15 -1484 (|#1| $)) (-15 -1493 (|#1| $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-492 (-1102) |#1|)) (-6 (-492 (-1102) |#1|)) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-572 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4115 ($ $ $)) (-15 -4115 ($ $ (-598 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2237 ($ |#1| $)) (-15 -2237 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1762 ($ $)) (-15 -3231 ($ $)) (-15 -2250 ($ |#1| $)) (-15 -2250 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-677)) (PROGN (-6 (-677)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-6 (-986)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|) (IF (|has| |#1| (-523)) (-15 -1902 ((-598 $) $)) |%noBranch|) (IF (|has| |#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1191 |#1|)) (-15 -2263 ($ $ $)) (-15 -2422 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -3184 ($ $ $)) |%noBranch|))) (-1138)) (T -276)) -((-2148 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-1623 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-1484 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-1493 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-276 *3)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *2 (-291 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)) (-5 *1 (-276 *2)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1030)) (-4 *3 (-1138)) (-5 *1 (-276 *3)))) (-2237 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138)))) (-1762 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-3231 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-2250 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-2250 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-2886 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138)))) (-1886 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138)))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-598 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-523)) (-4 *3 (-1138)))) (-3184 (*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1138)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138)))) (-2263 (*1 *1 *1 *1) (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138))))) (-2422 (*1 *1 *1) (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138)))))) -(-13 (-1138) (-10 -8 (-15 -2148 ($ |#1| |#1|)) (-15 -1623 ($ |#1| |#1|)) (-15 -2780 ($ $)) (-15 -1484 (|#1| $)) (-15 -1493 (|#1| $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-492 (-1102) |#1|)) (-6 (-492 (-1102) |#1|)) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-572 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4115 ($ $ $)) (-15 -4115 ($ $ (-598 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2237 ($ |#1| $)) (-15 -2237 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1762 ($ $)) (-15 -3231 ($ $)) (-15 -2250 ($ |#1| $)) (-15 -2250 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-677)) (PROGN (-6 (-677)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-6 (-986)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|) (IF (|has| |#1| (-523)) (-15 -1902 ((-598 $) $)) |%noBranch|) (IF (|has| |#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1191 |#1|)) (-15 -2263 ($ $ $)) (-15 -2422 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -3184 ($ $ $)) |%noBranch|))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-277 |#1| |#2|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030)) (T -277)) -NIL -(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) -((-3959 (((-293) (-1085) (-598 (-1085))) 16) (((-293) (-1085) (-1085)) 15) (((-293) (-598 (-1085))) 14) (((-293) (-1085)) 12))) -(((-278) (-10 -7 (-15 -3959 ((-293) (-1085))) (-15 -3959 ((-293) (-598 (-1085)))) (-15 -3959 ((-293) (-1085) (-1085))) (-15 -3959 ((-293) (-1085) (-598 (-1085)))))) (T -278)) -((-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1085))) (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3959 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-293)) (-5 *1 (-278)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278))))) -(-10 -7 (-15 -3959 ((-293) (-1085))) (-15 -3959 ((-293) (-598 (-1085)))) (-15 -3959 ((-293) (-1085) (-1085))) (-15 -3959 ((-293) (-1085) (-598 (-1085))))) -((-3261 ((|#2| (-1 |#2| |#1|) (-1085) (-571 |#1|)) 18))) -(((-279 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-1085) (-571 |#1|)))) (-284) (-1138)) (T -279)) -((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1085)) (-5 *5 (-571 *6)) (-4 *6 (-284)) (-4 *2 (-1138)) (-5 *1 (-279 *6 *2))))) -(-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-1085) (-571 |#1|)))) -((-3261 ((|#2| (-1 |#2| |#1|) (-571 |#1|)) 17))) -(((-280 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-571 |#1|)))) (-284) (-284)) (T -280)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-571 *5)) (-4 *5 (-284)) (-4 *2 (-284)) (-5 *1 (-280 *5 *2))))) -(-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-571 |#1|)))) -((-1240 (((-110) (-208)) 10))) -(((-281 |#1| |#2|) (-10 -7 (-15 -1240 ((-110) (-208)))) (-208) (-208)) (T -281)) -((-1240 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -1240 ((-110) (-208)))) -((-2485 (((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208)))) 93)) (-3195 (((-1083 (-208)) (-1184 (-297 (-208))) (-598 (-1102)) (-1025 (-790 (-208)))) 107) (((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208)))) 61)) (-4022 (((-598 (-1085)) (-1083 (-208))) NIL)) (-1606 (((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208)))) 58)) (-1591 (((-598 (-208)) (-895 (-388 (-531))) (-1102) (-1025 (-790 (-208)))) 49)) (-3127 (((-598 (-1085)) (-598 (-208))) NIL)) (-1325 (((-208) (-1025 (-790 (-208)))) 25)) (-2766 (((-208) (-1025 (-790 (-208)))) 26)) (-2216 (((-110) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 54)) (-1890 (((-1085) (-208)) NIL))) -(((-282) (-10 -7 (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2216 ((-110) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -2485 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-1184 (-297 (-208))) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -1591 ((-598 (-208)) (-895 (-388 (-531))) (-1102) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))))) (T -282)) -((-4022 (*1 *2 *3) (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-282)))) (-1591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *4 (-1102)) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102))) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102))) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102))) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) (-1606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102)) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-110)) (-5 *1 (-282)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))) -(-10 -7 (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2216 ((-110) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -2485 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-1184 (-297 (-208))) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -1591 ((-598 (-208)) (-895 (-388 (-531))) (-1102) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208))))) -((-2410 (((-598 (-571 $)) $) 30)) (-3184 (($ $ (-276 $)) 81) (($ $ (-598 (-276 $))) 123) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-3154 (((-3 (-571 $) "failed") $) 113)) (-2523 (((-571 $) $) 112)) (-1238 (($ $) 19) (($ (-598 $)) 56)) (-4051 (((-598 (-112)) $) 38)) (-3254 (((-112) (-112)) 91)) (-4250 (((-110) $) 131)) (-3261 (($ (-1 $ $) (-571 $)) 89)) (-1302 (((-3 (-571 $) "failed") $) 93)) (-1930 (($ (-112) $) 61) (($ (-112) (-598 $)) 100)) (-4247 (((-110) $ (-112)) 117) (((-110) $ (-1102)) 116)) (-4194 (((-721) $) 46)) (-2781 (((-110) $ $) 59) (((-110) $ (-1102)) 51)) (-1787 (((-110) $) 129)) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) 121) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 84) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) 69) (($ $ (-1102) (-1 $ $)) 75) (($ $ (-598 (-112)) (-598 (-1 $ $))) 83) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 85) (($ $ (-112) (-1 $ (-598 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-1785 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-598 $)) 109)) (-1771 (($ $) 53) (($ $ $) 119)) (-3504 (($ $) 17) (($ (-598 $)) 55)) (-3167 (((-110) (-112)) 22))) -(((-283 |#1|) (-10 -8 (-15 -4250 ((-110) |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -2781 ((-110) |#1| (-1102))) (-15 -2781 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#1| |#1|) (-571 |#1|))) (-15 -1930 (|#1| (-112) (-598 |#1|))) (-15 -1930 (|#1| (-112) |#1|)) (-15 -4247 ((-110) |#1| (-1102))) (-15 -4247 ((-110) |#1| (-112))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -4051 ((-598 (-112)) |#1|)) (-15 -2410 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -4194 ((-721) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1238 (|#1| (-598 |#1|))) (-15 -1238 (|#1| |#1|)) (-15 -3504 (|#1| (-598 |#1|))) (-15 -3504 (|#1| |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|))) (-284)) (T -283)) -((-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284))))) -(-10 -8 (-15 -4250 ((-110) |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -2781 ((-110) |#1| (-1102))) (-15 -2781 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#1| |#1|) (-571 |#1|))) (-15 -1930 (|#1| (-112) (-598 |#1|))) (-15 -1930 (|#1| (-112) |#1|)) (-15 -4247 ((-110) |#1| (-1102))) (-15 -4247 ((-110) |#1| (-112))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -4051 ((-598 (-112)) |#1|)) (-15 -2410 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -4194 ((-721) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1238 (|#1| (-598 |#1|))) (-15 -1238 (|#1| |#1|)) (-15 -3504 (|#1| (-598 |#1|))) (-15 -3504 (|#1| |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|))) -((-2247 (((-110) $ $) 7)) (-2410 (((-598 (-571 $)) $) 44)) (-3184 (($ $ (-276 $)) 56) (($ $ (-598 (-276 $))) 55) (($ $ (-598 (-571 $)) (-598 $)) 54)) (-3154 (((-3 (-571 $) "failed") $) 69)) (-2523 (((-571 $) $) 68)) (-1238 (($ $) 51) (($ (-598 $)) 50)) (-4051 (((-598 (-112)) $) 43)) (-3254 (((-112) (-112)) 42)) (-4250 (((-110) $) 22 (|has| $ (-977 (-531))))) (-2733 (((-1098 $) (-571 $)) 25 (|has| $ (-986)))) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-3261 (($ (-1 $ $) (-571 $)) 36)) (-1302 (((-3 (-571 $) "failed") $) 46)) (-1521 (((-1085) $) 9)) (-2501 (((-598 (-571 $)) $) 45)) (-1930 (($ (-112) $) 38) (($ (-112) (-598 $)) 37)) (-4247 (((-110) $ (-112)) 40) (((-110) $ (-1102)) 39)) (-4194 (((-721) $) 47)) (-2529 (((-1049) $) 10)) (-2781 (((-110) $ $) 35) (((-110) $ (-1102)) 34)) (-1787 (((-110) $) 23 (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) 67) (($ $ (-598 (-571 $)) (-598 $)) 66) (($ $ (-598 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-598 $) (-598 $)) 62) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 33) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 32) (($ $ (-1102) (-1 $ (-598 $))) 31) (($ $ (-1102) (-1 $ $)) 30) (($ $ (-598 (-112)) (-598 (-1 $ $))) 29) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 28) (($ $ (-112) (-1 $ (-598 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-1785 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-598 $)) 57)) (-1771 (($ $) 49) (($ $ $) 48)) (-3608 (($ $) 24 (|has| $ (-986)))) (-2265 (((-806) $) 11) (($ (-571 $)) 70)) (-3504 (($ $) 53) (($ (-598 $)) 52)) (-3167 (((-110) (-112)) 41)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18))) -(((-284) (-133)) (T -284)) -((-1785 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *1))) (-4 *1 (-284)))) (-3184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-571 *1))) (-5 *3 (-598 *1)) (-4 *1 (-284)))) (-3504 (*1 *1 *1) (-4 *1 (-284))) (-3504 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284)))) (-1238 (*1 *1 *1) (-4 *1 (-284))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284)))) (-1771 (*1 *1 *1) (-4 *1 (-284))) (-1771 (*1 *1 *1 *1) (-4 *1 (-284))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-721)))) (-1302 (*1 *2 *1) (|partial| -12 (-5 *2 (-571 *1)) (-4 *1 (-284)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-598 (-112))))) (-3254 (*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-3167 (*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-4247 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-4247 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110)))) (-1930 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1930 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284)))) (-3261 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-571 *1)) (-4 *1 (-284)))) (-2781 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))) (-2781 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-571 *1)) (-4 *1 (-986)) (-4 *1 (-284)) (-5 *2 (-1098 *1)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-986)) (-4 *1 (-284)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110))))) -(-13 (-797) (-977 (-571 $)) (-492 (-571 $) $) (-291 $) (-10 -8 (-15 -1785 ($ (-112) $)) (-15 -1785 ($ (-112) $ $)) (-15 -1785 ($ (-112) $ $ $)) (-15 -1785 ($ (-112) $ $ $ $)) (-15 -1785 ($ (-112) (-598 $))) (-15 -3184 ($ $ (-276 $))) (-15 -3184 ($ $ (-598 (-276 $)))) (-15 -3184 ($ $ (-598 (-571 $)) (-598 $))) (-15 -3504 ($ $)) (-15 -3504 ($ (-598 $))) (-15 -1238 ($ $)) (-15 -1238 ($ (-598 $))) (-15 -1771 ($ $)) (-15 -1771 ($ $ $)) (-15 -4194 ((-721) $)) (-15 -1302 ((-3 (-571 $) "failed") $)) (-15 -2501 ((-598 (-571 $)) $)) (-15 -2410 ((-598 (-571 $)) $)) (-15 -4051 ((-598 (-112)) $)) (-15 -3254 ((-112) (-112))) (-15 -3167 ((-110) (-112))) (-15 -4247 ((-110) $ (-112))) (-15 -4247 ((-110) $ (-1102))) (-15 -1930 ($ (-112) $)) (-15 -1930 ($ (-112) (-598 $))) (-15 -3261 ($ (-1 $ $) (-571 $))) (-15 -2781 ((-110) $ $)) (-15 -2781 ((-110) $ (-1102))) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-1 $ $)))) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-1 $ (-598 $))))) (-15 -4115 ($ $ (-1102) (-1 $ (-598 $)))) (-15 -4115 ($ $ (-1102) (-1 $ $))) (-15 -4115 ($ $ (-598 (-112)) (-598 (-1 $ $)))) (-15 -4115 ($ $ (-598 (-112)) (-598 (-1 $ (-598 $))))) (-15 -4115 ($ $ (-112) (-1 $ (-598 $)))) (-15 -4115 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-986)) (PROGN (-15 -2733 ((-1098 $) (-571 $))) (-15 -3608 ($ $))) |%noBranch|) (IF (|has| $ (-977 (-531))) (PROGN (-15 -1787 ((-110) $)) (-15 -4250 ((-110) $))) |%noBranch|))) -(((-99) . T) ((-572 (-806)) . T) ((-291 $) . T) ((-492 (-571 $) $) . T) ((-492 $ $) . T) ((-797) . T) ((-977 (-571 $)) . T) ((-1030) . T)) -((-2597 (((-598 |#1|) (-598 |#1|)) 10))) -(((-285 |#1|) (-10 -7 (-15 -2597 ((-598 |#1|) (-598 |#1|)))) (-795)) (T -285)) -((-2597 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-795)) (-5 *1 (-285 *3))))) -(-10 -7 (-15 -2597 ((-598 |#1|) (-598 |#1|)))) -((-3261 (((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)) 17))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3261 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) (-986) (-986)) (T -286)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-639 *6)) (-5 *1 (-286 *5 *6))))) -(-10 -7 (-15 -3261 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) -((-3996 (((-1184 (-297 (-360))) (-1184 (-297 (-208)))) 105)) (-2369 (((-1025 (-790 (-208))) (-1025 (-790 (-360)))) 40)) (-4022 (((-598 (-1085)) (-1083 (-208))) 87)) (-1328 (((-297 (-360)) (-895 (-208))) 50)) (-1457 (((-208) (-895 (-208))) 46)) (-3614 (((-1085) (-360)) 169)) (-2591 (((-790 (-208)) (-790 (-360))) 34)) (-3011 (((-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))) (-1184 (-297 (-208)))) 143)) (-1928 (((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) 181) (((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) 179)) (-1751 (((-639 (-208)) (-598 (-208)) (-721)) 14)) (-2020 (((-1184 (-649)) (-598 (-208))) 94)) (-3127 (((-598 (-1085)) (-598 (-208))) 75)) (-4146 (((-3 (-297 (-208)) "failed") (-297 (-208))) 120)) (-1240 (((-110) (-208) (-1025 (-790 (-208)))) 109)) (-2231 (((-975) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) 198)) (-1325 (((-208) (-1025 (-790 (-208)))) 107)) (-2766 (((-208) (-1025 (-790 (-208)))) 108)) (-2123 (((-208) (-388 (-531))) 27)) (-1373 (((-1085) (-360)) 73)) (-3626 (((-208) (-360)) 17)) (-3562 (((-360) (-1184 (-297 (-208)))) 154)) (-2871 (((-297 (-208)) (-297 (-360))) 23)) (-3421 (((-388 (-531)) (-297 (-208))) 53)) (-4186 (((-297 (-388 (-531))) (-297 (-208))) 69)) (-1745 (((-297 (-360)) (-297 (-208))) 98)) (-1322 (((-208) (-297 (-208))) 54)) (-1361 (((-598 (-208)) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) 64)) (-2214 (((-1025 (-790 (-208))) (-1025 (-790 (-208)))) 61)) (-1890 (((-1085) (-208)) 72)) (-1718 (((-649) (-208)) 90)) (-3919 (((-388 (-531)) (-208)) 55)) (-2315 (((-297 (-360)) (-208)) 49)) (-3318 (((-598 (-1025 (-790 (-208)))) (-598 (-1025 (-790 (-360))))) 43)) (-3536 (((-975) (-598 (-975))) 165) (((-975) (-975) (-975)) 162)) (-2145 (((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-287) (-10 -7 (-15 -3626 ((-208) (-360))) (-15 -2871 ((-297 (-208)) (-297 (-360)))) (-15 -2591 ((-790 (-208)) (-790 (-360)))) (-15 -2369 ((-1025 (-790 (-208))) (-1025 (-790 (-360))))) (-15 -3318 ((-598 (-1025 (-790 (-208)))) (-598 (-1025 (-790 (-360)))))) (-15 -3919 ((-388 (-531)) (-208))) (-15 -3421 ((-388 (-531)) (-297 (-208)))) (-15 -1322 ((-208) (-297 (-208)))) (-15 -4146 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -3562 ((-360) (-1184 (-297 (-208))))) (-15 -3011 ((-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))) (-1184 (-297 (-208))))) (-15 -4186 ((-297 (-388 (-531))) (-297 (-208)))) (-15 -2214 ((-1025 (-790 (-208))) (-1025 (-790 (-208))))) (-15 -1361 ((-598 (-208)) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-15 -1718 ((-649) (-208))) (-15 -2020 ((-1184 (-649)) (-598 (-208)))) (-15 -1745 ((-297 (-360)) (-297 (-208)))) (-15 -3996 ((-1184 (-297 (-360))) (-1184 (-297 (-208))))) (-15 -1240 ((-110) (-208) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -1373 ((-1085) (-360))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -3536 ((-975) (-975) (-975))) (-15 -3536 ((-975) (-598 (-975)))) (-15 -3614 ((-1085) (-360))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))) (-15 -2145 ((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2231 ((-975) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -1328 ((-297 (-360)) (-895 (-208)))) (-15 -1457 ((-208) (-895 (-208)))) (-15 -2315 ((-297 (-360)) (-208))) (-15 -2123 ((-208) (-388 (-531)))) (-15 -1751 ((-639 (-208)) (-598 (-208)) (-721))))) (T -287)) -((-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-208))) (-5 *4 (-721)) (-5 *2 (-639 (-208))) (-5 *1 (-287)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-388 (-531))) (-5 *2 (-208)) (-5 *1 (-287)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-895 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-895 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *2 (-975)) (-5 *1 (-287)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-975)) (-5 *1 (-287)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) (-5 *2 (-975)) (-5 *1 (-287)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *2 (-975)) (-5 *1 (-287)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-598 (-975))) (-5 *2 (-975)) (-5 *1 (-287)))) (-3536 (*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-287)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-287)))) (-1240 (*1 *2 *3 *4) (-12 (-5 *4 (-1025 (-790 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-287)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-1184 (-297 (-360)))) (-5 *1 (-287)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1184 (-649))) (-5 *1 (-287)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-649)) (-5 *1 (-287)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *2 (-598 (-208))) (-5 *1 (-287)))) (-2214 (*1 *2 *2) (-12 (-5 *2 (-1025 (-790 (-208)))) (-5 *1 (-287)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-531)))) (-5 *1 (-287)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531)))) (-5 *1 (-287)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))) (-4146 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-531))) (-5 *1 (-287)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-531))) (-5 *1 (-287)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-598 (-1025 (-790 (-360))))) (-5 *2 (-598 (-1025 (-790 (-208))))) (-5 *1 (-287)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-360)))) (-5 *2 (-1025 (-790 (-208)))) (-5 *1 (-287)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-790 (-360))) (-5 *2 (-790 (-208))) (-5 *1 (-287)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287))))) -(-10 -7 (-15 -3626 ((-208) (-360))) (-15 -2871 ((-297 (-208)) (-297 (-360)))) (-15 -2591 ((-790 (-208)) (-790 (-360)))) (-15 -2369 ((-1025 (-790 (-208))) (-1025 (-790 (-360))))) (-15 -3318 ((-598 (-1025 (-790 (-208)))) (-598 (-1025 (-790 (-360)))))) (-15 -3919 ((-388 (-531)) (-208))) (-15 -3421 ((-388 (-531)) (-297 (-208)))) (-15 -1322 ((-208) (-297 (-208)))) (-15 -4146 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -3562 ((-360) (-1184 (-297 (-208))))) (-15 -3011 ((-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))) (-1184 (-297 (-208))))) (-15 -4186 ((-297 (-388 (-531))) (-297 (-208)))) (-15 -2214 ((-1025 (-790 (-208))) (-1025 (-790 (-208))))) (-15 -1361 ((-598 (-208)) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-15 -1718 ((-649) (-208))) (-15 -2020 ((-1184 (-649)) (-598 (-208)))) (-15 -1745 ((-297 (-360)) (-297 (-208)))) (-15 -3996 ((-1184 (-297 (-360))) (-1184 (-297 (-208))))) (-15 -1240 ((-110) (-208) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -1373 ((-1085) (-360))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -3536 ((-975) (-975) (-975))) (-15 -3536 ((-975) (-598 (-975)))) (-15 -3614 ((-1085) (-360))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))) (-15 -2145 ((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2231 ((-975) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -1328 ((-297 (-360)) (-895 (-208)))) (-15 -1457 ((-208) (-895 (-208)))) (-15 -2315 ((-297 (-360)) (-208))) (-15 -2123 ((-208) (-388 (-531)))) (-15 -1751 ((-639 (-208)) (-598 (-208)) (-721)))) -((-2760 (((-110) $ $) 11)) (-3650 (($ $ $) 15)) (-3630 (($ $ $) 14)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 44)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 53)) (-2109 (($ $ $) 21) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3609 (((-3 $ "failed") $ $) 17)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 46))) -(((-288 |#1|) (-10 -8 (-15 -3038 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2857 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2857 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -2760 ((-110) |#1| |#1|)) (-15 -1995 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2434 ((-2 (|:| -2005 (-598 |#1|)) (|:| -1861 |#1|)) (-598 |#1|))) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|))) (-289)) (T -288)) -NIL -(-10 -8 (-15 -3038 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2857 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2857 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -2760 ((-110) |#1| |#1|)) (-15 -1995 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2434 ((-2 (|:| -2005 (-598 |#1|)) (|:| -1861 |#1|)) (-598 |#1|))) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-289) (-133)) (T -289)) -((-2760 (*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-721)))) (-2100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-289)))) (-3630 (*1 *1 *1 *1) (-4 *1 (-289))) (-3650 (*1 *1 *1 *1) (-4 *1 (-289))) (-2857 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) (-4 *1 (-289)))) (-2857 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-289)))) (-3038 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-289))))) -(-13 (-863) (-10 -8 (-15 -2760 ((-110) $ $)) (-15 -4100 ((-721) $)) (-15 -2100 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3630 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2857 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $)) (-15 -2857 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3038 ((-3 (-598 $) "failed") (-598 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-4115 (($ $ (-598 |#2|) (-598 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-276 |#2|)) 11) (($ $ (-598 (-276 |#2|))) NIL))) -(((-290 |#1| |#2|) (-10 -8 (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|)))) (-291 |#2|) (-1030)) (T -290)) -NIL -(-10 -8 (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|)))) -((-4115 (($ $ (-598 |#1|) (-598 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-276 |#1|)) 11) (($ $ (-598 (-276 |#1|))) 10))) -(((-291 |#1|) (-133) (-1030)) (T -291)) -((-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1030)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1030))))) -(-13 (-492 |t#1| |t#1|) (-10 -8 (-15 -4115 ($ $ (-276 |t#1|))) (-15 -4115 ($ $ (-598 (-276 |t#1|)))))) -(((-492 |#1| |#1|) . T)) -((-4115 ((|#1| (-1 |#1| (-531)) (-1104 (-388 (-531)))) 25))) -(((-292 |#1|) (-10 -7 (-15 -4115 (|#1| (-1 |#1| (-531)) (-1104 (-388 (-531)))))) (-37 (-388 (-531)))) (T -292)) -((-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-531))) (-5 *4 (-1104 (-388 (-531)))) (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-531))))))) -(-10 -7 (-15 -4115 (|#1| (-1 |#1| (-531)) (-1104 (-388 (-531)))))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-2148 (((-110) $ $) 9))) -(((-293) (-1030)) (T -293)) -NIL -(-1030) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 62)) (-1317 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1170 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-3 (-1169 |#2| |#3| |#4|) "failed") $) 25)) (-2523 (((-1170 |#1| |#2| |#3| |#4|) $) NIL) (((-1102) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-531) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-1169 |#2| |#3| |#4|) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-1170 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1184 (-1170 |#1| |#2| |#3| |#4|)))) (-639 $) (-1184 $)) NIL) (((-639 (-1170 |#1| |#2| |#3| |#4|)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-1170 |#1| |#2| |#3| |#4|) $) 21)) (-2342 (((-3 $ "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-1078)))) (-2985 (((-110) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-1241 (($ $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-3261 (($ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) $) NIL)) (-1872 (((-3 (-790 |#2|) "failed") $) 78)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-289)))) (-2943 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-1170 |#1| |#2| |#3| |#4|)) (-598 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-276 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-598 (-276 (-1170 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-598 (-1102)) (-598 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-492 (-1102) (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-1102) (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-492 (-1102) (-1170 |#1| |#2| |#3| |#4|))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-268 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1102)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) (-721)) NIL) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-1170 |#1| |#2| |#3| |#4|) $) 17)) (-3318 (((-835 (-531)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-573 (-507)))) (((-360) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-962))) (((-208) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-1170 |#1| |#2| |#3| |#4|) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-1170 |#1| |#2| |#3| |#4|)) 29) (($ (-1102)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-1102)))) (($ (-1169 |#2| |#3| |#4|)) 36)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-1170 |#1| |#2| |#3| |#4|) (-852))) (|has| (-1170 |#1| |#2| |#3| |#4|) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-3035 (($) 41 T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1102)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) (-721)) NIL) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2263 (($ $ $) 34) (($ (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) 31)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-1170 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1170 |#1| |#2| |#3| |#4|)) NIL))) -(((-294 |#1| |#2| |#3| |#4|) (-13 (-934 (-1170 |#1| |#2| |#3| |#4|)) (-977 (-1169 |#2| |#3| |#4|)) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -2265 ($ (-1169 |#2| |#3| |#4|))))) (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)) (-13 (-27) (-1124) (-411 |#1|)) (-1102) |#2|) (T -294)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1169 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4) (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *1 (-294 *3 *4 *5 *6)))) (-1872 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *2 (-790 *4)) (-5 *1 (-294 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4)))) -(-13 (-934 (-1170 |#1| |#2| |#3| |#4|)) (-977 (-1169 |#2| |#3| |#4|)) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -2265 ($ (-1169 |#2| |#3| |#4|))))) -((-3261 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 13))) -(((-295 |#1| |#2|) (-10 -7 (-15 -3261 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-797) (-797)) (T -295)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-797)) (-4 *6 (-797)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6))))) -(-10 -7 (-15 -3261 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) -((-2373 (((-51) |#2| (-276 |#2|) (-721)) 33) (((-51) |#2| (-276 |#2|)) 24) (((-51) |#2| (-721)) 28) (((-51) |#2|) 25) (((-51) (-1102)) 21)) (-4067 (((-51) |#2| (-276 |#2|) (-388 (-531))) 51) (((-51) |#2| (-276 |#2|)) 48) (((-51) |#2| (-388 (-531))) 50) (((-51) |#2|) 49) (((-51) (-1102)) 47)) (-2397 (((-51) |#2| (-276 |#2|) (-388 (-531))) 46) (((-51) |#2| (-276 |#2|)) 43) (((-51) |#2| (-388 (-531))) 45) (((-51) |#2|) 44) (((-51) (-1102)) 42)) (-2385 (((-51) |#2| (-276 |#2|) (-531)) 39) (((-51) |#2| (-276 |#2|)) 35) (((-51) |#2| (-531)) 38) (((-51) |#2|) 36) (((-51) (-1102)) 34))) -(((-296 |#1| |#2|) (-10 -7 (-15 -2373 ((-51) (-1102))) (-15 -2373 ((-51) |#2|)) (-15 -2373 ((-51) |#2| (-721))) (-15 -2373 ((-51) |#2| (-276 |#2|))) (-15 -2373 ((-51) |#2| (-276 |#2|) (-721))) (-15 -2385 ((-51) (-1102))) (-15 -2385 ((-51) |#2|)) (-15 -2385 ((-51) |#2| (-531))) (-15 -2385 ((-51) |#2| (-276 |#2|))) (-15 -2385 ((-51) |#2| (-276 |#2|) (-531))) (-15 -2397 ((-51) (-1102))) (-15 -2397 ((-51) |#2|)) (-15 -2397 ((-51) |#2| (-388 (-531)))) (-15 -2397 ((-51) |#2| (-276 |#2|))) (-15 -2397 ((-51) |#2| (-276 |#2|) (-388 (-531)))) (-15 -4067 ((-51) (-1102))) (-15 -4067 ((-51) |#2|)) (-15 -4067 ((-51) |#2| (-388 (-531)))) (-15 -4067 ((-51) |#2| (-276 |#2|))) (-15 -4067 ((-51) |#2| (-276 |#2|) (-388 (-531))))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -296)) -((-4067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-531))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-4067 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))) (-2397 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-531))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2397 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 *5) (-594 *5))) (-5 *5 (-531)) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-4 *5 (-13 (-432) (-797) (-977 *4) (-594 *4))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2385 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-721)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2373 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4)))))) -(-10 -7 (-15 -2373 ((-51) (-1102))) (-15 -2373 ((-51) |#2|)) (-15 -2373 ((-51) |#2| (-721))) (-15 -2373 ((-51) |#2| (-276 |#2|))) (-15 -2373 ((-51) |#2| (-276 |#2|) (-721))) (-15 -2385 ((-51) (-1102))) (-15 -2385 ((-51) |#2|)) (-15 -2385 ((-51) |#2| (-531))) (-15 -2385 ((-51) |#2| (-276 |#2|))) (-15 -2385 ((-51) |#2| (-276 |#2|) (-531))) (-15 -2397 ((-51) (-1102))) (-15 -2397 ((-51) |#2|)) (-15 -2397 ((-51) |#2| (-388 (-531)))) (-15 -2397 ((-51) |#2| (-276 |#2|))) (-15 -2397 ((-51) |#2| (-276 |#2|) (-388 (-531)))) (-15 -4067 ((-51) (-1102))) (-15 -4067 ((-51) |#2|)) (-15 -4067 ((-51) |#2| (-388 (-531)))) (-15 -4067 ((-51) |#2| (-276 |#2|))) (-15 -4067 ((-51) |#2| (-276 |#2|) (-388 (-531))))) -((-2247 (((-110) $ $) NIL)) (-2485 (((-598 $) $ (-1102)) NIL (|has| |#1| (-523))) (((-598 $) $) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $) (-1102)) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $)) NIL (|has| |#1| (-523))) (((-598 $) (-895 $)) NIL (|has| |#1| (-523)))) (-2424 (($ $ (-1102)) NIL (|has| |#1| (-523))) (($ $) NIL (|has| |#1| (-523))) (($ (-1098 $) (-1102)) NIL (|has| |#1| (-523))) (($ (-1098 $)) NIL (|has| |#1| (-523))) (($ (-895 $)) NIL (|has| |#1| (-523)))) (-3019 (((-110) $) 27 (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-2695 (((-598 (-1102)) $) 351)) (-2516 (((-388 (-1098 $)) $ (-571 $)) NIL (|has| |#1| (-523)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2410 (((-598 (-571 $)) $) NIL)) (-2367 (($ $) 161 (|has| |#1| (-523)))) (-2218 (($ $) 137 (|has| |#1| (-523)))) (-2423 (($ $ (-1023 $)) 222 (|has| |#1| (-523))) (($ $ (-1102)) 218 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) 368) (($ $ (-598 (-571 $)) (-598 $)) 412)) (-1383 (((-399 (-1098 $)) (-1098 $)) 295 (-12 (|has| |#1| (-432)) (|has| |#1| (-523))))) (-3240 (($ $) NIL (|has| |#1| (-523)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-523)))) (-2563 (($ $) NIL (|has| |#1| (-523)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2343 (($ $) 157 (|has| |#1| (-523)))) (-2198 (($ $) 133 (|has| |#1| (-523)))) (-3140 (($ $ (-531)) 72 (|has| |#1| (-523)))) (-2391 (($ $) 165 (|has| |#1| (-523)))) (-2241 (($ $) 141 (|has| |#1| (-523)))) (-4082 (($) NIL (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))) CONST)) (-3007 (((-598 $) $ (-1102)) NIL (|has| |#1| (-523))) (((-598 $) $) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $) (-1102)) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $)) NIL (|has| |#1| (-523))) (((-598 $) (-895 $)) NIL (|has| |#1| (-523)))) (-2738 (($ $ (-1102)) NIL (|has| |#1| (-523))) (($ $) NIL (|has| |#1| (-523))) (($ (-1098 $) (-1102)) 124 (|has| |#1| (-523))) (($ (-1098 $)) NIL (|has| |#1| (-523))) (($ (-895 $)) NIL (|has| |#1| (-523)))) (-3154 (((-3 (-571 $) "failed") $) 17) (((-3 (-1102) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-895 |#1|)) "failed") $) NIL (|has| |#1| (-523))) (((-3 (-895 |#1|) "failed") $) NIL (|has| |#1| (-986))) (((-3 (-388 (-531)) "failed") $) 46 (-1435 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 (((-571 $) $) 11) (((-1102) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-895 |#1|)) $) NIL (|has| |#1| (-523))) (((-895 |#1|) $) NIL (|has| |#1| (-986))) (((-388 (-531)) $) 306 (-1435 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-3650 (($ $ $) NIL (|has| |#1| (-523)))) (-3073 (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 117 (|has| |#1| (-986))) (((-639 |#1|) (-639 $)) 107 (|has| |#1| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (-1760 (($ $) 89 (|has| |#1| (-523)))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))))) (-3630 (($ $ $) NIL (|has| |#1| (-523)))) (-3488 (($ $ (-1023 $)) 226 (|has| |#1| (-523))) (($ $ (-1102)) 224 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-523)))) (-2534 (((-110) $) NIL (|has| |#1| (-523)))) (-1690 (($ $ $) 192 (|has| |#1| (-523)))) (-1880 (($) 127 (|has| |#1| (-523)))) (-2555 (($ $ $) 212 (|has| |#1| (-523)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 374 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 381 (|has| |#1| (-829 (-360))))) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) 267)) (-3481 (((-110) $) 25 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))))) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-3027 (($ $) 71 (|has| |#1| (-986)))) (-1840 (((-1054 |#1| (-571 $)) $) 84 (|has| |#1| (-986)))) (-1686 (((-110) $) 64 (|has| |#1| (-523)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-523)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-523)))) (-2733 (((-1098 $) (-571 $)) 268 (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) 408)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-2076 (($ $) 131 (|has| |#1| (-523)))) (-1805 (($ $) 237 (|has| |#1| (-523)))) (-2078 (($ (-598 $)) NIL (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) 49)) (-1930 (($ (-112) $) NIL) (($ (-112) (-598 $)) 413)) (-3443 (((-3 (-598 $) "failed") $) NIL (|has| |#1| (-1042)))) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) NIL (|has| |#1| (-986)))) (-2077 (((-3 (-598 $) "failed") $) 416 (|has| |#1| (-25)))) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) NIL (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) NIL (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) NIL (|has| |#1| (-986)))) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) 53)) (-2422 (($ $) NIL (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2974 (($ $ (-1102)) 241 (|has| |#1| (-523))) (($ $ (-1023 $)) 243 (|has| |#1| (-523)))) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 43)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 288 (|has| |#1| (-523)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2616 (($ $ (-1102)) 216 (|has| |#1| (-523))) (($ $) 214 (|has| |#1| (-523)))) (-1569 (($ $) 208 (|has| |#1| (-523)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 293 (-12 (|has| |#1| (-432)) (|has| |#1| (-523))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-523)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-523))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-523)))) (-2798 (($ $) 129 (|has| |#1| (-523)))) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) 407) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) 361) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1102)) NIL (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-573 (-507)))) (($ $) NIL (|has| |#1| (-573 (-507)))) (($ $ (-112) $ (-1102)) 349 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-112)) (-598 $) (-1102)) 348 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) NIL (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ (-598 $))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ $)) NIL (|has| |#1| (-986)))) (-4100 (((-721) $) NIL (|has| |#1| (-523)))) (-2152 (($ $) 229 (|has| |#1| (-523)))) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-1771 (($ $) NIL) (($ $ $) NIL)) (-2187 (($ $) 239 (|has| |#1| (-523)))) (-2188 (($ $) 190 (|has| |#1| (-523)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-986))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-986))) (($ $ (-1102)) NIL (|has| |#1| (-986)))) (-2842 (($ $) 73 (|has| |#1| (-523)))) (-1853 (((-1054 |#1| (-571 $)) $) 86 (|has| |#1| (-523)))) (-3608 (($ $) 304 (|has| $ (-986)))) (-2403 (($ $) 167 (|has| |#1| (-523)))) (-2253 (($ $) 143 (|has| |#1| (-523)))) (-2379 (($ $) 163 (|has| |#1| (-523)))) (-2229 (($ $) 139 (|has| |#1| (-523)))) (-2356 (($ $) 159 (|has| |#1| (-523)))) (-2210 (($ $) 135 (|has| |#1| (-523)))) (-3318 (((-835 (-531)) $) NIL (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#1| (-573 (-835 (-360))))) (($ (-399 $)) NIL (|has| |#1| (-523))) (((-507) $) 346 (|has| |#1| (-573 (-507))))) (-4164 (($ $ $) NIL (|has| |#1| (-453)))) (-3214 (($ $ $) NIL (|has| |#1| (-453)))) (-2265 (((-806) $) 406) (($ (-571 $)) 397) (($ (-1102)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-523))) (($ (-47)) 299 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) (($ (-1054 |#1| (-571 $))) 88 (|has| |#1| (-986))) (($ (-388 |#1|)) NIL (|has| |#1| (-523))) (($ (-895 (-388 |#1|))) NIL (|has| |#1| (-523))) (($ (-388 (-895 (-388 |#1|)))) NIL (|has| |#1| (-523))) (($ (-388 (-895 |#1|))) NIL (|has| |#1| (-523))) (($ (-895 |#1|)) NIL (|has| |#1| (-986))) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-523)) (|has| |#1| (-977 (-388 (-531)))))) (($ (-531)) 34 (-1435 (|has| |#1| (-977 (-531))) (|has| |#1| (-986))))) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL (|has| |#1| (-986)))) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-2589 (($ $ $) 210 (|has| |#1| (-523)))) (-3031 (($ $ $) 196 (|has| |#1| (-523)))) (-2143 (($ $ $) 200 (|has| |#1| (-523)))) (-1702 (($ $ $) 194 (|has| |#1| (-523)))) (-2081 (($ $ $) 198 (|has| |#1| (-523)))) (-3167 (((-110) (-112)) 9)) (-2442 (($ $) 173 (|has| |#1| (-523)))) (-2292 (($ $) 149 (|has| |#1| (-523)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 169 (|has| |#1| (-523)))) (-2266 (($ $) 145 (|has| |#1| (-523)))) (-2468 (($ $) 177 (|has| |#1| (-523)))) (-2318 (($ $) 153 (|has| |#1| (-523)))) (-2507 (($ (-1102) $) NIL) (($ (-1102) $ $) NIL) (($ (-1102) $ $ $) NIL) (($ (-1102) $ $ $ $) NIL) (($ (-1102) (-598 $)) NIL)) (-3558 (($ $) 204 (|has| |#1| (-523)))) (-2336 (($ $) 202 (|has| |#1| (-523)))) (-2753 (($ $) 179 (|has| |#1| (-523)))) (-2331 (($ $) 155 (|has| |#1| (-523)))) (-2456 (($ $) 175 (|has| |#1| (-523)))) (-2305 (($ $) 151 (|has| |#1| (-523)))) (-2429 (($ $) 171 (|has| |#1| (-523)))) (-2279 (($ $) 147 (|has| |#1| (-523)))) (-1620 (($ $) 182 (|has| |#1| (-523)))) (-3035 (($) 20 (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) CONST)) (-1677 (($ $) 233 (|has| |#1| (-523)))) (-3050 (($) 22 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))) CONST)) (-3926 (($ $) 184 (|has| |#1| (-523))) (($ $ $) 186 (|has| |#1| (-523)))) (-1400 (($ $) 231 (|has| |#1| (-523)))) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-986))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-986))) (($ $ (-1102)) NIL (|has| |#1| (-986)))) (-3510 (($ $) 235 (|has| |#1| (-523)))) (-1312 (($ $ $) 188 (|has| |#1| (-523)))) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 81)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 80)) (-2263 (($ (-1054 |#1| (-571 $)) (-1054 |#1| (-571 $))) 98 (|has| |#1| (-523))) (($ $ $) 42 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2250 (($ $ $) 40 (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (($ $) 29 (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-2237 (($ $ $) 38 (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (** (($ $ $) 66 (|has| |#1| (-523))) (($ $ (-388 (-531))) 301 (|has| |#1| (-523))) (($ $ (-531)) 76 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-721)) 74 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042)))) (($ $ (-864)) 78 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))))) (* (($ (-388 (-531)) $) NIL (|has| |#1| (-523))) (($ $ (-388 (-531))) NIL (|has| |#1| (-523))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042)))) (($ (-531) $) 32 (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (($ (-721) $) NIL (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (($ (-864) $) NIL (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))))) -(((-297 |#1|) (-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-523)) (PROGN (-6 (-29 |#1|)) (-6 (-1124)) (-6 (-151)) (-6 (-584)) (-6 (-1066)) (-15 -1760 ($ $)) (-15 -1686 ((-110) $)) (-15 -3140 ($ $ (-531))) (IF (|has| |#1| (-432)) (PROGN (-15 -2894 ((-399 (-1098 $)) (-1098 $))) (-15 -1383 ((-399 (-1098 $)) (-1098 $)))) |%noBranch|) (IF (|has| |#1| (-977 (-531))) (-6 (-977 (-47))) |%noBranch|)) |%noBranch|))) (-797)) (T -297)) -((-1760 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-523)) (-4 *2 (-797)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797)))) (-2894 (*1 *2 *3) (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797)))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797))))) -(-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-523)) (PROGN (-6 (-29 |#1|)) (-6 (-1124)) (-6 (-151)) (-6 (-584)) (-6 (-1066)) (-15 -1760 ($ $)) (-15 -1686 ((-110) $)) (-15 -3140 ($ $ (-531))) (IF (|has| |#1| (-432)) (PROGN (-15 -2894 ((-399 (-1098 $)) (-1098 $))) (-15 -1383 ((-399 (-1098 $)) (-1098 $)))) |%noBranch|) (IF (|has| |#1| (-977 (-531))) (-6 (-977 (-47))) |%noBranch|)) |%noBranch|))) -((-3384 (((-51) |#2| (-112) (-276 |#2|) (-598 |#2|)) 88) (((-51) |#2| (-112) (-276 |#2|) (-276 |#2|)) 84) (((-51) |#2| (-112) (-276 |#2|) |#2|) 86) (((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|) 87) (((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|))) 80) (((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 |#2|)) 82) (((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 |#2|)) 83) (((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|))) 81) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|)) 89) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|)) 85))) -(((-298 |#1| |#2|) (-10 -7 (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-598 |#2|)))) (-13 (-797) (-523) (-573 (-507))) (-411 |#1|)) (T -298)) -((-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-598 *3)) (-4 *3 (-411 *7)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))) (-3384 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3384 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3384 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *5)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-112))) (-5 *6 (-598 (-276 *8))) (-4 *8 (-411 *7)) (-5 *5 (-276 *8)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3384 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-598 (-276 *8))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *8)) (-5 *6 (-598 *8)) (-4 *8 (-411 *7)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3384 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3384 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-598 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3384 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5)) (-4 *5 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *5 *6))))) -(-10 -7 (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-598 |#2|)))) -((-2934 (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531) (-1085)) 46) (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531)) 47) (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531) (-1085)) 43) (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531)) 44)) (-2333 (((-1 (-208) (-208)) (-208)) 45))) -(((-299) (-10 -7 (-15 -2333 ((-1 (-208) (-208)) (-208))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531) (-1085))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531) (-1085))))) (T -299)) -((-2934 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) (-5 *8 (-1085)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2934 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2934 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *7 (-1085)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2934 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2333 (*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208))))) -(-10 -7 (-15 -2333 ((-1 (-208) (-208)) (-208))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531) (-1085))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531) (-1085)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 25)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 20)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 32)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) 16)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) NIL) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3636 (((-388 (-531)) $) 17)) (-3155 (($ (-1169 |#1| |#2| |#3|)) 11)) (-1790 (((-1169 |#1| |#2| |#3|) $) 12)) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 10)) (-2265 (((-806) $) 38) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 30)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) NIL)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 27)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 33)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-300 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-742) (-10 -8 (-15 -3155 ($ (-1169 |#1| |#2| |#3|))) (-15 -1790 ((-1169 |#1| |#2| |#3|) $)) (-15 -3636 ((-388 (-531)) $)))) (-13 (-344) (-797)) (-1102) |#1|) (T -300)) -((-3155 (*1 *1 *2) (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-1169 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3)))) -(-13 (-1165 |#1|) (-742) (-10 -8 (-15 -3155 ($ (-1169 |#1| |#2| |#3|))) (-15 -1790 ((-1169 |#1| |#2| |#3|) $)) (-15 -3636 ((-388 (-531)) $)))) -((-2249 (((-2 (|:| -1790 (-721)) (|:| -2005 |#1|) (|:| |radicand| (-598 |#1|))) (-399 |#1|) (-721)) 24)) (-2076 (((-598 (-2 (|:| -2005 (-721)) (|:| |logand| |#1|))) (-399 |#1|)) 28))) -(((-301 |#1|) (-10 -7 (-15 -2249 ((-2 (|:| -1790 (-721)) (|:| -2005 |#1|) (|:| |radicand| (-598 |#1|))) (-399 |#1|) (-721))) (-15 -2076 ((-598 (-2 (|:| -2005 (-721)) (|:| |logand| |#1|))) (-399 |#1|)))) (-523)) (T -301)) -((-2076 (*1 *2 *3) (-12 (-5 *3 (-399 *4)) (-4 *4 (-523)) (-5 *2 (-598 (-2 (|:| -2005 (-721)) (|:| |logand| *4)))) (-5 *1 (-301 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *5)) (-4 *5 (-523)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *5) (|:| |radicand| (-598 *5)))) (-5 *1 (-301 *5)) (-5 *4 (-721))))) -(-10 -7 (-15 -2249 ((-2 (|:| -1790 (-721)) (|:| -2005 |#1|) (|:| |radicand| (-598 |#1|))) (-399 |#1|) (-721))) (-15 -2076 ((-598 (-2 (|:| -2005 (-721)) (|:| |logand| |#1|))) (-399 |#1|)))) -((-2695 (((-598 |#2|) (-1098 |#4|)) 43)) (-2037 ((|#3| (-531)) 46)) (-3872 (((-1098 |#4|) (-1098 |#3|)) 30)) (-2741 (((-1098 |#4|) (-1098 |#4|) (-531)) 56)) (-1252 (((-1098 |#3|) (-1098 |#4|)) 21)) (-2012 (((-598 (-721)) (-1098 |#4|) (-598 |#2|)) 40)) (-2508 (((-1098 |#3|) (-1098 |#4|) (-598 |#2|) (-598 |#3|)) 35))) -(((-302 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 ((-1098 |#3|) (-1098 |#4|) (-598 |#2|) (-598 |#3|))) (-15 -2012 ((-598 (-721)) (-1098 |#4|) (-598 |#2|))) (-15 -2695 ((-598 |#2|) (-1098 |#4|))) (-15 -1252 ((-1098 |#3|) (-1098 |#4|))) (-15 -3872 ((-1098 |#4|) (-1098 |#3|))) (-15 -2741 ((-1098 |#4|) (-1098 |#4|) (-531))) (-15 -2037 (|#3| (-531)))) (-743) (-797) (-986) (-892 |#3| |#1| |#2|)) (T -302)) -((-2037 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-986)) (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-892 *2 *4 *5)))) (-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *7)) (-5 *3 (-531)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-5 *1 (-302 *4 *5 *6 *7)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1098 *6)) (-4 *6 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-1098 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-1252 (*1 *2 *3) (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-1098 *6)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-598 *5)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *8)) (-5 *4 (-598 *6)) (-4 *6 (-797)) (-4 *8 (-892 *7 *5 *6)) (-4 *5 (-743)) (-4 *7 (-986)) (-5 *2 (-598 (-721))) (-5 *1 (-302 *5 *6 *7 *8)))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 *8)) (-4 *7 (-797)) (-4 *8 (-986)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-5 *2 (-1098 *8)) (-5 *1 (-302 *6 *7 *8 *9))))) -(-10 -7 (-15 -2508 ((-1098 |#3|) (-1098 |#4|) (-598 |#2|) (-598 |#3|))) (-15 -2012 ((-598 (-721)) (-1098 |#4|) (-598 |#2|))) (-15 -2695 ((-598 |#2|) (-1098 |#4|))) (-15 -1252 ((-1098 |#3|) (-1098 |#4|))) (-15 -3872 ((-1098 |#4|) (-1098 |#3|))) (-15 -2741 ((-1098 |#4|) (-1098 |#4|) (-531))) (-15 -2037 (|#3| (-531)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 14)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $) 18)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3616 ((|#1| $ (-531)) NIL)) (-2880 (((-531) $ (-531)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2483 (($ (-1 |#1| |#1|) $) NIL)) (-3762 (($ (-1 (-531) (-531)) $) 10)) (-1521 (((-1085) $) NIL)) (-3881 (($ $ $) NIL (|has| (-531) (-742)))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-3188 (((-531) |#1| $) NIL)) (-3035 (($) 15 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) 21 (|has| |#1| (-797)))) (-2250 (($ $) 11) (($ $ $) 20)) (-2237 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL) (($ (-531) |#1|) 19))) -(((-303 |#1|) (-13 (-21) (-668 (-531)) (-304 |#1| (-531)) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-1030)) (T -303)) -NIL -(-13 (-21) (-668 (-531)) (-304 |#1| (-531)) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $) 27)) (-2128 (((-3 $ "failed") $ $) 19)) (-3006 (((-721) $) 28)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 32)) (-2523 ((|#1| $) 31)) (-3616 ((|#1| $ (-531)) 25)) (-2880 ((|#2| $ (-531)) 26)) (-2483 (($ (-1 |#1| |#1|) $) 22)) (-3762 (($ (-1 |#2| |#2|) $) 23)) (-1521 (((-1085) $) 9)) (-3881 (($ $ $) 21 (|has| |#2| (-742)))) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ |#1|) 33)) (-3188 ((|#2| |#1| $) 24)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ |#2| |#1|) 29))) -(((-304 |#1| |#2|) (-133) (-1030) (-128)) (T -304)) -((-2237 (*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)) (-5 *2 (-721)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)) (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))))) (-2880 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1030)) (-4 *2 (-128)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1030)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128)))) (-3762 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)))) (-3881 (*1 *1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128)) (-4 *3 (-742))))) -(-13 (-128) (-977 |t#1|) (-10 -8 (-15 -2237 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3006 ((-721) $)) (-15 -4034 ((-598 (-2 (|:| |gen| |t#1|) (|:| -2798 |t#2|))) $)) (-15 -2880 (|t#2| $ (-531))) (-15 -3616 (|t#1| $ (-531))) (-15 -3188 (|t#2| |t#1| $)) (-15 -3762 ($ (-1 |t#2| |t#2|) $)) (-15 -2483 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-742)) (-15 -3881 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-977 |#1|) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3616 ((|#1| $ (-531)) NIL)) (-2880 (((-721) $ (-531)) NIL)) (-2483 (($ (-1 |#1| |#1|) $) NIL)) (-3762 (($ (-1 (-721) (-721)) $) NIL)) (-1521 (((-1085) $) NIL)) (-3881 (($ $ $) NIL (|has| (-721) (-742)))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-3188 (((-721) |#1| $) NIL)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-721) |#1|) NIL))) -(((-305 |#1|) (-304 |#1| (-721)) (-1030)) (T -305)) -NIL -(-304 |#1| (-721)) -((-2226 (($ $) 53)) (-2490 (($ $ |#2| |#3| $) 14)) (-2736 (($ (-1 |#3| |#3|) $) 35)) (-2435 (((-110) $) 27)) (-2448 ((|#2| $) 29)) (-3609 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1767 ((|#2| $) 49)) (-2708 (((-598 |#2|) $) 38)) (-2911 (($ $ $ (-721)) 23)) (-2263 (($ $ |#2|) 42))) -(((-306 |#1| |#2| |#3|) (-10 -8 (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2911 (|#1| |#1| |#1| (-721))) (-15 -2490 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2736 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2263 (|#1| |#1| |#2|))) (-307 |#2| |#3|) (-986) (-742)) (T -306)) -NIL -(-10 -8 (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2911 (|#1| |#1| |#1| (-721))) (-15 -2490 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2736 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2263 (|#1| |#1| |#2|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 88 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 86 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 85)) (-2523 (((-531) $) 89 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 87 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 84)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 73 (|has| |#1| (-432)))) (-2490 (($ $ |#1| |#2| $) 77)) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 80)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59)) (-3005 ((|#2| $) 79)) (-2736 (($ (-1 |#2| |#2|) $) 78)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 83)) (-2448 ((|#1| $) 82)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-523)))) (-2012 ((|#2| $) 62)) (-1767 ((|#1| $) 74 (|has| |#1| (-432)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45) (($ (-388 (-531))) 55 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531))))))) (-2708 (((-598 |#1|) $) 81)) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 76 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-307 |#1| |#2|) (-133) (-986) (-742)) (T -307)) -((-2435 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-110)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-598 *3)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-721)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)))) (-2490 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-2911 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-4 *3 (-162)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *2 (-523)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)) (-4 *2 (-432)))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *2 (-432))))) -(-13 (-46 |t#1| |t#2|) (-392 |t#1|) (-10 -8 (-15 -2435 ((-110) $)) (-15 -2448 (|t#1| $)) (-15 -2708 ((-598 |t#1|) $)) (-15 -3517 ((-721) $)) (-15 -3005 (|t#2| $)) (-15 -2736 ($ (-1 |t#2| |t#2|) $)) (-15 -2490 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -2911 ($ $ $ (-721))) |%noBranch|) (IF (|has| |t#1| (-523)) (-15 -3609 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -1767 (|t#1| $)) (-15 -2226 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-392 |#1|) . T) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-1814 (((-110) (-110)) NIL)) (-2454 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2705 (($ $) NIL (|has| |#1| (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2916 (($ $ (-531)) NIL)) (-2912 (((-721) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1404 (($ (-598 |#1|)) NIL)) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1818 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-308 |#1|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110))))) (-1138)) (T -308)) -((-1404 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-308 *3)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1138))))) -(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110))))) -((-2330 (((-110) $) 42)) (-2675 (((-721)) 22)) (-1354 ((|#2| $) 46) (($ $ (-864)) 103)) (-3006 (((-721)) 98)) (-2767 (($ (-1184 |#2|)) 20)) (-3653 (((-110) $) 115)) (-1899 ((|#2| $) 48) (($ $ (-864)) 101)) (-1233 (((-1098 |#2|) $) NIL) (((-1098 $) $ (-864)) 95)) (-1832 (((-1098 |#2|) $) 83)) (-1612 (((-1098 |#2|) $) 80) (((-3 (-1098 |#2|) "failed") $ $) 77)) (-3601 (($ $ (-1098 |#2|)) 53)) (-3717 (((-783 (-864))) 28) (((-864)) 43)) (-2190 (((-130)) 25)) (-2012 (((-783 (-864)) $) 30) (((-864) $) 117)) (-2389 (($) 109)) (-3348 (((-1184 |#2|) $) NIL) (((-639 |#2|) (-1184 $)) 39)) (-2750 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1697 (((-110) $) 41))) -(((-309 |#1| |#2|) (-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -3006 ((-721))) (-15 -2750 (|#1| |#1|)) (-15 -1612 ((-3 (-1098 |#2|) "failed") |#1| |#1|)) (-15 -1612 ((-1098 |#2|) |#1|)) (-15 -1832 ((-1098 |#2|) |#1|)) (-15 -3601 (|#1| |#1| (-1098 |#2|))) (-15 -3653 ((-110) |#1|)) (-15 -2389 (|#1|)) (-15 -1354 (|#1| |#1| (-864))) (-15 -1899 (|#1| |#1| (-864))) (-15 -1233 ((-1098 |#1|) |#1| (-864))) (-15 -1354 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2012 ((-864) |#1|)) (-15 -3717 ((-864))) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -2675 ((-721))) (-15 -3717 ((-783 (-864)))) (-15 -2012 ((-783 (-864)) |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|)) (-15 -2190 ((-130)))) (-310 |#2|) (-344)) (T -309)) -((-2190 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3717 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-783 (-864))) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-2675 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3717 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-864)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3006 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4))))) -(-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -3006 ((-721))) (-15 -2750 (|#1| |#1|)) (-15 -1612 ((-3 (-1098 |#2|) "failed") |#1| |#1|)) (-15 -1612 ((-1098 |#2|) |#1|)) (-15 -1832 ((-1098 |#2|) |#1|)) (-15 -3601 (|#1| |#1| (-1098 |#2|))) (-15 -3653 ((-110) |#1|)) (-15 -2389 (|#1|)) (-15 -1354 (|#1| |#1| (-864))) (-15 -1899 (|#1| |#1| (-864))) (-15 -1233 ((-1098 |#1|) |#1| (-864))) (-15 -1354 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2012 ((-864) |#1|)) (-15 -3717 ((-864))) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -2675 ((-721))) (-15 -3717 ((-783 (-864)))) (-15 -2012 ((-783 (-864)) |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|)) (-15 -2190 ((-130)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2330 (((-110) $) 91)) (-2675 (((-721)) 87)) (-1354 ((|#1| $) 137) (($ $ (-864)) 134 (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 119 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-3006 (((-721)) 109 (|has| |#1| (-349)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 98)) (-2523 ((|#1| $) 97)) (-2767 (($ (-1184 |#1|)) 143)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-349)))) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) 106 (|has| |#1| (-349)))) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-1806 (($) 121 (|has| |#1| (-349)))) (-1971 (((-110) $) 122 (|has| |#1| (-349)))) (-3493 (($ $ (-721)) 84 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) 68)) (-3617 (((-864) $) 124 (|has| |#1| (-349))) (((-783 (-864)) $) 81 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) 30)) (-3323 (($) 132 (|has| |#1| (-349)))) (-3653 (((-110) $) 131 (|has| |#1| (-349)))) (-1899 ((|#1| $) 138) (($ $ (-864)) 135 (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) 110 (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-1233 (((-1098 |#1|) $) 142) (((-1098 $) $ (-864)) 136 (|has| |#1| (-349)))) (-2211 (((-864) $) 107 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) 128 (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) 127 (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) 126 (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) 129 (|has| |#1| (-349)))) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3788 (($) 111 (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 108 (|has| |#1| (-349)))) (-3693 (((-110) $) 90)) (-2529 (((-1049) $) 10)) (-1861 (($) 130 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 118 (|has| |#1| (-349)))) (-2552 (((-399 $) $) 71)) (-3717 (((-783 (-864))) 88) (((-864)) 140)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-721) $) 123 (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) 82 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) 96)) (-3352 (($ $) 115 (|has| |#1| (-349))) (($ $ (-721)) 113 (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) 89) (((-864) $) 139)) (-3608 (((-1098 |#1|)) 141)) (-2498 (($) 120 (|has| |#1| (-349)))) (-2389 (($) 133 (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 145) (((-639 |#1|) (-1184 $)) 144)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 117 (|has| |#1| (-349)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ |#1|) 99)) (-2750 (($ $) 116 (|has| |#1| (-349))) (((-3 $ "failed") $) 80 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 147) (((-1184 $) (-864)) 146)) (-2587 (((-110) $ $) 37)) (-1697 (((-110) $) 92)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2730 (($ $) 86 (|has| |#1| (-349))) (($ $ (-721)) 85 (|has| |#1| (-349)))) (-4020 (($ $) 114 (|has| |#1| (-349))) (($ $ (-721)) 112 (|has| |#1| (-349)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62) (($ $ |#1|) 95)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-310 |#1|) (-133) (-344)) (T -310)) -((-3523 (*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1184 *1)) (-4 *1 (-310 *3)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-864)) (-4 *4 (-344)) (-5 *2 (-1184 *1)) (-4 *1 (-310 *4)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1184 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) (-1233 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3)))) (-3608 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3)))) (-3717 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1233 (*1 *2 *1 *3) (-12 (-5 *3 (-864)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1098 *1)) (-4 *1 (-310 *4)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-2389 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3323 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) (-1861 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3601 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1098 *3)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1098 *3)))) (-1612 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1098 *3))))) -(-13 (-1201 |t#1|) (-977 |t#1|) (-10 -8 (-15 -3523 ((-1184 $))) (-15 -3523 ((-1184 $) (-864))) (-15 -3348 ((-1184 |t#1|) $)) (-15 -3348 ((-639 |t#1|) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|))) (-15 -1233 ((-1098 |t#1|) $)) (-15 -3608 ((-1098 |t#1|))) (-15 -3717 ((-864))) (-15 -2012 ((-864) $)) (-15 -1899 (|t#1| $)) (-15 -1354 (|t#1| $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-330)) (-15 -1233 ((-1098 $) $ (-864))) (-15 -1899 ($ $ (-864))) (-15 -1354 ($ $ (-864))) (-15 -2389 ($)) (-15 -3323 ($)) (-15 -3653 ((-110) $)) (-15 -1861 ($)) (-15 -3601 ($ $ (-1098 |t#1|))) (-15 -1832 ((-1098 |t#1|) $)) (-15 -1612 ((-1098 |t#1|) $)) (-15 -1612 ((-3 (-1098 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-216) |has| |#1| (-349)) ((-226) . T) ((-272) . T) ((-289) . T) ((-1201 |#1|) . T) ((-344) . T) ((-383) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-349) |has| |#1| (-349)) ((-330) |has| |#1| (-349)) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-349)) ((-1142) . T) ((-1191 |#1|) . T)) -((-2247 (((-110) $ $) NIL)) (-2961 (($ (-1101) $) 88)) (-1263 (($) 77)) (-2134 (((-1049) (-1049)) 11)) (-1379 (($) 78)) (-4019 (($) 90) (($ (-297 (-649))) 98) (($ (-297 (-651))) 94) (($ (-297 (-644))) 102) (($ (-297 (-360))) 109) (($ (-297 (-531))) 105) (($ (-297 (-159 (-360)))) 113)) (-2904 (($ (-1101) $) 89)) (-1746 (($ (-598 (-806))) 79)) (-1421 (((-1189) $) 75)) (-3730 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1337 (($ (-1049)) 51)) (-1795 (((-1034) $) 25)) (-1587 (($ (-1023 (-895 (-531))) $) 85) (($ (-1023 (-895 (-531))) (-895 (-531)) $) 86)) (-1581 (($ (-1049)) 87)) (-1533 (($ (-1101) $) 115) (($ (-1101) $ $) 116)) (-4035 (($ (-1102) (-598 (-1102))) 76)) (-1986 (($ (-1085)) 82) (($ (-598 (-1085))) 80)) (-2265 (((-806) $) 118)) (-1289 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 $)) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 $))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 $))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806)))) $) 44)) (-2764 (($ (-1085)) 187)) (-2664 (($ (-598 $)) 114)) (-3447 (($ (-1102) (-1085)) 120) (($ (-1102) (-297 (-651))) 160) (($ (-1102) (-297 (-649))) 161) (($ (-1102) (-297 (-644))) 162) (($ (-1102) (-639 (-651))) 123) (($ (-1102) (-639 (-649))) 126) (($ (-1102) (-639 (-644))) 129) (($ (-1102) (-1184 (-651))) 132) (($ (-1102) (-1184 (-649))) 135) (($ (-1102) (-1184 (-644))) 138) (($ (-1102) (-639 (-297 (-651)))) 141) (($ (-1102) (-639 (-297 (-649)))) 144) (($ (-1102) (-639 (-297 (-644)))) 147) (($ (-1102) (-1184 (-297 (-651)))) 150) (($ (-1102) (-1184 (-297 (-649)))) 153) (($ (-1102) (-1184 (-297 (-644)))) 156) (($ (-1102) (-598 (-895 (-531))) (-297 (-651))) 157) (($ (-1102) (-598 (-895 (-531))) (-297 (-649))) 158) (($ (-1102) (-598 (-895 (-531))) (-297 (-644))) 159) (($ (-1102) (-297 (-531))) 184) (($ (-1102) (-297 (-360))) 185) (($ (-1102) (-297 (-159 (-360)))) 186) (($ (-1102) (-639 (-297 (-531)))) 165) (($ (-1102) (-639 (-297 (-360)))) 168) (($ (-1102) (-639 (-297 (-159 (-360))))) 171) (($ (-1102) (-1184 (-297 (-531)))) 174) (($ (-1102) (-1184 (-297 (-360)))) 177) (($ (-1102) (-1184 (-297 (-159 (-360))))) 180) (($ (-1102) (-598 (-895 (-531))) (-297 (-531))) 181) (($ (-1102) (-598 (-895 (-531))) (-297 (-360))) 182) (($ (-1102) (-598 (-895 (-531))) (-297 (-159 (-360)))) 183)) (-2148 (((-110) $ $) NIL))) -(((-311) (-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -1587 ($ (-1023 (-895 (-531))) $)) (-15 -1587 ($ (-1023 (-895 (-531))) (-895 (-531)) $)) (-15 -2961 ($ (-1101) $)) (-15 -2904 ($ (-1101) $)) (-15 -1337 ($ (-1049))) (-15 -1581 ($ (-1049))) (-15 -1986 ($ (-1085))) (-15 -1986 ($ (-598 (-1085)))) (-15 -2764 ($ (-1085))) (-15 -4019 ($)) (-15 -4019 ($ (-297 (-649)))) (-15 -4019 ($ (-297 (-651)))) (-15 -4019 ($ (-297 (-644)))) (-15 -4019 ($ (-297 (-360)))) (-15 -4019 ($ (-297 (-531)))) (-15 -4019 ($ (-297 (-159 (-360))))) (-15 -1533 ($ (-1101) $)) (-15 -1533 ($ (-1101) $ $)) (-15 -3447 ($ (-1102) (-1085))) (-15 -3447 ($ (-1102) (-297 (-651)))) (-15 -3447 ($ (-1102) (-297 (-649)))) (-15 -3447 ($ (-1102) (-297 (-644)))) (-15 -3447 ($ (-1102) (-639 (-651)))) (-15 -3447 ($ (-1102) (-639 (-649)))) (-15 -3447 ($ (-1102) (-639 (-644)))) (-15 -3447 ($ (-1102) (-1184 (-651)))) (-15 -3447 ($ (-1102) (-1184 (-649)))) (-15 -3447 ($ (-1102) (-1184 (-644)))) (-15 -3447 ($ (-1102) (-639 (-297 (-651))))) (-15 -3447 ($ (-1102) (-639 (-297 (-649))))) (-15 -3447 ($ (-1102) (-639 (-297 (-644))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-651))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-649))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-644))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-651)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-649)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-644)))) (-15 -3447 ($ (-1102) (-297 (-531)))) (-15 -3447 ($ (-1102) (-297 (-360)))) (-15 -3447 ($ (-1102) (-297 (-159 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-531))))) (-15 -3447 ($ (-1102) (-639 (-297 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-531))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-360))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-531)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-360)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-159 (-360))))) (-15 -2664 ($ (-598 $))) (-15 -1263 ($)) (-15 -1379 ($)) (-15 -1746 ($ (-598 (-806)))) (-15 -4035 ($ (-1102) (-598 (-1102)))) (-15 -3730 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1289 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 $)) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 $))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 $))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806)))) $)) (-15 -1421 ((-1189) $)) (-15 -1795 ((-1034) $)) (-15 -2134 ((-1049) (-1049)))))) (T -311)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-311)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *1 (-311)))) (-1587 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *3 (-895 (-531))) (-5 *1 (-311)))) (-2961 (*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-2904 (*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-1337 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-311)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311)))) (-4019 (*1 *1) (-5 *1 (-311))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-651))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-644))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-1533 (*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-1533 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-651)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-649)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-644)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-651)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-649)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-644)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-531))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-360))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-531)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-360)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-531)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-360)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-531))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-360))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-5 *1 (-311)))) (-1263 (*1 *1) (-5 *1 (-311))) (-1379 (*1 *1) (-5 *1 (-311))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-311)))) (-4035 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-311)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-311)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| (-311)) (|:| |elseClause| (-311)))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 (-311))) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 (-311)))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 (-311)))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806))))) (-5 *1 (-311)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-311)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-311)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311))))) -(-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -1587 ($ (-1023 (-895 (-531))) $)) (-15 -1587 ($ (-1023 (-895 (-531))) (-895 (-531)) $)) (-15 -2961 ($ (-1101) $)) (-15 -2904 ($ (-1101) $)) (-15 -1337 ($ (-1049))) (-15 -1581 ($ (-1049))) (-15 -1986 ($ (-1085))) (-15 -1986 ($ (-598 (-1085)))) (-15 -2764 ($ (-1085))) (-15 -4019 ($)) (-15 -4019 ($ (-297 (-649)))) (-15 -4019 ($ (-297 (-651)))) (-15 -4019 ($ (-297 (-644)))) (-15 -4019 ($ (-297 (-360)))) (-15 -4019 ($ (-297 (-531)))) (-15 -4019 ($ (-297 (-159 (-360))))) (-15 -1533 ($ (-1101) $)) (-15 -1533 ($ (-1101) $ $)) (-15 -3447 ($ (-1102) (-1085))) (-15 -3447 ($ (-1102) (-297 (-651)))) (-15 -3447 ($ (-1102) (-297 (-649)))) (-15 -3447 ($ (-1102) (-297 (-644)))) (-15 -3447 ($ (-1102) (-639 (-651)))) (-15 -3447 ($ (-1102) (-639 (-649)))) (-15 -3447 ($ (-1102) (-639 (-644)))) (-15 -3447 ($ (-1102) (-1184 (-651)))) (-15 -3447 ($ (-1102) (-1184 (-649)))) (-15 -3447 ($ (-1102) (-1184 (-644)))) (-15 -3447 ($ (-1102) (-639 (-297 (-651))))) (-15 -3447 ($ (-1102) (-639 (-297 (-649))))) (-15 -3447 ($ (-1102) (-639 (-297 (-644))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-651))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-649))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-644))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-651)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-649)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-644)))) (-15 -3447 ($ (-1102) (-297 (-531)))) (-15 -3447 ($ (-1102) (-297 (-360)))) (-15 -3447 ($ (-1102) (-297 (-159 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-531))))) (-15 -3447 ($ (-1102) (-639 (-297 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-531))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-360))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-531)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-360)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-159 (-360))))) (-15 -2664 ($ (-598 $))) (-15 -1263 ($)) (-15 -1379 ($)) (-15 -1746 ($ (-598 (-806)))) (-15 -4035 ($ (-1102) (-598 (-1102)))) (-15 -3730 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1289 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 $)) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 $))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 $))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806)))) $)) (-15 -1421 ((-1189) $)) (-15 -1795 ((-1034) $)) (-15 -2134 ((-1049) (-1049))))) -((-2247 (((-110) $ $) NIL)) (-2841 (((-110) $) 11)) (-2198 (($ |#1|) 8)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2210 (($ |#1|) 9)) (-2265 (((-806) $) 17)) (-3662 ((|#1| $) 12)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 19))) -(((-312 |#1|) (-13 (-797) (-10 -8 (-15 -2198 ($ |#1|)) (-15 -2210 ($ |#1|)) (-15 -2841 ((-110) $)) (-15 -3662 (|#1| $)))) (-797)) (T -312)) -((-2198 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) (-2210 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-797)))) (-3662 (*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797))))) -(-13 (-797) (-10 -8 (-15 -2198 ($ |#1|)) (-15 -2210 ($ |#1|)) (-15 -2841 ((-110) $)) (-15 -3662 (|#1| $)))) -((-1502 (((-311) (-1102) (-895 (-531))) 23)) (-1916 (((-311) (-1102) (-895 (-531))) 27)) (-1266 (((-311) (-1102) (-1023 (-895 (-531))) (-1023 (-895 (-531)))) 26) (((-311) (-1102) (-895 (-531)) (-895 (-531))) 24)) (-3676 (((-311) (-1102) (-895 (-531))) 31))) -(((-313) (-10 -7 (-15 -1502 ((-311) (-1102) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-895 (-531)) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-1023 (-895 (-531))) (-1023 (-895 (-531))))) (-15 -1916 ((-311) (-1102) (-895 (-531)))) (-15 -3676 ((-311) (-1102) (-895 (-531)))))) (T -313)) -((-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1266 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-1023 (-895 (-531)))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1266 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313))))) -(-10 -7 (-15 -1502 ((-311) (-1102) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-895 (-531)) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-1023 (-895 (-531))) (-1023 (-895 (-531))))) (-15 -1916 ((-311) (-1102) (-895 (-531)))) (-15 -3676 ((-311) (-1102) (-895 (-531))))) -((-3261 (((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)) 33))) -(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-344) (-1160 |#5|) (-1160 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -314)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *9 (-344)) (-4 *10 (-1160 *9)) (-4 *11 (-1160 (-388 *10))) (-5 *2 (-317 *9 *10 *11 *12)) (-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-323 *9 *10 *11))))) -(-10 -7 (-15 -3261 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)))) -((-3841 (((-110) $) 14))) -(((-315 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3841 ((-110) |#1|))) (-316 |#2| |#3| |#4| |#5|) (-344) (-1160 |#2|) (-1160 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -315)) -NIL -(-10 -8 (-15 -3841 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1760 (($ $) 26)) (-3841 (((-110) $) 25)) (-1521 (((-1085) $) 9)) (-2003 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 32)) (-2529 (((-1049) $) 10)) (-1861 (((-3 |#4| "failed") $) 24)) (-2535 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-531)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4044 (((-2 (|:| -2968 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20))) -(((-316 |#1| |#2| |#3| |#4|) (-133) (-344) (-1160 |t#1|) (-1160 (-388 |t#2|)) (-323 |t#1| |t#2| |t#3|)) (T -316)) -((-2003 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-394 *4 (-388 *4) *5 *6)))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) (-4 *1 (-316 *3 *4 *5 *6)))) (-2535 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) (-2535 (*1 *1 *2 *2) (-12 (-4 *2 (-344)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))) (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) (-2535 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-531)) (-4 *2 (-344)) (-4 *4 (-1160 *2)) (-4 *5 (-1160 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6)) (-4 *6 (-323 *2 *4 *5)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-2 (|:| -2968 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) (-1760 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))) (-1861 (*1 *2 *1) (|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *2 (-323 *3 *4 *5)))) (-2535 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-344)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2003 ((-394 |t#2| (-388 |t#2|) |t#3| |t#4|) $)) (-15 -2535 ($ (-394 |t#2| (-388 |t#2|) |t#3| |t#4|))) (-15 -2535 ($ |t#4|)) (-15 -2535 ($ |t#1| |t#1|)) (-15 -2535 ($ |t#1| |t#1| (-531))) (-15 -4044 ((-2 (|:| -2968 (-394 |t#2| (-388 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1760 ($ $)) (-15 -3841 ((-110) $)) (-15 -1861 ((-3 |t#4| "failed") $)) (-15 -2535 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ $) 33)) (-3841 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-3200 (((-1184 |#4|) $) 125)) (-2003 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 31)) (-2529 (((-1049) $) NIL)) (-1861 (((-3 |#4| "failed") $) 36)) (-3458 (((-1184 |#4|) $) 118)) (-2535 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-531)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4044 (((-2 (|:| -2968 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2265 (((-806) $) 17)) (-3035 (($) 14 T CONST)) (-2148 (((-110) $ $) 20)) (-2250 (($ $) 27) (($ $ $) NIL)) (-2237 (($ $ $) 25)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 23))) -(((-317 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3458 ((-1184 |#4|) $)) (-15 -3200 ((-1184 |#4|) $)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -317)) -((-3458 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))) (-3200 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5))))) -(-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3458 ((-1184 |#4|) $)) (-15 -3200 ((-1184 |#4|) $)))) -((-4115 (($ $ (-1102) |#2|) NIL) (($ $ (-598 (-1102)) (-598 |#2|)) 20) (($ $ (-598 (-276 |#2|))) 15) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-598 |#2|) (-598 |#2|)) NIL)) (-1785 (($ $ |#2|) 11))) -(((-318 |#1| |#2|) (-10 -8 (-15 -1785 (|#1| |#1| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1102) |#2|))) (-319 |#2|) (-1030)) (T -318)) -NIL -(-10 -8 (-15 -1785 (|#1| |#1| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1102) |#2|))) -((-3261 (($ (-1 |#1| |#1|) $) 6)) (-4115 (($ $ (-1102) |#1|) 17 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 16 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-598 (-276 |#1|))) 15 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 14 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-291 |#1|))) (($ $ (-598 |#1|) (-598 |#1|)) 12 (|has| |#1| (-291 |#1|)))) (-1785 (($ $ |#1|) 11 (|has| |#1| (-268 |#1| |#1|))))) -(((-319 |#1|) (-133) (-1030)) (T -319)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1030))))) -(-13 (-10 -8 (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-268 |t#1| |t#1|)) (-6 (-268 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-492 (-1102) |t#1|)) (-6 (-492 (-1102) |t#1|)) |%noBranch|))) -(((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1102)) $) NIL)) (-2293 (((-110)) 91) (((-110) (-110)) 92)) (-2410 (((-598 (-571 $)) $) NIL)) (-2367 (($ $) NIL)) (-2218 (($ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-2563 (($ $) NIL)) (-2343 (($ $) NIL)) (-2198 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-297 |#3|)) 71) (((-3 $ "failed") (-1102)) 97) (((-3 $ "failed") (-297 (-531))) 59 (|has| |#3| (-977 (-531)))) (((-3 $ "failed") (-388 (-895 (-531)))) 65 (|has| |#3| (-977 (-531)))) (((-3 $ "failed") (-895 (-531))) 60 (|has| |#3| (-977 (-531)))) (((-3 $ "failed") (-297 (-360))) 89 (|has| |#3| (-977 (-360)))) (((-3 $ "failed") (-388 (-895 (-360)))) 83 (|has| |#3| (-977 (-360)))) (((-3 $ "failed") (-895 (-360))) 78 (|has| |#3| (-977 (-360))))) (-2523 (((-571 $) $) NIL) ((|#3| $) NIL) (($ (-297 |#3|)) 72) (($ (-1102)) 98) (($ (-297 (-531))) 61 (|has| |#3| (-977 (-531)))) (($ (-388 (-895 (-531)))) 66 (|has| |#3| (-977 (-531)))) (($ (-895 (-531))) 62 (|has| |#3| (-977 (-531)))) (($ (-297 (-360))) 90 (|has| |#3| (-977 (-360)))) (($ (-388 (-895 (-360)))) 84 (|has| |#3| (-977 (-360)))) (($ (-895 (-360))) 80 (|has| |#3| (-977 (-360))))) (-3622 (((-3 $ "failed") $) NIL)) (-1880 (($) 10)) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) NIL)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-2733 (((-1098 $) (-571 $)) NIL (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) NIL)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-1835 (($ $) 94)) (-2076 (($ $) NIL)) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) NIL)) (-1930 (($ (-112) $) 93) (($ (-112) (-598 $)) NIL)) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) NIL)) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2798 (($ $) NIL)) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-1771 (($ $) NIL) (($ $ $) NIL)) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL)) (-3608 (($ $) NIL (|has| $ (-986)))) (-2356 (($ $) NIL)) (-2210 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-571 $)) NIL) (($ |#3|) NIL) (($ (-531)) NIL) (((-297 |#3|) $) 96)) (-2284 (((-721)) NIL)) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-3167 (((-110) (-112)) NIL)) (-2292 (($ $) NIL)) (-2266 (($ $) NIL)) (-2279 (($ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) 95 T CONST)) (-3050 (($) 24 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL))) -(((-320 |#1| |#2| |#3|) (-13 (-284) (-37 |#3|) (-977 |#3|) (-843 (-1102)) (-10 -8 (-15 -2523 ($ (-297 |#3|))) (-15 -3154 ((-3 $ "failed") (-297 |#3|))) (-15 -2523 ($ (-1102))) (-15 -3154 ((-3 $ "failed") (-1102))) (-15 -2265 ((-297 |#3|) $)) (IF (|has| |#3| (-977 (-531))) (PROGN (-15 -2523 ($ (-297 (-531)))) (-15 -3154 ((-3 $ "failed") (-297 (-531)))) (-15 -2523 ($ (-388 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-531))))) (-15 -2523 ($ (-895 (-531)))) (-15 -3154 ((-3 $ "failed") (-895 (-531))))) |%noBranch|) (IF (|has| |#3| (-977 (-360))) (PROGN (-15 -2523 ($ (-297 (-360)))) (-15 -3154 ((-3 $ "failed") (-297 (-360)))) (-15 -2523 ($ (-388 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-360))))) (-15 -2523 ($ (-895 (-360)))) (-15 -3154 ((-3 $ "failed") (-895 (-360))))) |%noBranch|) (-15 -1620 ($ $)) (-15 -2563 ($ $)) (-15 -2798 ($ $)) (-15 -2076 ($ $)) (-15 -1835 ($ $)) (-15 -2198 ($ $)) (-15 -2210 ($ $)) (-15 -2218 ($ $)) (-15 -2266 ($ $)) (-15 -2279 ($ $)) (-15 -2292 ($ $)) (-15 -2343 ($ $)) (-15 -2356 ($ $)) (-15 -2367 ($ $)) (-15 -1880 ($)) (-15 -2695 ((-598 (-1102)) $)) (-15 -2293 ((-110))) (-15 -2293 ((-110) (-110))))) (-598 (-1102)) (-598 (-1102)) (-368)) (T -320)) -((-2523 (*1 *1 *2) (-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 *2)) (-14 *4 (-598 *2)) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 *2)) (-14 *4 (-598 *2)) (-4 *5 (-368)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-1620 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2563 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2798 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2076 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2198 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2210 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2218 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-1880 (*1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-368)))) (-2293 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368))))) -(-13 (-284) (-37 |#3|) (-977 |#3|) (-843 (-1102)) (-10 -8 (-15 -2523 ($ (-297 |#3|))) (-15 -3154 ((-3 $ "failed") (-297 |#3|))) (-15 -2523 ($ (-1102))) (-15 -3154 ((-3 $ "failed") (-1102))) (-15 -2265 ((-297 |#3|) $)) (IF (|has| |#3| (-977 (-531))) (PROGN (-15 -2523 ($ (-297 (-531)))) (-15 -3154 ((-3 $ "failed") (-297 (-531)))) (-15 -2523 ($ (-388 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-531))))) (-15 -2523 ($ (-895 (-531)))) (-15 -3154 ((-3 $ "failed") (-895 (-531))))) |%noBranch|) (IF (|has| |#3| (-977 (-360))) (PROGN (-15 -2523 ($ (-297 (-360)))) (-15 -3154 ((-3 $ "failed") (-297 (-360)))) (-15 -2523 ($ (-388 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-360))))) (-15 -2523 ($ (-895 (-360)))) (-15 -3154 ((-3 $ "failed") (-895 (-360))))) |%noBranch|) (-15 -1620 ($ $)) (-15 -2563 ($ $)) (-15 -2798 ($ $)) (-15 -2076 ($ $)) (-15 -1835 ($ $)) (-15 -2198 ($ $)) (-15 -2210 ($ $)) (-15 -2218 ($ $)) (-15 -2266 ($ $)) (-15 -2279 ($ $)) (-15 -2292 ($ $)) (-15 -2343 ($ $)) (-15 -2356 ($ $)) (-15 -2367 ($ $)) (-15 -1880 ($)) (-15 -2695 ((-598 (-1102)) $)) (-15 -2293 ((-110))) (-15 -2293 ((-110) (-110))))) -((-3261 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-321 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|))) (-1142) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-1142) (-1160 |#5|) (-1160 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -321)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1142)) (-4 *8 (-1142)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *9 (-1160 *8)) (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1160 (-388 *9)))))) -(-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|))) -((-1461 (((-2 (|:| |num| (-1184 |#3|)) (|:| |den| |#3|)) $) 38)) (-2767 (($ (-1184 (-388 |#3|)) (-1184 $)) NIL) (($ (-1184 (-388 |#3|))) NIL) (($ (-1184 |#3|) |#3|) 161)) (-2492 (((-1184 $) (-1184 $)) 145)) (-2709 (((-598 (-598 |#2|))) 119)) (-3428 (((-110) |#2| |#2|) 73)) (-2226 (($ $) 139)) (-2262 (((-721)) 31)) (-1272 (((-1184 $) (-1184 $)) 198)) (-4083 (((-598 (-895 |#2|)) (-1102)) 110)) (-3824 (((-110) $) 158)) (-3570 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-3667 (((-3 |#3| "failed")) 50)) (-2509 (((-721)) 170)) (-1785 ((|#2| $ |#2| |#2|) 132)) (-3751 (((-3 |#3| "failed")) 68)) (-3352 (($ $ (-1 (-388 |#3|) (-388 |#3|)) (-721)) NIL) (($ $ (-1 (-388 |#3|) (-388 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-3568 (((-1184 $) (-1184 $)) 151)) (-1689 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1855 (((-110)) 33))) -(((-322 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -2709 ((-598 (-598 |#2|)))) (-15 -4083 ((-598 (-895 |#2|)) (-1102))) (-15 -1689 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3667 ((-3 |#3| "failed"))) (-15 -3751 ((-3 |#3| "failed"))) (-15 -1785 (|#2| |#1| |#2| |#2|)) (-15 -2226 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3570 ((-110) |#1| |#3|)) (-15 -3570 ((-110) |#1| |#2|)) (-15 -2767 (|#1| (-1184 |#3|) |#3|)) (-15 -1461 ((-2 (|:| |num| (-1184 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2492 ((-1184 |#1|) (-1184 |#1|))) (-15 -1272 ((-1184 |#1|) (-1184 |#1|))) (-15 -3568 ((-1184 |#1|) (-1184 |#1|))) (-15 -3570 ((-110) |#1|)) (-15 -3824 ((-110) |#1|)) (-15 -3428 ((-110) |#2| |#2|)) (-15 -1855 ((-110))) (-15 -2509 ((-721))) (-15 -2262 ((-721))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-721))) (-15 -2767 (|#1| (-1184 (-388 |#3|)))) (-15 -2767 (|#1| (-1184 (-388 |#3|)) (-1184 |#1|)))) (-323 |#2| |#3| |#4|) (-1142) (-1160 |#2|) (-1160 (-388 |#3|))) (T -322)) -((-2262 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-2509 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1855 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-3428 (*1 *2 *3 *3) (-12 (-4 *3 (-1142)) (-4 *5 (-1160 *3)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) (-3751 (*1 *2) (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-3667 (*1 *2) (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *5 (-1142)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-5 *2 (-598 (-895 *5))) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) (-2709 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-598 (-598 *4))) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))) -(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -2709 ((-598 (-598 |#2|)))) (-15 -4083 ((-598 (-895 |#2|)) (-1102))) (-15 -1689 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3667 ((-3 |#3| "failed"))) (-15 -3751 ((-3 |#3| "failed"))) (-15 -1785 (|#2| |#1| |#2| |#2|)) (-15 -2226 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3570 ((-110) |#1| |#3|)) (-15 -3570 ((-110) |#1| |#2|)) (-15 -2767 (|#1| (-1184 |#3|) |#3|)) (-15 -1461 ((-2 (|:| |num| (-1184 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2492 ((-1184 |#1|) (-1184 |#1|))) (-15 -1272 ((-1184 |#1|) (-1184 |#1|))) (-15 -3568 ((-1184 |#1|) (-1184 |#1|))) (-15 -3570 ((-110) |#1|)) (-15 -3824 ((-110) |#1|)) (-15 -3428 ((-110) |#2| |#2|)) (-15 -1855 ((-110))) (-15 -2509 ((-721))) (-15 -2262 ((-721))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-721))) (-15 -2767 (|#1| (-1184 (-388 |#3|)))) (-15 -2767 (|#1| (-1184 (-388 |#3|)) (-1184 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1461 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 193)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 91 (|has| (-388 |#2|) (-344)))) (-3258 (($ $) 92 (|has| (-388 |#2|) (-344)))) (-2921 (((-110) $) 94 (|has| (-388 |#2|) (-344)))) (-1849 (((-639 (-388 |#2|)) (-1184 $)) 44) (((-639 (-388 |#2|))) 59)) (-1354 (((-388 |#2|) $) 50)) (-3646 (((-1112 (-864) (-721)) (-531)) 144 (|has| (-388 |#2|) (-330)))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 111 (|has| (-388 |#2|) (-344)))) (-2956 (((-399 $) $) 112 (|has| (-388 |#2|) (-344)))) (-2760 (((-110) $ $) 102 (|has| (-388 |#2|) (-344)))) (-3006 (((-721)) 85 (|has| (-388 |#2|) (-349)))) (-1860 (((-110)) 210)) (-1730 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 166 (|has| (-388 |#2|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 164 (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-3 (-388 |#2|) "failed") $) 163)) (-2523 (((-531) $) 167 (|has| (-388 |#2|) (-977 (-531)))) (((-388 (-531)) $) 165 (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-388 |#2|) $) 162)) (-2767 (($ (-1184 (-388 |#2|)) (-1184 $)) 46) (($ (-1184 (-388 |#2|))) 62) (($ (-1184 |#2|) |#2|) 192)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-388 |#2|) (-330)))) (-3650 (($ $ $) 106 (|has| (-388 |#2|) (-344)))) (-1982 (((-639 (-388 |#2|)) $ (-1184 $)) 51) (((-639 (-388 |#2|)) $) 57)) (-3073 (((-639 (-531)) (-639 $)) 161 (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 160 (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-388 |#2|))) (|:| |vec| (-1184 (-388 |#2|)))) (-639 $) (-1184 $)) 159) (((-639 (-388 |#2|)) (-639 $)) 158)) (-2492 (((-1184 $) (-1184 $)) 198)) (-1760 (($ |#3|) 155) (((-3 $ "failed") (-388 |#3|)) 152 (|has| (-388 |#2|) (-344)))) (-3622 (((-3 $ "failed") $) 32)) (-2709 (((-598 (-598 |#1|))) 179 (|has| |#1| (-349)))) (-3428 (((-110) |#1| |#1|) 214)) (-2277 (((-864)) 52)) (-1381 (($) 88 (|has| (-388 |#2|) (-349)))) (-2903 (((-110)) 207)) (-2809 (((-110) |#1|) 206) (((-110) |#2|) 205)) (-3630 (($ $ $) 105 (|has| (-388 |#2|) (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 100 (|has| (-388 |#2|) (-344)))) (-2226 (($ $) 185)) (-1806 (($) 146 (|has| (-388 |#2|) (-330)))) (-1971 (((-110) $) 147 (|has| (-388 |#2|) (-330)))) (-3493 (($ $ (-721)) 138 (|has| (-388 |#2|) (-330))) (($ $) 137 (|has| (-388 |#2|) (-330)))) (-2534 (((-110) $) 113 (|has| (-388 |#2|) (-344)))) (-3617 (((-864) $) 149 (|has| (-388 |#2|) (-330))) (((-783 (-864)) $) 135 (|has| (-388 |#2|) (-330)))) (-3481 (((-110) $) 30)) (-2262 (((-721)) 217)) (-1272 (((-1184 $) (-1184 $)) 199)) (-1899 (((-388 |#2|) $) 49)) (-4083 (((-598 (-895 |#1|)) (-1102)) 180 (|has| |#1| (-344)))) (-2342 (((-3 $ "failed") $) 139 (|has| (-388 |#2|) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 109 (|has| (-388 |#2|) (-344)))) (-1233 ((|#3| $) 42 (|has| (-388 |#2|) (-344)))) (-2211 (((-864) $) 87 (|has| (-388 |#2|) (-349)))) (-1749 ((|#3| $) 153)) (-2078 (($ (-598 $)) 98 (|has| (-388 |#2|) (-344))) (($ $ $) 97 (|has| (-388 |#2|) (-344)))) (-1521 (((-1085) $) 9)) (-1789 (((-639 (-388 |#2|))) 194)) (-1953 (((-639 (-388 |#2|))) 196)) (-2422 (($ $) 114 (|has| (-388 |#2|) (-344)))) (-1729 (($ (-1184 |#2|) |#2|) 190)) (-3519 (((-639 (-388 |#2|))) 195)) (-3970 (((-639 (-388 |#2|))) 197)) (-3594 (((-2 (|:| |num| (-639 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-3883 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 191)) (-2505 (((-1184 $)) 203)) (-2670 (((-1184 $)) 204)) (-3824 (((-110) $) 202)) (-3570 (((-110) $) 201) (((-110) $ |#1|) 188) (((-110) $ |#2|) 187)) (-3788 (($) 140 (|has| (-388 |#2|) (-330)) CONST)) (-1889 (($ (-864)) 86 (|has| (-388 |#2|) (-349)))) (-3667 (((-3 |#2| "failed")) 182)) (-2529 (((-1049) $) 10)) (-2509 (((-721)) 216)) (-1861 (($) 157)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 99 (|has| (-388 |#2|) (-344)))) (-2109 (($ (-598 $)) 96 (|has| (-388 |#2|) (-344))) (($ $ $) 95 (|has| (-388 |#2|) (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 143 (|has| (-388 |#2|) (-330)))) (-2552 (((-399 $) $) 110 (|has| (-388 |#2|) (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 107 (|has| (-388 |#2|) (-344)))) (-3609 (((-3 $ "failed") $ $) 90 (|has| (-388 |#2|) (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 101 (|has| (-388 |#2|) (-344)))) (-4100 (((-721) $) 103 (|has| (-388 |#2|) (-344)))) (-1785 ((|#1| $ |#1| |#1|) 184)) (-3751 (((-3 |#2| "failed")) 183)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 104 (|has| (-388 |#2|) (-344)))) (-3176 (((-388 |#2|) (-1184 $)) 45) (((-388 |#2|)) 58)) (-2350 (((-721) $) 148 (|has| (-388 |#2|) (-330))) (((-3 (-721) "failed") $ $) 136 (|has| (-388 |#2|) (-330)))) (-3352 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) 120 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 119 (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-598 (-1102)) (-598 (-721))) 127 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102) (-721)) 128 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-598 (-1102))) 129 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102)) 130 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-721)) 132 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 134 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3381 (((-639 (-388 |#2|)) (-1184 $) (-1 (-388 |#2|) (-388 |#2|))) 151 (|has| (-388 |#2|) (-344)))) (-3608 ((|#3|) 156)) (-2498 (($) 145 (|has| (-388 |#2|) (-330)))) (-3348 (((-1184 (-388 |#2|)) $ (-1184 $)) 48) (((-639 (-388 |#2|)) (-1184 $) (-1184 $)) 47) (((-1184 (-388 |#2|)) $) 64) (((-639 (-388 |#2|)) (-1184 $)) 63)) (-3318 (((-1184 (-388 |#2|)) $) 61) (($ (-1184 (-388 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 142 (|has| (-388 |#2|) (-330)))) (-3568 (((-1184 $) (-1184 $)) 200)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 |#2|)) 35) (($ (-388 (-531))) 84 (-1435 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-977 (-388 (-531)))))) (($ $) 89 (|has| (-388 |#2|) (-344)))) (-2750 (($ $) 141 (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) 41 (|has| (-388 |#2|) (-138)))) (-3369 ((|#3| $) 43)) (-2284 (((-721)) 28)) (-1966 (((-110)) 213)) (-2935 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-3523 (((-1184 $)) 65)) (-2587 (((-110) $ $) 93 (|has| (-388 |#2|) (-344)))) (-1689 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1855 (((-110)) 215)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) 122 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 121 (|has| (-388 |#2|) (-344))) (($ $ (-598 (-1102)) (-598 (-721))) 123 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102) (-721)) 124 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-598 (-1102))) 125 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102)) 126 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-721)) 131 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 133 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 118 (|has| (-388 |#2|) (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 115 (|has| (-388 |#2|) (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 |#2|)) 37) (($ (-388 |#2|) $) 36) (($ (-388 (-531)) $) 117 (|has| (-388 |#2|) (-344))) (($ $ (-388 (-531))) 116 (|has| (-388 |#2|) (-344))))) -(((-323 |#1| |#2| |#3|) (-133) (-1142) (-1160 |t#1|) (-1160 (-388 |t#2|))) (T -323)) -((-2262 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721)))) (-2509 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721)))) (-1855 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3428 (*1 *2 *3 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-1966 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2935 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2935 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-1860 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-1730 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-1730 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-2903 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2809 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2809 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-2670 (*1 *2) (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)))) (-2505 (*1 *2) (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3568 (*1 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-1272 (*1 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-3970 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-1953 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-3519 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-1789 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4))))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3))))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4))))) (-1729 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3))))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-2 (|:| |num| (-639 *5)) (|:| |den| *5))))) (-3570 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3570 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))))) (-1785 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))))) (-3751 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142)) (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3)))) (-3667 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142)) (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-1142)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-323 *4 *5 *6)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *4 (-344)) (-5 *2 (-598 (-895 *4))))) (-2709 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-598 (-598 *3)))))) -(-13 (-675 (-388 |t#2|) |t#3|) (-10 -8 (-15 -2262 ((-721))) (-15 -2509 ((-721))) (-15 -1855 ((-110))) (-15 -3428 ((-110) |t#1| |t#1|)) (-15 -1966 ((-110))) (-15 -2935 ((-110) |t#1|)) (-15 -2935 ((-110) |t#2|)) (-15 -1860 ((-110))) (-15 -1730 ((-110) |t#1|)) (-15 -1730 ((-110) |t#2|)) (-15 -2903 ((-110))) (-15 -2809 ((-110) |t#1|)) (-15 -2809 ((-110) |t#2|)) (-15 -2670 ((-1184 $))) (-15 -2505 ((-1184 $))) (-15 -3824 ((-110) $)) (-15 -3570 ((-110) $)) (-15 -3568 ((-1184 $) (-1184 $))) (-15 -1272 ((-1184 $) (-1184 $))) (-15 -2492 ((-1184 $) (-1184 $))) (-15 -3970 ((-639 (-388 |t#2|)))) (-15 -1953 ((-639 (-388 |t#2|)))) (-15 -3519 ((-639 (-388 |t#2|)))) (-15 -1789 ((-639 (-388 |t#2|)))) (-15 -1461 ((-2 (|:| |num| (-1184 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2767 ($ (-1184 |t#2|) |t#2|)) (-15 -3883 ((-2 (|:| |num| (-1184 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1729 ($ (-1184 |t#2|) |t#2|)) (-15 -3594 ((-2 (|:| |num| (-639 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3570 ((-110) $ |t#1|)) (-15 -3570 ((-110) $ |t#2|)) (-15 -3352 ($ $ (-1 |t#2| |t#2|))) (-15 -2226 ($ $)) (-15 -1785 (|t#1| $ |t#1| |t#1|)) (-15 -3751 ((-3 |t#2| "failed"))) (-15 -3667 ((-3 |t#2| "failed"))) (-15 -1689 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-344)) (-15 -4083 ((-598 (-895 |t#1|)) (-1102))) |%noBranch|) (IF (|has| |t#1| (-349)) (-15 -2709 ((-598 (-598 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-37 #1=(-388 |#2|)) . T) ((-37 $) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-99) . T) ((-109 #0# #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-138))) ((-140) |has| (-388 |#2|) (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 |#3|) . T) ((-214 #1#) |has| (-388 |#2|) (-344)) ((-216) -1435 (|has| (-388 |#2|) (-330)) (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344)))) ((-226) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-272) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-289) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-344) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-383) |has| (-388 |#2|) (-330)) ((-349) -1435 (|has| (-388 |#2|) (-349)) (|has| (-388 |#2|) (-330))) ((-330) |has| (-388 |#2|) (-330)) ((-351 #1# |#3|) . T) ((-390 #1# |#3|) . T) ((-358 #1#) . T) ((-392 #1#) . T) ((-432) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-523) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-601 #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-601 #1#) . T) ((-601 $) . T) ((-594 #1#) . T) ((-594 (-531)) |has| (-388 |#2|) (-594 (-531))) ((-668 #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-668 #1#) . T) ((-668 $) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-675 #1# |#3|) . T) ((-677) . T) ((-843 (-1102)) -12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) ((-863) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-977 (-388 (-531))) |has| (-388 |#2|) (-977 (-388 (-531)))) ((-977 #1#) . T) ((-977 (-531)) |has| (-388 |#2|) (-977 (-531))) ((-992 #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-992 #1#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| (-388 |#2|) (-330)) ((-1142) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-853 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-853 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-853 |#1|) "failed") $) NIL)) (-2523 (((-853 |#1|) $) NIL)) (-2767 (($ (-1184 (-853 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-853 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-853 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-853 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-853 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-853 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-1899 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-853 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-853 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-853 |#1|) (-349)))) (-1832 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349)))) (-1612 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-1098 (-853 |#1|)) "failed") $ $) NIL (|has| (-853 |#1|) (-349)))) (-3601 (($ $ (-1098 (-853 |#1|))) NIL (|has| (-853 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-853 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-2825 (((-901 (-1049))) NIL)) (-1861 (($) NIL (|has| (-853 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-853 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-853 |#1|))) NIL)) (-2498 (($) NIL (|has| (-853 |#1|) (-349)))) (-2389 (($) NIL (|has| (-853 |#1|) (-349)))) (-3348 (((-1184 (-853 |#1|)) $) NIL) (((-639 (-853 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-853 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-853 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-853 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-853 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-853 |#1|)) NIL) (($ (-853 |#1|) $) NIL))) -(((-324 |#1| |#2|) (-13 (-310 (-853 |#1|)) (-10 -7 (-15 -2825 ((-901 (-1049)))))) (-864) (-864)) (T -324)) -((-2825 (*1 *2) (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-324 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864))))) -(-13 (-310 (-853 |#1|)) (-10 -7 (-15 -2825 ((-901 (-1049)))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 46)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 43 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 115)) (-2523 ((|#1| $) 86)) (-2767 (($ (-1184 |#1|)) 104)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) 98 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 130 (|has| |#1| (-349)))) (-1971 (((-110) $) 49 (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) 47 (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) 132 (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) 90) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) 140 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 147)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 71 (|has| |#1| (-349)))) (-3693 (((-110) $) 118)) (-2529 (((-1049) $) NIL)) (-2825 (((-901 (-1049))) 44)) (-1861 (($) 128 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 93 (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) 67) (((-864)) 68)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) 131 (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) 125 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) 96)) (-2498 (($) 129 (|has| |#1| (-349)))) (-2389 (($) 137 (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 59) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) 143) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 75)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 139)) (-3523 (((-1184 $)) 117) (((-1184 $) (-864)) 73)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 32 T CONST)) (-3050 (($) 19 T CONST)) (-2730 (($ $) 81 (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 48)) (-2263 (($ $ $) 145) (($ $ |#1|) 146)) (-2250 (($ $) 127) (($ $ $) NIL)) (-2237 (($ $ $) 61)) (** (($ $ (-864)) 149) (($ $ (-721)) 150) (($ $ (-531)) 148)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 77) (($ $ $) 76) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) -(((-325 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049)))))) (-330) (-1098 |#1|)) (T -325)) -((-2825 (*1 *2) (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330)) (-14 *4 (-1098 *3))))) -(-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049)))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) NIL) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-2825 (((-901 (-1049))) NIL)) (-1861 (($) NIL (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) NIL)) (-2498 (($) NIL (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) NIL)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-326 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049)))))) (-330) (-864)) (T -326)) -((-2825 (*1 *2) (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864))))) -(-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049)))))) -((-1592 (((-721) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) 42)) (-3331 (((-901 (-1049)) (-1098 |#1|)) 85)) (-2519 (((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) (-1098 |#1|)) 78)) (-2313 (((-639 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) 86)) (-2936 (((-3 (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) "failed") (-864)) 13)) (-2358 (((-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) (-864)) 18))) -(((-327 |#1|) (-10 -7 (-15 -3331 ((-901 (-1049)) (-1098 |#1|))) (-15 -2519 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) (-1098 |#1|))) (-15 -2313 ((-639 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1592 ((-721) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -2936 ((-3 (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) "failed") (-864))) (-15 -2358 ((-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) (-864)))) (-330)) (T -327)) -((-2358 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-3 (-1098 *4) (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-2936 (*1 *2 *3) (|partial| -12 (-5 *3 (-864)) (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-4 *4 (-330)) (-5 *2 (-721)) (-5 *1 (-327 *4)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-4 *4 (-330)) (-5 *2 (-639 *4)) (-5 *1 (-327 *4)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-5 *1 (-327 *4)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-901 (-1049))) (-5 *1 (-327 *4))))) -(-10 -7 (-15 -3331 ((-901 (-1049)) (-1098 |#1|))) (-15 -2519 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) (-1098 |#1|))) (-15 -2313 ((-639 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1592 ((-721) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -2936 ((-3 (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) "failed") (-864))) (-15 -2358 ((-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) (-864)))) -((-2265 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2265 (|#3| |#1|)) (-15 -2265 (|#1| |#3|))) (-310 |#2|) (-330) (-310 |#2|)) (T -328)) -((-2265 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3)) (-4 *3 (-310 *4)))) (-2265 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2)) (-4 *3 (-310 *4))))) -(-10 -7 (-15 -2265 (|#3| |#1|)) (-15 -2265 (|#1| |#3|))) -((-1971 (((-110) $) 52)) (-3617 (((-783 (-864)) $) 21) (((-864) $) 53)) (-2342 (((-3 $ "failed") $) 16)) (-3788 (($) 9)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 95)) (-2350 (((-3 (-721) "failed") $ $) 73) (((-721) $) 61)) (-3352 (($ $ (-721)) NIL) (($ $) 8)) (-2498 (($) 46)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 34)) (-2750 (((-3 $ "failed") $) 40) (($ $) 39))) -(((-329 |#1|) (-10 -8 (-15 -3617 ((-864) |#1|)) (-15 -2350 ((-721) |#1|)) (-15 -1971 ((-110) |#1|)) (-15 -2498 (|#1|)) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2750 (|#1| |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2350 ((-3 (-721) "failed") |#1| |#1|)) (-15 -3617 ((-783 (-864)) |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)))) (-330)) (T -329)) -NIL -(-10 -8 (-15 -3617 ((-864) |#1|)) (-15 -2350 ((-721) |#1|)) (-15 -1971 ((-110) |#1|)) (-15 -2498 (|#1|)) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2750 (|#1| |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2350 ((-3 (-721) "failed") |#1| |#1|)) (-15 -3617 ((-783 (-864)) |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-3646 (((-1112 (-864) (-721)) (-531)) 90)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-3006 (((-721)) 100)) (-4082 (($) 17 T CONST)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) 103)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-1806 (($) 88)) (-1971 (((-110) $) 87)) (-3493 (($ $) 76) (($ $ (-721)) 75)) (-2534 (((-110) $) 68)) (-3617 (((-783 (-864)) $) 78) (((-864) $) 85)) (-3481 (((-110) $) 30)) (-2342 (((-3 $ "failed") $) 99)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2211 (((-864) $) 102)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3788 (($) 98 T CONST)) (-1889 (($ (-864)) 101)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 91)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-3 (-721) "failed") $ $) 77) (((-721) $) 86)) (-3352 (($ $ (-721)) 96) (($ $) 94)) (-2498 (($) 89)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 92)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2750 (((-3 $ "failed") $) 79) (($ $) 93)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-721)) 97) (($ $) 95)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64))) -(((-330) (-133)) (T -330)) -((-2750 (*1 *1 *1) (-4 *1 (-330))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-330)) (-5 *2 (-1184 *1)))) (-2272 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))))) (-3646 (*1 *2 *3) (-12 (-4 *1 (-330)) (-5 *3 (-531)) (-5 *2 (-1112 (-864) (-721))))) (-2498 (*1 *1) (-4 *1 (-330))) (-1806 (*1 *1) (-4 *1 (-330))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-721)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-864)))) (-1485 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-383) (-349) (-1078) (-216) (-10 -8 (-15 -2750 ($ $)) (-15 -1737 ((-3 (-1184 $) "failed") (-639 $))) (-15 -2272 ((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531)))))) (-15 -3646 ((-1112 (-864) (-721)) (-531))) (-15 -2498 ($)) (-15 -1806 ($)) (-15 -1971 ((-110) $)) (-15 -2350 ((-721) $)) (-15 -3617 ((-864) $)) (-15 -1485 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-572 (-806)) . T) ((-162) . T) ((-216) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) . T) ((-349) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) . T) ((-1142) . T)) -((-2720 (((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) |#1|) 53)) (-2670 (((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))) 51))) -(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) |#1|))) (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))) (-1160 |#1|) (-390 |#1| |#2|)) (T -331)) -((-2720 (*1 *2 *3) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2670 (*1 *2) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))) -(-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-853 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-1592 (((-721)) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-853 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-853 |#1|) "failed") $) NIL)) (-2523 (((-853 |#1|) $) NIL)) (-2767 (($ (-1184 (-853 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-853 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-853 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-853 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-853 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-853 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-1899 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-853 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-853 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-853 |#1|) (-349)))) (-1832 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349)))) (-1612 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-1098 (-853 |#1|)) "failed") $ $) NIL (|has| (-853 |#1|) (-349)))) (-3601 (($ $ (-1098 (-853 |#1|))) NIL (|has| (-853 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-853 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-3515 (((-1184 (-598 (-2 (|:| -3482 (-853 |#1|)) (|:| -1889 (-1049)))))) NIL)) (-1398 (((-639 (-853 |#1|))) NIL)) (-1861 (($) NIL (|has| (-853 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-853 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-853 |#1|))) NIL)) (-2498 (($) NIL (|has| (-853 |#1|) (-349)))) (-2389 (($) NIL (|has| (-853 |#1|) (-349)))) (-3348 (((-1184 (-853 |#1|)) $) NIL) (((-639 (-853 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-853 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-853 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-853 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-853 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-853 |#1|)) NIL) (($ (-853 |#1|) $) NIL))) -(((-332 |#1| |#2|) (-13 (-310 (-853 |#1|)) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 (-853 |#1|)) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 (-853 |#1|)))) (-15 -1592 ((-721))))) (-864) (-864)) (T -332)) -((-3515 (*1 *2) (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 (-853 *3)) (|:| -1889 (-1049)))))) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1398 (*1 *2) (-12 (-5 *2 (-639 (-853 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1592 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864))))) -(-13 (-310 (-853 |#1|)) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 (-853 |#1|)) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 (-853 |#1|)))) (-15 -1592 ((-721))))) -((-2247 (((-110) $ $) 62)) (-3019 (((-110) $) 75)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) 93) (($ $ (-864)) 91 (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 149 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-1592 (((-721)) 90)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) 163 (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 113)) (-2523 ((|#1| $) 92)) (-2767 (($ (-1184 |#1|)) 59)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) 159 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 150 (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) 99 (|has| |#1| (-349)))) (-3653 (((-110) $) 176 (|has| |#1| (-349)))) (-1899 ((|#1| $) 95) (($ $ (-864)) 94 (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) 190) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) 135 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) 74 (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) 71 (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) 83 (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) 70 (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 193)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 138 (|has| |#1| (-349)))) (-3693 (((-110) $) 109)) (-2529 (((-1049) $) NIL)) (-3515 (((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) 84)) (-1398 (((-639 |#1|)) 88)) (-1861 (($) 97 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 151 (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) 152)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) 63)) (-3608 (((-1098 |#1|)) 153)) (-2498 (($) 134 (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 107) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) 125) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 58)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 157)) (-3523 (((-1184 $)) 173) (((-1184 $) (-864)) 102)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 30 T CONST)) (-3050 (($) 22 T CONST)) (-2730 (($ $) 108 (|has| |#1| (-349))) (($ $ (-721)) 100 (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 184)) (-2263 (($ $ $) 105) (($ $ |#1|) 106)) (-2250 (($ $) 178) (($ $ $) 182)) (-2237 (($ $ $) 180)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 139)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 187) (($ $ $) 143) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) -(((-333 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721))))) (-330) (-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (T -333)) -((-3515 (*1 *2) (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) *2)))) (-1398 (*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))))) (-1592 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))))))) -(-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-1592 (((-721)) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) NIL) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-3515 (((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) NIL)) (-1398 (((-639 |#1|)) NIL)) (-1861 (($) NIL (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) NIL)) (-2498 (($) NIL (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) NIL)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-334 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721))))) (-330) (-864)) (T -334)) -((-3515 (*1 *2) (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))) (-1398 (*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))) (-1592 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864))))) -(-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-853 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-853 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-853 |#1|) "failed") $) NIL)) (-2523 (((-853 |#1|) $) NIL)) (-2767 (($ (-1184 (-853 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-853 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-853 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-853 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-853 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-853 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-1899 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-853 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-853 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-853 |#1|) (-349)))) (-1832 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349)))) (-1612 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-1098 (-853 |#1|)) "failed") $ $) NIL (|has| (-853 |#1|) (-349)))) (-3601 (($ $ (-1098 (-853 |#1|))) NIL (|has| (-853 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-853 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| (-853 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-853 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-853 |#1|))) NIL)) (-2498 (($) NIL (|has| (-853 |#1|) (-349)))) (-2389 (($) NIL (|has| (-853 |#1|) (-349)))) (-3348 (((-1184 (-853 |#1|)) $) NIL) (((-639 (-853 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-853 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-853 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-853 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-853 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-853 |#1|)) NIL) (($ (-853 |#1|) $) NIL))) -(((-335 |#1| |#2|) (-310 (-853 |#1|)) (-864) (-864)) (T -335)) -NIL -(-310 (-853 |#1|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 120 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) 140 (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 93)) (-2523 ((|#1| $) 90)) (-2767 (($ (-1184 |#1|)) 85)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) 82 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 42 (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) 121 (|has| |#1| (-349)))) (-3653 (((-110) $) 74 (|has| |#1| (-349)))) (-1899 ((|#1| $) 39) (($ $ (-864)) 43 (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) 65) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) 97 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 95 (|has| |#1| (-349)))) (-3693 (((-110) $) 142)) (-2529 (((-1049) $) NIL)) (-1861 (($) 36 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 115 (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) 139)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) 59)) (-3608 (((-1098 |#1|)) 88)) (-2498 (($) 126 (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 53) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) 138) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 87)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 144)) (-3523 (((-1184 $)) 109) (((-1184 $) (-864)) 49)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 111 T CONST)) (-3050 (($) 32 T CONST)) (-2730 (($ $) 68 (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 107)) (-2263 (($ $ $) 99) (($ $ |#1|) 100)) (-2250 (($ $) 80) (($ $ $) 105)) (-2237 (($ $ $) 103)) (** (($ $ (-864)) NIL) (($ $ (-721)) 44) (($ $ (-531)) 130)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 78) (($ $ $) 56) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-336 |#1| |#2|) (-310 |#1|) (-330) (-1098 |#1|)) (T -336)) -NIL -(-310 |#1|) -((-3967 ((|#1| (-1098 |#2|)) 52))) -(((-337 |#1| |#2|) (-10 -7 (-15 -3967 (|#1| (-1098 |#2|)))) (-13 (-383) (-10 -7 (-15 -2265 (|#1| |#2|)) (-15 -2211 ((-864) |#1|)) (-15 -3523 ((-1184 |#1|) (-864))) (-15 -2730 (|#1| |#1|)))) (-330)) (T -337)) -((-3967 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-4 *2 (-13 (-383) (-10 -7 (-15 -2265 (*2 *4)) (-15 -2211 ((-864) *2)) (-15 -3523 ((-1184 *2) (-864))) (-15 -2730 (*2 *2))))) (-5 *1 (-337 *2 *4))))) -(-10 -7 (-15 -3967 (|#1| (-1098 |#2|)))) -((-2175 (((-901 (-1098 |#1|)) (-1098 |#1|)) 36)) (-1381 (((-1098 |#1|) (-864) (-864)) 113) (((-1098 |#1|) (-864)) 112)) (-1971 (((-110) (-1098 |#1|)) 84)) (-2914 (((-864) (-864)) 71)) (-2142 (((-864) (-864)) 74)) (-2433 (((-864) (-864)) 69)) (-3653 (((-110) (-1098 |#1|)) 88)) (-1356 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 101)) (-3293 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 104)) (-2582 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 103)) (-3633 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 102)) (-1530 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 98)) (-2270 (((-1098 |#1|) (-1098 |#1|)) 62)) (-1220 (((-1098 |#1|) (-864)) 107)) (-1409 (((-1098 |#1|) (-864)) 110)) (-4151 (((-1098 |#1|) (-864)) 109)) (-1528 (((-1098 |#1|) (-864)) 108)) (-4170 (((-1098 |#1|) (-864)) 105))) -(((-338 |#1|) (-10 -7 (-15 -1971 ((-110) (-1098 |#1|))) (-15 -3653 ((-110) (-1098 |#1|))) (-15 -2433 ((-864) (-864))) (-15 -2914 ((-864) (-864))) (-15 -2142 ((-864) (-864))) (-15 -4170 ((-1098 |#1|) (-864))) (-15 -1220 ((-1098 |#1|) (-864))) (-15 -1528 ((-1098 |#1|) (-864))) (-15 -4151 ((-1098 |#1|) (-864))) (-15 -1409 ((-1098 |#1|) (-864))) (-15 -1530 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1356 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3633 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2582 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3293 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1381 ((-1098 |#1|) (-864))) (-15 -1381 ((-1098 |#1|) (-864) (-864))) (-15 -2270 ((-1098 |#1|) (-1098 |#1|))) (-15 -2175 ((-901 (-1098 |#1|)) (-1098 |#1|)))) (-330)) (T -338)) -((-2175 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-901 (-1098 *4))) (-5 *1 (-338 *4)) (-5 *3 (-1098 *4)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1381 (*1 *2 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3293 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-2582 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3633 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1356 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1530 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1220 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4))))) -(-10 -7 (-15 -1971 ((-110) (-1098 |#1|))) (-15 -3653 ((-110) (-1098 |#1|))) (-15 -2433 ((-864) (-864))) (-15 -2914 ((-864) (-864))) (-15 -2142 ((-864) (-864))) (-15 -4170 ((-1098 |#1|) (-864))) (-15 -1220 ((-1098 |#1|) (-864))) (-15 -1528 ((-1098 |#1|) (-864))) (-15 -4151 ((-1098 |#1|) (-864))) (-15 -1409 ((-1098 |#1|) (-864))) (-15 -1530 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1356 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3633 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2582 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3293 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1381 ((-1098 |#1|) (-864))) (-15 -1381 ((-1098 |#1|) (-864) (-864))) (-15 -2270 ((-1098 |#1|) (-1098 |#1|))) (-15 -2175 ((-901 (-1098 |#1|)) (-1098 |#1|)))) -((-4197 (((-3 (-598 |#3|) "failed") (-598 |#3|) |#3|) 34))) -(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -4197 ((-3 (-598 |#3|) "failed") (-598 |#3|) |#3|))) (-330) (-1160 |#1|) (-1160 |#2|)) (T -339)) -((-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3))))) -(-10 -7 (-15 -4197 ((-3 (-598 |#3|) "failed") (-598 |#3|) |#3|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) NIL) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) NIL)) (-2498 (($) NIL (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) NIL)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-340 |#1| |#2|) (-310 |#1|) (-330) (-864)) (T -340)) -NIL -(-310 |#1|) -((-3598 (((-110) (-598 (-895 |#1|))) 34)) (-3716 (((-598 (-895 |#1|)) (-598 (-895 |#1|))) 46)) (-3134 (((-3 (-598 (-895 |#1|)) "failed") (-598 (-895 |#1|))) 41))) -(((-341 |#1| |#2|) (-10 -7 (-15 -3598 ((-110) (-598 (-895 |#1|)))) (-15 -3134 ((-3 (-598 (-895 |#1|)) "failed") (-598 (-895 |#1|)))) (-15 -3716 ((-598 (-895 |#1|)) (-598 (-895 |#1|))))) (-432) (-598 (-1102))) (T -341)) -((-3716 (*1 *2 *2) (-12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-598 (-1102))))) (-3134 (*1 *2 *2) (|partial| -12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-598 (-1102))))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-110)) (-5 *1 (-341 *4 *5)) (-14 *5 (-598 (-1102)))))) -(-10 -7 (-15 -3598 ((-110) (-598 (-895 |#1|)))) (-15 -3134 ((-3 (-598 (-895 |#1|)) "failed") (-598 (-895 |#1|)))) (-15 -3716 ((-598 (-895 |#1|)) (-598 (-895 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) 15)) (-3616 ((|#1| $ (-531)) NIL)) (-4173 (((-531) $ (-531)) NIL)) (-2483 (($ (-1 |#1| |#1|) $) 32)) (-3080 (($ (-1 (-531) (-531)) $) 24)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 26)) (-2529 (((-1049) $) NIL)) (-2721 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $) 28)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 38) (($ |#1|) NIL)) (-3050 (($) 9 T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ |#1| (-531)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-342 |#1|) (-13 (-453) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-531))) (-15 -3006 ((-721) $)) (-15 -4173 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-531) (-531)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $)))) (-1030)) (T -342)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) (-4173 (*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-531) (-531))) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-342 *3)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-531))))) (-5 *1 (-342 *3)) (-4 *3 (-1030))))) -(-13 (-453) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-531))) (-15 -3006 ((-721) $)) (-15 -4173 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-531) (-531)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $)))) -((-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 13)) (-3258 (($ $) 14)) (-2956 (((-399 $) $) 30)) (-2534 (((-110) $) 26)) (-2422 (($ $) 19)) (-2109 (($ $ $) 23) (($ (-598 $)) NIL)) (-2552 (((-399 $) $) 31)) (-3609 (((-3 $ "failed") $ $) 22)) (-4100 (((-721) $) 25)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 35)) (-2587 (((-110) $ $) 16)) (-2263 (($ $ $) 33))) -(((-343 |#1|) (-10 -8 (-15 -2263 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|))) (-344)) (T -343)) -NIL -(-10 -8 (-15 -2263 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64))) -(((-344) (-133)) (T -344)) -((-2263 (*1 *1 *1 *1) (-4 *1 (-344)))) -(-13 (-289) (-1142) (-226) (-10 -8 (-15 -2263 ($ $ $)) (-6 -4271) (-6 -4265))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-2247 (((-110) $ $) 7)) (-2618 ((|#2| $ |#2|) 13)) (-1743 (($ $ (-1085)) 18)) (-3641 ((|#2| $) 14)) (-1833 (($ |#1|) 20) (($ |#1| (-1085)) 19)) (-3955 ((|#1| $) 16)) (-1521 (((-1085) $) 9)) (-3454 (((-1085) $) 15)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-4074 (($ $) 17)) (-2148 (((-110) $ $) 6))) -(((-345 |#1| |#2|) (-133) (-1030) (-1030)) (T -345)) -((-1833 (*1 *1 *2) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1833 (*1 *1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1030)) (-4 *4 (-1030)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-4074 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-1085)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2618 (*1 *2 *1 *2) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -1833 ($ |t#1|)) (-15 -1833 ($ |t#1| (-1085))) (-15 -1743 ($ $ (-1085))) (-15 -4074 ($ $)) (-15 -3955 (|t#1| $)) (-15 -3454 ((-1085) $)) (-15 -3641 (|t#2| $)) (-15 -2618 (|t#2| $ |t#2|)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-2618 ((|#1| $ |#1|) 30)) (-1743 (($ $ (-1085)) 22)) (-1616 (((-3 |#1| "failed") $) 29)) (-3641 ((|#1| $) 27)) (-1833 (($ (-369)) 21) (($ (-369) (-1085)) 20)) (-3955 (((-369) $) 24)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) 25)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 19)) (-4074 (($ $) 23)) (-2148 (((-110) $ $) 18))) -(((-346 |#1|) (-13 (-345 (-369) |#1|) (-10 -8 (-15 -1616 ((-3 |#1| "failed") $)))) (-1030)) (T -346)) -((-1616 (*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1030))))) -(-13 (-345 (-369) |#1|) (-10 -8 (-15 -1616 ((-3 |#1| "failed") $)))) -((-2550 (((-1184 (-639 |#2|)) (-1184 $)) 61)) (-3939 (((-639 |#2|) (-1184 $)) 120)) (-1668 ((|#2| $) 32)) (-2264 (((-639 |#2|) $ (-1184 $)) 123)) (-1387 (((-3 $ "failed") $) 75)) (-2065 ((|#2| $) 35)) (-3415 (((-1098 |#2|) $) 83)) (-3960 ((|#2| (-1184 $)) 106)) (-3586 (((-1098 |#2|) $) 28)) (-1437 (((-110)) 100)) (-2767 (($ (-1184 |#2|) (-1184 $)) 113)) (-3622 (((-3 $ "failed") $) 79)) (-2790 (((-110)) 95)) (-3769 (((-110)) 90)) (-2298 (((-110)) 53)) (-1950 (((-639 |#2|) (-1184 $)) 118)) (-1807 ((|#2| $) 31)) (-3405 (((-639 |#2|) $ (-1184 $)) 122)) (-2234 (((-3 $ "failed") $) 73)) (-1288 ((|#2| $) 34)) (-1480 (((-1098 |#2|) $) 82)) (-3579 ((|#2| (-1184 $)) 104)) (-1875 (((-1098 |#2|) $) 26)) (-2239 (((-110)) 99)) (-4223 (((-110)) 92)) (-1561 (((-110)) 51)) (-3036 (((-110)) 87)) (-1513 (((-110)) 101)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) 111)) (-1817 (((-110)) 97)) (-2273 (((-598 (-1184 |#2|))) 86)) (-1431 (((-110)) 98)) (-2578 (((-110)) 96)) (-1964 (((-110)) 46)) (-2819 (((-110)) 102))) -(((-347 |#1| |#2|) (-10 -8 (-15 -3415 ((-1098 |#2|) |#1|)) (-15 -1480 ((-1098 |#2|) |#1|)) (-15 -2273 ((-598 (-1184 |#2|)))) (-15 -1387 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-3 |#1| "failed") |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 -3769 ((-110))) (-15 -4223 ((-110))) (-15 -2790 ((-110))) (-15 -1561 ((-110))) (-15 -2298 ((-110))) (-15 -3036 ((-110))) (-15 -2819 ((-110))) (-15 -1513 ((-110))) (-15 -1437 ((-110))) (-15 -2239 ((-110))) (-15 -1964 ((-110))) (-15 -1431 ((-110))) (-15 -2578 ((-110))) (-15 -1817 ((-110))) (-15 -3586 ((-1098 |#2|) |#1|)) (-15 -1875 ((-1098 |#2|) |#1|)) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2065 (|#2| |#1|)) (-15 -1288 (|#2| |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1807 (|#2| |#1|)) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|)))) (-348 |#2|) (-162)) (T -347)) -((-1817 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2578 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1431 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1964 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2239 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1437 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1513 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2819 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3036 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2298 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1561 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2790 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-4223 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3769 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2273 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-598 (-1184 *4))) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4))))) -(-10 -8 (-15 -3415 ((-1098 |#2|) |#1|)) (-15 -1480 ((-1098 |#2|) |#1|)) (-15 -2273 ((-598 (-1184 |#2|)))) (-15 -1387 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-3 |#1| "failed") |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 -3769 ((-110))) (-15 -4223 ((-110))) (-15 -2790 ((-110))) (-15 -1561 ((-110))) (-15 -2298 ((-110))) (-15 -3036 ((-110))) (-15 -2819 ((-110))) (-15 -1513 ((-110))) (-15 -1437 ((-110))) (-15 -2239 ((-110))) (-15 -1964 ((-110))) (-15 -1431 ((-110))) (-15 -2578 ((-110))) (-15 -1817 ((-110))) (-15 -3586 ((-1098 |#2|) |#1|)) (-15 -1875 ((-1098 |#2|) |#1|)) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2065 (|#2| |#1|)) (-15 -1288 (|#2| |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1807 (|#2| |#1|)) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3887 (((-3 $ "failed")) 37 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-2550 (((-1184 (-639 |#1|)) (-1184 $)) 78)) (-2022 (((-1184 $)) 81)) (-4082 (($) 17 T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 40 (|has| |#1| (-523)))) (-2783 (((-3 $ "failed")) 38 (|has| |#1| (-523)))) (-3939 (((-639 |#1|) (-1184 $)) 65)) (-1668 ((|#1| $) 74)) (-2264 (((-639 |#1|) $ (-1184 $)) 76)) (-1387 (((-3 $ "failed") $) 45 (|has| |#1| (-523)))) (-1666 (($ $ (-864)) 28)) (-2065 ((|#1| $) 72)) (-3415 (((-1098 |#1|) $) 42 (|has| |#1| (-523)))) (-3960 ((|#1| (-1184 $)) 67)) (-3586 (((-1098 |#1|) $) 63)) (-1437 (((-110)) 57)) (-2767 (($ (-1184 |#1|) (-1184 $)) 69)) (-3622 (((-3 $ "failed") $) 47 (|has| |#1| (-523)))) (-2277 (((-864)) 80)) (-2629 (((-110)) 54)) (-2083 (($ $ (-864)) 33)) (-2790 (((-110)) 50)) (-3769 (((-110)) 48)) (-2298 (((-110)) 52)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 41 (|has| |#1| (-523)))) (-2816 (((-3 $ "failed")) 39 (|has| |#1| (-523)))) (-1950 (((-639 |#1|) (-1184 $)) 66)) (-1807 ((|#1| $) 75)) (-3405 (((-639 |#1|) $ (-1184 $)) 77)) (-2234 (((-3 $ "failed") $) 46 (|has| |#1| (-523)))) (-2585 (($ $ (-864)) 29)) (-1288 ((|#1| $) 73)) (-1480 (((-1098 |#1|) $) 43 (|has| |#1| (-523)))) (-3579 ((|#1| (-1184 $)) 68)) (-1875 (((-1098 |#1|) $) 64)) (-2239 (((-110)) 58)) (-1521 (((-1085) $) 9)) (-4223 (((-110)) 49)) (-1561 (((-110)) 51)) (-3036 (((-110)) 53)) (-2529 (((-1049) $) 10)) (-1513 (((-110)) 56)) (-3348 (((-1184 |#1|) $ (-1184 $)) 71) (((-639 |#1|) (-1184 $) (-1184 $)) 70)) (-2570 (((-598 (-895 |#1|)) (-1184 $)) 79)) (-3214 (($ $ $) 25)) (-1817 (((-110)) 62)) (-2265 (((-806) $) 11)) (-2273 (((-598 (-1184 |#1|))) 44 (|has| |#1| (-523)))) (-2801 (($ $ $ $) 26)) (-1431 (((-110)) 60)) (-1605 (($ $ $) 24)) (-2578 (((-110)) 61)) (-1964 (((-110)) 59)) (-2819 (((-110)) 55)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-348 |#1|) (-133) (-162)) (T -348)) -((-2022 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-348 *3)))) (-2277 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-864)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-598 (-895 *4))))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1184 (-639 *4))))) (-3405 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1184 *4)))) (-3348 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3)))) (-1817 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2578 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1431 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1964 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2239 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1437 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1513 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2819 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2629 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3036 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2298 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1561 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2790 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-4223 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3769 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3622 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-2234 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-1387 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-2273 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-598 (-1184 *3))))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1098 *3)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1098 *3)))) (-4152 (*1 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1)))) (-4 *1 (-348 *3)))) (-3491 (*1 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1)))) (-4 *1 (-348 *3)))) (-2816 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) (-2783 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) (-3887 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162))))) -(-13 (-695 |t#1|) (-10 -8 (-15 -2022 ((-1184 $))) (-15 -2277 ((-864))) (-15 -2570 ((-598 (-895 |t#1|)) (-1184 $))) (-15 -2550 ((-1184 (-639 |t#1|)) (-1184 $))) (-15 -3405 ((-639 |t#1|) $ (-1184 $))) (-15 -2264 ((-639 |t#1|) $ (-1184 $))) (-15 -1807 (|t#1| $)) (-15 -1668 (|t#1| $)) (-15 -1288 (|t#1| $)) (-15 -2065 (|t#1| $)) (-15 -3348 ((-1184 |t#1|) $ (-1184 $))) (-15 -3348 ((-639 |t#1|) (-1184 $) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|) (-1184 $))) (-15 -3579 (|t#1| (-1184 $))) (-15 -3960 (|t#1| (-1184 $))) (-15 -1950 ((-639 |t#1|) (-1184 $))) (-15 -3939 ((-639 |t#1|) (-1184 $))) (-15 -1875 ((-1098 |t#1|) $)) (-15 -3586 ((-1098 |t#1|) $)) (-15 -1817 ((-110))) (-15 -2578 ((-110))) (-15 -1431 ((-110))) (-15 -1964 ((-110))) (-15 -2239 ((-110))) (-15 -1437 ((-110))) (-15 -1513 ((-110))) (-15 -2819 ((-110))) (-15 -2629 ((-110))) (-15 -3036 ((-110))) (-15 -2298 ((-110))) (-15 -1561 ((-110))) (-15 -2790 ((-110))) (-15 -4223 ((-110))) (-15 -3769 ((-110))) (IF (|has| |t#1| (-523)) (PROGN (-15 -3622 ((-3 $ "failed") $)) (-15 -2234 ((-3 $ "failed") $)) (-15 -1387 ((-3 $ "failed") $)) (-15 -2273 ((-598 (-1184 |t#1|)))) (-15 -1480 ((-1098 |t#1|) $)) (-15 -3415 ((-1098 |t#1|) $)) (-15 -4152 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -2816 ((-3 $ "failed"))) (-15 -2783 ((-3 $ "failed"))) (-15 -3887 ((-3 $ "failed"))) (-6 -4270)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-671) . T) ((-695 |#1|) . T) ((-712) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-3006 (((-721)) 16)) (-1381 (($) 13)) (-2211 (((-864) $) 14)) (-1521 (((-1085) $) 9)) (-1889 (($ (-864)) 15)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-349) (-133)) (T -349)) -((-3006 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-721)))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-349)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-864)))) (-1381 (*1 *1) (-4 *1 (-349)))) -(-13 (-1030) (-10 -8 (-15 -3006 ((-721))) (-15 -1889 ($ (-864))) (-15 -2211 ((-864) $)) (-15 -1381 ($)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-1849 (((-639 |#2|) (-1184 $)) 40)) (-2767 (($ (-1184 |#2|) (-1184 $)) 34)) (-1982 (((-639 |#2|) $ (-1184 $)) 42)) (-3176 ((|#2| (-1184 $)) 13)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) 25))) -(((-350 |#1| |#2| |#3|) (-10 -8 (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|)))) (-351 |#2| |#3|) (-162) (-1160 |#2|)) (T -350)) -NIL -(-10 -8 (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1849 (((-639 |#1|) (-1184 $)) 44)) (-1354 ((|#1| $) 50)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46)) (-1982 (((-639 |#1|) $ (-1184 $)) 51)) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-864)) 52)) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 49)) (-1233 ((|#2| $) 42 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3176 ((|#1| (-1184 $)) 45)) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35)) (-2750 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-3369 ((|#2| $) 43)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-351 |#1| |#2|) (-133) (-162) (-1160 |t#1|)) (T -351)) -((-2277 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-864)))) (-1982 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *4)))) (-3348 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162)) (-4 *1 (-351 *4 *5)) (-4 *5 (-1160 *4)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1160 *2)) (-4 *2 (-162)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) (-1233 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1160 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -2277 ((-864))) (-15 -1982 ((-639 |t#1|) $ (-1184 $))) (-15 -1354 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -3348 ((-1184 |t#1|) $ (-1184 $))) (-15 -3348 ((-639 |t#1|) (-1184 $) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|) (-1184 $))) (-15 -3176 (|t#1| (-1184 $))) (-15 -1849 ((-639 |t#1|) (-1184 $))) (-15 -3369 (|t#2| $)) (IF (|has| |t#1| (-344)) (-15 -1233 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3203 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1760 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3261 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1138) (-354 |#1|) (-1138) (-354 |#3|)) (T -352)) -((-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5))))) -(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3202 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-2375 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-1332 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-1828 (($ $) 25)) (-1976 (((-531) (-1 (-110) |#2|) $) NIL) (((-531) |#2| $) 11) (((-531) |#2| $ (-531)) NIL)) (-3508 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-353 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1332 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-354 |#2|) (-1138)) (T -353)) -NIL -(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1332 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-354 |#1|) (-133) (-1138)) (T -354)) -((-3508 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-1828 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-3202 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-1976 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138)) (-5 *2 (-531)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-531)))) (-1976 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-797)) (-5 *2 (-110)))) (-2162 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-4106 (*1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4274)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-2375 (*1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797))))) -(-13 (-604 |t#1|) (-10 -8 (-6 -4273) (-15 -3508 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -1828 ($ $)) (-15 -1332 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -3202 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -1976 ((-531) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -1976 ((-531) |t#1| $)) (-15 -1976 ((-531) |t#1| $ (-531)))) |%noBranch|) (IF (|has| |t#1| (-797)) (PROGN (-6 (-797)) (-15 -3508 ($ $ $)) (-15 -1332 ($ $)) (-15 -3202 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2162 ($ $ $ (-531))) (-15 -4106 ($ $)) (-15 -2375 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-797)) (-15 -2375 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T)) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3798 (((-598 |#1|) $) 32)) (-2879 (($ $ (-721)) 33)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2489 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 36)) (-4104 (($ $) 34)) (-2931 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 37)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-4115 (($ $ |#1| $) 31) (($ $ (-598 |#1|) (-598 $)) 30)) (-2012 (((-721) $) 38)) (-2274 (($ $ $) 29)) (-2265 (((-806) $) 11) (($ |#1|) 41) (((-1197 |#1| |#2|) $) 40) (((-1206 |#1| |#2|) $) 39)) (-2005 ((|#2| (-1206 |#1| |#2|) $) 42)) (-3035 (($) 18 T CONST)) (-2043 (($ (-624 |#1|)) 35)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#2|) 28 (|has| |#2| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-355 |#1| |#2|) (-133) (-797) (-162)) (T -355)) -((-2005 (*1 *2 *3 *1) (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-797)) (-4 *2 (-162)))) (-2265 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-1197 *3 *4)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-1206 *3 *4)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-721)))) (-2931 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2489 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) (-2879 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-598 *3)))) (-4115 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-797)) (-4 *5 (-162))))) -(-13 (-589 |t#2|) (-10 -8 (-15 -2005 (|t#2| (-1206 |t#1| |t#2|) $)) (-15 -2265 ($ |t#1|)) (-15 -2265 ((-1197 |t#1| |t#2|) $)) (-15 -2265 ((-1206 |t#1| |t#2|) $)) (-15 -2012 ((-721) $)) (-15 -2931 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -2489 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -2043 ($ (-624 |t#1|))) (-15 -4104 ($ $)) (-15 -2879 ($ $ (-721))) (-15 -3798 ((-598 |t#1|) $)) (-15 -4115 ($ $ |t#1| $)) (-15 -4115 ($ $ (-598 |t#1|) (-598 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#2|) . T) ((-589 |#2|) . T) ((-668 |#2|) . T) ((-992 |#2|) . T) ((-1030) . T)) -((-2793 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-2957 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-2820 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22))) -(((-356 |#1| |#2|) (-10 -7 (-15 -2957 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2793 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1138) (-13 (-354 |#1|) (-10 -7 (-6 -4274)))) (T -356)) -((-2793 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))) (-2820 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))) (-2957 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274))))))) -(-10 -7 (-15 -2957 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2793 (|#2| (-1 (-110) |#1| |#1|) |#2|))) -((-3073 (((-639 |#2|) (-639 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 22) (((-639 (-531)) (-639 $)) 14))) -(((-357 |#1| |#2|) (-10 -8 (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 |#2|) (-639 |#1|)))) (-358 |#2|) (-986)) (T -357)) -NIL -(-10 -8 (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 |#2|) (-639 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3073 (((-639 |#1|) (-639 $)) 34) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 33) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 41 (|has| |#1| (-594 (-531)))) (((-639 (-531)) (-639 $)) 40 (|has| |#1| (-594 (-531))))) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-358 |#1|) (-133) (-986)) (T -358)) -NIL -(-13 (-594 |t#1|) (-10 -7 (IF (|has| |t#1| (-594 (-531))) (-6 (-594 (-531))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3772 (((-598 (-276 (-895 (-159 |#1|)))) (-276 (-388 (-895 (-159 (-531))))) |#1|) 51) (((-598 (-276 (-895 (-159 |#1|)))) (-388 (-895 (-159 (-531)))) |#1|) 50) (((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-276 (-388 (-895 (-159 (-531)))))) |#1|) 47) (((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-388 (-895 (-159 (-531))))) |#1|) 41)) (-3694 (((-598 (-598 (-159 |#1|))) (-598 (-388 (-895 (-159 (-531))))) (-598 (-1102)) |#1|) 30) (((-598 (-159 |#1|)) (-388 (-895 (-159 (-531)))) |#1|) 18))) -(((-359 |#1|) (-10 -7 (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-276 (-388 (-895 (-159 (-531)))))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-276 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3694 ((-598 (-159 |#1|)) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3694 ((-598 (-598 (-159 |#1|))) (-598 (-388 (-895 (-159 (-531))))) (-598 (-1102)) |#1|))) (-13 (-344) (-795))) (T -359)) -((-3694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531)))))) (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 (-159 *5)))) (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-795))))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-159 (-531))))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 (-159 (-531)))))) (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-159 (-531))))) (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-276 (-388 (-895 (-159 (-531))))))) (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531)))))) (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795)))))) -(-10 -7 (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-276 (-388 (-895 (-159 (-531)))))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-276 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3694 ((-598 (-159 |#1|)) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3694 ((-598 (-598 (-159 |#1|))) (-598 (-388 (-895 (-159 (-531))))) (-598 (-1102)) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 33)) (-1317 (((-531) $) 55)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2796 (($ $) 110)) (-2367 (($ $) 82)) (-2218 (($ $) 71)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) 44)) (-2760 (((-110) $ $) NIL)) (-2343 (($ $) 80)) (-2198 (($ $) 69)) (-3459 (((-531) $) 64)) (-3709 (($ $ (-531)) 62)) (-2391 (($ $) NIL)) (-2241 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-1694 (($ $) 112)) (-3154 (((-3 (-531) "failed") $) 189) (((-3 (-388 (-531)) "failed") $) 185)) (-2523 (((-531) $) 187) (((-388 (-531)) $) 183)) (-3650 (($ $ $) NIL)) (-2743 (((-531) $ $) 102)) (-3622 (((-3 $ "failed") $) 114)) (-1525 (((-388 (-531)) $ (-721)) 190) (((-388 (-531)) $ (-721) (-721)) 182)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3963 (((-864)) 73) (((-864) (-864)) 98 (|has| $ (-6 -4264)))) (-1599 (((-110) $) 106)) (-1880 (($) 40)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL)) (-3707 (((-1189) (-721)) 152)) (-3776 (((-1189)) 157) (((-1189) (-721)) 158)) (-2883 (((-1189)) 159) (((-1189) (-721)) 160)) (-2254 (((-1189)) 155) (((-1189) (-721)) 156)) (-3617 (((-531) $) 58)) (-3481 (((-110) $) 104)) (-2249 (($ $ (-531)) NIL)) (-2748 (($ $) 48)) (-1899 (($ $) NIL)) (-2985 (((-110) $) 35)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL) (($) NIL (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-1241 (($ $ $) NIL) (($) 99 (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-2580 (((-531) $) 17)) (-3738 (($) 87) (($ $) 92)) (-1835 (($) 91) (($ $) 93)) (-2076 (($ $) 83)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 116)) (-3704 (((-864) (-531)) 43 (|has| $ (-6 -4264)))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) 53)) (-2943 (($ $) 109)) (-2947 (($ (-531) (-531)) 107) (($ (-531) (-531) (-864)) 108)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1790 (((-531) $) 19)) (-3696 (($) 94)) (-2798 (($ $) 79)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-864)) 100) (((-864) (-864)) 101 (|has| $ (-6 -4264)))) (-3352 (($ $ (-721)) NIL) (($ $) 115)) (-3529 (((-864) (-531)) 47 (|has| $ (-6 -4264)))) (-2403 (($ $) NIL)) (-2253 (($ $) NIL)) (-2379 (($ $) NIL)) (-2229 (($ $) NIL)) (-2356 (($ $) 81)) (-2210 (($ $) 70)) (-3318 (((-360) $) 175) (((-208) $) 177) (((-835 (-360)) $) NIL) (((-1085) $) 162) (((-507) $) 173) (($ (-208)) 181)) (-2265 (((-806) $) 164) (($ (-531)) 186) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-531)) 186) (($ (-388 (-531))) NIL) (((-208) $) 178)) (-2284 (((-721)) NIL)) (-3831 (($ $) 111)) (-2138 (((-864)) 54) (((-864) (-864)) 66 (|has| $ (-6 -4264)))) (-3276 (((-864)) 103)) (-2442 (($ $) 86)) (-2292 (($ $) 46) (($ $ $) 52)) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) 84)) (-2266 (($ $) 37)) (-2468 (($ $) NIL)) (-2318 (($ $) NIL)) (-2753 (($ $) NIL)) (-2331 (($ $) NIL)) (-2456 (($ $) NIL)) (-2305 (($ $) NIL)) (-2429 (($ $) 85)) (-2279 (($ $) 49)) (-1620 (($ $) 51)) (-3035 (($) 34 T CONST)) (-3050 (($) 38 T CONST)) (-4231 (((-1085) $) 27) (((-1085) $ (-110)) 29) (((-1189) (-772) $) 30) (((-1189) (-772) $ (-110)) 31)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 39)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 42)) (-2263 (($ $ $) 45) (($ $ (-531)) 41)) (-2250 (($ $) 36) (($ $ $) 50)) (-2237 (($ $ $) 61)) (** (($ $ (-864)) 67) (($ $ (-721)) NIL) (($ $ (-531)) 88) (($ $ (-388 (-531))) 125) (($ $ $) 117)) (* (($ (-864) $) 65) (($ (-721) $) NIL) (($ (-531) $) 68) (($ $ $) 60) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-360) (-13 (-385) (-216) (-573 (-1085)) (-778) (-572 (-208)) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -2748 ($ $)) (-15 -2743 ((-531) $ $)) (-15 -3709 ($ $ (-531))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721))) (-15 -3738 ($)) (-15 -1835 ($)) (-15 -3696 ($)) (-15 -2292 ($ $ $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -3318 ($ (-208))) (-15 -2883 ((-1189))) (-15 -2883 ((-1189) (-721))) (-15 -2254 ((-1189))) (-15 -2254 ((-1189) (-721))) (-15 -3776 ((-1189))) (-15 -3776 ((-1189) (-721))) (-15 -3707 ((-1189) (-721))) (-6 -4264) (-6 -4256)))) (T -360)) -((** (*1 *1 *1 *1) (-5 *1 (-360))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) (-2748 (*1 *1 *1) (-5 *1 (-360))) (-2743 (*1 *2 *1 *1) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360)))) (-1525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360)))) (-3738 (*1 *1) (-5 *1 (-360))) (-1835 (*1 *1) (-5 *1 (-360))) (-3696 (*1 *1) (-5 *1 (-360))) (-2292 (*1 *1 *1 *1) (-5 *1 (-360))) (-3738 (*1 *1 *1) (-5 *1 (-360))) (-1835 (*1 *1 *1) (-5 *1 (-360))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360)))) (-2883 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) (-2254 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) (-3776 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360))))) -(-13 (-385) (-216) (-573 (-1085)) (-778) (-572 (-208)) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -2748 ($ $)) (-15 -2743 ((-531) $ $)) (-15 -3709 ($ $ (-531))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721))) (-15 -3738 ($)) (-15 -1835 ($)) (-15 -3696 ($)) (-15 -2292 ($ $ $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -3318 ($ (-208))) (-15 -2883 ((-1189))) (-15 -2883 ((-1189) (-721))) (-15 -2254 ((-1189))) (-15 -2254 ((-1189) (-721))) (-15 -3776 ((-1189))) (-15 -3776 ((-1189) (-721))) (-15 -3707 ((-1189) (-721))) (-6 -4264) (-6 -4256))) -((-1871 (((-598 (-276 (-895 |#1|))) (-276 (-388 (-895 (-531)))) |#1|) 46) (((-598 (-276 (-895 |#1|))) (-388 (-895 (-531))) |#1|) 45) (((-598 (-598 (-276 (-895 |#1|)))) (-598 (-276 (-388 (-895 (-531))))) |#1|) 42) (((-598 (-598 (-276 (-895 |#1|)))) (-598 (-388 (-895 (-531)))) |#1|) 36)) (-1615 (((-598 |#1|) (-388 (-895 (-531))) |#1|) 20) (((-598 (-598 |#1|)) (-598 (-388 (-895 (-531)))) (-598 (-1102)) |#1|) 30))) -(((-361 |#1|) (-10 -7 (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-388 (-895 (-531)))) |#1|)) (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-276 (-388 (-895 (-531))))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-388 (-895 (-531))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-276 (-388 (-895 (-531)))) |#1|)) (-15 -1615 ((-598 (-598 |#1|)) (-598 (-388 (-895 (-531)))) (-598 (-1102)) |#1|)) (-15 -1615 ((-598 |#1|) (-388 (-895 (-531))) |#1|))) (-13 (-795) (-344))) (T -361)) -((-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-388 (-895 (-531))))) (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 (-531))))) (-5 *2 (-598 (-276 (-895 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 (-276 (-895 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-276 (-388 (-895 (-531)))))) (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 (-531))))) (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344)))))) -(-10 -7 (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-388 (-895 (-531)))) |#1|)) (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-276 (-388 (-895 (-531))))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-388 (-895 (-531))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-276 (-388 (-895 (-531)))) |#1|)) (-15 -1615 ((-598 (-598 |#1|)) (-598 (-388 (-895 (-531)))) (-598 (-1102)) |#1|)) (-15 -1615 ((-598 |#1|) (-388 (-895 (-531))) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 26)) (-2523 ((|#2| $) 28)) (-2500 (($ $) NIL)) (-3517 (((-721) $) 10)) (-1230 (((-598 $) $) 20)) (-3380 (((-110) $) NIL)) (-4007 (($ |#2| |#1|) 18)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3226 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2462 ((|#2| $) 15)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 45) (($ |#2|) 27)) (-2708 (((-598 |#1|) $) 17)) (-3188 ((|#1| $ |#2|) 47)) (-3035 (($) 29 T CONST)) (-2400 (((-598 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-362 |#1| |#2|) (-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-986) (-797)) (T -362)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797))))) -(-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#2| "failed") $) 44)) (-2523 ((|#2| $) 43)) (-2500 (($ $) 30)) (-3517 (((-721) $) 34)) (-1230 (((-598 $) $) 35)) (-3380 (((-110) $) 38)) (-4007 (($ |#2| |#1|) 39)) (-3261 (($ (-1 |#1| |#1|) $) 40)) (-3226 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2462 ((|#2| $) 33)) (-2475 ((|#1| $) 32)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ |#2|) 45)) (-2708 (((-598 |#1|) $) 36)) (-3188 ((|#1| $ |#2|) 41)) (-3035 (($) 18 T CONST)) (-2400 (((-598 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-363 |#1| |#2|) (-133) (-986) (-1030)) (T -363)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030)))) (-3188 (*1 *2 *1 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)))) (-4007 (*1 *1 *2 *3) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-110)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 *3)))) (-1230 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 *1)) (-4 *1 (-363 *3 *4)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-721)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030))))) -(-13 (-109 |t#1| |t#1|) (-977 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3188 (|t#1| $ |t#2|)) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -4007 ($ |t#2| |t#1|)) (-15 -3380 ((-110) $)) (-15 -2400 ((-598 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2708 ((-598 |t#1|) $)) (-15 -1230 ((-598 $) $)) (-15 -3517 ((-721) $)) (-15 -2462 (|t#2| $)) (-15 -2475 (|t#1| $)) (-15 -3226 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2500 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-668 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) |has| |#1| (-162)) ((-977 |#2|) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-639 (-649))) 14) (($ (-598 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 11))) -(((-364) (-133)) (T -364)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-649))) (-4 *1 (-364)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-364)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-364))))) -(-13 (-376) (-10 -8 (-15 -2265 ($ (-639 (-649)))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))))) -(((-572 (-806)) . T) ((-376) . T) ((-1138) . T)) -((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 21) (((-3 $ "failed") (-639 (-297 (-531)))) 19) (((-3 $ "failed") (-639 (-895 (-360)))) 17) (((-3 $ "failed") (-639 (-895 (-531)))) 15) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 13) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 11)) (-2523 (($ (-639 (-297 (-360)))) 22) (($ (-639 (-297 (-531)))) 20) (($ (-639 (-895 (-360)))) 18) (($ (-639 (-895 (-531)))) 16) (($ (-639 (-388 (-895 (-360))))) 14) (($ (-639 (-388 (-895 (-531))))) 12)) (-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-598 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 23))) -(((-365) (-133)) (T -365)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-365)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365))))) -(-13 (-376) (-10 -8 (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2523 ($ (-639 (-297 (-360))))) (-15 -3154 ((-3 $ "failed") (-639 (-297 (-360))))) (-15 -2523 ($ (-639 (-297 (-531))))) (-15 -3154 ((-3 $ "failed") (-639 (-297 (-531))))) (-15 -2523 ($ (-639 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-639 (-895 (-360))))) (-15 -2523 ($ (-639 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-639 (-895 (-531))))) (-15 -2523 ($ (-639 (-388 (-895 (-360)))))) (-15 -3154 ((-3 $ "failed") (-639 (-388 (-895 (-360)))))) (-15 -2523 ($ (-639 (-388 (-895 (-531)))))) (-15 -3154 ((-3 $ "failed") (-639 (-388 (-895 (-531)))))))) -(((-572 (-806)) . T) ((-376) . T) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 28)) (-3035 (($) 12 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-366 |#1| |#2|) (-13 (-109 |#1| |#1|) (-487 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|))) (-986) (-797)) (T -366)) -NIL -(-13 (-109 |#1| |#1|) (-487 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3006 (((-721) $) 59)) (-4082 (($) NIL T CONST)) (-2489 (((-3 $ "failed") $ $) 61)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1273 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3481 (((-110) $) 15)) (-3616 ((|#1| $ (-531)) NIL)) (-4173 (((-721) $ (-531)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2483 (($ (-1 |#1| |#1|) $) 38)) (-3080 (($ (-1 (-721) (-721)) $) 35)) (-2931 (((-3 $ "failed") $ $) 50)) (-1521 (((-1085) $) NIL)) (-2236 (($ $ $) 26)) (-2592 (($ $ $) 24)) (-2529 (((-1049) $) NIL)) (-2721 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $) 32)) (-2100 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2265 (((-806) $) 22) (($ |#1|) NIL)) (-3050 (($) 9 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 41)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) 63 (|has| |#1| (-797)))) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ |#1| (-721)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-367 |#1|) (-13 (-677) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2100 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-721) (-721)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-1030)) (T -367)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2592 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2236 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2931 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2100 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-1273 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721))))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-367 *4)) (-4 *4 (-1030)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-721) (-721))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-367 *3))))) -(-13 (-677) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2100 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-721) (-721)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 45)) (-2523 (((-531) $) 44)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-4103 (($ $ $) 52)) (-1241 (($ $ $) 51)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-531)) 46)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 49)) (-2184 (((-110) $ $) 48)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 50)) (-2174 (((-110) $ $) 47)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-368) (-133)) (T -368)) -NIL -(-13 (-523) (-797) (-977 (-531))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-797) . T) ((-977 (-531)) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-4136 (((-110) $) 20)) (-3408 (((-110) $) 19)) (-3010 (($ (-1085) (-1085) (-1085)) 21)) (-3955 (((-1085) $) 16)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3056 (($ (-1085) (-1085) (-1085)) 14)) (-3588 (((-1085) $) 17)) (-1888 (((-110) $) 18)) (-1626 (((-1085) $) 15)) (-2265 (((-806) $) 12) (($ (-1085)) 13) (((-1085) $) 9)) (-2148 (((-110) $ $) 7))) -(((-369) (-370)) (T -369)) -NIL -(-370) -((-2247 (((-110) $ $) 7)) (-4136 (((-110) $) 14)) (-3408 (((-110) $) 15)) (-3010 (($ (-1085) (-1085) (-1085)) 13)) (-3955 (((-1085) $) 18)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3056 (($ (-1085) (-1085) (-1085)) 20)) (-3588 (((-1085) $) 17)) (-1888 (((-110) $) 16)) (-1626 (((-1085) $) 19)) (-2265 (((-806) $) 11) (($ (-1085)) 22) (((-1085) $) 21)) (-2148 (((-110) $ $) 6))) -(((-370) (-133)) (T -370)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-3056 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3010 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-1085))) (-15 -2265 ((-1085) $)) (-15 -3056 ($ (-1085) (-1085) (-1085))) (-15 -1626 ((-1085) $)) (-15 -3955 ((-1085) $)) (-15 -3588 ((-1085) $)) (-15 -1888 ((-110) $)) (-15 -3408 ((-110) $)) (-15 -4136 ((-110) $)) (-15 -3010 ($ (-1085) (-1085) (-1085))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3416 (((-806) $) 50)) (-4082 (($) NIL T CONST)) (-1666 (($ $ (-864)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2585 (($ $ (-864)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($ (-721)) 26)) (-2190 (((-721)) 17)) (-3600 (((-806) $) 52)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) NIL)) (-2801 (($ $ $ $) NIL)) (-1605 (($ $ $) NIL)) (-3035 (($) 20 T CONST)) (-2148 (((-110) $ $) 28)) (-2250 (($ $) 34) (($ $ $) 36)) (-2237 (($ $ $) 37)) (** (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-371 |#1| |#2| |#3|) (-13 (-695 |#3|) (-10 -8 (-15 -2190 ((-721))) (-15 -3600 ((-806) $)) (-15 -3416 ((-806) $)) (-15 -1861 ($ (-721))))) (-721) (-721) (-162)) (T -371)) -((-2190 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)) (-4 *5 (-162)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)) (-4 *5 (-162)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162))))) -(-13 (-695 |#3|) (-10 -8 (-15 -2190 ((-721))) (-15 -3600 ((-806) $)) (-15 -3416 ((-806) $)) (-15 -1861 ($ (-721))))) -((-3306 (((-1085)) 10)) (-1427 (((-1074 (-1085))) 28)) (-3177 (((-1189) (-1085)) 25) (((-1189) (-369)) 24)) (-3194 (((-1189)) 26)) (-2649 (((-1074 (-1085))) 27))) -(((-372) (-10 -7 (-15 -2649 ((-1074 (-1085)))) (-15 -1427 ((-1074 (-1085)))) (-15 -3194 ((-1189))) (-15 -3177 ((-1189) (-369))) (-15 -3177 ((-1189) (-1085))) (-15 -3306 ((-1085))))) (T -372)) -((-3306 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-372)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-372)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-372)))) (-3194 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-372)))) (-1427 (*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372)))) (-2649 (*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372))))) -(-10 -7 (-15 -2649 ((-1074 (-1085)))) (-15 -1427 ((-1074 (-1085)))) (-15 -3194 ((-1189))) (-15 -3177 ((-1189) (-369))) (-15 -3177 ((-1189) (-1085))) (-15 -3306 ((-1085)))) -((-3617 (((-721) (-317 |#1| |#2| |#3| |#4|)) 16))) -(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|)))) (-13 (-349) (-344)) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -373)) -((-3617 (*1 *2 *3) (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) (-5 *2 (-721)) (-5 *1 (-373 *4 *5 *6 *7))))) -(-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|)))) -((-2265 (((-375) |#1|) 11))) -(((-374 |#1|) (-10 -7 (-15 -2265 ((-375) |#1|))) (-1030)) (T -374)) -((-2265 (*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1030))))) -(-10 -7 (-15 -2265 ((-375) |#1|))) -((-2247 (((-110) $ $) NIL)) (-2617 (((-598 (-1085)) $ (-598 (-1085))) 38)) (-3931 (((-598 (-1085)) $ (-598 (-1085))) 39)) (-3619 (((-598 (-1085)) $ (-598 (-1085))) 40)) (-1340 (((-598 (-1085)) $) 35)) (-3010 (($) 23)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1514 (((-598 (-1085)) $) 36)) (-3692 (((-598 (-1085)) $) 37)) (-2286 (((-1189) $ (-531)) 33) (((-1189) $) 34)) (-3318 (($ (-806) (-531)) 30)) (-2265 (((-806) $) 42) (($ (-806)) 25)) (-2148 (((-110) $ $) NIL))) -(((-375) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -1514 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3931 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085))))))) (T -375)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-375)))) (-3318 (*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-375)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-375)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-375)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-3010 (*1 *1) (-5 *1 (-375))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-3619 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-3931 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-2617 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -1514 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3931 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085)))))) -((-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8))) -(((-376) (-133)) (T -376)) -((-3206 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1189))))) -(-13 (-1138) (-572 (-806)) (-10 -8 (-15 -3206 ((-1189) $)))) -(((-572 (-806)) . T) ((-1138) . T)) -((-3154 (((-3 $ "failed") (-297 (-360))) 21) (((-3 $ "failed") (-297 (-531))) 19) (((-3 $ "failed") (-895 (-360))) 17) (((-3 $ "failed") (-895 (-531))) 15) (((-3 $ "failed") (-388 (-895 (-360)))) 13) (((-3 $ "failed") (-388 (-895 (-531)))) 11)) (-2523 (($ (-297 (-360))) 22) (($ (-297 (-531))) 20) (($ (-895 (-360))) 18) (($ (-895 (-531))) 16) (($ (-388 (-895 (-360)))) 14) (($ (-388 (-895 (-531)))) 12)) (-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-598 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 23))) -(((-377) (-133)) (T -377)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-377)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-531))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-360))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-360))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-531))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377))))) -(-13 (-376) (-10 -8 (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2523 ($ (-297 (-360)))) (-15 -3154 ((-3 $ "failed") (-297 (-360)))) (-15 -2523 ($ (-297 (-531)))) (-15 -3154 ((-3 $ "failed") (-297 (-531)))) (-15 -2523 ($ (-895 (-360)))) (-15 -3154 ((-3 $ "failed") (-895 (-360)))) (-15 -2523 ($ (-895 (-531)))) (-15 -3154 ((-3 $ "failed") (-895 (-531)))) (-15 -2523 ($ (-388 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-360))))) (-15 -2523 ($ (-388 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-531))))))) -(((-572 (-806)) . T) ((-376) . T) ((-1138) . T)) -((-2185 (((-598 (-1085)) (-598 (-1085))) 9)) (-3206 (((-1189) (-369)) 27)) (-3573 (((-1034) (-1102) (-598 (-1102)) (-1105) (-598 (-1102))) 60) (((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)) (-1102)) 35) (((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102))) 34))) -(((-378) (-10 -7 (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)))) (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)) (-1102))) (-15 -3573 ((-1034) (-1102) (-598 (-1102)) (-1105) (-598 (-1102)))) (-15 -3206 ((-1189) (-369))) (-15 -2185 ((-598 (-1085)) (-598 (-1085)))))) (T -378)) -((-2185 (*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-378)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-378)))) (-3573 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-598 (-1102))) (-5 *5 (-1105)) (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-378)))) (-3573 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102))))) (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-378)))) (-3573 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102))))) (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-378))))) -(-10 -7 (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)))) (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)) (-1102))) (-15 -3573 ((-1034) (-1102) (-598 (-1102)) (-1105) (-598 (-1102)))) (-15 -3206 ((-1189) (-369))) (-15 -2185 ((-598 (-1085)) (-598 (-1085))))) -((-3206 (((-1189) $) 38)) (-2265 (((-806) $) 98) (($ (-311)) 100) (($ (-598 (-311))) 99) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 97) (($ (-297 (-651))) 54) (($ (-297 (-649))) 73) (($ (-297 (-644))) 86) (($ (-276 (-297 (-651)))) 68) (($ (-276 (-297 (-649)))) 81) (($ (-276 (-297 (-644)))) 94) (($ (-297 (-531))) 104) (($ (-297 (-360))) 117) (($ (-297 (-159 (-360)))) 130) (($ (-276 (-297 (-531)))) 112) (($ (-276 (-297 (-360)))) 125) (($ (-276 (-297 (-159 (-360))))) 138))) -(((-379 |#1| |#2| |#3| |#4|) (-13 (-376) (-10 -8 (-15 -2265 ($ (-311))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2265 ($ (-297 (-651)))) (-15 -2265 ($ (-297 (-649)))) (-15 -2265 ($ (-297 (-644)))) (-15 -2265 ($ (-276 (-297 (-651))))) (-15 -2265 ($ (-276 (-297 (-649))))) (-15 -2265 ($ (-276 (-297 (-644))))) (-15 -2265 ($ (-297 (-531)))) (-15 -2265 ($ (-297 (-360)))) (-15 -2265 ($ (-297 (-159 (-360))))) (-15 -2265 ($ (-276 (-297 (-531))))) (-15 -2265 ($ (-276 (-297 (-360))))) (-15 -2265 ($ (-276 (-297 (-159 (-360)))))))) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-1106)) (T -379)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-651))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-644))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-651)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-644)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-531)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))) -(-13 (-376) (-10 -8 (-15 -2265 ($ (-311))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2265 ($ (-297 (-651)))) (-15 -2265 ($ (-297 (-649)))) (-15 -2265 ($ (-297 (-644)))) (-15 -2265 ($ (-276 (-297 (-651))))) (-15 -2265 ($ (-276 (-297 (-649))))) (-15 -2265 ($ (-276 (-297 (-644))))) (-15 -2265 ($ (-297 (-531)))) (-15 -2265 ($ (-297 (-360)))) (-15 -2265 ($ (-297 (-159 (-360))))) (-15 -2265 ($ (-276 (-297 (-531))))) (-15 -2265 ($ (-276 (-297 (-360))))) (-15 -2265 ($ (-276 (-297 (-159 (-360)))))))) -((-2247 (((-110) $ $) NIL)) (-1994 ((|#2| $) 36)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1642 (($ (-388 |#2|)) 85)) (-1764 (((-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))) $) 37)) (-3352 (($ $) 32) (($ $ (-721)) 34)) (-3318 (((-388 |#2|) $) 46)) (-2274 (($ (-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|)))) 31)) (-2265 (((-806) $) 120)) (-4020 (($ $) 33) (($ $ (-721)) 35)) (-2148 (((-110) $ $) NIL)) (-2237 (($ |#2| $) 39))) -(((-380 |#1| |#2|) (-13 (-1030) (-573 (-388 |#2|)) (-10 -8 (-15 -2237 ($ |#2| $)) (-15 -1642 ($ (-388 |#2|))) (-15 -1994 (|#2| $)) (-15 -1764 ((-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))))) (-15 -3352 ($ $)) (-15 -4020 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -4020 ($ $ (-721))))) (-13 (-344) (-140)) (-1160 |#1|)) (T -380)) -((-2237 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1160 *3)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-1994 (*1 *2 *1) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))) (-1764 (*1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4)))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4)))) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-3352 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1160 *2)))) (-4020 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1160 *2)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3))))) -(-13 (-1030) (-573 (-388 |#2|)) (-10 -8 (-15 -2237 ($ |#2| $)) (-15 -1642 ($ (-388 |#2|))) (-15 -1994 (|#2| $)) (-15 -1764 ((-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))))) (-15 -3352 ($ $)) (-15 -4020 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -4020 ($ $ (-721))))) -((-2247 (((-110) $ $) 9 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 15 (|has| |#1| (-829 (-360)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 14 (|has| |#1| (-829 (-531))))) (-1521 (((-1085) $) 13 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2529 (((-1049) $) 12 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2265 (((-806) $) 11 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2148 (((-110) $ $) 10 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360))))))) -(((-381 |#1|) (-133) (-1138)) (T -381)) -NIL -(-13 (-1138) (-10 -7 (IF (|has| |t#1| (-829 (-531))) (-6 (-829 (-531))) |%noBranch|) (IF (|has| |t#1| (-829 (-360))) (-6 (-829 (-360))) |%noBranch|))) -(((-99) -1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))) ((-572 (-806)) -1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-1030) -1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))) ((-1138) . T)) -((-3493 (($ $) 10) (($ $ (-721)) 11))) -(((-382 |#1|) (-10 -8 (-15 -3493 (|#1| |#1| (-721))) (-15 -3493 (|#1| |#1|))) (-383)) (T -382)) -NIL -(-10 -8 (-15 -3493 (|#1| |#1| (-721))) (-15 -3493 (|#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3493 (($ $) 76) (($ $ (-721)) 75)) (-2534 (((-110) $) 68)) (-3617 (((-783 (-864)) $) 78)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-3 (-721) "failed") $ $) 77)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2750 (((-3 $ "failed") $) 79)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64))) -(((-383) (-133)) (T -383)) -((-3617 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-783 (-864))))) (-2350 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-721)))) (-3493 (*1 *1 *1) (-4 *1 (-383))) (-3493 (*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-721))))) -(-13 (-344) (-138) (-10 -8 (-15 -3617 ((-783 (-864)) $)) (-15 -2350 ((-3 (-721) "failed") $ $)) (-15 -3493 ($ $)) (-15 -3493 ($ $ (-721))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-2947 (($ (-531) (-531)) 11) (($ (-531) (-531) (-864)) NIL)) (-2890 (((-864)) 16) (((-864) (-864)) NIL))) -(((-384 |#1|) (-10 -8 (-15 -2890 ((-864) (-864))) (-15 -2890 ((-864))) (-15 -2947 (|#1| (-531) (-531) (-864))) (-15 -2947 (|#1| (-531) (-531)))) (-385)) (T -384)) -((-2890 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385))))) -(-10 -8 (-15 -2890 ((-864) (-864))) (-15 -2890 ((-864))) (-15 -2947 (|#1| (-531) (-531) (-864))) (-15 -2947 (|#1| (-531) (-531)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 (((-531) $) 86)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2796 (($ $) 84)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 94)) (-2760 (((-110) $ $) 57)) (-3459 (((-531) $) 111)) (-4082 (($) 17 T CONST)) (-1694 (($ $) 83)) (-3154 (((-3 (-531) "failed") $) 99) (((-3 (-388 (-531)) "failed") $) 96)) (-2523 (((-531) $) 98) (((-388 (-531)) $) 95)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-3963 (((-864)) 127) (((-864) (-864)) 124 (|has| $ (-6 -4264)))) (-1599 (((-110) $) 109)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 90)) (-3617 (((-531) $) 133)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 93)) (-1899 (($ $) 89)) (-2985 (((-110) $) 110)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-4103 (($ $ $) 108) (($) 121 (-12 (-3745 (|has| $ (-6 -4264))) (-3745 (|has| $ (-6 -4256)))))) (-1241 (($ $ $) 107) (($) 120 (-12 (-3745 (|has| $ (-6 -4264))) (-3745 (|has| $ (-6 -4256)))))) (-2580 (((-531) $) 130)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3704 (((-864) (-531)) 123 (|has| $ (-6 -4264)))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2322 (($ $) 85)) (-2943 (($ $) 87)) (-2947 (($ (-531) (-531)) 135) (($ (-531) (-531) (-864)) 134)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-1790 (((-531) $) 131)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2890 (((-864)) 128) (((-864) (-864)) 125 (|has| $ (-6 -4264)))) (-3529 (((-864) (-531)) 122 (|has| $ (-6 -4264)))) (-3318 (((-360) $) 102) (((-208) $) 101) (((-835 (-360)) $) 91)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ (-531)) 100) (($ (-388 (-531))) 97)) (-2284 (((-721)) 28)) (-3831 (($ $) 88)) (-2138 (((-864)) 129) (((-864) (-864)) 126 (|has| $ (-6 -4264)))) (-3276 (((-864)) 132)) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 112)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 105)) (-2184 (((-110) $ $) 104)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 106)) (-2174 (((-110) $ $) 103)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 92)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64))) -(((-385) (-133)) (T -385)) -((-2947 (*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-385)))) (-2947 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-4 *1 (-385)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) (-3276 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) (-2580 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) (-2138 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-2890 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-3963 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-2138 (*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385)) (-5 *2 (-864)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385)) (-5 *2 (-864)))) (-4103 (*1 *1) (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264))) (-3745 (|has| *1 (-6 -4256))))) (-1241 (*1 *1) (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264))) (-3745 (|has| *1 (-6 -4256)))))) -(-13 (-995) (-10 -8 (-6 -4148) (-15 -2947 ($ (-531) (-531))) (-15 -2947 ($ (-531) (-531) (-864))) (-15 -3617 ((-531) $)) (-15 -3276 ((-864))) (-15 -1790 ((-531) $)) (-15 -2580 ((-531) $)) (-15 -2138 ((-864))) (-15 -2890 ((-864))) (-15 -3963 ((-864))) (IF (|has| $ (-6 -4264)) (PROGN (-15 -2138 ((-864) (-864))) (-15 -2890 ((-864) (-864))) (-15 -3963 ((-864) (-864))) (-15 -3704 ((-864) (-531))) (-15 -3529 ((-864) (-531)))) |%noBranch|) (IF (|has| $ (-6 -4256)) |%noBranch| (IF (|has| $ (-6 -4264)) |%noBranch| (PROGN (-15 -4103 ($)) (-15 -1241 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-573 (-208)) . T) ((-573 (-360)) . T) ((-573 (-835 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-829 (-360)) . T) ((-863) . T) ((-943) . T) ((-962) . T) ((-995) . T) ((-977 (-388 (-531))) . T) ((-977 (-531)) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-3261 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 20))) -(((-386 |#1| |#2|) (-10 -7 (-15 -3261 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-523) (-523)) (T -386)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6))))) -(-10 -7 (-15 -3261 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) -((-3261 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 13))) -(((-387 |#1| |#2|) (-10 -7 (-15 -3261 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-523) (-523)) (T -387)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6))))) -(-10 -7 (-15 -3261 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 13)) (-1317 ((|#1| $) 21 (|has| |#1| (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| |#1| (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 17) (((-3 (-1102) "failed") $) NIL (|has| |#1| (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) 70 (|has| |#1| (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531))))) (-2523 ((|#1| $) 15) (((-1102) $) NIL (|has| |#1| (-977 (-1102)))) (((-388 (-531)) $) 67 (|has| |#1| (-977 (-531)))) (((-531) $) NIL (|has| |#1| (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 50)) (-1381 (($) NIL (|has| |#1| (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| |#1| (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| |#1| (-829 (-360))))) (-3481 (((-110) $) 64)) (-3027 (($ $) NIL)) (-1840 ((|#1| $) 71)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2985 (((-110) $) NIL (|has| |#1| (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 97)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| |#1| (-289)))) (-2943 ((|#1| $) 28 (|has| |#1| (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 135 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 131 (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) NIL)) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2842 (($ $) NIL)) (-1853 ((|#1| $) 73)) (-3318 (((-835 (-531)) $) NIL (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#1| (-573 (-835 (-360))))) (((-507) $) NIL (|has| |#1| (-573 (-507)))) (((-360) $) NIL (|has| |#1| (-962))) (((-208) $) NIL (|has| |#1| (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 10) (($ (-1102)) NIL (|has| |#1| (-977 (-1102))))) (-2750 (((-3 $ "failed") $) 99 (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 100)) (-3831 ((|#1| $) 26 (|has| |#1| (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| |#1| (-770)))) (-3035 (($) 22 T CONST)) (-3050 (($) 8 T CONST)) (-4231 (((-1085) $) 43 (-12 (|has| |#1| (-516)) (|has| |#1| (-778)))) (((-1085) $ (-110)) 44 (-12 (|has| |#1| (-516)) (|has| |#1| (-778)))) (((-1189) (-772) $) 45 (-12 (|has| |#1| (-516)) (|has| |#1| (-778)))) (((-1189) (-772) $ (-110)) 46 (-12 (|has| |#1| (-516)) (|has| |#1| (-778))))) (-4020 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 56)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) 24 (|has| |#1| (-797)))) (-2263 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2250 (($ $) 25) (($ $ $) 55)) (-2237 (($ $ $) 53)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 125)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 60) (($ $ $) 57) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-388 |#1|) (-13 (-934 |#1|) (-10 -7 (IF (|has| |#1| (-516)) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4260)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4271)) (-6 -4260) |%noBranch|) |%noBranch|) |%noBranch|))) (-523)) (T -388)) -NIL -(-13 (-934 |#1|) (-10 -7 (IF (|has| |#1| (-516)) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4260)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4271)) (-6 -4260) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1849 (((-639 |#2|) (-1184 $)) NIL) (((-639 |#2|)) 18)) (-2767 (($ (-1184 |#2|) (-1184 $)) NIL) (($ (-1184 |#2|)) 24)) (-1982 (((-639 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) $) 38)) (-1233 ((|#3| $) 60)) (-3176 ((|#2| (-1184 $)) NIL) ((|#2|) 20)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $) 22) (((-639 |#2|) (-1184 $)) 36)) (-3318 (((-1184 |#2|) $) 11) (($ (-1184 |#2|)) 13)) (-3369 ((|#3| $) 52))) -(((-389 |#1| |#2| |#3|) (-10 -8 (-15 -1982 ((-639 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -1849 ((-639 |#2|))) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 (|#3| |#1|)) (-15 -3369 (|#3| |#1|)) (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|)))) (-390 |#2| |#3|) (-162) (-1160 |#2|)) (T -389)) -((-1849 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)) (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5)))) (-3176 (*1 *2) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4)) (-4 *3 (-390 *2 *4))))) -(-10 -8 (-15 -1982 ((-639 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -1849 ((-639 |#2|))) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 (|#3| |#1|)) (-15 -3369 (|#3| |#1|)) (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1849 (((-639 |#1|) (-1184 $)) 44) (((-639 |#1|)) 59)) (-1354 ((|#1| $) 50)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46) (($ (-1184 |#1|)) 62)) (-1982 (((-639 |#1|) $ (-1184 $)) 51) (((-639 |#1|) $) 57)) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-864)) 52)) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 49)) (-1233 ((|#2| $) 42 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3176 ((|#1| (-1184 $)) 45) ((|#1|) 58)) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47) (((-1184 |#1|) $) 64) (((-639 |#1|) (-1184 $)) 63)) (-3318 (((-1184 |#1|) $) 61) (($ (-1184 |#1|)) 60)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35)) (-2750 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-3369 ((|#2| $) 43)) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 65)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-390 |#1| |#2|) (-133) (-162) (-1160 |t#1|)) (T -390)) -((-3523 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *1)) (-4 *1 (-390 *3 *4)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1160 *3)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *3)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1160 *3)))) (-1849 (*1 *2) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-639 *3)))) (-3176 (*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-639 *3))))) -(-13 (-351 |t#1| |t#2|) (-10 -8 (-15 -3523 ((-1184 $))) (-15 -3348 ((-1184 |t#1|) $)) (-15 -3348 ((-639 |t#1|) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|))) (-15 -3318 ((-1184 |t#1|) $)) (-15 -3318 ($ (-1184 |t#1|))) (-15 -1849 ((-639 |t#1|))) (-15 -3176 (|t#1|)) (-15 -1982 ((-639 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-351 |#1| |#2|) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) 27) (((-3 (-531) "failed") $) 19)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) 24) (((-531) $) 14)) (-2265 (($ |#2|) NIL) (($ (-388 (-531))) 22) (($ (-531)) 11))) -(((-391 |#1| |#2|) (-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|))) (-392 |#2|) (-1138)) (T -391)) -NIL -(-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|))) -((-3154 (((-3 |#1| "failed") $) 7) (((-3 (-388 (-531)) "failed") $) 16 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 13 (|has| |#1| (-977 (-531))))) (-2523 ((|#1| $) 8) (((-388 (-531)) $) 15 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 12 (|has| |#1| (-977 (-531))))) (-2265 (($ |#1|) 6) (($ (-388 (-531))) 17 (|has| |#1| (-977 (-388 (-531))))) (($ (-531)) 14 (|has| |#1| (-977 (-531)))))) -(((-392 |#1|) (-133) (-1138)) (T -392)) -NIL -(-13 (-977 |t#1|) (-10 -7 (IF (|has| |t#1| (-977 (-531))) (-6 (-977 (-531))) |%noBranch|) (IF (|has| |t#1| (-977 (-388 (-531)))) (-6 (-977 (-388 (-531)))) |%noBranch|))) -(((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T)) -((-3261 (((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)) 33))) -(((-393 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) (-289) (-934 |#1|) (-1160 |#2|) (-13 (-390 |#2| |#3|) (-977 |#2|)) (-289) (-934 |#5|) (-1160 |#6|) (-13 (-390 |#6| |#7|) (-977 |#6|))) (T -393)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) (-4 *6 (-934 *5)) (-4 *7 (-1160 *6)) (-4 *8 (-13 (-390 *6 *7) (-977 *6))) (-4 *9 (-289)) (-4 *10 (-934 *9)) (-4 *11 (-1160 *10)) (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-390 *10 *11) (-977 *10)))))) -(-10 -7 (-15 -3261 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) -((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-1755 ((|#4| (-721) (-1184 |#4|)) 56)) (-3481 (((-110) $) NIL)) (-1840 (((-1184 |#4|) $) 17)) (-1899 ((|#2| $) 54)) (-1949 (($ $) 139)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 100)) (-2003 (($ (-1184 |#4|)) 99)) (-2529 (((-1049) $) NIL)) (-1853 ((|#1| $) 18)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 134)) (-3523 (((-1184 |#4|) $) 129)) (-3050 (($) 11 T CONST)) (-2148 (((-110) $ $) 40)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 122)) (* (($ $ $) 121))) -(((-394 |#1| |#2| |#3| |#4|) (-13 (-453) (-10 -8 (-15 -2003 ($ (-1184 |#4|))) (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -1840 ((-1184 |#4|) $)) (-15 -1853 (|#1| $)) (-15 -1949 ($ $)) (-15 -1755 (|#4| (-721) (-1184 |#4|))))) (-289) (-934 |#1|) (-1160 |#2|) (-13 (-390 |#2| |#3|) (-977 |#2|))) (T -394)) -((-2003 (*1 *1 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *3 (-289)) (-5 *1 (-394 *3 *4 *5 *6)))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))))) (-1899 (*1 *2 *1) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-977 *2))))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))))) (-1853 (*1 *2 *1) (-12 (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) (-4 *2 (-289)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3))))) (-1949 (*1 *1 *1) (-12 (-4 *2 (-289)) (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3))))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-1184 *2)) (-4 *5 (-289)) (-4 *6 (-934 *5)) (-4 *2 (-13 (-390 *6 *7) (-977 *6))) (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1160 *6))))) -(-13 (-453) (-10 -8 (-15 -2003 ($ (-1184 |#4|))) (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -1840 ((-1184 |#4|) $)) (-15 -1853 (|#1| $)) (-15 -1949 ($ $)) (-15 -1755 (|#4| (-721) (-1184 |#4|))))) -((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1899 ((|#2| $) 61)) (-3731 (($ (-1184 |#4|)) 25) (($ (-394 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-977 |#2|)))) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 34)) (-3523 (((-1184 |#4|) $) 26)) (-3050 (($) 23 T CONST)) (-2148 (((-110) $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ $ $) 72))) -(((-395 |#1| |#2| |#3| |#4| |#5|) (-13 (-677) (-10 -8 (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -3731 ($ (-1184 |#4|))) (IF (|has| |#4| (-977 |#2|)) (-15 -3731 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-289) (-934 |#1|) (-1160 |#2|) (-390 |#2| |#3|) (-1184 |#4|)) (T -395)) -((-3523 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-4 *6 (-390 *4 *5)) (-14 *7 *2))) (-1899 (*1 *2 *1) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4)) (-14 *6 (-1184 *5)))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-977 *4)) (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *6 (-390 *4 *5)) (-14 *7 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))))) -(-13 (-677) (-10 -8 (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -3731 ($ (-1184 |#4|))) (IF (|has| |#4| (-977 |#2|)) (-15 -3731 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3261 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) (-398 |#2|) (-162) (-398 |#4|) (-162)) (T -396)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5))))) -(-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) -((-3887 (((-3 $ "failed")) 86)) (-2550 (((-1184 (-639 |#2|)) (-1184 $)) NIL) (((-1184 (-639 |#2|))) 91)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 85)) (-2783 (((-3 $ "failed")) 84)) (-3939 (((-639 |#2|) (-1184 $)) NIL) (((-639 |#2|)) 102)) (-2264 (((-639 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) $) 110)) (-3668 (((-1098 (-895 |#2|))) 55)) (-3960 ((|#2| (-1184 $)) NIL) ((|#2|) 106)) (-2767 (($ (-1184 |#2|) (-1184 $)) NIL) (($ (-1184 |#2|)) 112)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 83)) (-2816 (((-3 $ "failed")) 75)) (-1950 (((-639 |#2|) (-1184 $)) NIL) (((-639 |#2|)) 100)) (-3405 (((-639 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) $) 108)) (-2280 (((-1098 (-895 |#2|))) 54)) (-3579 ((|#2| (-1184 $)) NIL) ((|#2|) 104)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $) 111) (((-639 |#2|) (-1184 $)) 118)) (-3318 (((-1184 |#2|) $) 96) (($ (-1184 |#2|)) 98)) (-2570 (((-598 (-895 |#2|)) (-1184 $)) NIL) (((-598 (-895 |#2|))) 94)) (-2979 (($ (-639 |#2|) $) 90))) -(((-397 |#1| |#2|) (-10 -8 (-15 -2979 (|#1| (-639 |#2|) |#1|)) (-15 -3668 ((-1098 (-895 |#2|)))) (-15 -2280 ((-1098 (-895 |#2|)))) (-15 -2264 ((-639 |#2|) |#1|)) (-15 -3405 ((-639 |#2|) |#1|)) (-15 -3939 ((-639 |#2|))) (-15 -1950 ((-639 |#2|))) (-15 -3960 (|#2|)) (-15 -3579 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -2570 ((-598 (-895 |#2|)))) (-15 -2550 ((-1184 (-639 |#2|)))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -3887 ((-3 |#1| "failed"))) (-15 -2783 ((-3 |#1| "failed"))) (-15 -2816 ((-3 |#1| "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -4152 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|))) (-15 -2570 ((-598 (-895 |#2|)) (-1184 |#1|)))) (-398 |#2|) (-162)) (T -397)) -((-2550 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2570 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-598 (-895 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3579 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-3960 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-1950 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3939 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2280 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3668 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4))))) -(-10 -8 (-15 -2979 (|#1| (-639 |#2|) |#1|)) (-15 -3668 ((-1098 (-895 |#2|)))) (-15 -2280 ((-1098 (-895 |#2|)))) (-15 -2264 ((-639 |#2|) |#1|)) (-15 -3405 ((-639 |#2|) |#1|)) (-15 -3939 ((-639 |#2|))) (-15 -1950 ((-639 |#2|))) (-15 -3960 (|#2|)) (-15 -3579 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -2570 ((-598 (-895 |#2|)))) (-15 -2550 ((-1184 (-639 |#2|)))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -3887 ((-3 |#1| "failed"))) (-15 -2783 ((-3 |#1| "failed"))) (-15 -2816 ((-3 |#1| "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -4152 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|))) (-15 -2570 ((-598 (-895 |#2|)) (-1184 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3887 (((-3 $ "failed")) 37 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-2550 (((-1184 (-639 |#1|)) (-1184 $)) 78) (((-1184 (-639 |#1|))) 100)) (-2022 (((-1184 $)) 81)) (-4082 (($) 17 T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 40 (|has| |#1| (-523)))) (-2783 (((-3 $ "failed")) 38 (|has| |#1| (-523)))) (-3939 (((-639 |#1|) (-1184 $)) 65) (((-639 |#1|)) 92)) (-1668 ((|#1| $) 74)) (-2264 (((-639 |#1|) $ (-1184 $)) 76) (((-639 |#1|) $) 90)) (-1387 (((-3 $ "failed") $) 45 (|has| |#1| (-523)))) (-3668 (((-1098 (-895 |#1|))) 88 (|has| |#1| (-344)))) (-1666 (($ $ (-864)) 28)) (-2065 ((|#1| $) 72)) (-3415 (((-1098 |#1|) $) 42 (|has| |#1| (-523)))) (-3960 ((|#1| (-1184 $)) 67) ((|#1|) 94)) (-3586 (((-1098 |#1|) $) 63)) (-1437 (((-110)) 57)) (-2767 (($ (-1184 |#1|) (-1184 $)) 69) (($ (-1184 |#1|)) 98)) (-3622 (((-3 $ "failed") $) 47 (|has| |#1| (-523)))) (-2277 (((-864)) 80)) (-2629 (((-110)) 54)) (-2083 (($ $ (-864)) 33)) (-2790 (((-110)) 50)) (-3769 (((-110)) 48)) (-2298 (((-110)) 52)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 41 (|has| |#1| (-523)))) (-2816 (((-3 $ "failed")) 39 (|has| |#1| (-523)))) (-1950 (((-639 |#1|) (-1184 $)) 66) (((-639 |#1|)) 93)) (-1807 ((|#1| $) 75)) (-3405 (((-639 |#1|) $ (-1184 $)) 77) (((-639 |#1|) $) 91)) (-2234 (((-3 $ "failed") $) 46 (|has| |#1| (-523)))) (-2280 (((-1098 (-895 |#1|))) 89 (|has| |#1| (-344)))) (-2585 (($ $ (-864)) 29)) (-1288 ((|#1| $) 73)) (-1480 (((-1098 |#1|) $) 43 (|has| |#1| (-523)))) (-3579 ((|#1| (-1184 $)) 68) ((|#1|) 95)) (-1875 (((-1098 |#1|) $) 64)) (-2239 (((-110)) 58)) (-1521 (((-1085) $) 9)) (-4223 (((-110)) 49)) (-1561 (((-110)) 51)) (-3036 (((-110)) 53)) (-2529 (((-1049) $) 10)) (-1513 (((-110)) 56)) (-1785 ((|#1| $ (-531)) 101)) (-3348 (((-1184 |#1|) $ (-1184 $)) 71) (((-639 |#1|) (-1184 $) (-1184 $)) 70) (((-1184 |#1|) $) 103) (((-639 |#1|) (-1184 $)) 102)) (-3318 (((-1184 |#1|) $) 97) (($ (-1184 |#1|)) 96)) (-2570 (((-598 (-895 |#1|)) (-1184 $)) 79) (((-598 (-895 |#1|))) 99)) (-3214 (($ $ $) 25)) (-1817 (((-110)) 62)) (-2265 (((-806) $) 11)) (-3523 (((-1184 $)) 104)) (-2273 (((-598 (-1184 |#1|))) 44 (|has| |#1| (-523)))) (-2801 (($ $ $ $) 26)) (-1431 (((-110)) 60)) (-2979 (($ (-639 |#1|) $) 87)) (-1605 (($ $ $) 24)) (-2578 (((-110)) 61)) (-1964 (((-110)) 59)) (-2819 (((-110)) 55)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-398 |#1|) (-133) (-162)) (T -398)) -((-3523 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-398 *3)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-2550 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 (-639 *3))))) (-2570 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-598 (-895 *3))))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3579 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3960 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-1950 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-3939 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-2280 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1098 (-895 *3))))) (-3668 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1098 (-895 *3))))) (-2979 (*1 *1 *2 *1) (-12 (-5 *2 (-639 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162))))) -(-13 (-348 |t#1|) (-10 -8 (-15 -3523 ((-1184 $))) (-15 -3348 ((-1184 |t#1|) $)) (-15 -3348 ((-639 |t#1|) (-1184 $))) (-15 -1785 (|t#1| $ (-531))) (-15 -2550 ((-1184 (-639 |t#1|)))) (-15 -2570 ((-598 (-895 |t#1|)))) (-15 -2767 ($ (-1184 |t#1|))) (-15 -3318 ((-1184 |t#1|) $)) (-15 -3318 ($ (-1184 |t#1|))) (-15 -3579 (|t#1|)) (-15 -3960 (|t#1|)) (-15 -1950 ((-639 |t#1|))) (-15 -3939 ((-639 |t#1|))) (-15 -3405 ((-639 |t#1|) $)) (-15 -2264 ((-639 |t#1|) $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -2280 ((-1098 (-895 |t#1|)))) (-15 -3668 ((-1098 (-895 |t#1|))))) |%noBranch|) (-15 -2979 ($ (-639 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-348 |#1|) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-671) . T) ((-695 |#1|) . T) ((-712) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 42)) (-4023 (($ $) 57)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 146)) (-3258 (($ $) NIL)) (-2921 (((-110) $) 36)) (-3887 ((|#1| $) 13)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-1142)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-1142)))) (-3984 (($ |#1| (-531)) 31)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 116)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 55)) (-3622 (((-3 $ "failed") $) 131)) (-1609 (((-3 (-388 (-531)) "failed") $) 63 (|has| |#1| (-516)))) (-3004 (((-110) $) 59 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 70 (|has| |#1| (-516)))) (-2598 (($ |#1| (-531)) 33)) (-2534 (((-110) $) 152 (|has| |#1| (-1142)))) (-3481 (((-110) $) 43)) (-2688 (((-721) $) 38)) (-2061 (((-3 "nil" "sqfr" "irred" "prime") $ (-531)) 137)) (-3616 ((|#1| $ (-531)) 136)) (-3786 (((-531) $ (-531)) 135)) (-1640 (($ |#1| (-531)) 30)) (-3261 (($ (-1 |#1| |#1|) $) 143)) (-1577 (($ |#1| (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531))))) 58)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1299 (($ |#1| (-531)) 32)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) 147 (|has| |#1| (-432)))) (-2206 (($ |#1| (-531) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2721 (((-598 (-2 (|:| -2552 |#1|) (|:| -1790 (-531)))) $) 54)) (-1292 (((-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))) $) 12)) (-2552 (((-399 $) $) NIL (|has| |#1| (-1142)))) (-3609 (((-3 $ "failed") $ $) 138)) (-1790 (((-531) $) 132)) (-2140 ((|#1| $) 56)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 79 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 85 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) $) NIL (|has| |#1| (-492 (-1102) $))) (($ $ (-598 (-1102)) (-598 $)) 86 (|has| |#1| (-492 (-1102) $))) (($ $ (-598 (-276 $))) 82 (|has| |#1| (-291 $))) (($ $ (-276 $)) NIL (|has| |#1| (-291 $))) (($ $ $ $) NIL (|has| |#1| (-291 $))) (($ $ (-598 $) (-598 $)) NIL (|has| |#1| (-291 $)))) (-1785 (($ $ |#1|) 71 (|has| |#1| (-268 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-268 $ $)))) (-3352 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3318 (((-507) $) 27 (|has| |#1| (-573 (-507)))) (((-360) $) 92 (|has| |#1| (-962))) (((-208) $) 95 (|has| |#1| (-962)))) (-2265 (((-806) $) 114) (($ (-531)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531)))))) (-2284 (((-721)) 48)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 40 T CONST)) (-3050 (($) 39 T CONST)) (-4020 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2148 (((-110) $ $) 96)) (-2250 (($ $) 128) (($ $ $) NIL)) (-2237 (($ $ $) 140)) (** (($ $ (-864)) NIL) (($ $ (-721)) 102)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-399 |#1|) (-13 (-523) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2140 (|#1| $)) (-15 -1790 ((-531) $)) (-15 -1577 ($ |#1| (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))))) (-15 -1292 ((-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))) $)) (-15 -1640 ($ |#1| (-531))) (-15 -2721 ((-598 (-2 (|:| -2552 |#1|) (|:| -1790 (-531)))) $)) (-15 -1299 ($ |#1| (-531))) (-15 -3786 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2061 ((-3 "nil" "sqfr" "irred" "prime") $ (-531))) (-15 -2688 ((-721) $)) (-15 -2598 ($ |#1| (-531))) (-15 -3984 ($ |#1| (-531))) (-15 -2206 ($ |#1| (-531) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3887 (|#1| $)) (-15 -4023 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-962)) (-6 (-962)) |%noBranch|) (IF (|has| |#1| (-1142)) (-6 (-1142)) |%noBranch|) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-492 (-1102) $)) (-6 (-492 (-1102) $)) |%noBranch|))) (-523)) (T -399)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-523)) (-5 *1 (-399 *3)))) (-2140 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-1577 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-531))))) (-4 *2 (-523)) (-5 *1 (-399 *2)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-531))))) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-1640 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -1790 (-531))))) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-1299 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3786 (*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-2061 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *4)) (-4 *4 (-523)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-2598 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3984 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-2206 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-531)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3887 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-4023 (*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523)))) (-1609 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523))))) -(-13 (-523) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2140 (|#1| $)) (-15 -1790 ((-531) $)) (-15 -1577 ($ |#1| (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))))) (-15 -1292 ((-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))) $)) (-15 -1640 ($ |#1| (-531))) (-15 -2721 ((-598 (-2 (|:| -2552 |#1|) (|:| -1790 (-531)))) $)) (-15 -1299 ($ |#1| (-531))) (-15 -3786 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2061 ((-3 "nil" "sqfr" "irred" "prime") $ (-531))) (-15 -2688 ((-721) $)) (-15 -2598 ($ |#1| (-531))) (-15 -3984 ($ |#1| (-531))) (-15 -2206 ($ |#1| (-531) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3887 (|#1| $)) (-15 -4023 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-962)) (-6 (-962)) |%noBranch|) (IF (|has| |#1| (-1142)) (-6 (-1142)) |%noBranch|) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-492 (-1102) $)) (-6 (-492 (-1102) $)) |%noBranch|))) -((-2522 (((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|)) 21)) (-4006 (((-399 |#1|) (-399 |#1|) (-399 |#1|)) 16))) -(((-400 |#1|) (-10 -7 (-15 -2522 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -4006 ((-399 |#1|) (-399 |#1|) (-399 |#1|)))) (-523)) (T -400)) -((-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-523)) (-5 *1 (-400 *3)))) (-2522 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-523)) (-5 *2 (-399 *4)) (-5 *1 (-400 *4))))) -(-10 -7 (-15 -2522 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -4006 ((-399 |#1|) (-399 |#1|) (-399 |#1|)))) -((-1585 ((|#2| |#2|) 166)) (-3520 (((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110)) 57))) -(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3520 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110))) (-15 -1585 (|#2| |#2|))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|)) (-1102) |#2|) (T -401)) -((-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1124) (-411 *3))) (-14 *4 (-1102)) (-14 *5 *2))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-14 *6 (-1102)) (-14 *7 *3)))) -(-10 -7 (-15 -3520 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110))) (-15 -1585 (|#2| |#2|))) -((-3261 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-986) (-797)) (-411 |#1|) (-13 (-986) (-797)) (-411 |#3|)) (T -402)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-986) (-797))) (-4 *6 (-13 (-986) (-797))) (-4 *2 (-411 *6)) (-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5))))) -(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|))) -((-1585 ((|#2| |#2|) 90)) (-3702 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085)) 48)) (-2473 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085)) 154))) -(((-403 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3702 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -2473 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -1585 (|#2| |#2|))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|) (-10 -8 (-15 -2265 ($ |#3|)))) (-795) (-13 (-1162 |#2| |#3|) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $)))) (-925 |#4|) (-1102)) (T -403)) -((-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *2 (-13 (-27) (-1124) (-411 *3) (-10 -8 (-15 -2265 ($ *4))))) (-4 *4 (-795)) (-4 *5 (-13 (-1162 *2 *4) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-925 *5)) (-14 *7 (-1102)))) (-2473 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7))))) (-4 *7 (-795)) (-4 *8 (-13 (-1162 *3 *7) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8)) (-14 *10 (-1102)))) (-3702 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7))))) (-4 *7 (-795)) (-4 *8 (-13 (-1162 *3 *7) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8)) (-14 *10 (-1102))))) -(-10 -7 (-15 -3702 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -2473 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -1585 (|#2| |#2|))) -((-3203 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1760 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3261 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1030) (-406 |#1|) (-1030) (-406 |#3|)) (T -404)) -((-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1030)) (-4 *5 (-1030)) (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1030)) (-4 *2 (-1030)) (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5))))) -(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3847 (($) 44)) (-4210 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3252 (($ $ $) 39)) (-3890 (((-110) $ $) 28)) (-3006 (((-721)) 47)) (-1245 (($ (-598 |#2|)) 20) (($) NIL)) (-1381 (($) 53)) (-2170 (((-110) $ $) 13)) (-4103 ((|#2| $) 61)) (-1241 ((|#2| $) 59)) (-2211 (((-864) $) 55)) (-1301 (($ $ $) 35)) (-1889 (($ (-864)) 50)) (-1786 (($ $ |#2|) NIL) (($ $ $) 38)) (-2539 (((-721) (-1 (-110) |#2|) $) NIL) (((-721) |#2| $) 26)) (-2274 (($ (-598 |#2|)) 24)) (-1595 (($ $) 46)) (-2265 (((-806) $) 33)) (-4112 (((-721) $) 21)) (-3445 (($ (-598 |#2|)) 19) (($) NIL)) (-2148 (((-110) $ $) 16))) -(((-405 |#1| |#2|) (-10 -8 (-15 -3006 ((-721))) (-15 -1889 (|#1| (-864))) (-15 -2211 ((-864) |#1|)) (-15 -1381 (|#1|)) (-15 -4103 (|#2| |#1|)) (-15 -1241 (|#2| |#1|)) (-15 -3847 (|#1|)) (-15 -1595 (|#1| |#1|)) (-15 -4112 ((-721) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2170 ((-110) |#1| |#1|)) (-15 -3445 (|#1|)) (-15 -3445 (|#1| (-598 |#2|))) (-15 -1245 (|#1|)) (-15 -1245 (|#1| (-598 |#2|))) (-15 -1301 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -3890 ((-110) |#1| |#1|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#2| |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|))) (-406 |#2|) (-1030)) (T -405)) -((-3006 (*1 *2) (-12 (-4 *4 (-1030)) (-5 *2 (-721)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4))))) -(-10 -8 (-15 -3006 ((-721))) (-15 -1889 (|#1| (-864))) (-15 -2211 ((-864) |#1|)) (-15 -1381 (|#1|)) (-15 -4103 (|#2| |#1|)) (-15 -1241 (|#2| |#1|)) (-15 -3847 (|#1|)) (-15 -1595 (|#1| |#1|)) (-15 -4112 ((-721) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2170 ((-110) |#1| |#1|)) (-15 -3445 (|#1|)) (-15 -3445 (|#1| (-598 |#2|))) (-15 -1245 (|#1|)) (-15 -1245 (|#1| (-598 |#2|))) (-15 -1301 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -3890 ((-110) |#1| |#1|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#2| |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|))) -((-2247 (((-110) $ $) 19)) (-3847 (($) 67 (|has| |#1| (-349)))) (-4210 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3252 (($ $ $) 78)) (-3890 (((-110) $ $) 79)) (-4058 (((-110) $ (-721)) 8)) (-3006 (((-721)) 61 (|has| |#1| (-349)))) (-1245 (($ (-598 |#1|)) 74) (($) 73)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-1381 (($) 64 (|has| |#1| (-349)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 70)) (-3280 (((-110) $ (-721)) 9)) (-4103 ((|#1| $) 65 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1241 ((|#1| $) 66 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-2211 (((-864) $) 63 (|has| |#1| (-349)))) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22)) (-1301 (($ $ $) 75)) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-1889 (($ (-864)) 62 (|has| |#1| (-349)))) (-2529 (((-1049) $) 21)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1786 (($ $ |#1|) 77) (($ $ $) 76)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-1595 (($ $) 68 (|has| |#1| (-349)))) (-2265 (((-806) $) 18)) (-4112 (((-721) $) 69)) (-3445 (($ (-598 |#1|)) 72) (($) 71)) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-406 |#1|) (-133) (-1030)) (T -406)) -((-4112 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1030)) (-5 *2 (-721)))) (-1595 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-349)))) (-3847 (*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1030)))) (-1241 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797))))) -(-13 (-212 |t#1|) (-1028 |t#1|) (-10 -8 (-6 -4273) (-15 -4112 ((-721) $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-349)) (-15 -1595 ($ $)) (-15 -3847 ($))) |%noBranch|) (IF (|has| |t#1| (-797)) (PROGN (-15 -1241 (|t#1| $)) (-15 -4103 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-212 |#1|) . T) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-349) |has| |#1| (-349)) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1028 |#1|) . T) ((-1030) . T) ((-1138) . T)) -((-4204 (((-548 |#2|) |#2| (-1102)) 36)) (-2987 (((-548 |#2|) |#2| (-1102)) 20)) (-1578 ((|#2| |#2| (-1102)) 25))) -(((-407 |#1| |#2|) (-10 -7 (-15 -2987 ((-548 |#2|) |#2| (-1102))) (-15 -4204 ((-548 |#2|) |#2| (-1102))) (-15 -1578 (|#2| |#2| (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-29 |#1|))) (T -407)) -((-1578 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1124) (-29 *4))))) (-4204 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1124) (-29 *5))))) (-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1124) (-29 *5)))))) -(-10 -7 (-15 -2987 ((-548 |#2|) |#2| (-1102))) (-15 -4204 ((-548 |#2|) |#2| (-1102))) (-15 -1578 (|#2| |#2| (-1102)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-2381 (($ |#2| |#1|) 35)) (-2515 (($ |#2| |#1|) 33)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-312 |#2|)) 25)) (-2284 (((-721)) NIL)) (-3035 (($) 10 T CONST)) (-3050 (($) 16 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 34)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-408 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4260)) (IF (|has| |#1| (-6 -4260)) (-6 -4260) |%noBranch|) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-312 |#2|))) (-15 -2381 ($ |#2| |#1|)) (-15 -2515 ($ |#2| |#1|)))) (-13 (-162) (-37 (-388 (-531)))) (-13 (-797) (-21))) (T -408)) -((-2265 (*1 *1 *2) (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-531))))) (-4 *3 (-13 (-797) (-21))))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-797) (-21))) (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))))) (-2381 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))) (-4 *2 (-13 (-797) (-21))))) (-2515 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))) (-4 *2 (-13 (-797) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4260)) (IF (|has| |#1| (-6 -4260)) (-6 -4260) |%noBranch|) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-312 |#2|))) (-15 -2381 ($ |#2| |#1|)) (-15 -2515 ($ |#2| |#1|)))) -((-1788 (((-3 |#2| (-598 |#2|)) |#2| (-1102)) 109))) -(((-409 |#1| |#2|) (-10 -7 (-15 -1788 ((-3 |#2| (-598 |#2|)) |#2| (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-29 |#1|))) (T -409)) -((-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 *3 (-598 *3))) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1124) (-902) (-29 *5)))))) -(-10 -7 (-15 -1788 ((-3 |#2| (-598 |#2|)) |#2| (-1102)))) -((-2695 (((-598 (-1102)) $) 72)) (-2516 (((-388 (-1098 $)) $ (-571 $)) 273)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) 237)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 (-1102) "failed") $) 75) (((-3 (-531) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-388 (-895 |#2|)) "failed") $) 324) (((-3 (-895 |#2|) "failed") $) 235) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-571 $) $) NIL) (((-1102) $) 30) (((-531) $) NIL) ((|#2| $) 231) (((-388 (-895 |#2|)) $) 305) (((-895 |#2|) $) 232) (((-388 (-531)) $) NIL)) (-3254 (((-112) (-112)) 47)) (-3027 (($ $) 87)) (-1302 (((-3 (-571 $) "failed") $) 228)) (-2501 (((-598 (-571 $)) $) 229)) (-3443 (((-3 (-598 $) "failed") $) 247)) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) 254)) (-2077 (((-3 (-598 $) "failed") $) 245)) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 264)) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) 251) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) 219)) (-2435 (((-110) $) 19)) (-2448 ((|#2| $) 21)) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) 236) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 96) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1102)) 57) (($ $ (-598 (-1102))) 240) (($ $) 241) (($ $ (-112) $ (-1102)) 60) (($ $ (-598 (-112)) (-598 $) (-1102)) 67) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) 107) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) 242) (($ $ (-1102) (-721) (-1 $ (-598 $))) 94) (($ $ (-1102) (-721) (-1 $ $)) 93)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) 106)) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) 238)) (-2842 (($ $) 284)) (-3318 (((-835 (-531)) $) 257) (((-835 (-360)) $) 261) (($ (-399 $)) 320) (((-507) $) NIL)) (-2265 (((-806) $) 239) (($ (-571 $)) 84) (($ (-1102)) 26) (($ |#2|) NIL) (($ (-1054 |#2| (-571 $))) NIL) (($ (-388 |#2|)) 289) (($ (-895 (-388 |#2|))) 329) (($ (-388 (-895 (-388 |#2|)))) 301) (($ (-388 (-895 |#2|))) 295) (($ $) NIL) (($ (-895 |#2|)) 185) (($ (-388 (-531))) 334) (($ (-531)) NIL)) (-2284 (((-721)) 79)) (-3167 (((-110) (-112)) 41)) (-2507 (($ (-1102) $) 33) (($ (-1102) $ $) 34) (($ (-1102) $ $ $) 35) (($ (-1102) $ $ $ $) 36) (($ (-1102) (-598 $)) 39)) (* (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL))) -(((-410 |#1| |#2|) (-10 -8 (-15 * (|#1| (-864) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2284 ((-721))) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-895 |#2|) |#1|)) (-15 -3154 ((-3 (-895 |#2|) "failed") |#1|)) (-15 -2265 (|#1| (-895 |#2|))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2523 ((-388 (-895 |#2|)) |#1|)) (-15 -3154 ((-3 (-388 (-895 |#2|)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-895 |#2|)))) (-15 -2516 ((-388 (-1098 |#1|)) |#1| (-571 |#1|))) (-15 -2265 (|#1| (-388 (-895 (-388 |#2|))))) (-15 -2265 (|#1| (-895 (-388 |#2|)))) (-15 -2265 (|#1| (-388 |#2|))) (-15 -2842 (|#1| |#1|)) (-15 -3318 (|#1| (-399 |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| |#1|)))) (-15 -3058 ((-3 (-2 (|:| |val| |#1|) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-1102))) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-112))) (-15 -3027 (|#1| |#1|)) (-15 -2265 (|#1| (-1054 |#2| (-571 |#1|)))) (-15 -2124 ((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 |#1|))) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 |#1|) (-1102))) (-15 -4115 (|#1| |#1| (-112) |#1| (-1102))) (-15 -4115 (|#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1102)))) (-15 -4115 (|#1| |#1| (-1102))) (-15 -2507 (|#1| (-1102) (-598 |#1|))) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1|)) (-15 -2695 ((-598 (-1102)) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -2501 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -2265 (|#1| (-571 |#1|))) (-15 -2265 ((-806) |#1|))) (-411 |#2|) (-797)) (T -410)) -((-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-797)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5)))) (-2284 (*1 *2) (-12 (-4 *4 (-797)) (-5 *2 (-721)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) -(-10 -8 (-15 * (|#1| (-864) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2284 ((-721))) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-895 |#2|) |#1|)) (-15 -3154 ((-3 (-895 |#2|) "failed") |#1|)) (-15 -2265 (|#1| (-895 |#2|))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2523 ((-388 (-895 |#2|)) |#1|)) (-15 -3154 ((-3 (-388 (-895 |#2|)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-895 |#2|)))) (-15 -2516 ((-388 (-1098 |#1|)) |#1| (-571 |#1|))) (-15 -2265 (|#1| (-388 (-895 (-388 |#2|))))) (-15 -2265 (|#1| (-895 (-388 |#2|)))) (-15 -2265 (|#1| (-388 |#2|))) (-15 -2842 (|#1| |#1|)) (-15 -3318 (|#1| (-399 |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| |#1|)))) (-15 -3058 ((-3 (-2 (|:| |val| |#1|) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-1102))) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-112))) (-15 -3027 (|#1| |#1|)) (-15 -2265 (|#1| (-1054 |#2| (-571 |#1|)))) (-15 -2124 ((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 |#1|))) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 |#1|) (-1102))) (-15 -4115 (|#1| |#1| (-112) |#1| (-1102))) (-15 -4115 (|#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1102)))) (-15 -4115 (|#1| |#1| (-1102))) (-15 -2507 (|#1| (-1102) (-598 |#1|))) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1|)) (-15 -2695 ((-598 (-1102)) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -2501 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -2265 (|#1| (-571 |#1|))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 113 (|has| |#1| (-25)))) (-2695 (((-598 (-1102)) $) 200)) (-2516 (((-388 (-1098 $)) $ (-571 $)) 168 (|has| |#1| (-523)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 140 (|has| |#1| (-523)))) (-3258 (($ $) 141 (|has| |#1| (-523)))) (-2921 (((-110) $) 143 (|has| |#1| (-523)))) (-2410 (((-598 (-571 $)) $) 44)) (-2128 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3184 (($ $ (-276 $)) 56) (($ $ (-598 (-276 $))) 55) (($ $ (-598 (-571 $)) (-598 $)) 54)) (-3240 (($ $) 160 (|has| |#1| (-523)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-523)))) (-2760 (((-110) $ $) 151 (|has| |#1| (-523)))) (-4082 (($) 101 (-1435 (|has| |#1| (-1042)) (|has| |#1| (-25))) CONST)) (-3154 (((-3 (-571 $) "failed") $) 69) (((-3 (-1102) "failed") $) 213) (((-3 (-531) "failed") $) 206 (|has| |#1| (-977 (-531)))) (((-3 |#1| "failed") $) 204) (((-3 (-388 (-895 |#1|)) "failed") $) 166 (|has| |#1| (-523))) (((-3 (-895 |#1|) "failed") $) 120 (|has| |#1| (-986))) (((-3 (-388 (-531)) "failed") $) 95 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 (((-571 $) $) 68) (((-1102) $) 212) (((-531) $) 207 (|has| |#1| (-977 (-531)))) ((|#1| $) 203) (((-388 (-895 |#1|)) $) 165 (|has| |#1| (-523))) (((-895 |#1|) $) 119 (|has| |#1| (-986))) (((-388 (-531)) $) 94 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-3650 (($ $ $) 155 (|has| |#1| (-523)))) (-3073 (((-639 (-531)) (-639 $)) 134 (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 133 (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 132 (|has| |#1| (-986))) (((-639 |#1|) (-639 $)) 131 (|has| |#1| (-986)))) (-3622 (((-3 $ "failed") $) 103 (|has| |#1| (-1042)))) (-3630 (($ $ $) 154 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-523)))) (-2534 (((-110) $) 162 (|has| |#1| (-523)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 209 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 208 (|has| |#1| (-829 (-360))))) (-1238 (($ $) 51) (($ (-598 $)) 50)) (-4051 (((-598 (-112)) $) 43)) (-3254 (((-112) (-112)) 42)) (-3481 (((-110) $) 102 (|has| |#1| (-1042)))) (-4250 (((-110) $) 22 (|has| $ (-977 (-531))))) (-3027 (($ $) 183 (|has| |#1| (-986)))) (-1840 (((-1054 |#1| (-571 $)) $) 184 (|has| |#1| (-986)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-523)))) (-2733 (((-1098 $) (-571 $)) 25 (|has| $ (-986)))) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-3261 (($ (-1 $ $) (-571 $)) 36)) (-1302 (((-3 (-571 $) "failed") $) 46)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-523))) (($ $ $) 146 (|has| |#1| (-523)))) (-1521 (((-1085) $) 9)) (-2501 (((-598 (-571 $)) $) 45)) (-1930 (($ (-112) $) 38) (($ (-112) (-598 $)) 37)) (-3443 (((-3 (-598 $) "failed") $) 189 (|has| |#1| (-1042)))) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) 180 (|has| |#1| (-986)))) (-2077 (((-3 (-598 $) "failed") $) 187 (|has| |#1| (-25)))) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) 188 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) 182 (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) 181 (|has| |#1| (-986)))) (-4247 (((-110) $ (-112)) 40) (((-110) $ (-1102)) 39)) (-2422 (($ $) 105 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-4194 (((-721) $) 47)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 202)) (-2448 ((|#1| $) 201)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-523)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-523))) (($ $ $) 144 (|has| |#1| (-523)))) (-2781 (((-110) $ $) 35) (((-110) $ (-1102)) 34)) (-2552 (((-399 $) $) 159 (|has| |#1| (-523)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-523))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ $) 139 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-523)))) (-1787 (((-110) $) 23 (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) 67) (($ $ (-598 (-571 $)) (-598 $)) 66) (($ $ (-598 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-598 $) (-598 $)) 62) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 33) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 32) (($ $ (-1102) (-1 $ (-598 $))) 31) (($ $ (-1102) (-1 $ $)) 30) (($ $ (-598 (-112)) (-598 (-1 $ $))) 29) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 28) (($ $ (-112) (-1 $ (-598 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1102)) 194 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102))) 193 (|has| |#1| (-573 (-507)))) (($ $) 192 (|has| |#1| (-573 (-507)))) (($ $ (-112) $ (-1102)) 191 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-112)) (-598 $) (-1102)) 190 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) 179 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) 178 (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ (-598 $))) 177 (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ $)) 176 (|has| |#1| (-986)))) (-4100 (((-721) $) 152 (|has| |#1| (-523)))) (-1785 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-598 $)) 57)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-523)))) (-1771 (($ $) 49) (($ $ $) 48)) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 125 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 124 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 123 (|has| |#1| (-986))) (($ $ (-1102)) 122 (|has| |#1| (-986)))) (-2842 (($ $) 173 (|has| |#1| (-523)))) (-1853 (((-1054 |#1| (-571 $)) $) 174 (|has| |#1| (-523)))) (-3608 (($ $) 24 (|has| $ (-986)))) (-3318 (((-835 (-531)) $) 211 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 210 (|has| |#1| (-573 (-835 (-360))))) (($ (-399 $)) 175 (|has| |#1| (-523))) (((-507) $) 97 (|has| |#1| (-573 (-507))))) (-4164 (($ $ $) 108 (|has| |#1| (-453)))) (-3214 (($ $ $) 109 (|has| |#1| (-453)))) (-2265 (((-806) $) 11) (($ (-571 $)) 70) (($ (-1102)) 214) (($ |#1|) 205) (($ (-1054 |#1| (-571 $))) 185 (|has| |#1| (-986))) (($ (-388 |#1|)) 171 (|has| |#1| (-523))) (($ (-895 (-388 |#1|))) 170 (|has| |#1| (-523))) (($ (-388 (-895 (-388 |#1|)))) 169 (|has| |#1| (-523))) (($ (-388 (-895 |#1|))) 167 (|has| |#1| (-523))) (($ $) 138 (|has| |#1| (-523))) (($ (-895 |#1|)) 121 (|has| |#1| (-986))) (($ (-388 (-531))) 96 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531)))))) (($ (-531)) 93 (-1435 (|has| |#1| (-986)) (|has| |#1| (-977 (-531)))))) (-2750 (((-3 $ "failed") $) 135 (|has| |#1| (-138)))) (-2284 (((-721)) 130 (|has| |#1| (-986)))) (-3504 (($ $) 53) (($ (-598 $)) 52)) (-3167 (((-110) (-112)) 41)) (-2587 (((-110) $ $) 142 (|has| |#1| (-523)))) (-2507 (($ (-1102) $) 199) (($ (-1102) $ $) 198) (($ (-1102) $ $ $) 197) (($ (-1102) $ $ $ $) 196) (($ (-1102) (-598 $)) 195)) (-3035 (($) 112 (|has| |#1| (-25)) CONST)) (-3050 (($) 100 (|has| |#1| (-1042)) CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 129 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 128 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 127 (|has| |#1| (-986))) (($ $ (-1102)) 126 (|has| |#1| (-986)))) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2263 (($ (-1054 |#1| (-571 $)) (-1054 |#1| (-571 $))) 172 (|has| |#1| (-523))) (($ $ $) 106 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2250 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2237 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-531)) 107 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-721)) 104 (|has| |#1| (-1042))) (($ $ (-864)) 99 (|has| |#1| (-1042)))) (* (($ (-388 (-531)) $) 164 (|has| |#1| (-523))) (($ $ (-388 (-531))) 163 (|has| |#1| (-523))) (($ |#1| $) 137 (|has| |#1| (-162))) (($ $ |#1|) 136 (|has| |#1| (-162))) (($ (-531) $) 118 (|has| |#1| (-21))) (($ (-721) $) 114 (|has| |#1| (-25))) (($ (-864) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1042))))) -(((-411 |#1|) (-133) (-797)) (T -411)) -((-2435 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-110)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-598 (-1102))))) (-2507 (*1 *1 *2 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 *1)) (-4 *1 (-411 *4)) (-4 *4 (-797)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-573 (-507))))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-573 (-507))))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-573 (-507))))) (-4115 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1102)) (-4 *1 (-411 *4)) (-4 *4 (-797)) (-4 *4 (-573 (-507))))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 *1)) (-5 *4 (-1102)) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-573 (-507))))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-411 *3)))) (-3448 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) (-4 *1 (-411 *3)))) (-2077 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-411 *3)))) (-2124 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2005 (-531)) (|:| |var| (-571 *1)))) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-986)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1))) (-4 *1 (-411 *3)))) (-3027 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-986)))) (-3448 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-986)) (-4 *4 (-797)) (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) (-4 *1 (-411 *4)))) (-3448 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-986)) (-4 *4 (-797)) (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) (-4 *1 (-411 *4)))) (-3058 (*1 *2 *1) (|partial| -12 (-4 *3 (-986)) (-4 *3 (-797)) (-5 *2 (-2 (|:| |val| *1) (|:| -1790 (-531)))) (-4 *1 (-411 *3)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721))) (-5 *4 (-598 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721))) (-5 *4 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 (-598 *1))) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 *1)) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-523)) (-4 *3 (-797)))) (-1853 (*1 *2 *1) (-12 (-4 *3 (-523)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1))) (-4 *1 (-411 *3)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-523)))) (-2263 (*1 *1 *2 *2) (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-895 (-388 *3))) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-388 *3)))) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2516 (*1 *2 *1 *3) (-12 (-5 *3 (-571 *1)) (-4 *1 (-411 *4)) (-4 *4 (-797)) (-4 *4 (-523)) (-5 *2 (-388 (-1098 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-1042))))) -(-13 (-284) (-977 (-1102)) (-827 |t#1|) (-381 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2435 ((-110) $)) (-15 -2448 (|t#1| $)) (-15 -2695 ((-598 (-1102)) $)) (-15 -2507 ($ (-1102) $)) (-15 -2507 ($ (-1102) $ $)) (-15 -2507 ($ (-1102) $ $ $)) (-15 -2507 ($ (-1102) $ $ $ $)) (-15 -2507 ($ (-1102) (-598 $))) (IF (|has| |t#1| (-573 (-507))) (PROGN (-6 (-573 (-507))) (-15 -4115 ($ $ (-1102))) (-15 -4115 ($ $ (-598 (-1102)))) (-15 -4115 ($ $)) (-15 -4115 ($ $ (-112) $ (-1102))) (-15 -4115 ($ $ (-598 (-112)) (-598 $) (-1102)))) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-677)) (-15 ** ($ $ (-721))) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-453)) (-6 (-453)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -2124 ((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-986)) (PROGN (-6 (-986)) (-6 (-977 (-895 |t#1|))) (-6 (-843 (-1102))) (-6 (-358 |t#1|)) (-15 -2265 ($ (-1054 |t#1| (-571 $)))) (-15 -1840 ((-1054 |t#1| (-571 $)) $)) (-15 -3027 ($ $)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112))) (-15 -3448 ((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102))) (-15 -3058 ((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $)) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $)))) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $))))) (-15 -4115 ($ $ (-1102) (-721) (-1 $ (-598 $)))) (-15 -4115 ($ $ (-1102) (-721) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-344)) (-6 (-977 (-388 (-895 |t#1|)))) (-15 -3318 ($ (-399 $))) (-15 -1853 ((-1054 |t#1| (-571 $)) $)) (-15 -2842 ($ $)) (-15 -2263 ($ (-1054 |t#1| (-571 $)) (-1054 |t#1| (-571 $)))) (-15 -2265 ($ (-388 |t#1|))) (-15 -2265 ($ (-895 (-388 |t#1|)))) (-15 -2265 ($ (-388 (-895 (-388 |t#1|))))) (-15 -2516 ((-388 (-1098 $)) $ (-571 $))) (IF (|has| |t#1| (-977 (-531))) (-6 (-977 (-388 (-531)))) |%noBranch|)) |%noBranch|))) -(((-21) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-388 (-531))) |has| |#1| (-523)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-523)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-523)) ((-128) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) |has| |#1| (-523)) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-226) |has| |#1| (-523)) ((-272) |has| |#1| (-523)) ((-289) |has| |#1| (-523)) ((-291 $) . T) ((-284) . T) ((-344) |has| |#1| (-523)) ((-358 |#1|) |has| |#1| (-986)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) |has| |#1| (-523)) ((-453) |has| |#1| (-453)) ((-492 (-571 $) $) . T) ((-492 $ $) . T) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-523)) ((-601 |#1|) |has| |#1| (-162)) ((-601 $) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-594 (-531)) -12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) ((-594 |#1|) |has| |#1| (-986)) ((-668 #0#) |has| |#1| (-523)) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) -1435 (|has| |#1| (-1042)) (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-797) . T) ((-843 (-1102)) |has| |#1| (-986)) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-863) |has| |#1| (-523)) ((-977 (-388 (-531))) -1435 (|has| |#1| (-977 (-388 (-531)))) (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) ((-977 (-388 (-895 |#1|))) |has| |#1| (-523)) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 (-571 $)) . T) ((-977 (-895 |#1|)) |has| |#1| (-986)) ((-977 (-1102)) . T) ((-977 |#1|) . T) ((-992 #0#) |has| |#1| (-523)) ((-992 |#1|) |has| |#1| (-162)) ((-992 $) |has| |#1| (-523)) ((-986) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-993) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1042) -1435 (|has| |#1| (-1042)) (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1030) . T) ((-1138) . T) ((-1142) |has| |#1| (-523))) -((-1690 ((|#2| |#2| |#2|) 33)) (-3254 (((-112) (-112)) 44)) (-2063 ((|#2| |#2|) 66)) (-3299 ((|#2| |#2|) 69)) (-2188 ((|#2| |#2|) 32)) (-3031 ((|#2| |#2| |#2|) 35)) (-2143 ((|#2| |#2| |#2|) 37)) (-1702 ((|#2| |#2| |#2|) 34)) (-2081 ((|#2| |#2| |#2|) 36)) (-3167 (((-110) (-112)) 42)) (-3558 ((|#2| |#2|) 39)) (-2336 ((|#2| |#2|) 38)) (-1620 ((|#2| |#2|) 27)) (-3926 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1312 ((|#2| |#2| |#2|) 31))) -(((-412 |#1| |#2|) (-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1620 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3926 (|#2| |#2| |#2|)) (-15 -1312 (|#2| |#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -1690 (|#2| |#2| |#2|)) (-15 -1702 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2081 (|#2| |#2| |#2|)) (-15 -2143 (|#2| |#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -3558 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -2063 (|#2| |#2|))) (-13 (-797) (-523)) (-411 |#1|)) (T -412)) -((-2063 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3558 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2143 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2081 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3031 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1702 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1690 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1312 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3926 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *4)) (-4 *4 (-411 *3)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4))))) -(-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1620 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3926 (|#2| |#2| |#2|)) (-15 -1312 (|#2| |#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -1690 (|#2| |#2| |#2|)) (-15 -1702 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2081 (|#2| |#2| |#2|)) (-15 -2143 (|#2| |#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -3558 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -2063 (|#2| |#2|))) -((-1806 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1098 |#2|)) (|:| |pol2| (-1098 |#2|)) (|:| |prim| (-1098 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-598 (-1098 |#2|))) (|:| |prim| (-1098 |#2|))) (-598 |#2|)) 61))) -(((-413 |#1| |#2|) (-10 -7 (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-598 (-1098 |#2|))) (|:| |prim| (-1098 |#2|))) (-598 |#2|))) (IF (|has| |#2| (-27)) (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1098 |#2|)) (|:| |pol2| (-1098 |#2|)) (|:| |prim| (-1098 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-523) (-797) (-140)) (-411 |#1|)) (T -413)) -((-1806 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-523) (-797) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1098 *3)) (|:| |pol2| (-1098 *3)) (|:| |prim| (-1098 *3)))) (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-523) (-797) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-598 (-1098 *5))) (|:| |prim| (-1098 *5)))) (-5 *1 (-413 *4 *5))))) -(-10 -7 (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-598 (-1098 |#2|))) (|:| |prim| (-1098 |#2|))) (-598 |#2|))) (IF (|has| |#2| (-27)) (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1098 |#2|)) (|:| |pol2| (-1098 |#2|)) (|:| |prim| (-1098 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3658 (((-1189)) 19)) (-2325 (((-1098 (-388 (-531))) |#2| (-571 |#2|)) 41) (((-388 (-531)) |#2|) 25))) -(((-414 |#1| |#2|) (-10 -7 (-15 -2325 ((-388 (-531)) |#2|)) (-15 -2325 ((-1098 (-388 (-531))) |#2| (-571 |#2|))) (-15 -3658 ((-1189)))) (-13 (-797) (-523) (-977 (-531))) (-411 |#1|)) (T -414)) -((-3658 (*1 *2) (-12 (-4 *3 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-1189)) (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-571 *3)) (-4 *3 (-411 *5)) (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-414 *5 *3)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-388 (-531))) (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4))))) -(-10 -7 (-15 -2325 ((-388 (-531)) |#2|)) (-15 -2325 ((-1098 (-388 (-531))) |#2| (-571 |#2|))) (-15 -3658 ((-1189)))) -((-4209 (((-110) $) 28)) (-1637 (((-110) $) 30)) (-1939 (((-110) $) 31)) (-1422 (((-110) $) 34)) (-1650 (((-110) $) 29)) (-3789 (((-110) $) 33)) (-2265 (((-806) $) 18) (($ (-1085)) 27) (($ (-1102)) 23) (((-1102) $) 22) (((-1034) $) 21)) (-2905 (((-110) $) 32)) (-2148 (((-110) $ $) 15))) -(((-415) (-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1085))) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2265 ((-1034) $)) (-15 -4209 ((-110) $)) (-15 -1650 ((-110) $)) (-15 -1939 ((-110) $)) (-15 -3789 ((-110) $)) (-15 -1422 ((-110) $)) (-15 -2905 ((-110) $)) (-15 -1637 ((-110) $)) (-15 -2148 ((-110) $ $))))) (T -415)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-415)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-415)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-415)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-415)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2148 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))) -(-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1085))) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2265 ((-1034) $)) (-15 -4209 ((-110) $)) (-15 -1650 ((-110) $)) (-15 -1939 ((-110) $)) (-15 -3789 ((-110) $)) (-15 -1422 ((-110) $)) (-15 -2905 ((-110) $)) (-15 -1637 ((-110) $)) (-15 -2148 ((-110) $ $)))) -((-4127 (((-3 (-399 (-1098 (-388 (-531)))) "failed") |#3|) 70)) (-3737 (((-399 |#3|) |#3|) 34)) (-1701 (((-3 (-399 (-1098 (-47))) "failed") |#3|) 46 (|has| |#2| (-977 (-47))))) (-2813 (((-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))) |#3|) 37))) -(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -3737 ((-399 |#3|) |#3|)) (-15 -4127 ((-3 (-399 (-1098 (-388 (-531)))) "failed") |#3|)) (-15 -2813 ((-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))) |#3|)) (IF (|has| |#2| (-977 (-47))) (-15 -1701 ((-3 (-399 (-1098 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-523) (-797) (-977 (-531))) (-411 |#1|) (-1160 |#2|)) (T -416)) -((-1701 (*1 *2 *3) (|partial| -12 (-4 *5 (-977 (-47))) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1098 (-47)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-2813 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-4127 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1098 (-388 (-531))))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5))))) -(-10 -7 (-15 -3737 ((-399 |#3|) |#3|)) (-15 -4127 ((-3 (-399 (-1098 (-388 (-531)))) "failed") |#3|)) (-15 -2813 ((-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))) |#3|)) (IF (|has| |#2| (-977 (-47))) (-15 -1701 ((-3 (-399 (-1098 (-47))) "failed") |#3|)) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-2618 (((-1085) $ (-1085)) NIL)) (-1743 (($ $ (-1085)) NIL)) (-3641 (((-1085) $) NIL)) (-3455 (((-369) (-369) (-369)) 17) (((-369) (-369)) 15)) (-1833 (($ (-369)) NIL) (($ (-369) (-1085)) NIL)) (-3955 (((-369) $) NIL)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2655 (((-1189) (-1085)) 9)) (-3457 (((-1189) (-1085)) 10)) (-3097 (((-1189)) 11)) (-2265 (((-806) $) NIL)) (-4074 (($ $) 35)) (-2148 (((-110) $ $) NIL))) -(((-417) (-13 (-345 (-369) (-1085)) (-10 -7 (-15 -3455 ((-369) (-369) (-369))) (-15 -3455 ((-369) (-369))) (-15 -2655 ((-1189) (-1085))) (-15 -3457 ((-1189) (-1085))) (-15 -3097 ((-1189)))))) (T -417)) -((-3455 (*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417)))) (-3097 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-417))))) -(-13 (-345 (-369) (-1085)) (-10 -7 (-15 -3455 ((-369) (-369) (-369))) (-15 -3455 ((-369) (-369))) (-15 -2655 ((-1189) (-1085))) (-15 -3457 ((-1189) (-1085))) (-15 -3097 ((-1189))))) -((-2247 (((-110) $ $) NIL)) (-2390 (((-3 (|:| |fst| (-415)) (|:| -2989 "void")) $) 11)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2326 (($) 32)) (-2998 (($) 38)) (-1293 (($) 34)) (-3079 (($) 36)) (-2439 (($) 33)) (-4185 (($) 35)) (-3880 (($) 37)) (-2186 (((-110) $) 8)) (-3794 (((-598 (-895 (-531))) $) 19)) (-2274 (($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-110)) 27) (($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-895 (-531))) (-110)) 28)) (-2265 (((-806) $) 23) (($ (-415)) 29)) (-2148 (((-110) $ $) NIL))) -(((-418) (-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -2265 ($ (-415))) (-15 -2390 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -3794 ((-598 (-895 (-531))) $)) (-15 -2186 ((-110) $)) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-110))) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-895 (-531))) (-110))) (-15 -2326 ($)) (-15 -2439 ($)) (-15 -1293 ($)) (-15 -2998 ($)) (-15 -4185 ($)) (-15 -3079 ($)) (-15 -3880 ($))))) (T -418)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-418)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *1 (-418)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-598 (-895 (-531)))) (-5 *1 (-418)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *3 (-598 (-1102))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2326 (*1 *1) (-5 *1 (-418))) (-2439 (*1 *1) (-5 *1 (-418))) (-1293 (*1 *1) (-5 *1 (-418))) (-2998 (*1 *1) (-5 *1 (-418))) (-4185 (*1 *1) (-5 *1 (-418))) (-3079 (*1 *1) (-5 *1 (-418))) (-3880 (*1 *1) (-5 *1 (-418)))) -(-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -2265 ($ (-415))) (-15 -2390 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -3794 ((-598 (-895 (-531))) $)) (-15 -2186 ((-110) $)) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-110))) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-895 (-531))) (-110))) (-15 -2326 ($)) (-15 -2439 ($)) (-15 -1293 ($)) (-15 -2998 ($)) (-15 -4185 ($)) (-15 -3079 ($)) (-15 -3880 ($)))) -((-2247 (((-110) $ $) NIL)) (-3955 (((-1102) $) 8)) (-1521 (((-1085) $) 16)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 13))) -(((-419 |#1|) (-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $)))) (-1102)) (T -419)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-419 *3)) (-14 *3 *2)))) -(-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $)))) -((-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-1184 (-649))) 14) (($ (-598 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 11))) -(((-420) (-133)) (T -420)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-649))) (-4 *1 (-420)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-420)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-420))))) -(-13 (-376) (-10 -8 (-15 -2265 ($ (-1184 (-649)))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))))) -(((-572 (-806)) . T) ((-376) . T) ((-1138) . T)) -((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 21) (((-3 $ "failed") (-1184 (-297 (-531)))) 19) (((-3 $ "failed") (-1184 (-895 (-360)))) 17) (((-3 $ "failed") (-1184 (-895 (-531)))) 15) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 13) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 11)) (-2523 (($ (-1184 (-297 (-360)))) 22) (($ (-1184 (-297 (-531)))) 20) (($ (-1184 (-895 (-360)))) 18) (($ (-1184 (-895 (-531)))) 16) (($ (-1184 (-388 (-895 (-360))))) 14) (($ (-1184 (-388 (-895 (-531))))) 12)) (-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-598 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 23))) -(((-421) (-133)) (T -421)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-421)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421))))) -(-13 (-376) (-10 -8 (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2523 ($ (-1184 (-297 (-360))))) (-15 -3154 ((-3 $ "failed") (-1184 (-297 (-360))))) (-15 -2523 ($ (-1184 (-297 (-531))))) (-15 -3154 ((-3 $ "failed") (-1184 (-297 (-531))))) (-15 -2523 ($ (-1184 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-1184 (-895 (-360))))) (-15 -2523 ($ (-1184 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-1184 (-895 (-531))))) (-15 -2523 ($ (-1184 (-388 (-895 (-360)))))) (-15 -3154 ((-3 $ "failed") (-1184 (-388 (-895 (-360)))))) (-15 -2523 ($ (-1184 (-388 (-895 (-531)))))) (-15 -3154 ((-3 $ "failed") (-1184 (-388 (-895 (-531)))))))) -(((-572 (-806)) . T) ((-376) . T) ((-1138) . T)) -((-2223 (((-110)) 17)) (-3537 (((-110) (-110)) 18)) (-2770 (((-110)) 13)) (-1397 (((-110) (-110)) 14)) (-4018 (((-110)) 15)) (-3981 (((-110) (-110)) 16)) (-3572 (((-864) (-864)) 21) (((-864)) 20)) (-2688 (((-721) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531))))) 42)) (-3945 (((-864) (-864)) 23) (((-864)) 22)) (-1940 (((-2 (|:| -1658 (-531)) (|:| -2721 (-598 |#1|))) |#1|) 62)) (-1577 (((-399 |#1|) (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531))))))) 126)) (-3452 (((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)) 152)) (-4184 (((-399 |#1|) |#1| (-721) (-721)) 165) (((-399 |#1|) |#1| (-598 (-721)) (-721)) 162) (((-399 |#1|) |#1| (-598 (-721))) 164) (((-399 |#1|) |#1| (-721)) 163) (((-399 |#1|) |#1|) 161)) (-3118 (((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721) (-110)) 167) (((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721)) 168) (((-3 |#1| "failed") (-864) |#1| (-598 (-721))) 170) (((-3 |#1| "failed") (-864) |#1| (-721)) 169) (((-3 |#1| "failed") (-864) |#1|) 171)) (-2552 (((-399 |#1|) |#1| (-721) (-721)) 160) (((-399 |#1|) |#1| (-598 (-721)) (-721)) 156) (((-399 |#1|) |#1| (-598 (-721))) 158) (((-399 |#1|) |#1| (-721)) 157) (((-399 |#1|) |#1|) 155)) (-2506 (((-110) |#1|) 37)) (-1696 (((-688 (-721)) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531))))) 67)) (-2058 (((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110) (-1032 (-721)) (-721)) 154))) -(((-422 |#1|) (-10 -7 (-15 -1577 ((-399 |#1|) (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))))) (-15 -1696 ((-688 (-721)) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -3945 ((-864))) (-15 -3945 ((-864) (-864))) (-15 -3572 ((-864))) (-15 -3572 ((-864) (-864))) (-15 -2688 ((-721) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -1940 ((-2 (|:| -1658 (-531)) (|:| -2721 (-598 |#1|))) |#1|)) (-15 -2223 ((-110))) (-15 -3537 ((-110) (-110))) (-15 -2770 ((-110))) (-15 -1397 ((-110) (-110))) (-15 -2506 ((-110) |#1|)) (-15 -4018 ((-110))) (-15 -3981 ((-110) (-110))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1| (-721))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -2552 ((-399 |#1|) |#1| (-721) (-721))) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1| (-721))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -4184 ((-399 |#1|) |#1| (-721) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1|)) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721) (-110))) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110))) (-15 -2058 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110) (-1032 (-721)) (-721)))) (-1160 (-531))) (T -422)) -((-2058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1032 (-721))) (-5 *6 (-721)) (-5 *2 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-721)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-864)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-4184 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4018 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2506 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2770 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2223 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-1940 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1658 (-531)) (|:| -2721 (-598 *3)))) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531))))) (-4 *4 (-1160 (-531))) (-5 *2 (-721)) (-5 *1 (-422 *4)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3572 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3945 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531))))) (-4 *4 (-1160 (-531))) (-5 *2 (-688 (-721))) (-5 *1 (-422 *4)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *4) (|:| -2460 (-531))))))) (-4 *4 (-1160 (-531))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4))))) -(-10 -7 (-15 -1577 ((-399 |#1|) (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))))) (-15 -1696 ((-688 (-721)) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -3945 ((-864))) (-15 -3945 ((-864) (-864))) (-15 -3572 ((-864))) (-15 -3572 ((-864) (-864))) (-15 -2688 ((-721) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -1940 ((-2 (|:| -1658 (-531)) (|:| -2721 (-598 |#1|))) |#1|)) (-15 -2223 ((-110))) (-15 -3537 ((-110) (-110))) (-15 -2770 ((-110))) (-15 -1397 ((-110) (-110))) (-15 -2506 ((-110) |#1|)) (-15 -4018 ((-110))) (-15 -3981 ((-110) (-110))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1| (-721))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -2552 ((-399 |#1|) |#1| (-721) (-721))) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1| (-721))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -4184 ((-399 |#1|) |#1| (-721) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1|)) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721) (-110))) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110))) (-15 -2058 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110) (-1032 (-721)) (-721)))) -((-3358 (((-531) |#2|) 48) (((-531) |#2| (-721)) 47)) (-3677 (((-531) |#2|) 55)) (-1479 ((|#3| |#2|) 25)) (-1899 ((|#3| |#2| (-864)) 14)) (-2428 ((|#3| |#2|) 15)) (-3652 ((|#3| |#2|) 9)) (-4194 ((|#3| |#2|) 10)) (-1358 ((|#3| |#2| (-864)) 62) ((|#3| |#2|) 30)) (-3484 (((-531) |#2|) 57))) -(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -3484 ((-531) |#2|)) (-15 -1358 (|#3| |#2|)) (-15 -1358 (|#3| |#2| (-864))) (-15 -3677 ((-531) |#2|)) (-15 -3358 ((-531) |#2| (-721))) (-15 -3358 ((-531) |#2|)) (-15 -1899 (|#3| |#2| (-864))) (-15 -1479 (|#3| |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -4194 (|#3| |#2|)) (-15 -2428 (|#3| |#2|))) (-986) (-1160 |#1|) (-13 (-385) (-977 |#1|) (-344) (-1124) (-266))) (T -423)) -((-2428 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-1899 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *5 (-986)) (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1160 *4)) (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))) (-3358 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1160 *5)) (-4 *6 (-13 (-385) (-977 *5) (-344) (-1124) (-266))))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1160 *4)) (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *5 (-986)) (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1160 *4)) (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))))) -(-10 -7 (-15 -3484 ((-531) |#2|)) (-15 -1358 (|#3| |#2|)) (-15 -1358 (|#3| |#2| (-864))) (-15 -3677 ((-531) |#2|)) (-15 -3358 ((-531) |#2| (-721))) (-15 -3358 ((-531) |#2|)) (-15 -1899 (|#3| |#2| (-864))) (-15 -1479 (|#3| |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -4194 (|#3| |#2|)) (-15 -2428 (|#3| |#2|))) -((-3461 ((|#2| (-1184 |#1|)) 36)) (-3041 ((|#2| |#2| |#1|) 49)) (-2233 ((|#2| |#2| |#1|) 41)) (-1828 ((|#2| |#2|) 38)) (-1448 (((-110) |#2|) 30)) (-3844 (((-598 |#2|) (-864) (-399 |#2|)) 17)) (-3118 ((|#2| (-864) (-399 |#2|)) 21)) (-1696 (((-688 (-721)) (-399 |#2|)) 25))) -(((-424 |#1| |#2|) (-10 -7 (-15 -1448 ((-110) |#2|)) (-15 -3461 (|#2| (-1184 |#1|))) (-15 -1828 (|#2| |#2|)) (-15 -2233 (|#2| |#2| |#1|)) (-15 -3041 (|#2| |#2| |#1|)) (-15 -1696 ((-688 (-721)) (-399 |#2|))) (-15 -3118 (|#2| (-864) (-399 |#2|))) (-15 -3844 ((-598 |#2|) (-864) (-399 |#2|)))) (-986) (-1160 |#1|)) (T -424)) -((-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-399 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-986)) (-5 *2 (-598 *6)) (-5 *1 (-424 *5 *6)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-399 *2)) (-4 *2 (-1160 *5)) (-5 *1 (-424 *5 *2)) (-4 *5 (-986)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-986)) (-5 *2 (-688 (-721))) (-5 *1 (-424 *4 *5)))) (-3041 (*1 *2 *2 *3) (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) (-2233 (*1 *2 *2 *3) (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-986)) (-4 *2 (-1160 *4)) (-5 *1 (-424 *4 *2)))) (-1448 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -1448 ((-110) |#2|)) (-15 -3461 (|#2| (-1184 |#1|))) (-15 -1828 (|#2| |#2|)) (-15 -2233 (|#2| |#2| |#1|)) (-15 -3041 (|#2| |#2| |#1|)) (-15 -1696 ((-688 (-721)) (-399 |#2|))) (-15 -3118 (|#2| (-864) (-399 |#2|))) (-15 -3844 ((-598 |#2|) (-864) (-399 |#2|)))) -((-1675 (((-721)) 41)) (-3753 (((-721)) 23 (|has| |#1| (-385))) (((-721) (-721)) 22 (|has| |#1| (-385)))) (-2408 (((-531) |#1|) 18 (|has| |#1| (-385)))) (-3950 (((-531) |#1|) 20 (|has| |#1| (-385)))) (-2833 (((-721)) 40) (((-721) (-721)) 39)) (-1342 ((|#1| (-721) (-531)) 29)) (-2645 (((-1189)) 43))) -(((-425 |#1|) (-10 -7 (-15 -1342 (|#1| (-721) (-531))) (-15 -2833 ((-721) (-721))) (-15 -2833 ((-721))) (-15 -1675 ((-721))) (-15 -2645 ((-1189))) (IF (|has| |#1| (-385)) (PROGN (-15 -3950 ((-531) |#1|)) (-15 -2408 ((-531) |#1|)) (-15 -3753 ((-721) (-721))) (-15 -3753 ((-721)))) |%noBranch|)) (-986)) (T -425)) -((-3753 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-3753 (*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-2408 (*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-2645 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-1675 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-2833 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-2833 (*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-531)) (-5 *1 (-425 *2)) (-4 *2 (-986))))) -(-10 -7 (-15 -1342 (|#1| (-721) (-531))) (-15 -2833 ((-721) (-721))) (-15 -2833 ((-721))) (-15 -1675 ((-721))) (-15 -2645 ((-1189))) (IF (|has| |#1| (-385)) (PROGN (-15 -3950 ((-531) |#1|)) (-15 -2408 ((-531) |#1|)) (-15 -3753 ((-721) (-721))) (-15 -3753 ((-721)))) |%noBranch|)) -((-1968 (((-598 (-531)) (-531)) 61)) (-2534 (((-110) (-159 (-531))) 65)) (-2552 (((-399 (-159 (-531))) (-159 (-531))) 60))) -(((-426) (-10 -7 (-15 -2552 ((-399 (-159 (-531))) (-159 (-531)))) (-15 -1968 ((-598 (-531)) (-531))) (-15 -2534 ((-110) (-159 (-531)))))) (T -426)) -((-2534 (*1 *2 *3) (-12 (-5 *3 (-159 (-531))) (-5 *2 (-110)) (-5 *1 (-426)))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-426)) (-5 *3 (-531)))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 (-159 (-531)))) (-5 *1 (-426)) (-5 *3 (-159 (-531)))))) -(-10 -7 (-15 -2552 ((-399 (-159 (-531))) (-159 (-531)))) (-15 -1968 ((-598 (-531)) (-531))) (-15 -2534 ((-110) (-159 (-531))))) -((-3311 ((|#4| |#4| (-598 |#4|)) 61)) (-2496 (((-598 |#4|) (-598 |#4|) (-1085) (-1085)) 17) (((-598 |#4|) (-598 |#4|) (-1085)) 16) (((-598 |#4|) (-598 |#4|)) 11))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3311 (|#4| |#4| (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085) (-1085)))) (-289) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -427)) -((-2496 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2496 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-427 *3 *4 *5 *6)))) (-3311 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *2))))) -(-10 -7 (-15 -3311 (|#4| |#4| (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085) (-1085)))) -((-2981 (((-598 (-598 |#4|)) (-598 |#4|) (-110)) 73) (((-598 (-598 |#4|)) (-598 |#4|)) 72) (((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|) (-110)) 66) (((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|)) 67)) (-3341 (((-598 (-598 |#4|)) (-598 |#4|) (-110)) 42) (((-598 (-598 |#4|)) (-598 |#4|)) 63))) -(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-110)))) (-13 (-289) (-140)) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -428)) -((-2981 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) (-2981 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-2981 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) (-2981 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) -(-10 -7 (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-110)))) -((-2896 (((-721) |#4|) 12)) (-1389 (((-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))) |#4| (-721) (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)))) 31)) (-3363 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3554 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1757 ((|#4| |#4| (-598 |#4|)) 40)) (-3790 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-598 |#4|)) 70)) (-3250 (((-1189) |#4|) 42)) (-4141 (((-1189) (-598 |#4|)) 51)) (-4191 (((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531)) 48)) (-1793 (((-1189) (-531)) 79)) (-2900 (((-598 |#4|) (-598 |#4|)) 77)) (-1417 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)) |#4| (-721)) 25)) (-1355 (((-531) |#4|) 78)) (-2737 ((|#4| |#4|) 29)) (-1827 (((-598 |#4|) (-598 |#4|) (-531) (-531)) 56)) (-3953 (((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531) (-531)) 89)) (-3647 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3419 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3464 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1277 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1264 (((-110) |#2| |#2|) 57)) (-3123 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2558 (((-110) |#2| |#2| |#2| |#2|) 60)) (-3070 ((|#4| |#4| (-598 |#4|)) 71))) -(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 (|#4| |#4| (-598 |#4|))) (-15 -1757 (|#4| |#4| (-598 |#4|))) (-15 -1827 ((-598 |#4|) (-598 |#4|) (-531) (-531))) (-15 -3419 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1264 ((-110) |#2| |#2|)) (-15 -2558 ((-110) |#2| |#2| |#2| |#2|)) (-15 -3123 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1277 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3464 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3790 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-598 |#4|))) (-15 -2737 (|#4| |#4|)) (-15 -1389 ((-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))) |#4| (-721) (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))))) (-15 -3554 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2900 ((-598 |#4|) (-598 |#4|))) (-15 -1355 ((-531) |#4|)) (-15 -3250 ((-1189) |#4|)) (-15 -4191 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531))) (-15 -3953 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531) (-531))) (-15 -4141 ((-1189) (-598 |#4|))) (-15 -1793 ((-1189) (-531))) (-15 -3647 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1417 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)) |#4| (-721))) (-15 -2896 ((-721) |#4|))) (-432) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -429)) -((-2896 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-1417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-721)) (|:| -2451 *4))) (-5 *5 (-721)) (-4 *4 (-892 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-429 *6 *7 *8 *4)))) (-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *7)))) (-3953 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *4)))) (-4191 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *4)))) (-3250 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-531)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-743)) (-4 *2 (-892 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2)) (-4 *4 (-432)) (-4 *6 (-797)))) (-1389 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 *3)))) (-5 *4 (-721)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *3)))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-429 *5 *6 *7 *3)))) (-3464 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-721)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-743)) (-4 *6 (-892 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-797)) (-5 *1 (-429 *4 *3 *5 *6)))) (-1277 (*1 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))) (-3123 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-743)) (-4 *3 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *3)))) (-2558 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5)))) (-1264 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1827 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1757 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2)))) (-3070 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2))))) -(-10 -7 (-15 -3070 (|#4| |#4| (-598 |#4|))) (-15 -1757 (|#4| |#4| (-598 |#4|))) (-15 -1827 ((-598 |#4|) (-598 |#4|) (-531) (-531))) (-15 -3419 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1264 ((-110) |#2| |#2|)) (-15 -2558 ((-110) |#2| |#2| |#2| |#2|)) (-15 -3123 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1277 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3464 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3790 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-598 |#4|))) (-15 -2737 (|#4| |#4|)) (-15 -1389 ((-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))) |#4| (-721) (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))))) (-15 -3554 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2900 ((-598 |#4|) (-598 |#4|))) (-15 -1355 ((-531) |#4|)) (-15 -3250 ((-1189) |#4|)) (-15 -4191 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531))) (-15 -3953 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531) (-531))) (-15 -4141 ((-1189) (-598 |#4|))) (-15 -1793 ((-1189) (-531))) (-15 -3647 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1417 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)) |#4| (-721))) (-15 -2896 ((-721) |#4|))) -((-2854 ((|#4| |#4| (-598 |#4|)) 22 (|has| |#1| (-344)))) (-3716 (((-598 |#4|) (-598 |#4|) (-1085) (-1085)) 41) (((-598 |#4|) (-598 |#4|) (-1085)) 40) (((-598 |#4|) (-598 |#4|)) 35))) -(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-598 |#4|) (-598 |#4|))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085) (-1085))) (IF (|has| |#1| (-344)) (-15 -2854 (|#4| |#4| (-598 |#4|))) |%noBranch|)) (-432) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -430)) -((-2854 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-430 *4 *5 *6 *2)))) (-3716 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3716 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-430 *3 *4 *5 *6))))) -(-10 -7 (-15 -3716 ((-598 |#4|) (-598 |#4|))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085) (-1085))) (IF (|has| |#1| (-344)) (-15 -2854 (|#4| |#4| (-598 |#4|))) |%noBranch|)) -((-2078 (($ $ $) 14) (($ (-598 $)) 21)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 41)) (-2109 (($ $ $) NIL) (($ (-598 $)) 22))) -(((-431 |#1|) (-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2078 (|#1| (-598 |#1|))) (-15 -2078 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|))) (-432)) (T -431)) -NIL -(-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2078 (|#1| (-598 |#1|))) (-15 -2078 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-432) (-133)) (T -432)) -((-2109 (*1 *1 *1 *1) (-4 *1 (-432))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432)))) (-2078 (*1 *1 *1 *1) (-4 *1 (-432))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432)))) (-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-432))))) -(-13 (-523) (-10 -8 (-15 -2109 ($ $ $)) (-15 -2109 ($ (-598 $))) (-15 -2078 ($ $ $)) (-15 -2078 ($ (-598 $))) (-15 -2993 ((-1098 $) (-1098 $) (-1098 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 (-388 (-895 |#1|)))) (-1184 $)) NIL) (((-1184 (-639 (-388 (-895 |#1|))))) NIL)) (-2022 (((-1184 $)) NIL)) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL)) (-2783 (((-3 $ "failed")) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-3939 (((-639 (-388 (-895 |#1|))) (-1184 $)) NIL) (((-639 (-388 (-895 |#1|)))) NIL)) (-1668 (((-388 (-895 |#1|)) $) NIL)) (-2264 (((-639 (-388 (-895 |#1|))) $ (-1184 $)) NIL) (((-639 (-388 (-895 |#1|))) $) NIL)) (-1387 (((-3 $ "failed") $) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-3668 (((-1098 (-895 (-388 (-895 |#1|))))) NIL (|has| (-388 (-895 |#1|)) (-344))) (((-1098 (-388 (-895 |#1|)))) 84 (|has| |#1| (-523)))) (-1666 (($ $ (-864)) NIL)) (-2065 (((-388 (-895 |#1|)) $) NIL)) (-3415 (((-1098 (-388 (-895 |#1|))) $) 82 (|has| (-388 (-895 |#1|)) (-523)))) (-3960 (((-388 (-895 |#1|)) (-1184 $)) NIL) (((-388 (-895 |#1|))) NIL)) (-3586 (((-1098 (-388 (-895 |#1|))) $) NIL)) (-1437 (((-110)) NIL)) (-2767 (($ (-1184 (-388 (-895 |#1|))) (-1184 $)) 103) (($ (-1184 (-388 (-895 |#1|)))) NIL)) (-3622 (((-3 $ "failed") $) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2277 (((-864)) NIL)) (-2629 (((-110)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL)) (-3769 (((-110)) NIL)) (-2298 (((-110)) NIL)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL)) (-2816 (((-3 $ "failed")) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-1950 (((-639 (-388 (-895 |#1|))) (-1184 $)) NIL) (((-639 (-388 (-895 |#1|)))) NIL)) (-1807 (((-388 (-895 |#1|)) $) NIL)) (-3405 (((-639 (-388 (-895 |#1|))) $ (-1184 $)) NIL) (((-639 (-388 (-895 |#1|))) $) NIL)) (-2234 (((-3 $ "failed") $) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2280 (((-1098 (-895 (-388 (-895 |#1|))))) NIL (|has| (-388 (-895 |#1|)) (-344))) (((-1098 (-388 (-895 |#1|)))) 83 (|has| |#1| (-523)))) (-2585 (($ $ (-864)) NIL)) (-1288 (((-388 (-895 |#1|)) $) NIL)) (-1480 (((-1098 (-388 (-895 |#1|))) $) 77 (|has| (-388 (-895 |#1|)) (-523)))) (-3579 (((-388 (-895 |#1|)) (-1184 $)) NIL) (((-388 (-895 |#1|))) NIL)) (-1875 (((-1098 (-388 (-895 |#1|))) $) NIL)) (-2239 (((-110)) NIL)) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL)) (-1561 (((-110)) NIL)) (-3036 (((-110)) NIL)) (-2529 (((-1049) $) NIL)) (-1894 (((-388 (-895 |#1|)) $ $) 71 (|has| |#1| (-523)))) (-1679 (((-388 (-895 |#1|)) $) 93 (|has| |#1| (-523)))) (-3410 (((-388 (-895 |#1|)) $) 95 (|has| |#1| (-523)))) (-3241 (((-1098 (-388 (-895 |#1|))) $) 88 (|has| |#1| (-523)))) (-3603 (((-388 (-895 |#1|))) 72 (|has| |#1| (-523)))) (-1638 (((-388 (-895 |#1|)) $ $) 64 (|has| |#1| (-523)))) (-1491 (((-388 (-895 |#1|)) $) 92 (|has| |#1| (-523)))) (-4206 (((-388 (-895 |#1|)) $) 94 (|has| |#1| (-523)))) (-3943 (((-1098 (-388 (-895 |#1|))) $) 87 (|has| |#1| (-523)))) (-2453 (((-388 (-895 |#1|))) 68 (|has| |#1| (-523)))) (-3741 (($) 101) (($ (-1102)) 107) (($ (-1184 (-1102))) 106) (($ (-1184 $)) 96) (($ (-1102) (-1184 $)) 105) (($ (-1184 (-1102)) (-1184 $)) 104)) (-1513 (((-110)) NIL)) (-1785 (((-388 (-895 |#1|)) $ (-531)) NIL)) (-3348 (((-1184 (-388 (-895 |#1|))) $ (-1184 $)) 98) (((-639 (-388 (-895 |#1|))) (-1184 $) (-1184 $)) NIL) (((-1184 (-388 (-895 |#1|))) $) 40) (((-639 (-388 (-895 |#1|))) (-1184 $)) NIL)) (-3318 (((-1184 (-388 (-895 |#1|))) $) NIL) (($ (-1184 (-388 (-895 |#1|)))) 37)) (-2570 (((-598 (-895 (-388 (-895 |#1|)))) (-1184 $)) NIL) (((-598 (-895 (-388 (-895 |#1|))))) NIL) (((-598 (-895 |#1|)) (-1184 $)) 99 (|has| |#1| (-523))) (((-598 (-895 |#1|))) 100 (|has| |#1| (-523)))) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL)) (-2265 (((-806) $) NIL) (($ (-1184 (-388 (-895 |#1|)))) NIL)) (-3523 (((-1184 $)) 60)) (-2273 (((-598 (-1184 (-388 (-895 |#1|))))) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL)) (-2979 (($ (-639 (-388 (-895 |#1|))) $) NIL)) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL)) (-1964 (((-110)) NIL)) (-2819 (((-110)) NIL)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) 97)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 56) (($ $ (-388 (-895 |#1|))) NIL) (($ (-388 (-895 |#1|)) $) NIL) (($ (-1069 |#2| (-388 (-895 |#1|))) $) NIL))) -(((-433 |#1| |#2| |#3| |#4|) (-13 (-398 (-388 (-895 |#1|))) (-601 (-1069 |#2| (-388 (-895 |#1|)))) (-10 -8 (-15 -2265 ($ (-1184 (-388 (-895 |#1|))))) (-15 -4152 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3741 ($)) (-15 -3741 ($ (-1102))) (-15 -3741 ($ (-1184 (-1102)))) (-15 -3741 ($ (-1184 $))) (-15 -3741 ($ (-1102) (-1184 $))) (-15 -3741 ($ (-1184 (-1102)) (-1184 $))) (IF (|has| |#1| (-523)) (PROGN (-15 -2280 ((-1098 (-388 (-895 |#1|))))) (-15 -3943 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1491 ((-388 (-895 |#1|)) $)) (-15 -4206 ((-388 (-895 |#1|)) $)) (-15 -3668 ((-1098 (-388 (-895 |#1|))))) (-15 -3241 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1679 ((-388 (-895 |#1|)) $)) (-15 -3410 ((-388 (-895 |#1|)) $)) (-15 -1638 ((-388 (-895 |#1|)) $ $)) (-15 -2453 ((-388 (-895 |#1|)))) (-15 -1894 ((-388 (-895 |#1|)) $ $)) (-15 -3603 ((-388 (-895 |#1|)))) (-15 -2570 ((-598 (-895 |#1|)) (-1184 $))) (-15 -2570 ((-598 (-895 |#1|))))) |%noBranch|))) (-162) (-864) (-598 (-1102)) (-1184 (-639 |#1|))) (T -433)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 *3)))) (-4 *3 (-162)) (-14 *6 (-1184 (-639 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))))) (-4152 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3523 (-598 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3491 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3523 (-598 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1) (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-864)) (-14 *4 (-598 (-1102))) (-14 *5 (-1184 (-639 *2))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 *2)) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1184 (-1102))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1184 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864)) (-14 *6 (-598 *2)) (-14 *7 (-1184 (-639 *4))))) (-3741 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 (-1102))) (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864)) (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4))))) (-2280 (*1 *2) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3668 (*1 *2) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1638 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-2453 (*1 *2) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3603 (*1 *2) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *2 (-598 (-895 *4))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *4 (-162)) (-14 *5 (-864)) (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4))))) (-2570 (*1 *2) (-12 (-5 *2 (-598 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(-13 (-398 (-388 (-895 |#1|))) (-601 (-1069 |#2| (-388 (-895 |#1|)))) (-10 -8 (-15 -2265 ($ (-1184 (-388 (-895 |#1|))))) (-15 -4152 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3741 ($)) (-15 -3741 ($ (-1102))) (-15 -3741 ($ (-1184 (-1102)))) (-15 -3741 ($ (-1184 $))) (-15 -3741 ($ (-1102) (-1184 $))) (-15 -3741 ($ (-1184 (-1102)) (-1184 $))) (IF (|has| |#1| (-523)) (PROGN (-15 -2280 ((-1098 (-388 (-895 |#1|))))) (-15 -3943 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1491 ((-388 (-895 |#1|)) $)) (-15 -4206 ((-388 (-895 |#1|)) $)) (-15 -3668 ((-1098 (-388 (-895 |#1|))))) (-15 -3241 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1679 ((-388 (-895 |#1|)) $)) (-15 -3410 ((-388 (-895 |#1|)) $)) (-15 -1638 ((-388 (-895 |#1|)) $ $)) (-15 -2453 ((-388 (-895 |#1|)))) (-15 -1894 ((-388 (-895 |#1|)) $ $)) (-15 -3603 ((-388 (-895 |#1|)))) (-15 -2570 ((-598 (-895 |#1|)) (-1184 $))) (-15 -2570 ((-598 (-895 |#1|))))) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 13)) (-2695 (((-598 (-808 |#1|)) $) 75)) (-2516 (((-1098 $) $ (-808 |#1|)) 46) (((-1098 |#2|) $) 118)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) 21) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 44) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) 42) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2701 (($ $ (-598 (-531))) 80)) (-2500 (($ $) 68)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| |#3| $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 58)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) 123) (($ (-1098 $) (-808 |#1|)) 52)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) 59)) (-2669 (($ |#2| |#3|) 28) (($ $ (-808 |#1|) (-721)) 30) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 ((|#3| $) NIL) (((-721) $ (-808 |#1|)) 50) (((-598 (-721)) $ (-598 (-808 |#1|))) 57)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 |#3| |#3|) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) 39)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) 41)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 40)) (-2448 ((|#2| $) 116)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) 128 (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) 87) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) 90) (($ $ (-808 |#1|) $) 85) (($ $ (-598 (-808 |#1|)) (-598 $)) 106)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) 53) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 ((|#3| $) 67) (((-721) $ (-808 |#1|)) 37) (((-598 (-721)) $ (-598 (-808 |#1|))) 56)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) 125 (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) 145) (($ (-531)) NIL) (($ |#2|) 86) (($ (-808 |#1|)) 31) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ |#3|) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) 17 T CONST)) (-3050 (($) 25 T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) 64 (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 111)) (** (($ $ (-864)) NIL) (($ $ (-721)) 109)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 29) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-434 |#1| |#2| |#3|) (-13 (-892 |#2| |#3| (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) (-598 (-1102)) (-986) (-221 (-2167 |#1|) (-721))) (T -434)) -((-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-14 *3 (-598 (-1102))) (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-986)) (-4 *5 (-221 (-2167 *3) (-721)))))) -(-13 (-892 |#2| |#3| (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) -((-3864 (((-110) |#1| (-598 |#2|)) 69)) (-2983 (((-3 (-1184 (-598 |#2|)) "failed") (-721) |#1| (-598 |#2|)) 78)) (-3514 (((-3 (-598 |#2|) "failed") |#2| |#1| (-1184 (-598 |#2|))) 80)) (-3848 ((|#2| |#2| |#1|) 28)) (-2990 (((-721) |#2| (-598 |#2|)) 20))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3848 (|#2| |#2| |#1|)) (-15 -2990 ((-721) |#2| (-598 |#2|))) (-15 -2983 ((-3 (-1184 (-598 |#2|)) "failed") (-721) |#1| (-598 |#2|))) (-15 -3514 ((-3 (-598 |#2|) "failed") |#2| |#1| (-1184 (-598 |#2|)))) (-15 -3864 ((-110) |#1| (-598 |#2|)))) (-289) (-1160 |#1|)) (T -435)) -((-3864 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *5)) (-4 *5 (-1160 *3)) (-4 *3 (-289)) (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))) (-3514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1184 (-598 *3))) (-4 *4 (-289)) (-5 *2 (-598 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1160 *4)))) (-2983 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-721)) (-4 *4 (-289)) (-4 *6 (-1160 *4)) (-5 *2 (-1184 (-598 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-598 *6)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-289)) (-5 *2 (-721)) (-5 *1 (-435 *5 *3)))) (-3848 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1160 *3))))) -(-10 -7 (-15 -3848 (|#2| |#2| |#1|)) (-15 -2990 ((-721) |#2| (-598 |#2|))) (-15 -2983 ((-3 (-1184 (-598 |#2|)) "failed") (-721) |#1| (-598 |#2|))) (-15 -3514 ((-3 (-598 |#2|) "failed") |#2| |#1| (-1184 (-598 |#2|)))) (-15 -3864 ((-110) |#1| (-598 |#2|)))) -((-2552 (((-399 |#5|) |#5|) 24))) -(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2552 ((-399 |#5|) |#5|))) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102))))) (-743) (-523) (-523) (-892 |#4| |#2| |#1|)) (T -436)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *5 (-743)) (-4 *7 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-523)) (-4 *3 (-892 *7 *5 *4))))) -(-10 -7 (-15 -2552 ((-399 |#5|) |#5|))) -((-3530 ((|#3|) 37)) (-2993 (((-1098 |#4|) (-1098 |#4|) (-1098 |#4|)) 33))) -(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2993 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -3530 (|#3|))) (-743) (-797) (-852) (-892 |#3| |#1| |#2|)) (T -437)) -((-3530 (*1 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852)) (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-852)) (-5 *1 (-437 *3 *4 *5 *6))))) -(-10 -7 (-15 -2993 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -3530 (|#3|))) -((-2552 (((-399 (-1098 |#1|)) (-1098 |#1|)) 43))) -(((-438 |#1|) (-10 -7 (-15 -2552 ((-399 (-1098 |#1|)) (-1098 |#1|)))) (-289)) (T -438)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1098 *4))) (-5 *1 (-438 *4)) (-5 *3 (-1098 *4))))) -(-10 -7 (-15 -2552 ((-399 (-1098 |#1|)) (-1098 |#1|)))) -((-2373 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-721))) 42) (((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-721))) 41) (((-51) |#2| (-1102) (-276 |#2|)) 35) (((-51) (-1 |#2| (-531)) (-276 |#2|)) 28)) (-4067 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 80) (((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 79) (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531))) 78) (((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531))) 77) (((-51) |#2| (-1102) (-276 |#2|)) 72) (((-51) (-1 |#2| (-531)) (-276 |#2|)) 71)) (-2397 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 66) (((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 64)) (-2385 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531))) 48) (((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531))) 47))) -(((-439 |#1| |#2|) (-10 -7 (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-721)))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-721)))) (-15 -2385 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -2385 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -2397 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -2397 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -439)) -((-4067 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531)))) (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8))) (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-4067 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8)) (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531))) (-4 *8 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-4067 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-4067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531))) (-4 *7 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-4067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) (-2397 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531)))) (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8))) (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2397 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8)) (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531))) (-4 *8 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2385 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531))) (-4 *7 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2373 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-721))) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-721))) (-4 *7 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))) -(-10 -7 (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-721)))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-721)))) (-15 -2385 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -2385 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -2397 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -2397 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))))) -((-3848 ((|#2| |#2| |#1|) 15)) (-1253 (((-598 |#2|) |#2| (-598 |#2|) |#1| (-864)) 69)) (-2224 (((-2 (|:| |plist| (-598 |#2|)) (|:| |modulo| |#1|)) |#2| (-598 |#2|) |#1| (-864)) 60))) -(((-440 |#1| |#2|) (-10 -7 (-15 -2224 ((-2 (|:| |plist| (-598 |#2|)) (|:| |modulo| |#1|)) |#2| (-598 |#2|) |#1| (-864))) (-15 -1253 ((-598 |#2|) |#2| (-598 |#2|) |#1| (-864))) (-15 -3848 (|#2| |#2| |#1|))) (-289) (-1160 |#1|)) (T -440)) -((-3848 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1160 *3)))) (-1253 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-598 *3)) (-5 *5 (-864)) (-4 *3 (-1160 *4)) (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))) (-2224 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-864)) (-4 *5 (-289)) (-4 *3 (-1160 *5)) (-5 *2 (-2 (|:| |plist| (-598 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3)) (-5 *4 (-598 *3))))) -(-10 -7 (-15 -2224 ((-2 (|:| |plist| (-598 |#2|)) (|:| |modulo| |#1|)) |#2| (-598 |#2|) |#1| (-864))) (-15 -1253 ((-598 |#2|) |#2| (-598 |#2|) |#1| (-864))) (-15 -3848 (|#2| |#2| |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 28)) (-1685 (($ |#3|) 25)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) 32)) (-2626 (($ |#2| |#4| $) 33)) (-2669 (($ |#2| (-664 |#3| |#4| |#5|)) 24)) (-2462 (((-664 |#3| |#4| |#5|) $) 15)) (-3103 ((|#3| $) 19)) (-3494 ((|#4| $) 17)) (-2475 ((|#2| $) 29)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2370 (($ |#2| |#3| |#4|) 26)) (-3035 (($) 36 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 34)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-441 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-668 |#6|) (-668 |#2|) (-10 -8 (-15 -2475 (|#2| $)) (-15 -2462 ((-664 |#3| |#4| |#5|) $)) (-15 -3494 (|#4| $)) (-15 -3103 (|#3| $)) (-15 -2500 ($ $)) (-15 -2669 ($ |#2| (-664 |#3| |#4| |#5|))) (-15 -1685 ($ |#3|)) (-15 -2370 ($ |#2| |#3| |#4|)) (-15 -2626 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-598 (-1102)) (-162) (-797) (-221 (-2167 |#1|) (-721)) (-1 (-110) (-2 (|:| -1889 |#3|) (|:| -1790 |#4|)) (-2 (|:| -1889 |#3|) (|:| -1790 |#4|))) (-892 |#2| |#4| (-808 |#1|))) (T -441)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *6 (-221 (-2167 *3) (-721))) (-14 *7 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) (-2 (|:| -1889 *5) (|:| -1790 *6)))) (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-797)) (-4 *2 (-892 *4 *6 (-808 *3))))) (-2475 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *5 (-221 (-2167 *3) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5)) (-2 (|:| -1889 *4) (|:| -1790 *5)))) (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-797)) (-4 *7 (-892 *2 *5 (-808 *3))))) (-2462 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *6 (-221 (-2167 *3) (-721))) (-14 *7 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) (-2 (|:| -1889 *5) (|:| -1790 *6)))) (-5 *2 (-664 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-797)) (-4 *8 (-892 *4 *6 (-808 *3))))) (-3494 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *2)) (-2 (|:| -1889 *5) (|:| -1790 *2)))) (-4 *2 (-221 (-2167 *3) (-721))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) (-4 *5 (-797)) (-4 *7 (-892 *4 *2 (-808 *3))))) (-3103 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *5 (-221 (-2167 *3) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5)) (-2 (|:| -1889 *2) (|:| -1790 *5)))) (-4 *2 (-797)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *7 (-892 *4 *5 (-808 *3))))) (-2500 (*1 *1 *1) (-12 (-14 *2 (-598 (-1102))) (-4 *3 (-162)) (-4 *5 (-221 (-2167 *2) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5)) (-2 (|:| -1889 *4) (|:| -1790 *5)))) (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-797)) (-4 *7 (-892 *3 *5 (-808 *2))))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-664 *5 *6 *7)) (-4 *5 (-797)) (-4 *6 (-221 (-2167 *4) (-721))) (-14 *7 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) (-2 (|:| -1889 *5) (|:| -1790 *6)))) (-14 *4 (-598 (-1102))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-892 *2 *6 (-808 *4))))) (-1685 (*1 *1 *2) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *5 (-221 (-2167 *3) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5)) (-2 (|:| -1889 *2) (|:| -1790 *5)))) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-797)) (-4 *7 (-892 *4 *5 (-808 *3))))) (-2370 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-598 (-1102))) (-4 *2 (-162)) (-4 *4 (-221 (-2167 *5) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *4)) (-2 (|:| -1889 *3) (|:| -1790 *4)))) (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-797)) (-4 *7 (-892 *2 *4 (-808 *5))))) (-2626 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-598 (-1102))) (-4 *2 (-162)) (-4 *3 (-221 (-2167 *4) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *3)) (-2 (|:| -1889 *5) (|:| -1790 *3)))) (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-797)) (-4 *7 (-892 *2 *3 (-808 *4)))))) -(-13 (-668 |#6|) (-668 |#2|) (-10 -8 (-15 -2475 (|#2| $)) (-15 -2462 ((-664 |#3| |#4| |#5|) $)) (-15 -3494 (|#4| $)) (-15 -3103 (|#3| $)) (-15 -2500 ($ $)) (-15 -2669 ($ |#2| (-664 |#3| |#4| |#5|))) (-15 -1685 ($ |#3|)) (-15 -2370 ($ |#2| |#3| |#4|)) (-15 -2626 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1819 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-442 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1819 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-743) (-797) (-523) (-892 |#3| |#1| |#2|) (-13 (-977 (-388 (-531))) (-344) (-10 -8 (-15 -2265 ($ |#4|)) (-15 -1840 (|#4| $)) (-15 -1853 (|#4| $))))) (T -442)) -((-1819 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-797)) (-4 *5 (-743)) (-4 *6 (-523)) (-4 *7 (-892 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-977 (-388 (-531))) (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $)))))))) -(-10 -7 (-15 -1819 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2247 (((-110) $ $) NIL)) (-2695 (((-598 |#3|) $) 41)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) NIL (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 47)) (-2523 (($ (-598 |#4|)) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273)))) (-2227 (((-598 |#4|) $) 18 (|has| $ (-6 -4273)))) (-4075 ((|#3| $) 45)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 14 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2529 (((-1049) $) NIL)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 39)) (-3781 (($) 17)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 16)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507)))) (($ (-598 |#4|)) 49)) (-2274 (($ (-598 |#4|)) 13)) (-3382 (($ $ |#3|) NIL)) (-2021 (($ $ |#3|) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 38) (((-598 |#4|) $) 48)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 30)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-443 |#1| |#2| |#3| |#4|) (-13 (-918 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3318 ($ (-598 |#4|))) (-6 -4273) (-6 -4274))) (-986) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -443)) -((-3318 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-443 *3 *4 *5 *6))))) -(-13 (-918 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3318 ($ (-598 |#4|))) (-6 -4273) (-6 -4274))) -((-3035 (($) 11)) (-3050 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -3050 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3035 (|#1|))) (-445 |#2| |#3|) (-162) (-23)) (T -444)) -NIL -(-10 -8 (-15 -3050 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3035 (|#1|))) -((-2247 (((-110) $ $) 7)) (-3154 (((-3 |#1| "failed") $) 26)) (-2523 ((|#1| $) 25)) (-3488 (($ $ $) 23)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 ((|#2| $) 19)) (-2265 (((-806) $) 11) (($ |#1|) 27)) (-3035 (($) 18 T CONST)) (-3050 (($) 24 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 15) (($ $ $) 13)) (-2237 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-445 |#1| |#2|) (-133) (-162) (-23)) (T -445)) -((-3050 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-3488 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))) -(-13 (-450 |t#1| |t#2|) (-977 |t#1|) (-10 -8 (-15 (-3050) ($) -2651) (-15 -3488 ($ $ $)))) -(((-99) . T) ((-572 (-806)) . T) ((-450 |#1| |#2|) . T) ((-977 |#1|) . T) ((-1030) . T)) -((-1222 (((-1184 (-1184 (-531))) (-1184 (-1184 (-531))) (-864)) 18)) (-3133 (((-1184 (-1184 (-531))) (-864)) 16))) -(((-446) (-10 -7 (-15 -1222 ((-1184 (-1184 (-531))) (-1184 (-1184 (-531))) (-864))) (-15 -3133 ((-1184 (-1184 (-531))) (-864))))) (T -446)) -((-3133 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 (-531)))) (-5 *1 (-446)))) (-1222 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-1184 (-531)))) (-5 *3 (-864)) (-5 *1 (-446))))) -(-10 -7 (-15 -1222 ((-1184 (-1184 (-531))) (-1184 (-1184 (-531))) (-864))) (-15 -3133 ((-1184 (-1184 (-531))) (-864)))) -((-3905 (((-531) (-531)) 30) (((-531)) 22)) (-3664 (((-531) (-531)) 26) (((-531)) 18)) (-2828 (((-531) (-531)) 28) (((-531)) 20)) (-2603 (((-110) (-110)) 12) (((-110)) 10)) (-2691 (((-110) (-110)) 11) (((-110)) 9)) (-3262 (((-110) (-110)) 24) (((-110)) 15))) -(((-447) (-10 -7 (-15 -2691 ((-110))) (-15 -2603 ((-110))) (-15 -2691 ((-110) (-110))) (-15 -2603 ((-110) (-110))) (-15 -3262 ((-110))) (-15 -2828 ((-531))) (-15 -3664 ((-531))) (-15 -3905 ((-531))) (-15 -3262 ((-110) (-110))) (-15 -2828 ((-531) (-531))) (-15 -3664 ((-531) (-531))) (-15 -3905 ((-531) (-531))))) (T -447)) -((-3905 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-3905 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3664 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-2828 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3262 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2603 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2691 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))) -(-10 -7 (-15 -2691 ((-110))) (-15 -2603 ((-110))) (-15 -2691 ((-110) (-110))) (-15 -2603 ((-110) (-110))) (-15 -3262 ((-110))) (-15 -2828 ((-531))) (-15 -3664 ((-531))) (-15 -3905 ((-531))) (-15 -3262 ((-110) (-110))) (-15 -2828 ((-531) (-531))) (-15 -3664 ((-531) (-531))) (-15 -3905 ((-531) (-531)))) -((-2247 (((-110) $ $) NIL)) (-1247 (((-598 (-360)) $) 28) (((-598 (-360)) $ (-598 (-360))) 96)) (-2652 (((-598 (-1025 (-360))) $) 16) (((-598 (-1025 (-360))) $ (-598 (-1025 (-360)))) 94)) (-2180 (((-598 (-598 (-886 (-208)))) (-598 (-598 (-886 (-208)))) (-598 (-817))) 45)) (-1267 (((-598 (-598 (-886 (-208)))) $) 90)) (-4042 (((-1189) $ (-886 (-208)) (-817)) 108)) (-3211 (($ $) 89) (($ (-598 (-598 (-886 (-208))))) 99) (($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864))) 98) (($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)) (-598 (-245))) 100)) (-1521 (((-1085) $) NIL)) (-3033 (((-531) $) 71)) (-2529 (((-1049) $) NIL)) (-4253 (($) 97)) (-3862 (((-598 (-208)) (-598 (-598 (-886 (-208))))) 56)) (-3430 (((-1189) $ (-598 (-886 (-208))) (-817) (-817) (-864)) 102) (((-1189) $ (-886 (-208))) 104) (((-1189) $ (-886 (-208)) (-817) (-817) (-864)) 103)) (-2265 (((-806) $) 114) (($ (-598 (-598 (-886 (-208))))) 109)) (-2482 (((-1189) $ (-886 (-208))) 107)) (-2148 (((-110) $ $) NIL))) -(((-448) (-13 (-1030) (-10 -8 (-15 -4253 ($)) (-15 -3211 ($ $)) (-15 -3211 ($ (-598 (-598 (-886 (-208)))))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)) (-598 (-245)))) (-15 -1267 ((-598 (-598 (-886 (-208)))) $)) (-15 -3033 ((-531) $)) (-15 -2652 ((-598 (-1025 (-360))) $)) (-15 -2652 ((-598 (-1025 (-360))) $ (-598 (-1025 (-360))))) (-15 -1247 ((-598 (-360)) $)) (-15 -1247 ((-598 (-360)) $ (-598 (-360)))) (-15 -3430 ((-1189) $ (-598 (-886 (-208))) (-817) (-817) (-864))) (-15 -3430 ((-1189) $ (-886 (-208)))) (-15 -3430 ((-1189) $ (-886 (-208)) (-817) (-817) (-864))) (-15 -2482 ((-1189) $ (-886 (-208)))) (-15 -4042 ((-1189) $ (-886 (-208)) (-817))) (-15 -2265 ($ (-598 (-598 (-886 (-208)))))) (-15 -2265 ((-806) $)) (-15 -2180 ((-598 (-598 (-886 (-208)))) (-598 (-598 (-886 (-208)))) (-598 (-817)))) (-15 -3862 ((-598 (-208)) (-598 (-598 (-886 (-208))))))))) (T -448)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-448)))) (-4253 (*1 *1) (-5 *1 (-448))) (-3211 (*1 *1 *1) (-5 *1 (-448))) (-3211 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) (-3211 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) (-5 *4 (-598 (-864))) (-5 *1 (-448)))) (-3211 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) (-5 *4 (-598 (-864))) (-5 *5 (-598 (-245))) (-5 *1 (-448)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-448)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448)))) (-2652 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448)))) (-1247 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448)))) (-3430 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *2 (-1189)) (-5 *1 (-448)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448)))) (-3430 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *2 (-1189)) (-5 *1 (-448)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448)))) (-4042 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-448)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) (-5 *1 (-448)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-598 (-208))) (-5 *1 (-448))))) -(-13 (-1030) (-10 -8 (-15 -4253 ($)) (-15 -3211 ($ $)) (-15 -3211 ($ (-598 (-598 (-886 (-208)))))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)) (-598 (-245)))) (-15 -1267 ((-598 (-598 (-886 (-208)))) $)) (-15 -3033 ((-531) $)) (-15 -2652 ((-598 (-1025 (-360))) $)) (-15 -2652 ((-598 (-1025 (-360))) $ (-598 (-1025 (-360))))) (-15 -1247 ((-598 (-360)) $)) (-15 -1247 ((-598 (-360)) $ (-598 (-360)))) (-15 -3430 ((-1189) $ (-598 (-886 (-208))) (-817) (-817) (-864))) (-15 -3430 ((-1189) $ (-886 (-208)))) (-15 -3430 ((-1189) $ (-886 (-208)) (-817) (-817) (-864))) (-15 -2482 ((-1189) $ (-886 (-208)))) (-15 -4042 ((-1189) $ (-886 (-208)) (-817))) (-15 -2265 ($ (-598 (-598 (-886 (-208)))))) (-15 -2265 ((-806) $)) (-15 -2180 ((-598 (-598 (-886 (-208)))) (-598 (-598 (-886 (-208)))) (-598 (-817)))) (-15 -3862 ((-598 (-208)) (-598 (-598 (-886 (-208)))))))) -((-2250 (($ $) NIL) (($ $ $) 11))) -(((-449 |#1| |#2| |#3|) (-10 -8 (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|))) (-450 |#2| |#3|) (-162) (-23)) (T -449)) -NIL -(-10 -8 (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 ((|#2| $) 19)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 15) (($ $ $) 13)) (-2237 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-450 |#1| |#2|) (-133) (-162) (-23)) (T -450)) -((-2012 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-3035 (*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))) -(-13 (-1030) (-10 -8 (-15 -2012 (|t#2| $)) (-15 (-3035) ($) -2651) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2250 ($ $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-3411 (((-3 (-598 (-460 |#1| |#2|)) "failed") (-598 (-460 |#1| |#2|)) (-598 (-808 |#1|))) 92)) (-1441 (((-598 (-598 (-230 |#1| |#2|))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))) 90)) (-3268 (((-2 (|:| |dpolys| (-598 (-230 |#1| |#2|))) (|:| |coords| (-598 (-531)))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))) 61))) -(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -1441 ((-598 (-598 (-230 |#1| |#2|))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3411 ((-3 (-598 (-460 |#1| |#2|)) "failed") (-598 (-460 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3268 ((-2 (|:| |dpolys| (-598 (-230 |#1| |#2|))) (|:| |coords| (-598 (-531)))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))))) (-598 (-1102)) (-432) (-432)) (T -451)) -((-3268 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-2 (|:| |dpolys| (-598 (-230 *5 *6))) (|:| |coords| (-598 (-531))))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432)))) (-3411 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-598 (-808 *4))) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) (-4 *6 (-432)))) (-1441 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-598 (-598 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432))))) -(-10 -7 (-15 -1441 ((-598 (-598 (-230 |#1| |#2|))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3411 ((-3 (-598 (-460 |#1| |#2|)) "failed") (-598 (-460 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3268 ((-2 (|:| |dpolys| (-598 (-230 |#1| |#2|))) (|:| |coords| (-598 (-531)))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))))) -((-3622 (((-3 $ "failed") $) 11)) (-4164 (($ $ $) 18)) (-3214 (($ $ $) 19)) (-2263 (($ $ $) 9)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 17))) -(((-452 |#1|) (-10 -8 (-15 -3214 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864)))) (-453)) (T -452)) -NIL -(-10 -8 (-15 -3214 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-4082 (($) 18 T CONST)) (-3622 (((-3 $ "failed") $) 15)) (-3481 (((-110) $) 17)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 24)) (-2529 (((-1049) $) 10)) (-4164 (($ $ $) 21)) (-3214 (($ $ $) 20)) (-2265 (((-806) $) 11)) (-3050 (($) 19 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 23)) (** (($ $ (-864)) 13) (($ $ (-721)) 16) (($ $ (-531)) 22)) (* (($ $ $) 14))) -(((-453) (-133)) (T -453)) -((-2422 (*1 *1 *1) (-4 *1 (-453))) (-2263 (*1 *1 *1 *1) (-4 *1 (-453))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-531)))) (-4164 (*1 *1 *1 *1) (-4 *1 (-453))) (-3214 (*1 *1 *1 *1) (-4 *1 (-453)))) -(-13 (-677) (-10 -8 (-15 -2422 ($ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ (-531))) (-6 -4270) (-15 -4164 ($ $ $)) (-15 -3214 ($ $ $)))) -(((-99) . T) ((-572 (-806)) . T) ((-677) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 17)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) NIL) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 22)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 26 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 33 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 27 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) 25 (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $ (-1180 |#2|)) 15)) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1180 |#2|)) NIL) (($ (-1169 |#1| |#2| |#3|)) 9) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 18)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 24)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-454 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -2265 ($ (-1169 |#1| |#2| |#3|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -454)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1165 |#1|) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -2265 ($ (-1169 |#1| |#2| |#3|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) 18)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 19)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 16)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-455 |#1| |#2| |#3| |#4|) (-1115 |#1| |#2|) (-1030) (-1030) (-1115 |#1| |#2|) |#2|) (T -455)) -NIL -(-1115 |#1| |#2|) -((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) NIL)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) 26 (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 39)) (-3785 ((|#4| |#4| $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2227 (((-598 |#4|) $) 16 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 33)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 17 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2309 (((-3 |#4| "failed") $) 37)) (-1979 (((-598 |#4|) $) NIL)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 35)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) 47)) (-1846 (($ $ |#4|) NIL)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 13)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 12)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 20)) (-3382 (($ $ |#3|) 42)) (-2021 (($ $ |#3|) 44)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 31) (((-598 |#4|) $) 40)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-1697 (((-110) |#3| $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-456 |#1| |#2| |#3| |#4|) (-1132 |#1| |#2| |#3| |#4|) (-523) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -456)) -NIL -(-1132 |#1| |#2| |#3| |#4|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1880 (($) 18)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3318 (((-360) $) 22) (((-208) $) 25) (((-388 (-1098 (-531))) $) 19) (((-507) $) 52)) (-2265 (((-806) $) 50) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (((-208) $) 24) (((-360) $) 21)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 36 T CONST)) (-3050 (($) 11 T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-457) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))) (-962) (-572 (-208)) (-572 (-360)) (-573 (-388 (-1098 (-531)))) (-573 (-507)) (-10 -8 (-15 -1880 ($))))) (T -457)) -((-1880 (*1 *1) (-5 *1 (-457)))) -(-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))) (-962) (-572 (-208)) (-572 (-360)) (-573 (-388 (-1098 (-531)))) (-573 (-507)) (-10 -8 (-15 -1880 ($)))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) 16)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 20)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 18)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) 13)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 19)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 11 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) 15 (|has| $ (-6 -4273))))) -(((-458 |#1| |#2| |#3|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030) (-1085)) (T -458)) -NIL -(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) -((-3986 (((-531) (-531) (-531)) 7)) (-3047 (((-110) (-531) (-531) (-531) (-531)) 11)) (-2107 (((-1184 (-598 (-531))) (-721) (-721)) 23))) -(((-459) (-10 -7 (-15 -3986 ((-531) (-531) (-531))) (-15 -3047 ((-110) (-531) (-531) (-531) (-531))) (-15 -2107 ((-1184 (-598 (-531))) (-721) (-721))))) (T -459)) -((-2107 (*1 *2 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1184 (-598 (-531)))) (-5 *1 (-459)))) (-3047 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-459)))) (-3986 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-459))))) -(-10 -7 (-15 -3986 ((-531) (-531) (-531))) (-15 -3047 ((-110) (-531) (-531) (-531) (-531))) (-15 -2107 ((-1184 (-598 (-531))) (-721) (-721)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-808 |#1|)) $) NIL)) (-2516 (((-1098 $) $ (-808 |#1|)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2701 (($ $ (-598 (-531))) NIL)) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-461 (-2167 |#1|) (-721)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) NIL) (($ (-1098 $) (-808 |#1|)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-461 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 (((-461 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-461 (-2167 |#1|) (-721)) (-461 (-2167 |#1|) (-721))) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) NIL) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) NIL) (($ $ (-808 |#1|) $) NIL) (($ $ (-598 (-808 |#1|)) (-598 $)) NIL)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 (((-461 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-808 |#1|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-461 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-460 |#1| |#2|) (-13 (-892 |#2| (-461 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) (-598 (-1102)) (-986)) (T -460)) -((-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-460 *3 *4)) (-14 *3 (-598 (-1102))) (-4 *4 (-986))))) -(-13 (-892 |#2| (-461 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) -((-2247 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-3019 (((-110) $) NIL (|has| |#2| (-128)))) (-1685 (($ (-864)) NIL (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#2| (-349)))) (-3459 (((-531) $) NIL (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) NIL (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) NIL (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) NIL (|has| |#2| (-677)))) (-1381 (($) NIL (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) 11)) (-1599 (((-110) $) NIL (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#2| (-677)))) (-2985 (((-110) $) NIL (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#2| (-349)))) (-2529 (((-1049) $) NIL (|has| |#2| (-1030)))) (-3046 ((|#2| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) NIL)) (-3225 ((|#2| $ $) NIL (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) NIL)) (-2190 (((-130)) NIL (|has| |#2| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#2|) $) NIL) (($ (-531)) NIL (-1435 (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) NIL (|has| |#2| (-1030))) (((-806) $) NIL (|has| |#2| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#2| (-795)))) (-3035 (($) NIL (|has| |#2| (-128)) CONST)) (-3050 (($) NIL (|has| |#2| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2148 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2174 (((-110) $ $) 15 (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $ $) NIL (|has| |#2| (-986))) (($ $) NIL (|has| |#2| (-986)))) (-2237 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-721)) NIL (|has| |#2| (-677))) (($ $ (-864)) NIL (|has| |#2| (-677)))) (* (($ (-531) $) NIL (|has| |#2| (-986))) (($ $ $) NIL (|has| |#2| (-677))) (($ $ |#2|) NIL (|has| |#2| (-677))) (($ |#2| $) NIL (|has| |#2| (-677))) (($ (-721) $) NIL (|has| |#2| (-128))) (($ (-864) $) NIL (|has| |#2| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-461 |#1| |#2|) (-221 |#1| |#2|) (-721) (-743)) (T -461)) -NIL -(-221 |#1| |#2|) -((-2247 (((-110) $ $) NIL)) (-3185 (((-598 (-1102)) $) 11)) (-3955 (((-1102) $) 10)) (-1521 (((-1085) $) NIL)) (-3064 (($ (-598 (-1102))) 9)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (((-1107) $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-462) (-13 (-1015) (-10 -8 (-15 -3064 ($ (-598 (-1102)))) (-15 -3955 ((-1102) $)) (-15 -3185 ((-598 (-1102)) $))))) (T -462)) -((-3064 (*1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-462)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462))))) -(-13 (-1015) (-10 -8 (-15 -3064 ($ (-598 (-1102)))) (-15 -3955 ((-1102) $)) (-15 -3185 ((-598 (-1102)) $)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3611 (($ $ $) 32)) (-3508 (($ $ $) 31)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1241 ((|#1| $) 26)) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 27)) (-3944 (($ |#1| $) 10)) (-3501 (($ (-598 |#1|)) 12)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4192 ((|#1| $) 23)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 9)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 29)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) 21 (|has| $ (-6 -4273))))) -(((-463 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -3501 ($ (-598 |#1|))))) (-797)) (T -463)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-463 *3))))) -(-13 (-911 |#1|) (-10 -8 (-15 -3501 ($ (-598 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ $) 69)) (-3841 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2003 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 44)) (-2529 (((-1049) $) NIL)) (-1861 (((-3 |#4| "failed") $) 107)) (-2535 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-531)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4044 (((-2 (|:| -2968 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2265 (((-806) $) 102)) (-3035 (($) 33 T CONST)) (-2148 (((-110) $ $) 109)) (-2250 (($ $) 72) (($ $ $) NIL)) (-2237 (($ $ $) 70)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 73))) -(((-464 |#1| |#2| |#3| |#4|) (-316 |#1| |#2| |#3| |#4|) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -464)) -NIL -(-316 |#1| |#2| |#3| |#4|) -((-1232 (((-531) (-598 (-531))) 30)) (-3316 ((|#1| (-598 |#1|)) 56)) (-2402 (((-598 |#1|) (-598 |#1|)) 57)) (-3718 (((-598 |#1|) (-598 |#1|)) 59)) (-2109 ((|#1| (-598 |#1|)) 58)) (-1767 (((-598 (-531)) (-598 |#1|)) 33))) -(((-465 |#1|) (-10 -7 (-15 -2109 (|#1| (-598 |#1|))) (-15 -3316 (|#1| (-598 |#1|))) (-15 -3718 ((-598 |#1|) (-598 |#1|))) (-15 -2402 ((-598 |#1|) (-598 |#1|))) (-15 -1767 ((-598 (-531)) (-598 |#1|))) (-15 -1232 ((-531) (-598 (-531))))) (-1160 (-531))) (T -465)) -((-1232 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-531)) (-5 *1 (-465 *4)) (-4 *4 (-1160 *2)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1160 (-531))) (-5 *2 (-598 (-531))) (-5 *1 (-465 *4)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531))))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531)))))) -(-10 -7 (-15 -2109 (|#1| (-598 |#1|))) (-15 -3316 (|#1| (-598 |#1|))) (-15 -3718 ((-598 |#1|) (-598 |#1|))) (-15 -2402 ((-598 |#1|) (-598 |#1|))) (-15 -1767 ((-598 (-531)) (-598 |#1|))) (-15 -1232 ((-531) (-598 (-531))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-531) $) NIL (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-3792 (($ (-388 (-531))) 9)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) NIL)) (-2943 (((-531) $) NIL (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 8) (($ (-531)) NIL) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL) (((-945 16) $) 10)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-531) $) NIL (|has| (-531) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2263 (($ $ $) NIL) (($ (-531) (-531)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL))) -(((-466) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 16) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -3792 ($ (-388 (-531))))))) (T -466)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-945 16)) (-5 *1 (-466)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466))))) -(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 16) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -3792 ($ (-388 (-531)))))) -((-2445 (((-598 |#2|) $) 23)) (-1883 (((-110) |#2| $) 28)) (-2294 (((-110) (-1 (-110) |#2|) $) 21)) (-4115 (($ $ (-598 (-276 |#2|))) 13) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-598 |#2|) (-598 |#2|)) NIL)) (-2539 (((-721) (-1 (-110) |#2|) $) 22) (((-721) |#2| $) 26)) (-2265 (((-806) $) 37)) (-2060 (((-110) (-1 (-110) |#2|) $) 20)) (-2148 (((-110) $ $) 31)) (-2167 (((-721) $) 17))) -(((-467 |#1| |#2|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2445 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|))) (-468 |#2|) (-1138)) (T -467)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2445 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-468 |#1|) (-133) (-1138)) (T -468)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1138)))) (-2680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4274)) (-4 *1 (-468 *3)) (-4 *3 (-1138)))) (-2060 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-2294 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-2539 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) (-4 *4 (-1138)) (-5 *2 (-721)))) (-2227 (*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))) (-2445 (*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))) (-2539 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-721)))) (-1883 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (IF (|has| |t#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |t#1| (-1030)) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4274)) (-15 -2680 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4273)) (PROGN (-15 -2060 ((-110) (-1 (-110) |t#1|) $)) (-15 -2294 ((-110) (-1 (-110) |t#1|) $)) (-15 -2539 ((-721) (-1 (-110) |t#1|) $)) (-15 -2227 ((-598 |t#1|) $)) (-15 -2445 ((-598 |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2539 ((-721) |t#1| $)) (-15 -1883 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-3353 (($ (-1085)) 8)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 14) (((-1085) $) 11)) (-2148 (((-110) $ $) 10))) -(((-469) (-13 (-1030) (-572 (-1085)) (-10 -8 (-15 -3353 ($ (-1085)))))) (T -469)) -((-3353 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-469))))) -(-13 (-1030) (-572 (-1085)) (-10 -8 (-15 -3353 ($ (-1085))))) -((-2367 (($ $) 15)) (-2343 (($ $) 24)) (-2391 (($ $) 12)) (-2403 (($ $) 10)) (-2379 (($ $) 17)) (-2356 (($ $) 22))) -(((-470 |#1|) (-10 -8 (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|))) (-471)) (T -470)) -NIL -(-10 -8 (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|))) -((-2367 (($ $) 11)) (-2343 (($ $) 10)) (-2391 (($ $) 9)) (-2403 (($ $) 8)) (-2379 (($ $) 7)) (-2356 (($ $) 6))) -(((-471) (-133)) (T -471)) -((-2367 (*1 *1 *1) (-4 *1 (-471))) (-2343 (*1 *1 *1) (-4 *1 (-471))) (-2391 (*1 *1 *1) (-4 *1 (-471))) (-2403 (*1 *1 *1) (-4 *1 (-471))) (-2379 (*1 *1 *1) (-4 *1 (-471))) (-2356 (*1 *1 *1) (-4 *1 (-471)))) -(-13 (-10 -8 (-15 -2356 ($ $)) (-15 -2379 ($ $)) (-15 -2403 ($ $)) (-15 -2391 ($ $)) (-15 -2343 ($ $)) (-15 -2367 ($ $)))) -((-2552 (((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)) 42))) -(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)))) (-344) (-1160 |#1|) (-13 (-344) (-140) (-675 |#1| |#2|)) (-1160 |#3|)) (T -472)) -((-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-4 *7 (-13 (-344) (-140) (-675 *5 *6))) (-5 *2 (-399 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1160 *7))))) -(-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)))) -((-2247 (((-110) $ $) NIL)) (-2485 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2424 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3019 (((-110) $) 39)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-3739 (((-110) $ $) 64)) (-2410 (((-598 (-571 $)) $) 48)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3007 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2738 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-571 $) $) NIL) (((-531) $) NIL) (((-388 (-531)) $) 50)) (-3650 (($ $ $) NIL)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-388 (-531)))) (|:| |vec| (-1184 (-388 (-531))))) (-639 $) (-1184 $)) NIL) (((-639 (-388 (-531))) (-639 $)) NIL)) (-1760 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) NIL)) (-3481 (((-110) $) 42)) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-1840 (((-1054 (-531) (-571 $)) $) 37)) (-2249 (($ $ (-531)) NIL)) (-1899 (((-1098 $) (-1098 $) (-571 $)) 78) (((-1098 $) (-1098 $) (-598 (-571 $))) 55) (($ $ (-571 $)) 67) (($ $ (-598 (-571 $))) 68)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2733 (((-1098 $) (-571 $)) 65 (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) NIL)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) NIL)) (-1930 (($ (-112) $) NIL) (($ (-112) (-598 $)) NIL)) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) NIL)) (-2422 (($ $) NIL)) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-4100 (((-721) $) NIL)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1771 (($ $) NIL) (($ $ $) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) 36)) (-1853 (((-1054 (-531) (-571 $)) $) 20)) (-3608 (($ $) NIL (|has| $ (-986)))) (-3318 (((-360) $) 92) (((-208) $) 100) (((-159 (-360)) $) 108)) (-2265 (((-806) $) NIL) (($ (-571 $)) NIL) (($ (-388 (-531))) NIL) (($ $) NIL) (($ (-531)) NIL) (($ (-1054 (-531) (-571 $))) 21)) (-2284 (((-721)) NIL)) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-3167 (((-110) (-112)) 84)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 10 T CONST)) (-3050 (($) 22 T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 24)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2263 (($ $ $) 44)) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-388 (-531))) NIL) (($ $ (-531)) 46) (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ $ $) 27) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL))) -(((-473) (-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -3739 ((-110) $ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $))))))) (T -473)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) (-1760 (*1 *1 *1) (-5 *1 (-473))) (-3739 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-571 (-473))) (-5 *1 (-473)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-598 (-571 (-473)))) (-5 *1 (-473)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-571 (-473))) (-5 *1 (-473)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-473)))) (-5 *1 (-473))))) -(-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -3739 ((-110) $ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $)))))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 25 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 22 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 21)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 14)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 12 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) 23 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) 10 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 13)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 24) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 9 (|has| $ (-6 -4273))))) -(((-474 |#1| |#2|) (-19 |#1|) (-1138) (-531)) (T -474)) +((-2180 (($ $) 6)) (-4185 (($ $) 7)) (** (($ $ $) 8))) +(((-268) (-134)) (T -268)) +((** (*1 *1 *1 *1) (-4 *1 (-268))) (-4185 (*1 *1 *1) (-4 *1 (-268))) (-2180 (*1 *1 *1) (-4 *1 (-268)))) +(-13 (-10 -8 (-15 -2180 ($ $)) (-15 -4185 ($ $)) (-15 ** ($ $ $)))) +((-3980 (((-606 (-1098 |#1|)) (-1098 |#1|) |#1|) 35)) (-2613 ((|#2| |#2| |#1|) 38)) (-4181 ((|#2| |#2| |#1|) 40)) (-2462 ((|#2| |#2| |#1|) 39))) +(((-269 |#1| |#2|) (-10 -7 (-15 -2613 (|#2| |#2| |#1|)) (-15 -2462 (|#2| |#2| |#1|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -3980 ((-606 (-1098 |#1|)) (-1098 |#1|) |#1|))) (-347) (-1191 |#1|)) (T -269)) +((-3980 (*1 *2 *3 *4) (-12 (-4 *4 (-347)) (-5 *2 (-606 (-1098 *4))) (-5 *1 (-269 *4 *5)) (-5 *3 (-1098 *4)) (-4 *5 (-1191 *4)))) (-4181 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3)))) (-2462 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3)))) (-2613 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) +(-10 -7 (-15 -2613 (|#2| |#2| |#1|)) (-15 -2462 (|#2| |#2| |#1|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -3980 ((-606 (-1098 |#1|)) (-1098 |#1|) |#1|))) +((-1922 ((|#2| $ |#1|) 6))) +(((-270 |#1| |#2|) (-134) (-1045) (-1154)) (T -270)) +((-1922 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154))))) +(-13 (-10 -8 (-15 -1922 (|t#2| $ |t#1|)))) +((-4091 ((|#3| $ |#2| |#3|) 12)) (-4030 ((|#3| $ |#2|) 10))) +(((-271 |#1| |#2| |#3|) (-10 -8 (-15 -4091 (|#3| |#1| |#2| |#3|)) (-15 -4030 (|#3| |#1| |#2|))) (-272 |#2| |#3|) (-1045) (-1154)) (T -271)) +NIL +(-10 -8 (-15 -4091 (|#3| |#1| |#2| |#3|)) (-15 -4030 (|#3| |#1| |#2|))) +((-2476 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4301)))) (-4091 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 11)) (-1922 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-272 |#1| |#2|) (-134) (-1045) (-1154)) (T -272)) +((-1922 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-4091 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154))))) +(-13 (-270 |t#1| |t#2|) (-10 -8 (-15 -1922 (|t#2| $ |t#1| |t#2|)) (-15 -4030 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4301)) (PROGN (-15 -2476 (|t#2| $ |t#1| |t#2|)) (-15 -4091 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-270 |#1| |#2|) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 35)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 40)) (-3377 (($ $) 38)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) 33)) (-3195 (($ |#2| |#3|) 19)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 ((|#3| $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 20)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2048 (((-3 $ "failed") $ $) NIL)) (-1930 (((-731) $) 34)) (-1922 ((|#2| $ |#2|) 42)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 24)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 29 T CONST)) (-2943 (($) 36 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 37))) +(((-273 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-291) (-10 -8 (-15 -2084 (|#3| $)) (-15 -2341 (|#2| $)) (-15 -3195 ($ |#2| |#3|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)) (-15 -1922 (|#2| $ |#2|)))) (-163) (-1176 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -273)) +((-3490 (*1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2084 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-273 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1176 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) (-4 *3 (-163)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3195 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-273 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1176 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3865 (*1 *1 *1) (-12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1922 (*1 *2 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1176 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-291) (-10 -8 (-15 -2084 (|#3| $)) (-15 -2341 (|#2| $)) (-15 -3195 ($ |#2| |#3|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)) (-15 -1922 (|#2| $ |#2|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-274) (-134)) (T -274)) +NIL +(-13 (-998) (-110 $ $) (-10 -7 (-6 -4293))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-4043 (($ (-1117) (-1117) (-1049) $) 17)) (-2774 (($ (-1117) (-606 (-918)) $) 22)) (-3446 (((-606 (-1031)) $) 10)) (-3511 (((-3 (-1049) "failed") (-1117) (-1117) $) 16)) (-1417 (((-3 (-606 (-918)) "failed") (-1117) $) 21)) (-3425 (($) 7)) (-1997 (($) 23)) (-2341 (((-816) $) 27)) (-4090 (($) 24))) +(((-275) (-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3446 ((-606 (-1031)) $)) (-15 -3511 ((-3 (-1049) "failed") (-1117) (-1117) $)) (-15 -4043 ($ (-1117) (-1117) (-1049) $)) (-15 -1417 ((-3 (-606 (-918)) "failed") (-1117) $)) (-15 -2774 ($ (-1117) (-606 (-918)) $)) (-15 -1997 ($)) (-15 -4090 ($))))) (T -275)) +((-3425 (*1 *1) (-5 *1 (-275))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-606 (-1031))) (-5 *1 (-275)))) (-3511 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-275)))) (-4043 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-275)))) (-1417 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-606 (-918))) (-5 *1 (-275)))) (-2774 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-275)))) (-1997 (*1 *1) (-5 *1 (-275))) (-4090 (*1 *1) (-5 *1 (-275)))) +(-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3446 ((-606 (-1031)) $)) (-15 -3511 ((-3 (-1049) "failed") (-1117) (-1117) $)) (-15 -4043 ($ (-1117) (-1117) (-1049) $)) (-15 -1417 ((-3 (-606 (-918)) "failed") (-1117) $)) (-15 -2774 ($ (-1117) (-606 (-918)) $)) (-15 -1997 ($)) (-15 -4090 ($)))) +((-2182 (((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))) 85)) (-3294 (((-606 (-649 (-391 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|)))))) (-649 (-391 (-905 |#1|)))) 80) (((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))) (-731) (-731)) 38)) (-3087 (((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))) 82)) (-2648 (((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|)))) 62)) (-4075 (((-606 (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (-649 (-391 (-905 |#1|)))) 61)) (-2736 (((-905 |#1|) (-649 (-391 (-905 |#1|)))) 50) (((-905 |#1|) (-649 (-391 (-905 |#1|))) (-1117)) 51))) +(((-276 |#1|) (-10 -7 (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))) (-1117))) (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))))) (-15 -4075 ((-606 (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (-649 (-391 (-905 |#1|))))) (-15 -2648 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))) (-731) (-731))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|)))))) (-649 (-391 (-905 |#1|))))) (-15 -2182 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|))))) (-15 -3087 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))))) (-435)) (T -276)) +((-3087 (*1 *2 *3) (-12 (-4 *4 (-435)) (-5 *2 (-606 (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 *4)))))))) (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4)))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-435)) (-5 *2 (-606 (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 *4)))))))) (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4)))))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 *4)))) (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5)))))) (-3294 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-391 (-905 *6)) (-1107 (-1117) (-905 *6)))) (-5 *5 (-731)) (-4 *6 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *6))))) (-5 *1 (-276 *6)) (-5 *4 (-649 (-391 (-905 *6)))))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5)))))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-4 *4 (-435)) (-5 *2 (-606 (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4))))) (-5 *1 (-276 *4)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-5 *2 (-905 *4)) (-5 *1 (-276 *4)) (-4 *4 (-435)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-905 *5)))) (-5 *4 (-1117)) (-5 *2 (-905 *5)) (-5 *1 (-276 *5)) (-4 *5 (-435))))) +(-10 -7 (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))) (-1117))) (-15 -2736 ((-905 |#1|) (-649 (-391 (-905 |#1|))))) (-15 -4075 ((-606 (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (-649 (-391 (-905 |#1|))))) (-15 -2648 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|))) (-649 (-391 (-905 |#1|))) (-731) (-731))) (-15 -3294 ((-606 (-649 (-391 (-905 |#1|)))) (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|)))))) (-649 (-391 (-905 |#1|))))) (-15 -2182 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |geneigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|))))) (-15 -3087 ((-606 (-2 (|:| |eigval| (-3 (-391 (-905 |#1|)) (-1107 (-1117) (-905 |#1|)))) (|:| |eigmult| (-731)) (|:| |eigvec| (-606 (-649 (-391 (-905 |#1|))))))) (-649 (-391 (-905 |#1|)))))) +((-1612 (((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)) 14))) +(((-277 |#1| |#2|) (-10 -7 (-15 -1612 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) (-1154) (-1154)) (T -277)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-278 *6)) (-5 *1 (-277 *5 *6))))) +(-10 -7 (-15 -1612 ((-278 |#2|) (-1 |#2| |#1|) (-278 |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1656 (((-111) $) NIL (|has| |#1| (-21)))) (-2413 (($ $) 12)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1519 (($ $ $) 94 (|has| |#1| (-286)))) (-3832 (($) NIL (-1533 (|has| |#1| (-21)) (|has| |#1| (-687))) CONST)) (-2795 (($ $) 50 (|has| |#1| (-21)))) (-3373 (((-3 $ "failed") $) 61 (|has| |#1| (-687)))) (-2880 ((|#1| $) 11)) (-3490 (((-3 $ "failed") $) 59 (|has| |#1| (-687)))) (-2836 (((-111) $) NIL (|has| |#1| (-687)))) (-1612 (($ (-1 |#1| |#1|) $) 14)) (-2869 ((|#1| $) 10)) (-2497 (($ $) 49 (|has| |#1| (-21)))) (-3831 (((-3 $ "failed") $) 60 (|has| |#1| (-687)))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3865 (($ $) 63 (-1533 (|has| |#1| (-347)) (|has| |#1| (-456))))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-4171 (((-606 $) $) 84 (|has| |#1| (-529)))) (-4116 (($ $ $) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 $)) 28 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-1117) |#1|) 17 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 21 (|has| |#1| (-495 (-1117) |#1|)))) (-3056 (($ |#1| |#1|) 9)) (-1839 (((-131)) 89 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) 86 (|has| |#1| (-853 (-1117))))) (-1978 (($ $ $) NIL (|has| |#1| (-456)))) (-1674 (($ $ $) NIL (|has| |#1| (-456)))) (-2341 (($ (-537)) NIL (|has| |#1| (-998))) (((-111) $) 36 (|has| |#1| (-1045))) (((-816) $) 35 (|has| |#1| (-1045)))) (-3654 (((-731)) 66 (|has| |#1| (-998)))) (-2928 (($) 46 (|has| |#1| (-21)) CONST)) (-2943 (($) 56 (|has| |#1| (-687)) CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117))))) (-2244 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 91 (-1533 (|has| |#1| (-347)) (|has| |#1| (-456))))) (-2329 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2318 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-537)) NIL (|has| |#1| (-456))) (($ $ (-731)) NIL (|has| |#1| (-687))) (($ $ (-874)) NIL (|has| |#1| (-1057)))) (* (($ $ |#1|) 54 (|has| |#1| (-1057))) (($ |#1| $) 53 (|has| |#1| (-1057))) (($ $ $) 52 (|has| |#1| (-1057))) (($ (-537) $) 69 (|has| |#1| (-21))) (($ (-731) $) NIL (|has| |#1| (-21))) (($ (-874) $) NIL (|has| |#1| (-25))))) +(((-278 |#1|) (-13 (-1154) (-10 -8 (-15 -2244 ($ |#1| |#1|)) (-15 -3056 ($ |#1| |#1|)) (-15 -2413 ($ $)) (-15 -2869 (|#1| $)) (-15 -2880 (|#1| $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-495 (-1117) |#1|)) (-6 (-495 (-1117) |#1|)) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-579 (-111))) (IF (|has| |#1| (-293 |#1|)) (PROGN (-15 -4116 ($ $ $)) (-15 -4116 ($ $ (-606 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2318 ($ |#1| $)) (-15 -2318 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2497 ($ $)) (-15 -2795 ($ $)) (-15 -2329 ($ |#1| $)) (-15 -2329 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-687)) (PROGN (-6 (-687)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-456)) (PROGN (-6 (-456)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-6 (-998)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|) (IF (|has| |#1| (-529)) (-15 -4171 ((-606 $) $)) |%noBranch|) (IF (|has| |#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-1207 |#1|)) (-15 -2340 ($ $ $)) (-15 -3865 ($ $))) |%noBranch|) (IF (|has| |#1| (-286)) (-15 -1519 ($ $ $)) |%noBranch|))) (-1154)) (T -278)) +((-2244 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-3056 (*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-2869 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-2880 (*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-278 *3)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *2 (-293 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)) (-5 *1 (-278 *2)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *3))) (-4 *3 (-293 *3)) (-4 *3 (-1045)) (-4 *3 (-1154)) (-5 *1 (-278 *3)))) (-2318 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) (-2318 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) (-2497 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-2329 (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) (-3831 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154)))) (-3373 (*1 *1 *1) (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-606 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-529)) (-4 *3 (-1154)))) (-1519 (*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-286)) (-4 *2 (-1154)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) (-2340 (*1 *1 *1 *1) (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154))))) (-3865 (*1 *1 *1) (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154)))))) +(-13 (-1154) (-10 -8 (-15 -2244 ($ |#1| |#1|)) (-15 -3056 ($ |#1| |#1|)) (-15 -2413 ($ $)) (-15 -2869 (|#1| $)) (-15 -2880 (|#1| $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-495 (-1117) |#1|)) (-6 (-495 (-1117) |#1|)) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-579 (-111))) (IF (|has| |#1| (-293 |#1|)) (PROGN (-15 -4116 ($ $ $)) (-15 -4116 ($ $ (-606 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2318 ($ |#1| $)) (-15 -2318 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2497 ($ $)) (-15 -2795 ($ $)) (-15 -2329 ($ |#1| $)) (-15 -2329 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-687)) (PROGN (-6 (-687)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-456)) (PROGN (-6 (-456)) (-15 -3831 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-6 (-998)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|) (IF (|has| |#1| (-529)) (-15 -4171 ((-606 $) $)) |%noBranch|) (IF (|has| |#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-1207 |#1|)) (-15 -2340 ($ $ $)) (-15 -3865 ($ $))) |%noBranch|) (IF (|has| |#1| (-286)) (-15 -1519 ($ $ $)) |%noBranch|))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-279 |#1| |#2|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045)) (T -279)) +NIL +(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) +((-3927 (((-296) (-1100) (-606 (-1100))) 16) (((-296) (-1100) (-1100)) 15) (((-296) (-606 (-1100))) 14) (((-296) (-1100)) 12))) +(((-280) (-10 -7 (-15 -3927 ((-296) (-1100))) (-15 -3927 ((-296) (-606 (-1100)))) (-15 -3927 ((-296) (-1100) (-1100))) (-15 -3927 ((-296) (-1100) (-606 (-1100)))))) (T -280)) +((-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1100))) (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) (-3927 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-296)) (-5 *1 (-280)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280))))) +(-10 -7 (-15 -3927 ((-296) (-1100))) (-15 -3927 ((-296) (-606 (-1100)))) (-15 -3927 ((-296) (-1100) (-1100))) (-15 -3927 ((-296) (-1100) (-606 (-1100))))) +((-1612 ((|#2| (-1 |#2| |#1|) (-1100) (-578 |#1|)) 18))) +(((-281 |#1| |#2|) (-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-1100) (-578 |#1|)))) (-286) (-1154)) (T -281)) +((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1100)) (-5 *5 (-578 *6)) (-4 *6 (-286)) (-4 *2 (-1154)) (-5 *1 (-281 *6 *2))))) +(-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-1100) (-578 |#1|)))) +((-1612 ((|#2| (-1 |#2| |#1|) (-578 |#1|)) 17))) +(((-282 |#1| |#2|) (-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-578 |#1|)))) (-286) (-286)) (T -282)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-578 *5)) (-4 *5 (-286)) (-4 *2 (-286)) (-5 *1 (-282 *5 *2))))) +(-10 -7 (-15 -1612 (|#2| (-1 |#2| |#1|) (-578 |#1|)))) +((-2887 (((-111) (-210)) 10))) +(((-283 |#1| |#2|) (-10 -7 (-15 -2887 ((-111) (-210)))) (-210) (-210)) (T -283)) +((-2887 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-283 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2887 ((-111) (-210)))) +((-3753 (((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210)))) 93)) (-2881 (((-1098 (-210)) (-1200 (-300 (-210))) (-606 (-1117)) (-1040 (-800 (-210)))) 107) (((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210)))) 61)) (-2718 (((-606 (-1100)) (-1098 (-210))) NIL)) (-3326 (((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210)))) 58)) (-4226 (((-606 (-210)) (-905 (-391 (-537))) (-1117) (-1040 (-800 (-210)))) 49)) (-3908 (((-606 (-1100)) (-606 (-210))) NIL)) (-2148 (((-210) (-1040 (-800 (-210)))) 25)) (-1590 (((-210) (-1040 (-800 (-210)))) 26)) (-2706 (((-111) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 54)) (-2442 (((-1100) (-210)) NIL))) +(((-284) (-10 -7 (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -2706 ((-111) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -3753 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-1200 (-300 (-210))) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -4226 ((-606 (-210)) (-905 (-391 (-537))) (-1117) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))))) (T -284)) +((-2718 (*1 *2 *3) (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-284)))) (-4226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *4 (-1117)) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284)))) (-2881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) (-2881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) (-3326 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-111)) (-5 *1 (-284)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284))))) +(-10 -7 (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -2706 ((-111) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3326 ((-606 (-210)) (-300 (-210)) (-1117) (-1040 (-800 (-210))))) (-15 -3753 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-300 (-210)) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -2881 ((-1098 (-210)) (-1200 (-300 (-210))) (-606 (-1117)) (-1040 (-800 (-210))))) (-15 -4226 ((-606 (-210)) (-905 (-391 (-537))) (-1117) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210))))) +((-3852 (((-606 (-578 $)) $) 30)) (-1519 (($ $ (-278 $)) 81) (($ $ (-606 (-278 $))) 123) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-1516 (((-3 (-578 $) "failed") $) 113)) (-3958 (((-578 $) $) 112)) (-3886 (($ $) 19) (($ (-606 $)) 56)) (-3350 (((-606 (-113)) $) 38)) (-3979 (((-113) (-113)) 91)) (-2353 (((-111) $) 131)) (-1612 (($ (-1 $ $) (-578 $)) 89)) (-2765 (((-3 (-578 $) "failed") $) 93)) (-3381 (($ (-113) $) 61) (($ (-113) (-606 $)) 100)) (-3215 (((-111) $ (-113)) 117) (((-111) $ (-1117)) 116)) (-2545 (((-731) $) 46)) (-2482 (((-111) $ $) 59) (((-111) $ (-1117)) 51)) (-2977 (((-111) $) 129)) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) 121) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 84) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) 69) (($ $ (-1117) (-1 $ $)) 75) (($ $ (-606 (-113)) (-606 (-1 $ $))) 83) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 85) (($ $ (-113) (-1 $ (-606 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-1922 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-606 $)) 109)) (-2190 (($ $) 53) (($ $ $) 119)) (-1822 (($ $) 17) (($ (-606 $)) 55)) (-2336 (((-111) (-113)) 22))) +(((-285 |#1|) (-10 -8 (-15 -2353 ((-111) |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2482 ((-111) |#1| (-1117))) (-15 -2482 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#1| |#1|) (-578 |#1|))) (-15 -3381 (|#1| (-113) (-606 |#1|))) (-15 -3381 (|#1| (-113) |#1|)) (-15 -3215 ((-111) |#1| (-1117))) (-15 -3215 ((-111) |#1| (-113))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3350 ((-606 (-113)) |#1|)) (-15 -3852 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2545 ((-731) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -3886 (|#1| (-606 |#1|))) (-15 -3886 (|#1| |#1|)) (-15 -1822 (|#1| (-606 |#1|))) (-15 -1822 (|#1| |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|))) (-286)) (T -285)) +((-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-285 *3)) (-4 *3 (-286)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-285 *4)) (-4 *4 (-286))))) +(-10 -8 (-15 -2353 ((-111) |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2482 ((-111) |#1| (-1117))) (-15 -2482 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#1| |#1|) (-578 |#1|))) (-15 -3381 (|#1| (-113) (-606 |#1|))) (-15 -3381 (|#1| (-113) |#1|)) (-15 -3215 ((-111) |#1| (-1117))) (-15 -3215 ((-111) |#1| (-113))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3350 ((-606 (-113)) |#1|)) (-15 -3852 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2545 ((-731) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -3886 (|#1| (-606 |#1|))) (-15 -3886 (|#1| |#1|)) (-15 -1822 (|#1| (-606 |#1|))) (-15 -1822 (|#1| |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|))) +((-2330 (((-111) $ $) 7)) (-3852 (((-606 (-578 $)) $) 44)) (-1519 (($ $ (-278 $)) 56) (($ $ (-606 (-278 $))) 55) (($ $ (-606 (-578 $)) (-606 $)) 54)) (-1516 (((-3 (-578 $) "failed") $) 69)) (-3958 (((-578 $) $) 68)) (-3886 (($ $) 51) (($ (-606 $)) 50)) (-3350 (((-606 (-113)) $) 43)) (-3979 (((-113) (-113)) 42)) (-2353 (((-111) $) 22 (|has| $ (-989 (-537))))) (-2040 (((-1113 $) (-578 $)) 25 (|has| $ (-998)))) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1612 (($ (-1 $ $) (-578 $)) 36)) (-2765 (((-3 (-578 $) "failed") $) 46)) (-1654 (((-1100) $) 9)) (-3576 (((-606 (-578 $)) $) 45)) (-3381 (($ (-113) $) 38) (($ (-113) (-606 $)) 37)) (-3215 (((-111) $ (-113)) 40) (((-111) $ (-1117)) 39)) (-2545 (((-731) $) 47)) (-2528 (((-1064) $) 10)) (-2482 (((-111) $ $) 35) (((-111) $ (-1117)) 34)) (-2977 (((-111) $) 23 (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) 67) (($ $ (-606 (-578 $)) (-606 $)) 66) (($ $ (-606 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-606 $) (-606 $)) 62) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 33) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 32) (($ $ (-1117) (-1 $ (-606 $))) 31) (($ $ (-1117) (-1 $ $)) 30) (($ $ (-606 (-113)) (-606 (-1 $ $))) 29) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 28) (($ $ (-113) (-1 $ (-606 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-1922 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-606 $)) 57)) (-2190 (($ $) 49) (($ $ $) 48)) (-2529 (($ $) 24 (|has| $ (-998)))) (-2341 (((-816) $) 11) (($ (-578 $)) 70)) (-1822 (($ $) 53) (($ (-606 $)) 52)) (-2336 (((-111) (-113)) 41)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +(((-286) (-134)) (T -286)) +((-1922 (*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-286)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *1))) (-4 *1 (-286)))) (-1519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-578 *1))) (-5 *3 (-606 *1)) (-4 *1 (-286)))) (-1822 (*1 *1 *1) (-4 *1 (-286))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) (-3886 (*1 *1 *1) (-4 *1 (-286))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) (-2190 (*1 *1 *1) (-4 *1 (-286))) (-2190 (*1 *1 *1 *1) (-4 *1 (-286))) (-2545 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-731)))) (-2765 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-286)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-606 (-113))))) (-3979 (*1 *2 *2) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-2336 (*1 *2 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) (-3381 (*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) (-3381 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) (-1612 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-578 *1)) (-4 *1 (-286)))) (-2482 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-111)))) (-2482 (*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-998)) (-4 *1 (-286)) (-5 *2 (-1113 *1)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-998)) (-4 *1 (-286)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111))))) +(-13 (-807) (-989 (-578 $)) (-495 (-578 $) $) (-293 $) (-10 -8 (-15 -1922 ($ (-113) $)) (-15 -1922 ($ (-113) $ $)) (-15 -1922 ($ (-113) $ $ $)) (-15 -1922 ($ (-113) $ $ $ $)) (-15 -1922 ($ (-113) (-606 $))) (-15 -1519 ($ $ (-278 $))) (-15 -1519 ($ $ (-606 (-278 $)))) (-15 -1519 ($ $ (-606 (-578 $)) (-606 $))) (-15 -1822 ($ $)) (-15 -1822 ($ (-606 $))) (-15 -3886 ($ $)) (-15 -3886 ($ (-606 $))) (-15 -2190 ($ $)) (-15 -2190 ($ $ $)) (-15 -2545 ((-731) $)) (-15 -2765 ((-3 (-578 $) "failed") $)) (-15 -3576 ((-606 (-578 $)) $)) (-15 -3852 ((-606 (-578 $)) $)) (-15 -3350 ((-606 (-113)) $)) (-15 -3979 ((-113) (-113))) (-15 -2336 ((-111) (-113))) (-15 -3215 ((-111) $ (-113))) (-15 -3215 ((-111) $ (-1117))) (-15 -3381 ($ (-113) $)) (-15 -3381 ($ (-113) (-606 $))) (-15 -1612 ($ (-1 $ $) (-578 $))) (-15 -2482 ((-111) $ $)) (-15 -2482 ((-111) $ (-1117))) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-1 $ $)))) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-1 $ (-606 $))))) (-15 -4116 ($ $ (-1117) (-1 $ (-606 $)))) (-15 -4116 ($ $ (-1117) (-1 $ $))) (-15 -4116 ($ $ (-606 (-113)) (-606 (-1 $ $)))) (-15 -4116 ($ $ (-606 (-113)) (-606 (-1 $ (-606 $))))) (-15 -4116 ($ $ (-113) (-1 $ (-606 $)))) (-15 -4116 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-998)) (PROGN (-15 -2040 ((-1113 $) (-578 $))) (-15 -2529 ($ $))) |%noBranch|) (IF (|has| $ (-989 (-537))) (PROGN (-15 -2977 ((-111) $)) (-15 -2353 ((-111) $))) |%noBranch|))) +(((-100) . T) ((-579 (-816)) . T) ((-293 $) . T) ((-495 (-578 $) $) . T) ((-495 $ $) . T) ((-807) . T) ((-989 (-578 $)) . T) ((-1045) . T)) +((-1887 (((-606 |#1|) (-606 |#1|)) 10))) +(((-287 |#1|) (-10 -7 (-15 -1887 ((-606 |#1|) (-606 |#1|)))) (-805)) (T -287)) +((-1887 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-805)) (-5 *1 (-287 *3))))) +(-10 -7 (-15 -1887 ((-606 |#1|) (-606 |#1|)))) +((-1612 (((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)) 17))) +(((-288 |#1| |#2|) (-10 -7 (-15 -1612 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) (-998) (-998)) (T -288)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-649 *6)) (-5 *1 (-288 *5 *6))))) +(-10 -7 (-15 -1612 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) +((-3055 (((-1200 (-300 (-363))) (-1200 (-300 (-210)))) 105)) (-2231 (((-1040 (-800 (-210))) (-1040 (-800 (-363)))) 40)) (-2718 (((-606 (-1100)) (-1098 (-210))) 87)) (-3608 (((-300 (-363)) (-905 (-210))) 50)) (-2618 (((-210) (-905 (-210))) 46)) (-2036 (((-1100) (-363)) 169)) (-2440 (((-800 (-210)) (-800 (-363))) 34)) (-2065 (((-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537))) (-1200 (-300 (-210)))) 143)) (-1968 (((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) 181) (((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) 179)) (-2756 (((-649 (-210)) (-606 (-210)) (-731)) 14)) (-2401 (((-1200 (-659)) (-606 (-210))) 94)) (-3908 (((-606 (-1100)) (-606 (-210))) 75)) (-2496 (((-3 (-300 (-210)) "failed") (-300 (-210))) 120)) (-2887 (((-111) (-210) (-1040 (-800 (-210)))) 109)) (-3464 (((-986) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) 198)) (-2148 (((-210) (-1040 (-800 (-210)))) 107)) (-1590 (((-210) (-1040 (-800 (-210)))) 108)) (-4187 (((-210) (-391 (-537))) 27)) (-2368 (((-1100) (-363)) 73)) (-3934 (((-210) (-363)) 17)) (-1288 (((-363) (-1200 (-300 (-210)))) 154)) (-1728 (((-300 (-210)) (-300 (-363))) 23)) (-2530 (((-391 (-537)) (-300 (-210))) 53)) (-3351 (((-300 (-391 (-537))) (-300 (-210))) 69)) (-2060 (((-300 (-363)) (-300 (-210))) 98)) (-3171 (((-210) (-300 (-210))) 54)) (-3671 (((-606 (-210)) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) 64)) (-2567 (((-1040 (-800 (-210))) (-1040 (-800 (-210)))) 61)) (-2442 (((-1100) (-210)) 72)) (-1530 (((-659) (-210)) 90)) (-3907 (((-391 (-537)) (-210)) 55)) (-2551 (((-300 (-363)) (-210)) 49)) (-3996 (((-606 (-1040 (-800 (-210)))) (-606 (-1040 (-800 (-363))))) 43)) (-3434 (((-986) (-606 (-986))) 165) (((-986) (-986) (-986)) 162)) (-1748 (((-986) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-289) (-10 -7 (-15 -3934 ((-210) (-363))) (-15 -1728 ((-300 (-210)) (-300 (-363)))) (-15 -2440 ((-800 (-210)) (-800 (-363)))) (-15 -2231 ((-1040 (-800 (-210))) (-1040 (-800 (-363))))) (-15 -3996 ((-606 (-1040 (-800 (-210)))) (-606 (-1040 (-800 (-363)))))) (-15 -3907 ((-391 (-537)) (-210))) (-15 -2530 ((-391 (-537)) (-300 (-210)))) (-15 -3171 ((-210) (-300 (-210)))) (-15 -2496 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -1288 ((-363) (-1200 (-300 (-210))))) (-15 -2065 ((-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537))) (-1200 (-300 (-210))))) (-15 -3351 ((-300 (-391 (-537))) (-300 (-210)))) (-15 -2567 ((-1040 (-800 (-210))) (-1040 (-800 (-210))))) (-15 -3671 ((-606 (-210)) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-15 -1530 ((-659) (-210))) (-15 -2401 ((-1200 (-659)) (-606 (-210)))) (-15 -2060 ((-300 (-363)) (-300 (-210)))) (-15 -3055 ((-1200 (-300 (-363))) (-1200 (-300 (-210))))) (-15 -2887 ((-111) (-210) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -2368 ((-1100) (-363))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3434 ((-986) (-986) (-986))) (-15 -3434 ((-986) (-606 (-986)))) (-15 -2036 ((-1100) (-363))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))))) (-15 -1748 ((-986) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3464 ((-986) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -3608 ((-300 (-363)) (-905 (-210)))) (-15 -2618 ((-210) (-905 (-210)))) (-15 -2551 ((-300 (-363)) (-210))) (-15 -4187 ((-210) (-391 (-537)))) (-15 -2756 ((-649 (-210)) (-606 (-210)) (-731))))) (T -289)) +((-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-210))) (-5 *4 (-731)) (-5 *2 (-649 (-210))) (-5 *1 (-289)))) (-4187 (*1 *2 *3) (-12 (-5 *3 (-391 (-537))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-300 (-363))) (-5 *1 (-289)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-905 (-210))) (-5 *2 (-210)) (-5 *1 (-289)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-905 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *2 (-986)) (-5 *1 (-289)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-986)) (-5 *1 (-289)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) (-5 *2 (-986)) (-5 *1 (-289)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *2 (-986)) (-5 *1 (-289)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-606 (-986))) (-5 *2 (-986)) (-5 *1 (-289)))) (-3434 (*1 *2 *2 *2) (-12 (-5 *2 (-986)) (-5 *1 (-289)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289)))) (-2442 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-289)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *4 (-1040 (-800 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-289)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-1200 (-300 (-363)))) (-5 *1 (-289)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1200 (-659))) (-5 *1 (-289)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-659)) (-5 *1 (-289)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *2 (-606 (-210))) (-5 *1 (-289)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-1040 (-800 (-210)))) (-5 *1 (-289)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-391 (-537)))) (-5 *1 (-289)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537)))) (-5 *1 (-289)))) (-1288 (*1 *2 *3) (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-289)))) (-2496 (*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-289)))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-210)) (-5 *1 (-289)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-391 (-537))) (-5 *1 (-289)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-391 (-537))) (-5 *1 (-289)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-606 (-1040 (-800 (-363))))) (-5 *2 (-606 (-1040 (-800 (-210))))) (-5 *1 (-289)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1040 (-800 (-363)))) (-5 *2 (-1040 (-800 (-210)))) (-5 *1 (-289)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-800 (-363))) (-5 *2 (-800 (-210))) (-5 *1 (-289)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-300 (-363))) (-5 *2 (-300 (-210))) (-5 *1 (-289)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-289))))) +(-10 -7 (-15 -3934 ((-210) (-363))) (-15 -1728 ((-300 (-210)) (-300 (-363)))) (-15 -2440 ((-800 (-210)) (-800 (-363)))) (-15 -2231 ((-1040 (-800 (-210))) (-1040 (-800 (-363))))) (-15 -3996 ((-606 (-1040 (-800 (-210)))) (-606 (-1040 (-800 (-363)))))) (-15 -3907 ((-391 (-537)) (-210))) (-15 -2530 ((-391 (-537)) (-300 (-210)))) (-15 -3171 ((-210) (-300 (-210)))) (-15 -2496 ((-3 (-300 (-210)) "failed") (-300 (-210)))) (-15 -1288 ((-363) (-1200 (-300 (-210))))) (-15 -2065 ((-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537))) (-1200 (-300 (-210))))) (-15 -3351 ((-300 (-391 (-537))) (-300 (-210)))) (-15 -2567 ((-1040 (-800 (-210))) (-1040 (-800 (-210))))) (-15 -3671 ((-606 (-210)) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-15 -1530 ((-659) (-210))) (-15 -2401 ((-1200 (-659)) (-606 (-210)))) (-15 -2060 ((-300 (-363)) (-300 (-210)))) (-15 -3055 ((-1200 (-300 (-363))) (-1200 (-300 (-210))))) (-15 -2887 ((-111) (-210) (-1040 (-800 (-210))))) (-15 -2442 ((-1100) (-210))) (-15 -2368 ((-1100) (-363))) (-15 -3908 ((-606 (-1100)) (-606 (-210)))) (-15 -2718 ((-606 (-1100)) (-1098 (-210)))) (-15 -2148 ((-210) (-1040 (-800 (-210))))) (-15 -1590 ((-210) (-1040 (-800 (-210))))) (-15 -3434 ((-986) (-986) (-986))) (-15 -3434 ((-986) (-606 (-986)))) (-15 -2036 ((-1100) (-363))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))))) (-15 -1968 ((-986) (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))))) (-15 -1748 ((-986) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3464 ((-986) (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))) (-15 -3608 ((-300 (-363)) (-905 (-210)))) (-15 -2618 ((-210) (-905 (-210)))) (-15 -2551 ((-300 (-363)) (-210))) (-15 -4187 ((-210) (-391 (-537)))) (-15 -2756 ((-649 (-210)) (-606 (-210)) (-731)))) +((-4099 (((-111) $ $) 11)) (-3563 (($ $ $) 15)) (-3539 (($ $ $) 14)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 44)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 53)) (-2211 (($ $ $) 21) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3515 (((-3 $ "failed") $ $) 17)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 46))) +(((-290 |#1|) (-10 -8 (-15 -2581 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -3663 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3663 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -4099 ((-111) |#1| |#1|)) (-15 -4245 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -4121 ((-2 (|:| -3449 (-606 |#1|)) (|:| -1524 |#1|)) (-606 |#1|))) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) (-291)) (T -290)) +NIL +(-10 -8 (-15 -2581 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -3663 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3663 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -3539 (|#1| |#1| |#1|)) (-15 -4099 ((-111) |#1| |#1|)) (-15 -4245 ((-3 (-606 |#1|) "failed") (-606 |#1|) |#1|)) (-15 -4121 ((-2 (|:| -3449 (-606 |#1|)) (|:| -1524 |#1|)) (-606 |#1|))) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-291) (-134)) (T -291)) +((-4099 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-111)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-731)))) (-3998 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-291)))) (-3539 (*1 *1 *1 *1) (-4 *1 (-291))) (-3563 (*1 *1 *1 *1) (-4 *1 (-291))) (-3663 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) (-4 *1 (-291)))) (-3663 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-291)))) (-2581 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-291))))) +(-13 (-873) (-10 -8 (-15 -4099 ((-111) $ $)) (-15 -1930 ((-731) $)) (-15 -3998 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3539 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3663 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $)) (-15 -3663 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2581 ((-3 (-606 $) "failed") (-606 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-4116 (($ $ (-606 |#2|) (-606 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-278 |#2|)) 11) (($ $ (-606 (-278 |#2|))) NIL))) +(((-292 |#1| |#2|) (-10 -8 (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|)))) (-293 |#2|) (-1045)) (T -292)) +NIL +(-10 -8 (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|)))) +((-4116 (($ $ (-606 |#1|) (-606 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-278 |#1|)) 11) (($ $ (-606 (-278 |#1|))) 10))) +(((-293 |#1|) (-134) (-1045)) (T -293)) +((-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-278 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1045)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *3))) (-4 *1 (-293 *3)) (-4 *3 (-1045))))) +(-13 (-495 |t#1| |t#1|) (-10 -8 (-15 -4116 ($ $ (-278 |t#1|))) (-15 -4116 ($ $ (-606 (-278 |t#1|)))))) +(((-495 |#1| |#1|) . T)) +((-4116 ((|#1| (-1 |#1| (-537)) (-1119 (-391 (-537)))) 25))) +(((-294 |#1|) (-10 -7 (-15 -4116 (|#1| (-1 |#1| (-537)) (-1119 (-391 (-537)))))) (-37 (-391 (-537)))) (T -294)) +((-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-537))) (-5 *4 (-1119 (-391 (-537)))) (-5 *1 (-294 *2)) (-4 *2 (-37 (-391 (-537))))))) +(-10 -7 (-15 -4116 (|#1| (-1 |#1| (-537)) (-1119 (-391 (-537)))))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-295) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $))))) (T -295)) +((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-295))))) +(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-2244 (((-111) $ $) 9))) +(((-296) (-1045)) (T -296)) +NIL +(-1045) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 62)) (-1874 (((-1186 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1186 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-3 (-1185 |#2| |#3| |#4|) "failed") $) 25)) (-3958 (((-1186 |#1| |#2| |#3| |#4|) $) NIL) (((-1117) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-537) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-537)))) (((-1185 |#2| |#3| |#4|) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-1186 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1200 (-1186 |#1| |#2| |#3| |#4|)))) (-649 $) (-1200 $)) NIL) (((-649 (-1186 |#1| |#2| |#3| |#4|)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-1186 |#1| |#2| |#3| |#4|) $) 21)) (-2824 (((-3 $ "failed") $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-1093)))) (-2840 (((-111) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-3889 (($ $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-1612 (($ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) $) NIL)) (-2027 (((-3 (-800 |#2|) "failed") $) 78)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-291)))) (-3830 (((-1186 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-1186 |#1| |#2| |#3| |#4|)) (-606 (-1186 |#1| |#2| |#3| |#4|))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-278 (-1186 |#1| |#2| |#3| |#4|))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-606 (-278 (-1186 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-293 (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-606 (-1117)) (-606 (-1186 |#1| |#2| |#3| |#4|))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-495 (-1117) (-1186 |#1| |#2| |#3| |#4|)))) (($ $ (-1117) (-1186 |#1| |#2| |#3| |#4|)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-495 (-1117) (-1186 |#1| |#2| |#3| |#4|))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-1186 |#1| |#2| |#3| |#4|)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-270 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-1117)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) (-731)) NIL) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-1186 |#1| |#2| |#3| |#4|) $) 17)) (-3996 (((-845 (-537)) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-580 (-513)))) (((-363) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-973))) (((-210) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-1186 |#1| |#2| |#3| |#4|) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-1186 |#1| |#2| |#3| |#4|)) 29) (($ (-1117)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-989 (-1117)))) (($ (-1185 |#2| |#3| |#4|)) 36)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-1186 |#1| |#2| |#3| |#4|) (-862))) (|has| (-1186 |#1| |#2| |#3| |#4|) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-1186 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-780)))) (-2928 (($) 41 T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-218))) (($ $ (-1117)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-853 (-1117)))) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) (-731)) NIL) (($ $ (-1 (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-1186 |#1| |#2| |#3| |#4|) (-807)))) (-2340 (($ $ $) 34) (($ (-1186 |#1| |#2| |#3| |#4|) (-1186 |#1| |#2| |#3| |#4|)) 31)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-1186 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1186 |#1| |#2| |#3| |#4|)) NIL))) +(((-297 |#1| |#2| |#3| |#4|) (-13 (-945 (-1186 |#1| |#2| |#3| |#4|)) (-989 (-1185 |#2| |#3| |#4|)) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2341 ($ (-1185 |#2| |#3| |#4|))))) (-13 (-807) (-989 (-537)) (-602 (-537)) (-435)) (-13 (-27) (-1139) (-414 |#1|)) (-1117) |#2|) (T -297)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1185 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4) (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *1 (-297 *3 *4 *5 *6)))) (-2027 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *2 (-800 *4)) (-5 *1 (-297 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) +(-13 (-945 (-1186 |#1| |#2| |#3| |#4|)) (-989 (-1185 |#2| |#3| |#4|)) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2341 ($ (-1185 |#2| |#3| |#4|))))) +((-1612 (((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)) 13))) +(((-298 |#1| |#2|) (-10 -7 (-15 -1612 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)))) (-807) (-807)) (T -298)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-807)) (-4 *6 (-807)) (-5 *2 (-300 *6)) (-5 *1 (-298 *5 *6))))) +(-10 -7 (-15 -1612 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)))) +((-3815 (((-51) |#2| (-278 |#2|) (-731)) 33) (((-51) |#2| (-278 |#2|)) 24) (((-51) |#2| (-731)) 28) (((-51) |#2|) 25) (((-51) (-1117)) 21)) (-2411 (((-51) |#2| (-278 |#2|) (-391 (-537))) 51) (((-51) |#2| (-278 |#2|)) 48) (((-51) |#2| (-391 (-537))) 50) (((-51) |#2|) 49) (((-51) (-1117)) 47)) (-3839 (((-51) |#2| (-278 |#2|) (-391 (-537))) 46) (((-51) |#2| (-278 |#2|)) 43) (((-51) |#2| (-391 (-537))) 45) (((-51) |#2|) 44) (((-51) (-1117)) 42)) (-3827 (((-51) |#2| (-278 |#2|) (-537)) 39) (((-51) |#2| (-278 |#2|)) 35) (((-51) |#2| (-537)) 38) (((-51) |#2|) 36) (((-51) (-1117)) 34))) +(((-299 |#1| |#2|) (-10 -7 (-15 -3815 ((-51) (-1117))) (-15 -3815 ((-51) |#2|)) (-15 -3815 ((-51) |#2| (-731))) (-15 -3815 ((-51) |#2| (-278 |#2|))) (-15 -3815 ((-51) |#2| (-278 |#2|) (-731))) (-15 -3827 ((-51) (-1117))) (-15 -3827 ((-51) |#2|)) (-15 -3827 ((-51) |#2| (-537))) (-15 -3827 ((-51) |#2| (-278 |#2|))) (-15 -3827 ((-51) |#2| (-278 |#2|) (-537))) (-15 -3839 ((-51) (-1117))) (-15 -3839 ((-51) |#2|)) (-15 -3839 ((-51) |#2| (-391 (-537)))) (-15 -3839 ((-51) |#2| (-278 |#2|))) (-15 -3839 ((-51) |#2| (-278 |#2|) (-391 (-537)))) (-15 -2411 ((-51) (-1117))) (-15 -2411 ((-51) |#2|)) (-15 -2411 ((-51) |#2| (-391 (-537)))) (-15 -2411 ((-51) |#2| (-278 |#2|))) (-15 -2411 ((-51) |#2| (-278 |#2|) (-391 (-537))))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -299)) +((-2411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-391 (-537))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2411 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4))))) (-3839 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-391 (-537))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4))))) (-3827 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 *5) (-602 *5))) (-5 *5 (-537)) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-4 *5 (-13 (-435) (-807) (-989 *4) (-602 *4))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4))))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-278 *3)) (-5 *5 (-731)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) (-4 *5 (-13 (-27) (-1139) (-414 *4)))))) +(-10 -7 (-15 -3815 ((-51) (-1117))) (-15 -3815 ((-51) |#2|)) (-15 -3815 ((-51) |#2| (-731))) (-15 -3815 ((-51) |#2| (-278 |#2|))) (-15 -3815 ((-51) |#2| (-278 |#2|) (-731))) (-15 -3827 ((-51) (-1117))) (-15 -3827 ((-51) |#2|)) (-15 -3827 ((-51) |#2| (-537))) (-15 -3827 ((-51) |#2| (-278 |#2|))) (-15 -3827 ((-51) |#2| (-278 |#2|) (-537))) (-15 -3839 ((-51) (-1117))) (-15 -3839 ((-51) |#2|)) (-15 -3839 ((-51) |#2| (-391 (-537)))) (-15 -3839 ((-51) |#2| (-278 |#2|))) (-15 -3839 ((-51) |#2| (-278 |#2|) (-391 (-537)))) (-15 -2411 ((-51) (-1117))) (-15 -2411 ((-51) |#2|)) (-15 -2411 ((-51) |#2| (-391 (-537)))) (-15 -2411 ((-51) |#2| (-278 |#2|))) (-15 -2411 ((-51) |#2| (-278 |#2|) (-391 (-537))))) +((-2330 (((-111) $ $) NIL)) (-3753 (((-606 $) $ (-1117)) NIL (|has| |#1| (-529))) (((-606 $) $) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $) (-1117)) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $)) NIL (|has| |#1| (-529))) (((-606 $) (-905 $)) NIL (|has| |#1| (-529)))) (-2652 (($ $ (-1117)) NIL (|has| |#1| (-529))) (($ $) NIL (|has| |#1| (-529))) (($ (-1113 $) (-1117)) NIL (|has| |#1| (-529))) (($ (-1113 $)) NIL (|has| |#1| (-529))) (($ (-905 $)) NIL (|has| |#1| (-529)))) (-1656 (((-111) $) 27 (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-3757 (((-606 (-1117)) $) 351)) (-3588 (((-391 (-1113 $)) $ (-578 $)) NIL (|has| |#1| (-529)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3852 (((-606 (-578 $)) $) NIL)) (-1403 (($ $) 161 (|has| |#1| (-529)))) (-1247 (($ $) 137 (|has| |#1| (-529)))) (-2600 (($ $ (-1038 $)) 222 (|has| |#1| (-529))) (($ $ (-1117)) 218 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) 368) (($ $ (-606 (-578 $)) (-606 $)) 412)) (-1649 (((-402 (-1113 $)) (-1113 $)) 295 (-12 (|has| |#1| (-435)) (|has| |#1| (-529))))) (-1395 (($ $) NIL (|has| |#1| (-529)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-529)))) (-3633 (($ $) NIL (|has| |#1| (-529)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1378 (($ $) 157 (|has| |#1| (-529)))) (-4270 (($ $) 133 (|has| |#1| (-529)))) (-1702 (($ $ (-537)) 72 (|has| |#1| (-529)))) (-1429 (($ $) 165 (|has| |#1| (-529)))) (-1273 (($ $) 141 (|has| |#1| (-529)))) (-3832 (($) NIL (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))) CONST)) (-1974 (((-606 $) $ (-1117)) NIL (|has| |#1| (-529))) (((-606 $) $) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $) (-1117)) NIL (|has| |#1| (-529))) (((-606 $) (-1113 $)) NIL (|has| |#1| (-529))) (((-606 $) (-905 $)) NIL (|has| |#1| (-529)))) (-4190 (($ $ (-1117)) NIL (|has| |#1| (-529))) (($ $) NIL (|has| |#1| (-529))) (($ (-1113 $) (-1117)) 124 (|has| |#1| (-529))) (($ (-1113 $)) NIL (|has| |#1| (-529))) (($ (-905 $)) NIL (|has| |#1| (-529)))) (-1516 (((-3 (-578 $) "failed") $) 17) (((-3 (-1117) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-905 |#1|)) "failed") $) NIL (|has| |#1| (-529))) (((-3 (-905 |#1|) "failed") $) NIL (|has| |#1| (-998))) (((-3 (-391 (-537)) "failed") $) 46 (-1533 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 (((-578 $) $) 11) (((-1117) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-905 |#1|)) $) NIL (|has| |#1| (-529))) (((-905 |#1|) $) NIL (|has| |#1| (-998))) (((-391 (-537)) $) 306 (-1533 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3563 (($ $ $) NIL (|has| |#1| (-529)))) (-2053 (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 117 (|has| |#1| (-998))) (((-649 |#1|) (-649 $)) 107 (|has| |#1| (-998))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (-3195 (($ $) 89 (|has| |#1| (-529)))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))))) (-3539 (($ $ $) NIL (|has| |#1| (-529)))) (-3371 (($ $ (-1038 $)) 226 (|has| |#1| (-529))) (($ $ (-1117)) 224 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-529)))) (-2639 (((-111) $) NIL (|has| |#1| (-529)))) (-3548 (($ $ $) 192 (|has| |#1| (-529)))) (-3338 (($) 127 (|has| |#1| (-529)))) (-2967 (($ $ $) 212 (|has| |#1| (-529)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 374 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 381 (|has| |#1| (-839 (-363))))) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) 267)) (-2836 (((-111) $) 25 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))))) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-2868 (($ $) 71 (|has| |#1| (-998)))) (-3301 (((-1069 |#1| (-578 $)) $) 84 (|has| |#1| (-998)))) (-3594 (((-111) $) 64 (|has| |#1| (-529)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-529)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-529)))) (-2040 (((-1113 $) (-578 $)) 268 (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) 408)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-2180 (($ $) 131 (|has| |#1| (-529)))) (-2126 (($ $) 237 (|has| |#1| (-529)))) (-2183 (($ (-606 $)) NIL (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) 49)) (-3381 (($ (-113) $) NIL) (($ (-113) (-606 $)) 413)) (-3898 (((-3 (-606 $) "failed") $) NIL (|has| |#1| (-1057)))) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) NIL (|has| |#1| (-998)))) (-2566 (((-3 (-606 $) "failed") $) 416 (|has| |#1| (-25)))) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 420 (|has| |#1| (-25)))) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) NIL (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) NIL (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) NIL (|has| |#1| (-998)))) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) 53)) (-3865 (($ $) NIL (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-1509 (($ $ (-1117)) 241 (|has| |#1| (-529))) (($ $ (-1038 $)) 243 (|has| |#1| (-529)))) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 43)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 288 (|has| |#1| (-529)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-2939 (($ $ (-1117)) 216 (|has| |#1| (-529))) (($ $) 214 (|has| |#1| (-529)))) (-2871 (($ $) 208 (|has| |#1| (-529)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 293 (-12 (|has| |#1| (-435)) (|has| |#1| (-529))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-529)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-529))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-529)))) (-4185 (($ $) 129 (|has| |#1| (-529)))) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) 407) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) 361) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1117)) NIL (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-580 (-513)))) (($ $) NIL (|has| |#1| (-580 (-513)))) (($ $ (-113) $ (-1117)) 349 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-113)) (-606 $) (-1117)) 348 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) NIL (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ (-606 $))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ $)) NIL (|has| |#1| (-998)))) (-1930 (((-731) $) NIL (|has| |#1| (-529)))) (-4218 (($ $) 229 (|has| |#1| (-529)))) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-2190 (($ $) NIL) (($ $ $) NIL)) (-4256 (($ $) 239 (|has| |#1| (-529)))) (-1593 (($ $) 190 (|has| |#1| (-529)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-998))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-998))) (($ $ (-1117)) NIL (|has| |#1| (-998)))) (-2395 (($ $) 73 (|has| |#1| (-529)))) (-3315 (((-1069 |#1| (-578 $)) $) 86 (|has| |#1| (-529)))) (-2529 (($ $) 304 (|has| $ (-998)))) (-1441 (($ $) 167 (|has| |#1| (-529)))) (-1286 (($ $) 143 (|has| |#1| (-529)))) (-1415 (($ $) 163 (|has| |#1| (-529)))) (-1259 (($ $) 139 (|has| |#1| (-529)))) (-1389 (($ $) 159 (|has| |#1| (-529)))) (-1234 (($ $) 135 (|has| |#1| (-529)))) (-3996 (((-845 (-537)) $) NIL (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#1| (-580 (-845 (-363))))) (($ (-402 $)) NIL (|has| |#1| (-529))) (((-513) $) 346 (|has| |#1| (-580 (-513))))) (-1978 (($ $ $) NIL (|has| |#1| (-456)))) (-1674 (($ $ $) NIL (|has| |#1| (-456)))) (-2341 (((-816) $) 406) (($ (-578 $)) 397) (($ (-1117)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-529))) (($ (-47)) 299 (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) (($ (-1069 |#1| (-578 $))) 88 (|has| |#1| (-998))) (($ (-391 |#1|)) NIL (|has| |#1| (-529))) (($ (-905 (-391 |#1|))) NIL (|has| |#1| (-529))) (($ (-391 (-905 (-391 |#1|)))) NIL (|has| |#1| (-529))) (($ (-391 (-905 |#1|))) NIL (|has| |#1| (-529))) (($ (-905 |#1|)) NIL (|has| |#1| (-998))) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-529)) (|has| |#1| (-989 (-391 (-537)))))) (($ (-537)) 34 (-1533 (|has| |#1| (-989 (-537))) (|has| |#1| (-998))))) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL (|has| |#1| (-998)))) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2360 (($ $ $) 210 (|has| |#1| (-529)))) (-3288 (($ $ $) 196 (|has| |#1| (-529)))) (-1961 (($ $ $) 200 (|has| |#1| (-529)))) (-2354 (($ $ $) 194 (|has| |#1| (-529)))) (-1716 (($ $ $) 198 (|has| |#1| (-529)))) (-2336 (((-111) (-113)) 9)) (-1475 (($ $) 173 (|has| |#1| (-529)))) (-1328 (($ $) 149 (|has| |#1| (-529)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 169 (|has| |#1| (-529)))) (-1300 (($ $) 145 (|has| |#1| (-529)))) (-1495 (($ $) 177 (|has| |#1| (-529)))) (-1352 (($ $) 153 (|has| |#1| (-529)))) (-2688 (($ (-1117) $) NIL) (($ (-1117) $ $) NIL) (($ (-1117) $ $ $) NIL) (($ (-1117) $ $ $ $) NIL) (($ (-1117) (-606 $)) NIL)) (-2147 (($ $) 204 (|has| |#1| (-529)))) (-3502 (($ $) 202 (|has| |#1| (-529)))) (-4141 (($ $) 179 (|has| |#1| (-529)))) (-1365 (($ $) 155 (|has| |#1| (-529)))) (-1485 (($ $) 175 (|has| |#1| (-529)))) (-1340 (($ $) 151 (|has| |#1| (-529)))) (-1465 (($ $) 171 (|has| |#1| (-529)))) (-1314 (($ $) 147 (|has| |#1| (-529)))) (-2209 (($ $) 182 (|has| |#1| (-529)))) (-2928 (($) 20 (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) CONST)) (-2175 (($ $) 233 (|has| |#1| (-529)))) (-2943 (($) 22 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))) CONST)) (-2247 (($ $) 184 (|has| |#1| (-529))) (($ $ $) 186 (|has| |#1| (-529)))) (-2637 (($ $) 231 (|has| |#1| (-529)))) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-998))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-998))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-998))) (($ $ (-1117)) NIL (|has| |#1| (-998)))) (-3191 (($ $) 235 (|has| |#1| (-529)))) (-2611 (($ $ $) 188 (|has| |#1| (-529)))) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 81)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 80)) (-2340 (($ (-1069 |#1| (-578 $)) (-1069 |#1| (-578 $))) 98 (|has| |#1| (-529))) (($ $ $) 42 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-2329 (($ $ $) 40 (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (($ $) 29 (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (-2318 (($ $ $) 38 (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))))) (** (($ $ $) 66 (|has| |#1| (-529))) (($ $ (-391 (-537))) 301 (|has| |#1| (-529))) (($ $ (-537)) 76 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529)))) (($ $ (-731)) 74 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057)))) (($ $ (-874)) 78 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057))))) (* (($ (-391 (-537)) $) NIL (|has| |#1| (-529))) (($ $ (-391 (-537))) NIL (|has| |#1| (-529))) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))) (($ $ $) 36 (-1533 (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) (|has| |#1| (-1057)))) (($ (-537) $) 32 (-1533 (|has| |#1| (-21)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (($ (-731) $) NIL (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))) (($ (-874) $) NIL (-1533 (|has| |#1| (-25)) (-12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))))))) +(((-300 |#1|) (-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-529)) (PROGN (-6 (-29 |#1|)) (-6 (-1139)) (-6 (-152)) (-6 (-592)) (-6 (-1081)) (-15 -3195 ($ $)) (-15 -3594 ((-111) $)) (-15 -1702 ($ $ (-537))) (IF (|has| |#1| (-435)) (PROGN (-15 -3370 ((-402 (-1113 $)) (-1113 $))) (-15 -1649 ((-402 (-1113 $)) (-1113 $)))) |%noBranch|) (IF (|has| |#1| (-989 (-537))) (-6 (-989 (-47))) |%noBranch|)) |%noBranch|))) (-807)) (T -300)) +((-3195 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-529)) (-4 *2 (-807)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807)))) (-3370 (*1 *2 *3) (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807)))) (-1649 (*1 *2 *3) (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807))))) +(-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-529)) (PROGN (-6 (-29 |#1|)) (-6 (-1139)) (-6 (-152)) (-6 (-592)) (-6 (-1081)) (-15 -3195 ($ $)) (-15 -3594 ((-111) $)) (-15 -1702 ($ $ (-537))) (IF (|has| |#1| (-435)) (PROGN (-15 -3370 ((-402 (-1113 $)) (-1113 $))) (-15 -1649 ((-402 (-1113 $)) (-1113 $)))) |%noBranch|) (IF (|has| |#1| (-989 (-537))) (-6 (-989 (-47))) |%noBranch|)) |%noBranch|))) +((-3561 (((-51) |#2| (-113) (-278 |#2|) (-606 |#2|)) 88) (((-51) |#2| (-113) (-278 |#2|) (-278 |#2|)) 84) (((-51) |#2| (-113) (-278 |#2|) |#2|) 86) (((-51) (-278 |#2|) (-113) (-278 |#2|) |#2|) 87) (((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|))) 80) (((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 |#2|)) 82) (((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 |#2|)) 83) (((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|))) 81) (((-51) (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|)) 89) (((-51) (-278 |#2|) (-113) (-278 |#2|) (-278 |#2|)) 85))) +(((-301 |#1| |#2|) (-10 -7 (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-606 |#2|)))) (-13 (-807) (-529) (-580 (-513))) (-414 |#1|)) (T -301)) +((-3561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-5 *6 (-606 *3)) (-4 *3 (-414 *7)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *7 *3)))) (-3561 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *3)))) (-3561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *3)))) (-3561 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *5)))) (-3561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-113))) (-5 *6 (-606 (-278 *8))) (-4 *8 (-414 *7)) (-5 *5 (-278 *8)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *7 *8)))) (-3561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) (-3561 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-606 (-278 *8))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *8)) (-5 *6 (-606 *8)) (-4 *8 (-414 *7)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *7 *8)))) (-3561 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) (-3561 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-606 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) (-3561 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-278 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) (-4 *5 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) (-5 *1 (-301 *5 *6))))) +(-10 -7 (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-606 (-278 |#2|)) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 |#2|))) (-15 -3561 ((-51) (-606 |#2|) (-606 (-113)) (-278 |#2|) (-606 (-278 |#2|)))) (-15 -3561 ((-51) (-278 |#2|) (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) |#2|)) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-278 |#2|))) (-15 -3561 ((-51) |#2| (-113) (-278 |#2|) (-606 |#2|)))) +((-3182 (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537) (-1100)) 46) (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537)) 47) (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537) (-1100)) 43) (((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537)) 44)) (-1487 (((-1 (-210) (-210)) (-210)) 45))) +(((-302) (-10 -7 (-15 -1487 ((-1 (-210) (-210)) (-210))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537) (-1100))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537) (-1100))))) (T -302)) +((-3182 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) (-5 *8 (-1100)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-3182 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-3182 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *7 (-1100)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-3182 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-302)) (-5 *3 (-210))))) +(-10 -7 (-15 -1487 ((-1 (-210) (-210)) (-210))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-1 (-210) (-210)) (-537) (-1100))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537))) (-15 -3182 ((-1149 (-879)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-210) (-537) (-1100)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 25)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 20)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 32)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) 16)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) NIL) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-2749 (((-391 (-537)) $) 17)) (-3431 (($ (-1185 |#1| |#2| |#3|)) 11)) (-3283 (((-1185 |#1| |#2| |#3|) $) 12)) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 10)) (-2341 (((-816) $) 38) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 30)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) NIL)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 27)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 33)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-303 |#1| |#2| |#3|) (-13 (-1181 |#1|) (-752) (-10 -8 (-15 -3431 ($ (-1185 |#1| |#2| |#3|))) (-15 -3283 ((-1185 |#1| |#2| |#3|) $)) (-15 -2749 ((-391 (-537)) $)))) (-13 (-347) (-807)) (-1117) |#1|) (T -303)) +((-3431 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-303 *3 *4 *5)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4 *5)) (-5 *1 (-303 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-303 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3)))) +(-13 (-1181 |#1|) (-752) (-10 -8 (-15 -3431 ($ (-1185 |#1| |#2| |#3|))) (-15 -3283 ((-1185 |#1| |#2| |#3|) $)) (-15 -2749 ((-391 (-537)) $)))) +((-2590 (((-2 (|:| -3283 (-731)) (|:| -3449 |#1|) (|:| |radicand| (-606 |#1|))) (-402 |#1|) (-731)) 24)) (-2180 (((-606 (-2 (|:| -3449 (-731)) (|:| |logand| |#1|))) (-402 |#1|)) 28))) +(((-304 |#1|) (-10 -7 (-15 -2590 ((-2 (|:| -3283 (-731)) (|:| -3449 |#1|) (|:| |radicand| (-606 |#1|))) (-402 |#1|) (-731))) (-15 -2180 ((-606 (-2 (|:| -3449 (-731)) (|:| |logand| |#1|))) (-402 |#1|)))) (-529)) (T -304)) +((-2180 (*1 *2 *3) (-12 (-5 *3 (-402 *4)) (-4 *4 (-529)) (-5 *2 (-606 (-2 (|:| -3449 (-731)) (|:| |logand| *4)))) (-5 *1 (-304 *4)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *5)) (-4 *5 (-529)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *5) (|:| |radicand| (-606 *5)))) (-5 *1 (-304 *5)) (-5 *4 (-731))))) +(-10 -7 (-15 -2590 ((-2 (|:| -3283 (-731)) (|:| -3449 |#1|) (|:| |radicand| (-606 |#1|))) (-402 |#1|) (-731))) (-15 -2180 ((-606 (-2 (|:| -3449 (-731)) (|:| |logand| |#1|))) (-402 |#1|)))) +((-3757 (((-606 |#2|) (-1113 |#4|)) 43)) (-1673 ((|#3| (-537)) 46)) (-3528 (((-1113 |#4|) (-1113 |#3|)) 30)) (-1420 (((-1113 |#4|) (-1113 |#4|) (-537)) 56)) (-1937 (((-1113 |#3|) (-1113 |#4|)) 21)) (-2872 (((-606 (-731)) (-1113 |#4|) (-606 |#2|)) 40)) (-1991 (((-1113 |#3|) (-1113 |#4|) (-606 |#2|) (-606 |#3|)) 35))) +(((-305 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1991 ((-1113 |#3|) (-1113 |#4|) (-606 |#2|) (-606 |#3|))) (-15 -2872 ((-606 (-731)) (-1113 |#4|) (-606 |#2|))) (-15 -3757 ((-606 |#2|) (-1113 |#4|))) (-15 -1937 ((-1113 |#3|) (-1113 |#4|))) (-15 -3528 ((-1113 |#4|) (-1113 |#3|))) (-15 -1420 ((-1113 |#4|) (-1113 |#4|) (-537))) (-15 -1673 (|#3| (-537)))) (-753) (-807) (-998) (-902 |#3| |#1| |#2|)) (T -305)) +((-1673 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-998)) (-5 *1 (-305 *4 *5 *2 *6)) (-4 *6 (-902 *2 *4 *5)))) (-1420 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 *7)) (-5 *3 (-537)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-5 *1 (-305 *4 *5 *6 *7)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-1113 *6)) (-4 *6 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-1113 *7)) (-5 *1 (-305 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-1113 *6)) (-5 *1 (-305 *4 *5 *6 *7)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-606 *5)) (-5 *1 (-305 *4 *5 *6 *7)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *8)) (-5 *4 (-606 *6)) (-4 *6 (-807)) (-4 *8 (-902 *7 *5 *6)) (-4 *5 (-753)) (-4 *7 (-998)) (-5 *2 (-606 (-731))) (-5 *1 (-305 *5 *6 *7 *8)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 *8)) (-4 *7 (-807)) (-4 *8 (-998)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-5 *2 (-1113 *8)) (-5 *1 (-305 *6 *7 *8 *9))))) +(-10 -7 (-15 -1991 ((-1113 |#3|) (-1113 |#4|) (-606 |#2|) (-606 |#3|))) (-15 -2872 ((-606 (-731)) (-1113 |#4|) (-606 |#2|))) (-15 -3757 ((-606 |#2|) (-1113 |#4|))) (-15 -1937 ((-1113 |#3|) (-1113 |#4|))) (-15 -3528 ((-1113 |#4|) (-1113 |#3|))) (-15 -1420 ((-1113 |#4|) (-1113 |#4|) (-537))) (-15 -1673 (|#3| (-537)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 14)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $) 18)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4125 ((|#1| $ (-537)) NIL)) (-1361 (((-537) $ (-537)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-3572 (($ (-1 |#1| |#1|) $) NIL)) (-2191 (($ (-1 (-537) (-537)) $) 10)) (-1654 (((-1100) $) NIL)) (-1962 (($ $ $) NIL (|has| (-537) (-752)))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-3500 (((-537) |#1| $) NIL)) (-2928 (($) 15 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) 21 (|has| |#1| (-807)))) (-2329 (($ $) 11) (($ $ $) 20)) (-2318 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL) (($ (-537) |#1|) 19))) +(((-306 |#1|) (-13 (-21) (-678 (-537)) (-307 |#1| (-537)) (-10 -7 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) (-1045)) (T -306)) +NIL +(-13 (-21) (-678 (-537)) (-307 |#1| (-537)) (-10 -7 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $) 27)) (-3418 (((-3 $ "failed") $ $) 19)) (-3151 (((-731) $) 28)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 32)) (-3958 ((|#1| $) 31)) (-4125 ((|#1| $ (-537)) 25)) (-1361 ((|#2| $ (-537)) 26)) (-3572 (($ (-1 |#1| |#1|) $) 22)) (-2191 (($ (-1 |#2| |#2|) $) 23)) (-1654 (((-1100) $) 9)) (-1962 (($ $ $) 21 (|has| |#2| (-752)))) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ |#1|) 33)) (-3500 ((|#2| |#1| $) 24)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2318 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ |#2| |#1|) 29))) +(((-307 |#1| |#2|) (-134) (-1045) (-129)) (T -307)) +((-2318 (*1 *1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) (-5 *2 (-731)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))))) (-1361 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-307 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-129)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-307 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1045)))) (-3500 (*1 *2 *3 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) (-2191 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)))) (-1962 (*1 *1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)) (-4 *3 (-752))))) +(-13 (-129) (-989 |t#1|) (-10 -8 (-15 -2318 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3151 ((-731) $)) (-15 -1525 ((-606 (-2 (|:| |gen| |t#1|) (|:| -4185 |t#2|))) $)) (-15 -1361 (|t#2| $ (-537))) (-15 -4125 (|t#1| $ (-537))) (-15 -3500 (|t#2| |t#1| $)) (-15 -2191 ($ (-1 |t#2| |t#2|) $)) (-15 -3572 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-752)) (-15 -1962 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-989 |#1|) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4125 ((|#1| $ (-537)) NIL)) (-1361 (((-731) $ (-537)) NIL)) (-3572 (($ (-1 |#1| |#1|) $) NIL)) (-2191 (($ (-1 (-731) (-731)) $) NIL)) (-1654 (((-1100) $) NIL)) (-1962 (($ $ $) NIL (|has| (-731) (-752)))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-3500 (((-731) |#1| $) NIL)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-731) |#1|) NIL))) +(((-308 |#1|) (-307 |#1| (-731)) (-1045)) (T -308)) +NIL +(-307 |#1| (-731)) +((-1351 (($ $) 53)) (-3240 (($ $ |#2| |#3| $) 14)) (-2199 (($ (-1 |#3| |#3|) $) 35)) (-3876 (((-111) $) 27)) (-3890 ((|#2| $) 29)) (-3515 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1835 ((|#2| $) 49)) (-3459 (((-606 |#2|) $) 38)) (-1345 (($ $ $ (-731)) 23)) (-2340 (($ $ |#2|) 42))) +(((-309 |#1| |#2| |#3|) (-10 -8 (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1345 (|#1| |#1| |#1| (-731))) (-15 -3240 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2199 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2340 (|#1| |#1| |#2|))) (-310 |#2| |#3|) (-998) (-752)) (T -309)) +NIL +(-10 -8 (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1345 (|#1| |#1| |#1| (-731))) (-15 -3240 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2199 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2340 (|#1| |#1| |#2|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 88 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 86 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 85)) (-3958 (((-537) $) 89 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 87 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 84)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 73 (|has| |#1| (-435)))) (-3240 (($ $ |#1| |#2| $) 77)) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 80)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59)) (-1883 ((|#2| $) 79)) (-2199 (($ (-1 |#2| |#2|) $) 78)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 83)) (-3890 ((|#1| $) 82)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-529)))) (-2872 ((|#2| $) 62)) (-1835 ((|#1| $) 74 (|has| |#1| (-435)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45) (($ (-391 (-537))) 55 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537))))))) (-3459 (((-606 |#1|) $) 81)) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 76 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-310 |#1| |#2|) (-134) (-998) (-752)) (T -310)) +((-3876 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-111)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-606 *3)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-731)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-2199 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)))) (-3240 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) (-1345 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-4 *3 (-163)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *2 (-529)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)) (-4 *2 (-435)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *2 (-435))))) +(-13 (-46 |t#1| |t#2|) (-395 |t#1|) (-10 -8 (-15 -3876 ((-111) $)) (-15 -3890 (|t#1| $)) (-15 -3459 ((-606 |t#1|) $)) (-15 -2668 ((-731) $)) (-15 -1883 (|t#2| $)) (-15 -2199 ($ (-1 |t#2| |t#2|) $)) (-15 -3240 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-163)) (-15 -1345 ($ $ $ (-731))) |%noBranch|) (IF (|has| |t#1| (-529)) (-15 -3515 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-15 -1835 (|t#1| $)) (-15 -1351 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-274) |has| |#1| (-529)) ((-395 |#1|) . T) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2932 (((-111) (-111)) NIL)) (-2476 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-1376 (($ $) NIL (|has| |#1| (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3598 (($ $ (-537)) NIL)) (-1446 (((-731) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1903 (($ (-606 |#1|)) NIL)) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3115 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-311 |#1|) (-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) (-1154)) (T -311)) +((-1903 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-311 *3)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-311 *3)) (-4 *3 (-1154))))) +(-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) +((-1276 (((-111) $) 42)) (-2860 (((-731)) 22)) (-1428 ((|#2| $) 46) (($ $ (-874)) 103)) (-3151 (((-731)) 98)) (-3447 (($ (-1200 |#2|)) 20)) (-3870 (((-111) $) 115)) (-2055 ((|#2| $) 48) (($ $ (-874)) 101)) (-3199 (((-1113 |#2|) $) NIL) (((-1113 $) $ (-874)) 95)) (-1671 (((-1113 |#2|) $) 83)) (-2728 (((-1113 |#2|) $) 80) (((-3 (-1113 |#2|) "failed") $ $) 77)) (-2841 (($ $ (-1113 |#2|)) 53)) (-2685 (((-793 (-874))) 28) (((-874)) 43)) (-1839 (((-131)) 25)) (-2872 (((-793 (-874)) $) 30) (((-874) $) 117)) (-3254 (($) 109)) (-1484 (((-1200 |#2|) $) NIL) (((-649 |#2|) (-1200 $)) 39)) (-2644 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3042 (((-111) $) 41))) +(((-312 |#1| |#2|) (-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -3151 ((-731))) (-15 -2644 (|#1| |#1|)) (-15 -2728 ((-3 (-1113 |#2|) "failed") |#1| |#1|)) (-15 -2728 ((-1113 |#2|) |#1|)) (-15 -1671 ((-1113 |#2|) |#1|)) (-15 -2841 (|#1| |#1| (-1113 |#2|))) (-15 -3870 ((-111) |#1|)) (-15 -3254 (|#1|)) (-15 -1428 (|#1| |#1| (-874))) (-15 -2055 (|#1| |#1| (-874))) (-15 -3199 ((-1113 |#1|) |#1| (-874))) (-15 -1428 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -2872 ((-874) |#1|)) (-15 -2685 ((-874))) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -2860 ((-731))) (-15 -2685 ((-793 (-874)))) (-15 -2872 ((-793 (-874)) |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|)) (-15 -1839 ((-131)))) (-313 |#2|) (-347)) (T -312)) +((-1839 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-131)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-793 (-874))) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-2860 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-2685 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-874)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4)))) (-3151 (*1 *2) (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) (-4 *3 (-313 *4))))) +(-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -3151 ((-731))) (-15 -2644 (|#1| |#1|)) (-15 -2728 ((-3 (-1113 |#2|) "failed") |#1| |#1|)) (-15 -2728 ((-1113 |#2|) |#1|)) (-15 -1671 ((-1113 |#2|) |#1|)) (-15 -2841 (|#1| |#1| (-1113 |#2|))) (-15 -3870 ((-111) |#1|)) (-15 -3254 (|#1|)) (-15 -1428 (|#1| |#1| (-874))) (-15 -2055 (|#1| |#1| (-874))) (-15 -3199 ((-1113 |#1|) |#1| (-874))) (-15 -1428 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -2872 ((-874) |#1|)) (-15 -2685 ((-874))) (-15 -3199 ((-1113 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -2860 ((-731))) (-15 -2685 ((-793 (-874)))) (-15 -2872 ((-793 (-874)) |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|)) (-15 -1839 ((-131)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1276 (((-111) $) 91)) (-2860 (((-731)) 87)) (-1428 ((|#1| $) 137) (($ $ (-874)) 134 (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 119 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3151 (((-731)) 109 (|has| |#1| (-352)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 98)) (-3958 ((|#1| $) 97)) (-3447 (($ (-1200 |#1|)) 143)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-352)))) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) 106 (|has| |#1| (-352)))) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-4145 (($) 121 (|has| |#1| (-352)))) (-2974 (((-111) $) 122 (|has| |#1| (-352)))) (-2642 (($ $ (-731)) 84 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) 83 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) 68)) (-4231 (((-874) $) 124 (|has| |#1| (-352))) (((-793 (-874)) $) 81 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) 30)) (-3522 (($) 132 (|has| |#1| (-352)))) (-3870 (((-111) $) 131 (|has| |#1| (-352)))) (-2055 ((|#1| $) 138) (($ $ (-874)) 135 (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) 110 (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-3199 (((-1113 |#1|) $) 142) (((-1113 $) $ (-874)) 136 (|has| |#1| (-352)))) (-2334 (((-874) $) 107 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) 128 (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) 127 (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) 126 (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) 129 (|has| |#1| (-352)))) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3956 (($) 111 (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 108 (|has| |#1| (-352)))) (-2933 (((-111) $) 90)) (-2528 (((-1064) $) 10)) (-1524 (($) 130 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 118 (|has| |#1| (-352)))) (-3622 (((-402 $) $) 71)) (-2685 (((-793 (-874))) 88) (((-874)) 140)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-731) $) 123 (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) 82 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) 96)) (-3456 (($ $) 115 (|has| |#1| (-352))) (($ $ (-731)) 113 (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) 89) (((-874) $) 139)) (-2529 (((-1113 |#1|)) 141)) (-3553 (($) 120 (|has| |#1| (-352)))) (-3254 (($) 133 (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 145) (((-649 |#1|) (-1200 $)) 144)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 117 (|has| |#1| (-352)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ |#1|) 99)) (-2644 (($ $) 116 (|has| |#1| (-352))) (((-3 $ "failed") $) 80 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 147) (((-1200 $) (-874)) 146)) (-3276 (((-111) $ $) 37)) (-3042 (((-111) $) 92)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-1791 (($ $) 86 (|has| |#1| (-352))) (($ $ (-731)) 85 (|has| |#1| (-352)))) (-4230 (($ $) 114 (|has| |#1| (-352))) (($ $ (-731)) 112 (|has| |#1| (-352)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62) (($ $ |#1|) 95)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-313 |#1|) (-134) (-347)) (T -313)) +((-2122 (*1 *2) (-12 (-4 *3 (-347)) (-5 *2 (-1200 *1)) (-4 *1 (-313 *3)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-874)) (-4 *4 (-347)) (-5 *2 (-1200 *1)) (-4 *1 (-313 *4)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1200 *3)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-313 *4)) (-4 *4 (-347)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-4 *1 (-313 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) (-2529 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) (-2685 (*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) (-3199 (*1 *2 *1 *3) (-12 (-5 *3 (-874)) (-4 *4 (-352)) (-4 *4 (-347)) (-5 *2 (-1113 *1)) (-4 *1 (-313 *4)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) (-1428 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) (-3254 (*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) (-3522 (*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-111)))) (-1524 (*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-352)) (-4 *1 (-313 *3)) (-4 *3 (-347)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-1113 *3)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-1113 *3)))) (-2728 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-1113 *3))))) +(-13 (-1218 |t#1|) (-989 |t#1|) (-10 -8 (-15 -2122 ((-1200 $))) (-15 -2122 ((-1200 $) (-874))) (-15 -1484 ((-1200 |t#1|) $)) (-15 -1484 ((-649 |t#1|) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|))) (-15 -3199 ((-1113 |t#1|) $)) (-15 -2529 ((-1113 |t#1|))) (-15 -2685 ((-874))) (-15 -2872 ((-874) $)) (-15 -2055 (|t#1| $)) (-15 -1428 (|t#1| $)) (IF (|has| |t#1| (-352)) (PROGN (-6 (-333)) (-15 -3199 ((-1113 $) $ (-874))) (-15 -2055 ($ $ (-874))) (-15 -1428 ($ $ (-874))) (-15 -3254 ($)) (-15 -3522 ($)) (-15 -3870 ((-111) $)) (-15 -1524 ($)) (-15 -2841 ($ $ (-1113 |t#1|))) (-15 -1671 ((-1113 |t#1|) $)) (-15 -2728 ((-1113 |t#1|) $)) (-15 -2728 ((-3 (-1113 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-218) |has| |#1| (-352)) ((-228) . T) ((-274) . T) ((-291) . T) ((-1218 |#1|) . T) ((-347) . T) ((-386) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-352) |has| |#1| (-352)) ((-333) |has| |#1| (-352)) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 |#1|) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-352)) ((-1158) . T) ((-1207 |#1|) . T)) +((-2330 (((-111) $ $) NIL)) (-1710 (($ (-1116) $) 88)) (-3214 (($) 77)) (-3098 (((-1064) (-1064)) 11)) (-2751 (($) 78)) (-2562 (($) 90) (($ (-300 (-659))) 98) (($ (-300 (-661))) 94) (($ (-300 (-654))) 102) (($ (-300 (-363))) 109) (($ (-300 (-537))) 105) (($ (-300 (-160 (-363)))) 113)) (-1919 (($ (-1116) $) 89)) (-2138 (($ (-606 (-816))) 79)) (-2875 (((-1205) $) 75)) (-2076 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1366 (($ (-1064)) 51)) (-2586 (((-1049) $) 25)) (-1993 (($ (-1038 (-905 (-537))) $) 85) (($ (-1038 (-905 (-537))) (-905 (-537)) $) 86)) (-2998 (($ (-1064)) 87)) (-1869 (($ (-1116) $) 115) (($ (-1116) $ $) 116)) (-2394 (($ (-1117) (-606 (-1117))) 76)) (-2275 (($ (-1100)) 82) (($ (-606 (-1100))) 80)) (-2341 (((-816) $) 118)) (-3360 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 $)) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 $))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 $))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816)))) $) 44)) (-4173 (($ (-1100)) 187)) (-1546 (($ (-606 $)) 114)) (-2893 (($ (-1117) (-1100)) 120) (($ (-1117) (-300 (-661))) 160) (($ (-1117) (-300 (-659))) 161) (($ (-1117) (-300 (-654))) 162) (($ (-1117) (-649 (-661))) 123) (($ (-1117) (-649 (-659))) 126) (($ (-1117) (-649 (-654))) 129) (($ (-1117) (-1200 (-661))) 132) (($ (-1117) (-1200 (-659))) 135) (($ (-1117) (-1200 (-654))) 138) (($ (-1117) (-649 (-300 (-661)))) 141) (($ (-1117) (-649 (-300 (-659)))) 144) (($ (-1117) (-649 (-300 (-654)))) 147) (($ (-1117) (-1200 (-300 (-661)))) 150) (($ (-1117) (-1200 (-300 (-659)))) 153) (($ (-1117) (-1200 (-300 (-654)))) 156) (($ (-1117) (-606 (-905 (-537))) (-300 (-661))) 157) (($ (-1117) (-606 (-905 (-537))) (-300 (-659))) 158) (($ (-1117) (-606 (-905 (-537))) (-300 (-654))) 159) (($ (-1117) (-300 (-537))) 184) (($ (-1117) (-300 (-363))) 185) (($ (-1117) (-300 (-160 (-363)))) 186) (($ (-1117) (-649 (-300 (-537)))) 165) (($ (-1117) (-649 (-300 (-363)))) 168) (($ (-1117) (-649 (-300 (-160 (-363))))) 171) (($ (-1117) (-1200 (-300 (-537)))) 174) (($ (-1117) (-1200 (-300 (-363)))) 177) (($ (-1117) (-1200 (-300 (-160 (-363))))) 180) (($ (-1117) (-606 (-905 (-537))) (-300 (-537))) 181) (($ (-1117) (-606 (-905 (-537))) (-300 (-363))) 182) (($ (-1117) (-606 (-905 (-537))) (-300 (-160 (-363)))) 183)) (-2244 (((-111) $ $) NIL))) +(((-314) (-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -1993 ($ (-1038 (-905 (-537))) $)) (-15 -1993 ($ (-1038 (-905 (-537))) (-905 (-537)) $)) (-15 -1710 ($ (-1116) $)) (-15 -1919 ($ (-1116) $)) (-15 -1366 ($ (-1064))) (-15 -2998 ($ (-1064))) (-15 -2275 ($ (-1100))) (-15 -2275 ($ (-606 (-1100)))) (-15 -4173 ($ (-1100))) (-15 -2562 ($)) (-15 -2562 ($ (-300 (-659)))) (-15 -2562 ($ (-300 (-661)))) (-15 -2562 ($ (-300 (-654)))) (-15 -2562 ($ (-300 (-363)))) (-15 -2562 ($ (-300 (-537)))) (-15 -2562 ($ (-300 (-160 (-363))))) (-15 -1869 ($ (-1116) $)) (-15 -1869 ($ (-1116) $ $)) (-15 -2893 ($ (-1117) (-1100))) (-15 -2893 ($ (-1117) (-300 (-661)))) (-15 -2893 ($ (-1117) (-300 (-659)))) (-15 -2893 ($ (-1117) (-300 (-654)))) (-15 -2893 ($ (-1117) (-649 (-661)))) (-15 -2893 ($ (-1117) (-649 (-659)))) (-15 -2893 ($ (-1117) (-649 (-654)))) (-15 -2893 ($ (-1117) (-1200 (-661)))) (-15 -2893 ($ (-1117) (-1200 (-659)))) (-15 -2893 ($ (-1117) (-1200 (-654)))) (-15 -2893 ($ (-1117) (-649 (-300 (-661))))) (-15 -2893 ($ (-1117) (-649 (-300 (-659))))) (-15 -2893 ($ (-1117) (-649 (-300 (-654))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-661))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-659))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-654))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-661)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-659)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-654)))) (-15 -2893 ($ (-1117) (-300 (-537)))) (-15 -2893 ($ (-1117) (-300 (-363)))) (-15 -2893 ($ (-1117) (-300 (-160 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-537))))) (-15 -2893 ($ (-1117) (-649 (-300 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-537))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-363))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-537)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-363)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-160 (-363))))) (-15 -1546 ($ (-606 $))) (-15 -3214 ($)) (-15 -2751 ($)) (-15 -2138 ($ (-606 (-816)))) (-15 -2394 ($ (-1117) (-606 (-1117)))) (-15 -2076 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3360 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 $)) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 $))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 $))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816)))) $)) (-15 -2875 ((-1205) $)) (-15 -2586 ((-1049) $)) (-15 -3098 ((-1064) (-1064)))))) (T -314)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-314)))) (-1993 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *1 (-314)))) (-1993 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *3 (-905 (-537))) (-5 *1 (-314)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-1919 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-314)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314)))) (-2562 (*1 *1) (-5 *1 (-314))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-659))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-661))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-654))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-314)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-314)))) (-1869 (*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-1869 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-661)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-659)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-654)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-661)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-659)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-654)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-661))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-659))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-654))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-537))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-363))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-160 (-363)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-537)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-363)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-160 (-363))))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-537)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-363)))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-160 (-363))))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-537))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-363))) (-5 *1 (-314)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-300 (-160 (-363)))) (-5 *1 (-314)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-5 *1 (-314)))) (-3214 (*1 *1) (-5 *1 (-314))) (-2751 (*1 *1) (-5 *1 (-314))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-314)))) (-2394 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-314)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-314)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-314)) (|:| |elseClause| (-314)))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 (-314))) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 (-314)))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 (-314)))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816))))) (-5 *1 (-314)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-314)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-314)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) +(-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -1993 ($ (-1038 (-905 (-537))) $)) (-15 -1993 ($ (-1038 (-905 (-537))) (-905 (-537)) $)) (-15 -1710 ($ (-1116) $)) (-15 -1919 ($ (-1116) $)) (-15 -1366 ($ (-1064))) (-15 -2998 ($ (-1064))) (-15 -2275 ($ (-1100))) (-15 -2275 ($ (-606 (-1100)))) (-15 -4173 ($ (-1100))) (-15 -2562 ($)) (-15 -2562 ($ (-300 (-659)))) (-15 -2562 ($ (-300 (-661)))) (-15 -2562 ($ (-300 (-654)))) (-15 -2562 ($ (-300 (-363)))) (-15 -2562 ($ (-300 (-537)))) (-15 -2562 ($ (-300 (-160 (-363))))) (-15 -1869 ($ (-1116) $)) (-15 -1869 ($ (-1116) $ $)) (-15 -2893 ($ (-1117) (-1100))) (-15 -2893 ($ (-1117) (-300 (-661)))) (-15 -2893 ($ (-1117) (-300 (-659)))) (-15 -2893 ($ (-1117) (-300 (-654)))) (-15 -2893 ($ (-1117) (-649 (-661)))) (-15 -2893 ($ (-1117) (-649 (-659)))) (-15 -2893 ($ (-1117) (-649 (-654)))) (-15 -2893 ($ (-1117) (-1200 (-661)))) (-15 -2893 ($ (-1117) (-1200 (-659)))) (-15 -2893 ($ (-1117) (-1200 (-654)))) (-15 -2893 ($ (-1117) (-649 (-300 (-661))))) (-15 -2893 ($ (-1117) (-649 (-300 (-659))))) (-15 -2893 ($ (-1117) (-649 (-300 (-654))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-661))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-659))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-654))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-661)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-659)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-654)))) (-15 -2893 ($ (-1117) (-300 (-537)))) (-15 -2893 ($ (-1117) (-300 (-363)))) (-15 -2893 ($ (-1117) (-300 (-160 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-537))))) (-15 -2893 ($ (-1117) (-649 (-300 (-363))))) (-15 -2893 ($ (-1117) (-649 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-537))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-363))))) (-15 -2893 ($ (-1117) (-1200 (-300 (-160 (-363)))))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-537)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-363)))) (-15 -2893 ($ (-1117) (-606 (-905 (-537))) (-300 (-160 (-363))))) (-15 -1546 ($ (-606 $))) (-15 -3214 ($)) (-15 -2751 ($)) (-15 -2138 ($ (-606 (-816)))) (-15 -2394 ($ (-1117) (-606 (-1117)))) (-15 -2076 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3360 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1117)) (|:| |arrayIndex| (-606 (-905 (-537)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1116)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2193 (-111)) (|:| -3619 (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) (|:| |blockBranch| (-606 $)) (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) (|:| |forBranch| (-2 (|:| -2133 (-1038 (-905 (-537)))) (|:| |span| (-905 (-537))) (|:| -3936 $))) (|:| |labelBranch| (-1064)) (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 $))) (|:| |commonBranch| (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) (|:| |printBranch| (-606 (-816)))) $)) (-15 -2875 ((-1205) $)) (-15 -2586 ((-1049) $)) (-15 -3098 ((-1064) (-1064))))) +((-2330 (((-111) $ $) NIL)) (-2280 (((-111) $) 11)) (-4270 (($ |#1|) 8)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1234 (($ |#1|) 9)) (-2341 (((-816) $) 17)) (-2449 ((|#1| $) 12)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 19))) +(((-315 |#1|) (-13 (-807) (-10 -8 (-15 -4270 ($ |#1|)) (-15 -1234 ($ |#1|)) (-15 -2280 ((-111) $)) (-15 -2449 (|#1| $)))) (-807)) (T -315)) +((-4270 (*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) (-1234 (*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-315 *3)) (-4 *3 (-807)))) (-2449 (*1 *2 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807))))) +(-13 (-807) (-10 -8 (-15 -4270 ($ |#1|)) (-15 -1234 ($ |#1|)) (-15 -2280 ((-111) $)) (-15 -2449 (|#1| $)))) +((-3667 (((-314) (-1117) (-905 (-537))) 23)) (-3154 (((-314) (-1117) (-905 (-537))) 27)) (-1775 (((-314) (-1117) (-1038 (-905 (-537))) (-1038 (-905 (-537)))) 26) (((-314) (-1117) (-905 (-537)) (-905 (-537))) 24)) (-1479 (((-314) (-1117) (-905 (-537))) 31))) +(((-316) (-10 -7 (-15 -3667 ((-314) (-1117) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-905 (-537)) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-1038 (-905 (-537))) (-1038 (-905 (-537))))) (-15 -3154 ((-314) (-1117) (-905 (-537)))) (-15 -1479 ((-314) (-1117) (-905 (-537)))))) (T -316)) +((-1479 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1038 (-905 (-537)))) (-5 *2 (-314)) (-5 *1 (-316)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) (-5 *1 (-316))))) +(-10 -7 (-15 -3667 ((-314) (-1117) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-905 (-537)) (-905 (-537)))) (-15 -1775 ((-314) (-1117) (-1038 (-905 (-537))) (-1038 (-905 (-537))))) (-15 -3154 ((-314) (-1117) (-905 (-537)))) (-15 -1479 ((-314) (-1117) (-905 (-537))))) +((-1612 (((-320 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-320 |#1| |#2| |#3| |#4|)) 33))) +(((-317 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 ((-320 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-320 |#1| |#2| |#3| |#4|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|) (-347) (-1176 |#5|) (-1176 (-391 |#6|)) (-326 |#5| |#6| |#7|)) (T -317)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-320 *5 *6 *7 *8)) (-4 *5 (-347)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *9 (-347)) (-4 *10 (-1176 *9)) (-4 *11 (-1176 (-391 *10))) (-5 *2 (-320 *9 *10 *11 *12)) (-5 *1 (-317 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-326 *9 *10 *11))))) +(-10 -7 (-15 -1612 ((-320 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-320 |#1| |#2| |#3| |#4|)))) +((-2315 (((-111) $) 14))) +(((-318 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2315 ((-111) |#1|))) (-319 |#2| |#3| |#4| |#5|) (-347) (-1176 |#2|) (-1176 (-391 |#3|)) (-326 |#2| |#3| |#4|)) (T -318)) +NIL +(-10 -8 (-15 -2315 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3195 (($ $) 26)) (-2315 (((-111) $) 25)) (-1654 (((-1100) $) 9)) (-3754 (((-397 |#2| (-391 |#2|) |#3| |#4|) $) 32)) (-2528 (((-1064) $) 10)) (-1524 (((-3 |#4| "failed") $) 24)) (-1636 (($ (-397 |#2| (-391 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-537)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4035 (((-2 (|:| -3119 (-397 |#2| (-391 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20))) +(((-319 |#1| |#2| |#3| |#4|) (-134) (-347) (-1176 |t#1|) (-1176 (-391 |t#2|)) (-326 |t#1| |t#2| |t#3|)) (T -319)) +((-3754 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-397 *4 (-391 *4) *5 *6)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-397 *4 (-391 *4) *5 *6)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-4 *3 (-347)) (-4 *1 (-319 *3 *4 *5 *6)))) (-1636 (*1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *1 (-319 *3 *4 *5 *2)) (-4 *2 (-326 *3 *4 *5)))) (-1636 (*1 *1 *2 *2) (-12 (-4 *2 (-347)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))) (-4 *1 (-319 *2 *3 *4 *5)) (-4 *5 (-326 *2 *3 *4)))) (-1636 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-537)) (-4 *2 (-347)) (-4 *4 (-1176 *2)) (-4 *5 (-1176 (-391 *4))) (-4 *1 (-319 *2 *4 *5 *6)) (-4 *6 (-326 *2 *4 *5)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-2 (|:| -3119 (-397 *4 (-391 *4) *5 *6)) (|:| |principalPart| *6))))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3 *4 *5)) (-4 *2 (-347)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))) (-4 *5 (-326 *2 *3 *4)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-111)))) (-1524 (*1 *2 *1) (|partial| -12 (-4 *1 (-319 *3 *4 *5 *2)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *2 (-326 *3 *4 *5)))) (-1636 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-347)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-4 *1 (-319 *4 *3 *5 *2)) (-4 *2 (-326 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3754 ((-397 |t#2| (-391 |t#2|) |t#3| |t#4|) $)) (-15 -1636 ($ (-397 |t#2| (-391 |t#2|) |t#3| |t#4|))) (-15 -1636 ($ |t#4|)) (-15 -1636 ($ |t#1| |t#1|)) (-15 -1636 ($ |t#1| |t#1| (-537))) (-15 -4035 ((-2 (|:| -3119 (-397 |t#2| (-391 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3195 ($ $)) (-15 -2315 ((-111) $)) (-15 -1524 ((-3 |t#4| "failed") $)) (-15 -1636 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ $) 33)) (-2315 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2285 (((-1200 |#4|) $) 125)) (-3754 (((-397 |#2| (-391 |#2|) |#3| |#4|) $) 31)) (-2528 (((-1064) $) NIL)) (-1524 (((-3 |#4| "failed") $) 36)) (-2427 (((-1200 |#4|) $) 118)) (-1636 (($ (-397 |#2| (-391 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-537)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4035 (((-2 (|:| -3119 (-397 |#2| (-391 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2341 (((-816) $) 17)) (-2928 (($) 14 T CONST)) (-2244 (((-111) $ $) 20)) (-2329 (($ $) 27) (($ $ $) NIL)) (-2318 (($ $ $) 25)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 23))) +(((-320 |#1| |#2| |#3| |#4|) (-13 (-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2427 ((-1200 |#4|) $)) (-15 -2285 ((-1200 |#4|) $)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -320)) +((-2427 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) (-4 *6 (-326 *3 *4 *5)))) (-2285 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) (-4 *6 (-326 *3 *4 *5))))) +(-13 (-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2427 ((-1200 |#4|) $)) (-15 -2285 ((-1200 |#4|) $)))) +((-4116 (($ $ (-1117) |#2|) NIL) (($ $ (-606 (-1117)) (-606 |#2|)) 20) (($ $ (-606 (-278 |#2|))) 15) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-606 |#2|) (-606 |#2|)) NIL)) (-1922 (($ $ |#2|) 11))) +(((-321 |#1| |#2|) (-10 -8 (-15 -1922 (|#1| |#1| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1117) |#2|))) (-322 |#2|) (-1045)) (T -321)) +NIL +(-10 -8 (-15 -1922 (|#1| |#1| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1117) |#2|))) +((-1612 (($ (-1 |#1| |#1|) $) 6)) (-4116 (($ $ (-1117) |#1|) 17 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 16 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-606 (-278 |#1|))) 15 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 14 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-293 |#1|))) (($ $ (-606 |#1|) (-606 |#1|)) 12 (|has| |#1| (-293 |#1|)))) (-1922 (($ $ |#1|) 11 (|has| |#1| (-270 |#1| |#1|))))) +(((-322 |#1|) (-134) (-1045)) (T -322)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1045))))) +(-13 (-10 -8 (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-270 |t#1| |t#1|)) (-6 (-270 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-293 |t#1|)) (-6 (-293 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495 (-1117) |t#1|)) (-6 (-495 (-1117) |t#1|)) |%noBranch|))) +(((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1117)) $) NIL)) (-3088 (((-111)) 91) (((-111) (-111)) 92)) (-3852 (((-606 (-578 $)) $) NIL)) (-1403 (($ $) NIL)) (-1247 (($ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-3633 (($ $) NIL)) (-1378 (($ $) NIL)) (-4270 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-300 |#3|)) 71) (((-3 $ "failed") (-1117)) 97) (((-3 $ "failed") (-300 (-537))) 59 (|has| |#3| (-989 (-537)))) (((-3 $ "failed") (-391 (-905 (-537)))) 65 (|has| |#3| (-989 (-537)))) (((-3 $ "failed") (-905 (-537))) 60 (|has| |#3| (-989 (-537)))) (((-3 $ "failed") (-300 (-363))) 89 (|has| |#3| (-989 (-363)))) (((-3 $ "failed") (-391 (-905 (-363)))) 83 (|has| |#3| (-989 (-363)))) (((-3 $ "failed") (-905 (-363))) 78 (|has| |#3| (-989 (-363))))) (-3958 (((-578 $) $) NIL) ((|#3| $) NIL) (($ (-300 |#3|)) 72) (($ (-1117)) 98) (($ (-300 (-537))) 61 (|has| |#3| (-989 (-537)))) (($ (-391 (-905 (-537)))) 66 (|has| |#3| (-989 (-537)))) (($ (-905 (-537))) 62 (|has| |#3| (-989 (-537)))) (($ (-300 (-363))) 90 (|has| |#3| (-989 (-363)))) (($ (-391 (-905 (-363)))) 84 (|has| |#3| (-989 (-363)))) (($ (-905 (-363))) 80 (|has| |#3| (-989 (-363))))) (-3490 (((-3 $ "failed") $) NIL)) (-3338 (($) 10)) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) NIL)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-2040 (((-1113 $) (-578 $)) NIL (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) NIL)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-1970 (($ $) 94)) (-2180 (($ $) NIL)) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) NIL)) (-3381 (($ (-113) $) 93) (($ (-113) (-606 $)) NIL)) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) NIL)) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-4185 (($ $) NIL)) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL)) (-2529 (($ $) NIL (|has| $ (-998)))) (-1389 (($ $) NIL)) (-1234 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-578 $)) NIL) (($ |#3|) NIL) (($ (-537)) NIL) (((-300 |#3|) $) 96)) (-3654 (((-731)) NIL)) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2336 (((-111) (-113)) NIL)) (-1328 (($ $) NIL)) (-1300 (($ $) NIL)) (-1314 (($ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) 95 T CONST)) (-2943 (($) 24 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) +(((-323 |#1| |#2| |#3|) (-13 (-286) (-37 |#3|) (-989 |#3|) (-853 (-1117)) (-10 -8 (-15 -3958 ($ (-300 |#3|))) (-15 -1516 ((-3 $ "failed") (-300 |#3|))) (-15 -3958 ($ (-1117))) (-15 -1516 ((-3 $ "failed") (-1117))) (-15 -2341 ((-300 |#3|) $)) (IF (|has| |#3| (-989 (-537))) (PROGN (-15 -3958 ($ (-300 (-537)))) (-15 -1516 ((-3 $ "failed") (-300 (-537)))) (-15 -3958 ($ (-391 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-537))))) (-15 -3958 ($ (-905 (-537)))) (-15 -1516 ((-3 $ "failed") (-905 (-537))))) |%noBranch|) (IF (|has| |#3| (-989 (-363))) (PROGN (-15 -3958 ($ (-300 (-363)))) (-15 -1516 ((-3 $ "failed") (-300 (-363)))) (-15 -3958 ($ (-391 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-363))))) (-15 -3958 ($ (-905 (-363)))) (-15 -1516 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -2209 ($ $)) (-15 -3633 ($ $)) (-15 -4185 ($ $)) (-15 -2180 ($ $)) (-15 -1970 ($ $)) (-15 -4270 ($ $)) (-15 -1234 ($ $)) (-15 -1247 ($ $)) (-15 -1300 ($ $)) (-15 -1314 ($ $)) (-15 -1328 ($ $)) (-15 -1378 ($ $)) (-15 -1389 ($ $)) (-15 -1403 ($ $)) (-15 -3338 ($)) (-15 -3757 ((-606 (-1117)) $)) (-15 -3088 ((-111))) (-15 -3088 ((-111) (-111))))) (-606 (-1117)) (-606 (-1117)) (-371)) (T -323)) +((-3958 (*1 *1 *2) (-12 (-5 *2 (-300 *5)) (-4 *5 (-371)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 *5)) (-4 *5 (-371)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 *2)) (-14 *4 (-606 *2)) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 *2)) (-14 *4 (-606 *2)) (-4 *5 (-371)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-300 *5)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-2209 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-4185 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-2180 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-4270 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1234 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1300 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1328 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1378 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-1403 (*1 *1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-3338 (*1 *1) (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-323 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-371)))) (-3088 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371))))) +(-13 (-286) (-37 |#3|) (-989 |#3|) (-853 (-1117)) (-10 -8 (-15 -3958 ($ (-300 |#3|))) (-15 -1516 ((-3 $ "failed") (-300 |#3|))) (-15 -3958 ($ (-1117))) (-15 -1516 ((-3 $ "failed") (-1117))) (-15 -2341 ((-300 |#3|) $)) (IF (|has| |#3| (-989 (-537))) (PROGN (-15 -3958 ($ (-300 (-537)))) (-15 -1516 ((-3 $ "failed") (-300 (-537)))) (-15 -3958 ($ (-391 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-537))))) (-15 -3958 ($ (-905 (-537)))) (-15 -1516 ((-3 $ "failed") (-905 (-537))))) |%noBranch|) (IF (|has| |#3| (-989 (-363))) (PROGN (-15 -3958 ($ (-300 (-363)))) (-15 -1516 ((-3 $ "failed") (-300 (-363)))) (-15 -3958 ($ (-391 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-363))))) (-15 -3958 ($ (-905 (-363)))) (-15 -1516 ((-3 $ "failed") (-905 (-363))))) |%noBranch|) (-15 -2209 ($ $)) (-15 -3633 ($ $)) (-15 -4185 ($ $)) (-15 -2180 ($ $)) (-15 -1970 ($ $)) (-15 -4270 ($ $)) (-15 -1234 ($ $)) (-15 -1247 ($ $)) (-15 -1300 ($ $)) (-15 -1314 ($ $)) (-15 -1328 ($ $)) (-15 -1378 ($ $)) (-15 -1389 ($ $)) (-15 -1403 ($ $)) (-15 -3338 ($)) (-15 -3757 ((-606 (-1117)) $)) (-15 -3088 ((-111))) (-15 -3088 ((-111) (-111))))) +((-1612 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-324 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|))) (-1158) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|) (-1158) (-1176 |#5|) (-1176 (-391 |#6|)) (-326 |#5| |#6| |#7|)) (T -324)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1158)) (-4 *8 (-1158)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *9 (-1176 *8)) (-4 *2 (-326 *8 *9 *10)) (-5 *1 (-324 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-326 *5 *6 *7)) (-4 *10 (-1176 (-391 *9)))))) +(-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|))) +((-1783 (((-2 (|:| |num| (-1200 |#3|)) (|:| |den| |#3|)) $) 38)) (-3447 (($ (-1200 (-391 |#3|)) (-1200 $)) NIL) (($ (-1200 (-391 |#3|))) NIL) (($ (-1200 |#3|) |#3|) 161)) (-4203 (((-1200 $) (-1200 $)) 145)) (-3544 (((-606 (-606 |#2|))) 119)) (-1949 (((-111) |#2| |#2|) 73)) (-1351 (($ $) 139)) (-4147 (((-731)) 31)) (-4205 (((-1200 $) (-1200 $)) 198)) (-3941 (((-606 (-905 |#2|)) (-1117)) 110)) (-1600 (((-111) $) 158)) (-3766 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-1787 (((-3 |#3| "failed")) 50)) (-2091 (((-731)) 170)) (-1922 ((|#2| $ |#2| |#2|) 132)) (-2322 (((-3 |#3| "failed")) 68)) (-3456 (($ $ (-1 (-391 |#3|) (-391 |#3|)) (-731)) NIL) (($ $ (-1 (-391 |#3|) (-391 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-3559 (((-1200 $) (-1200 $)) 151)) (-3450 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2743 (((-111)) 33))) +(((-325 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3544 ((-606 (-606 |#2|)))) (-15 -3941 ((-606 (-905 |#2|)) (-1117))) (-15 -3450 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -2322 ((-3 |#3| "failed"))) (-15 -1922 (|#2| |#1| |#2| |#2|)) (-15 -1351 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3766 ((-111) |#1| |#3|)) (-15 -3766 ((-111) |#1| |#2|)) (-15 -3447 (|#1| (-1200 |#3|) |#3|)) (-15 -1783 ((-2 (|:| |num| (-1200 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4203 ((-1200 |#1|) (-1200 |#1|))) (-15 -4205 ((-1200 |#1|) (-1200 |#1|))) (-15 -3559 ((-1200 |#1|) (-1200 |#1|))) (-15 -3766 ((-111) |#1|)) (-15 -1600 ((-111) |#1|)) (-15 -1949 ((-111) |#2| |#2|)) (-15 -2743 ((-111))) (-15 -2091 ((-731))) (-15 -4147 ((-731))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)) (-731))) (-15 -3447 (|#1| (-1200 (-391 |#3|)))) (-15 -3447 (|#1| (-1200 (-391 |#3|)) (-1200 |#1|)))) (-326 |#2| |#3| |#4|) (-1158) (-1176 |#2|) (-1176 (-391 |#3|))) (T -325)) +((-4147 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) (-2091 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) (-2743 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-111)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) (-1949 (*1 *2 *3 *3) (-12 (-4 *3 (-1158)) (-4 *5 (-1176 *3)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-111)) (-5 *1 (-325 *4 *3 *5 *6)) (-4 *4 (-326 *3 *5 *6)))) (-2322 (*1 *2) (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) (-4 *3 (-326 *4 *2 *5)))) (-1787 (*1 *2) (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) (-4 *3 (-326 *4 *2 *5)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-5 *2 (-606 (-905 *5))) (-5 *1 (-325 *4 *5 *6 *7)) (-4 *4 (-326 *5 *6 *7)))) (-3544 (*1 *2) (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-606 (-606 *4))) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6))))) +(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3544 ((-606 (-606 |#2|)))) (-15 -3941 ((-606 (-905 |#2|)) (-1117))) (-15 -3450 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1787 ((-3 |#3| "failed"))) (-15 -2322 ((-3 |#3| "failed"))) (-15 -1922 (|#2| |#1| |#2| |#2|)) (-15 -1351 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3766 ((-111) |#1| |#3|)) (-15 -3766 ((-111) |#1| |#2|)) (-15 -3447 (|#1| (-1200 |#3|) |#3|)) (-15 -1783 ((-2 (|:| |num| (-1200 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4203 ((-1200 |#1|) (-1200 |#1|))) (-15 -4205 ((-1200 |#1|) (-1200 |#1|))) (-15 -3559 ((-1200 |#1|) (-1200 |#1|))) (-15 -3766 ((-111) |#1|)) (-15 -1600 ((-111) |#1|)) (-15 -1949 ((-111) |#2| |#2|)) (-15 -2743 ((-111))) (-15 -2091 ((-731))) (-15 -4147 ((-731))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)))) (-15 -3456 (|#1| |#1| (-1 (-391 |#3|) (-391 |#3|)) (-731))) (-15 -3447 (|#1| (-1200 (-391 |#3|)))) (-15 -3447 (|#1| (-1200 (-391 |#3|)) (-1200 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1783 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 193)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 91 (|has| (-391 |#2|) (-347)))) (-3377 (($ $) 92 (|has| (-391 |#2|) (-347)))) (-4017 (((-111) $) 94 (|has| (-391 |#2|) (-347)))) (-3623 (((-649 (-391 |#2|)) (-1200 $)) 44) (((-649 (-391 |#2|))) 59)) (-1428 (((-391 |#2|) $) 50)) (-1387 (((-1127 (-874) (-731)) (-537)) 144 (|has| (-391 |#2|) (-333)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 111 (|has| (-391 |#2|) (-347)))) (-2414 (((-402 $) $) 112 (|has| (-391 |#2|) (-347)))) (-4099 (((-111) $ $) 102 (|has| (-391 |#2|) (-347)))) (-3151 (((-731)) 85 (|has| (-391 |#2|) (-352)))) (-2205 (((-111)) 210)) (-3038 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 166 (|has| (-391 |#2|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 164 (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-3 (-391 |#2|) "failed") $) 163)) (-3958 (((-537) $) 167 (|has| (-391 |#2|) (-989 (-537)))) (((-391 (-537)) $) 165 (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-391 |#2|) $) 162)) (-3447 (($ (-1200 (-391 |#2|)) (-1200 $)) 46) (($ (-1200 (-391 |#2|))) 62) (($ (-1200 |#2|) |#2|) 192)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-391 |#2|) (-333)))) (-3563 (($ $ $) 106 (|has| (-391 |#2|) (-347)))) (-2664 (((-649 (-391 |#2|)) $ (-1200 $)) 51) (((-649 (-391 |#2|)) $) 57)) (-2053 (((-649 (-537)) (-649 $)) 161 (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 160 (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-391 |#2|))) (|:| |vec| (-1200 (-391 |#2|)))) (-649 $) (-1200 $)) 159) (((-649 (-391 |#2|)) (-649 $)) 158)) (-4203 (((-1200 $) (-1200 $)) 198)) (-3195 (($ |#3|) 155) (((-3 $ "failed") (-391 |#3|)) 152 (|has| (-391 |#2|) (-347)))) (-3490 (((-3 $ "failed") $) 32)) (-3544 (((-606 (-606 |#1|))) 179 (|has| |#1| (-352)))) (-1949 (((-111) |#1| |#1|) 214)) (-3705 (((-874)) 52)) (-1618 (($) 88 (|has| (-391 |#2|) (-352)))) (-1853 (((-111)) 207)) (-1999 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-3539 (($ $ $) 105 (|has| (-391 |#2|) (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 100 (|has| (-391 |#2|) (-347)))) (-1351 (($ $) 185)) (-4145 (($) 146 (|has| (-391 |#2|) (-333)))) (-2974 (((-111) $) 147 (|has| (-391 |#2|) (-333)))) (-2642 (($ $ (-731)) 138 (|has| (-391 |#2|) (-333))) (($ $) 137 (|has| (-391 |#2|) (-333)))) (-2639 (((-111) $) 113 (|has| (-391 |#2|) (-347)))) (-4231 (((-874) $) 149 (|has| (-391 |#2|) (-333))) (((-793 (-874)) $) 135 (|has| (-391 |#2|) (-333)))) (-2836 (((-111) $) 30)) (-4147 (((-731)) 217)) (-4205 (((-1200 $) (-1200 $)) 199)) (-2055 (((-391 |#2|) $) 49)) (-3941 (((-606 (-905 |#1|)) (-1117)) 180 (|has| |#1| (-347)))) (-2824 (((-3 $ "failed") $) 139 (|has| (-391 |#2|) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 109 (|has| (-391 |#2|) (-347)))) (-3199 ((|#3| $) 42 (|has| (-391 |#2|) (-347)))) (-2334 (((-874) $) 87 (|has| (-391 |#2|) (-352)))) (-3183 ((|#3| $) 153)) (-2183 (($ (-606 $)) 98 (|has| (-391 |#2|) (-347))) (($ $ $) 97 (|has| (-391 |#2|) (-347)))) (-1654 (((-1100) $) 9)) (-3184 (((-649 (-391 |#2|))) 194)) (-3993 (((-649 (-391 |#2|))) 196)) (-3865 (($ $) 114 (|has| (-391 |#2|) (-347)))) (-2921 (($ (-1200 |#2|) |#2|) 190)) (-1734 (((-649 (-391 |#2|))) 195)) (-2125 (((-649 (-391 |#2|))) 197)) (-3307 (((-2 (|:| |num| (-649 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-3984 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 191)) (-1782 (((-1200 $)) 203)) (-3778 (((-1200 $)) 204)) (-1600 (((-111) $) 202)) (-3766 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-3956 (($) 140 (|has| (-391 |#2|) (-333)) CONST)) (-2009 (($ (-874)) 86 (|has| (-391 |#2|) (-352)))) (-1787 (((-3 |#2| "failed")) 182)) (-2528 (((-1064) $) 10)) (-2091 (((-731)) 216)) (-1524 (($) 157)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 99 (|has| (-391 |#2|) (-347)))) (-2211 (($ (-606 $)) 96 (|has| (-391 |#2|) (-347))) (($ $ $) 95 (|has| (-391 |#2|) (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 143 (|has| (-391 |#2|) (-333)))) (-3622 (((-402 $) $) 110 (|has| (-391 |#2|) (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-391 |#2|) (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 107 (|has| (-391 |#2|) (-347)))) (-3515 (((-3 $ "failed") $ $) 90 (|has| (-391 |#2|) (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 101 (|has| (-391 |#2|) (-347)))) (-1930 (((-731) $) 103 (|has| (-391 |#2|) (-347)))) (-1922 ((|#1| $ |#1| |#1|) 184)) (-2322 (((-3 |#2| "failed")) 183)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 104 (|has| (-391 |#2|) (-347)))) (-2067 (((-391 |#2|) (-1200 $)) 45) (((-391 |#2|)) 58)) (-3030 (((-731) $) 148 (|has| (-391 |#2|) (-333))) (((-3 (-731) "failed") $ $) 136 (|has| (-391 |#2|) (-333)))) (-3456 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) 120 (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) 119 (|has| (-391 |#2|) (-347))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-606 (-1117)) (-606 (-731))) 127 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117) (-731)) 128 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-606 (-1117))) 129 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117)) 130 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-731)) 132 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) 134 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-1630 (((-649 (-391 |#2|)) (-1200 $) (-1 (-391 |#2|) (-391 |#2|))) 151 (|has| (-391 |#2|) (-347)))) (-2529 ((|#3|) 156)) (-3553 (($) 145 (|has| (-391 |#2|) (-333)))) (-1484 (((-1200 (-391 |#2|)) $ (-1200 $)) 48) (((-649 (-391 |#2|)) (-1200 $) (-1200 $)) 47) (((-1200 (-391 |#2|)) $) 64) (((-649 (-391 |#2|)) (-1200 $)) 63)) (-3996 (((-1200 (-391 |#2|)) $) 61) (($ (-1200 (-391 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 142 (|has| (-391 |#2|) (-333)))) (-3559 (((-1200 $) (-1200 $)) 200)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 |#2|)) 35) (($ (-391 (-537))) 84 (-1533 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-989 (-391 (-537)))))) (($ $) 89 (|has| (-391 |#2|) (-347)))) (-2644 (($ $) 141 (|has| (-391 |#2|) (-333))) (((-3 $ "failed") $) 41 (|has| (-391 |#2|) (-139)))) (-2736 ((|#3| $) 43)) (-3654 (((-731)) 28)) (-3735 (((-111)) 213)) (-3281 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-2122 (((-1200 $)) 65)) (-3276 (((-111) $ $) 93 (|has| (-391 |#2|) (-347)))) (-3450 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2743 (((-111)) 215)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) 122 (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) 121 (|has| (-391 |#2|) (-347))) (($ $ (-606 (-1117)) (-606 (-731))) 123 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117) (-731)) 124 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-606 (-1117))) 125 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-1117)) 126 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) (-3319 (|has| (-391 |#2|) (-853 (-1117))) (|has| (-391 |#2|) (-347))))) (($ $ (-731)) 131 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) 133 (-1533 (-3319 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-218))) (-3319 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 118 (|has| (-391 |#2|) (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 115 (|has| (-391 |#2|) (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 |#2|)) 37) (($ (-391 |#2|) $) 36) (($ (-391 (-537)) $) 117 (|has| (-391 |#2|) (-347))) (($ $ (-391 (-537))) 116 (|has| (-391 |#2|) (-347))))) +(((-326 |#1| |#2| |#3|) (-134) (-1158) (-1176 |t#1|) (-1176 (-391 |t#2|))) (T -326)) +((-4147 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731)))) (-2091 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731)))) (-2743 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-1949 (*1 *2 *3 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3735 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3281 (*1 *2 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3281 (*1 *2 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-2205 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3038 (*1 *2 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3038 (*1 *2 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-1853 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-1999 (*1 *2 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-1999 (*1 *2 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-3778 (*1 *2) (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)))) (-1782 (*1 *2) (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3559 (*1 *2 *2) (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-4205 (*1 *2 *2) (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-2125 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-3993 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-1734 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-3184 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4))))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4))))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3))))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4))))) (-2921 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3))))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-2 (|:| |num| (-649 *5)) (|:| |den| *5))))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))))) (-1922 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))))) (-2322 (*1 *2) (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3)))) (-1787 (*1 *2) (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3)))) (-3450 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-1158)) (-4 *6 (-1176 (-391 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-326 *4 *5 *6)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *4 (-347)) (-5 *2 (-606 (-905 *4))))) (-3544 (*1 *2) (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) (-4 *3 (-352)) (-5 *2 (-606 (-606 *3)))))) +(-13 (-685 (-391 |t#2|) |t#3|) (-10 -8 (-15 -4147 ((-731))) (-15 -2091 ((-731))) (-15 -2743 ((-111))) (-15 -1949 ((-111) |t#1| |t#1|)) (-15 -3735 ((-111))) (-15 -3281 ((-111) |t#1|)) (-15 -3281 ((-111) |t#2|)) (-15 -2205 ((-111))) (-15 -3038 ((-111) |t#1|)) (-15 -3038 ((-111) |t#2|)) (-15 -1853 ((-111))) (-15 -1999 ((-111) |t#1|)) (-15 -1999 ((-111) |t#2|)) (-15 -3778 ((-1200 $))) (-15 -1782 ((-1200 $))) (-15 -1600 ((-111) $)) (-15 -3766 ((-111) $)) (-15 -3559 ((-1200 $) (-1200 $))) (-15 -4205 ((-1200 $) (-1200 $))) (-15 -4203 ((-1200 $) (-1200 $))) (-15 -2125 ((-649 (-391 |t#2|)))) (-15 -3993 ((-649 (-391 |t#2|)))) (-15 -1734 ((-649 (-391 |t#2|)))) (-15 -3184 ((-649 (-391 |t#2|)))) (-15 -1783 ((-2 (|:| |num| (-1200 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3447 ($ (-1200 |t#2|) |t#2|)) (-15 -3984 ((-2 (|:| |num| (-1200 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2921 ($ (-1200 |t#2|) |t#2|)) (-15 -3307 ((-2 (|:| |num| (-649 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3766 ((-111) $ |t#1|)) (-15 -3766 ((-111) $ |t#2|)) (-15 -3456 ($ $ (-1 |t#2| |t#2|))) (-15 -1351 ($ $)) (-15 -1922 (|t#1| $ |t#1| |t#1|)) (-15 -2322 ((-3 |t#2| "failed"))) (-15 -1787 ((-3 |t#2| "failed"))) (-15 -3450 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-347)) (-15 -3941 ((-606 (-905 |t#1|)) (-1117))) |%noBranch|) (IF (|has| |t#1| (-352)) (-15 -3544 ((-606 (-606 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-37 #1=(-391 |#2|)) . T) ((-37 $) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-100) . T) ((-110 #0# #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-139))) ((-141) |has| (-391 |#2|) (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 |#3|) . T) ((-216 #1#) |has| (-391 |#2|) (-347)) ((-218) -1533 (|has| (-391 |#2|) (-333)) (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347)))) ((-228) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-274) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-291) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-347) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-386) |has| (-391 |#2|) (-333)) ((-352) -1533 (|has| (-391 |#2|) (-352)) (|has| (-391 |#2|) (-333))) ((-333) |has| (-391 |#2|) (-333)) ((-354 #1# |#3|) . T) ((-393 #1# |#3|) . T) ((-361 #1#) . T) ((-395 #1#) . T) ((-435) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-529) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-609 #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-609 #1#) . T) ((-609 $) . T) ((-602 #1#) . T) ((-602 (-537)) |has| (-391 |#2|) (-602 (-537))) ((-678 #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-678 #1#) . T) ((-678 $) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-685 #1# |#3|) . T) ((-687) . T) ((-853 (-1117)) -12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117)))) ((-873) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-989 (-391 (-537))) |has| (-391 |#2|) (-989 (-391 (-537)))) ((-989 #1#) . T) ((-989 (-537)) |has| (-391 |#2|) (-989 (-537))) ((-1004 #0#) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347))) ((-1004 #1#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| (-391 |#2|) (-333)) ((-1158) -1533 (|has| (-391 |#2|) (-333)) (|has| (-391 |#2|) (-347)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-863 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-863 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-863 |#1|) "failed") $) NIL)) (-3958 (((-863 |#1|) $) NIL)) (-3447 (($ (-1200 (-863 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-863 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-863 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-863 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-863 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-863 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2055 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-863 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-863 |#1|) (-352)))) (-1671 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352)))) (-2728 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-1113 (-863 |#1|)) "failed") $ $) NIL (|has| (-863 |#1|) (-352)))) (-2841 (($ $ (-1113 (-863 |#1|))) NIL (|has| (-863 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-863 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1267 (((-911 (-1064))) NIL)) (-1524 (($) NIL (|has| (-863 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-863 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-863 |#1|))) NIL)) (-3553 (($) NIL (|has| (-863 |#1|) (-352)))) (-3254 (($) NIL (|has| (-863 |#1|) (-352)))) (-1484 (((-1200 (-863 |#1|)) $) NIL) (((-649 (-863 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-863 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-863 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-863 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-863 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-863 |#1|)) NIL) (($ (-863 |#1|) $) NIL))) +(((-327 |#1| |#2|) (-13 (-313 (-863 |#1|)) (-10 -7 (-15 -1267 ((-911 (-1064)))))) (-874) (-874)) (T -327)) +((-1267 (*1 *2) (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-327 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874))))) +(-13 (-313 (-863 |#1|)) (-10 -7 (-15 -1267 ((-911 (-1064)))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 46)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 43 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 115)) (-3958 ((|#1| $) 86)) (-3447 (($ (-1200 |#1|)) 104)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) 98 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 130 (|has| |#1| (-352)))) (-2974 (((-111) $) 49 (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) 47 (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) 132 (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) 90) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) 140 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 147)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 71 (|has| |#1| (-352)))) (-2933 (((-111) $) 118)) (-2528 (((-1064) $) NIL)) (-1267 (((-911 (-1064))) 44)) (-1524 (($) 128 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 93 (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) 67) (((-874)) 68)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) 131 (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) 125 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) 96)) (-3553 (($) 129 (|has| |#1| (-352)))) (-3254 (($) 137 (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 59) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) 143) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 75)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 139)) (-2122 (((-1200 $)) 117) (((-1200 $) (-874)) 73)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 32 T CONST)) (-2943 (($) 19 T CONST)) (-1791 (($ $) 81 (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) 48)) (-2340 (($ $ $) 145) (($ $ |#1|) 146)) (-2329 (($ $) 127) (($ $ $) NIL)) (-2318 (($ $ $) 61)) (** (($ $ (-874)) 149) (($ $ (-731)) 150) (($ $ (-537)) 148)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 77) (($ $ $) 76) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144))) +(((-328 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) (-333) (-1113 |#1|)) (T -328)) +((-1267 (*1 *2) (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-328 *3 *4)) (-4 *3 (-333)) (-14 *4 (-1113 *3))))) +(-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) NIL) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1267 (((-911 (-1064))) NIL)) (-1524 (($) NIL (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) NIL)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-329 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) (-333) (-874)) (T -329)) +((-1267 (*1 *2) (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-329 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874))))) +(-13 (-313 |#1|) (-10 -7 (-15 -1267 ((-911 (-1064)))))) +((-1322 (((-731) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) 42)) (-2409 (((-911 (-1064)) (-1113 |#1|)) 85)) (-3634 (((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) (-1113 |#1|)) 78)) (-2387 (((-649 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) 86)) (-3394 (((-3 (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) "failed") (-874)) 13)) (-2443 (((-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) (-874)) 18))) +(((-330 |#1|) (-10 -7 (-15 -2409 ((-911 (-1064)) (-1113 |#1|))) (-15 -3634 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) (-1113 |#1|))) (-15 -2387 ((-649 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -1322 ((-731) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -3394 ((-3 (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) "failed") (-874))) (-15 -2443 ((-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) (-874)))) (-333)) (T -330)) +((-2443 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-3 (-1113 *4) (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064))))))) (-5 *1 (-330 *4)) (-4 *4 (-333)))) (-3394 (*1 *2 *3) (|partial| -12 (-5 *3 (-874)) (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-5 *1 (-330 *4)) (-4 *4 (-333)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-4 *4 (-333)) (-5 *2 (-731)) (-5 *1 (-330 *4)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-4 *4 (-333)) (-5 *2 (-649 *4)) (-5 *1 (-330 *4)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-5 *1 (-330 *4)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-911 (-1064))) (-5 *1 (-330 *4))))) +(-10 -7 (-15 -2409 ((-911 (-1064)) (-1113 |#1|))) (-15 -3634 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) (-1113 |#1|))) (-15 -2387 ((-649 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -1322 ((-731) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -3394 ((-3 (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) "failed") (-874))) (-15 -2443 ((-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) (-874)))) +((-2341 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -2341 (|#3| |#1|)) (-15 -2341 (|#1| |#3|))) (-313 |#2|) (-333) (-313 |#2|)) (T -331)) +((-2341 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *2 *4 *3)) (-4 *3 (-313 *4)))) (-2341 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *3 *4 *2)) (-4 *3 (-313 *4))))) +(-10 -7 (-15 -2341 (|#3| |#1|)) (-15 -2341 (|#1| |#3|))) +((-2974 (((-111) $) 52)) (-4231 (((-793 (-874)) $) 21) (((-874) $) 53)) (-2824 (((-3 $ "failed") $) 16)) (-3956 (($) 9)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 95)) (-3030 (((-3 (-731) "failed") $ $) 73) (((-731) $) 61)) (-3456 (($ $ (-731)) NIL) (($ $) 8)) (-3553 (($) 46)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 34)) (-2644 (((-3 $ "failed") $) 40) (($ $) 39))) +(((-332 |#1|) (-10 -8 (-15 -4231 ((-874) |#1|)) (-15 -3030 ((-731) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3553 (|#1|)) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -2644 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3030 ((-3 (-731) "failed") |#1| |#1|)) (-15 -4231 ((-793 (-874)) |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) (-333)) (T -332)) +NIL +(-10 -8 (-15 -4231 ((-874) |#1|)) (-15 -3030 ((-731) |#1|)) (-15 -2974 ((-111) |#1|)) (-15 -3553 (|#1|)) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -2644 (|#1| |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3030 ((-3 (-731) "failed") |#1| |#1|)) (-15 -4231 ((-793 (-874)) |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1387 (((-1127 (-874) (-731)) (-537)) 90)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3151 (((-731)) 100)) (-3832 (($) 17 T CONST)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) 103)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-4145 (($) 88)) (-2974 (((-111) $) 87)) (-2642 (($ $) 76) (($ $ (-731)) 75)) (-2639 (((-111) $) 68)) (-4231 (((-793 (-874)) $) 78) (((-874) $) 85)) (-2836 (((-111) $) 30)) (-2824 (((-3 $ "failed") $) 99)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2334 (((-874) $) 102)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3956 (($) 98 T CONST)) (-2009 (($ (-874)) 101)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 91)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-3 (-731) "failed") $ $) 77) (((-731) $) 86)) (-3456 (($ $ (-731)) 96) (($ $) 94)) (-3553 (($) 89)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 92)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-2644 (((-3 $ "failed") $) 79) (($ $) 93)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-731)) 97) (($ $) 95)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +(((-333) (-134)) (T -333)) +((-2644 (*1 *1 *1) (-4 *1 (-333))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-333)) (-5 *2 (-1200 *1)))) (-3570 (*1 *2) (-12 (-4 *1 (-333)) (-5 *2 (-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))))) (-1387 (*1 *2 *3) (-12 (-4 *1 (-333)) (-5 *3 (-537)) (-5 *2 (-1127 (-874) (-731))))) (-3553 (*1 *1) (-4 *1 (-333))) (-4145 (*1 *1) (-4 *1 (-333))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-111)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-731)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-874)))) (-3242 (*1 *2) (-12 (-4 *1 (-333)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-386) (-352) (-1093) (-218) (-10 -8 (-15 -2644 ($ $)) (-15 -2466 ((-3 (-1200 $) "failed") (-649 $))) (-15 -3570 ((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537)))))) (-15 -1387 ((-1127 (-874) (-731)) (-537))) (-15 -3553 ($)) (-15 -4145 ($)) (-15 -2974 ((-111) $)) (-15 -3030 ((-731) $)) (-15 -4231 ((-874) $)) (-15 -3242 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-579 (-816)) . T) ((-163) . T) ((-218) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-386) . T) ((-352) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) . T) ((-1158) . T)) +((-3337 (((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) |#1|) 53)) (-3778 (((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))) 51))) +(((-334 |#1| |#2| |#3|) (-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) |#1|))) (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $)))) (-1176 |#1|) (-393 |#1| |#2|)) (T -334)) +((-3337 (*1 *2 *3) (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3778 (*1 *2) (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) +(-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-863 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-1322 (((-731)) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-863 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-863 |#1|) "failed") $) NIL)) (-3958 (((-863 |#1|) $) NIL)) (-3447 (($ (-1200 (-863 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-863 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-863 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-863 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-863 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-863 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2055 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-863 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-863 |#1|) (-352)))) (-1671 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352)))) (-2728 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-1113 (-863 |#1|)) "failed") $ $) NIL (|has| (-863 |#1|) (-352)))) (-2841 (($ $ (-1113 (-863 |#1|))) NIL (|has| (-863 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-863 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-2514 (((-1200 (-606 (-2 (|:| -3619 (-863 |#1|)) (|:| -2009 (-1064)))))) NIL)) (-2469 (((-649 (-863 |#1|))) NIL)) (-1524 (($) NIL (|has| (-863 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-863 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-863 |#1|))) NIL)) (-3553 (($) NIL (|has| (-863 |#1|) (-352)))) (-3254 (($) NIL (|has| (-863 |#1|) (-352)))) (-1484 (((-1200 (-863 |#1|)) $) NIL) (((-649 (-863 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-863 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-863 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-863 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-863 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-863 |#1|)) NIL) (($ (-863 |#1|) $) NIL))) +(((-335 |#1| |#2|) (-13 (-313 (-863 |#1|)) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 (-863 |#1|)) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 (-863 |#1|)))) (-15 -1322 ((-731))))) (-874) (-874)) (T -335)) +((-2514 (*1 *2) (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 (-863 *3)) (|:| -2009 (-1064)))))) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-2469 (*1 *2) (-12 (-5 *2 (-649 (-863 *3))) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-1322 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874))))) +(-13 (-313 (-863 |#1|)) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 (-863 |#1|)) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 (-863 |#1|)))) (-15 -1322 ((-731))))) +((-2330 (((-111) $ $) 62)) (-1656 (((-111) $) 75)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) 93) (($ $ (-874)) 91 (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 149 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-1322 (((-731)) 90)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) 163 (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 113)) (-3958 ((|#1| $) 92)) (-3447 (($ (-1200 |#1|)) 59)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) 159 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 150 (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) 99 (|has| |#1| (-352)))) (-3870 (((-111) $) 176 (|has| |#1| (-352)))) (-2055 ((|#1| $) 95) (($ $ (-874)) 94 (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) 190) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) 135 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) 74 (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) 71 (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) 83 (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) 70 (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 193)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 138 (|has| |#1| (-352)))) (-2933 (((-111) $) 109)) (-2528 (((-1064) $) NIL)) (-2514 (((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) 84)) (-2469 (((-649 |#1|)) 88)) (-1524 (($) 97 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 151 (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) 152)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) 63)) (-2529 (((-1113 |#1|)) 153)) (-3553 (($) 134 (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 107) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) 125) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 58)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 157)) (-2122 (((-1200 $)) 173) (((-1200 $) (-874)) 102)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 30 T CONST)) (-2943 (($) 22 T CONST)) (-1791 (($ $) 108 (|has| |#1| (-352))) (($ $ (-731)) 100 (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) 184)) (-2340 (($ $ $) 105) (($ $ |#1|) 106)) (-2329 (($ $) 178) (($ $ $) 182)) (-2318 (($ $ $) 180)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 139)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 187) (($ $ $) 143) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104))) +(((-336 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) (-333) (-3 (-1113 |#1|) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (T -336)) +((-2514 (*1 *2) (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) *2)))) (-2469 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064))))))))) (-1322 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))))))) +(-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-1322 (((-731)) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) NIL) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-2514 (((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064)))))) NIL)) (-2469 (((-649 |#1|)) NIL)) (-1524 (($) NIL (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) NIL)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-337 |#1| |#2|) (-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) (-333) (-874)) (T -337)) +((-2514 (*1 *2) (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874)))) (-2469 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874)))) (-1322 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874))))) +(-13 (-313 |#1|) (-10 -7 (-15 -2514 ((-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))))) (-15 -2469 ((-649 |#1|))) (-15 -1322 ((-731))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-863 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-863 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-863 |#1|) "failed") $) NIL)) (-3958 (((-863 |#1|) $) NIL)) (-3447 (($ (-1200 (-863 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-863 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-863 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-863 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-863 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-863 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-863 |#1|) (-352)))) (-2055 (((-863 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-863 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-863 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-863 |#1|) (-352)))) (-1671 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352)))) (-2728 (((-1113 (-863 |#1|)) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-1113 (-863 |#1|)) "failed") $ $) NIL (|has| (-863 |#1|) (-352)))) (-2841 (($ $ (-1113 (-863 |#1|))) NIL (|has| (-863 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-863 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-863 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| (-863 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-863 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-863 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-863 |#1|))) NIL)) (-3553 (($) NIL (|has| (-863 |#1|) (-352)))) (-3254 (($) NIL (|has| (-863 |#1|) (-352)))) (-1484 (((-1200 (-863 |#1|)) $) NIL) (((-649 (-863 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-863 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-863 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-863 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-863 |#1|) (-139)) (|has| (-863 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-863 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-863 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-863 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-863 |#1|)) NIL) (($ (-863 |#1|) $) NIL))) +(((-338 |#1| |#2|) (-313 (-863 |#1|)) (-874) (-874)) (T -338)) +NIL +(-313 (-863 |#1|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) 120 (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) 140 (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 93)) (-3958 ((|#1| $) 90)) (-3447 (($ (-1200 |#1|)) 85)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) 82 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 42 (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) 121 (|has| |#1| (-352)))) (-3870 (((-111) $) 74 (|has| |#1| (-352)))) (-2055 ((|#1| $) 39) (($ $ (-874)) 43 (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) 65) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) 97 (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) 95 (|has| |#1| (-352)))) (-2933 (((-111) $) 142)) (-2528 (((-1064) $) NIL)) (-1524 (($) 36 (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 115 (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) 139)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) 59)) (-2529 (((-1113 |#1|)) 88)) (-3553 (($) 126 (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) 53) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) 138) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 87)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 144)) (-2122 (((-1200 $)) 109) (((-1200 $) (-874)) 49)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 111 T CONST)) (-2943 (($) 32 T CONST)) (-1791 (($ $) 68 (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) 107)) (-2340 (($ $ $) 99) (($ $ |#1|) 100)) (-2329 (($ $) 80) (($ $ $) 105)) (-2318 (($ $ $) 103)) (** (($ $ (-874)) NIL) (($ $ (-731)) 44) (($ $ (-537)) 130)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 78) (($ $ $) 56) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-339 |#1| |#2|) (-313 |#1|) (-333) (-1113 |#1|)) (T -339)) +NIL +(-313 |#1|) +((-1865 ((|#1| (-1113 |#2|)) 52))) +(((-340 |#1| |#2|) (-10 -7 (-15 -1865 (|#1| (-1113 |#2|)))) (-13 (-386) (-10 -7 (-15 -2341 (|#1| |#2|)) (-15 -2334 ((-874) |#1|)) (-15 -2122 ((-1200 |#1|) (-874))) (-15 -1791 (|#1| |#1|)))) (-333)) (T -340)) +((-1865 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-4 *2 (-13 (-386) (-10 -7 (-15 -2341 (*2 *4)) (-15 -2334 ((-874) *2)) (-15 -2122 ((-1200 *2) (-874))) (-15 -1791 (*2 *2))))) (-5 *1 (-340 *2 *4))))) +(-10 -7 (-15 -1865 (|#1| (-1113 |#2|)))) +((-2791 (((-911 (-1113 |#1|)) (-1113 |#1|)) 36)) (-1618 (((-1113 |#1|) (-874) (-874)) 113) (((-1113 |#1|) (-874)) 112)) (-2974 (((-111) (-1113 |#1|)) 84)) (-1640 (((-874) (-874)) 71)) (-1324 (((-874) (-874)) 74)) (-4029 (((-874) (-874)) 69)) (-3870 (((-111) (-1113 |#1|)) 88)) (-3331 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 101)) (-3466 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 104)) (-2820 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 103)) (-2525 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 102)) (-1833 (((-3 (-1113 |#1|) "failed") (-1113 |#1|)) 98)) (-1604 (((-1113 |#1|) (-1113 |#1|)) 62)) (-3991 (((-1113 |#1|) (-874)) 107)) (-4182 (((-1113 |#1|) (-874)) 110)) (-3222 (((-1113 |#1|) (-874)) 109)) (-1623 (((-1113 |#1|) (-874)) 108)) (-1317 (((-1113 |#1|) (-874)) 105))) +(((-341 |#1|) (-10 -7 (-15 -2974 ((-111) (-1113 |#1|))) (-15 -3870 ((-111) (-1113 |#1|))) (-15 -4029 ((-874) (-874))) (-15 -1640 ((-874) (-874))) (-15 -1324 ((-874) (-874))) (-15 -1317 ((-1113 |#1|) (-874))) (-15 -3991 ((-1113 |#1|) (-874))) (-15 -1623 ((-1113 |#1|) (-874))) (-15 -3222 ((-1113 |#1|) (-874))) (-15 -4182 ((-1113 |#1|) (-874))) (-15 -1833 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3331 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2525 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2820 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3466 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -1618 ((-1113 |#1|) (-874))) (-15 -1618 ((-1113 |#1|) (-874) (-874))) (-15 -1604 ((-1113 |#1|) (-1113 |#1|))) (-15 -2791 ((-911 (-1113 |#1|)) (-1113 |#1|)))) (-333)) (T -341)) +((-2791 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-911 (-1113 *4))) (-5 *1 (-341 *4)) (-5 *3 (-1113 *4)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-1618 (*1 *2 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-3466 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-2820 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-2525 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-3331 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-1833 (*1 *2 *2) (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) (-4 *4 (-333)))) (-1324 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333)))) (-4029 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-341 *4)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-341 *4))))) +(-10 -7 (-15 -2974 ((-111) (-1113 |#1|))) (-15 -3870 ((-111) (-1113 |#1|))) (-15 -4029 ((-874) (-874))) (-15 -1640 ((-874) (-874))) (-15 -1324 ((-874) (-874))) (-15 -1317 ((-1113 |#1|) (-874))) (-15 -3991 ((-1113 |#1|) (-874))) (-15 -1623 ((-1113 |#1|) (-874))) (-15 -3222 ((-1113 |#1|) (-874))) (-15 -4182 ((-1113 |#1|) (-874))) (-15 -1833 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3331 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2525 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -2820 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -3466 ((-3 (-1113 |#1|) "failed") (-1113 |#1|))) (-15 -1618 ((-1113 |#1|) (-874))) (-15 -1618 ((-1113 |#1|) (-874) (-874))) (-15 -1604 ((-1113 |#1|) (-1113 |#1|))) (-15 -2791 ((-911 (-1113 |#1|)) (-1113 |#1|)))) +((-2022 (((-3 (-606 |#3|) "failed") (-606 |#3|) |#3|) 34))) +(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-3 (-606 |#3|) "failed") (-606 |#3|) |#3|))) (-333) (-1176 |#1|) (-1176 |#2|)) (T -342)) +((-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *1 (-342 *4 *5 *3))))) +(-10 -7 (-15 -2022 ((-3 (-606 |#3|) "failed") (-606 |#3|) |#3|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| |#1| (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| |#1| (-352)))) (-2974 (((-111) $) NIL (|has| |#1| (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| |#1| (-352))) (((-793 (-874)) $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| |#1| (-352)))) (-3870 (((-111) $) NIL (|has| |#1| (-352)))) (-2055 ((|#1| $) NIL) (($ $ (-874)) NIL (|has| |#1| (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 |#1|) $) NIL) (((-1113 $) $ (-874)) NIL (|has| |#1| (-352)))) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1671 (((-1113 |#1|) $) NIL (|has| |#1| (-352)))) (-2728 (((-1113 |#1|) $) NIL (|has| |#1| (-352))) (((-3 (-1113 |#1|) "failed") $ $) NIL (|has| |#1| (-352)))) (-2841 (($ $ (-1113 |#1|)) NIL (|has| |#1| (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| |#1| (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| |#1| (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 |#1|)) NIL)) (-3553 (($) NIL (|has| |#1| (-352)))) (-3254 (($) NIL (|has| |#1| (-352)))) (-1484 (((-1200 |#1|) $) NIL) (((-649 |#1|) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) NIL)) (-2644 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-4230 (($ $) NIL (|has| |#1| (-352))) (($ $ (-731)) NIL (|has| |#1| (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-343 |#1| |#2|) (-313 |#1|) (-333) (-874)) (T -343)) +NIL +(-313 |#1|) +((-3759 (((-111) (-606 (-905 |#1|))) 34)) (-2597 (((-606 (-905 |#1|)) (-606 (-905 |#1|))) 46)) (-3362 (((-3 (-606 (-905 |#1|)) "failed") (-606 (-905 |#1|))) 41))) +(((-344 |#1| |#2|) (-10 -7 (-15 -3759 ((-111) (-606 (-905 |#1|)))) (-15 -3362 ((-3 (-606 (-905 |#1|)) "failed") (-606 (-905 |#1|)))) (-15 -2597 ((-606 (-905 |#1|)) (-606 (-905 |#1|))))) (-435) (-606 (-1117))) (T -344)) +((-2597 (*1 *2 *2) (-12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) (-5 *1 (-344 *3 *4)) (-14 *4 (-606 (-1117))))) (-3362 (*1 *2 *2) (|partial| -12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) (-5 *1 (-344 *3 *4)) (-14 *4 (-606 (-1117))))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-111)) (-5 *1 (-344 *4 *5)) (-14 *5 (-606 (-1117)))))) +(-10 -7 (-15 -3759 ((-111) (-606 (-905 |#1|)))) (-15 -3362 ((-3 (-606 (-905 |#1|)) "failed") (-606 (-905 |#1|)))) (-15 -2597 ((-606 (-905 |#1|)) (-606 (-905 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) 15)) (-4125 ((|#1| $ (-537)) NIL)) (-1628 (((-537) $ (-537)) NIL)) (-3572 (($ (-1 |#1| |#1|) $) 32)) (-1325 (($ (-1 (-537) (-537)) $) 24)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 26)) (-2528 (((-1064) $) NIL)) (-3415 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $) 28)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 38) (($ |#1|) NIL)) (-2943 (($) 9 T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ |#1| (-537)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-345 |#1|) (-13 (-456) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-537))) (-15 -3151 ((-731) $)) (-15 -1628 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-537) (-537)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $)))) (-1045)) (T -345)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) (-1628 (*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-537) (-537))) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-345 *3)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-537))))) (-5 *1 (-345 *3)) (-4 *3 (-1045))))) +(-13 (-456) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-537))) (-15 -3151 ((-731) $)) (-15 -1628 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-537) (-537)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-537)))) $)))) +((-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 13)) (-3377 (($ $) 14)) (-2414 (((-402 $) $) 30)) (-2639 (((-111) $) 26)) (-3865 (($ $) 19)) (-2211 (($ $ $) 23) (($ (-606 $)) NIL)) (-3622 (((-402 $) $) 31)) (-3515 (((-3 $ "failed") $ $) 22)) (-1930 (((-731) $) 25)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 35)) (-3276 (((-111) $ $) 16)) (-2340 (($ $ $) 33))) +(((-346 |#1|) (-10 -8 (-15 -2340 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) (-347)) (T -346)) +NIL +(-10 -8 (-15 -2340 (|#1| |#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +(((-347) (-134)) (T -347)) +((-2340 (*1 *1 *1 *1) (-4 *1 (-347)))) +(-13 (-291) (-1158) (-228) (-10 -8 (-15 -2340 ($ $ $)) (-6 -4298) (-6 -4292))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-2330 (((-111) $ $) 7)) (-3160 ((|#2| $ |#2|) 13)) (-1898 (($ $ (-1100)) 18)) (-2151 ((|#2| $) 14)) (-3309 (($ |#1|) 20) (($ |#1| (-1100)) 19)) (-3923 ((|#1| $) 16)) (-1654 (((-1100) $) 9)) (-3216 (((-1100) $) 15)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-1338 (($ $) 17)) (-2244 (((-111) $ $) 6))) +(((-348 |#1| |#2|) (-134) (-1045) (-1045)) (T -348)) +((-3309 (*1 *1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3309 (*1 *1 *2 *3) (-12 (-5 *3 (-1100)) (-4 *1 (-348 *2 *4)) (-4 *2 (-1045)) (-4 *4 (-1045)))) (-1898 (*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1338 (*1 *1 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-1100)))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-3160 (*1 *2 *1 *2) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -3309 ($ |t#1|)) (-15 -3309 ($ |t#1| (-1100))) (-15 -1898 ($ $ (-1100))) (-15 -1338 ($ $)) (-15 -3923 (|t#1| $)) (-15 -3216 ((-1100) $)) (-15 -2151 (|t#2| $)) (-15 -3160 (|t#2| $ |t#2|)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3160 ((|#1| $ |#1|) 30)) (-1898 (($ $ (-1100)) 22)) (-2012 (((-3 |#1| "failed") $) 29)) (-2151 ((|#1| $) 27)) (-3309 (($ (-372)) 21) (($ (-372) (-1100)) 20)) (-3923 (((-372) $) 24)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) 25)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 19)) (-1338 (($ $) 23)) (-2244 (((-111) $ $) 18))) +(((-349 |#1|) (-13 (-348 (-372) |#1|) (-10 -8 (-15 -2012 ((-3 |#1| "failed") $)))) (-1045)) (T -349)) +((-2012 (*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1045))))) +(-13 (-348 (-372) |#1|) (-10 -8 (-15 -2012 ((-3 |#1| "failed") $)))) +((-3822 (((-1200 (-649 |#2|)) (-1200 $)) 61)) (-4263 (((-649 |#2|) (-1200 $)) 120)) (-2624 ((|#2| $) 32)) (-4246 (((-649 |#2|) $ (-1200 $)) 123)) (-3800 (((-3 $ "failed") $) 75)) (-4260 ((|#2| $) 35)) (-3112 (((-1113 |#2|) $) 83)) (-2503 ((|#2| (-1200 $)) 106)) (-1889 (((-1113 |#2|) $) 28)) (-1855 (((-111)) 100)) (-3447 (($ (-1200 |#2|) (-1200 $)) 113)) (-3490 (((-3 $ "failed") $) 79)) (-2186 (((-111)) 95)) (-1684 (((-111)) 90)) (-3468 (((-111)) 53)) (-3699 (((-649 |#2|) (-1200 $)) 118)) (-4217 ((|#2| $) 31)) (-3486 (((-649 |#2|) $ (-1200 $)) 122)) (-3820 (((-3 $ "failed") $) 73)) (-3408 ((|#2| $) 34)) (-2818 (((-1113 |#2|) $) 82)) (-2757 ((|#2| (-1200 $)) 104)) (-4207 (((-1113 |#2|) $) 26)) (-2987 (((-111)) 99)) (-2631 (((-111)) 92)) (-2077 (((-111)) 51)) (-2415 (((-111)) 87)) (-3162 (((-111)) 101)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) 111)) (-3365 (((-111)) 97)) (-3678 (((-606 (-1200 |#2|))) 86)) (-2510 (((-111)) 98)) (-3750 (((-111)) 96)) (-3530 (((-111)) 46)) (-1972 (((-111)) 102))) +(((-350 |#1| |#2|) (-10 -8 (-15 -3112 ((-1113 |#2|) |#1|)) (-15 -2818 ((-1113 |#2|) |#1|)) (-15 -3678 ((-606 (-1200 |#2|)))) (-15 -3800 ((-3 |#1| "failed") |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 -1684 ((-111))) (-15 -2631 ((-111))) (-15 -2186 ((-111))) (-15 -2077 ((-111))) (-15 -3468 ((-111))) (-15 -2415 ((-111))) (-15 -1972 ((-111))) (-15 -3162 ((-111))) (-15 -1855 ((-111))) (-15 -2987 ((-111))) (-15 -3530 ((-111))) (-15 -2510 ((-111))) (-15 -3750 ((-111))) (-15 -3365 ((-111))) (-15 -1889 ((-1113 |#2|) |#1|)) (-15 -4207 ((-1113 |#2|) |#1|)) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4260 (|#2| |#1|)) (-15 -3408 (|#2| |#1|)) (-15 -2624 (|#2| |#1|)) (-15 -4217 (|#2| |#1|)) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|)))) (-351 |#2|) (-163)) (T -350)) +((-3365 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3750 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2510 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3530 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2987 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-1855 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3162 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-1972 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2415 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3468 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2077 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2186 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-2631 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-1684 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4)))) (-3678 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-606 (-1200 *4))) (-5 *1 (-350 *3 *4)) (-4 *3 (-351 *4))))) +(-10 -8 (-15 -3112 ((-1113 |#2|) |#1|)) (-15 -2818 ((-1113 |#2|) |#1|)) (-15 -3678 ((-606 (-1200 |#2|)))) (-15 -3800 ((-3 |#1| "failed") |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 -1684 ((-111))) (-15 -2631 ((-111))) (-15 -2186 ((-111))) (-15 -2077 ((-111))) (-15 -3468 ((-111))) (-15 -2415 ((-111))) (-15 -1972 ((-111))) (-15 -3162 ((-111))) (-15 -1855 ((-111))) (-15 -2987 ((-111))) (-15 -3530 ((-111))) (-15 -2510 ((-111))) (-15 -3750 ((-111))) (-15 -3365 ((-111))) (-15 -1889 ((-1113 |#2|) |#1|)) (-15 -4207 ((-1113 |#2|) |#1|)) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4260 (|#2| |#1|)) (-15 -3408 (|#2| |#1|)) (-15 -2624 (|#2| |#1|)) (-15 -4217 (|#2| |#1|)) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1397 (((-3 $ "failed")) 37 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3822 (((-1200 (-649 |#1|)) (-1200 $)) 78)) (-2568 (((-1200 $)) 81)) (-3832 (($) 17 T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 40 (|has| |#1| (-529)))) (-2649 (((-3 $ "failed")) 38 (|has| |#1| (-529)))) (-4263 (((-649 |#1|) (-1200 $)) 65)) (-2624 ((|#1| $) 74)) (-4246 (((-649 |#1|) $ (-1200 $)) 76)) (-3800 (((-3 $ "failed") $) 45 (|has| |#1| (-529)))) (-2541 (($ $ (-874)) 28)) (-4260 ((|#1| $) 72)) (-3112 (((-1113 |#1|) $) 42 (|has| |#1| (-529)))) (-2503 ((|#1| (-1200 $)) 67)) (-1889 (((-1113 |#1|) $) 63)) (-1855 (((-111)) 57)) (-3447 (($ (-1200 |#1|) (-1200 $)) 69)) (-3490 (((-3 $ "failed") $) 47 (|has| |#1| (-529)))) (-3705 (((-874)) 80)) (-3364 (((-111)) 54)) (-1891 (($ $ (-874)) 33)) (-2186 (((-111)) 50)) (-1684 (((-111)) 48)) (-3468 (((-111)) 52)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 41 (|has| |#1| (-529)))) (-1652 (((-3 $ "failed")) 39 (|has| |#1| (-529)))) (-3699 (((-649 |#1|) (-1200 $)) 66)) (-4217 ((|#1| $) 75)) (-3486 (((-649 |#1|) $ (-1200 $)) 77)) (-3820 (((-3 $ "failed") $) 46 (|has| |#1| (-529)))) (-3060 (($ $ (-874)) 29)) (-3408 ((|#1| $) 73)) (-2818 (((-1113 |#1|) $) 43 (|has| |#1| (-529)))) (-2757 ((|#1| (-1200 $)) 68)) (-4207 (((-1113 |#1|) $) 64)) (-2987 (((-111)) 58)) (-1654 (((-1100) $) 9)) (-2631 (((-111)) 49)) (-2077 (((-111)) 51)) (-2415 (((-111)) 53)) (-2528 (((-1064) $) 10)) (-3162 (((-111)) 56)) (-1484 (((-1200 |#1|) $ (-1200 $)) 71) (((-649 |#1|) (-1200 $) (-1200 $)) 70)) (-4183 (((-606 (-905 |#1|)) (-1200 $)) 79)) (-1674 (($ $ $) 25)) (-3365 (((-111)) 62)) (-2341 (((-816) $) 11)) (-3678 (((-606 (-1200 |#1|))) 44 (|has| |#1| (-529)))) (-3727 (($ $ $ $) 26)) (-2510 (((-111)) 60)) (-3212 (($ $ $) 24)) (-3750 (((-111)) 61)) (-3530 (((-111)) 59)) (-1972 (((-111)) 55)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-351 |#1|) (-134) (-163)) (T -351)) +((-2568 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-351 *3)))) (-3705 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-874)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-606 (-905 *4))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-1200 (-649 *4))))) (-3486 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-1200 *4)))) (-1484 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) (-4 *1 (-351 *4)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3)))) (-1889 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3)))) (-3365 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3750 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2510 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3530 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2987 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1855 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3162 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1972 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3364 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2415 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3468 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2077 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2186 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-2631 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-1684 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111)))) (-3490 (*1 *1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-3820 (*1 *1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-3800 (*1 *1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) (-3678 (*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) (-5 *2 (-606 (-1200 *3))))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) (-5 *2 (-1113 *3)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) (-5 *2 (-1113 *3)))) (-3324 (*1 *2) (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) (-4 *1 (-351 *3)))) (-2472 (*1 *2) (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) (-4 *1 (-351 *3)))) (-1652 (*1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163)))) (-2649 (*1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163)))) (-1397 (*1 *1) (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163))))) +(-13 (-705 |t#1|) (-10 -8 (-15 -2568 ((-1200 $))) (-15 -3705 ((-874))) (-15 -4183 ((-606 (-905 |t#1|)) (-1200 $))) (-15 -3822 ((-1200 (-649 |t#1|)) (-1200 $))) (-15 -3486 ((-649 |t#1|) $ (-1200 $))) (-15 -4246 ((-649 |t#1|) $ (-1200 $))) (-15 -4217 (|t#1| $)) (-15 -2624 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -4260 (|t#1| $)) (-15 -1484 ((-1200 |t#1|) $ (-1200 $))) (-15 -1484 ((-649 |t#1|) (-1200 $) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|) (-1200 $))) (-15 -2757 (|t#1| (-1200 $))) (-15 -2503 (|t#1| (-1200 $))) (-15 -3699 ((-649 |t#1|) (-1200 $))) (-15 -4263 ((-649 |t#1|) (-1200 $))) (-15 -4207 ((-1113 |t#1|) $)) (-15 -1889 ((-1113 |t#1|) $)) (-15 -3365 ((-111))) (-15 -3750 ((-111))) (-15 -2510 ((-111))) (-15 -3530 ((-111))) (-15 -2987 ((-111))) (-15 -1855 ((-111))) (-15 -3162 ((-111))) (-15 -1972 ((-111))) (-15 -3364 ((-111))) (-15 -2415 ((-111))) (-15 -3468 ((-111))) (-15 -2077 ((-111))) (-15 -2186 ((-111))) (-15 -2631 ((-111))) (-15 -1684 ((-111))) (IF (|has| |t#1| (-529)) (PROGN (-15 -3490 ((-3 $ "failed") $)) (-15 -3820 ((-3 $ "failed") $)) (-15 -3800 ((-3 $ "failed") $)) (-15 -3678 ((-606 (-1200 |t#1|)))) (-15 -2818 ((-1113 |t#1|) $)) (-15 -3112 ((-1113 |t#1|) $)) (-15 -3324 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -1652 ((-3 $ "failed"))) (-15 -2649 ((-3 $ "failed"))) (-15 -1397 ((-3 $ "failed"))) (-6 -4297)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-681) . T) ((-705 |#1|) . T) ((-722) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-3151 (((-731)) 16)) (-1618 (($) 13)) (-2334 (((-874) $) 14)) (-1654 (((-1100) $) 9)) (-2009 (($ (-874)) 15)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-352) (-134)) (T -352)) +((-3151 (*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-731)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-352)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-874)))) (-1618 (*1 *1) (-4 *1 (-352)))) +(-13 (-1045) (-10 -8 (-15 -3151 ((-731))) (-15 -2009 ($ (-874))) (-15 -2334 ((-874) $)) (-15 -1618 ($)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-3623 (((-649 |#2|) (-1200 $)) 40)) (-3447 (($ (-1200 |#2|) (-1200 $)) 34)) (-2664 (((-649 |#2|) $ (-1200 $)) 42)) (-2067 ((|#2| (-1200 $)) 13)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) 25))) +(((-353 |#1| |#2| |#3|) (-10 -8 (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) (-354 |#2| |#3|) (-163) (-1176 |#2|)) (T -353)) +NIL +(-10 -8 (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3623 (((-649 |#1|) (-1200 $)) 44)) (-1428 ((|#1| $) 50)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46)) (-2664 (((-649 |#1|) $ (-1200 $)) 51)) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-874)) 52)) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 49)) (-3199 ((|#2| $) 42 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2067 ((|#1| (-1200 $)) 45)) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35)) (-2644 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2736 ((|#2| $) 43)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-354 |#1| |#2|) (-134) (-163) (-1176 |t#1|)) (T -354)) +((-3705 (*1 *2) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-874)))) (-2664 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *4)))) (-1484 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) (-4 *1 (-354 *4 *5)) (-4 *5 (-1176 *4)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *2 *4)) (-4 *4 (-1176 *2)) (-4 *2 (-163)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *3 (-347)) (-4 *2 (-1176 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -3705 ((-874))) (-15 -2664 ((-649 |t#1|) $ (-1200 $))) (-15 -1428 (|t#1| $)) (-15 -2055 (|t#1| $)) (-15 -1484 ((-1200 |t#1|) $ (-1200 $))) (-15 -1484 ((-649 |t#1|) (-1200 $) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|) (-1200 $))) (-15 -2067 (|t#1| (-1200 $))) (-15 -3623 ((-649 |t#1|) (-1200 $))) (-15 -2736 (|t#2| $)) (IF (|has| |t#1| (-347)) (-15 -3199 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2547 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3195 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1612 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-355 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1154) (-357 |#1|) (-1154) (-357 |#3|)) (T -355)) +((-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-4 *2 (-357 *5)) (-5 *1 (-355 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-355 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-4 *2 (-357 *6)) (-5 *1 (-355 *5 *4 *6 *2)) (-4 *4 (-357 *5))))) +(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2450 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-1543 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-1566 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-3289 (($ $) 25)) (-2299 (((-537) (-1 (-111) |#2|) $) NIL) (((-537) |#2| $) 11) (((-537) |#2| $ (-537)) NIL)) (-1470 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-356 |#1| |#2|) (-10 -8 (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1566 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-357 |#2|) (-1154)) (T -356)) +NIL +(-10 -8 (-15 -1543 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1566 (|#1| |#1|)) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -1566 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-357 |#1|) (-134) (-1154)) (T -357)) +((-1470 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-2450 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-2299 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) (-5 *2 (-537)))) (-2299 (*1 *2 *3 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-537)))) (-2299 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-807)) (-5 *2 (-111)))) (-1241 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-4146 (*1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)))) (-1543 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4301)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) (-1543 (*1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807))))) +(-13 (-612 |t#1|) (-10 -8 (-6 -4300) (-15 -1470 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3289 ($ $)) (-15 -1566 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -2450 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -2299 ((-537) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -2299 ((-537) |t#1| $)) (-15 -2299 ((-537) |t#1| $ (-537)))) |%noBranch|) (IF (|has| |t#1| (-807)) (PROGN (-6 (-807)) (-15 -1470 ($ $ $)) (-15 -1566 ($ $)) (-15 -2450 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4301)) (PROGN (-15 -1241 ($ $ $ (-537))) (-15 -4146 ($ $)) (-15 -1543 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-807)) (-15 -1543 ($ $)) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T)) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2163 (((-606 |#1|) $) 32)) (-1233 (($ $ (-731)) 33)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3139 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 36)) (-2177 (($ $) 34)) (-2896 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 37)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-4116 (($ $ |#1| $) 31) (($ $ (-606 |#1|) (-606 $)) 30)) (-2872 (((-731) $) 38)) (-2350 (($ $ $) 29)) (-2341 (((-816) $) 11) (($ |#1|) 41) (((-1214 |#1| |#2|) $) 40) (((-1223 |#1| |#2|) $) 39)) (-3449 ((|#2| (-1223 |#1| |#2|) $) 42)) (-2928 (($) 18 T CONST)) (-4071 (($ (-633 |#1|)) 35)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#2|) 28 (|has| |#2| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-358 |#1| |#2|) (-134) (-807) (-163)) (T -358)) +((-3449 (*1 *2 *3 *1) (-12 (-5 *3 (-1223 *4 *2)) (-4 *1 (-358 *4 *2)) (-4 *4 (-807)) (-4 *2 (-163)))) (-2341 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-1214 *3 *4)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-1223 *3 *4)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-731)))) (-2896 (*1 *2 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-3139 (*1 *2 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-4 *1 (-358 *3 *4)) (-4 *4 (-163)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) (-1233 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *2 (-606 *3)))) (-4116 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *1)) (-4 *1 (-358 *4 *5)) (-4 *4 (-807)) (-4 *5 (-163))))) +(-13 (-597 |t#2|) (-10 -8 (-15 -3449 (|t#2| (-1223 |t#1| |t#2|) $)) (-15 -2341 ($ |t#1|)) (-15 -2341 ((-1214 |t#1| |t#2|) $)) (-15 -2341 ((-1223 |t#1| |t#2|) $)) (-15 -2872 ((-731) $)) (-15 -2896 ((-1223 |t#1| |t#2|) (-1223 |t#1| |t#2|) $)) (-15 -3139 ((-1223 |t#1| |t#2|) (-1223 |t#1| |t#2|) $)) (-15 -4071 ($ (-633 |t#1|))) (-15 -2177 ($ $)) (-15 -1233 ($ $ (-731))) (-15 -2163 ((-606 |t#1|) $)) (-15 -4116 ($ $ |t#1| $)) (-15 -4116 ($ $ (-606 |t#1|) (-606 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#2|) . T) ((-597 |#2|) . T) ((-678 |#2|) . T) ((-1004 |#2|) . T) ((-1045) . T)) +((-1262 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-2464 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-2062 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) +(((-359 |#1| |#2|) (-10 -7 (-15 -2464 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2062 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1262 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1154) (-13 (-357 |#1|) (-10 -7 (-6 -4301)))) (T -359)) +((-1262 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))))) (-2062 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))))) (-2464 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) +(-10 -7 (-15 -2464 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2062 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -1262 (|#2| (-1 (-111) |#1| |#1|) |#2|))) +((-2053 (((-649 |#2|) (-649 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 22) (((-649 (-537)) (-649 $)) 14))) +(((-360 |#1| |#2|) (-10 -8 (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 |#2|) (-649 |#1|)))) (-361 |#2|) (-998)) (T -360)) +NIL +(-10 -8 (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 |#2|) (-649 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2053 (((-649 |#1|) (-649 $)) 34) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 33) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 41 (|has| |#1| (-602 (-537)))) (((-649 (-537)) (-649 $)) 40 (|has| |#1| (-602 (-537))))) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-361 |#1|) (-134) (-998)) (T -361)) +NIL +(-13 (-602 |t#1|) (-10 -7 (IF (|has| |t#1| (-602 (-537))) (-6 (-602 (-537))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-3773 (((-606 (-278 (-905 (-160 |#1|)))) (-278 (-391 (-905 (-160 (-537))))) |#1|) 51) (((-606 (-278 (-905 (-160 |#1|)))) (-391 (-905 (-160 (-537)))) |#1|) 50) (((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-278 (-391 (-905 (-160 (-537)))))) |#1|) 47) (((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-391 (-905 (-160 (-537))))) |#1|) 41)) (-3019 (((-606 (-606 (-160 |#1|))) (-606 (-391 (-905 (-160 (-537))))) (-606 (-1117)) |#1|) 30) (((-606 (-160 |#1|)) (-391 (-905 (-160 (-537)))) |#1|) 18))) +(((-362 |#1|) (-10 -7 (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-278 (-391 (-905 (-160 (-537)))))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-278 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3019 ((-606 (-160 |#1|)) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3019 ((-606 (-606 (-160 |#1|))) (-606 (-391 (-905 (-160 (-537))))) (-606 (-1117)) |#1|))) (-13 (-347) (-805))) (T -362)) +((-3019 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 (-160 *5)))) (-5 *1 (-362 *5)) (-4 *5 (-13 (-347) (-805))))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-160 (-537))))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 (-160 (-537)))))) (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-160 (-537))))) (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-278 (-391 (-905 (-160 (-537))))))) (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805)))))) +(-10 -7 (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3773 ((-606 (-606 (-278 (-905 (-160 |#1|))))) (-606 (-278 (-391 (-905 (-160 (-537)))))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3773 ((-606 (-278 (-905 (-160 |#1|)))) (-278 (-391 (-905 (-160 (-537))))) |#1|)) (-15 -3019 ((-606 (-160 |#1|)) (-391 (-905 (-160 (-537)))) |#1|)) (-15 -3019 ((-606 (-606 (-160 |#1|))) (-606 (-391 (-905 (-160 (-537))))) (-606 (-1117)) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 33)) (-1874 (((-537) $) 55)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1586 (($ $) 110)) (-1403 (($ $) 82)) (-1247 (($ $) 71)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) 44)) (-4099 (((-111) $ $) NIL)) (-1378 (($ $) 80)) (-4270 (($ $) 69)) (-2537 (((-537) $) 64)) (-3879 (($ $ (-537)) 62)) (-1429 (($ $) NIL)) (-1273 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-3981 (($ $) 112)) (-1516 (((-3 (-537) "failed") $) 189) (((-3 (-391 (-537)) "failed") $) 185)) (-3958 (((-537) $) 187) (((-391 (-537)) $) 183)) (-3563 (($ $ $) NIL)) (-1597 (((-537) $ $) 102)) (-3490 (((-3 $ "failed") $) 114)) (-1292 (((-391 (-537)) $ (-731)) 190) (((-391 (-537)) $ (-731) (-731)) 182)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2300 (((-874)) 73) (((-874) (-874)) 98 (|has| $ (-6 -4291)))) (-3797 (((-111) $) 106)) (-3338 (($) 40)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL)) (-2989 (((-1205) (-731)) 152)) (-2900 (((-1205)) 157) (((-1205) (-731)) 158)) (-3488 (((-1205)) 159) (((-1205) (-731)) 160)) (-1752 (((-1205)) 155) (((-1205) (-731)) 156)) (-4231 (((-537) $) 58)) (-2836 (((-111) $) 104)) (-2590 (($ $ (-537)) NIL)) (-2477 (($ $) 48)) (-2055 (($ $) NIL)) (-2840 (((-111) $) 35)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL) (($) NIL (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-3889 (($ $ $) NIL) (($) 99 (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-4020 (((-537) $) 17)) (-3959 (($) 87) (($ $) 92)) (-1970 (($) 91) (($ $) 93)) (-2180 (($ $) 83)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 116)) (-3964 (((-874) (-537)) 43 (|has| $ (-6 -4291)))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) 53)) (-3830 (($ $) 109)) (-2851 (($ (-537) (-537)) 107) (($ (-537) (-537) (-874)) 108)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3283 (((-537) $) 19)) (-3270 (($) 94)) (-4185 (($ $) 79)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-874)) 100) (((-874) (-874)) 101 (|has| $ (-6 -4291)))) (-3456 (($ $ (-731)) NIL) (($ $) 115)) (-1398 (((-874) (-537)) 47 (|has| $ (-6 -4291)))) (-1441 (($ $) NIL)) (-1286 (($ $) NIL)) (-1415 (($ $) NIL)) (-1259 (($ $) NIL)) (-1389 (($ $) 81)) (-1234 (($ $) 70)) (-3996 (((-363) $) 175) (((-210) $) 177) (((-845 (-363)) $) NIL) (((-1100) $) 162) (((-513) $) 173) (($ (-210)) 181)) (-2341 (((-816) $) 164) (($ (-537)) 186) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-537)) 186) (($ (-391 (-537))) NIL) (((-210) $) 178)) (-3654 (((-731)) NIL)) (-3903 (($ $) 111)) (-3272 (((-874)) 54) (((-874) (-874)) 66 (|has| $ (-6 -4291)))) (-1605 (((-874)) 103)) (-1475 (($ $) 86)) (-1328 (($ $) 46) (($ $ $) 52)) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) 84)) (-1300 (($ $) 37)) (-1495 (($ $) NIL)) (-1352 (($ $) NIL)) (-4141 (($ $) NIL)) (-1365 (($ $) NIL)) (-1485 (($ $) NIL)) (-1340 (($ $) NIL)) (-1465 (($ $) 85)) (-1314 (($ $) 49)) (-2209 (($ $) 51)) (-2928 (($) 34 T CONST)) (-2943 (($) 38 T CONST)) (-1379 (((-1100) $) 27) (((-1100) $ (-111)) 29) (((-1205) (-782) $) 30) (((-1205) (-782) $ (-111)) 31)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 39)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 42)) (-2340 (($ $ $) 45) (($ $ (-537)) 41)) (-2329 (($ $) 36) (($ $ $) 50)) (-2318 (($ $ $) 61)) (** (($ $ (-874)) 67) (($ $ (-731)) NIL) (($ $ (-537)) 88) (($ $ (-391 (-537))) 125) (($ $ $) 117)) (* (($ (-874) $) 65) (($ (-731) $) NIL) (($ (-537) $) 68) (($ $ $) 60) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-363) (-13 (-388) (-218) (-580 (-1100)) (-788) (-579 (-210)) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -2477 ($ $)) (-15 -1597 ((-537) $ $)) (-15 -3879 ($ $ (-537))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731))) (-15 -3959 ($)) (-15 -1970 ($)) (-15 -3270 ($)) (-15 -1328 ($ $ $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -3996 ($ (-210))) (-15 -3488 ((-1205))) (-15 -3488 ((-1205) (-731))) (-15 -1752 ((-1205))) (-15 -1752 ((-1205) (-731))) (-15 -2900 ((-1205))) (-15 -2900 ((-1205) (-731))) (-15 -2989 ((-1205) (-731))) (-6 -4291) (-6 -4283)))) (T -363)) +((** (*1 *1 *1 *1) (-5 *1 (-363))) (-2340 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) (-2477 (*1 *1 *1) (-5 *1 (-363))) (-1597 (*1 *2 *1 *1) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) (-1292 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363)))) (-1292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363)))) (-3959 (*1 *1) (-5 *1 (-363))) (-1970 (*1 *1) (-5 *1 (-363))) (-3270 (*1 *1) (-5 *1 (-363))) (-1328 (*1 *1 *1 *1) (-5 *1 (-363))) (-3959 (*1 *1 *1) (-5 *1 (-363))) (-1970 (*1 *1 *1) (-5 *1 (-363))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-363)))) (-3488 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) (-1752 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) (-2900 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363))))) +(-13 (-388) (-218) (-580 (-1100)) (-788) (-579 (-210)) (-1139) (-580 (-513)) (-10 -8 (-15 -2340 ($ $ (-537))) (-15 ** ($ $ $)) (-15 -2477 ($ $)) (-15 -1597 ((-537) $ $)) (-15 -3879 ($ $ (-537))) (-15 -1292 ((-391 (-537)) $ (-731))) (-15 -1292 ((-391 (-537)) $ (-731) (-731))) (-15 -3959 ($)) (-15 -1970 ($)) (-15 -3270 ($)) (-15 -1328 ($ $ $)) (-15 -3959 ($ $)) (-15 -1970 ($ $)) (-15 -3996 ($ (-210))) (-15 -3488 ((-1205))) (-15 -3488 ((-1205) (-731))) (-15 -1752 ((-1205))) (-15 -1752 ((-1205) (-731))) (-15 -2900 ((-1205))) (-15 -2900 ((-1205) (-731))) (-15 -2989 ((-1205) (-731))) (-6 -4291) (-6 -4283))) +((-1895 (((-606 (-278 (-905 |#1|))) (-278 (-391 (-905 (-537)))) |#1|) 46) (((-606 (-278 (-905 |#1|))) (-391 (-905 (-537))) |#1|) 45) (((-606 (-606 (-278 (-905 |#1|)))) (-606 (-278 (-391 (-905 (-537))))) |#1|) 42) (((-606 (-606 (-278 (-905 |#1|)))) (-606 (-391 (-905 (-537)))) |#1|) 36)) (-1931 (((-606 |#1|) (-391 (-905 (-537))) |#1|) 20) (((-606 (-606 |#1|)) (-606 (-391 (-905 (-537)))) (-606 (-1117)) |#1|) 30))) +(((-364 |#1|) (-10 -7 (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-391 (-905 (-537)))) |#1|)) (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-278 (-391 (-905 (-537))))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-391 (-905 (-537))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-278 (-391 (-905 (-537)))) |#1|)) (-15 -1931 ((-606 (-606 |#1|)) (-606 (-391 (-905 (-537)))) (-606 (-1117)) |#1|)) (-15 -1931 ((-606 |#1|) (-391 (-905 (-537))) |#1|))) (-13 (-805) (-347))) (T -364)) +((-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1931 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-391 (-905 (-537))))) (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 *5))) (-5 *1 (-364 *5)) (-4 *5 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 (-537))))) (-5 *2 (-606 (-278 (-905 *4)))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 (-278 (-905 *4)))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-278 (-391 (-905 (-537)))))) (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 (-537))))) (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347)))))) +(-10 -7 (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-391 (-905 (-537)))) |#1|)) (-15 -1895 ((-606 (-606 (-278 (-905 |#1|)))) (-606 (-278 (-391 (-905 (-537))))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-391 (-905 (-537))) |#1|)) (-15 -1895 ((-606 (-278 (-905 |#1|))) (-278 (-391 (-905 (-537)))) |#1|)) (-15 -1931 ((-606 (-606 |#1|)) (-606 (-391 (-905 (-537)))) (-606 (-1117)) |#1|)) (-15 -1931 ((-606 |#1|) (-391 (-905 (-537))) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 26)) (-3958 ((|#2| $) 28)) (-3940 (($ $) NIL)) (-2668 (((-731) $) 10)) (-1645 (((-606 $) $) 20)) (-1538 (((-111) $) NIL)) (-2367 (($ |#2| |#1|) 18)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2370 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3901 ((|#2| $) 15)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 45) (($ |#2|) 27)) (-3459 (((-606 |#1|) $) 17)) (-3500 ((|#1| $ |#2|) 47)) (-2928 (($) 29 T CONST)) (-1820 (((-606 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-365 |#1| |#2|) (-13 (-366 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-998) (-807)) (T -365)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807))))) +(-13 (-366 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#2| "failed") $) 44)) (-3958 ((|#2| $) 43)) (-3940 (($ $) 30)) (-2668 (((-731) $) 34)) (-1645 (((-606 $) $) 35)) (-1538 (((-111) $) 38)) (-2367 (($ |#2| |#1|) 39)) (-1612 (($ (-1 |#1| |#1|) $) 40)) (-2370 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3901 ((|#2| $) 33)) (-3912 ((|#1| $) 32)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ |#2|) 45)) (-3459 (((-606 |#1|) $) 36)) (-3500 ((|#1| $ |#2|) 41)) (-2928 (($) 18 T CONST)) (-1820 (((-606 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-366 |#1| |#2|) (-134) (-998) (-1045)) (T -366)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045)))) (-3500 (*1 *2 *1 *3) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)))) (-2367 (*1 *1 *2 *3) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-111)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 *3)))) (-1645 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 *1)) (-4 *1 (-366 *3 *4)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-731)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045))))) +(-13 (-110 |t#1| |t#1|) (-989 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3500 (|t#1| $ |t#2|)) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -2367 ($ |t#2| |t#1|)) (-15 -1538 ((-111) $)) (-15 -1820 ((-606 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3459 ((-606 |t#1|) $)) (-15 -1645 ((-606 $) $)) (-15 -2668 ((-731) $)) (-15 -3901 (|t#2| $)) (-15 -3912 (|t#1| $)) (-15 -2370 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3940 ($ $)) (IF (|has| |t#1| (-163)) (-6 (-678 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) |has| |#1| (-163)) ((-989 |#2|) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-649 (-659))) 14) (($ (-606 (-314))) 13) (($ (-314)) 12) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 11))) +(((-367) (-134)) (T -367)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-649 (-659))) (-4 *1 (-367)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-367)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-367)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-367))))) +(-13 (-379) (-10 -8 (-15 -2341 ($ (-649 (-659)))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))))) +(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) +((-1516 (((-3 $ "failed") (-649 (-300 (-363)))) 21) (((-3 $ "failed") (-649 (-300 (-537)))) 19) (((-3 $ "failed") (-649 (-905 (-363)))) 17) (((-3 $ "failed") (-649 (-905 (-537)))) 15) (((-3 $ "failed") (-649 (-391 (-905 (-363))))) 13) (((-3 $ "failed") (-649 (-391 (-905 (-537))))) 11)) (-3958 (($ (-649 (-300 (-363)))) 22) (($ (-649 (-300 (-537)))) 20) (($ (-649 (-905 (-363)))) 18) (($ (-649 (-905 (-537)))) 16) (($ (-649 (-391 (-905 (-363))))) 14) (($ (-649 (-391 (-905 (-537))))) 12)) (-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-606 (-314))) 25) (($ (-314)) 24) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 23))) +(((-368) (-134)) (T -368)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-368)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-368)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368))))) +(-13 (-379) (-10 -8 (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -3958 ($ (-649 (-300 (-363))))) (-15 -1516 ((-3 $ "failed") (-649 (-300 (-363))))) (-15 -3958 ($ (-649 (-300 (-537))))) (-15 -1516 ((-3 $ "failed") (-649 (-300 (-537))))) (-15 -3958 ($ (-649 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-649 (-905 (-363))))) (-15 -3958 ($ (-649 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-649 (-905 (-537))))) (-15 -3958 ($ (-649 (-391 (-905 (-363)))))) (-15 -1516 ((-3 $ "failed") (-649 (-391 (-905 (-363)))))) (-15 -3958 ($ (-649 (-391 (-905 (-537)))))) (-15 -1516 ((-3 $ "failed") (-649 (-391 (-905 (-537)))))))) +(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 28)) (-2928 (($) 12 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-369 |#1| |#2|) (-13 (-110 |#1| |#1|) (-490 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|))) (-998) (-807)) (T -369)) +NIL +(-13 (-110 |#1| |#1|) (-490 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-163)) (-6 (-678 |#1|)) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-3151 (((-731) $) 59)) (-3832 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $ $) 61)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1308 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2836 (((-111) $) 15)) (-4125 ((|#1| $ (-537)) NIL)) (-1628 (((-731) $ (-537)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-3572 (($ (-1 |#1| |#1|) $) 38)) (-1325 (($ (-1 (-731) (-731)) $) 35)) (-2896 (((-3 $ "failed") $ $) 50)) (-1654 (((-1100) $) NIL)) (-4041 (($ $ $) 26)) (-2532 (($ $ $) 24)) (-2528 (((-1064) $) NIL)) (-3415 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $) 32)) (-3998 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2341 (((-816) $) 22) (($ |#1|) NIL)) (-2943 (($) 9 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 41)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) 63 (|has| |#1| (-807)))) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ |#1| (-731)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-370 |#1|) (-13 (-687) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -3998 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-731) (-731)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) (-1045)) (T -370)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-2532 (*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-4041 (*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-2896 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-3139 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-3998 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-370 *3)) (|:| |rm| (-370 *3)))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-1308 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-370 *3)) (|:| |mm| (-370 *3)) (|:| |rm| (-370 *3)))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-370 *4)) (-4 *4 (-1045)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-731) (-731))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-370 *3))))) +(-13 (-687) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -3998 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -1325 ($ (-1 (-731) (-731)) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 45)) (-3958 (((-537) $) 44)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-2444 (($ $ $) 52)) (-3889 (($ $ $) 51)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-537)) 46)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 49)) (-2271 (((-111) $ $) 48)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 50)) (-2263 (((-111) $ $) 47)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-371) (-134)) (T -371)) +NIL +(-13 (-529) (-807) (-989 (-537))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-807) . T) ((-989 (-537)) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1552 (((-111) $) 20)) (-3771 (((-111) $) 19)) (-3157 (($ (-1100) (-1100) (-1100)) 21)) (-3923 (((-1100) $) 16)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2948 (($ (-1100) (-1100) (-1100)) 14)) (-2100 (((-1100) $) 17)) (-2372 (((-111) $) 18)) (-3084 (((-1100) $) 15)) (-2341 (((-816) $) 12) (($ (-1100)) 13) (((-1100) $) 9)) (-2244 (((-111) $ $) 7))) +(((-372) (-373)) (T -372)) +NIL +(-373) +((-2330 (((-111) $ $) 7)) (-1552 (((-111) $) 14)) (-3771 (((-111) $) 15)) (-3157 (($ (-1100) (-1100) (-1100)) 13)) (-3923 (((-1100) $) 18)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2948 (($ (-1100) (-1100) (-1100)) 20)) (-2100 (((-1100) $) 17)) (-2372 (((-111) $) 16)) (-3084 (((-1100) $) 19)) (-2341 (((-816) $) 11) (($ (-1100)) 22) (((-1100) $) 21)) (-2244 (((-111) $ $) 6))) +(((-373) (-134)) (T -373)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-2948 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111)))) (-3157 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-1100))) (-15 -2341 ((-1100) $)) (-15 -2948 ($ (-1100) (-1100) (-1100))) (-15 -3084 ((-1100) $)) (-15 -3923 ((-1100) $)) (-15 -2100 ((-1100) $)) (-15 -2372 ((-111) $)) (-15 -3771 ((-111) $)) (-15 -1552 ((-111) $)) (-15 -3157 ($ (-1100) (-1100) (-1100))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3243 (((-816) $) 50)) (-3832 (($) NIL T CONST)) (-2541 (($ $ (-874)) NIL)) (-1891 (($ $ (-874)) NIL)) (-3060 (($ $ (-874)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($ (-731)) 26)) (-1839 (((-731)) 17)) (-2760 (((-816) $) 52)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) NIL)) (-3727 (($ $ $ $) NIL)) (-3212 (($ $ $) NIL)) (-2928 (($) 20 T CONST)) (-2244 (((-111) $ $) 28)) (-2329 (($ $) 34) (($ $ $) 36)) (-2318 (($ $ $) 37)) (** (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-374 |#1| |#2| |#3|) (-13 (-705 |#3|) (-10 -8 (-15 -1839 ((-731))) (-15 -2760 ((-816) $)) (-15 -3243 ((-816) $)) (-15 -1524 ($ (-731))))) (-731) (-731) (-163)) (T -374)) +((-1839 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731)) (-4 *5 (-163)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731)) (-4 *5 (-163)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-163))))) +(-13 (-705 |#3|) (-10 -8 (-15 -1839 ((-731))) (-15 -2760 ((-816) $)) (-15 -3243 ((-816) $)) (-15 -1524 ($ (-731))))) +((-2453 (((-1100)) 10)) (-3298 (((-1089 (-1100))) 28)) (-1539 (((-1205) (-1100)) 25) (((-1205) (-372)) 24)) (-3308 (((-1205)) 26)) (-2674 (((-1089 (-1100))) 27))) +(((-375) (-10 -7 (-15 -2674 ((-1089 (-1100)))) (-15 -3298 ((-1089 (-1100)))) (-15 -3308 ((-1205))) (-15 -1539 ((-1205) (-372))) (-15 -1539 ((-1205) (-1100))) (-15 -2453 ((-1100))))) (T -375)) +((-2453 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-375)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-375)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-375)))) (-3308 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-375)))) (-3298 (*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375)))) (-2674 (*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375))))) +(-10 -7 (-15 -2674 ((-1089 (-1100)))) (-15 -3298 ((-1089 (-1100)))) (-15 -3308 ((-1205))) (-15 -1539 ((-1205) (-372))) (-15 -1539 ((-1205) (-1100))) (-15 -2453 ((-1100)))) +((-4231 (((-731) (-320 |#1| |#2| |#3| |#4|)) 16))) +(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|)))) (-13 (-352) (-347)) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -376)) +((-4231 (*1 *2 *3) (-12 (-5 *3 (-320 *4 *5 *6 *7)) (-4 *4 (-13 (-352) (-347))) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *7 (-326 *4 *5 *6)) (-5 *2 (-731)) (-5 *1 (-376 *4 *5 *6 *7))))) +(-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|)))) +((-2341 (((-378) |#1|) 11))) +(((-377 |#1|) (-10 -7 (-15 -2341 ((-378) |#1|))) (-1045)) (T -377)) +((-2341 (*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-377 *3)) (-4 *3 (-1045))))) +(-10 -7 (-15 -2341 ((-378) |#1|))) +((-2330 (((-111) $ $) NIL)) (-3066 (((-606 (-1100)) $ (-606 (-1100))) 38)) (-1735 (((-606 (-1100)) $ (-606 (-1100))) 39)) (-1486 (((-606 (-1100)) $ (-606 (-1100))) 40)) (-1677 (((-606 (-1100)) $) 35)) (-3157 (($) 23)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2882 (((-606 (-1100)) $) 36)) (-4107 (((-606 (-1100)) $) 37)) (-2356 (((-1205) $ (-537)) 33) (((-1205) $) 34)) (-3996 (($ (-816) (-537)) 30)) (-2341 (((-816) $) 42) (($ (-816)) 25)) (-2244 (((-111) $ $) NIL))) +(((-378) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2882 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1735 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100))))))) (T -378)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-378)))) (-3996 (*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-378)))) (-2356 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-378)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-378)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-3157 (*1 *1) (-5 *1 (-378))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-1486 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-1735 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) (-3066 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2882 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1735 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100)))))) +((-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8))) +(((-379) (-134)) (T -379)) +((-3322 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-1205))))) +(-13 (-1154) (-579 (-816)) (-10 -8 (-15 -3322 ((-1205) $)))) +(((-579 (-816)) . T) ((-1154) . T)) +((-1516 (((-3 $ "failed") (-300 (-363))) 21) (((-3 $ "failed") (-300 (-537))) 19) (((-3 $ "failed") (-905 (-363))) 17) (((-3 $ "failed") (-905 (-537))) 15) (((-3 $ "failed") (-391 (-905 (-363)))) 13) (((-3 $ "failed") (-391 (-905 (-537)))) 11)) (-3958 (($ (-300 (-363))) 22) (($ (-300 (-537))) 20) (($ (-905 (-363))) 18) (($ (-905 (-537))) 16) (($ (-391 (-905 (-363)))) 14) (($ (-391 (-905 (-537)))) 12)) (-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-606 (-314))) 25) (($ (-314)) 24) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 23))) +(((-380) (-134)) (T -380)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-380)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-380)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380))))) +(-13 (-379) (-10 -8 (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -3958 ($ (-300 (-363)))) (-15 -1516 ((-3 $ "failed") (-300 (-363)))) (-15 -3958 ($ (-300 (-537)))) (-15 -1516 ((-3 $ "failed") (-300 (-537)))) (-15 -3958 ($ (-905 (-363)))) (-15 -1516 ((-3 $ "failed") (-905 (-363)))) (-15 -3958 ($ (-905 (-537)))) (-15 -1516 ((-3 $ "failed") (-905 (-537)))) (-15 -3958 ($ (-391 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-363))))) (-15 -3958 ($ (-391 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-391 (-905 (-537))))))) +(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) +((-2471 (((-606 (-1100)) (-606 (-1100))) 9)) (-3322 (((-1205) (-372)) 27)) (-3251 (((-1049) (-1117) (-606 (-1117)) (-1120) (-606 (-1117))) 60) (((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)) (-1117)) 35) (((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117))) 34))) +(((-381) (-10 -7 (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)))) (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)) (-1117))) (-15 -3251 ((-1049) (-1117) (-606 (-1117)) (-1120) (-606 (-1117)))) (-15 -3322 ((-1205) (-372))) (-15 -2471 ((-606 (-1100)) (-606 (-1100)))))) (T -381)) +((-2471 (*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-381)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-381)))) (-3251 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-606 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-381)))) (-3251 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-381)))) (-3251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-381))))) +(-10 -7 (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)))) (-15 -3251 ((-1049) (-1117) (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117)))) (-606 (-606 (-3 (|:| |array| (-606 (-1117))) (|:| |scalar| (-1117))))) (-606 (-1117)) (-1117))) (-15 -3251 ((-1049) (-1117) (-606 (-1117)) (-1120) (-606 (-1117)))) (-15 -3322 ((-1205) (-372))) (-15 -2471 ((-606 (-1100)) (-606 (-1100))))) +((-3322 (((-1205) $) 38)) (-2341 (((-816) $) 98) (($ (-314)) 100) (($ (-606 (-314))) 99) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 97) (($ (-300 (-661))) 54) (($ (-300 (-659))) 73) (($ (-300 (-654))) 86) (($ (-278 (-300 (-661)))) 68) (($ (-278 (-300 (-659)))) 81) (($ (-278 (-300 (-654)))) 94) (($ (-300 (-537))) 104) (($ (-300 (-363))) 117) (($ (-300 (-160 (-363)))) 130) (($ (-278 (-300 (-537)))) 112) (($ (-278 (-300 (-363)))) 125) (($ (-278 (-300 (-160 (-363))))) 138))) +(((-382 |#1| |#2| |#3| |#4|) (-13 (-379) (-10 -8 (-15 -2341 ($ (-314))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -2341 ($ (-300 (-661)))) (-15 -2341 ($ (-300 (-659)))) (-15 -2341 ($ (-300 (-654)))) (-15 -2341 ($ (-278 (-300 (-661))))) (-15 -2341 ($ (-278 (-300 (-659))))) (-15 -2341 ($ (-278 (-300 (-654))))) (-15 -2341 ($ (-300 (-537)))) (-15 -2341 ($ (-300 (-363)))) (-15 -2341 ($ (-300 (-160 (-363))))) (-15 -2341 ($ (-278 (-300 (-537))))) (-15 -2341 ($ (-278 (-300 (-363))))) (-15 -2341 ($ (-278 (-300 (-160 (-363)))))))) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-1121)) (T -382)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-661))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-659))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-654))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-661)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-659)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-654)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-537)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-278 (-300 (-160 (-363))))) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-14 *5 (-606 (-1117))) (-14 *6 (-1121))))) +(-13 (-379) (-10 -8 (-15 -2341 ($ (-314))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -2341 ($ (-300 (-661)))) (-15 -2341 ($ (-300 (-659)))) (-15 -2341 ($ (-300 (-654)))) (-15 -2341 ($ (-278 (-300 (-661))))) (-15 -2341 ($ (-278 (-300 (-659))))) (-15 -2341 ($ (-278 (-300 (-654))))) (-15 -2341 ($ (-300 (-537)))) (-15 -2341 ($ (-300 (-363)))) (-15 -2341 ($ (-300 (-160 (-363))))) (-15 -2341 ($ (-278 (-300 (-537))))) (-15 -2341 ($ (-278 (-300 (-363))))) (-15 -2341 ($ (-278 (-300 (-160 (-363)))))))) +((-2330 (((-111) $ $) NIL)) (-4144 ((|#2| $) 36)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4046 (($ (-391 |#2|)) 85)) (-2660 (((-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))) $) 37)) (-3456 (($ $) 32) (($ $ (-731)) 34)) (-3996 (((-391 |#2|) $) 46)) (-2350 (($ (-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|)))) 31)) (-2341 (((-816) $) 120)) (-4230 (($ $) 33) (($ $ (-731)) 35)) (-2244 (((-111) $ $) NIL)) (-2318 (($ |#2| $) 39))) +(((-383 |#1| |#2|) (-13 (-1045) (-580 (-391 |#2|)) (-10 -8 (-15 -2318 ($ |#2| $)) (-15 -4046 ($ (-391 |#2|))) (-15 -4144 (|#2| $)) (-15 -2660 ((-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))))) (-15 -3456 ($ $)) (-15 -4230 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -4230 ($ $ (-731))))) (-13 (-347) (-141)) (-1176 |#1|)) (T -383)) +((-2318 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *2)) (-4 *2 (-1176 *3)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-383 *3 *2)) (-4 *3 (-13 (-347) (-141))))) (-2660 (*1 *2 *1) (-12 (-4 *3 (-13 (-347) (-141))) (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)))) (-3456 (*1 *1 *1) (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) (-4 *3 (-1176 *2)))) (-4230 (*1 *1 *1) (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) (-4 *3 (-1176 *2)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3))))) +(-13 (-1045) (-580 (-391 |#2|)) (-10 -8 (-15 -2318 ($ |#2| $)) (-15 -4046 ($ (-391 |#2|))) (-15 -4144 (|#2| $)) (-15 -2660 ((-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -3283 (-731)) (|:| -2184 |#2|) (|:| |num| |#2|))))) (-15 -3456 ($ $)) (-15 -4230 ($ $)) (-15 -3456 ($ $ (-731))) (-15 -4230 ($ $ (-731))))) +((-2330 (((-111) $ $) 9 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 15 (|has| |#1| (-839 (-363)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 14 (|has| |#1| (-839 (-537))))) (-1654 (((-1100) $) 13 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-2528 (((-1064) $) 12 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-2341 (((-816) $) 11 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))))) (-2244 (((-111) $ $) 10 (-1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363))))))) +(((-384 |#1|) (-134) (-1154)) (T -384)) +NIL +(-13 (-1154) (-10 -7 (IF (|has| |t#1| (-839 (-537))) (-6 (-839 (-537))) |%noBranch|) (IF (|has| |t#1| (-839 (-363))) (-6 (-839 (-363))) |%noBranch|))) +(((-100) -1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))) ((-579 (-816)) -1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-1045) -1533 (|has| |#1| (-839 (-537))) (|has| |#1| (-839 (-363)))) ((-1154) . T)) +((-2642 (($ $) 10) (($ $ (-731)) 11))) +(((-385 |#1|) (-10 -8 (-15 -2642 (|#1| |#1| (-731))) (-15 -2642 (|#1| |#1|))) (-386)) (T -385)) +NIL +(-10 -8 (-15 -2642 (|#1| |#1| (-731))) (-15 -2642 (|#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2642 (($ $) 76) (($ $ (-731)) 75)) (-2639 (((-111) $) 68)) (-4231 (((-793 (-874)) $) 78)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-3 (-731) "failed") $ $) 77)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63)) (-2644 (((-3 $ "failed") $) 79)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +(((-386) (-134)) (T -386)) +((-4231 (*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-793 (-874))))) (-3030 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-386)) (-5 *2 (-731)))) (-2642 (*1 *1 *1) (-4 *1 (-386))) (-2642 (*1 *1 *1 *2) (-12 (-4 *1 (-386)) (-5 *2 (-731))))) +(-13 (-347) (-139) (-10 -8 (-15 -4231 ((-793 (-874)) $)) (-15 -3030 ((-3 (-731) "failed") $ $)) (-15 -2642 ($ $)) (-15 -2642 ($ $ (-731))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-139) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-2851 (($ (-537) (-537)) 11) (($ (-537) (-537) (-874)) NIL)) (-3025 (((-874)) 16) (((-874) (-874)) NIL))) +(((-387 |#1|) (-10 -8 (-15 -3025 ((-874) (-874))) (-15 -3025 ((-874))) (-15 -2851 (|#1| (-537) (-537) (-874))) (-15 -2851 (|#1| (-537) (-537)))) (-388)) (T -387)) +((-3025 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388))))) +(-10 -8 (-15 -3025 ((-874) (-874))) (-15 -3025 ((-874))) (-15 -2851 (|#1| (-537) (-537) (-874))) (-15 -2851 (|#1| (-537) (-537)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 (((-537) $) 86)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1586 (($ $) 84)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 94)) (-4099 (((-111) $ $) 57)) (-2537 (((-537) $) 111)) (-3832 (($) 17 T CONST)) (-3981 (($ $) 83)) (-1516 (((-3 (-537) "failed") $) 99) (((-3 (-391 (-537)) "failed") $) 96)) (-3958 (((-537) $) 98) (((-391 (-537)) $) 95)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-2300 (((-874)) 127) (((-874) (-874)) 124 (|has| $ (-6 -4291)))) (-3797 (((-111) $) 109)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 90)) (-4231 (((-537) $) 133)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 93)) (-2055 (($ $) 89)) (-2840 (((-111) $) 110)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2444 (($ $ $) 108) (($) 121 (-12 (-3679 (|has| $ (-6 -4291))) (-3679 (|has| $ (-6 -4283)))))) (-3889 (($ $ $) 107) (($) 120 (-12 (-3679 (|has| $ (-6 -4291))) (-3679 (|has| $ (-6 -4283)))))) (-4020 (((-537) $) 130)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3964 (((-874) (-537)) 123 (|has| $ (-6 -4291)))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1790 (($ $) 85)) (-3830 (($ $) 87)) (-2851 (($ (-537) (-537)) 135) (($ (-537) (-537) (-874)) 134)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-3283 (((-537) $) 131)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3025 (((-874)) 128) (((-874) (-874)) 125 (|has| $ (-6 -4291)))) (-1398 (((-874) (-537)) 122 (|has| $ (-6 -4291)))) (-3996 (((-363) $) 102) (((-210) $) 101) (((-845 (-363)) $) 91)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ (-537)) 100) (($ (-391 (-537))) 97)) (-3654 (((-731)) 28)) (-3903 (($ $) 88)) (-3272 (((-874)) 129) (((-874) (-874)) 126 (|has| $ (-6 -4291)))) (-1605 (((-874)) 132)) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 112)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 105)) (-2271 (((-111) $ $) 104)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 106)) (-2263 (((-111) $ $) 103)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 92)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +(((-388) (-134)) (T -388)) +((-2851 (*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-388)))) (-2851 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-4 *1 (-388)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) (-1605 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) (-3272 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-3025 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-2300 (*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) (-5 *2 (-874)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) (-5 *2 (-874)))) (-2444 (*1 *1) (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) (-3679 (|has| *1 (-6 -4283))))) (-3889 (*1 *1) (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) (-3679 (|has| *1 (-6 -4283)))))) +(-13 (-1007) (-10 -8 (-6 -4150) (-15 -2851 ($ (-537) (-537))) (-15 -2851 ($ (-537) (-537) (-874))) (-15 -4231 ((-537) $)) (-15 -1605 ((-874))) (-15 -3283 ((-537) $)) (-15 -4020 ((-537) $)) (-15 -3272 ((-874))) (-15 -3025 ((-874))) (-15 -2300 ((-874))) (IF (|has| $ (-6 -4291)) (PROGN (-15 -3272 ((-874) (-874))) (-15 -3025 ((-874) (-874))) (-15 -2300 ((-874) (-874))) (-15 -3964 ((-874) (-537))) (-15 -1398 ((-874) (-537)))) |%noBranch|) (IF (|has| $ (-6 -4283)) |%noBranch| (IF (|has| $ (-6 -4291)) |%noBranch| (PROGN (-15 -2444 ($)) (-15 -3889 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-580 (-210)) . T) ((-580 (-363)) . T) ((-580 (-845 (-363))) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-839 (-363)) . T) ((-873) . T) ((-954) . T) ((-973) . T) ((-1007) . T) ((-989 (-391 (-537))) . T) ((-989 (-537)) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-1612 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 20))) +(((-389 |#1| |#2|) (-10 -7 (-15 -1612 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-529) (-529)) (T -389)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-529)) (-4 *6 (-529)) (-5 *2 (-402 *6)) (-5 *1 (-389 *5 *6))))) +(-10 -7 (-15 -1612 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) +((-1612 (((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)) 13))) +(((-390 |#1| |#2|) (-10 -7 (-15 -1612 ((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)))) (-529) (-529)) (T -390)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-391 *5)) (-4 *5 (-529)) (-4 *6 (-529)) (-5 *2 (-391 *6)) (-5 *1 (-390 *5 *6))))) +(-10 -7 (-15 -1612 ((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 13)) (-1874 ((|#1| $) 21 (|has| |#1| (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| |#1| (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 17) (((-3 (-1117) "failed") $) NIL (|has| |#1| (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) 70 (|has| |#1| (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537))))) (-3958 ((|#1| $) 15) (((-1117) $) NIL (|has| |#1| (-989 (-1117)))) (((-391 (-537)) $) 67 (|has| |#1| (-989 (-537)))) (((-537) $) NIL (|has| |#1| (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 50)) (-1618 (($) NIL (|has| |#1| (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| |#1| (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| |#1| (-839 (-363))))) (-2836 (((-111) $) 64)) (-2868 (($ $) NIL)) (-3301 ((|#1| $) 71)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-2840 (((-111) $) NIL (|has| |#1| (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 97)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| |#1| (-291)))) (-3830 ((|#1| $) 28 (|has| |#1| (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 135 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 131 (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) NIL)) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2395 (($ $) NIL)) (-3315 ((|#1| $) 73)) (-3996 (((-845 (-537)) $) NIL (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#1| (-580 (-845 (-363))))) (((-513) $) NIL (|has| |#1| (-580 (-513)))) (((-363) $) NIL (|has| |#1| (-973))) (((-210) $) NIL (|has| |#1| (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 115 (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 10) (($ (-1117)) NIL (|has| |#1| (-989 (-1117))))) (-2644 (((-3 $ "failed") $) 99 (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 100)) (-3903 ((|#1| $) 26 (|has| |#1| (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| |#1| (-780)))) (-2928 (($) 22 T CONST)) (-2943 (($) 8 T CONST)) (-1379 (((-1100) $) 43 (-12 (|has| |#1| (-522)) (|has| |#1| (-788)))) (((-1100) $ (-111)) 44 (-12 (|has| |#1| (-522)) (|has| |#1| (-788)))) (((-1205) (-782) $) 45 (-12 (|has| |#1| (-522)) (|has| |#1| (-788)))) (((-1205) (-782) $ (-111)) 46 (-12 (|has| |#1| (-522)) (|has| |#1| (-788))))) (-4230 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 56)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) 24 (|has| |#1| (-807)))) (-2340 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2329 (($ $) 25) (($ $ $) 55)) (-2318 (($ $ $) 53)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 125)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 60) (($ $ $) 57) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-391 |#1|) (-13 (-945 |#1|) (-10 -7 (IF (|has| |#1| (-522)) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4287)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-6 -4298)) (-6 -4287) |%noBranch|) |%noBranch|) |%noBranch|))) (-529)) (T -391)) +NIL +(-13 (-945 |#1|) (-10 -7 (IF (|has| |#1| (-522)) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4287)) (IF (|has| |#1| (-435)) (IF (|has| |#1| (-6 -4298)) (-6 -4287) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3623 (((-649 |#2|) (-1200 $)) NIL) (((-649 |#2|)) 18)) (-3447 (($ (-1200 |#2|) (-1200 $)) NIL) (($ (-1200 |#2|)) 24)) (-2664 (((-649 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) $) 38)) (-3199 ((|#3| $) 60)) (-2067 ((|#2| (-1200 $)) NIL) ((|#2|) 20)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $) 22) (((-649 |#2|) (-1200 $)) 36)) (-3996 (((-1200 |#2|) $) 11) (($ (-1200 |#2|)) 13)) (-2736 ((|#3| $) 52))) +(((-392 |#1| |#2| |#3|) (-10 -8 (-15 -2664 ((-649 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3623 ((-649 |#2|))) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 (|#3| |#1|)) (-15 -2736 (|#3| |#1|)) (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) (-393 |#2| |#3|) (-163) (-1176 |#2|)) (T -392)) +((-3623 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)) (-5 *1 (-392 *3 *4 *5)) (-4 *3 (-393 *4 *5)))) (-2067 (*1 *2) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-163)) (-5 *1 (-392 *3 *2 *4)) (-4 *3 (-393 *2 *4))))) +(-10 -8 (-15 -2664 ((-649 |#2|) |#1|)) (-15 -2067 (|#2|)) (-15 -3623 ((-649 |#2|))) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -3199 (|#3| |#1|)) (-15 -2736 (|#3| |#1|)) (-15 -3623 ((-649 |#2|) (-1200 |#1|))) (-15 -2067 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -2664 ((-649 |#2|) |#1| (-1200 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3623 (((-649 |#1|) (-1200 $)) 44) (((-649 |#1|)) 59)) (-1428 ((|#1| $) 50)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46) (($ (-1200 |#1|)) 62)) (-2664 (((-649 |#1|) $ (-1200 $)) 51) (((-649 |#1|) $) 57)) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-874)) 52)) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 49)) (-3199 ((|#2| $) 42 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2067 ((|#1| (-1200 $)) 45) ((|#1|) 58)) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47) (((-1200 |#1|) $) 64) (((-649 |#1|) (-1200 $)) 63)) (-3996 (((-1200 |#1|) $) 61) (($ (-1200 |#1|)) 60)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35)) (-2644 (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2736 ((|#2| $) 43)) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 65)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-393 |#1| |#2|) (-134) (-163) (-1176 |t#1|)) (T -393)) +((-2122 (*1 *2) (-12 (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *1)) (-4 *1 (-393 *3 *4)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *3)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-393 *4 *5)) (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) (-4 *4 (-1176 *3)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *3)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) (-4 *4 (-1176 *3)))) (-3623 (*1 *2) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-649 *3)))) (-2067 (*1 *2) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-649 *3))))) +(-13 (-354 |t#1| |t#2|) (-10 -8 (-15 -2122 ((-1200 $))) (-15 -1484 ((-1200 |t#1|) $)) (-15 -1484 ((-649 |t#1|) (-1200 $))) (-15 -3447 ($ (-1200 |t#1|))) (-15 -3996 ((-1200 |t#1|) $)) (-15 -3996 ($ (-1200 |t#1|))) (-15 -3623 ((-649 |t#1|))) (-15 -2067 (|t#1|)) (-15 -2664 ((-649 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-354 |#1| |#2|) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) 27) (((-3 (-537) "failed") $) 19)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) 24) (((-537) $) 14)) (-2341 (($ |#2|) NIL) (($ (-391 (-537))) 22) (($ (-537)) 11))) +(((-394 |#1| |#2|) (-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|))) (-395 |#2|) (-1154)) (T -394)) +NIL +(-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|))) +((-1516 (((-3 |#1| "failed") $) 7) (((-3 (-391 (-537)) "failed") $) 16 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 13 (|has| |#1| (-989 (-537))))) (-3958 ((|#1| $) 8) (((-391 (-537)) $) 15 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 12 (|has| |#1| (-989 (-537))))) (-2341 (($ |#1|) 6) (($ (-391 (-537))) 17 (|has| |#1| (-989 (-391 (-537))))) (($ (-537)) 14 (|has| |#1| (-989 (-537)))))) +(((-395 |#1|) (-134) (-1154)) (T -395)) +NIL +(-13 (-989 |t#1|) (-10 -7 (IF (|has| |t#1| (-989 (-537))) (-6 (-989 (-537))) |%noBranch|) (IF (|has| |t#1| (-989 (-391 (-537)))) (-6 (-989 (-391 (-537)))) |%noBranch|))) +(((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T)) +((-1612 (((-397 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-397 |#1| |#2| |#3| |#4|)) 33))) +(((-396 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 ((-397 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-397 |#1| |#2| |#3| |#4|)))) (-291) (-945 |#1|) (-1176 |#2|) (-13 (-393 |#2| |#3|) (-989 |#2|)) (-291) (-945 |#5|) (-1176 |#6|) (-13 (-393 |#6| |#7|) (-989 |#6|))) (T -396)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-397 *5 *6 *7 *8)) (-4 *5 (-291)) (-4 *6 (-945 *5)) (-4 *7 (-1176 *6)) (-4 *8 (-13 (-393 *6 *7) (-989 *6))) (-4 *9 (-291)) (-4 *10 (-945 *9)) (-4 *11 (-1176 *10)) (-5 *2 (-397 *9 *10 *11 *12)) (-5 *1 (-396 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-393 *10 *11) (-989 *10)))))) +(-10 -7 (-15 -1612 ((-397 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-397 |#1| |#2| |#3| |#4|)))) +((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-3168 ((|#4| (-731) (-1200 |#4|)) 56)) (-2836 (((-111) $) NIL)) (-3301 (((-1200 |#4|) $) 17)) (-2055 ((|#2| $) 54)) (-3596 (($ $) 139)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 100)) (-3754 (($ (-1200 |#4|)) 99)) (-2528 (((-1064) $) NIL)) (-3315 ((|#1| $) 18)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 134)) (-2122 (((-1200 |#4|) $) 129)) (-2943 (($) 11 T CONST)) (-2244 (((-111) $ $) 40)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 122)) (* (($ $ $) 121))) +(((-397 |#1| |#2| |#3| |#4|) (-13 (-456) (-10 -8 (-15 -3754 ($ (-1200 |#4|))) (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -3301 ((-1200 |#4|) $)) (-15 -3315 (|#1| $)) (-15 -3596 ($ $)) (-15 -3168 (|#4| (-731) (-1200 |#4|))))) (-291) (-945 |#1|) (-1176 |#2|) (-13 (-393 |#2| |#3|) (-989 |#2|))) (T -397)) +((-3754 (*1 *1 *2) (-12 (-5 *2 (-1200 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *3 (-291)) (-5 *1 (-397 *3 *4 *5 *6)))) (-2122 (*1 *2 *1) (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) (-2055 (*1 *2 *1) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) (-5 *1 (-397 *3 *2 *4 *5)) (-4 *3 (-291)) (-4 *5 (-13 (-393 *2 *4) (-989 *2))))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) (-3315 (*1 *2 *1) (-12 (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) (-4 *2 (-291)) (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3))))) (-3596 (*1 *1 *1) (-12 (-4 *2 (-291)) (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3))))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-1200 *2)) (-4 *5 (-291)) (-4 *6 (-945 *5)) (-4 *2 (-13 (-393 *6 *7) (-989 *6))) (-5 *1 (-397 *5 *6 *7 *2)) (-4 *7 (-1176 *6))))) +(-13 (-456) (-10 -8 (-15 -3754 ($ (-1200 |#4|))) (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -3301 ((-1200 |#4|) $)) (-15 -3315 (|#1| $)) (-15 -3596 ($ $)) (-15 -3168 (|#4| (-731) (-1200 |#4|))))) +((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2055 ((|#2| $) 61)) (-1555 (($ (-1200 |#4|)) 25) (($ (-397 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-989 |#2|)))) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 34)) (-2122 (((-1200 |#4|) $) 26)) (-2943 (($) 23 T CONST)) (-2244 (((-111) $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ $ $) 72))) +(((-398 |#1| |#2| |#3| |#4| |#5|) (-13 (-687) (-10 -8 (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -1555 ($ (-1200 |#4|))) (IF (|has| |#4| (-989 |#2|)) (-15 -1555 ($ (-397 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-291) (-945 |#1|) (-1176 |#2|) (-393 |#2| |#3|) (-1200 |#4|)) (T -398)) +((-2122 (*1 *2 *1) (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7)) (-4 *6 (-393 *4 *5)) (-14 *7 *2))) (-2055 (*1 *2 *1) (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) (-5 *1 (-398 *3 *2 *4 *5 *6)) (-4 *3 (-291)) (-4 *5 (-393 *2 *4)) (-14 *6 (-1200 *5)))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-1200 *6)) (-4 *6 (-393 *4 *5)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *3 (-291)) (-5 *1 (-398 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-397 *3 *4 *5 *6)) (-4 *6 (-989 *4)) (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *6 (-393 *4 *5)) (-14 *7 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7))))) +(-13 (-687) (-10 -8 (-15 -2122 ((-1200 |#4|) $)) (-15 -2055 (|#2| $)) (-15 -1555 ($ (-1200 |#4|))) (IF (|has| |#4| (-989 |#2|)) (-15 -1555 ($ (-397 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1612 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) (-401 |#2|) (-163) (-401 |#4|) (-163)) (T -399)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-401 *6)) (-5 *1 (-399 *4 *5 *2 *6)) (-4 *4 (-401 *5))))) +(-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) +((-1397 (((-3 $ "failed")) 86)) (-3822 (((-1200 (-649 |#2|)) (-1200 $)) NIL) (((-1200 (-649 |#2|))) 91)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 85)) (-2649 (((-3 $ "failed")) 84)) (-4263 (((-649 |#2|) (-1200 $)) NIL) (((-649 |#2|)) 102)) (-4246 (((-649 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) $) 110)) (-1899 (((-1113 (-905 |#2|))) 55)) (-2503 ((|#2| (-1200 $)) NIL) ((|#2|) 106)) (-3447 (($ (-1200 |#2|) (-1200 $)) NIL) (($ (-1200 |#2|)) 112)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 83)) (-1652 (((-3 $ "failed")) 75)) (-3699 (((-649 |#2|) (-1200 $)) NIL) (((-649 |#2|)) 100)) (-3486 (((-649 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) $) 108)) (-4096 (((-1113 (-905 |#2|))) 54)) (-2757 ((|#2| (-1200 $)) NIL) ((|#2|) 104)) (-1484 (((-1200 |#2|) $ (-1200 $)) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $) 111) (((-649 |#2|) (-1200 $)) 118)) (-3996 (((-1200 |#2|) $) 96) (($ (-1200 |#2|)) 98)) (-4183 (((-606 (-905 |#2|)) (-1200 $)) NIL) (((-606 (-905 |#2|))) 94)) (-3127 (($ (-649 |#2|) $) 90))) +(((-400 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| (-649 |#2|) |#1|)) (-15 -1899 ((-1113 (-905 |#2|)))) (-15 -4096 ((-1113 (-905 |#2|)))) (-15 -4246 ((-649 |#2|) |#1|)) (-15 -3486 ((-649 |#2|) |#1|)) (-15 -4263 ((-649 |#2|))) (-15 -3699 ((-649 |#2|))) (-15 -2503 (|#2|)) (-15 -2757 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -4183 ((-606 (-905 |#2|)))) (-15 -3822 ((-1200 (-649 |#2|)))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -1397 ((-3 |#1| "failed"))) (-15 -2649 ((-3 |#1| "failed"))) (-15 -1652 ((-3 |#1| "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -3324 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|))) (-15 -4183 ((-606 (-905 |#2|)) (-1200 |#1|)))) (-401 |#2|) (-163)) (T -400)) +((-3822 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-4183 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-606 (-905 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-2757 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) (-2503 (*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) (-3699 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-4263 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-4096 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4)))) (-1899 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) (-4 *3 (-401 *4))))) +(-10 -8 (-15 -3127 (|#1| (-649 |#2|) |#1|)) (-15 -1899 ((-1113 (-905 |#2|)))) (-15 -4096 ((-1113 (-905 |#2|)))) (-15 -4246 ((-649 |#2|) |#1|)) (-15 -3486 ((-649 |#2|) |#1|)) (-15 -4263 ((-649 |#2|))) (-15 -3699 ((-649 |#2|))) (-15 -2503 (|#2|)) (-15 -2757 (|#2|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -3447 (|#1| (-1200 |#2|))) (-15 -4183 ((-606 (-905 |#2|)))) (-15 -3822 ((-1200 (-649 |#2|)))) (-15 -1484 ((-649 |#2|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1|)) (-15 -1397 ((-3 |#1| "failed"))) (-15 -2649 ((-3 |#1| "failed"))) (-15 -1652 ((-3 |#1| "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -3324 ((-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed"))) (-15 -4263 ((-649 |#2|) (-1200 |#1|))) (-15 -3699 ((-649 |#2|) (-1200 |#1|))) (-15 -2503 (|#2| (-1200 |#1|))) (-15 -2757 (|#2| (-1200 |#1|))) (-15 -3447 (|#1| (-1200 |#2|) (-1200 |#1|))) (-15 -1484 ((-649 |#2|) (-1200 |#1|) (-1200 |#1|))) (-15 -1484 ((-1200 |#2|) |#1| (-1200 |#1|))) (-15 -4246 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3486 ((-649 |#2|) |#1| (-1200 |#1|))) (-15 -3822 ((-1200 (-649 |#2|)) (-1200 |#1|))) (-15 -4183 ((-606 (-905 |#2|)) (-1200 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1397 (((-3 $ "failed")) 37 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3822 (((-1200 (-649 |#1|)) (-1200 $)) 78) (((-1200 (-649 |#1|))) 100)) (-2568 (((-1200 $)) 81)) (-3832 (($) 17 T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 40 (|has| |#1| (-529)))) (-2649 (((-3 $ "failed")) 38 (|has| |#1| (-529)))) (-4263 (((-649 |#1|) (-1200 $)) 65) (((-649 |#1|)) 92)) (-2624 ((|#1| $) 74)) (-4246 (((-649 |#1|) $ (-1200 $)) 76) (((-649 |#1|) $) 90)) (-3800 (((-3 $ "failed") $) 45 (|has| |#1| (-529)))) (-1899 (((-1113 (-905 |#1|))) 88 (|has| |#1| (-347)))) (-2541 (($ $ (-874)) 28)) (-4260 ((|#1| $) 72)) (-3112 (((-1113 |#1|) $) 42 (|has| |#1| (-529)))) (-2503 ((|#1| (-1200 $)) 67) ((|#1|) 94)) (-1889 (((-1113 |#1|) $) 63)) (-1855 (((-111)) 57)) (-3447 (($ (-1200 |#1|) (-1200 $)) 69) (($ (-1200 |#1|)) 98)) (-3490 (((-3 $ "failed") $) 47 (|has| |#1| (-529)))) (-3705 (((-874)) 80)) (-3364 (((-111)) 54)) (-1891 (($ $ (-874)) 33)) (-2186 (((-111)) 50)) (-1684 (((-111)) 48)) (-3468 (((-111)) 52)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) 41 (|has| |#1| (-529)))) (-1652 (((-3 $ "failed")) 39 (|has| |#1| (-529)))) (-3699 (((-649 |#1|) (-1200 $)) 66) (((-649 |#1|)) 93)) (-4217 ((|#1| $) 75)) (-3486 (((-649 |#1|) $ (-1200 $)) 77) (((-649 |#1|) $) 91)) (-3820 (((-3 $ "failed") $) 46 (|has| |#1| (-529)))) (-4096 (((-1113 (-905 |#1|))) 89 (|has| |#1| (-347)))) (-3060 (($ $ (-874)) 29)) (-3408 ((|#1| $) 73)) (-2818 (((-1113 |#1|) $) 43 (|has| |#1| (-529)))) (-2757 ((|#1| (-1200 $)) 68) ((|#1|) 95)) (-4207 (((-1113 |#1|) $) 64)) (-2987 (((-111)) 58)) (-1654 (((-1100) $) 9)) (-2631 (((-111)) 49)) (-2077 (((-111)) 51)) (-2415 (((-111)) 53)) (-2528 (((-1064) $) 10)) (-3162 (((-111)) 56)) (-1922 ((|#1| $ (-537)) 101)) (-1484 (((-1200 |#1|) $ (-1200 $)) 71) (((-649 |#1|) (-1200 $) (-1200 $)) 70) (((-1200 |#1|) $) 103) (((-649 |#1|) (-1200 $)) 102)) (-3996 (((-1200 |#1|) $) 97) (($ (-1200 |#1|)) 96)) (-4183 (((-606 (-905 |#1|)) (-1200 $)) 79) (((-606 (-905 |#1|))) 99)) (-1674 (($ $ $) 25)) (-3365 (((-111)) 62)) (-2341 (((-816) $) 11)) (-2122 (((-1200 $)) 104)) (-3678 (((-606 (-1200 |#1|))) 44 (|has| |#1| (-529)))) (-3727 (($ $ $ $) 26)) (-2510 (((-111)) 60)) (-3127 (($ (-649 |#1|) $) 87)) (-3212 (($ $ $) 24)) (-3750 (((-111)) 61)) (-3530 (((-111)) 59)) (-1972 (((-111)) 55)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-401 |#1|) (-134) (-163)) (T -401)) +((-2122 (*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-401 *3)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-401 *4)) (-4 *4 (-163)) (-5 *2 (-649 *4)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-401 *2)) (-4 *2 (-163)))) (-3822 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 (-649 *3))))) (-4183 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-606 (-905 *3))))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3)))) (-2757 (*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163)))) (-2503 (*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163)))) (-3699 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-4263 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3)))) (-4096 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) (-5 *2 (-1113 (-905 *3))))) (-1899 (*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) (-5 *2 (-1113 (-905 *3))))) (-3127 (*1 *1 *2 *1) (-12 (-5 *2 (-649 *3)) (-4 *1 (-401 *3)) (-4 *3 (-163))))) +(-13 (-351 |t#1|) (-10 -8 (-15 -2122 ((-1200 $))) (-15 -1484 ((-1200 |t#1|) $)) (-15 -1484 ((-649 |t#1|) (-1200 $))) (-15 -1922 (|t#1| $ (-537))) (-15 -3822 ((-1200 (-649 |t#1|)))) (-15 -4183 ((-606 (-905 |t#1|)))) (-15 -3447 ($ (-1200 |t#1|))) (-15 -3996 ((-1200 |t#1|) $)) (-15 -3996 ($ (-1200 |t#1|))) (-15 -2757 (|t#1|)) (-15 -2503 (|t#1|)) (-15 -3699 ((-649 |t#1|))) (-15 -4263 ((-649 |t#1|))) (-15 -3486 ((-649 |t#1|) $)) (-15 -4246 ((-649 |t#1|) $)) (IF (|has| |t#1| (-347)) (PROGN (-15 -4096 ((-1113 (-905 |t#1|)))) (-15 -1899 ((-1113 (-905 |t#1|))))) |%noBranch|) (-15 -3127 ($ (-649 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-351 |#1|) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-681) . T) ((-705 |#1|) . T) ((-722) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 42)) (-1722 (($ $) 57)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 146)) (-3377 (($ $) NIL)) (-4017 (((-111) $) 36)) (-1397 ((|#1| $) 13)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-1158)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-1158)))) (-3910 (($ |#1| (-537)) 31)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 116)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 55)) (-3490 (((-3 $ "failed") $) 131)) (-2484 (((-3 (-391 (-537)) "failed") $) 63 (|has| |#1| (-522)))) (-1797 (((-111) $) 59 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 70 (|has| |#1| (-522)))) (-1989 (($ |#1| (-537)) 33)) (-2639 (((-111) $) 152 (|has| |#1| (-1158)))) (-2836 (((-111) $) 43)) (-2333 (((-731) $) 38)) (-2109 (((-3 "nil" "sqfr" "irred" "prime") $ (-537)) 137)) (-4125 ((|#1| $ (-537)) 136)) (-2703 (((-537) $ (-537)) 135)) (-3814 (($ |#1| (-537)) 30)) (-1612 (($ (-1 |#1| |#1|) $) 143)) (-2323 (($ |#1| (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537))))) 58)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2905 (($ |#1| (-537)) 32)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) 147 (|has| |#1| (-435)))) (-3247 (($ |#1| (-537) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3415 (((-606 (-2 (|:| -3622 |#1|) (|:| -3283 (-537)))) $) 54)) (-2553 (((-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))) $) 12)) (-3622 (((-402 $) $) NIL (|has| |#1| (-1158)))) (-3515 (((-3 $ "failed") $ $) 138)) (-3283 (((-537) $) 132)) (-1905 ((|#1| $) 56)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 79 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 85 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) $) NIL (|has| |#1| (-495 (-1117) $))) (($ $ (-606 (-1117)) (-606 $)) 86 (|has| |#1| (-495 (-1117) $))) (($ $ (-606 (-278 $))) 82 (|has| |#1| (-293 $))) (($ $ (-278 $)) NIL (|has| |#1| (-293 $))) (($ $ $ $) NIL (|has| |#1| (-293 $))) (($ $ (-606 $) (-606 $)) NIL (|has| |#1| (-293 $)))) (-1922 (($ $ |#1|) 71 (|has| |#1| (-270 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-270 $ $)))) (-3456 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3996 (((-513) $) 27 (|has| |#1| (-580 (-513)))) (((-363) $) 92 (|has| |#1| (-973))) (((-210) $) 95 (|has| |#1| (-973)))) (-2341 (((-816) $) 114) (($ (-537)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537)))))) (-3654 (((-731)) 48)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 40 T CONST)) (-2943 (($) 39 T CONST)) (-4230 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2244 (((-111) $ $) 96)) (-2329 (($ $) 128) (($ $ $) NIL)) (-2318 (($ $ $) 140)) (** (($ $ (-874)) NIL) (($ $ (-731)) 102)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-402 |#1|) (-13 (-529) (-216 |#1|) (-37 |#1|) (-322 |#1|) (-395 |#1|) (-10 -8 (-15 -1905 (|#1| $)) (-15 -3283 ((-537) $)) (-15 -2323 ($ |#1| (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))))) (-15 -2553 ((-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))) $)) (-15 -3814 ($ |#1| (-537))) (-15 -3415 ((-606 (-2 (|:| -3622 |#1|) (|:| -3283 (-537)))) $)) (-15 -2905 ($ |#1| (-537))) (-15 -2703 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -2109 ((-3 "nil" "sqfr" "irred" "prime") $ (-537))) (-15 -2333 ((-731) $)) (-15 -1989 ($ |#1| (-537))) (-15 -3910 ($ |#1| (-537))) (-15 -3247 ($ |#1| (-537) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1397 (|#1| $)) (-15 -1722 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-435)) (-6 (-435)) |%noBranch|) (IF (|has| |#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-270 $ $)) (-6 (-270 $ $)) |%noBranch|) (IF (|has| |#1| (-293 $)) (-6 (-293 $)) |%noBranch|) (IF (|has| |#1| (-495 (-1117) $)) (-6 (-495 (-1117) $)) |%noBranch|))) (-529)) (T -402)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-529)) (-5 *1 (-402 *3)))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-2323 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-537))))) (-4 *2 (-529)) (-5 *1 (-402 *2)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-537))))) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-3814 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -3283 (-537))))) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-2703 (*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-402 *4)) (-4 *4 (-529)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) (-1989 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-3247 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-537)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-1397 (*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-1722 (*1 *1 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529))))) +(-13 (-529) (-216 |#1|) (-37 |#1|) (-322 |#1|) (-395 |#1|) (-10 -8 (-15 -1905 (|#1| $)) (-15 -3283 ((-537) $)) (-15 -2323 ($ |#1| (-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))))) (-15 -2553 ((-606 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-537)))) $)) (-15 -3814 ($ |#1| (-537))) (-15 -3415 ((-606 (-2 (|:| -3622 |#1|) (|:| -3283 (-537)))) $)) (-15 -2905 ($ |#1| (-537))) (-15 -2703 ((-537) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -2109 ((-3 "nil" "sqfr" "irred" "prime") $ (-537))) (-15 -2333 ((-731) $)) (-15 -1989 ($ |#1| (-537))) (-15 -3910 ($ |#1| (-537))) (-15 -3247 ($ |#1| (-537) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1397 (|#1| $)) (-15 -1722 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-435)) (-6 (-435)) |%noBranch|) (IF (|has| |#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |#1| (-1158)) (-6 (-1158)) |%noBranch|) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-270 $ $)) (-6 (-270 $ $)) |%noBranch|) (IF (|has| |#1| (-293 $)) (-6 (-293 $)) |%noBranch|) (IF (|has| |#1| (-495 (-1117) $)) (-6 (-495 (-1117) $)) |%noBranch|))) +((-3878 (((-402 |#1|) (-402 |#1|) (-1 (-402 |#1|) |#1|)) 21)) (-3985 (((-402 |#1|) (-402 |#1|) (-402 |#1|)) 16))) +(((-403 |#1|) (-10 -7 (-15 -3878 ((-402 |#1|) (-402 |#1|) (-1 (-402 |#1|) |#1|))) (-15 -3985 ((-402 |#1|) (-402 |#1|) (-402 |#1|)))) (-529)) (T -403)) +((-3985 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-529)) (-5 *1 (-403 *3)))) (-3878 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-402 *4) *4)) (-4 *4 (-529)) (-5 *2 (-402 *4)) (-5 *1 (-403 *4))))) +(-10 -7 (-15 -3878 ((-402 |#1|) (-402 |#1|) (-1 (-402 |#1|) |#1|))) (-15 -3985 ((-402 |#1|) (-402 |#1|) (-402 |#1|)))) +((-1794 ((|#2| |#2|) 166)) (-1824 (((-3 (|:| |%expansion| (-297 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111)) 57))) +(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1824 ((-3 (|:| |%expansion| (-297 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111))) (-15 -1794 (|#2| |#2|))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|)) (-1117) |#2|) (T -404)) +((-1794 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-404 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1139) (-414 *3))) (-14 *4 (-1117)) (-14 *5 *2))) (-1824 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (|:| |%expansion| (-297 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) (-5 *1 (-404 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-14 *6 (-1117)) (-14 *7 *3)))) +(-10 -7 (-15 -1824 ((-3 (|:| |%expansion| (-297 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111))) (-15 -1794 (|#2| |#2|))) +((-1612 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-405 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-998) (-807)) (-414 |#1|) (-13 (-998) (-807)) (-414 |#3|)) (T -405)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-998) (-807))) (-4 *6 (-13 (-998) (-807))) (-4 *2 (-414 *6)) (-5 *1 (-405 *5 *4 *6 *2)) (-4 *4 (-414 *5))))) +(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) +((-1794 ((|#2| |#2|) 90)) (-3748 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100)) 48)) (-4153 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100)) 154))) +(((-406 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3748 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -4153 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -1794 (|#2| |#2|))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|) (-10 -8 (-15 -2341 ($ |#3|)))) (-805) (-13 (-1178 |#2| |#3|) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $)))) (-936 |#4|) (-1117)) (T -406)) +((-1794 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *2 (-13 (-27) (-1139) (-414 *3) (-10 -8 (-15 -2341 ($ *4))))) (-4 *4 (-805)) (-4 *5 (-13 (-1178 *2 *4) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) (-5 *1 (-406 *3 *2 *4 *5 *6 *7)) (-4 *6 (-936 *5)) (-14 *7 (-1117)))) (-4153 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) (-4 *7 (-805)) (-4 *8 (-13 (-1178 *3 *7) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) (-14 *10 (-1117)))) (-3748 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) (-4 *7 (-805)) (-4 *8 (-13 (-1178 *3 *7) (-347) (-1139) (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) (-14 *10 (-1117))))) +(-10 -7 (-15 -3748 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -4153 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100))))) |#2| (-111) (-1100))) (-15 -1794 (|#2| |#2|))) +((-2547 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3195 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1612 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-407 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1045) (-409 |#1|) (-1045) (-409 |#3|)) (T -407)) +((-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1045)) (-4 *5 (-1045)) (-4 *2 (-409 *5)) (-5 *1 (-407 *6 *4 *5 *2)) (-4 *4 (-409 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-5 *1 (-407 *5 *4 *2 *6)) (-4 *4 (-409 *5)) (-4 *6 (-409 *2)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-409 *6)) (-5 *1 (-407 *5 *4 *6 *2)) (-4 *4 (-409 *5))))) +(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3195 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2547 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1750 (($) 44)) (-4221 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2969 (($ $ $) 39)) (-3495 (((-111) $ $) 28)) (-3151 (((-731)) 47)) (-1272 (($ (-606 |#2|)) 20) (($) NIL)) (-1618 (($) 53)) (-3577 (((-111) $ $) 13)) (-2444 ((|#2| $) 61)) (-3889 ((|#2| $) 59)) (-2334 (((-874) $) 55)) (-3891 (($ $ $) 35)) (-2009 (($ (-874)) 50)) (-2867 (($ $ |#2|) NIL) (($ $ $) 38)) (-2539 (((-731) (-1 (-111) |#2|) $) NIL) (((-731) |#2| $) 26)) (-2350 (($ (-606 |#2|)) 24)) (-1583 (($ $) 46)) (-2341 (((-816) $) 33)) (-1627 (((-731) $) 21)) (-3575 (($ (-606 |#2|)) 19) (($) NIL)) (-2244 (((-111) $ $) 16))) +(((-408 |#1| |#2|) (-10 -8 (-15 -3151 ((-731))) (-15 -2009 (|#1| (-874))) (-15 -2334 ((-874) |#1|)) (-15 -1618 (|#1|)) (-15 -2444 (|#2| |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -1750 (|#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1627 ((-731) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -3577 ((-111) |#1| |#1|)) (-15 -3575 (|#1|)) (-15 -3575 (|#1| (-606 |#2|))) (-15 -1272 (|#1|)) (-15 -1272 (|#1| (-606 |#2|))) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -3495 ((-111) |#1| |#1|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#2| |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|))) (-409 |#2|) (-1045)) (T -408)) +((-3151 (*1 *2) (-12 (-4 *4 (-1045)) (-5 *2 (-731)) (-5 *1 (-408 *3 *4)) (-4 *3 (-409 *4))))) +(-10 -8 (-15 -3151 ((-731))) (-15 -2009 (|#1| (-874))) (-15 -2334 ((-874) |#1|)) (-15 -1618 (|#1|)) (-15 -2444 (|#2| |#1|)) (-15 -3889 (|#2| |#1|)) (-15 -1750 (|#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1627 ((-731) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -3577 ((-111) |#1| |#1|)) (-15 -3575 (|#1|)) (-15 -3575 (|#1| (-606 |#2|))) (-15 -1272 (|#1|)) (-15 -1272 (|#1| (-606 |#2|))) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -3495 ((-111) |#1| |#1|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#2| |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -2539 ((-731) |#2| |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|))) +((-2330 (((-111) $ $) 19)) (-1750 (($) 67 (|has| |#1| (-352)))) (-4221 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2969 (($ $ $) 78)) (-3495 (((-111) $ $) 79)) (-2506 (((-111) $ (-731)) 8)) (-3151 (((-731)) 61 (|has| |#1| (-352)))) (-1272 (($ (-606 |#1|)) 74) (($) 73)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-1618 (($) 64 (|has| |#1| (-352)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 70)) (-1642 (((-111) $ (-731)) 9)) (-2444 ((|#1| $) 65 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3889 ((|#1| $) 66 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2334 (((-874) $) 63 (|has| |#1| (-352)))) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22)) (-3891 (($ $ $) 75)) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2009 (($ (-874)) 62 (|has| |#1| (-352)))) (-2528 (((-1064) $) 21)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2867 (($ $ |#1|) 77) (($ $ $) 76)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-1583 (($ $) 68 (|has| |#1| (-352)))) (-2341 (((-816) $) 18)) (-1627 (((-731) $) 69)) (-3575 (($ (-606 |#1|)) 72) (($) 71)) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-409 |#1|) (-134) (-1045)) (T -409)) +((-1627 (*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-1045)) (-5 *2 (-731)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-352)))) (-1750 (*1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-352)) (-4 *2 (-1045)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807))))) +(-13 (-214 |t#1|) (-1043 |t#1|) (-10 -8 (-6 -4300) (-15 -1627 ((-731) $)) (IF (|has| |t#1| (-352)) (PROGN (-6 (-352)) (-15 -1583 ($ $)) (-15 -1750 ($))) |%noBranch|) (IF (|has| |t#1| (-807)) (PROGN (-15 -3889 (|t#1| $)) (-15 -2444 (|t#1| $))) |%noBranch|))) +(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-214 |#1|) . T) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-352) |has| |#1| (-352)) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1043 |#1|) . T) ((-1045) . T) ((-1154) . T)) +((-3332 (((-554 |#2|) |#2| (-1117)) 36)) (-3007 (((-554 |#2|) |#2| (-1117)) 20)) (-2402 ((|#2| |#2| (-1117)) 25))) +(((-410 |#1| |#2|) (-10 -7 (-15 -3007 ((-554 |#2|) |#2| (-1117))) (-15 -3332 ((-554 |#2|) |#2| (-1117))) (-15 -2402 (|#2| |#2| (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-29 |#1|))) (T -410)) +((-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-410 *4 *2)) (-4 *2 (-13 (-1139) (-29 *4))))) (-3332 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) (-4 *3 (-13 (-1139) (-29 *5))))) (-3007 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) (-4 *3 (-13 (-1139) (-29 *5)))))) +(-10 -7 (-15 -3007 ((-554 |#2|) |#2| (-1117))) (-15 -3332 ((-554 |#2|) |#2| (-1117))) (-15 -2402 (|#2| |#2| (-1117)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-3807 (($ |#2| |#1|) 35)) (-3321 (($ |#2| |#1|) 33)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-315 |#2|)) 25)) (-3654 (((-731)) NIL)) (-2928 (($) 10 T CONST)) (-2943 (($) 16 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 34)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-411 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4287)) (IF (|has| |#1| (-6 -4287)) (-6 -4287) |%noBranch|) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-315 |#2|))) (-15 -3807 ($ |#2| |#1|)) (-15 -3321 ($ |#2| |#1|)))) (-13 (-163) (-37 (-391 (-537)))) (-13 (-807) (-21))) (T -411)) +((-2341 (*1 *1 *2) (-12 (-5 *1 (-411 *2 *3)) (-4 *2 (-13 (-163) (-37 (-391 (-537))))) (-4 *3 (-13 (-807) (-21))))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-315 *4)) (-4 *4 (-13 (-807) (-21))) (-5 *1 (-411 *3 *4)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))))) (-3807 (*1 *1 *2 *3) (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) (-4 *2 (-13 (-807) (-21))))) (-3321 (*1 *1 *2 *3) (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) (-4 *2 (-13 (-807) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4287)) (IF (|has| |#1| (-6 -4287)) (-6 -4287) |%noBranch|) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-315 |#2|))) (-15 -3807 ($ |#2| |#1|)) (-15 -3321 ($ |#2| |#1|)))) +((-3092 (((-3 |#2| (-606 |#2|)) |#2| (-1117)) 109))) +(((-412 |#1| |#2|) (-10 -7 (-15 -3092 ((-3 |#2| (-606 |#2|)) |#2| (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-29 |#1|))) (T -412)) +((-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 *3 (-606 *3))) (-5 *1 (-412 *5 *3)) (-4 *3 (-13 (-1139) (-912) (-29 *5)))))) +(-10 -7 (-15 -3092 ((-3 |#2| (-606 |#2|)) |#2| (-1117)))) +((-3757 (((-606 (-1117)) $) 72)) (-3588 (((-391 (-1113 $)) $ (-578 $)) 273)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) 237)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 (-1117) "failed") $) 75) (((-3 (-537) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-391 (-905 |#2|)) "failed") $) 324) (((-3 (-905 |#2|) "failed") $) 235) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-578 $) $) NIL) (((-1117) $) 30) (((-537) $) NIL) ((|#2| $) 231) (((-391 (-905 |#2|)) $) 305) (((-905 |#2|) $) 232) (((-391 (-537)) $) NIL)) (-3979 (((-113) (-113)) 47)) (-2868 (($ $) 87)) (-2765 (((-3 (-578 $) "failed") $) 228)) (-3576 (((-606 (-578 $)) $) 229)) (-3898 (((-3 (-606 $) "failed") $) 247)) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) 254)) (-2566 (((-3 (-606 $) "failed") $) 245)) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 264)) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) 251) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) 219)) (-3876 (((-111) $) 19)) (-3890 ((|#2| $) 21)) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) 236) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 96) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1117)) 57) (($ $ (-606 (-1117))) 240) (($ $) 241) (($ $ (-113) $ (-1117)) 60) (($ $ (-606 (-113)) (-606 $) (-1117)) 67) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) 107) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) 242) (($ $ (-1117) (-731) (-1 $ (-606 $))) 94) (($ $ (-1117) (-731) (-1 $ $)) 93)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) 106)) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) 238)) (-2395 (($ $) 284)) (-3996 (((-845 (-537)) $) 257) (((-845 (-363)) $) 261) (($ (-402 $)) 320) (((-513) $) NIL)) (-2341 (((-816) $) 239) (($ (-578 $)) 84) (($ (-1117)) 26) (($ |#2|) NIL) (($ (-1069 |#2| (-578 $))) NIL) (($ (-391 |#2|)) 289) (($ (-905 (-391 |#2|))) 329) (($ (-391 (-905 (-391 |#2|)))) 301) (($ (-391 (-905 |#2|))) 295) (($ $) NIL) (($ (-905 |#2|)) 185) (($ (-391 (-537))) 334) (($ (-537)) NIL)) (-3654 (((-731)) 79)) (-2336 (((-111) (-113)) 41)) (-2688 (($ (-1117) $) 33) (($ (-1117) $ $) 34) (($ (-1117) $ $ $) 35) (($ (-1117) $ $ $ $) 36) (($ (-1117) (-606 $)) 39)) (* (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) +(((-413 |#1| |#2|) (-10 -8 (-15 * (|#1| (-874) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3654 ((-731))) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-905 |#2|) |#1|)) (-15 -1516 ((-3 (-905 |#2|) "failed") |#1|)) (-15 -2341 (|#1| (-905 |#2|))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -3958 ((-391 (-905 |#2|)) |#1|)) (-15 -1516 ((-3 (-391 (-905 |#2|)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-905 |#2|)))) (-15 -3588 ((-391 (-1113 |#1|)) |#1| (-578 |#1|))) (-15 -2341 (|#1| (-391 (-905 (-391 |#2|))))) (-15 -2341 (|#1| (-905 (-391 |#2|)))) (-15 -2341 (|#1| (-391 |#2|))) (-15 -2395 (|#1| |#1|)) (-15 -3996 (|#1| (-402 |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| |#1|)))) (-15 -1570 ((-3 (-2 (|:| |val| |#1|) (|:| -3283 (-537))) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-1117))) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-113))) (-15 -2868 (|#1| |#1|)) (-15 -2341 (|#1| (-1069 |#2| (-578 |#1|)))) (-15 -1249 ((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 |#1|))) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 |#1|) (-1117))) (-15 -4116 (|#1| |#1| (-113) |#1| (-1117))) (-15 -4116 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1117)))) (-15 -4116 (|#1| |#1| (-1117))) (-15 -2688 (|#1| (-1117) (-606 |#1|))) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1|)) (-15 -3757 ((-606 (-1117)) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3576 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2341 (|#1| (-578 |#1|))) (-15 -2341 ((-816) |#1|))) (-414 |#2|) (-807)) (T -413)) +((-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-807)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) (-3654 (*1 *2) (-12 (-4 *4 (-807)) (-5 *2 (-731)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))) +(-10 -8 (-15 * (|#1| (-874) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3654 ((-731))) (-15 -2341 (|#1| (-537))) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-905 |#2|) |#1|)) (-15 -1516 ((-3 (-905 |#2|) "failed") |#1|)) (-15 -2341 (|#1| (-905 |#2|))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2341 (|#1| |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -3958 ((-391 (-905 |#2|)) |#1|)) (-15 -1516 ((-3 (-391 (-905 |#2|)) "failed") |#1|)) (-15 -2341 (|#1| (-391 (-905 |#2|)))) (-15 -3588 ((-391 (-1113 |#1|)) |#1| (-578 |#1|))) (-15 -2341 (|#1| (-391 (-905 (-391 |#2|))))) (-15 -2341 (|#1| (-905 (-391 |#2|)))) (-15 -2341 (|#1| (-391 |#2|))) (-15 -2395 (|#1| |#1|)) (-15 -3996 (|#1| (-402 |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-731) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-731)) (-606 (-1 |#1| |#1|)))) (-15 -1570 ((-3 (-2 (|:| |val| |#1|) (|:| -3283 (-537))) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-1117))) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1| (-113))) (-15 -2868 (|#1| |#1|)) (-15 -2341 (|#1| (-1069 |#2| (-578 |#1|)))) (-15 -1249 ((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 |#1|))) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 |#1|)) (|:| -3283 (-537))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 |#1|) (-1117))) (-15 -4116 (|#1| |#1| (-113) |#1| (-1117))) (-15 -4116 (|#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1117)))) (-15 -4116 (|#1| |#1| (-1117))) (-15 -2688 (|#1| (-1117) (-606 |#1|))) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1| |#1|)) (-15 -2688 (|#1| (-1117) |#1|)) (-15 -3757 ((-606 (-1117)) |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3876 ((-111) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-113) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-113)) (-606 (-1 |#1| |#1|)))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| |#1|))) (-15 -4116 (|#1| |#1| (-1117) (-1 |#1| (-606 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| (-606 |#1|))))) (-15 -4116 (|#1| |#1| (-606 (-1117)) (-606 (-1 |#1| |#1|)))) (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -3576 ((-606 (-578 |#1|)) |#1|)) (-15 -2765 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1519 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -1519 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -1519 (|#1| |#1| (-278 |#1|))) (-15 -1922 (|#1| (-113) (-606 |#1|))) (-15 -1922 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1| |#1|)) (-15 -1922 (|#1| (-113) |#1|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -4116 (|#1| |#1| (-606 (-578 |#1|)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-578 |#1|) |#1|)) (-15 -3958 ((-578 |#1|) |#1|)) (-15 -1516 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2341 (|#1| (-578 |#1|))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 113 (|has| |#1| (-25)))) (-3757 (((-606 (-1117)) $) 200)) (-3588 (((-391 (-1113 $)) $ (-578 $)) 168 (|has| |#1| (-529)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 140 (|has| |#1| (-529)))) (-3377 (($ $) 141 (|has| |#1| (-529)))) (-4017 (((-111) $) 143 (|has| |#1| (-529)))) (-3852 (((-606 (-578 $)) $) 44)) (-3418 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1519 (($ $ (-278 $)) 56) (($ $ (-606 (-278 $))) 55) (($ $ (-606 (-578 $)) (-606 $)) 54)) (-1395 (($ $) 160 (|has| |#1| (-529)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-529)))) (-4099 (((-111) $ $) 151 (|has| |#1| (-529)))) (-3832 (($) 101 (-1533 (|has| |#1| (-1057)) (|has| |#1| (-25))) CONST)) (-1516 (((-3 (-578 $) "failed") $) 69) (((-3 (-1117) "failed") $) 213) (((-3 (-537) "failed") $) 206 (|has| |#1| (-989 (-537)))) (((-3 |#1| "failed") $) 204) (((-3 (-391 (-905 |#1|)) "failed") $) 166 (|has| |#1| (-529))) (((-3 (-905 |#1|) "failed") $) 120 (|has| |#1| (-998))) (((-3 (-391 (-537)) "failed") $) 95 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 (((-578 $) $) 68) (((-1117) $) 212) (((-537) $) 207 (|has| |#1| (-989 (-537)))) ((|#1| $) 203) (((-391 (-905 |#1|)) $) 165 (|has| |#1| (-529))) (((-905 |#1|) $) 119 (|has| |#1| (-998))) (((-391 (-537)) $) 94 (-1533 (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537))))))) (-3563 (($ $ $) 155 (|has| |#1| (-529)))) (-2053 (((-649 (-537)) (-649 $)) 134 (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 133 (-3319 (|has| |#1| (-602 (-537))) (|has| |#1| (-998)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 132 (|has| |#1| (-998))) (((-649 |#1|) (-649 $)) 131 (|has| |#1| (-998)))) (-3490 (((-3 $ "failed") $) 103 (|has| |#1| (-1057)))) (-3539 (($ $ $) 154 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-529)))) (-2639 (((-111) $) 162 (|has| |#1| (-529)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 209 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 208 (|has| |#1| (-839 (-363))))) (-3886 (($ $) 51) (($ (-606 $)) 50)) (-3350 (((-606 (-113)) $) 43)) (-3979 (((-113) (-113)) 42)) (-2836 (((-111) $) 102 (|has| |#1| (-1057)))) (-2353 (((-111) $) 22 (|has| $ (-989 (-537))))) (-2868 (($ $) 183 (|has| |#1| (-998)))) (-3301 (((-1069 |#1| (-578 $)) $) 184 (|has| |#1| (-998)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-529)))) (-2040 (((-1113 $) (-578 $)) 25 (|has| $ (-998)))) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1612 (($ (-1 $ $) (-578 $)) 36)) (-2765 (((-3 (-578 $) "failed") $) 46)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-529))) (($ $ $) 146 (|has| |#1| (-529)))) (-1654 (((-1100) $) 9)) (-3576 (((-606 (-578 $)) $) 45)) (-3381 (($ (-113) $) 38) (($ (-113) (-606 $)) 37)) (-3898 (((-3 (-606 $) "failed") $) 189 (|has| |#1| (-1057)))) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $) 180 (|has| |#1| (-998)))) (-2566 (((-3 (-606 $) "failed") $) 187 (|has| |#1| (-25)))) (-1249 (((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $) 186 (|has| |#1| (-25)))) (-2983 (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $) 188 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113)) 182 (|has| |#1| (-998))) (((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117)) 181 (|has| |#1| (-998)))) (-3215 (((-111) $ (-113)) 40) (((-111) $ (-1117)) 39)) (-3865 (($ $) 105 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-2545 (((-731) $) 47)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 202)) (-3890 ((|#1| $) 201)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-529)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-529))) (($ $ $) 144 (|has| |#1| (-529)))) (-2482 (((-111) $ $) 35) (((-111) $ (-1117)) 34)) (-3622 (((-402 $) $) 159 (|has| |#1| (-529)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-529))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ $) 139 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-529)))) (-2977 (((-111) $) 23 (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) 67) (($ $ (-606 (-578 $)) (-606 $)) 66) (($ $ (-606 (-278 $))) 65) (($ $ (-278 $)) 64) (($ $ $ $) 63) (($ $ (-606 $) (-606 $)) 62) (($ $ (-606 (-1117)) (-606 (-1 $ $))) 33) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) 32) (($ $ (-1117) (-1 $ (-606 $))) 31) (($ $ (-1117) (-1 $ $)) 30) (($ $ (-606 (-113)) (-606 (-1 $ $))) 29) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) 28) (($ $ (-113) (-1 $ (-606 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1117)) 194 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117))) 193 (|has| |#1| (-580 (-513)))) (($ $) 192 (|has| |#1| (-580 (-513)))) (($ $ (-113) $ (-1117)) 191 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-113)) (-606 $) (-1117)) 190 (|has| |#1| (-580 (-513)))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $))) 179 (|has| |#1| (-998))) (($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $)))) 178 (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ (-606 $))) 177 (|has| |#1| (-998))) (($ $ (-1117) (-731) (-1 $ $)) 176 (|has| |#1| (-998)))) (-1930 (((-731) $) 152 (|has| |#1| (-529)))) (-1922 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-606 $)) 57)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-529)))) (-2190 (($ $) 49) (($ $ $) 48)) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 125 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 124 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 123 (|has| |#1| (-998))) (($ $ (-1117)) 122 (|has| |#1| (-998)))) (-2395 (($ $) 173 (|has| |#1| (-529)))) (-3315 (((-1069 |#1| (-578 $)) $) 174 (|has| |#1| (-529)))) (-2529 (($ $) 24 (|has| $ (-998)))) (-3996 (((-845 (-537)) $) 211 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 210 (|has| |#1| (-580 (-845 (-363))))) (($ (-402 $)) 175 (|has| |#1| (-529))) (((-513) $) 97 (|has| |#1| (-580 (-513))))) (-1978 (($ $ $) 108 (|has| |#1| (-456)))) (-1674 (($ $ $) 109 (|has| |#1| (-456)))) (-2341 (((-816) $) 11) (($ (-578 $)) 70) (($ (-1117)) 214) (($ |#1|) 205) (($ (-1069 |#1| (-578 $))) 185 (|has| |#1| (-998))) (($ (-391 |#1|)) 171 (|has| |#1| (-529))) (($ (-905 (-391 |#1|))) 170 (|has| |#1| (-529))) (($ (-391 (-905 (-391 |#1|)))) 169 (|has| |#1| (-529))) (($ (-391 (-905 |#1|))) 167 (|has| |#1| (-529))) (($ $) 138 (|has| |#1| (-529))) (($ (-905 |#1|)) 121 (|has| |#1| (-998))) (($ (-391 (-537))) 96 (-1533 (|has| |#1| (-529)) (-12 (|has| |#1| (-989 (-537))) (|has| |#1| (-529))) (|has| |#1| (-989 (-391 (-537)))))) (($ (-537)) 93 (-1533 (|has| |#1| (-998)) (|has| |#1| (-989 (-537)))))) (-2644 (((-3 $ "failed") $) 135 (|has| |#1| (-139)))) (-3654 (((-731)) 130 (|has| |#1| (-998)))) (-1822 (($ $) 53) (($ (-606 $)) 52)) (-2336 (((-111) (-113)) 41)) (-3276 (((-111) $ $) 142 (|has| |#1| (-529)))) (-2688 (($ (-1117) $) 199) (($ (-1117) $ $) 198) (($ (-1117) $ $ $) 197) (($ (-1117) $ $ $ $) 196) (($ (-1117) (-606 $)) 195)) (-2928 (($) 112 (|has| |#1| (-25)) CONST)) (-2943 (($) 100 (|has| |#1| (-1057)) CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 129 (|has| |#1| (-998))) (($ $ (-1117) (-731)) 128 (|has| |#1| (-998))) (($ $ (-606 (-1117))) 127 (|has| |#1| (-998))) (($ $ (-1117)) 126 (|has| |#1| (-998)))) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2340 (($ (-1069 |#1| (-578 $)) (-1069 |#1| (-578 $))) 172 (|has| |#1| (-529))) (($ $ $) 106 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529))))) (-2329 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2318 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-537)) 107 (-1533 (|has| |#1| (-456)) (|has| |#1| (-529)))) (($ $ (-731)) 104 (|has| |#1| (-1057))) (($ $ (-874)) 99 (|has| |#1| (-1057)))) (* (($ (-391 (-537)) $) 164 (|has| |#1| (-529))) (($ $ (-391 (-537))) 163 (|has| |#1| (-529))) (($ |#1| $) 137 (|has| |#1| (-163))) (($ $ |#1|) 136 (|has| |#1| (-163))) (($ (-537) $) 118 (|has| |#1| (-21))) (($ (-731) $) 114 (|has| |#1| (-25))) (($ (-874) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1057))))) +(((-414 |#1|) (-134) (-807)) (T -414)) +((-3876 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-111)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-606 (-1117))))) (-2688 (*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) (-2688 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 *1)) (-4 *1 (-414 *4)) (-4 *4 (-807)))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-580 (-513))))) (-4116 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1117))) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-580 (-513))))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-580 (-513))))) (-4116 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1117)) (-4 *1 (-414 *4)) (-4 *4 (-807)) (-4 *4 (-580 (-513))))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 *1)) (-5 *4 (-1117)) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-580 (-513))))) (-3898 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-414 *3)))) (-2983 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) (-4 *1 (-414 *3)))) (-2566 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-414 *3)))) (-1249 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3449 (-537)) (|:| |var| (-578 *1)))) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-998)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) (-4 *1 (-414 *3)))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-998)))) (-2983 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-998)) (-4 *4 (-807)) (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) (-4 *1 (-414 *4)))) (-2983 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-998)) (-4 *4 (-807)) (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) (-4 *1 (-414 *4)))) (-1570 (*1 *2 *1) (|partial| -12 (-4 *3 (-998)) (-4 *3 (-807)) (-5 *2 (-2 (|:| |val| *1) (|:| -3283 (-537)))) (-4 *1 (-414 *3)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) (-5 *4 (-606 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) (-5 *4 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 (-606 *1))) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-4116 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-414 *3)) (-4 *3 (-529)) (-4 *3 (-807)))) (-3315 (*1 *2 *1) (-12 (-4 *3 (-529)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) (-4 *1 (-414 *3)))) (-2395 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-529)))) (-2340 (*1 *1 *2 *2) (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-905 (-391 *3))) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-391 *3)))) (-4 *3 (-529)) (-4 *3 (-807)) (-4 *1 (-414 *3)))) (-3588 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-414 *4)) (-4 *4 (-807)) (-4 *4 (-529)) (-5 *2 (-391 (-1113 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-1057))))) +(-13 (-286) (-989 (-1117)) (-837 |t#1|) (-384 |t#1|) (-395 |t#1|) (-10 -8 (-15 -3876 ((-111) $)) (-15 -3890 (|t#1| $)) (-15 -3757 ((-606 (-1117)) $)) (-15 -2688 ($ (-1117) $)) (-15 -2688 ($ (-1117) $ $)) (-15 -2688 ($ (-1117) $ $ $)) (-15 -2688 ($ (-1117) $ $ $ $)) (-15 -2688 ($ (-1117) (-606 $))) (IF (|has| |t#1| (-580 (-513))) (PROGN (-6 (-580 (-513))) (-15 -4116 ($ $ (-1117))) (-15 -4116 ($ $ (-606 (-1117)))) (-15 -4116 ($ $)) (-15 -4116 ($ $ (-113) $ (-1117))) (-15 -4116 ($ $ (-606 (-113)) (-606 $) (-1117)))) |%noBranch|) (IF (|has| |t#1| (-1057)) (PROGN (-6 (-687)) (-15 ** ($ $ (-731))) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-456)) (-6 (-456)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -1249 ((-3 (-2 (|:| -3449 (-537)) (|:| |var| (-578 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-998)) (PROGN (-6 (-998)) (-6 (-989 (-905 |t#1|))) (-6 (-853 (-1117))) (-6 (-361 |t#1|)) (-15 -2341 ($ (-1069 |t#1| (-578 $)))) (-15 -3301 ((-1069 |t#1| (-578 $)) $)) (-15 -2868 ($ $)) (-15 -2983 ((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-113))) (-15 -2983 ((-3 (-2 (|:| |var| (-578 $)) (|:| -3283 (-537))) "failed") $ (-1117))) (-15 -1570 ((-3 (-2 (|:| |val| $) (|:| -3283 (-537))) "failed") $)) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ $)))) (-15 -4116 ($ $ (-606 (-1117)) (-606 (-731)) (-606 (-1 $ (-606 $))))) (-15 -4116 ($ $ (-1117) (-731) (-1 $ (-606 $)))) (-15 -4116 ($ $ (-1117) (-731) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-6 (-347)) (-6 (-989 (-391 (-905 |t#1|)))) (-15 -3996 ($ (-402 $))) (-15 -3315 ((-1069 |t#1| (-578 $)) $)) (-15 -2395 ($ $)) (-15 -2340 ($ (-1069 |t#1| (-578 $)) (-1069 |t#1| (-578 $)))) (-15 -2341 ($ (-391 |t#1|))) (-15 -2341 ($ (-905 (-391 |t#1|)))) (-15 -2341 ($ (-391 (-905 (-391 |t#1|))))) (-15 -3588 ((-391 (-1113 $)) $ (-578 $))) (IF (|has| |t#1| (-989 (-537))) (-6 (-989 (-391 (-537)))) |%noBranch|)) |%noBranch|))) +(((-21) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-23) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-391 (-537))) |has| |#1| (-529)) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-529)) ((-110 |#1| |#1|) |has| |#1| (-163)) ((-110 $ $) |has| |#1| (-529)) ((-129) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139)) (|has| |#1| (-21))) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) |has| |#1| (-529)) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-228) |has| |#1| (-529)) ((-274) |has| |#1| (-529)) ((-291) |has| |#1| (-529)) ((-293 $) . T) ((-286) . T) ((-347) |has| |#1| (-529)) ((-361 |#1|) |has| |#1| (-998)) ((-384 |#1|) . T) ((-395 |#1|) . T) ((-435) |has| |#1| (-529)) ((-456) |has| |#1| (-456)) ((-495 (-578 $) $) . T) ((-495 $ $) . T) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-529)) ((-609 |#1|) |has| |#1| (-163)) ((-609 $) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-602 (-537)) -12 (|has| |#1| (-602 (-537))) (|has| |#1| (-998))) ((-602 |#1|) |has| |#1| (-998)) ((-678 #0#) |has| |#1| (-529)) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) -1533 (|has| |#1| (-1057)) (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-456)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-807) . T) ((-853 (-1117)) |has| |#1| (-998)) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-873) |has| |#1| (-529)) ((-989 (-391 (-537))) -1533 (|has| |#1| (-989 (-391 (-537)))) (-12 (|has| |#1| (-529)) (|has| |#1| (-989 (-537))))) ((-989 (-391 (-905 |#1|))) |has| |#1| (-529)) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 (-578 $)) . T) ((-989 (-905 |#1|)) |has| |#1| (-998)) ((-989 (-1117)) . T) ((-989 |#1|) . T) ((-1004 #0#) |has| |#1| (-529)) ((-1004 |#1|) |has| |#1| (-163)) ((-1004 $) |has| |#1| (-529)) ((-998) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1005) -1533 (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1057) -1533 (|has| |#1| (-1057)) (|has| |#1| (-998)) (|has| |#1| (-529)) (|has| |#1| (-456)) (|has| |#1| (-163)) (|has| |#1| (-141)) (|has| |#1| (-139))) ((-1045) . T) ((-1154) . T) ((-1158) |has| |#1| (-529))) +((-3548 ((|#2| |#2| |#2|) 33)) (-3979 (((-113) (-113)) 44)) (-2254 ((|#2| |#2|) 66)) (-2800 ((|#2| |#2|) 69)) (-1593 ((|#2| |#2|) 32)) (-3288 ((|#2| |#2| |#2|) 35)) (-1961 ((|#2| |#2| |#2|) 37)) (-2354 ((|#2| |#2| |#2|) 34)) (-1716 ((|#2| |#2| |#2|) 36)) (-2336 (((-111) (-113)) 42)) (-2147 ((|#2| |#2|) 39)) (-3502 ((|#2| |#2|) 38)) (-2209 ((|#2| |#2|) 27)) (-2247 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2611 ((|#2| |#2| |#2|) 31))) +(((-415 |#1| |#2|) (-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2209 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2247 (|#2| |#2| |#2|)) (-15 -2611 (|#2| |#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|)) (-15 -2354 (|#2| |#2| |#2|)) (-15 -3288 (|#2| |#2| |#2|)) (-15 -1716 (|#2| |#2| |#2|)) (-15 -1961 (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2254 (|#2| |#2|))) (-13 (-807) (-529)) (-414 |#1|)) (T -415)) +((-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2147 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-1961 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-1716 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3288 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2354 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3548 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2611 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2247 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) (-4 *2 (-414 *3)))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *4)) (-4 *4 (-414 *3)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-415 *4 *5)) (-4 *5 (-414 *4))))) +(-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2209 (|#2| |#2|)) (-15 -2247 (|#2| |#2|)) (-15 -2247 (|#2| |#2| |#2|)) (-15 -2611 (|#2| |#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3548 (|#2| |#2| |#2|)) (-15 -2354 (|#2| |#2| |#2|)) (-15 -3288 (|#2| |#2| |#2|)) (-15 -1716 (|#2| |#2| |#2|)) (-15 -1961 (|#2| |#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2254 (|#2| |#2|))) +((-4145 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1113 |#2|)) (|:| |pol2| (-1113 |#2|)) (|:| |prim| (-1113 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-606 (-1113 |#2|))) (|:| |prim| (-1113 |#2|))) (-606 |#2|)) 61))) +(((-416 |#1| |#2|) (-10 -7 (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-606 (-1113 |#2|))) (|:| |prim| (-1113 |#2|))) (-606 |#2|))) (IF (|has| |#2| (-27)) (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1113 |#2|)) (|:| |pol2| (-1113 |#2|)) (|:| |prim| (-1113 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-529) (-807) (-141)) (-414 |#1|)) (T -416)) +((-4145 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-529) (-807) (-141))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1113 *3)) (|:| |pol2| (-1113 *3)) (|:| |prim| (-1113 *3)))) (-5 *1 (-416 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-529) (-807) (-141))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-606 (-1113 *5))) (|:| |prim| (-1113 *5)))) (-5 *1 (-416 *4 *5))))) +(-10 -7 (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-606 (-1113 |#2|))) (|:| |prim| (-1113 |#2|))) (-606 |#2|))) (IF (|has| |#2| (-27)) (-15 -4145 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1113 |#2|)) (|:| |pol2| (-1113 |#2|)) (|:| |prim| (-1113 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3166 (((-1205)) 19)) (-2028 (((-1113 (-391 (-537))) |#2| (-578 |#2|)) 41) (((-391 (-537)) |#2|) 25))) +(((-417 |#1| |#2|) (-10 -7 (-15 -2028 ((-391 (-537)) |#2|)) (-15 -2028 ((-1113 (-391 (-537))) |#2| (-578 |#2|))) (-15 -3166 ((-1205)))) (-13 (-807) (-529) (-989 (-537))) (-414 |#1|)) (T -417)) +((-3166 (*1 *2) (-12 (-4 *3 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-1205)) (-5 *1 (-417 *3 *4)) (-4 *4 (-414 *3)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-414 *5)) (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-417 *5 *3)))) (-2028 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-391 (-537))) (-5 *1 (-417 *4 *3)) (-4 *3 (-414 *4))))) +(-10 -7 (-15 -2028 ((-391 (-537)) |#2|)) (-15 -2028 ((-1113 (-391 (-537))) |#2| (-578 |#2|))) (-15 -3166 ((-1205)))) +((-3928 (((-111) $) 28)) (-3525 (((-111) $) 30)) (-1660 (((-111) $) 31)) (-2991 (((-111) $) 34)) (-3478 (((-111) $) 29)) (-1780 (((-111) $) 33)) (-2341 (((-816) $) 18) (($ (-1100)) 27) (($ (-1117)) 23) (((-1117) $) 22) (((-1049) $) 21)) (-2041 (((-111) $) 32)) (-2244 (((-111) $ $) 15))) +(((-418) (-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1100))) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2341 ((-1049) $)) (-15 -3928 ((-111) $)) (-15 -3478 ((-111) $)) (-15 -1660 ((-111) $)) (-15 -1780 ((-111) $)) (-15 -2991 ((-111) $)) (-15 -2041 ((-111) $)) (-15 -3525 ((-111) $)) (-15 -2244 ((-111) $ $))))) (T -418)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-418)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) +(-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1100))) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2341 ((-1049) $)) (-15 -3928 ((-111) $)) (-15 -3478 ((-111) $)) (-15 -1660 ((-111) $)) (-15 -1780 ((-111) $)) (-15 -2991 ((-111) $)) (-15 -2041 ((-111) $)) (-15 -3525 ((-111) $)) (-15 -2244 ((-111) $ $)))) +((-1953 (((-3 (-402 (-1113 (-391 (-537)))) "failed") |#3|) 70)) (-3835 (((-402 |#3|) |#3|) 34)) (-2277 (((-3 (-402 (-1113 (-47))) "failed") |#3|) 46 (|has| |#2| (-989 (-47))))) (-4262 (((-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111))) |#3|) 37))) +(((-419 |#1| |#2| |#3|) (-10 -7 (-15 -3835 ((-402 |#3|) |#3|)) (-15 -1953 ((-3 (-402 (-1113 (-391 (-537)))) "failed") |#3|)) (-15 -4262 ((-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111))) |#3|)) (IF (|has| |#2| (-989 (-47))) (-15 -2277 ((-3 (-402 (-1113 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-529) (-807) (-989 (-537))) (-414 |#1|) (-1176 |#2|)) (T -419)) +((-2277 (*1 *2 *3) (|partial| -12 (-4 *5 (-989 (-47))) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-402 (-1113 (-47)))) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-4262 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111)))) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-1953 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-402 (-1113 (-391 (-537))))) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-3835 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) (-5 *2 (-402 *3)) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) +(-10 -7 (-15 -3835 ((-402 |#3|) |#3|)) (-15 -1953 ((-3 (-402 (-1113 (-391 (-537)))) "failed") |#3|)) (-15 -4262 ((-3 (|:| |overq| (-1113 (-391 (-537)))) (|:| |overan| (-1113 (-47))) (|:| -4053 (-111))) |#3|)) (IF (|has| |#2| (-989 (-47))) (-15 -2277 ((-3 (-402 (-1113 (-47))) "failed") |#3|)) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-3160 (((-1100) $ (-1100)) NIL)) (-1898 (($ $ (-1100)) NIL)) (-2151 (((-1100) $) NIL)) (-3318 (((-372) (-372) (-372)) 17) (((-372) (-372)) 15)) (-3309 (($ (-372)) NIL) (($ (-372) (-1100)) NIL)) (-3923 (((-372) $) NIL)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2007 (((-1205) (-1100)) 9)) (-2344 (((-1205) (-1100)) 10)) (-3012 (((-1205)) 11)) (-2341 (((-816) $) NIL)) (-1338 (($ $) 35)) (-2244 (((-111) $ $) NIL))) +(((-420) (-13 (-348 (-372) (-1100)) (-10 -7 (-15 -3318 ((-372) (-372) (-372))) (-15 -3318 ((-372) (-372))) (-15 -2007 ((-1205) (-1100))) (-15 -2344 ((-1205) (-1100))) (-15 -3012 ((-1205)))))) (T -420)) +((-3318 (*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420)))) (-3012 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-420))))) +(-13 (-348 (-372) (-1100)) (-10 -7 (-15 -3318 ((-372) (-372) (-372))) (-15 -3318 ((-372) (-372))) (-15 -2007 ((-1205) (-1100))) (-15 -2344 ((-1205) (-1100))) (-15 -3012 ((-1205))))) +((-2330 (((-111) $ $) NIL)) (-3359 (((-3 (|:| |fst| (-418)) (|:| -1374 "void")) $) 11)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2104 (($) 32)) (-2374 (($) 38)) (-1293 (($) 34)) (-4250 (($) 36)) (-1529 (($) 33)) (-3248 (($) 35)) (-1857 (($) 37)) (-2561 (((-111) $) 8)) (-2208 (((-606 (-905 (-537))) $) 19)) (-2350 (($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-111)) 27) (($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-905 (-537))) (-111)) 28)) (-2341 (((-816) $) 23) (($ (-418)) 29)) (-2244 (((-111) $ $) NIL))) +(((-421) (-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -2341 ($ (-418))) (-15 -3359 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -2208 ((-606 (-905 (-537))) $)) (-15 -2561 ((-111) $)) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-111))) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-905 (-537))) (-111))) (-15 -2104 ($)) (-15 -1529 ($)) (-15 -1293 ($)) (-15 -2374 ($)) (-15 -3248 ($)) (-15 -4250 ($)) (-15 -1857 ($))))) (T -421)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-421)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-418)) (-5 *1 (-421)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *1 (-421)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-606 (-905 (-537)))) (-5 *1 (-421)))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421)))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *3 (-606 (-1117))) (-5 *4 (-111)) (-5 *1 (-421)))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-111)) (-5 *1 (-421)))) (-2104 (*1 *1) (-5 *1 (-421))) (-1529 (*1 *1) (-5 *1 (-421))) (-1293 (*1 *1) (-5 *1 (-421))) (-2374 (*1 *1) (-5 *1 (-421))) (-3248 (*1 *1) (-5 *1 (-421))) (-4250 (*1 *1) (-5 *1 (-421))) (-1857 (*1 *1) (-5 *1 (-421)))) +(-13 (-1045) (-10 -8 (-15 -2341 ((-816) $)) (-15 -2341 ($ (-418))) (-15 -3359 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -2208 ((-606 (-905 (-537))) $)) (-15 -2561 ((-111) $)) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-1117)) (-111))) (-15 -2350 ($ (-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-606 (-905 (-537))) (-111))) (-15 -2104 ($)) (-15 -1529 ($)) (-15 -1293 ($)) (-15 -2374 ($)) (-15 -3248 ($)) (-15 -4250 ($)) (-15 -1857 ($)))) +((-2330 (((-111) $ $) NIL)) (-3923 (((-1117) $) 8)) (-1654 (((-1100) $) 16)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 13))) +(((-422 |#1|) (-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) (-1117)) (T -422)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-422 *3)) (-14 *3 *2)))) +(-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) +((-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-1200 (-659))) 14) (($ (-606 (-314))) 13) (($ (-314)) 12) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 11))) +(((-423) (-134)) (T -423)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-659))) (-4 *1 (-423)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-423)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-423)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-423))))) +(-13 (-379) (-10 -8 (-15 -2341 ($ (-1200 (-659)))) (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))))) +(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) +((-1516 (((-3 $ "failed") (-1200 (-300 (-363)))) 21) (((-3 $ "failed") (-1200 (-300 (-537)))) 19) (((-3 $ "failed") (-1200 (-905 (-363)))) 17) (((-3 $ "failed") (-1200 (-905 (-537)))) 15) (((-3 $ "failed") (-1200 (-391 (-905 (-363))))) 13) (((-3 $ "failed") (-1200 (-391 (-905 (-537))))) 11)) (-3958 (($ (-1200 (-300 (-363)))) 22) (($ (-1200 (-300 (-537)))) 20) (($ (-1200 (-905 (-363)))) 18) (($ (-1200 (-905 (-537)))) 16) (($ (-1200 (-391 (-905 (-363))))) 14) (($ (-1200 (-391 (-905 (-537))))) 12)) (-3322 (((-1205) $) 7)) (-2341 (((-816) $) 8) (($ (-606 (-314))) 25) (($ (-314)) 24) (($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) 23))) +(((-424) (-134)) (T -424)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-424)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-424)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424))))) +(-13 (-379) (-10 -8 (-15 -2341 ($ (-606 (-314)))) (-15 -2341 ($ (-314))) (-15 -2341 ($ (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314)))))) (-15 -3958 ($ (-1200 (-300 (-363))))) (-15 -1516 ((-3 $ "failed") (-1200 (-300 (-363))))) (-15 -3958 ($ (-1200 (-300 (-537))))) (-15 -1516 ((-3 $ "failed") (-1200 (-300 (-537))))) (-15 -3958 ($ (-1200 (-905 (-363))))) (-15 -1516 ((-3 $ "failed") (-1200 (-905 (-363))))) (-15 -3958 ($ (-1200 (-905 (-537))))) (-15 -1516 ((-3 $ "failed") (-1200 (-905 (-537))))) (-15 -3958 ($ (-1200 (-391 (-905 (-363)))))) (-15 -1516 ((-3 $ "failed") (-1200 (-391 (-905 (-363)))))) (-15 -3958 ($ (-1200 (-391 (-905 (-537)))))) (-15 -1516 ((-3 $ "failed") (-1200 (-391 (-905 (-537)))))))) +(((-579 (-816)) . T) ((-379) . T) ((-1154) . T)) +((-2201 (((-111)) 17)) (-3805 (((-111) (-111)) 18)) (-3772 (((-111)) 13)) (-2392 (((-111) (-111)) 14)) (-2483 (((-111)) 15)) (-3586 (((-111) (-111)) 16)) (-3125 (((-874) (-874)) 21) (((-874)) 20)) (-2333 (((-731) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537))))) 42)) (-3604 (((-874) (-874)) 23) (((-874)) 22)) (-3503 (((-2 (|:| -2909 (-537)) (|:| -3415 (-606 |#1|))) |#1|) 62)) (-2323 (((-402 |#1|) (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537))))))) 126)) (-3054 (((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)) 152)) (-3159 (((-402 |#1|) |#1| (-731) (-731)) 165) (((-402 |#1|) |#1| (-606 (-731)) (-731)) 162) (((-402 |#1|) |#1| (-606 (-731))) 164) (((-402 |#1|) |#1| (-731)) 163) (((-402 |#1|) |#1|) 161)) (-4272 (((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731) (-111)) 167) (((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731)) 168) (((-3 |#1| "failed") (-874) |#1| (-606 (-731))) 170) (((-3 |#1| "failed") (-874) |#1| (-731)) 169) (((-3 |#1| "failed") (-874) |#1|) 171)) (-3622 (((-402 |#1|) |#1| (-731) (-731)) 160) (((-402 |#1|) |#1| (-606 (-731)) (-731)) 156) (((-402 |#1|) |#1| (-606 (-731))) 158) (((-402 |#1|) |#1| (-731)) 157) (((-402 |#1|) |#1|) 155)) (-1900 (((-111) |#1|) 37)) (-2916 (((-698 (-731)) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537))))) 67)) (-1866 (((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111) (-1047 (-731)) (-731)) 154))) +(((-425 |#1|) (-10 -7 (-15 -2323 ((-402 |#1|) (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))))) (-15 -2916 ((-698 (-731)) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3604 ((-874))) (-15 -3604 ((-874) (-874))) (-15 -3125 ((-874))) (-15 -3125 ((-874) (-874))) (-15 -2333 ((-731) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3503 ((-2 (|:| -2909 (-537)) (|:| -3415 (-606 |#1|))) |#1|)) (-15 -2201 ((-111))) (-15 -3805 ((-111) (-111))) (-15 -3772 ((-111))) (-15 -2392 ((-111) (-111))) (-15 -1900 ((-111) |#1|)) (-15 -2483 ((-111))) (-15 -3586 ((-111) (-111))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1| (-731))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3622 ((-402 |#1|) |#1| (-731) (-731))) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1| (-731))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3159 ((-402 |#1|) |#1| (-731) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1|)) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731) (-111))) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111))) (-15 -1866 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111) (-1047 (-731)) (-731)))) (-1176 (-537))) (T -425)) +((-1866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1047 (-731))) (-5 *6 (-731)) (-5 *2 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *6 (-111)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-874)) (-5 *4 (-731)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-4272 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-874)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) (-3159 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2483 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-1900 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3772 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2201 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3503 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2909 (-537)) (|:| -3415 (-606 *3)))) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) (-4 *4 (-1176 (-537))) (-5 *2 (-731)) (-5 *1 (-425 *4)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3125 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-3604 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) (-4 *4 (-1176 (-537))) (-5 *2 (-698 (-731))) (-5 *1 (-425 *4)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *4) (|:| -2430 (-537))))))) (-4 *4 (-1176 (-537))) (-5 *2 (-402 *4)) (-5 *1 (-425 *4))))) +(-10 -7 (-15 -2323 ((-402 |#1|) (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))))) (-15 -2916 ((-698 (-731)) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3604 ((-874))) (-15 -3604 ((-874) (-874))) (-15 -3125 ((-874))) (-15 -3125 ((-874) (-874))) (-15 -2333 ((-731) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))))) (-15 -3503 ((-2 (|:| -2909 (-537)) (|:| -3415 (-606 |#1|))) |#1|)) (-15 -2201 ((-111))) (-15 -3805 ((-111) (-111))) (-15 -3772 ((-111))) (-15 -2392 ((-111) (-111))) (-15 -1900 ((-111) |#1|)) (-15 -2483 ((-111))) (-15 -3586 ((-111) (-111))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3622 ((-402 |#1|) |#1| (-731))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3622 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3622 ((-402 |#1|) |#1| (-731) (-731))) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1| (-731))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)))) (-15 -3159 ((-402 |#1|) |#1| (-606 (-731)) (-731))) (-15 -3159 ((-402 |#1|) |#1| (-731) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1|)) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731))) (-15 -4272 ((-3 |#1| "failed") (-874) |#1| (-606 (-731)) (-731) (-111))) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111))) (-15 -1866 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111) (-1047 (-731)) (-731)))) +((-2879 (((-537) |#2|) 48) (((-537) |#2| (-731)) 47)) (-1569 (((-537) |#2|) 55)) (-3974 ((|#3| |#2|) 25)) (-2055 ((|#3| |#2| (-874)) 14)) (-3845 ((|#3| |#2|) 15)) (-3762 ((|#3| |#2|) 9)) (-2545 ((|#3| |#2|) 10)) (-3396 ((|#3| |#2| (-874)) 62) ((|#3| |#2|) 30)) (-3050 (((-537) |#2|) 57))) +(((-426 |#1| |#2| |#3|) (-10 -7 (-15 -3050 ((-537) |#2|)) (-15 -3396 (|#3| |#2|)) (-15 -3396 (|#3| |#2| (-874))) (-15 -1569 ((-537) |#2|)) (-15 -2879 ((-537) |#2| (-731))) (-15 -2879 ((-537) |#2|)) (-15 -2055 (|#3| |#2| (-874))) (-15 -3974 (|#3| |#2|)) (-15 -3762 (|#3| |#2|)) (-15 -2545 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) (-998) (-1176 |#1|) (-13 (-388) (-989 |#1|) (-347) (-1139) (-268))) (T -426)) +((-3845 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-2545 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *5 (-998)) (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5)))) (-2879 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) (-4 *3 (-1176 *4)) (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268))))) (-2879 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *5 *3 *6)) (-4 *3 (-1176 *5)) (-4 *6 (-13 (-388) (-989 *5) (-347) (-1139) (-268))))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) (-4 *3 (-1176 *4)) (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268))))) (-3396 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *5 (-998)) (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5)))) (-3396 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) (-3050 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) (-4 *3 (-1176 *4)) (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) +(-10 -7 (-15 -3050 ((-537) |#2|)) (-15 -3396 (|#3| |#2|)) (-15 -3396 (|#3| |#2| (-874))) (-15 -1569 ((-537) |#2|)) (-15 -2879 ((-537) |#2| (-731))) (-15 -2879 ((-537) |#2|)) (-15 -2055 (|#3| |#2| (-874))) (-15 -3974 (|#3| |#2|)) (-15 -3762 (|#3| |#2|)) (-15 -2545 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) +((-2692 ((|#2| (-1200 |#1|)) 36)) (-1741 ((|#2| |#2| |#1|) 49)) (-3694 ((|#2| |#2| |#1|) 41)) (-3289 ((|#2| |#2|) 38)) (-2903 (((-111) |#2|) 30)) (-2569 (((-606 |#2|) (-874) (-402 |#2|)) 17)) (-4272 ((|#2| (-874) (-402 |#2|)) 21)) (-2916 (((-698 (-731)) (-402 |#2|)) 25))) +(((-427 |#1| |#2|) (-10 -7 (-15 -2903 ((-111) |#2|)) (-15 -2692 (|#2| (-1200 |#1|))) (-15 -3289 (|#2| |#2|)) (-15 -3694 (|#2| |#2| |#1|)) (-15 -1741 (|#2| |#2| |#1|)) (-15 -2916 ((-698 (-731)) (-402 |#2|))) (-15 -4272 (|#2| (-874) (-402 |#2|))) (-15 -2569 ((-606 |#2|) (-874) (-402 |#2|)))) (-998) (-1176 |#1|)) (T -427)) +((-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-402 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-998)) (-5 *2 (-606 *6)) (-5 *1 (-427 *5 *6)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-402 *2)) (-4 *2 (-1176 *5)) (-5 *1 (-427 *5 *2)) (-4 *5 (-998)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-998)) (-5 *2 (-698 (-731))) (-5 *1 (-427 *4 *5)))) (-1741 (*1 *2 *2 *3) (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) (-3694 (*1 *2 *2 *3) (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-998)) (-4 *2 (-1176 *4)) (-5 *1 (-427 *4 *2)))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-998)) (-5 *2 (-111)) (-5 *1 (-427 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -2903 ((-111) |#2|)) (-15 -2692 (|#2| (-1200 |#1|))) (-15 -3289 (|#2| |#2|)) (-15 -3694 (|#2| |#2| |#1|)) (-15 -1741 (|#2| |#2| |#1|)) (-15 -2916 ((-698 (-731)) (-402 |#2|))) (-15 -4272 (|#2| (-874) (-402 |#2|))) (-15 -2569 ((-606 |#2|) (-874) (-402 |#2|)))) +((-2018 (((-731)) 41)) (-2478 (((-731)) 23 (|has| |#1| (-388))) (((-731) (-731)) 22 (|has| |#1| (-388)))) (-2294 (((-537) |#1|) 18 (|has| |#1| (-388)))) (-4060 (((-537) |#1|) 20 (|has| |#1| (-388)))) (-3816 (((-731)) 40) (((-731) (-731)) 39)) (-2673 ((|#1| (-731) (-537)) 29)) (-2429 (((-1205)) 43))) +(((-428 |#1|) (-10 -7 (-15 -2673 (|#1| (-731) (-537))) (-15 -3816 ((-731) (-731))) (-15 -3816 ((-731))) (-15 -2018 ((-731))) (-15 -2429 ((-1205))) (IF (|has| |#1| (-388)) (PROGN (-15 -4060 ((-537) |#1|)) (-15 -2294 ((-537) |#1|)) (-15 -2478 ((-731) (-731))) (-15 -2478 ((-731)))) |%noBranch|)) (-998)) (T -428)) +((-2478 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-2294 (*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-4060 (*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) (-2429 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-2018 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-3816 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-537)) (-5 *1 (-428 *2)) (-4 *2 (-998))))) +(-10 -7 (-15 -2673 (|#1| (-731) (-537))) (-15 -3816 ((-731) (-731))) (-15 -3816 ((-731))) (-15 -2018 ((-731))) (-15 -2429 ((-1205))) (IF (|has| |#1| (-388)) (PROGN (-15 -4060 ((-537) |#1|)) (-15 -2294 ((-537) |#1|)) (-15 -2478 ((-731) (-731))) (-15 -2478 ((-731)))) |%noBranch|)) +((-3952 (((-606 (-537)) (-537)) 61)) (-2639 (((-111) (-160 (-537))) 65)) (-3622 (((-402 (-160 (-537))) (-160 (-537))) 60))) +(((-429) (-10 -7 (-15 -3622 ((-402 (-160 (-537))) (-160 (-537)))) (-15 -3952 ((-606 (-537)) (-537))) (-15 -2639 ((-111) (-160 (-537)))))) (T -429)) +((-2639 (*1 *2 *3) (-12 (-5 *3 (-160 (-537))) (-5 *2 (-111)) (-5 *1 (-429)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-429)) (-5 *3 (-537)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 (-160 (-537)))) (-5 *1 (-429)) (-5 *3 (-160 (-537)))))) +(-10 -7 (-15 -3622 ((-402 (-160 (-537))) (-160 (-537)))) (-15 -3952 ((-606 (-537)) (-537))) (-15 -2639 ((-111) (-160 (-537))))) +((-1675 ((|#4| |#4| (-606 |#4|)) 61)) (-3077 (((-606 |#4|) (-606 |#4|) (-1100) (-1100)) 17) (((-606 |#4|) (-606 |#4|) (-1100)) 16) (((-606 |#4|) (-606 |#4|)) 11))) +(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1675 (|#4| |#4| (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100) (-1100)))) (-291) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -430)) +((-3077 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3077 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-430 *3 *4 *5 *6)))) (-1675 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *2))))) +(-10 -7 (-15 -1675 (|#4| |#4| (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -3077 ((-606 |#4|) (-606 |#4|) (-1100) (-1100)))) +((-3811 (((-606 (-606 |#4|)) (-606 |#4|) (-111)) 73) (((-606 (-606 |#4|)) (-606 |#4|)) 72) (((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|) (-111)) 66) (((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|)) 67)) (-2005 (((-606 (-606 |#4|)) (-606 |#4|) (-111)) 42) (((-606 (-606 |#4|)) (-606 |#4|)) 63))) +(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-111)))) (-13 (-291) (-141)) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -431)) +((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-3811 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) (-3811 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(-10 -7 (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -2005 ((-606 (-606 |#4|)) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|))) (-15 -3811 ((-606 (-606 |#4|)) (-606 |#4|) (-111)))) +((-2416 (((-731) |#4|) 12)) (-4024 (((-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))) |#4| (-731) (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)))) 31)) (-2311 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1769 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2256 ((|#4| |#4| (-606 |#4|)) 40)) (-1877 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-606 |#4|)) 70)) (-4066 (((-1205) |#4|) 42)) (-3723 (((-1205) (-606 |#4|)) 51)) (-1410 (((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537)) 48)) (-2421 (((-1205) (-537)) 79)) (-2676 (((-606 |#4|) (-606 |#4|)) 77)) (-3751 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)) |#4| (-731)) 25)) (-3229 (((-537) |#4|) 78)) (-2265 ((|#4| |#4|) 29)) (-3543 (((-606 |#4|) (-606 |#4|) (-537) (-537)) 56)) (-3130 (((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537) (-537)) 89)) (-1553 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2396 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1847 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3545 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2769 (((-111) |#2| |#2|) 57)) (-3483 (((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2536 (((-111) |#2| |#2| |#2| |#2|) 60)) (-1765 ((|#4| |#4| (-606 |#4|)) 71))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1765 (|#4| |#4| (-606 |#4|))) (-15 -2256 (|#4| |#4| (-606 |#4|))) (-15 -3543 ((-606 |#4|) (-606 |#4|) (-537) (-537))) (-15 -2396 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2769 ((-111) |#2| |#2|)) (-15 -2536 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3483 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3545 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1847 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-606 |#4|))) (-15 -2265 (|#4| |#4|)) (-15 -4024 ((-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))) |#4| (-731) (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))))) (-15 -1769 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2311 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2676 ((-606 |#4|) (-606 |#4|))) (-15 -3229 ((-537) |#4|)) (-15 -4066 ((-1205) |#4|)) (-15 -1410 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537))) (-15 -3130 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537) (-537))) (-15 -3723 ((-1205) (-606 |#4|))) (-15 -2421 ((-1205) (-537))) (-15 -1553 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3751 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)) |#4| (-731))) (-15 -2416 ((-731) |#4|))) (-435) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -432)) +((-2416 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)) (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-3751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-731)) (|:| -2990 *4))) (-5 *5 (-731)) (-4 *4 (-902 *6 *7 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-432 *6 *7 *8 *4)))) (-1553 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *4)))) (-1410 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *4)))) (-4066 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-537)) (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-2676 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6)))) (-2311 (*1 *2 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-753)) (-4 *2 (-902 *4 *5 *6)) (-5 *1 (-432 *4 *5 *6 *2)) (-4 *4 (-435)) (-4 *6 (-807)))) (-4024 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 *3)))) (-5 *4 (-731)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *3)))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-432 *5 *6 *7 *3)))) (-1847 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-731)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-753)) (-4 *6 (-902 *4 *3 *5)) (-4 *4 (-435)) (-4 *5 (-807)) (-5 *1 (-432 *4 *3 *5 *6)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6)))) (-3483 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-753)) (-4 *3 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *3)))) (-2536 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5)))) (-2769 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7)))) (-3543 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *7)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2)))) (-1765 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2))))) +(-10 -7 (-15 -1765 (|#4| |#4| (-606 |#4|))) (-15 -2256 (|#4| |#4| (-606 |#4|))) (-15 -3543 ((-606 |#4|) (-606 |#4|) (-537) (-537))) (-15 -2396 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2769 ((-111) |#2| |#2|)) (-15 -2536 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3483 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3545 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1847 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-606 |#4|))) (-15 -2265 (|#4| |#4|)) (-15 -4024 ((-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))) |#4| (-731) (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|))))) (-15 -1769 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2311 ((-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-606 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2676 ((-606 |#4|) (-606 |#4|))) (-15 -3229 ((-537) |#4|)) (-15 -4066 ((-1205) |#4|)) (-15 -1410 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537))) (-15 -3130 ((-537) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-537) (-537) (-537) (-537))) (-15 -3723 ((-1205) (-606 |#4|))) (-15 -2421 ((-1205) (-537))) (-15 -1553 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3751 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-731)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-731)) (|:| -2990 |#4|)) |#4| (-731))) (-15 -2416 ((-731) |#4|))) +((-1575 ((|#4| |#4| (-606 |#4|)) 22 (|has| |#1| (-347)))) (-2597 (((-606 |#4|) (-606 |#4|) (-1100) (-1100)) 41) (((-606 |#4|) (-606 |#4|) (-1100)) 40) (((-606 |#4|) (-606 |#4|)) 35))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2597 ((-606 |#4|) (-606 |#4|))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100) (-1100))) (IF (|has| |#1| (-347)) (-15 -1575 (|#4| |#4| (-606 |#4|))) |%noBranch|)) (-435) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -433)) +((-1575 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-347)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-433 *4 *5 *6 *2)))) (-2597 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-433 *4 *5 *6 *7)))) (-2597 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-433 *4 *5 *6 *7)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-433 *3 *4 *5 *6))))) +(-10 -7 (-15 -2597 ((-606 |#4|) (-606 |#4|))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100))) (-15 -2597 ((-606 |#4|) (-606 |#4|) (-1100) (-1100))) (IF (|has| |#1| (-347)) (-15 -1575 (|#4| |#4| (-606 |#4|))) |%noBranch|)) +((-2183 (($ $ $) 14) (($ (-606 $)) 21)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 41)) (-2211 (($ $ $) NIL) (($ (-606 $)) 22))) +(((-434 |#1|) (-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2183 (|#1| (-606 |#1|))) (-15 -2183 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|))) (-435)) (T -434)) +NIL +(-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2183 (|#1| (-606 |#1|))) (-15 -2183 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2211 (|#1| |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-435) (-134)) (T -435)) +((-2211 (*1 *1 *1 *1) (-4 *1 (-435))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) (-2183 (*1 *1 *1 *1) (-4 *1 (-435))) (-2183 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) (-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-435))))) +(-13 (-529) (-10 -8 (-15 -2211 ($ $ $)) (-15 -2211 ($ (-606 $))) (-15 -2183 ($ $ $)) (-15 -2183 ($ (-606 $))) (-15 -2298 ((-1113 $) (-1113 $) (-1113 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 (-391 (-905 |#1|)))) (-1200 $)) NIL) (((-1200 (-649 (-391 (-905 |#1|))))) NIL)) (-2568 (((-1200 $)) NIL)) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL)) (-2649 (((-3 $ "failed")) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-4263 (((-649 (-391 (-905 |#1|))) (-1200 $)) NIL) (((-649 (-391 (-905 |#1|)))) NIL)) (-2624 (((-391 (-905 |#1|)) $) NIL)) (-4246 (((-649 (-391 (-905 |#1|))) $ (-1200 $)) NIL) (((-649 (-391 (-905 |#1|))) $) NIL)) (-3800 (((-3 $ "failed") $) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-1899 (((-1113 (-905 (-391 (-905 |#1|))))) NIL (|has| (-391 (-905 |#1|)) (-347))) (((-1113 (-391 (-905 |#1|)))) 84 (|has| |#1| (-529)))) (-2541 (($ $ (-874)) NIL)) (-4260 (((-391 (-905 |#1|)) $) NIL)) (-3112 (((-1113 (-391 (-905 |#1|))) $) 82 (|has| (-391 (-905 |#1|)) (-529)))) (-2503 (((-391 (-905 |#1|)) (-1200 $)) NIL) (((-391 (-905 |#1|))) NIL)) (-1889 (((-1113 (-391 (-905 |#1|))) $) NIL)) (-1855 (((-111)) NIL)) (-3447 (($ (-1200 (-391 (-905 |#1|))) (-1200 $)) 103) (($ (-1200 (-391 (-905 |#1|)))) NIL)) (-3490 (((-3 $ "failed") $) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3705 (((-874)) NIL)) (-3364 (((-111)) NIL)) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL)) (-1684 (((-111)) NIL)) (-3468 (((-111)) NIL)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL)) (-1652 (((-3 $ "failed")) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3699 (((-649 (-391 (-905 |#1|))) (-1200 $)) NIL) (((-649 (-391 (-905 |#1|)))) NIL)) (-4217 (((-391 (-905 |#1|)) $) NIL)) (-3486 (((-649 (-391 (-905 |#1|))) $ (-1200 $)) NIL) (((-649 (-391 (-905 |#1|))) $) NIL)) (-3820 (((-3 $ "failed") $) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-4096 (((-1113 (-905 (-391 (-905 |#1|))))) NIL (|has| (-391 (-905 |#1|)) (-347))) (((-1113 (-391 (-905 |#1|)))) 83 (|has| |#1| (-529)))) (-3060 (($ $ (-874)) NIL)) (-3408 (((-391 (-905 |#1|)) $) NIL)) (-2818 (((-1113 (-391 (-905 |#1|))) $) 77 (|has| (-391 (-905 |#1|)) (-529)))) (-2757 (((-391 (-905 |#1|)) (-1200 $)) NIL) (((-391 (-905 |#1|))) NIL)) (-4207 (((-1113 (-391 (-905 |#1|))) $) NIL)) (-2987 (((-111)) NIL)) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL)) (-2077 (((-111)) NIL)) (-2415 (((-111)) NIL)) (-2528 (((-1064) $) NIL)) (-2661 (((-391 (-905 |#1|)) $ $) 71 (|has| |#1| (-529)))) (-4176 (((-391 (-905 |#1|)) $) 93 (|has| |#1| (-529)))) (-3997 (((-391 (-905 |#1|)) $) 95 (|has| |#1| (-529)))) (-1499 (((-1113 (-391 (-905 |#1|))) $) 88 (|has| |#1| (-529)))) (-3113 (((-391 (-905 |#1|))) 72 (|has| |#1| (-529)))) (-3631 (((-391 (-905 |#1|)) $ $) 64 (|has| |#1| (-529)))) (-2632 (((-391 (-905 |#1|)) $) 92 (|has| |#1| (-529)))) (-3541 (((-391 (-905 |#1|)) $) 94 (|has| |#1| (-529)))) (-1614 (((-1113 (-391 (-905 |#1|))) $) 87 (|has| |#1| (-529)))) (-3198 (((-391 (-905 |#1|))) 68 (|has| |#1| (-529)))) (-2954 (($) 101) (($ (-1117)) 107) (($ (-1200 (-1117))) 106) (($ (-1200 $)) 96) (($ (-1117) (-1200 $)) 105) (($ (-1200 (-1117)) (-1200 $)) 104)) (-3162 (((-111)) NIL)) (-1922 (((-391 (-905 |#1|)) $ (-537)) NIL)) (-1484 (((-1200 (-391 (-905 |#1|))) $ (-1200 $)) 98) (((-649 (-391 (-905 |#1|))) (-1200 $) (-1200 $)) NIL) (((-1200 (-391 (-905 |#1|))) $) 40) (((-649 (-391 (-905 |#1|))) (-1200 $)) NIL)) (-3996 (((-1200 (-391 (-905 |#1|))) $) NIL) (($ (-1200 (-391 (-905 |#1|)))) 37)) (-4183 (((-606 (-905 (-391 (-905 |#1|)))) (-1200 $)) NIL) (((-606 (-905 (-391 (-905 |#1|))))) NIL) (((-606 (-905 |#1|)) (-1200 $)) 99 (|has| |#1| (-529))) (((-606 (-905 |#1|))) 100 (|has| |#1| (-529)))) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL)) (-2341 (((-816) $) NIL) (($ (-1200 (-391 (-905 |#1|)))) NIL)) (-2122 (((-1200 $)) 60)) (-3678 (((-606 (-1200 (-391 (-905 |#1|))))) NIL (|has| (-391 (-905 |#1|)) (-529)))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL)) (-3127 (($ (-649 (-391 (-905 |#1|))) $) NIL)) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL)) (-3530 (((-111)) NIL)) (-1972 (((-111)) NIL)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) 97)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 56) (($ $ (-391 (-905 |#1|))) NIL) (($ (-391 (-905 |#1|)) $) NIL) (($ (-1084 |#2| (-391 (-905 |#1|))) $) NIL))) +(((-436 |#1| |#2| |#3| |#4|) (-13 (-401 (-391 (-905 |#1|))) (-609 (-1084 |#2| (-391 (-905 |#1|)))) (-10 -8 (-15 -2341 ($ (-1200 (-391 (-905 |#1|))))) (-15 -3324 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2954 ($)) (-15 -2954 ($ (-1117))) (-15 -2954 ($ (-1200 (-1117)))) (-15 -2954 ($ (-1200 $))) (-15 -2954 ($ (-1117) (-1200 $))) (-15 -2954 ($ (-1200 (-1117)) (-1200 $))) (IF (|has| |#1| (-529)) (PROGN (-15 -4096 ((-1113 (-391 (-905 |#1|))))) (-15 -1614 ((-1113 (-391 (-905 |#1|))) $)) (-15 -2632 ((-391 (-905 |#1|)) $)) (-15 -3541 ((-391 (-905 |#1|)) $)) (-15 -1899 ((-1113 (-391 (-905 |#1|))))) (-15 -1499 ((-1113 (-391 (-905 |#1|))) $)) (-15 -4176 ((-391 (-905 |#1|)) $)) (-15 -3997 ((-391 (-905 |#1|)) $)) (-15 -3631 ((-391 (-905 |#1|)) $ $)) (-15 -3198 ((-391 (-905 |#1|)))) (-15 -2661 ((-391 (-905 |#1|)) $ $)) (-15 -3113 ((-391 (-905 |#1|)))) (-15 -4183 ((-606 (-905 |#1|)) (-1200 $))) (-15 -4183 ((-606 (-905 |#1|))))) |%noBranch|))) (-163) (-874) (-606 (-1117)) (-1200 (-649 |#1|))) (T -436)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 *3)))) (-4 *3 (-163)) (-14 *6 (-1200 (-649 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))))) (-3324 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-436 *3 *4 *5 *6)) (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2472 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-436 *3 *4 *5 *6)) (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1) (-12 (-5 *1 (-436 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-874)) (-14 *4 (-606 (-1117))) (-14 *5 (-1200 (-649 *2))))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 *2)) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1200 (-1117))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1200 (-436 *3 *4 *5 *6))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2954 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) (-14 *6 (-606 *2)) (-14 *7 (-1200 (-649 *4))))) (-2954 (*1 *1 *2 *3) (-12 (-5 *2 (-1200 (-1117))) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4))))) (-4096 (*1 *2) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-1899 (*1 *2) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3631 (*1 *2 *1 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3198 (*1 *2) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-2661 (*1 *2 *1 *1) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-3113 (*1 *2) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *2 (-606 (-905 *4))) (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-529)) (-4 *4 (-163)) (-14 *5 (-874)) (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4))))) (-4183 (*1 *2) (-12 (-5 *2 (-606 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(-13 (-401 (-391 (-905 |#1|))) (-609 (-1084 |#2| (-391 (-905 |#1|)))) (-10 -8 (-15 -2341 ($ (-1200 (-391 (-905 |#1|))))) (-15 -3324 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2472 ((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed"))) (-15 -2954 ($)) (-15 -2954 ($ (-1117))) (-15 -2954 ($ (-1200 (-1117)))) (-15 -2954 ($ (-1200 $))) (-15 -2954 ($ (-1117) (-1200 $))) (-15 -2954 ($ (-1200 (-1117)) (-1200 $))) (IF (|has| |#1| (-529)) (PROGN (-15 -4096 ((-1113 (-391 (-905 |#1|))))) (-15 -1614 ((-1113 (-391 (-905 |#1|))) $)) (-15 -2632 ((-391 (-905 |#1|)) $)) (-15 -3541 ((-391 (-905 |#1|)) $)) (-15 -1899 ((-1113 (-391 (-905 |#1|))))) (-15 -1499 ((-1113 (-391 (-905 |#1|))) $)) (-15 -4176 ((-391 (-905 |#1|)) $)) (-15 -3997 ((-391 (-905 |#1|)) $)) (-15 -3631 ((-391 (-905 |#1|)) $ $)) (-15 -3198 ((-391 (-905 |#1|)))) (-15 -2661 ((-391 (-905 |#1|)) $ $)) (-15 -3113 ((-391 (-905 |#1|)))) (-15 -4183 ((-606 (-905 |#1|)) (-1200 $))) (-15 -4183 ((-606 (-905 |#1|))))) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 13)) (-3757 (((-606 (-818 |#1|)) $) 75)) (-3588 (((-1113 $) $ (-818 |#1|)) 46) (((-1113 |#2|) $) 118)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) 21) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 44) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) 42) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-2202 (($ $ (-606 (-537))) 80)) (-3940 (($ $) 68)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| |#3| $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 58)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) 123) (($ (-1113 $) (-818 |#1|)) 52)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) 59)) (-3733 (($ |#2| |#3|) 28) (($ $ (-818 |#1|) (-731)) 30) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 ((|#3| $) NIL) (((-731) $ (-818 |#1|)) 50) (((-606 (-731)) $ (-606 (-818 |#1|))) 57)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 |#3| |#3|) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) 39)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) 41)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 40)) (-3890 ((|#2| $) 116)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) 128 (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) 87) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) 90) (($ $ (-818 |#1|) $) 85) (($ $ (-606 (-818 |#1|)) (-606 $)) 106)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) 53) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 ((|#3| $) 67) (((-731) $ (-818 |#1|)) 37) (((-606 (-731)) $ (-606 (-818 |#1|))) 56)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) 125 (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) 145) (($ (-537)) NIL) (($ |#2|) 86) (($ (-818 |#1|)) 31) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ |#3|) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) 17 T CONST)) (-2943 (($) 25 T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) 64 (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 111)) (** (($ $ (-874)) NIL) (($ $ (-731)) 109)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 29) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-437 |#1| |#2| |#3|) (-13 (-902 |#2| |#3| (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) (-606 (-1117)) (-998) (-223 (-2258 |#1|) (-731))) (T -437)) +((-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-14 *3 (-606 (-1117))) (-5 *1 (-437 *3 *4 *5)) (-4 *4 (-998)) (-4 *5 (-223 (-2258 *3) (-731)))))) +(-13 (-902 |#2| |#3| (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) +((-3823 (((-111) |#1| (-606 |#2|)) 69)) (-3920 (((-3 (-1200 (-606 |#2|)) "failed") (-731) |#1| (-606 |#2|)) 78)) (-2433 (((-3 (-606 |#2|) "failed") |#2| |#1| (-1200 (-606 |#2|))) 80)) (-1818 ((|#2| |#2| |#1|) 28)) (-3170 (((-731) |#2| (-606 |#2|)) 20))) +(((-438 |#1| |#2|) (-10 -7 (-15 -1818 (|#2| |#2| |#1|)) (-15 -3170 ((-731) |#2| (-606 |#2|))) (-15 -3920 ((-3 (-1200 (-606 |#2|)) "failed") (-731) |#1| (-606 |#2|))) (-15 -2433 ((-3 (-606 |#2|) "failed") |#2| |#1| (-1200 (-606 |#2|)))) (-15 -3823 ((-111) |#1| (-606 |#2|)))) (-291) (-1176 |#1|)) (T -438)) +((-3823 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *5)) (-4 *5 (-1176 *3)) (-4 *3 (-291)) (-5 *2 (-111)) (-5 *1 (-438 *3 *5)))) (-2433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1200 (-606 *3))) (-4 *4 (-291)) (-5 *2 (-606 *3)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1176 *4)))) (-3920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-731)) (-4 *4 (-291)) (-4 *6 (-1176 *4)) (-5 *2 (-1200 (-606 *6))) (-5 *1 (-438 *4 *6)) (-5 *5 (-606 *6)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-291)) (-5 *2 (-731)) (-5 *1 (-438 *5 *3)))) (-1818 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1176 *3))))) +(-10 -7 (-15 -1818 (|#2| |#2| |#1|)) (-15 -3170 ((-731) |#2| (-606 |#2|))) (-15 -3920 ((-3 (-1200 (-606 |#2|)) "failed") (-731) |#1| (-606 |#2|))) (-15 -2433 ((-3 (-606 |#2|) "failed") |#2| |#1| (-1200 (-606 |#2|)))) (-15 -3823 ((-111) |#1| (-606 |#2|)))) +((-3622 (((-402 |#5|) |#5|) 24))) +(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3622 ((-402 |#5|) |#5|))) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117))))) (-753) (-529) (-529) (-902 |#4| |#2| |#1|)) (T -439)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *5 (-753)) (-4 *7 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-439 *4 *5 *6 *7 *3)) (-4 *6 (-529)) (-4 *3 (-902 *7 *5 *4))))) +(-10 -7 (-15 -3622 ((-402 |#5|) |#5|))) +((-1541 ((|#3|) 37)) (-2298 (((-1113 |#4|) (-1113 |#4|) (-1113 |#4|)) 33))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2298 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -1541 (|#3|))) (-753) (-807) (-862) (-902 |#3| |#1| |#2|)) (T -440)) +((-1541 (*1 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) (-5 *1 (-440 *3 *4 *2 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-862)) (-5 *1 (-440 *3 *4 *5 *6))))) +(-10 -7 (-15 -2298 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -1541 (|#3|))) +((-3622 (((-402 (-1113 |#1|)) (-1113 |#1|)) 43))) +(((-441 |#1|) (-10 -7 (-15 -3622 ((-402 (-1113 |#1|)) (-1113 |#1|)))) (-291)) (T -441)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-291)) (-5 *2 (-402 (-1113 *4))) (-5 *1 (-441 *4)) (-5 *3 (-1113 *4))))) +(-10 -7 (-15 -3622 ((-402 (-1113 |#1|)) (-1113 |#1|)))) +((-3815 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-731))) 42) (((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-731))) 41) (((-51) |#2| (-1117) (-278 |#2|)) 35) (((-51) (-1 |#2| (-537)) (-278 |#2|)) 28)) (-2411 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 80) (((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 79) (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537))) 78) (((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537))) 77) (((-51) |#2| (-1117) (-278 |#2|)) 72) (((-51) (-1 |#2| (-537)) (-278 |#2|)) 71)) (-3839 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 66) (((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))) 64)) (-3827 (((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537))) 48) (((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537))) 47))) +(((-442 |#1| |#2|) (-10 -7 (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-731)))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-731)))) (-15 -3827 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -3827 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -3839 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -3839 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -442)) +((-2411 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) (-2411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) (-4 *8 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) (-2411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) (-4 *7 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *5 *6)))) (-3839 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) (-3839 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) (-4 *8 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) (-3827 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) (-3827 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) (-4 *7 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) (-3815 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-731))) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-731))) (-4 *7 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) (-3815 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) (-3815 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) (-4 *6 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-51)) (-5 *1 (-442 *5 *6))))) +(-10 -7 (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -3815 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-731)))) (-15 -3815 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-731)))) (-15 -3827 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -3827 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -3839 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -3839 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|))) (-15 -2411 ((-51) (-1 |#2| (-537)) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-537)))) (-15 -2411 ((-51) (-1 |#2| (-391 (-537))) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537)))) (-15 -2411 ((-51) |#2| (-1117) (-278 |#2|) (-1167 (-391 (-537))) (-391 (-537))))) +((-1818 ((|#2| |#2| |#1|) 15)) (-2086 (((-606 |#2|) |#2| (-606 |#2|) |#1| (-874)) 69)) (-4130 (((-2 (|:| |plist| (-606 |#2|)) (|:| |modulo| |#1|)) |#2| (-606 |#2|) |#1| (-874)) 60))) +(((-443 |#1| |#2|) (-10 -7 (-15 -4130 ((-2 (|:| |plist| (-606 |#2|)) (|:| |modulo| |#1|)) |#2| (-606 |#2|) |#1| (-874))) (-15 -2086 ((-606 |#2|) |#2| (-606 |#2|) |#1| (-874))) (-15 -1818 (|#2| |#2| |#1|))) (-291) (-1176 |#1|)) (T -443)) +((-1818 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1176 *3)))) (-2086 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-606 *3)) (-5 *5 (-874)) (-4 *3 (-1176 *4)) (-4 *4 (-291)) (-5 *1 (-443 *4 *3)))) (-4130 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-874)) (-4 *5 (-291)) (-4 *3 (-1176 *5)) (-5 *2 (-2 (|:| |plist| (-606 *3)) (|:| |modulo| *5))) (-5 *1 (-443 *5 *3)) (-5 *4 (-606 *3))))) +(-10 -7 (-15 -4130 ((-2 (|:| |plist| (-606 |#2|)) (|:| |modulo| |#1|)) |#2| (-606 |#2|) |#1| (-874))) (-15 -2086 ((-606 |#2|) |#2| (-606 |#2|) |#1| (-874))) (-15 -1818 (|#2| |#2| |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 28)) (-3492 (($ |#3|) 25)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) 32)) (-3147 (($ |#2| |#4| $) 33)) (-3733 (($ |#2| (-674 |#3| |#4| |#5|)) 24)) (-3901 (((-674 |#3| |#4| |#5|) $) 15)) (-2369 ((|#3| $) 19)) (-2729 ((|#4| $) 17)) (-3912 ((|#2| $) 29)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-4139 (($ |#2| |#3| |#4|) 26)) (-2928 (($) 36 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 34)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-444 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-678 |#6|) (-678 |#2|) (-10 -8 (-15 -3912 (|#2| $)) (-15 -3901 ((-674 |#3| |#4| |#5|) $)) (-15 -2729 (|#4| $)) (-15 -2369 (|#3| $)) (-15 -3940 ($ $)) (-15 -3733 ($ |#2| (-674 |#3| |#4| |#5|))) (-15 -3492 ($ |#3|)) (-15 -4139 ($ |#2| |#3| |#4|)) (-15 -3147 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-606 (-1117)) (-163) (-807) (-223 (-2258 |#1|) (-731)) (-1 (-111) (-2 (|:| -2009 |#3|) (|:| -3283 |#4|)) (-2 (|:| -2009 |#3|) (|:| -3283 |#4|))) (-902 |#2| |#4| (-818 |#1|))) (T -444)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *6 (-223 (-2258 *3) (-731))) (-14 *7 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) (-2 (|:| -2009 *5) (|:| -3283 *6)))) (-5 *1 (-444 *3 *4 *5 *6 *7 *2)) (-4 *5 (-807)) (-4 *2 (-902 *4 *6 (-818 *3))))) (-3912 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *5 (-223 (-2258 *3) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) (-2 (|:| -2009 *4) (|:| -3283 *5)))) (-4 *2 (-163)) (-5 *1 (-444 *3 *2 *4 *5 *6 *7)) (-4 *4 (-807)) (-4 *7 (-902 *2 *5 (-818 *3))))) (-3901 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *6 (-223 (-2258 *3) (-731))) (-14 *7 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) (-2 (|:| -2009 *5) (|:| -3283 *6)))) (-5 *2 (-674 *5 *6 *7)) (-5 *1 (-444 *3 *4 *5 *6 *7 *8)) (-4 *5 (-807)) (-4 *8 (-902 *4 *6 (-818 *3))))) (-2729 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-14 *6 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *2)) (-2 (|:| -2009 *5) (|:| -3283 *2)))) (-4 *2 (-223 (-2258 *3) (-731))) (-5 *1 (-444 *3 *4 *5 *2 *6 *7)) (-4 *5 (-807)) (-4 *7 (-902 *4 *2 (-818 *3))))) (-2369 (*1 *2 *1) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *5 (-223 (-2258 *3) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) (-2 (|:| -2009 *2) (|:| -3283 *5)))) (-4 *2 (-807)) (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) (-4 *7 (-902 *4 *5 (-818 *3))))) (-3940 (*1 *1 *1) (-12 (-14 *2 (-606 (-1117))) (-4 *3 (-163)) (-4 *5 (-223 (-2258 *2) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) (-2 (|:| -2009 *4) (|:| -3283 *5)))) (-5 *1 (-444 *2 *3 *4 *5 *6 *7)) (-4 *4 (-807)) (-4 *7 (-902 *3 *5 (-818 *2))))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-674 *5 *6 *7)) (-4 *5 (-807)) (-4 *6 (-223 (-2258 *4) (-731))) (-14 *7 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) (-2 (|:| -2009 *5) (|:| -3283 *6)))) (-14 *4 (-606 (-1117))) (-4 *2 (-163)) (-5 *1 (-444 *4 *2 *5 *6 *7 *8)) (-4 *8 (-902 *2 *6 (-818 *4))))) (-3492 (*1 *1 *2) (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) (-4 *5 (-223 (-2258 *3) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) (-2 (|:| -2009 *2) (|:| -3283 *5)))) (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) (-4 *2 (-807)) (-4 *7 (-902 *4 *5 (-818 *3))))) (-4139 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-606 (-1117))) (-4 *2 (-163)) (-4 *4 (-223 (-2258 *5) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *4)) (-2 (|:| -2009 *3) (|:| -3283 *4)))) (-5 *1 (-444 *5 *2 *3 *4 *6 *7)) (-4 *3 (-807)) (-4 *7 (-902 *2 *4 (-818 *5))))) (-3147 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-606 (-1117))) (-4 *2 (-163)) (-4 *3 (-223 (-2258 *4) (-731))) (-14 *6 (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *3)) (-2 (|:| -2009 *5) (|:| -3283 *3)))) (-5 *1 (-444 *4 *2 *5 *3 *6 *7)) (-4 *5 (-807)) (-4 *7 (-902 *2 *3 (-818 *4)))))) +(-13 (-678 |#6|) (-678 |#2|) (-10 -8 (-15 -3912 (|#2| $)) (-15 -3901 ((-674 |#3| |#4| |#5|) $)) (-15 -2729 (|#4| $)) (-15 -2369 (|#3| $)) (-15 -3940 ($ $)) (-15 -3733 ($ |#2| (-674 |#3| |#4| |#5|))) (-15 -3492 ($ |#3|)) (-15 -4139 ($ |#2| |#3| |#4|)) (-15 -3147 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3230 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-445 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3230 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-753) (-807) (-529) (-902 |#3| |#1| |#2|) (-13 (-989 (-391 (-537))) (-347) (-10 -8 (-15 -2341 ($ |#4|)) (-15 -3301 (|#4| $)) (-15 -3315 (|#4| $))))) (T -445)) +((-3230 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-807)) (-4 *5 (-753)) (-4 *6 (-529)) (-4 *7 (-902 *6 *5 *3)) (-5 *1 (-445 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-989 (-391 (-537))) (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $)))))))) +(-10 -7 (-15 -3230 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2330 (((-111) $ $) NIL)) (-3757 (((-606 |#3|) $) 41)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) NIL (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 47)) (-3958 (($ (-606 |#4|)) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300)))) (-3661 (((-606 |#4|) $) 18 (|has| $ (-6 -4300)))) (-1464 ((|#3| $) 45)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 14 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2528 (((-1064) $) NIL)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 39)) (-3425 (($) 17)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 16)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513)))) (($ (-606 |#4|)) 49)) (-2350 (($ (-606 |#4|)) 13)) (-1713 (($ $ |#3|) NIL)) (-2488 (($ $ |#3|) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 38) (((-606 |#4|) $) 48)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 30)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-446 |#1| |#2| |#3| |#4|) (-13 (-929 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3996 ($ (-606 |#4|))) (-6 -4300) (-6 -4301))) (-998) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -446)) +((-3996 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-446 *3 *4 *5 *6))))) +(-13 (-929 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3996 ($ (-606 |#4|))) (-6 -4300) (-6 -4301))) +((-2928 (($) 11)) (-2943 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-447 |#1| |#2| |#3|) (-10 -8 (-15 -2943 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2928 (|#1|))) (-448 |#2| |#3|) (-163) (-23)) (T -447)) +NIL +(-10 -8 (-15 -2943 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2928 (|#1|))) +((-2330 (((-111) $ $) 7)) (-1516 (((-3 |#1| "failed") $) 26)) (-3958 ((|#1| $) 25)) (-3371 (($ $ $) 23)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 ((|#2| $) 19)) (-2341 (((-816) $) 11) (($ |#1|) 27)) (-2928 (($) 18 T CONST)) (-2943 (($) 24 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 15) (($ $ $) 13)) (-2318 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-448 |#1| |#2|) (-134) (-163) (-23)) (T -448)) +((-2943 (*1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-3371 (*1 *1 *1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) +(-13 (-453 |t#1| |t#2|) (-989 |t#1|) (-10 -8 (-15 (-2943) ($) -2787) (-15 -3371 ($ $ $)))) +(((-100) . T) ((-579 (-816)) . T) ((-453 |#1| |#2|) . T) ((-989 |#1|) . T) ((-1045) . T)) +((-3518 (((-1200 (-1200 (-537))) (-1200 (-1200 (-537))) (-874)) 18)) (-3257 (((-1200 (-1200 (-537))) (-874)) 16))) +(((-449) (-10 -7 (-15 -3518 ((-1200 (-1200 (-537))) (-1200 (-1200 (-537))) (-874))) (-15 -3257 ((-1200 (-1200 (-537))) (-874))))) (T -449)) +((-3257 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 (-537)))) (-5 *1 (-449)))) (-3518 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 (-1200 (-537)))) (-5 *3 (-874)) (-5 *1 (-449))))) +(-10 -7 (-15 -3518 ((-1200 (-1200 (-537))) (-1200 (-1200 (-537))) (-874))) (-15 -3257 ((-1200 (-1200 (-537))) (-874)))) +((-1709 (((-537) (-537)) 30) (((-537)) 22)) (-2634 (((-537) (-537)) 26) (((-537)) 18)) (-1513 (((-537) (-537)) 28) (((-537)) 20)) (-4189 (((-111) (-111)) 12) (((-111)) 10)) (-2576 (((-111) (-111)) 11) (((-111)) 9)) (-3922 (((-111) (-111)) 24) (((-111)) 15))) +(((-450) (-10 -7 (-15 -2576 ((-111))) (-15 -4189 ((-111))) (-15 -2576 ((-111) (-111))) (-15 -4189 ((-111) (-111))) (-15 -3922 ((-111))) (-15 -1513 ((-537))) (-15 -2634 ((-537))) (-15 -1709 ((-537))) (-15 -3922 ((-111) (-111))) (-15 -1513 ((-537) (-537))) (-15 -2634 ((-537) (-537))) (-15 -1709 ((-537) (-537))))) (T -450)) +((-1709 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-2634 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-1709 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-2634 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-1513 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) (-3922 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-4189 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-4189 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) (-2576 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) +(-10 -7 (-15 -2576 ((-111))) (-15 -4189 ((-111))) (-15 -2576 ((-111) (-111))) (-15 -4189 ((-111) (-111))) (-15 -3922 ((-111))) (-15 -1513 ((-537))) (-15 -2634 ((-537))) (-15 -1709 ((-537))) (-15 -3922 ((-111) (-111))) (-15 -1513 ((-537) (-537))) (-15 -2634 ((-537) (-537))) (-15 -1709 ((-537) (-537)))) +((-2330 (((-111) $ $) NIL)) (-1547 (((-606 (-363)) $) 28) (((-606 (-363)) $ (-606 (-363))) 96)) (-1751 (((-606 (-1040 (-363))) $) 16) (((-606 (-1040 (-363))) $ (-606 (-1040 (-363)))) 94)) (-2172 (((-606 (-606 (-896 (-210)))) (-606 (-606 (-896 (-210)))) (-606 (-827))) 45)) (-1880 (((-606 (-606 (-896 (-210)))) $) 90)) (-2385 (((-1205) $ (-896 (-210)) (-827)) 108)) (-1295 (($ $) 89) (($ (-606 (-606 (-896 (-210))))) 99) (($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874))) 98) (($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)) (-606 (-247))) 100)) (-1654 (((-1100) $) NIL)) (-2926 (((-537) $) 71)) (-2528 (((-1064) $) NIL)) (-2534 (($) 97)) (-3616 (((-606 (-210)) (-606 (-606 (-896 (-210))))) 56)) (-2115 (((-1205) $ (-606 (-896 (-210))) (-827) (-827) (-874)) 102) (((-1205) $ (-896 (-210))) 104) (((-1205) $ (-896 (-210)) (-827) (-827) (-874)) 103)) (-2341 (((-816) $) 114) (($ (-606 (-606 (-896 (-210))))) 109)) (-3462 (((-1205) $ (-896 (-210))) 107)) (-2244 (((-111) $ $) NIL))) +(((-451) (-13 (-1045) (-10 -8 (-15 -2534 ($)) (-15 -1295 ($ $)) (-15 -1295 ($ (-606 (-606 (-896 (-210)))))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)) (-606 (-247)))) (-15 -1880 ((-606 (-606 (-896 (-210)))) $)) (-15 -2926 ((-537) $)) (-15 -1751 ((-606 (-1040 (-363))) $)) (-15 -1751 ((-606 (-1040 (-363))) $ (-606 (-1040 (-363))))) (-15 -1547 ((-606 (-363)) $)) (-15 -1547 ((-606 (-363)) $ (-606 (-363)))) (-15 -2115 ((-1205) $ (-606 (-896 (-210))) (-827) (-827) (-874))) (-15 -2115 ((-1205) $ (-896 (-210)))) (-15 -2115 ((-1205) $ (-896 (-210)) (-827) (-827) (-874))) (-15 -3462 ((-1205) $ (-896 (-210)))) (-15 -2385 ((-1205) $ (-896 (-210)) (-827))) (-15 -2341 ($ (-606 (-606 (-896 (-210)))))) (-15 -2341 ((-816) $)) (-15 -2172 ((-606 (-606 (-896 (-210)))) (-606 (-606 (-896 (-210)))) (-606 (-827)))) (-15 -3616 ((-606 (-210)) (-606 (-606 (-896 (-210))))))))) (T -451)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-451)))) (-2534 (*1 *1) (-5 *1 (-451))) (-1295 (*1 *1 *1) (-5 *1 (-451))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) (-1295 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) (-5 *4 (-606 (-874))) (-5 *1 (-451)))) (-1295 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) (-5 *4 (-606 (-874))) (-5 *5 (-606 (-247))) (-5 *1 (-451)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-451)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) (-1547 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) (-2115 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2115 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *2 (-1205)) (-5 *1 (-451)))) (-3462 (*1 *2 *1 *3) (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-451)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) (-2172 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) (-5 *1 (-451)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-606 (-210))) (-5 *1 (-451))))) +(-13 (-1045) (-10 -8 (-15 -2534 ($)) (-15 -1295 ($ $)) (-15 -1295 ($ (-606 (-606 (-896 (-210)))))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)))) (-15 -1295 ($ (-606 (-606 (-896 (-210)))) (-606 (-827)) (-606 (-827)) (-606 (-874)) (-606 (-247)))) (-15 -1880 ((-606 (-606 (-896 (-210)))) $)) (-15 -2926 ((-537) $)) (-15 -1751 ((-606 (-1040 (-363))) $)) (-15 -1751 ((-606 (-1040 (-363))) $ (-606 (-1040 (-363))))) (-15 -1547 ((-606 (-363)) $)) (-15 -1547 ((-606 (-363)) $ (-606 (-363)))) (-15 -2115 ((-1205) $ (-606 (-896 (-210))) (-827) (-827) (-874))) (-15 -2115 ((-1205) $ (-896 (-210)))) (-15 -2115 ((-1205) $ (-896 (-210)) (-827) (-827) (-874))) (-15 -3462 ((-1205) $ (-896 (-210)))) (-15 -2385 ((-1205) $ (-896 (-210)) (-827))) (-15 -2341 ($ (-606 (-606 (-896 (-210)))))) (-15 -2341 ((-816) $)) (-15 -2172 ((-606 (-606 (-896 (-210)))) (-606 (-606 (-896 (-210)))) (-606 (-827)))) (-15 -3616 ((-606 (-210)) (-606 (-606 (-896 (-210)))))))) +((-2329 (($ $) NIL) (($ $ $) 11))) +(((-452 |#1| |#2| |#3|) (-10 -8 (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|))) (-453 |#2| |#3|) (-163) (-23)) (T -452)) +NIL +(-10 -8 (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 ((|#2| $) 19)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 15) (($ $ $) 13)) (-2318 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-453 |#1| |#2|) (-134) (-163) (-23)) (T -453)) +((-2872 (*1 *2 *1) (-12 (-4 *1 (-453 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) (-2928 (*1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) (-2329 (*1 *1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23))))) +(-13 (-1045) (-10 -8 (-15 -2872 (|t#2| $)) (-15 (-2928) ($) -2787) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2329 ($ $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2827 (((-3 (-606 (-463 |#1| |#2|)) "failed") (-606 (-463 |#1| |#2|)) (-606 (-818 |#1|))) 92)) (-3628 (((-606 (-606 (-232 |#1| |#2|))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))) 90)) (-3174 (((-2 (|:| |dpolys| (-606 (-232 |#1| |#2|))) (|:| |coords| (-606 (-537)))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))) 61))) +(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3628 ((-606 (-606 (-232 |#1| |#2|))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -2827 ((-3 (-606 (-463 |#1| |#2|)) "failed") (-606 (-463 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -3174 ((-2 (|:| |dpolys| (-606 (-232 |#1| |#2|))) (|:| |coords| (-606 (-537)))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))))) (-606 (-1117)) (-435) (-435)) (T -454)) +((-3174 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-2 (|:| |dpolys| (-606 (-232 *5 *6))) (|:| |coords| (-606 (-537))))) (-5 *1 (-454 *5 *6 *7)) (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435)))) (-2827 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-606 (-818 *4))) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-454 *4 *5 *6)) (-4 *6 (-435)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-606 (-606 (-232 *5 *6)))) (-5 *1 (-454 *5 *6 *7)) (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435))))) +(-10 -7 (-15 -3628 ((-606 (-606 (-232 |#1| |#2|))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -2827 ((-3 (-606 (-463 |#1| |#2|)) "failed") (-606 (-463 |#1| |#2|)) (-606 (-818 |#1|)))) (-15 -3174 ((-2 (|:| |dpolys| (-606 (-232 |#1| |#2|))) (|:| |coords| (-606 (-537)))) (-606 (-232 |#1| |#2|)) (-606 (-818 |#1|))))) +((-3490 (((-3 $ "failed") $) 11)) (-1978 (($ $ $) 18)) (-1674 (($ $ $) 19)) (-2340 (($ $ $) 9)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 17))) +(((-455 |#1|) (-10 -8 (-15 -1674 (|#1| |#1| |#1|)) (-15 -1978 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) (-456)) (T -455)) +NIL +(-10 -8 (-15 -1674 (|#1| |#1| |#1|)) (-15 -1978 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-3832 (($) 18 T CONST)) (-3490 (((-3 $ "failed") $) 15)) (-2836 (((-111) $) 17)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 24)) (-2528 (((-1064) $) 10)) (-1978 (($ $ $) 21)) (-1674 (($ $ $) 20)) (-2341 (((-816) $) 11)) (-2943 (($) 19 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 23)) (** (($ $ (-874)) 13) (($ $ (-731)) 16) (($ $ (-537)) 22)) (* (($ $ $) 14))) +(((-456) (-134)) (T -456)) +((-3865 (*1 *1 *1) (-4 *1 (-456))) (-2340 (*1 *1 *1 *1) (-4 *1 (-456))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-456)) (-5 *2 (-537)))) (-1978 (*1 *1 *1 *1) (-4 *1 (-456))) (-1674 (*1 *1 *1 *1) (-4 *1 (-456)))) +(-13 (-687) (-10 -8 (-15 -3865 ($ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ (-537))) (-6 -4297) (-15 -1978 ($ $ $)) (-15 -1674 ($ $ $)))) +(((-100) . T) ((-579 (-816)) . T) ((-687) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 17)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) NIL) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 22)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 26 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 33 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 27 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) 25 (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $ (-1196 |#2|)) 15)) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1196 |#2|)) NIL) (($ (-1185 |#1| |#2| |#3|)) 9) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 18)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 24)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-457 |#1| |#2| |#3|) (-13 (-1181 |#1|) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -2341 ($ (-1185 |#1| |#2| |#3|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -457)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-457 *3 *4 *5)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1181 |#1|) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -2341 ($ (-1185 |#1| |#2| |#3|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) 18)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 19)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 16)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-458 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2|) (-1045) (-1045) (-1130 |#1| |#2|) |#2|) (T -458)) +NIL +(-1130 |#1| |#2|) +((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) NIL)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) 26 (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 39)) (-2627 ((|#4| |#4| $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3661 (((-606 |#4|) $) 16 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 33)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 17 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-2375 (((-3 |#4| "failed") $) 37)) (-2422 (((-606 |#4|) $) NIL)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 35)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) 47)) (-1540 (($ $ |#4|) NIL)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 13)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 12)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 20)) (-1713 (($ $ |#3|) 42)) (-2488 (($ $ |#3|) 44)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 31) (((-606 |#4|) $) 40)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3042 (((-111) |#3| $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-459 |#1| |#2| |#3| |#4|) (-1147 |#1| |#2| |#3| |#4|) (-529) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -459)) +NIL +(-1147 |#1| |#2| |#3| |#4|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3338 (($) 18)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3996 (((-363) $) 22) (((-210) $) 25) (((-391 (-1113 (-537))) $) 19) (((-513) $) 52)) (-2341 (((-816) $) 50) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (((-210) $) 24) (((-363) $) 21)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 36 T CONST)) (-2943 (($) 11 T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-460) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))) (-973) (-579 (-210)) (-579 (-363)) (-580 (-391 (-1113 (-537)))) (-580 (-513)) (-10 -8 (-15 -3338 ($))))) (T -460)) +((-3338 (*1 *1) (-5 *1 (-460)))) +(-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))) (-973) (-579 (-210)) (-579 (-363)) (-580 (-391 (-1113 (-537)))) (-580 (-513)) (-10 -8 (-15 -3338 ($)))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) 16)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 20)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 18)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) 13)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 19)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 11 (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) 15 (|has| $ (-6 -4300))))) +(((-461 |#1| |#2| |#3|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045) (-1100)) (T -461)) +NIL +(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) +((-4106 (((-537) (-537) (-537)) 7)) (-2167 (((-111) (-537) (-537) (-537) (-537)) 11)) (-1873 (((-1200 (-606 (-537))) (-731) (-731)) 23))) +(((-462) (-10 -7 (-15 -4106 ((-537) (-537) (-537))) (-15 -2167 ((-111) (-537) (-537) (-537) (-537))) (-15 -1873 ((-1200 (-606 (-537))) (-731) (-731))))) (T -462)) +((-1873 (*1 *2 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1200 (-606 (-537)))) (-5 *1 (-462)))) (-2167 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-462)))) (-4106 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-462))))) +(-10 -7 (-15 -4106 ((-537) (-537) (-537))) (-15 -2167 ((-111) (-537) (-537) (-537) (-537))) (-15 -1873 ((-1200 (-606 (-537))) (-731) (-731)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-818 |#1|)) $) NIL)) (-3588 (((-1113 $) $ (-818 |#1|)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-2202 (($ $ (-606 (-537))) NIL)) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-464 (-2258 |#1|) (-731)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) NIL) (($ (-1113 $) (-818 |#1|)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-464 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 (((-464 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-464 (-2258 |#1|) (-731)) (-464 (-2258 |#1|) (-731))) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) NIL) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) NIL) (($ $ (-818 |#1|) $) NIL) (($ $ (-606 (-818 |#1|)) (-606 $)) NIL)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 (((-464 (-2258 |#1|) (-731)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-818 |#1|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-464 (-2258 |#1|) (-731))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-463 |#1| |#2|) (-13 (-902 |#2| (-464 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) (-606 (-1117)) (-998)) (T -463)) +((-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-463 *3 *4)) (-14 *3 (-606 (-1117))) (-4 *4 (-998))))) +(-13 (-902 |#2| (-464 (-2258 |#1|) (-731)) (-818 |#1|)) (-10 -8 (-15 -2202 ($ $ (-606 (-537)))))) +((-2330 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-1656 (((-111) $) NIL (|has| |#2| (-129)))) (-3492 (($ (-874)) NIL (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#2| (-352)))) (-2537 (((-537) $) NIL (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) NIL (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) NIL (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) NIL (|has| |#2| (-687)))) (-1618 (($) NIL (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) 11)) (-3797 (((-111) $) NIL (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#2| (-687)))) (-2840 (((-111) $) NIL (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#2| (-352)))) (-2528 (((-1064) $) NIL (|has| |#2| (-1045)))) (-3188 ((|#2| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) NIL)) (-3416 ((|#2| $ $) NIL (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) NIL)) (-1839 (((-131)) NIL (|has| |#2| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#2|) $) NIL) (($ (-537)) NIL (-1533 (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) NIL (|has| |#2| (-1045))) (((-816) $) NIL (|has| |#2| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#2| (-805)))) (-2928 (($) NIL (|has| |#2| (-129)) CONST)) (-2943 (($) NIL (|has| |#2| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2244 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2263 (((-111) $ $) 15 (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $ $) NIL (|has| |#2| (-998))) (($ $) NIL (|has| |#2| (-998)))) (-2318 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-731)) NIL (|has| |#2| (-687))) (($ $ (-874)) NIL (|has| |#2| (-687)))) (* (($ (-537) $) NIL (|has| |#2| (-998))) (($ $ $) NIL (|has| |#2| (-687))) (($ $ |#2|) NIL (|has| |#2| (-687))) (($ |#2| $) NIL (|has| |#2| (-687))) (($ (-731) $) NIL (|has| |#2| (-129))) (($ (-874) $) NIL (|has| |#2| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-464 |#1| |#2|) (-223 |#1| |#2|) (-731) (-753)) (T -464)) +NIL +(-223 |#1| |#2|) +((-2330 (((-111) $ $) NIL)) (-1520 (((-606 (-487)) $) 11)) (-3923 (((-487) $) 10)) (-1654 (((-1100) $) NIL)) (-3755 (($ (-487) (-606 (-487))) 9)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-465) (-13 (-1029) (-10 -8 (-15 -3755 ($ (-487) (-606 (-487)))) (-15 -3923 ((-487) $)) (-15 -1520 ((-606 (-487)) $))))) (T -465)) +((-3755 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-487))) (-5 *2 (-487)) (-5 *1 (-465)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-465)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-606 (-487))) (-5 *1 (-465))))) +(-13 (-1029) (-10 -8 (-15 -3755 ($ (-487) (-606 (-487)))) (-15 -3923 ((-487) $)) (-15 -1520 ((-606 (-487)) $)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1646 (($ $ $) 32)) (-1470 (($ $ $) 31)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3889 ((|#1| $) 26)) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 27)) (-3499 (($ |#1| $) 10)) (-2217 (($ (-606 |#1|)) 12)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1599 ((|#1| $) 23)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 9)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 29)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) 21 (|has| $ (-6 -4300))))) +(((-466 |#1|) (-13 (-921 |#1|) (-10 -8 (-15 -2217 ($ (-606 |#1|))))) (-807)) (T -466)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-466 *3))))) +(-13 (-921 |#1|) (-10 -8 (-15 -2217 ($ (-606 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ $) 69)) (-2315 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-3754 (((-397 |#2| (-391 |#2|) |#3| |#4|) $) 44)) (-2528 (((-1064) $) NIL)) (-1524 (((-3 |#4| "failed") $) 107)) (-1636 (($ (-397 |#2| (-391 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-537)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4035 (((-2 (|:| -3119 (-397 |#2| (-391 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2341 (((-816) $) 102)) (-2928 (($) 33 T CONST)) (-2244 (((-111) $ $) 109)) (-2329 (($ $) 72) (($ $ $) NIL)) (-2318 (($ $ $) 70)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 73))) +(((-467 |#1| |#2| |#3| |#4|) (-319 |#1| |#2| |#3| |#4|) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -467)) +NIL +(-319 |#1| |#2| |#3| |#4|) +((-2563 (((-537) (-606 (-537))) 30)) (-4143 ((|#1| (-606 |#1|)) 56)) (-1990 (((-606 |#1|) (-606 |#1|)) 57)) (-2744 (((-606 |#1|) (-606 |#1|)) 59)) (-2211 ((|#1| (-606 |#1|)) 58)) (-1835 (((-606 (-537)) (-606 |#1|)) 33))) +(((-468 |#1|) (-10 -7 (-15 -2211 (|#1| (-606 |#1|))) (-15 -4143 (|#1| (-606 |#1|))) (-15 -2744 ((-606 |#1|) (-606 |#1|))) (-15 -1990 ((-606 |#1|) (-606 |#1|))) (-15 -1835 ((-606 (-537)) (-606 |#1|))) (-15 -2563 ((-537) (-606 (-537))))) (-1176 (-537))) (T -468)) +((-2563 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-537)) (-5 *1 (-468 *4)) (-4 *4 (-1176 *2)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1176 (-537))) (-5 *2 (-606 (-537))) (-5 *1 (-468 *4)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537))))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537)))))) +(-10 -7 (-15 -2211 (|#1| (-606 |#1|))) (-15 -4143 (|#1| (-606 |#1|))) (-15 -2744 ((-606 |#1|) (-606 |#1|))) (-15 -1990 ((-606 |#1|) (-606 |#1|))) (-15 -1835 ((-606 (-537)) (-606 |#1|))) (-15 -2563 ((-537) (-606 (-537))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-537) $) NIL (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2050 (($ (-391 (-537))) 9)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) NIL)) (-3830 (((-537) $) NIL (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 8) (($ (-537)) NIL) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL) (((-956 16) $) 10)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-537) $) NIL (|has| (-537) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2340 (($ $ $) NIL) (($ (-537) (-537)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) NIL) (($ $ (-537)) NIL))) +(((-469) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 16) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2050 ($ (-391 (-537))))))) (T -469)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-956 16)) (-5 *1 (-469)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469))))) +(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -2341 ((-956 16) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2050 ($ (-391 (-537)))))) +((-3703 (((-606 |#2|) $) 23)) (-3122 (((-111) |#2| $) 28)) (-3206 (((-111) (-1 (-111) |#2|) $) 21)) (-4116 (($ $ (-606 (-278 |#2|))) 13) (($ $ (-278 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-606 |#2|) (-606 |#2|)) NIL)) (-2539 (((-731) (-1 (-111) |#2|) $) 22) (((-731) |#2| $) 26)) (-2341 (((-816) $) 37)) (-2030 (((-111) (-1 (-111) |#2|) $) 20)) (-2244 (((-111) $ $) 31)) (-2258 (((-731) $) 17))) +(((-470 |#1| |#2|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3703 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) (-471 |#2|) (-1154)) (T -470)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#2| |#2|)) (-15 -4116 (|#1| |#1| (-278 |#2|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#2|)))) (-15 -3122 ((-111) |#2| |#1|)) (-15 -2539 ((-731) |#2| |#1|)) (-15 -3703 ((-606 |#2|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#2|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-471 |#1|) (-134) (-1154)) (T -471)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3)) (-4 *3 (-1154)))) (-4081 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4301)) (-4 *1 (-471 *3)) (-4 *3 (-1154)))) (-2030 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-3206 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-2539 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) (-4 *4 (-1154)) (-5 *2 (-731)))) (-3661 (*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3)))) (-3703 (*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3)))) (-2539 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-731)))) (-3122 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (IF (|has| |t#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |t#1| (-1045)) (IF (|has| |t#1| (-293 |t#1|)) (-6 (-293 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4301)) (-15 -4081 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4300)) (PROGN (-15 -2030 ((-111) (-1 (-111) |t#1|) $)) (-15 -3206 ((-111) (-1 (-111) |t#1|) $)) (-15 -2539 ((-731) (-1 (-111) |t#1|) $)) (-15 -3661 ((-606 |t#1|) $)) (-15 -3703 ((-606 |t#1|) $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -2539 ((-731) |t#1| $)) (-15 -3122 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3701 (($ (-1100)) 8)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 14) (((-1100) $) 11)) (-2244 (((-111) $ $) 10))) +(((-472) (-13 (-1045) (-579 (-1100)) (-10 -8 (-15 -3701 ($ (-1100)))))) (T -472)) +((-3701 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-472))))) +(-13 (-1045) (-579 (-1100)) (-10 -8 (-15 -3701 ($ (-1100))))) +((-1403 (($ $) 15)) (-1378 (($ $) 24)) (-1429 (($ $) 12)) (-1441 (($ $) 10)) (-1415 (($ $) 17)) (-1389 (($ $) 22))) +(((-473 |#1|) (-10 -8 (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|))) (-474)) (T -473)) +NIL +(-10 -8 (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|))) +((-1403 (($ $) 11)) (-1378 (($ $) 10)) (-1429 (($ $) 9)) (-1441 (($ $) 8)) (-1415 (($ $) 7)) (-1389 (($ $) 6))) +(((-474) (-134)) (T -474)) +((-1403 (*1 *1 *1) (-4 *1 (-474))) (-1378 (*1 *1 *1) (-4 *1 (-474))) (-1429 (*1 *1 *1) (-4 *1 (-474))) (-1441 (*1 *1 *1) (-4 *1 (-474))) (-1415 (*1 *1 *1) (-4 *1 (-474))) (-1389 (*1 *1 *1) (-4 *1 (-474)))) +(-13 (-10 -8 (-15 -1389 ($ $)) (-15 -1415 ($ $)) (-15 -1441 ($ $)) (-15 -1429 ($ $)) (-15 -1378 ($ $)) (-15 -1403 ($ $)))) +((-3622 (((-402 |#4|) |#4| (-1 (-402 |#2|) |#2|)) 42))) +(((-475 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 |#2|) |#2|)))) (-347) (-1176 |#1|) (-13 (-347) (-141) (-685 |#1| |#2|)) (-1176 |#3|)) (T -475)) +((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-4 *7 (-13 (-347) (-141) (-685 *5 *6))) (-5 *2 (-402 *3)) (-5 *1 (-475 *5 *6 *7 *3)) (-4 *3 (-1176 *7))))) +(-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 |#2|) |#2|)))) +((-2330 (((-111) $ $) NIL)) (-3753 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-2652 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1656 (((-111) $) 39)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2789 (((-111) $ $) 64)) (-3852 (((-606 (-578 $)) $) 48)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1519 (($ $ (-278 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1974 (((-606 $) (-1113 $) (-1117)) NIL) (((-606 $) (-1113 $)) NIL) (((-606 $) (-905 $)) NIL)) (-4190 (($ (-1113 $) (-1117)) NIL) (($ (-1113 $)) NIL) (($ (-905 $)) NIL)) (-1516 (((-3 (-578 $) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL)) (-3958 (((-578 $) $) NIL) (((-537) $) NIL) (((-391 (-537)) $) 50)) (-3563 (($ $ $) NIL)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-391 (-537)))) (|:| |vec| (-1200 (-391 (-537))))) (-649 $) (-1200 $)) NIL) (((-649 (-391 (-537))) (-649 $)) NIL)) (-3195 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3886 (($ $) NIL) (($ (-606 $)) NIL)) (-3350 (((-606 (-113)) $) NIL)) (-3979 (((-113) (-113)) NIL)) (-2836 (((-111) $) 42)) (-2353 (((-111) $) NIL (|has| $ (-989 (-537))))) (-3301 (((-1069 (-537) (-578 $)) $) 37)) (-2590 (($ $ (-537)) NIL)) (-2055 (((-1113 $) (-1113 $) (-578 $)) 78) (((-1113 $) (-1113 $) (-606 (-578 $))) 55) (($ $ (-578 $)) 67) (($ $ (-606 (-578 $))) 68)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2040 (((-1113 $) (-578 $)) 65 (|has| $ (-998)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 $ $) (-578 $)) NIL)) (-2765 (((-3 (-578 $) "failed") $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3576 (((-606 (-578 $)) $) NIL)) (-3381 (($ (-113) $) NIL) (($ (-113) (-606 $)) NIL)) (-3215 (((-111) $ (-113)) NIL) (((-111) $ (-1117)) NIL)) (-3865 (($ $) NIL)) (-2545 (((-731) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-2482 (((-111) $ $) NIL) (((-111) $ (-1117)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL (|has| $ (-989 (-537))))) (-4116 (($ $ (-578 $) $) NIL) (($ $ (-606 (-578 $)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-1117)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-1117) (-1 $ (-606 $))) NIL) (($ $ (-1117) (-1 $ $)) NIL) (($ $ (-606 (-113)) (-606 (-1 $ $))) NIL) (($ $ (-606 (-113)) (-606 (-1 $ (-606 $)))) NIL) (($ $ (-113) (-1 $ (-606 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1930 (((-731) $) NIL)) (-1922 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-606 $)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) 36)) (-3315 (((-1069 (-537) (-578 $)) $) 20)) (-2529 (($ $) NIL (|has| $ (-998)))) (-3996 (((-363) $) 92) (((-210) $) 100) (((-160 (-363)) $) 108)) (-2341 (((-816) $) NIL) (($ (-578 $)) NIL) (($ (-391 (-537))) NIL) (($ $) NIL) (($ (-537)) NIL) (($ (-1069 (-537) (-578 $))) 21)) (-3654 (((-731)) NIL)) (-1822 (($ $) NIL) (($ (-606 $)) NIL)) (-2336 (((-111) (-113)) 84)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 10 T CONST)) (-2943 (($) 22 T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 24)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2340 (($ $ $) 44)) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-391 (-537))) NIL) (($ $ (-537)) 46) (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ $ $) 27) (($ (-537) $) NIL) (($ (-731) $) NIL) (($ (-874) $) NIL))) +(((-476) (-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2789 ((-111) $ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $))))))) (T -476)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) (-3195 (*1 *1 *1) (-5 *1 (-476))) (-2789 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-476)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-578 (-476))) (-5 *1 (-476)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-606 (-578 (-476)))) (-5 *1 (-476)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-476))) (-5 *1 (-476)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-476)))) (-5 *1 (-476))))) +(-13 (-286) (-27) (-989 (-537)) (-989 (-391 (-537))) (-602 (-537)) (-973) (-602 (-391 (-537))) (-141) (-580 (-160 (-363))) (-218) (-10 -8 (-15 -2341 ($ (-1069 (-537) (-578 $)))) (-15 -3301 ((-1069 (-537) (-578 $)) $)) (-15 -3315 ((-1069 (-537) (-578 $)) $)) (-15 -3195 ($ $)) (-15 -2789 ((-111) $ $)) (-15 -2055 ((-1113 $) (-1113 $) (-578 $))) (-15 -2055 ((-1113 $) (-1113 $) (-606 (-578 $)))) (-15 -2055 ($ $ (-578 $))) (-15 -2055 ($ $ (-606 (-578 $)))))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 25 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 22 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 21)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 14)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 12 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) 23 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) 10 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 13)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 24) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 9 (|has| $ (-6 -4300))))) +(((-477 |#1| |#2|) (-19 |#1|) (-1154) (-537)) (T -477)) NIL (-19 |#1|) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2398 (($ $ (-531) (-474 |#1| |#3|)) NIL)) (-3492 (($ $ (-531) (-474 |#1| |#2|)) NIL)) (-4082 (($) NIL T CONST)) (-4011 (((-474 |#1| |#3|) $ (-531)) NIL)) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-474 |#1| |#2|) $ (-531)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-475 |#1| |#2| |#3|) (-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) (-1138) (-531) (-531)) (T -475)) -NIL -(-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) -((-3670 (((-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-721) (-721)) 27)) (-1292 (((-598 (-1098 |#1|)) |#1| (-721) (-721) (-721)) 34)) (-1850 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-598 |#3|) (-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-721)) 85))) -(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -1292 ((-598 (-1098 |#1|)) |#1| (-721) (-721) (-721))) (-15 -3670 ((-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-721) (-721))) (-15 -1850 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-598 |#3|) (-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-721)))) (-330) (-1160 |#1|) (-1160 |#2|)) (T -476)) -((-1850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-639 *7))))) (-5 *5 (-721)) (-4 *8 (-1160 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-330)) (-5 *2 (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-639 *7)))) (-5 *1 (-476 *6 *7 *8)))) (-3670 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-721)) (-4 *5 (-330)) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-639 *6))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-639 *6)))) (-4 *7 (-1160 *6)))) (-1292 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-721)) (-4 *3 (-330)) (-4 *5 (-1160 *3)) (-5 *2 (-598 (-1098 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1160 *5))))) -(-10 -7 (-15 -1292 ((-598 (-1098 |#1|)) |#1| (-721) (-721) (-721))) (-15 -3670 ((-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-721) (-721))) (-15 -1850 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-598 |#3|) (-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-721)))) -((-2086 (((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))) 62)) (-2386 ((|#1| (-639 |#1|) |#1| (-721)) 25)) (-2829 (((-721) (-721) (-721)) 30)) (-2001 (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 42)) (-3522 (((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|) 50) (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 47)) (-2082 ((|#1| (-639 |#1|) (-639 |#1|) |#1| (-531)) 29)) (-2806 ((|#1| (-639 |#1|)) 18))) -(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2806 (|#1| (-639 |#1|))) (-15 -2386 (|#1| (-639 |#1|) |#1| (-721))) (-15 -2082 (|#1| (-639 |#1|) (-639 |#1|) |#1| (-531))) (-15 -2829 ((-721) (-721) (-721))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -2001 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2086 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))))) (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))) (-1160 |#1|) (-390 |#1| |#2|)) (T -477)) -((-2086 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2001 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3522 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3522 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-721)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2082 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-639 *2)) (-5 *4 (-531)) (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-2386 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-639 *2)) (-5 *4 (-721)) (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *4 (-1160 *2)) (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4))))) -(-10 -7 (-15 -2806 (|#1| (-639 |#1|))) (-15 -2386 (|#1| (-639 |#1|) |#1| (-721))) (-15 -2082 (|#1| (-639 |#1|) (-639 |#1|) |#1| (-531))) (-15 -2829 ((-721) (-721) (-721))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -2001 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2086 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))))) -((-2247 (((-110) $ $) NIL)) (-1813 (($ $) NIL)) (-3082 (($ $ $) 35)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| (-110) (-797))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-110) (-797)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-110) $ (-1151 (-531)) (-110)) NIL (|has| $ (-6 -4274))) (((-110) $ (-531) (-110)) 36 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-1760 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2693 (((-110) $ (-531) (-110)) NIL (|has| $ (-6 -4274)))) (-2627 (((-110) $ (-531)) NIL)) (-1976 (((-531) (-110) $ (-531)) NIL (|has| (-110) (-1030))) (((-531) (-110) $) NIL (|has| (-110) (-1030))) (((-531) (-1 (-110) (-110)) $) NIL)) (-2227 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-2726 (($ $ $) 33)) (-3745 (($ $) NIL)) (-4178 (($ $ $) NIL)) (-3010 (($ (-721) (-110)) 23)) (-3232 (($ $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 8 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL)) (-3508 (($ $ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2445 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL)) (-2680 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ (-110) $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-110) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-3742 (($ $ (-110)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-110)) (-598 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-598 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-3163 (((-598 (-110)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 24)) (-1785 (($ $ (-1151 (-531))) NIL) (((-110) $ (-531)) 18) (((-110) $ (-531) (-110)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2539 (((-721) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030)))) (((-721) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) 25)) (-3318 (((-507) $) NIL (|has| (-110) (-573 (-507))))) (-2274 (($ (-598 (-110))) NIL)) (-3536 (($ (-598 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2265 (((-806) $) 22)) (-2060 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-3427 (($ $ $) 31)) (-1868 (($ $ $) NIL)) (-4251 (($ $ $) 39)) (-1223 (($ $) 37)) (-4240 (($ $ $) 38)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 26)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 27)) (-1854 (($ $ $) NIL)) (-2167 (((-721) $) 10 (|has| $ (-6 -4273))))) -(((-478 |#1|) (-13 (-121) (-10 -8 (-15 -1223 ($ $)) (-15 -4251 ($ $ $)) (-15 -4240 ($ $ $)))) (-531)) (T -478)) -((-1223 (*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) (-4251 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) (-4240 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531))))) -(-13 (-121) (-10 -8 (-15 -1223 ($ $)) (-15 -4251 ($ $ $)) (-15 -4240 ($ $ $)))) -((-1560 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1098 |#4|)) 35)) (-3642 (((-1098 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1098 |#4|)) 22)) (-2972 (((-3 (-639 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-639 (-1098 |#4|))) 46)) (-1413 (((-1098 (-1098 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3642 (|#2| (-1 |#1| |#4|) (-1098 |#4|))) (-15 -3642 ((-1098 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1560 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1098 |#4|))) (-15 -2972 ((-3 (-639 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-639 (-1098 |#4|)))) (-15 -1413 ((-1098 (-1098 |#4|)) (-1 |#4| |#1|) |#3|))) (-986) (-1160 |#1|) (-1160 |#2|) (-986)) (T -479)) -((-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *6 (-1160 *5)) (-5 *2 (-1098 (-1098 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1160 *6)))) (-2972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-639 (-1098 *8))) (-4 *5 (-986)) (-4 *8 (-986)) (-4 *6 (-1160 *5)) (-5 *2 (-639 *6)) (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1160 *6)))) (-1560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1098 *7)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1160 *2)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *4 (-1160 *5)) (-5 *2 (-1098 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1160 *4)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1098 *7)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1160 *2))))) -(-10 -7 (-15 -3642 (|#2| (-1 |#1| |#4|) (-1098 |#4|))) (-15 -3642 ((-1098 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1560 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1098 |#4|))) (-15 -2972 ((-3 (-639 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-639 (-1098 |#4|)))) (-15 -1413 ((-1098 (-1098 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3403 (((-1189) $) 19)) (-1785 (((-1085) $ (-1102)) 23)) (-2286 (((-1189) $) 15)) (-2265 (((-806) $) 21) (($ (-1085)) 20)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 9)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 8))) -(((-480) (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -2265 ($ (-1085)))))) (T -480)) -((-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1085)) (-5 *1 (-480)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-480))))) -(-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -2265 ($ (-1085))))) -((-1682 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2807 ((|#1| |#4|) 10)) (-1349 ((|#3| |#4|) 17))) -(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2807 (|#1| |#4|)) (-15 -1349 (|#3| |#4|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-523) (-934 |#1|) (-354 |#1|) (-354 |#2|)) (T -481)) -((-1682 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-4 *2 (-354 *4)) (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-481 *2 *4 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-354 *4))))) -(-10 -7 (-15 -2807 (|#1| |#4|)) (-15 -1349 (|#3| |#4|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2247 (((-110) $ $) NIL)) (-3017 (((-110) $ (-598 |#3|)) 105) (((-110) $) 106)) (-3019 (((-110) $) 149)) (-3136 (($ $ |#4|) 97) (($ $ |#4| (-598 |#3|)) 101)) (-3506 (((-1092 (-598 (-895 |#1|)) (-598 (-276 (-895 |#1|)))) (-598 |#4|)) 142 (|has| |#3| (-573 (-1102))))) (-2937 (($ $ $) 91) (($ $ |#4|) 89)) (-3481 (((-110) $) 148)) (-3533 (($ $) 109)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 83) (($ (-598 $)) 85)) (-4128 (((-110) |#4| $) 108)) (-1240 (((-110) $ $) 72)) (-2003 (($ (-598 |#4|)) 90)) (-2529 (((-1049) $) NIL)) (-3803 (($ (-598 |#4|)) 146)) (-3120 (((-110) $) 147)) (-3716 (($ $) 74)) (-3304 (((-598 |#4|) $) 63)) (-3048 (((-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)) $ (-598 |#3|)) NIL)) (-3166 (((-110) |#4| $) 77)) (-2190 (((-531) $ (-598 |#3|)) 110) (((-531) $) 111)) (-2265 (((-806) $) 145) (($ (-598 |#4|)) 86)) (-3119 (($ (-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $))) NIL)) (-2148 (((-110) $ $) 73)) (-2237 (($ $ $) 93)) (** (($ $ (-721)) 96)) (* (($ $ $) 95))) -(((-482 |#1| |#2| |#3| |#4|) (-13 (-1030) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 -2237 ($ $ $)) (-15 -3481 ((-110) $)) (-15 -3019 ((-110) $)) (-15 -3166 ((-110) |#4| $)) (-15 -1240 ((-110) $ $)) (-15 -4128 ((-110) |#4| $)) (-15 -3017 ((-110) $ (-598 |#3|))) (-15 -3017 ((-110) $)) (-15 -1301 ($ $ $)) (-15 -1301 ($ (-598 $))) (-15 -2937 ($ $ $)) (-15 -2937 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -3048 ((-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)) $ (-598 |#3|))) (-15 -3119 ($ (-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)))) (-15 -2190 ((-531) $ (-598 |#3|))) (-15 -2190 ((-531) $)) (-15 -3533 ($ $)) (-15 -2003 ($ (-598 |#4|))) (-15 -3803 ($ (-598 |#4|))) (-15 -3120 ((-110) $)) (-15 -3304 ((-598 |#4|) $)) (-15 -2265 ($ (-598 |#4|))) (-15 -3136 ($ $ |#4|)) (-15 -3136 ($ $ |#4| (-598 |#3|))) (IF (|has| |#3| (-573 (-1102))) (-15 -3506 ((-1092 (-598 (-895 |#1|)) (-598 (-276 (-895 |#1|)))) (-598 |#4|))) |%noBranch|))) (-344) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -482)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3019 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3166 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-1240 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-4128 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-3017 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-1301 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-1301 (*1 *1 *2) (-12 (-5 *2 (-598 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2937 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) (-3716 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-3048 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *2 (-2 (|:| |mval| (-639 *4)) (|:| |invmval| (-639 *4)) (|:| |genIdeal| (-482 *4 *5 *6 *7)))) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-639 *3)) (|:| |invmval| (-639 *3)) (|:| |genIdeal| (-482 *3 *4 *5 *6)))) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2190 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *2 (-531)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3533 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3120 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3304 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *6)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) (-3136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-892 *4 *5 *6)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *6 (-573 (-1102))) (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1092 (-598 (-895 *4)) (-598 (-276 (-895 *4))))) (-5 *1 (-482 *4 *5 *6 *7))))) -(-13 (-1030) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 -2237 ($ $ $)) (-15 -3481 ((-110) $)) (-15 -3019 ((-110) $)) (-15 -3166 ((-110) |#4| $)) (-15 -1240 ((-110) $ $)) (-15 -4128 ((-110) |#4| $)) (-15 -3017 ((-110) $ (-598 |#3|))) (-15 -3017 ((-110) $)) (-15 -1301 ($ $ $)) (-15 -1301 ($ (-598 $))) (-15 -2937 ($ $ $)) (-15 -2937 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -3048 ((-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)) $ (-598 |#3|))) (-15 -3119 ($ (-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)))) (-15 -2190 ((-531) $ (-598 |#3|))) (-15 -2190 ((-531) $)) (-15 -3533 ($ $)) (-15 -2003 ($ (-598 |#4|))) (-15 -3803 ($ (-598 |#4|))) (-15 -3120 ((-110) $)) (-15 -3304 ((-598 |#4|) $)) (-15 -2265 ($ (-598 |#4|))) (-15 -3136 ($ $ |#4|)) (-15 -3136 ($ $ |#4| (-598 |#3|))) (IF (|has| |#3| (-573 (-1102))) (-15 -3506 ((-1092 (-598 (-895 |#1|)) (-598 (-276 (-895 |#1|)))) (-598 |#4|))) |%noBranch|))) -((-3400 (((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 150)) (-2404 (((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 151)) (-3547 (((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 108)) (-2534 (((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) NIL)) (-1459 (((-598 (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 153)) (-2994 (((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-598 (-808 |#1|))) 165))) -(((-483 |#1| |#2|) (-10 -7 (-15 -3400 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2404 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2534 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -3547 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -1459 ((-598 (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2994 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-598 (-808 |#1|))))) (-598 (-1102)) (-721)) (T -483)) -((-2994 (*1 *2 *2 *3) (-12 (-5 *2 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-5 *3 (-598 (-808 *4))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *1 (-483 *4 *5)))) (-1459 (*1 *2 *3) (-12 (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-598 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531)))))) (-5 *1 (-483 *4 *5)) (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-482 (-388 (-531)) (-223 *4 (-721)) (-808 *3) (-230 *3 (-388 (-531))))) (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-483 *3 *4)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-2404 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5))))) -(-10 -7 (-15 -3400 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2404 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2534 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -3547 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -1459 ((-598 (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2994 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-598 (-808 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11) (((-1107) $) NIL) (((-1102) $) 8)) (-2148 (((-110) $ $) NIL))) -(((-484) (-13 (-1015) (-572 (-1102)))) (T -484)) -NIL -(-13 (-1015) (-572 (-1102))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) 12 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) 11) (($ $ $) 24)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 18))) -(((-485 |#1| |#2|) (-13 (-21) (-487 |#1| |#2|)) (-21) (-797)) (T -485)) -NIL -(-13 (-21) (-487 |#1| |#2|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 12)) (-4082 (($) NIL T CONST)) (-2500 (($ $) 28)) (-2669 (($ |#1| |#2|) 25)) (-3261 (($ (-1 |#1| |#1|) $) 27)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) 29)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) 10 T CONST)) (-2148 (((-110) $ $) NIL)) (-2237 (($ $ $) 18)) (* (($ (-864) $) NIL) (($ (-721) $) 23))) -(((-486 |#1| |#2|) (-13 (-23) (-487 |#1| |#2|)) (-23) (-797)) (T -486)) -NIL -(-13 (-23) (-487 |#1| |#2|)) -((-2247 (((-110) $ $) 7)) (-2500 (($ $) 13)) (-2669 (($ |#1| |#2|) 16)) (-3261 (($ (-1 |#1| |#1|) $) 17)) (-1477 ((|#2| $) 14)) (-2475 ((|#1| $) 15)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-487 |#1| |#2|) (-133) (-1030) (-797)) (T -487)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-797)))) (-2669 (*1 *1 *2 *3) (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1030)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-487 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-797)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797))))) -(-13 (-1030) (-10 -8 (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -2669 ($ |t#1| |t#2|)) (-15 -2475 (|t#1| $)) (-15 -1477 (|t#2| $)) (-15 -2500 ($ $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 13)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL))) -(((-488 |#1| |#2|) (-13 (-742) (-487 |#1| |#2|)) (-742) (-797)) (T -488)) -NIL -(-13 (-742) (-487 |#1| |#2|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3818 (($ $ $) 16)) (-2128 (((-3 $ "failed") $ $) 13)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL))) -(((-489 |#1| |#2|) (-13 (-743) (-487 |#1| |#2|)) (-743) (-797)) (T -489)) -NIL -(-13 (-743) (-487 |#1| |#2|)) -((-2247 (((-110) $ $) NIL)) (-2500 (($ $) 25)) (-2669 (($ |#1| |#2|) 22)) (-3261 (($ (-1 |#1| |#1|) $) 24)) (-1477 ((|#2| $) 27)) (-2475 ((|#1| $) 26)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 21)) (-2148 (((-110) $ $) 14))) -(((-490 |#1| |#2|) (-487 |#1| |#2|) (-1030) (-797)) (T -490)) -NIL -(-487 |#1| |#2|) -((-4115 (($ $ (-598 |#2|) (-598 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-491 |#1| |#2| |#3|) (-10 -8 (-15 -4115 (|#1| |#1| |#2| |#3|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#3|)))) (-492 |#2| |#3|) (-1030) (-1138)) (T -491)) -NIL -(-10 -8 (-15 -4115 (|#1| |#1| |#2| |#3|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#3|)))) -((-4115 (($ $ (-598 |#1|) (-598 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-492 |#1| |#2|) (-133) (-1030) (-1138)) (T -492)) -((-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *5)) (-4 *1 (-492 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1138)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-492 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1138))))) -(-13 (-10 -8 (-15 -4115 ($ $ |t#1| |t#2|)) (-15 -4115 ($ $ (-598 |t#1|) (-598 |t#2|))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 16)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $) 18)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3616 ((|#1| $ (-531)) 23)) (-2880 ((|#2| $ (-531)) 21)) (-2483 (($ (-1 |#1| |#1|) $) 46)) (-3762 (($ (-1 |#2| |#2|) $) 43)) (-1521 (((-1085) $) NIL)) (-3881 (($ $ $) 53 (|has| |#2| (-742)))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 42) (($ |#1|) NIL)) (-3188 ((|#2| |#1| $) 49)) (-3035 (($) 11 T CONST)) (-2148 (((-110) $ $) 29)) (-2237 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-864) $) NIL) (($ (-721) $) 36) (($ |#2| |#1|) 31))) -(((-493 |#1| |#2| |#3|) (-304 |#1| |#2|) (-1030) (-128) |#2|) (T -493)) -NIL -(-304 |#1| |#2|) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-1814 (((-110) (-110)) 25)) (-2454 ((|#1| $ (-531) |#1|) 28 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) 52)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2705 (($ $) 56 (|has| |#1| (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) 44)) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2916 (($ $ (-531)) 13)) (-2912 (((-721) $) 11)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 23)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 21 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) 20 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3944 (($ $ $ (-531)) 51) (($ |#1| $ (-531)) 37)) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1404 (($ (-598 |#1|)) 29)) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) 19 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 40)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 16)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 33) (($ $ (-1151 (-531))) NIL)) (-1551 (($ $ (-1151 (-531))) 50) (($ $ (-531)) 45)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) 41 (|has| $ (-6 -4274)))) (-2480 (($ $) 32)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1818 (($ $ $) 42) (($ $ |#1|) 39)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 17 (|has| $ (-6 -4273))))) -(((-494 |#1| |#2|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110))))) (-1138) (-531)) (T -494)) -((-1404 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-494 *3 *4)) (-14 *4 (-531)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 (-531)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 *2))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 (-531))))) -(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-544 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-544 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-544 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-544 |#1|) "failed") $) NIL)) (-2523 (((-544 |#1|) $) NIL)) (-2767 (($ (-1184 (-544 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-544 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-544 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-544 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-544 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-544 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-544 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-544 |#1|) (-349)))) (-1899 (((-544 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-544 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-544 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-544 |#1|) (-349)))) (-1832 (((-1098 (-544 |#1|)) $) NIL (|has| (-544 |#1|) (-349)))) (-1612 (((-1098 (-544 |#1|)) $) NIL (|has| (-544 |#1|) (-349))) (((-3 (-1098 (-544 |#1|)) "failed") $ $) NIL (|has| (-544 |#1|) (-349)))) (-3601 (($ $ (-1098 (-544 |#1|))) NIL (|has| (-544 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-544 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| (-544 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-544 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-544 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-544 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-544 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-544 |#1|))) NIL)) (-2498 (($) NIL (|has| (-544 |#1|) (-349)))) (-2389 (($) NIL (|has| (-544 |#1|) (-349)))) (-3348 (((-1184 (-544 |#1|)) $) NIL) (((-639 (-544 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-544 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-544 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-544 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-544 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-544 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-544 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-544 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-544 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-544 |#1|)) NIL) (($ (-544 |#1|) $) NIL))) -(((-495 |#1| |#2|) (-310 (-544 |#1|)) (-864) (-864)) (T -495)) -NIL -(-310 (-544 |#1|)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) 35)) (-2398 (($ $ (-531) |#4|) NIL)) (-3492 (($ $ (-531) |#5|) NIL)) (-4082 (($) NIL T CONST)) (-4011 ((|#4| $ (-531)) NIL)) (-2693 ((|#1| $ (-531) (-531) |#1|) 34)) (-2627 ((|#1| $ (-531) (-531)) 32)) (-2227 (((-598 |#1|) $) NIL)) (-1548 (((-721) $) 28)) (-3010 (($ (-721) (-721) |#1|) 25)) (-1557 (((-721) $) 30)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) 26)) (-1665 (((-531) $) 27)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) 29)) (-2394 (((-531) $) 31)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) 38 (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 16)) (-1785 ((|#1| $ (-531) (-531)) 33) ((|#1| $ (-531) (-531) |#1|) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 ((|#5| $ (-531)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-496 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1138) (-531) (-531) (-354 |#1|) (-354 |#1|)) (T -496)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL)) (-2720 (($ $ (-537) (-477 |#1| |#3|)) NIL)) (-2573 (($ $ (-537) (-477 |#1| |#2|)) NIL)) (-3832 (($) NIL T CONST)) (-2964 (((-477 |#1| |#3|) $ (-537)) NIL)) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-477 |#1| |#2|) $ (-537)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-478 |#1| |#2| |#3|) (-55 |#1| (-477 |#1| |#3|) (-477 |#1| |#2|)) (-1154) (-537) (-537)) (T -478)) +NIL +(-55 |#1| (-477 |#1| |#3|) (-477 |#1| |#2|)) +((-2070 (((-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-731) (-731)) 27)) (-2553 (((-606 (-1113 |#1|)) |#1| (-731) (-731) (-731)) 34)) (-3747 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-606 |#3|) (-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-731)) 85))) +(((-479 |#1| |#2| |#3|) (-10 -7 (-15 -2553 ((-606 (-1113 |#1|)) |#1| (-731) (-731) (-731))) (-15 -2070 ((-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-731) (-731))) (-15 -3747 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-606 |#3|) (-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-731)))) (-333) (-1176 |#1|) (-1176 |#2|)) (T -479)) +((-3747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-649 *7))))) (-5 *5 (-731)) (-4 *8 (-1176 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-649 *7)))) (-5 *1 (-479 *6 *7 *8)))) (-2070 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-731)) (-4 *5 (-333)) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-649 *6))))) (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-649 *6)))) (-4 *7 (-1176 *6)))) (-2553 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-731)) (-4 *3 (-333)) (-4 *5 (-1176 *3)) (-5 *2 (-606 (-1113 *3))) (-5 *1 (-479 *3 *5 *6)) (-4 *6 (-1176 *5))))) +(-10 -7 (-15 -2553 ((-606 (-1113 |#1|)) |#1| (-731) (-731) (-731))) (-15 -2070 ((-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-731) (-731))) (-15 -3747 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) (-606 |#3|) (-606 (-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) (-731)))) +((-2160 (((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))) 62)) (-2937 ((|#1| (-649 |#1|) |#1| (-731)) 25)) (-3385 (((-731) (-731) (-731)) 30)) (-3547 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 42)) (-2033 (((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|) 50) (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 47)) (-1795 ((|#1| (-649 |#1|) (-649 |#1|) |#1| (-537)) 29)) (-3018 ((|#1| (-649 |#1|)) 18))) +(((-480 |#1| |#2| |#3|) (-10 -7 (-15 -3018 (|#1| (-649 |#1|))) (-15 -2937 (|#1| (-649 |#1|) |#1| (-731))) (-15 -1795 (|#1| (-649 |#1|) (-649 |#1|) |#1| (-537))) (-15 -3385 ((-731) (-731) (-731))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -3547 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2160 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))))) (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $)))) (-1176 |#1|) (-393 |#1| |#2|)) (T -480)) +((-2160 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3547 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-2033 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-2033 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-731)) (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) (-1795 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-537)) (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5)))) (-2937 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-731)) (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *4 (-1176 *2)) (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) (-5 *1 (-480 *2 *4 *5)) (-4 *5 (-393 *2 *4))))) +(-10 -7 (-15 -3018 (|#1| (-649 |#1|))) (-15 -2937 (|#1| (-649 |#1|) |#1| (-731))) (-15 -1795 (|#1| (-649 |#1|) (-649 |#1|) |#1| (-537))) (-15 -3385 ((-731) (-731) (-731))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2033 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -3547 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2160 ((-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|))) (-2 (|:| -2122 (-649 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-649 |#1|)))))) +((-2330 (((-111) $ $) NIL)) (-3284 (($ $) NIL)) (-1435 (($ $ $) 35)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| (-111) (-807))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-111) (-807)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-111) $ (-1167 (-537)) (-111)) NIL (|has| $ (-6 -4301))) (((-111) $ (-537) (-111)) 36 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2355 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3195 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-4091 (((-111) $ (-537) (-111)) NIL (|has| $ (-6 -4301)))) (-4030 (((-111) $ (-537)) NIL)) (-2299 (((-537) (-111) $ (-537)) NIL (|has| (-111) (-1045))) (((-537) (-111) $) NIL (|has| (-111) (-1045))) (((-537) (-1 (-111) (-111)) $) NIL)) (-3661 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-2681 (($ $ $) 33)) (-3679 (($ $) NIL)) (-3897 (($ $ $) NIL)) (-3157 (($ (-731) (-111)) 23)) (-1810 (($ $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 8 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL)) (-1470 (($ $ $) NIL (|has| (-111) (-807))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3703 (((-606 (-111)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL)) (-4081 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ (-111) $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-111) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-3040 (($ $ (-111)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-111)) (-606 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-278 (-111))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045)))) (($ $ (-606 (-278 (-111)))) NIL (-12 (|has| (-111) (-293 (-111))) (|has| (-111) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045))))) (-3010 (((-606 (-111)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 24)) (-1922 (($ $ (-1167 (-537))) NIL) (((-111) $ (-537)) 18) (((-111) $ (-537) (-111)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2539 (((-731) (-111) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-111) (-1045)))) (((-731) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) 25)) (-3996 (((-513) $) NIL (|has| (-111) (-580 (-513))))) (-2350 (($ (-606 (-111))) NIL)) (-3434 (($ (-606 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-2341 (((-816) $) 22)) (-2030 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4300)))) (-3319 (($ $ $) 31)) (-1512 (($ $ $) NIL)) (-2617 (($ $ $) 39)) (-2626 (($ $) 37)) (-2608 (($ $ $) 38)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 26)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 27)) (-1501 (($ $ $) NIL)) (-2258 (((-731) $) 10 (|has| $ (-6 -4300))))) +(((-481 |#1|) (-13 (-122) (-10 -8 (-15 -2626 ($ $)) (-15 -2617 ($ $ $)) (-15 -2608 ($ $ $)))) (-537)) (T -481)) +((-2626 (*1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) (-2617 (*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) (-2608 (*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537))))) +(-13 (-122) (-10 -8 (-15 -2626 ($ $)) (-15 -2617 ($ $ $)) (-15 -2608 ($ $ $)))) +((-1947 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1113 |#4|)) 35)) (-2257 (((-1113 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1113 |#4|)) 22)) (-1289 (((-3 (-649 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-649 (-1113 |#4|))) 46)) (-1573 (((-1113 (-1113 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-482 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2257 (|#2| (-1 |#1| |#4|) (-1113 |#4|))) (-15 -2257 ((-1113 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1947 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1113 |#4|))) (-15 -1289 ((-3 (-649 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-649 (-1113 |#4|)))) (-15 -1573 ((-1113 (-1113 |#4|)) (-1 |#4| |#1|) |#3|))) (-998) (-1176 |#1|) (-1176 |#2|) (-998)) (T -482)) +((-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *6 (-1176 *5)) (-5 *2 (-1113 (-1113 *7))) (-5 *1 (-482 *5 *6 *4 *7)) (-4 *4 (-1176 *6)))) (-1289 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-649 (-1113 *8))) (-4 *5 (-998)) (-4 *8 (-998)) (-4 *6 (-1176 *5)) (-5 *2 (-649 *6)) (-5 *1 (-482 *5 *6 *7 *8)) (-4 *7 (-1176 *6)))) (-1947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1113 *7)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-482 *5 *2 *6 *7)) (-4 *6 (-1176 *2)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *4 (-1176 *5)) (-5 *2 (-1113 *7)) (-5 *1 (-482 *5 *4 *6 *7)) (-4 *6 (-1176 *4)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1113 *7)) (-4 *5 (-998)) (-4 *7 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-482 *5 *2 *6 *7)) (-4 *6 (-1176 *2))))) +(-10 -7 (-15 -2257 (|#2| (-1 |#1| |#4|) (-1113 |#4|))) (-15 -2257 ((-1113 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1947 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1113 |#4|))) (-15 -1289 ((-3 (-649 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-649 (-1113 |#4|)))) (-15 -1573 ((-1113 (-1113 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3404 (((-1205) $) 19)) (-1922 (((-1100) $ (-1117)) 23)) (-2356 (((-1205) $) 15)) (-2341 (((-816) $) 21) (($ (-1100)) 20)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 9)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 8))) +(((-483) (-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -2341 ($ (-1100)))))) (T -483)) +((-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1100)) (-5 *1 (-483)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-483))))) +(-13 (-807) (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) (-15 -3404 ((-1205) $)) (-15 -2341 ($ (-1100))))) +((-1478 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1246 ((|#1| |#4|) 10)) (-4067 ((|#3| |#4|) 17))) +(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1246 (|#1| |#4|)) (-15 -4067 (|#3| |#4|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-529) (-945 |#1|) (-357 |#1|) (-357 |#2|)) (T -484)) +((-1478 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) (-4067 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-4 *2 (-357 *4)) (-5 *1 (-484 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) (-1246 (*1 *2 *3) (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-357 *4))))) +(-10 -7 (-15 -1246 (|#1| |#4|)) (-15 -4067 (|#3| |#4|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2330 (((-111) $ $) NIL)) (-1451 (((-111) $ (-606 |#3|)) 105) (((-111) $) 106)) (-1656 (((-111) $) 149)) (-2864 (($ $ |#4|) 97) (($ $ |#4| (-606 |#3|)) 101)) (-1368 (((-1107 (-606 (-905 |#1|)) (-606 (-278 (-905 |#1|)))) (-606 |#4|)) 142 (|has| |#3| (-580 (-1117))))) (-3413 (($ $ $) 91) (($ $ |#4|) 89)) (-2836 (((-111) $) 148)) (-3601 (($ $) 109)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 83) (($ (-606 $)) 85)) (-2044 (((-111) |#4| $) 108)) (-2887 (((-111) $ $) 72)) (-3754 (($ (-606 |#4|)) 90)) (-2528 (((-1064) $) NIL)) (-1608 (($ (-606 |#4|)) 146)) (-1444 (((-111) $) 147)) (-2597 (($ $) 74)) (-2269 (((-606 |#4|) $) 63)) (-2245 (((-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)) $ (-606 |#3|)) NIL)) (-2233 (((-111) |#4| $) 77)) (-1839 (((-537) $ (-606 |#3|)) 110) (((-537) $) 111)) (-2341 (((-816) $) 145) (($ (-606 |#4|)) 86)) (-1343 (($ (-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $))) NIL)) (-2244 (((-111) $ $) 73)) (-2318 (($ $ $) 93)) (** (($ $ (-731)) 96)) (* (($ $ $) 95))) +(((-485 |#1| |#2| |#3| |#4|) (-13 (-1045) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 -2318 ($ $ $)) (-15 -2836 ((-111) $)) (-15 -1656 ((-111) $)) (-15 -2233 ((-111) |#4| $)) (-15 -2887 ((-111) $ $)) (-15 -2044 ((-111) |#4| $)) (-15 -1451 ((-111) $ (-606 |#3|))) (-15 -1451 ((-111) $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ (-606 $))) (-15 -3413 ($ $ $)) (-15 -3413 ($ $ |#4|)) (-15 -2597 ($ $)) (-15 -2245 ((-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)) $ (-606 |#3|))) (-15 -1343 ($ (-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)))) (-15 -1839 ((-537) $ (-606 |#3|))) (-15 -1839 ((-537) $)) (-15 -3601 ($ $)) (-15 -3754 ($ (-606 |#4|))) (-15 -1608 ($ (-606 |#4|))) (-15 -1444 ((-111) $)) (-15 -2269 ((-606 |#4|) $)) (-15 -2341 ($ (-606 |#4|))) (-15 -2864 ($ $ |#4|)) (-15 -2864 ($ $ |#4| (-606 |#3|))) (IF (|has| |#3| (-580 (-1117))) (-15 -1368 ((-1107 (-606 (-905 |#1|)) (-606 (-278 (-905 |#1|)))) (-606 |#4|))) |%noBranch|))) (-347) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -485)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2836 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-1656 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2233 (*1 *2 *3 *1) (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-2887 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2044 (*1 *2 *3 *1) (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6)))) (-1451 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-1451 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-606 (-485 *3 *4 *5 *6))) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-3413 (*1 *1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) (-2597 (*1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 (-2 (|:| |mval| (-649 *4)) (|:| |invmval| (-649 *4)) (|:| |genIdeal| (-485 *4 *5 *6 *7)))) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-649 *3)) (|:| |invmval| (-649 *3)) (|:| |genIdeal| (-485 *3 *4 *5 *6)))) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-1839 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 (-537)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) (-1839 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-3601 (*1 *1 *1) (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) (-1444 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2269 (*1 *2 *1) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *6)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) (-2864 (*1 *1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) (-2864 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *1 (-485 *4 *5 *6 *2)) (-4 *2 (-902 *4 *5 *6)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *6 (-580 (-1117))) (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1107 (-606 (-905 *4)) (-606 (-278 (-905 *4))))) (-5 *1 (-485 *4 *5 *6 *7))))) +(-13 (-1045) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 -2318 ($ $ $)) (-15 -2836 ((-111) $)) (-15 -1656 ((-111) $)) (-15 -2233 ((-111) |#4| $)) (-15 -2887 ((-111) $ $)) (-15 -2044 ((-111) |#4| $)) (-15 -1451 ((-111) $ (-606 |#3|))) (-15 -1451 ((-111) $)) (-15 -3891 ($ $ $)) (-15 -3891 ($ (-606 $))) (-15 -3413 ($ $ $)) (-15 -3413 ($ $ |#4|)) (-15 -2597 ($ $)) (-15 -2245 ((-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)) $ (-606 |#3|))) (-15 -1343 ($ (-2 (|:| |mval| (-649 |#1|)) (|:| |invmval| (-649 |#1|)) (|:| |genIdeal| $)))) (-15 -1839 ((-537) $ (-606 |#3|))) (-15 -1839 ((-537) $)) (-15 -3601 ($ $)) (-15 -3754 ($ (-606 |#4|))) (-15 -1608 ($ (-606 |#4|))) (-15 -1444 ((-111) $)) (-15 -2269 ((-606 |#4|) $)) (-15 -2341 ($ (-606 |#4|))) (-15 -2864 ($ $ |#4|)) (-15 -2864 ($ $ |#4| (-606 |#3|))) (IF (|has| |#3| (-580 (-1117))) (-15 -1368 ((-1107 (-606 (-905 |#1|)) (-606 (-278 (-905 |#1|)))) (-606 |#4|))) |%noBranch|))) +((-3099 (((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 150)) (-2071 (((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 151)) (-1882 (((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 108)) (-2639 (((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) NIL)) (-2697 (((-606 (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) 153)) (-2352 (((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-606 (-818 |#1|))) 165))) +(((-486 |#1| |#2|) (-10 -7 (-15 -3099 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2071 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2639 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -1882 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2697 ((-606 (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2352 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-606 (-818 |#1|))))) (-606 (-1117)) (-731)) (T -486)) +((-2352 (*1 *2 *2 *3) (-12 (-5 *2 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-5 *3 (-606 (-818 *4))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *1 (-486 *4 *5)))) (-2697 (*1 *2 *3) (-12 (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-606 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537)))))) (-5 *1 (-486 *4 *5)) (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-485 (-391 (-537)) (-225 *4 (-731)) (-818 *3) (-232 *3 (-391 (-537))))) (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-486 *3 *4)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) (-232 *4 (-391 (-537))))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) (-5 *1 (-486 *4 *5))))) +(-10 -7 (-15 -3099 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2071 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2639 ((-111) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -1882 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2697 ((-606 (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537))))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))))) (-15 -2352 ((-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-485 (-391 (-537)) (-225 |#2| (-731)) (-818 |#1|) (-232 |#1| (-391 (-537)))) (-606 (-818 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11) (((-1122) $) NIL) (((-1117) $) 8)) (-2244 (((-111) $ $) NIL))) +(((-487) (-13 (-1029) (-579 (-1117)))) (T -487)) +NIL +(-13 (-1029) (-579 (-1117))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) 12 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) 11) (($ $ $) 24)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 18))) +(((-488 |#1| |#2|) (-13 (-21) (-490 |#1| |#2|)) (-21) (-807)) (T -488)) +NIL +(-13 (-21) (-490 |#1| |#2|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 12)) (-3832 (($) NIL T CONST)) (-3940 (($ $) 28)) (-3733 (($ |#1| |#2|) 25)) (-1612 (($ (-1 |#1| |#1|) $) 27)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) 29)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) 10 T CONST)) (-2244 (((-111) $ $) NIL)) (-2318 (($ $ $) 18)) (* (($ (-874) $) NIL) (($ (-731) $) 23))) +(((-489 |#1| |#2|) (-13 (-23) (-490 |#1| |#2|)) (-23) (-807)) (T -489)) +NIL +(-13 (-23) (-490 |#1| |#2|)) +((-2330 (((-111) $ $) 7)) (-3940 (($ $) 13)) (-3733 (($ |#1| |#2|) 16)) (-1612 (($ (-1 |#1| |#1|) $) 17)) (-3749 ((|#2| $) 14)) (-3912 ((|#1| $) 15)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-490 |#1| |#2|) (-134) (-1045) (-807)) (T -490)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-490 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-807)))) (-3733 (*1 *1 *2 *3) (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *3 (-807)) (-4 *2 (-1045)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-490 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-807)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807))))) +(-13 (-1045) (-10 -8 (-15 -1612 ($ (-1 |t#1| |t#1|) $)) (-15 -3733 ($ |t#1| |t#2|)) (-15 -3912 (|t#1| $)) (-15 -3749 (|t#2| $)) (-15 -3940 ($ $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 13)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL))) +(((-491 |#1| |#2|) (-13 (-752) (-490 |#1| |#2|)) (-752) (-807)) (T -491)) +NIL +(-13 (-752) (-490 |#1| |#2|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2169 (($ $ $) 16)) (-3418 (((-3 $ "failed") $ $) 13)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3749 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL))) +(((-492 |#1| |#2|) (-13 (-753) (-490 |#1| |#2|)) (-753) (-807)) (T -492)) +NIL +(-13 (-753) (-490 |#1| |#2|)) +((-2330 (((-111) $ $) NIL)) (-3940 (($ $) 25)) (-3733 (($ |#1| |#2|) 22)) (-1612 (($ (-1 |#1| |#1|) $) 24)) (-3749 ((|#2| $) 27)) (-3912 ((|#1| $) 26)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 21)) (-2244 (((-111) $ $) 14))) +(((-493 |#1| |#2|) (-490 |#1| |#2|) (-1045) (-807)) (T -493)) +NIL +(-490 |#1| |#2|) +((-4116 (($ $ (-606 |#2|) (-606 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-494 |#1| |#2| |#3|) (-10 -8 (-15 -4116 (|#1| |#1| |#2| |#3|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#3|)))) (-495 |#2| |#3|) (-1045) (-1154)) (T -494)) +NIL +(-10 -8 (-15 -4116 (|#1| |#1| |#2| |#3|)) (-15 -4116 (|#1| |#1| (-606 |#2|) (-606 |#3|)))) +((-4116 (($ $ (-606 |#1|) (-606 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-495 |#1| |#2|) (-134) (-1045) (-1154)) (T -495)) +((-4116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *5)) (-4 *1 (-495 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1154)))) (-4116 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-495 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1154))))) +(-13 (-10 -8 (-15 -4116 ($ $ |t#1| |t#2|)) (-15 -4116 ($ $ (-606 |t#1|) (-606 |t#2|))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 16)) (-1525 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $) 18)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4125 ((|#1| $ (-537)) 23)) (-1361 ((|#2| $ (-537)) 21)) (-3572 (($ (-1 |#1| |#1|) $) 46)) (-2191 (($ (-1 |#2| |#2|) $) 43)) (-1654 (((-1100) $) NIL)) (-1962 (($ $ $) 53 (|has| |#2| (-752)))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 42) (($ |#1|) NIL)) (-3500 ((|#2| |#1| $) 49)) (-2928 (($) 11 T CONST)) (-2244 (((-111) $ $) 29)) (-2318 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-874) $) NIL) (($ (-731) $) 36) (($ |#2| |#1|) 31))) +(((-496 |#1| |#2| |#3|) (-307 |#1| |#2|) (-1045) (-129) |#2|) (T -496)) +NIL +(-307 |#1| |#2|) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2932 (((-111) (-111)) 25)) (-2476 ((|#1| $ (-537) |#1|) 28 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) 52)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-1376 (($ $) 56 (|has| |#1| (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) 44)) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3598 (($ $ (-537)) 13)) (-1446 (((-731) $) 11)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 23)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 21 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) 20 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3499 (($ $ $ (-537)) 51) (($ |#1| $ (-537)) 37)) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1903 (($ (-606 |#1|)) 29)) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) 19 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 40)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 16)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 33) (($ $ (-1167 (-537))) NIL)) (-3282 (($ $ (-1167 (-537))) 50) (($ $ (-537)) 45)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) 41 (|has| $ (-6 -4301)))) (-2494 (($ $) 32)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3115 (($ $ $) 42) (($ $ |#1|) 39)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 17 (|has| $ (-6 -4300))))) +(((-497 |#1| |#2|) (-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) (-1154) (-537)) (T -497)) +((-1903 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-497 *3 *4)) (-14 *4 (-537)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 (-537)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 *2))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 (-537))))) +(-13 (-19 |#1|) (-266 |#1|) (-10 -8 (-15 -1903 ($ (-606 |#1|))) (-15 -1446 ((-731) $)) (-15 -3598 ($ $ (-537))) (-15 -2932 ((-111) (-111))))) +((-2330 (((-111) $ $) NIL)) (-3467 (((-1122) $) 11)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3476 (((-1122) $) 13)) (-3441 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-498) (-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $)) (-15 -3467 ((-1122) $)) (-15 -3476 ((-1122) $))))) (T -498)) +((-3441 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498))))) +(-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $)) (-15 -3467 ((-1122) $)) (-15 -3476 ((-1122) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (((-550 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-550 |#1|) (-352)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL (|has| (-550 |#1|) (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-550 |#1|) "failed") $) NIL)) (-3958 (((-550 |#1|) $) NIL)) (-3447 (($ (-1200 (-550 |#1|))) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-550 |#1|) (-352)))) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-550 |#1|) (-352)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL (|has| (-550 |#1|) (-352)))) (-2974 (((-111) $) NIL (|has| (-550 |#1|) (-352)))) (-2642 (($ $ (-731)) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352)))) (($ $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-2639 (((-111) $) NIL)) (-4231 (((-874) $) NIL (|has| (-550 |#1|) (-352))) (((-793 (-874)) $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| (-550 |#1|) (-352)))) (-3870 (((-111) $) NIL (|has| (-550 |#1|) (-352)))) (-2055 (((-550 |#1|) $) NIL) (($ $ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-550 |#1|) (-352)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 (-550 |#1|)) $) NIL) (((-1113 $) $ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-2334 (((-874) $) NIL (|has| (-550 |#1|) (-352)))) (-1671 (((-1113 (-550 |#1|)) $) NIL (|has| (-550 |#1|) (-352)))) (-2728 (((-1113 (-550 |#1|)) $) NIL (|has| (-550 |#1|) (-352))) (((-3 (-1113 (-550 |#1|)) "failed") $ $) NIL (|has| (-550 |#1|) (-352)))) (-2841 (($ $ (-1113 (-550 |#1|))) NIL (|has| (-550 |#1|) (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-550 |#1|) (-352)) CONST)) (-2009 (($ (-874)) NIL (|has| (-550 |#1|) (-352)))) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| (-550 |#1|) (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-550 |#1|) (-352)))) (-3622 (((-402 $) $) NIL)) (-2685 (((-793 (-874))) NIL) (((-874)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-731) $) NIL (|has| (-550 |#1|) (-352))) (((-3 (-731) "failed") $ $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-1839 (((-131)) NIL)) (-3456 (($ $) NIL (|has| (-550 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-550 |#1|) (-352)))) (-2872 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2529 (((-1113 (-550 |#1|))) NIL)) (-3553 (($) NIL (|has| (-550 |#1|) (-352)))) (-3254 (($) NIL (|has| (-550 |#1|) (-352)))) (-1484 (((-1200 (-550 |#1|)) $) NIL) (((-649 (-550 |#1|)) (-1200 $)) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-550 |#1|) (-352)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-550 |#1|)) NIL)) (-2644 (($ $) NIL (|has| (-550 |#1|) (-352))) (((-3 $ "failed") $) NIL (-1533 (|has| (-550 |#1|) (-139)) (|has| (-550 |#1|) (-352))))) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL) (((-1200 $) (-874)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $) NIL (|has| (-550 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-550 |#1|) (-352)))) (-4230 (($ $) NIL (|has| (-550 |#1|) (-352))) (($ $ (-731)) NIL (|has| (-550 |#1|) (-352)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL) (($ $ (-550 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-550 |#1|)) NIL) (($ (-550 |#1|) $) NIL))) +(((-499 |#1| |#2|) (-313 (-550 |#1|)) (-874) (-874)) (T -499)) +NIL +(-313 (-550 |#1|)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) 35)) (-2720 (($ $ (-537) |#4|) NIL)) (-2573 (($ $ (-537) |#5|) NIL)) (-3832 (($) NIL T CONST)) (-2964 ((|#4| $ (-537)) NIL)) (-4091 ((|#1| $ (-537) (-537) |#1|) 34)) (-4030 ((|#1| $ (-537) (-537)) 32)) (-3661 (((-606 |#1|) $) NIL)) (-2931 (((-731) $) 28)) (-3157 (($ (-731) (-731) |#1|) 25)) (-2945 (((-731) $) 30)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) 26)) (-2454 (((-537) $) 27)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) 29)) (-2485 (((-537) $) 31)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) 38 (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 16)) (-1922 ((|#1| $ (-537) (-537)) 33) ((|#1| $ (-537) (-537) |#1|) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 ((|#5| $ (-537)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-500 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1154) (-537) (-537) (-357 |#1|) (-357 |#1|)) (T -500)) NIL (-55 |#1| |#4| |#5|) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 59 (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) 23 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 21 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4274))) (($ $ "rest" $) 24 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-4106 (($ $) 28 (|has| $ (-6 -4274)))) (-1828 (($ $) 29)) (-3062 (($ $) 18) (($ $ (-721)) 32)) (-2705 (($ $) 55 (|has| |#1| (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030))) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) NIL)) (-2227 (((-598 |#1|) $) 27 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 31 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-3508 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2907 (($ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) 51 (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) 13) (($ $ (-721)) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 12)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) 17)) (-3781 (($) 16)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) NIL) ((|#1| $ (-531) |#1|) NIL)) (-2357 (((-531) $ $) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2930 (((-110) $) 34)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) 36)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) 35)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 26)) (-1818 (($ $ $) 54) (($ $ |#1|) NIL)) (-3536 (($ $ $) NIL) (($ |#1| $) 10) (($ (-598 $)) NIL) (($ $ |#1|) NIL)) (-2265 (((-806) $) 46 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 48 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 9 (|has| $ (-6 -4273))))) -(((-497 |#1| |#2|) (-619 |#1|) (-1138) (-531)) (T -497)) -NIL -(-619 |#1|) -((-2800 ((|#4| |#4|) 27)) (-2277 (((-721) |#4|) 32)) (-4091 (((-721) |#4|) 33)) (-3001 (((-598 |#3|) |#4|) 40 (|has| |#3| (-6 -4274)))) (-2147 (((-3 |#4| "failed") |#4|) 51)) (-3298 ((|#4| |#4|) 44)) (-3253 ((|#1| |#4|) 43))) -(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (IF (|has| |#3| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|) (-15 -3253 (|#1| |#4|)) (-15 -3298 (|#4| |#4|)) (-15 -2147 ((-3 |#4| "failed") |#4|))) (-344) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -498)) -((-2147 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3298 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344)) (-5 *1 (-498 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) (-3001 (*1 *2 *3) (-12 (|has| *6 (-6 -4274)) (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2277 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (IF (|has| |#3| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|) (-15 -3253 (|#1| |#4|)) (-15 -3298 (|#4| |#4|)) (-15 -2147 ((-3 |#4| "failed") |#4|))) -((-2800 ((|#8| |#4|) 20)) (-3001 (((-598 |#3|) |#4|) 29 (|has| |#7| (-6 -4274)))) (-2147 (((-3 |#8| "failed") |#4|) 23))) -(((-499 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2800 (|#8| |#4|)) (-15 -2147 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|)) (-523) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|) (-934 |#1|) (-354 |#5|) (-354 |#5|) (-637 |#5| |#6| |#7|)) (T -499)) -((-3001 (*1 *2 *3) (-12 (|has| *9 (-6 -4274)) (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)) (-5 *2 (-598 *6)) (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-637 *4 *5 *6)) (-4 *10 (-637 *7 *8 *9)))) (-2147 (*1 *2 *3) (|partial| -12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9)) (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9)) (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))) -(-10 -7 (-15 -2800 (|#8| |#4|)) (-15 -2147 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) NIL)) (-1761 (($ $ $) NIL)) (-2096 (($ (-562 |#1| |#3|)) NIL) (($ $) NIL)) (-2719 (((-110) $) NIL)) (-3034 (($ $ (-531) (-531)) 12)) (-1987 (($ $ (-531) (-531)) NIL)) (-2159 (($ $ (-531) (-531) (-531) (-531)) NIL)) (-2870 (($ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3680 (($ $ (-531) (-531) $) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) NIL)) (-2398 (($ $ (-531) (-562 |#1| |#3|)) NIL)) (-3492 (($ $ (-531) (-562 |#1| |#2|)) NIL)) (-3264 (($ (-721) |#1|) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 21 (|has| |#1| (-289)))) (-4011 (((-562 |#1| |#3|) $ (-531)) NIL)) (-2277 (((-721) $) 24 (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-4091 (((-721) $) 26 (|has| |#1| (-523)))) (-3001 (((-598 (-562 |#1| |#2|)) $) 29 (|has| |#1| (-523)))) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#1| $) 19 (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) 10)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) 11)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#1|))) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3924 (((-598 (-598 |#1|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) 33 (|has| |#1| (-344)))) (-2069 (($ $ $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531))) NIL)) (-3223 (($ (-598 |#1|)) NIL) (($ (-598 $)) NIL)) (-1439 (((-110) $) NIL)) (-3253 ((|#1| $) 17 (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-562 |#1| |#2|) $ (-531)) NIL)) (-2265 (($ (-562 |#1| |#2|)) NIL) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-531) $) NIL) (((-562 |#1| |#2|) $ (-562 |#1| |#2|)) NIL) (((-562 |#1| |#3|) (-562 |#1| |#3|) $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-500 |#1| |#2| |#3|) (-637 |#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) (-986) (-531) (-531)) (T -500)) -NIL -(-637 |#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) -((-3796 (((-1098 |#1|) (-721)) 76)) (-1354 (((-1184 |#1|) (-1184 |#1|) (-864)) 69)) (-1558 (((-1189) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) |#1|) 84)) (-3727 (((-1184 |#1|) (-1184 |#1|) (-721)) 36)) (-1381 (((-1184 |#1|) (-864)) 71)) (-2044 (((-1184 |#1|) (-1184 |#1|) (-531)) 24)) (-2451 (((-1098 |#1|) (-1184 |#1|)) 77)) (-3323 (((-1184 |#1|) (-864)) 95)) (-3653 (((-110) (-1184 |#1|)) 80)) (-1899 (((-1184 |#1|) (-1184 |#1|) (-864)) 62)) (-1233 (((-1098 |#1|) (-1184 |#1|)) 89)) (-2211 (((-864) (-1184 |#1|)) 59)) (-2422 (((-1184 |#1|) (-1184 |#1|)) 30)) (-1889 (((-1184 |#1|) (-864) (-864)) 97)) (-4090 (((-1184 |#1|) (-1184 |#1|) (-1049) (-1049)) 23)) (-1887 (((-1184 |#1|) (-1184 |#1|) (-721) (-1049)) 37)) (-3523 (((-1184 (-1184 |#1|)) (-864)) 94)) (-2263 (((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)) 81)) (** (((-1184 |#1|) (-1184 |#1|) (-531)) 45)) (* (((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)) 25))) -(((-501 |#1|) (-10 -7 (-15 -1558 ((-1189) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) |#1|)) (-15 -1381 ((-1184 |#1|) (-864))) (-15 -1889 ((-1184 |#1|) (-864) (-864))) (-15 -2451 ((-1098 |#1|) (-1184 |#1|))) (-15 -3796 ((-1098 |#1|) (-721))) (-15 -1887 ((-1184 |#1|) (-1184 |#1|) (-721) (-1049))) (-15 -3727 ((-1184 |#1|) (-1184 |#1|) (-721))) (-15 -4090 ((-1184 |#1|) (-1184 |#1|) (-1049) (-1049))) (-15 -2044 ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 ** ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 * ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2263 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -1899 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -1354 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -2422 ((-1184 |#1|) (-1184 |#1|))) (-15 -2211 ((-864) (-1184 |#1|))) (-15 -3653 ((-110) (-1184 |#1|))) (-15 -3523 ((-1184 (-1184 |#1|)) (-864))) (-15 -3323 ((-1184 |#1|) (-864))) (-15 -1233 ((-1098 |#1|) (-1184 |#1|)))) (-330)) (T -501)) -((-1233 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-501 *4)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-864)) (-5 *1 (-501 *4)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) (-1354 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-2263 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-2044 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-4090 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1049)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-3727 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-1887 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1184 *5)) (-5 *3 (-721)) (-5 *4 (-1049)) (-4 *5 (-330)) (-5 *1 (-501 *5)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)))) (-1889 (*1 *2 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-4 *4 (-330)) (-5 *2 (-1189)) (-5 *1 (-501 *4))))) -(-10 -7 (-15 -1558 ((-1189) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) |#1|)) (-15 -1381 ((-1184 |#1|) (-864))) (-15 -1889 ((-1184 |#1|) (-864) (-864))) (-15 -2451 ((-1098 |#1|) (-1184 |#1|))) (-15 -3796 ((-1098 |#1|) (-721))) (-15 -1887 ((-1184 |#1|) (-1184 |#1|) (-721) (-1049))) (-15 -3727 ((-1184 |#1|) (-1184 |#1|) (-721))) (-15 -4090 ((-1184 |#1|) (-1184 |#1|) (-1049) (-1049))) (-15 -2044 ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 ** ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 * ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2263 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -1899 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -1354 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -2422 ((-1184 |#1|) (-1184 |#1|))) (-15 -2211 ((-864) (-1184 |#1|))) (-15 -3653 ((-110) (-1184 |#1|))) (-15 -3523 ((-1184 (-1184 |#1|)) (-864))) (-15 -3323 ((-1184 |#1|) (-864))) (-15 -1233 ((-1098 |#1|) (-1184 |#1|)))) -((-2130 (((-1 |#1| |#1|) |#1|) 11)) (-1607 (((-1 |#1| |#1|)) 10))) -(((-502 |#1|) (-10 -7 (-15 -1607 ((-1 |#1| |#1|))) (-15 -2130 ((-1 |#1| |#1|) |#1|))) (-13 (-677) (-25))) (T -502)) -((-2130 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25))))) (-1607 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25)))))) -(-10 -7 (-15 -1607 ((-1 |#1| |#1|))) (-15 -2130 ((-1 |#1| |#1|) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3818 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ (-721) |#1|) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 (-721) (-721)) $) NIL)) (-1477 ((|#1| $) NIL)) (-2475 (((-721) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20)) (-3035 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL))) -(((-503 |#1|) (-13 (-743) (-487 (-721) |#1|)) (-797)) (T -503)) -NIL -(-13 (-743) (-487 (-721) |#1|)) -((-3057 (((-598 |#2|) (-1098 |#1|) |#3|) 83)) (-3760 (((-598 (-2 (|:| |outval| |#2|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#2|))))) (-639 |#1|) |#3| (-1 (-399 (-1098 |#1|)) (-1098 |#1|))) 100)) (-1392 (((-1098 |#1|) (-639 |#1|)) 95))) -(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -1392 ((-1098 |#1|) (-639 |#1|))) (-15 -3057 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3760 ((-598 (-2 (|:| |outval| |#2|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#2|))))) (-639 |#1|) |#3| (-1 (-399 (-1098 |#1|)) (-1098 |#1|))))) (-344) (-344) (-13 (-344) (-795))) (T -504)) -((-3760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *6)) (-5 *5 (-1 (-399 (-1098 *6)) (-1098 *6))) (-4 *6 (-344)) (-5 *2 (-598 (-2 (|:| |outval| *7) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 *7)))))) (-5 *1 (-504 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-795))))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *5)) (-4 *5 (-344)) (-5 *2 (-598 *6)) (-5 *1 (-504 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-344)) (-5 *2 (-1098 *4)) (-5 *1 (-504 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-795)))))) -(-10 -7 (-15 -1392 ((-1098 |#1|) (-639 |#1|))) (-15 -3057 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3760 ((-598 (-2 (|:| |outval| |#2|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#2|))))) (-639 |#1|) |#3| (-1 (-399 (-1098 |#1|)) (-1098 |#1|))))) -((-1447 (((-790 (-531))) 12)) (-1458 (((-790 (-531))) 14)) (-1893 (((-783 (-531))) 9))) -(((-505) (-10 -7 (-15 -1893 ((-783 (-531)))) (-15 -1447 ((-790 (-531)))) (-15 -1458 ((-790 (-531)))))) (T -505)) -((-1458 (*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505)))) (-1447 (*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505)))) (-1893 (*1 *2) (-12 (-5 *2 (-783 (-531))) (-5 *1 (-505))))) -(-10 -7 (-15 -1893 ((-783 (-531)))) (-15 -1447 ((-790 (-531)))) (-15 -1458 ((-790 (-531))))) -((-2314 (((-507) (-1102)) 15)) (-3338 ((|#1| (-507)) 20))) -(((-506 |#1|) (-10 -7 (-15 -2314 ((-507) (-1102))) (-15 -3338 (|#1| (-507)))) (-1138)) (T -506)) -((-3338 (*1 *2 *3) (-12 (-5 *3 (-507)) (-5 *1 (-506 *2)) (-4 *2 (-1138)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-507)) (-5 *1 (-506 *4)) (-4 *4 (-1138))))) -(-10 -7 (-15 -2314 ((-507) (-1102))) (-15 -3338 (|#1| (-507)))) -((-2247 (((-110) $ $) NIL)) (-1869 (((-1085) $) 48)) (-1660 (((-110) $) 43)) (-3287 (((-1102) $) 44)) (-1700 (((-110) $) 41)) (-3149 (((-1085) $) 42)) (-3342 (((-110) $) NIL)) (-3922 (((-110) $) NIL)) (-2169 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-3829 (($ $ (-598 (-1102))) 20)) (-3338 (((-51) $) 22)) (-1939 (((-110) $) NIL)) (-3310 (((-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-1956 (($ $ (-598 (-1102)) (-1102)) 60)) (-1298 (((-110) $) NIL)) (-2947 (((-208) $) NIL)) (-4118 (($ $) 38)) (-3486 (((-806) $) NIL)) (-2723 (((-110) $ $) NIL)) (-1785 (($ $ (-531)) NIL) (($ $ (-598 (-531))) NIL)) (-2625 (((-598 $) $) 28)) (-2455 (((-1102) (-598 $)) 49)) (-3318 (($ (-598 $)) 53) (($ (-1085)) NIL) (($ (-1102)) 18) (($ (-531)) 8) (($ (-208)) 25) (($ (-806)) NIL) (((-1034) $) 11) (($ (-1034)) 12)) (-2166 (((-1102) (-1102) (-598 $)) 52)) (-2265 (((-806) $) 46)) (-2929 (($ $) 51)) (-2919 (($ $) 50)) (-1608 (($ $ (-598 $)) 57)) (-1331 (((-110) $) 27)) (-3035 (($) 9 T CONST)) (-3050 (($) 10 T CONST)) (-2148 (((-110) $ $) 61)) (-2263 (($ $ $) 66)) (-2237 (($ $ $) 62)) (** (($ $ (-721)) 65) (($ $ (-531)) 64)) (* (($ $ $) 63)) (-2167 (((-531) $) NIL))) -(((-507) (-13 (-1033 (-1085) (-1102) (-531) (-208) (-806)) (-573 (-1034)) (-10 -8 (-15 -3338 ((-51) $)) (-15 -3318 ($ (-1034))) (-15 -1608 ($ $ (-598 $))) (-15 -1956 ($ $ (-598 (-1102)) (-1102))) (-15 -3829 ($ $ (-598 (-1102)))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ (-531))) (-15 0 ($) -2651) (-15 1 ($) -2651) (-15 -4118 ($ $)) (-15 -1869 ((-1085) $)) (-15 -2455 ((-1102) (-598 $))) (-15 -2166 ((-1102) (-1102) (-598 $)))))) (T -507)) -((-3338 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-507)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-507)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-507))) (-5 *1 (-507)))) (-1956 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1102)) (-5 *1 (-507)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-507)))) (-2237 (*1 *1 *1 *1) (-5 *1 (-507))) (* (*1 *1 *1 *1) (-5 *1 (-507))) (-2263 (*1 *1 *1 *1) (-5 *1 (-507))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-507)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-507)))) (-3035 (*1 *1) (-5 *1 (-507))) (-3050 (*1 *1) (-5 *1 (-507))) (-4118 (*1 *1 *1) (-5 *1 (-507))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-507)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-598 (-507))) (-5 *2 (-1102)) (-5 *1 (-507)))) (-2166 (*1 *2 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-507))) (-5 *1 (-507))))) -(-13 (-1033 (-1085) (-1102) (-531) (-208) (-806)) (-573 (-1034)) (-10 -8 (-15 -3338 ((-51) $)) (-15 -3318 ($ (-1034))) (-15 -1608 ($ $ (-598 $))) (-15 -1956 ($ $ (-598 (-1102)) (-1102))) (-15 -3829 ($ $ (-598 (-1102)))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ (-531))) (-15 (-3035) ($) -2651) (-15 (-3050) ($) -2651) (-15 -4118 ($ $)) (-15 -1869 ((-1085) $)) (-15 -2455 ((-1102) (-598 $))) (-15 -2166 ((-1102) (-1102) (-598 $))))) -((-1792 ((|#2| |#2|) 17)) (-1283 ((|#2| |#2|) 13)) (-4244 ((|#2| |#2| (-531) (-531)) 20)) (-3350 ((|#2| |#2|) 15))) -(((-508 |#1| |#2|) (-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531)))) (-13 (-523) (-140)) (-1175 |#1|)) (T -508)) -((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-508 *4 *2)) (-4 *2 (-1175 *4)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) (-4 *2 (-1175 *3)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) (-4 *2 (-1175 *3)))) (-1283 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) (-4 *2 (-1175 *3))))) -(-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531)))) -((-4208 (((-598 (-276 (-895 |#2|))) (-598 |#2|) (-598 (-1102))) 32)) (-3921 (((-598 |#2|) (-895 |#1|) |#3|) 53) (((-598 |#2|) (-1098 |#1|) |#3|) 52)) (-3899 (((-598 (-598 |#2|)) (-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)) |#3|) 91))) -(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -3921 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3921 ((-598 |#2|) (-895 |#1|) |#3|)) (-15 -3899 ((-598 (-598 |#2|)) (-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)) |#3|)) (-15 -4208 ((-598 (-276 (-895 |#2|))) (-598 |#2|) (-598 (-1102))))) (-432) (-344) (-13 (-344) (-795))) (T -509)) -((-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1102))) (-4 *6 (-344)) (-5 *2 (-598 (-276 (-895 *6)))) (-5 *1 (-509 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-13 (-344) (-795))))) (-3899 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-509 *6 *7 *5)) (-4 *7 (-344)) (-4 *5 (-13 (-344) (-795))))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6)) (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6)) (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795)))))) -(-10 -7 (-15 -3921 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3921 ((-598 |#2|) (-895 |#1|) |#3|)) (-15 -3899 ((-598 (-598 |#2|)) (-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)) |#3|)) (-15 -4208 ((-598 (-276 (-895 |#2|))) (-598 |#2|) (-598 (-1102))))) -((-3848 ((|#2| |#2| |#1|) 17)) (-1596 ((|#2| (-598 |#2|)) 27)) (-1797 ((|#2| (-598 |#2|)) 46))) -(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1596 (|#2| (-598 |#2|))) (-15 -1797 (|#2| (-598 |#2|))) (-15 -3848 (|#2| |#2| |#1|))) (-289) (-1160 |#1|) |#1| (-1 |#1| |#1| (-721))) (T -510)) -((-3848 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-721))) (-5 *1 (-510 *3 *2 *4 *5)) (-4 *2 (-1160 *3)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721))))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721)))))) -(-10 -7 (-15 -1596 (|#2| (-598 |#2|))) (-15 -1797 (|#2| (-598 |#2|))) (-15 -3848 (|#2| |#2| |#1|))) -((-2552 (((-399 (-1098 |#4|)) (-1098 |#4|) (-1 (-399 (-1098 |#3|)) (-1098 |#3|))) 80) (((-399 |#4|) |#4| (-1 (-399 (-1098 |#3|)) (-1098 |#3|))) 169))) -(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 (-1098 |#3|)) (-1098 |#3|)))) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|) (-1 (-399 (-1098 |#3|)) (-1098 |#3|))))) (-797) (-743) (-13 (-289) (-140)) (-892 |#3| |#2| |#1|)) (T -511)) -((-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *8 (-892 *7 *6 *5)) (-5 *2 (-399 (-1098 *8))) (-5 *1 (-511 *5 *6 *7 *8)) (-5 *3 (-1098 *8)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743)) (-5 *2 (-399 *3)) (-5 *1 (-511 *5 *6 *7 *3)) (-4 *3 (-892 *7 *6 *5))))) -(-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 (-1098 |#3|)) (-1098 |#3|)))) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|) (-1 (-399 (-1098 |#3|)) (-1098 |#3|))))) -((-1792 ((|#4| |#4|) 74)) (-1283 ((|#4| |#4|) 70)) (-4244 ((|#4| |#4| (-531) (-531)) 76)) (-3350 ((|#4| |#4|) 72))) -(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1283 (|#4| |#4|)) (-15 -3350 (|#4| |#4|)) (-15 -1792 (|#4| |#4|)) (-15 -4244 (|#4| |#4| (-531) (-531)))) (-13 (-344) (-349) (-573 (-531))) (-1160 |#1|) (-675 |#1| |#2|) (-1175 |#3|)) (T -512)) -((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3))) (-4 *5 (-1160 *4)) (-4 *6 (-675 *4 *5)) (-5 *1 (-512 *4 *5 *6 *2)) (-4 *2 (-1175 *6)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) (-1283 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5))))) -(-10 -7 (-15 -1283 (|#4| |#4|)) (-15 -3350 (|#4| |#4|)) (-15 -1792 (|#4| |#4|)) (-15 -4244 (|#4| |#4| (-531) (-531)))) -((-1792 ((|#2| |#2|) 27)) (-1283 ((|#2| |#2|) 23)) (-4244 ((|#2| |#2| (-531) (-531)) 29)) (-3350 ((|#2| |#2|) 25))) -(((-513 |#1| |#2|) (-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531)))) (-13 (-344) (-349) (-573 (-531))) (-1175 |#1|)) (T -513)) -((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3))) (-5 *1 (-513 *4 *2)) (-4 *2 (-1175 *4)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) (-4 *2 (-1175 *3)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) (-4 *2 (-1175 *3)))) (-1283 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) (-4 *2 (-1175 *3))))) -(-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531)))) -((-1499 (((-3 (-531) "failed") |#2| |#1| (-1 (-3 (-531) "failed") |#1|)) 14) (((-3 (-531) "failed") |#2| |#1| (-531) (-1 (-3 (-531) "failed") |#1|)) 13) (((-3 (-531) "failed") |#2| (-531) (-1 (-3 (-531) "failed") |#1|)) 26))) -(((-514 |#1| |#2|) (-10 -7 (-15 -1499 ((-3 (-531) "failed") |#2| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-1 (-3 (-531) "failed") |#1|)))) (-986) (-1160 |#1|)) (T -514)) -((-1499 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4)))) (-1499 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4)))) (-1499 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-531) "failed") *5)) (-4 *5 (-986)) (-5 *2 (-531)) (-5 *1 (-514 *5 *3)) (-4 *3 (-1160 *5))))) -(-10 -7 (-15 -1499 ((-3 (-531) "failed") |#2| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-1 (-3 (-531) "failed") |#1|)))) -((-2464 (($ $ $) 79)) (-2956 (((-399 $) $) 47)) (-3154 (((-3 (-531) "failed") $) 59)) (-2523 (((-531) $) 37)) (-1609 (((-3 (-388 (-531)) "failed") $) 74)) (-3004 (((-110) $) 24)) (-2727 (((-388 (-531)) $) 72)) (-2534 (((-110) $) 50)) (-3013 (($ $ $ $) 86)) (-1599 (((-110) $) 16)) (-2555 (($ $ $) 57)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 69)) (-2342 (((-3 $ "failed") $) 64)) (-3107 (($ $) 23)) (-4098 (($ $ $) 84)) (-3788 (($) 60)) (-1569 (($ $) 53)) (-2552 (((-399 $) $) 45)) (-1787 (((-110) $) 14)) (-4100 (((-721) $) 28)) (-3352 (($ $ (-721)) NIL) (($ $) 10)) (-2480 (($ $) 17)) (-3318 (((-531) $) NIL) (((-507) $) 36) (((-835 (-531)) $) 40) (((-360) $) 31) (((-208) $) 33)) (-2284 (((-721)) 8)) (-2070 (((-110) $ $) 20)) (-2589 (($ $ $) 55))) -(((-515 |#1|) (-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -2464 (|#1| |#1| |#1|)) (-15 -2070 ((-110) |#1| |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3318 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1599 ((-110) |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2284 ((-721)))) (-516)) (T -515)) -((-2284 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-515 *3)) (-4 *3 (-516))))) -(-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -2464 (|#1| |#1| |#1|)) (-15 -2070 ((-110) |#1| |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3318 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1599 ((-110) |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2284 ((-721)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2464 (($ $ $) 83)) (-2128 (((-3 $ "failed") $ $) 19)) (-2377 (($ $ $ $) 71)) (-3240 (($ $) 49)) (-2956 (((-399 $) $) 50)) (-2760 (((-110) $ $) 123)) (-3459 (((-531) $) 112)) (-3709 (($ $ $) 86)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 104)) (-2523 (((-531) $) 103)) (-3650 (($ $ $) 127)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 102) (((-639 (-531)) (-639 $)) 101)) (-3622 (((-3 $ "failed") $) 32)) (-1609 (((-3 (-388 (-531)) "failed") $) 80)) (-3004 (((-110) $) 82)) (-2727 (((-388 (-531)) $) 81)) (-1381 (($) 79) (($ $) 78)) (-3630 (($ $ $) 126)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 121)) (-2534 (((-110) $) 51)) (-3013 (($ $ $ $) 69)) (-2033 (($ $ $) 84)) (-1599 (((-110) $) 114)) (-2555 (($ $ $) 95)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 98)) (-3481 (((-110) $) 30)) (-4250 (((-110) $) 90)) (-2342 (((-3 $ "failed") $) 92)) (-2985 (((-110) $) 113)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 130)) (-3233 (($ $ $ $) 70)) (-4103 (($ $ $) 115)) (-1241 (($ $ $) 116)) (-3107 (($ $) 73)) (-2428 (($ $) 87)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-4098 (($ $ $) 68)) (-3788 (($) 91 T CONST)) (-3906 (($ $) 75)) (-2529 (((-1049) $) 10) (($ $) 77)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-1569 (($ $) 96)) (-2552 (((-399 $) $) 48)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 128)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 122)) (-1787 (((-110) $) 89)) (-4100 (((-721) $) 124)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 125)) (-3352 (($ $ (-721)) 109) (($ $) 107)) (-1651 (($ $) 74)) (-2480 (($ $) 76)) (-3318 (((-531) $) 106) (((-507) $) 100) (((-835 (-531)) $) 99) (((-360) $) 94) (((-208) $) 93)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-531)) 105)) (-2284 (((-721)) 28)) (-2070 (((-110) $ $) 85)) (-2589 (($ $ $) 97)) (-3276 (($) 88)) (-2587 (((-110) $ $) 37)) (-2392 (($ $ $ $) 72)) (-1620 (($ $) 111)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-721)) 110) (($ $) 108)) (-2207 (((-110) $ $) 118)) (-2184 (((-110) $ $) 119)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 117)) (-2174 (((-110) $ $) 120)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-516) (-133)) (T -516)) -((-4250 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-3276 (*1 *1) (-4 *1 (-516))) (-2428 (*1 *1 *1) (-4 *1 (-516))) (-3709 (*1 *1 *1 *1) (-4 *1 (-516))) (-2070 (*1 *2 *1 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-2033 (*1 *1 *1 *1) (-4 *1 (-516))) (-2464 (*1 *1 *1 *1) (-4 *1 (-516))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-516)) (-5 *2 (-388 (-531))))) (-1381 (*1 *1) (-4 *1 (-516))) (-1381 (*1 *1 *1) (-4 *1 (-516))) (-2529 (*1 *1 *1) (-4 *1 (-516))) (-2480 (*1 *1 *1) (-4 *1 (-516))) (-3906 (*1 *1 *1) (-4 *1 (-516))) (-1651 (*1 *1 *1) (-4 *1 (-516))) (-3107 (*1 *1 *1) (-4 *1 (-516))) (-2392 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-2377 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-3233 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-3013 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-4098 (*1 *1 *1 *1) (-4 *1 (-516)))) -(-13 (-1142) (-289) (-770) (-216) (-573 (-531)) (-977 (-531)) (-594 (-531)) (-573 (-507)) (-573 (-835 (-531))) (-829 (-531)) (-136) (-962) (-140) (-1078) (-10 -8 (-15 -4250 ((-110) $)) (-15 -1787 ((-110) $)) (-6 -4272) (-15 -3276 ($)) (-15 -2428 ($ $)) (-15 -3709 ($ $ $)) (-15 -2070 ((-110) $ $)) (-15 -2033 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $)) (-15 -1381 ($)) (-15 -1381 ($ $)) (-15 -2529 ($ $)) (-15 -2480 ($ $)) (-15 -3906 ($ $)) (-15 -1651 ($ $)) (-15 -3107 ($ $)) (-15 -2392 ($ $ $ $)) (-15 -2377 ($ $ $ $)) (-15 -3233 ($ $ $ $)) (-15 -3013 ($ $ $ $)) (-15 -4098 ($ $ $)) (-6 -4271))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-136) . T) ((-162) . T) ((-573 (-208)) . T) ((-573 (-360)) . T) ((-573 (-507)) . T) ((-573 (-531)) . T) ((-573 (-835 (-531))) . T) ((-216) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-594 (-531)) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-770) . T) ((-795) . T) ((-797) . T) ((-829 (-531)) . T) ((-863) . T) ((-962) . T) ((-977 (-531)) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) . T) ((-1142) . T)) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-517 |#1| |#2| |#3|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273)))) (T -517)) -NIL -(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) -((-3373 (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-1 (-1098 |#2|) (-1098 |#2|))) 51))) -(((-518 |#1| |#2|) (-10 -7 (-15 -3373 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-1 (-1098 |#2|) (-1098 |#2|))))) (-13 (-797) (-523)) (-13 (-27) (-411 |#1|))) (T -518)) -((-3373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-571 *3)) (-5 *5 (-1 (-1098 *3) (-1098 *3))) (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-797) (-523))) (-5 *2 (-548 *3)) (-5 *1 (-518 *6 *3))))) -(-10 -7 (-15 -3373 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-1 (-1098 |#2|) (-1098 |#2|))))) -((-1955 (((-548 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3892 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2360 (((-548 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-519 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2360 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1955 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3892 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-797) (-523) (-977 (-531))) (-13 (-27) (-411 |#1|)) (-1160 |#2|) (-1160 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -519)) -((-3892 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-27) (-411 *4))) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-4 *7 (-1160 (-388 *6))) (-5 *1 (-519 *4 *5 *6 *7 *2)) (-4 *2 (-323 *5 *6 *7)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7))) (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))) (-2360 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7))) (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8))))) -(-10 -7 (-15 -2360 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1955 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3892 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2844 (((-110) (-531) (-531)) 10)) (-2414 (((-531) (-531)) 7)) (-4025 (((-531) (-531) (-531)) 8))) -(((-520) (-10 -7 (-15 -2414 ((-531) (-531))) (-15 -4025 ((-531) (-531) (-531))) (-15 -2844 ((-110) (-531) (-531))))) (T -520)) -((-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-520)))) (-4025 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520))))) -(-10 -7 (-15 -2414 ((-531) (-531))) (-15 -4025 ((-531) (-531) (-531))) (-15 -2844 ((-110) (-531) (-531)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1463 ((|#1| $) 59)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2367 (($ $) 89)) (-2218 (($ $) 72)) (-3818 ((|#1| $) 60)) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $) 71)) (-2343 (($ $) 88)) (-2198 (($ $) 73)) (-2391 (($ $) 87)) (-2241 (($ $) 74)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 67)) (-2523 (((-531) $) 66)) (-3622 (((-3 $ "failed") $) 32)) (-2151 (($ |#1| |#1|) 64)) (-1599 (((-110) $) 58)) (-1880 (($) 99)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 70)) (-2985 (((-110) $) 57)) (-4103 (($ $ $) 105)) (-1241 (($ $ $) 104)) (-2076 (($ $) 96)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-3470 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-388 (-531))) 62)) (-4137 ((|#1| $) 61)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3609 (((-3 $ "failed") $ $) 40)) (-2798 (($ $) 97)) (-2403 (($ $) 86)) (-2253 (($ $) 75)) (-2379 (($ $) 85)) (-2229 (($ $) 76)) (-2356 (($ $) 84)) (-2210 (($ $) 77)) (-3858 (((-110) $ |#1|) 56)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-531)) 68)) (-2284 (((-721)) 28)) (-2442 (($ $) 95)) (-2292 (($ $) 83)) (-2587 (((-110) $ $) 37)) (-2416 (($ $) 94)) (-2266 (($ $) 82)) (-2468 (($ $) 93)) (-2318 (($ $) 81)) (-2753 (($ $) 92)) (-2331 (($ $) 80)) (-2456 (($ $) 91)) (-2305 (($ $) 79)) (-2429 (($ $) 90)) (-2279 (($ $) 78)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 102)) (-2184 (((-110) $ $) 101)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 103)) (-2174 (((-110) $ $) 100)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ $) 98) (($ $ (-388 (-531))) 69)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-521 |#1|) (-133) (-13 (-385) (-1124))) (T -521)) -((-3470 (*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-2151 (*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-3470 (*1 *1 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))) (-3858 (*1 *2 *1 *3) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110))))) -(-13 (-432) (-797) (-1124) (-943) (-977 (-531)) (-10 -8 (-6 -4148) (-15 -3470 ($ |t#1| |t#1|)) (-15 -2151 ($ |t#1| |t#1|)) (-15 -3470 ($ |t#1|)) (-15 -3470 ($ (-388 (-531)))) (-15 -4137 (|t#1| $)) (-15 -3818 (|t#1| $)) (-15 -1463 (|t#1| $)) (-15 -1599 ((-110) $)) (-15 -2985 ((-110) $)) (-15 -3858 ((-110) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-266) . T) ((-272) . T) ((-432) . T) ((-471) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-797) . T) ((-943) . T) ((-977 (-531)) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) . T) ((-1127) . T)) -((-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 9)) (-3258 (($ $) 11)) (-2921 (((-110) $) 18)) (-3622 (((-3 $ "failed") $) 16)) (-2587 (((-110) $ $) 20))) -(((-522 |#1|) (-10 -8 (-15 -2921 ((-110) |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|))) (-523)) (T -522)) -NIL -(-10 -8 (-15 -2921 ((-110) |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-523) (-133)) (T -523)) -((-3609 (*1 *1 *1 *1) (|partial| -4 *1 (-523))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3887 *1) (|:| -4260 *1) (|:| |associate| *1))) (-4 *1 (-523)))) (-3258 (*1 *1 *1) (-4 *1 (-523))) (-2587 (*1 *2 *1 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110))))) -(-13 (-162) (-37 $) (-272) (-10 -8 (-15 -3609 ((-3 $ "failed") $ $)) (-15 -3543 ((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $)) (-15 -3258 ($ $)) (-15 -2587 ((-110) $ $)) (-15 -2921 ((-110) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3497 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1102) (-598 |#2|)) 37)) (-2991 (((-548 |#2|) |#2| (-1102)) 62)) (-2080 (((-3 |#2| "failed") |#2| (-1102)) 152)) (-2035 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) (-571 |#2|) (-598 (-571 |#2|))) 155)) (-1539 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) |#2|) 40))) -(((-524 |#1| |#2|) (-10 -7 (-15 -1539 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) |#2|)) (-15 -3497 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1102) (-598 |#2|))) (-15 -2080 ((-3 |#2| "failed") |#2| (-1102))) (-15 -2991 ((-548 |#2|) |#2| (-1102))) (-15 -2035 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) (-571 |#2|) (-598 (-571 |#2|))))) (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -524)) -((-2035 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1102)) (-5 *6 (-598 (-571 *3))) (-5 *5 (-571 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-524 *7 *3)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2080 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-524 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-3497 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *6 *3)))) (-1539 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) -(-10 -7 (-15 -1539 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) |#2|)) (-15 -3497 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1102) (-598 |#2|))) (-15 -2080 ((-3 |#2| "failed") |#2| (-1102))) (-15 -2991 ((-548 |#2|) |#2| (-1102))) (-15 -2035 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) (-571 |#2|) (-598 (-571 |#2|))))) -((-2956 (((-399 |#1|) |#1|) 18)) (-2552 (((-399 |#1|) |#1|) 33)) (-2031 (((-3 |#1| "failed") |#1|) 44)) (-2624 (((-399 |#1|) |#1|) 51))) -(((-525 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2624 ((-399 |#1|) |#1|)) (-15 -2031 ((-3 |#1| "failed") |#1|))) (-516)) (T -525)) -((-2031 (*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-516)))) (-2624 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516))))) -(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2624 ((-399 |#1|) |#1|)) (-15 -2031 ((-3 |#1| "failed") |#1|))) -((-2242 (($) 9)) (-1353 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 35)) (-3345 (((-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 32)) (-3944 (($ (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2778 (($ (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1798 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-3163 (((-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1436 (((-1189)) 12))) -(((-526) (-10 -8 (-15 -2242 ($)) (-15 -1436 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2778 ($ (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1353 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3163 ((-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1798 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -526)) -((-1798 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-526)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-526)))) (-1353 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-526)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-526)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-526)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-526)))) (-1436 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-526)))) (-2242 (*1 *1) (-5 *1 (-526)))) -(-10 -8 (-15 -2242 ($)) (-15 -1436 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2778 ($ (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1353 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3163 ((-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1798 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) -((-2516 (((-1098 (-388 (-1098 |#2|))) |#2| (-571 |#2|) (-571 |#2|) (-1098 |#2|)) 32)) (-3912 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) |#2| (-1098 |#2|)) 110)) (-3909 (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 80) (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|)) 52)) (-2032 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| (-571 |#2|) |#2| (-388 (-1098 |#2|))) 87) (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| |#2| (-1098 |#2|)) 109)) (-4143 (((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) |#2| (-1098 |#2|)) 111)) (-2302 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 128 (|has| |#3| (-609 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|)) 127 (|has| |#3| (-609 |#2|)))) (-2682 ((|#2| (-1098 (-388 (-1098 |#2|))) (-571 |#2|) |#2|) 50)) (-1749 (((-1098 (-388 (-1098 |#2|))) (-1098 |#2|) (-571 |#2|)) 31))) -(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| |#2| (-1098 |#2|))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) |#2| (-1098 |#2|))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) |#2| (-1098 |#2|))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2516 ((-1098 (-388 (-1098 |#2|))) |#2| (-571 |#2|) (-571 |#2|) (-1098 |#2|))) (-15 -2682 (|#2| (-1098 (-388 (-1098 |#2|))) (-571 |#2|) |#2|)) (-15 -1749 ((-1098 (-388 (-1098 |#2|))) (-1098 |#2|) (-571 |#2|))) (IF (|has| |#3| (-609 |#2|)) (PROGN (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))))) |%noBranch|)) (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))) (-13 (-411 |#1|) (-27) (-1124)) (-1030)) (T -527)) -((-2302 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-571 *4)) (-5 *6 (-388 (-1098 *4))) (-4 *4 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) (-2302 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-571 *4)) (-5 *6 (-1098 *4)) (-4 *4 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-571 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-1098 (-388 (-1098 *6)))) (-5 *1 (-527 *5 *6 *7)) (-5 *3 (-1098 *6)) (-4 *7 (-1030)))) (-2682 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1098 (-388 (-1098 *2)))) (-5 *4 (-571 *2)) (-4 *2 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1030)))) (-2516 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-1098 (-388 (-1098 *3)))) (-5 *1 (-527 *6 *3 *7)) (-5 *5 (-1098 *3)) (-4 *7 (-1030)))) (-4143 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-571 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-5 *5 (-388 (-1098 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030)))) (-4143 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-571 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-5 *5 (-1098 *2)) (-4 *2 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030)))) (-3912 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-5 *6 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030)))) (-3912 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-5 *6 (-1098 *3)) (-4 *3 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030)))) (-2032 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) (-2032 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) (-3909 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) (-3909 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030))))) -(-10 -7 (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| |#2| (-1098 |#2|))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) |#2| (-1098 |#2|))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) |#2| (-1098 |#2|))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2516 ((-1098 (-388 (-1098 |#2|))) |#2| (-571 |#2|) (-571 |#2|) (-1098 |#2|))) (-15 -2682 (|#2| (-1098 (-388 (-1098 |#2|))) (-571 |#2|) |#2|)) (-15 -1749 ((-1098 (-388 (-1098 |#2|))) (-1098 |#2|) (-571 |#2|))) (IF (|has| |#3| (-609 |#2|)) (PROGN (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))))) |%noBranch|)) -((-3705 (((-531) (-531) (-721)) 66)) (-3025 (((-531) (-531)) 65)) (-2008 (((-531) (-531)) 64)) (-1410 (((-531) (-531)) 69)) (-3270 (((-531) (-531) (-531)) 49)) (-4181 (((-531) (-531) (-531)) 46)) (-2525 (((-388 (-531)) (-531)) 20)) (-2530 (((-531) (-531)) 21)) (-2619 (((-531) (-531)) 58)) (-2135 (((-531) (-531)) 32)) (-2466 (((-598 (-531)) (-531)) 63)) (-1850 (((-531) (-531) (-531) (-531) (-531)) 44)) (-2349 (((-388 (-531)) (-531)) 41))) -(((-528) (-10 -7 (-15 -2349 ((-388 (-531)) (-531))) (-15 -1850 ((-531) (-531) (-531) (-531) (-531))) (-15 -2466 ((-598 (-531)) (-531))) (-15 -2135 ((-531) (-531))) (-15 -2619 ((-531) (-531))) (-15 -2530 ((-531) (-531))) (-15 -2525 ((-388 (-531)) (-531))) (-15 -4181 ((-531) (-531) (-531))) (-15 -3270 ((-531) (-531) (-531))) (-15 -1410 ((-531) (-531))) (-15 -2008 ((-531) (-531))) (-15 -3025 ((-531) (-531))) (-15 -3705 ((-531) (-531) (-721))))) (T -528)) -((-3705 (*1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-721)) (-5 *1 (-528)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-3270 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-4181 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2525 (*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))) (-2530 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2466 (*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))) (-1850 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531))))) -(-10 -7 (-15 -2349 ((-388 (-531)) (-531))) (-15 -1850 ((-531) (-531) (-531) (-531) (-531))) (-15 -2466 ((-598 (-531)) (-531))) (-15 -2135 ((-531) (-531))) (-15 -2619 ((-531) (-531))) (-15 -2530 ((-531) (-531))) (-15 -2525 ((-388 (-531)) (-531))) (-15 -4181 ((-531) (-531) (-531))) (-15 -3270 ((-531) (-531) (-531))) (-15 -1410 ((-531) (-531))) (-15 -2008 ((-531) (-531))) (-15 -3025 ((-531) (-531))) (-15 -3705 ((-531) (-531) (-721)))) -((-1800 (((-2 (|:| |answer| |#4|) (|:| -1913 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1800 ((-2 (|:| |answer| |#4|) (|:| -1913 |#4|)) |#4| (-1 |#2| |#2|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -529)) -((-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-4 *7 (-1160 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1913 *3))) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7))))) -(-10 -7 (-15 -1800 ((-2 (|:| |answer| |#4|) (|:| -1913 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1800 (((-2 (|:| |answer| (-388 |#2|)) (|:| -1913 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 18))) -(((-530 |#1| |#2|) (-10 -7 (-15 -1800 ((-2 (|:| |answer| (-388 |#2|)) (|:| -1913 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1160 |#1|)) (T -530)) -((-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| (-388 *6)) (|:| -1913 (-388 *6)) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-530 *5 *6)) (-5 *3 (-388 *6))))) -(-10 -7 (-15 -1800 ((-2 (|:| |answer| (-388 |#2|)) (|:| -1913 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 25)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 87)) (-3258 (($ $) 88)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) 42)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) 81)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL)) (-2523 (((-531) $) NIL)) (-3650 (($ $ $) 80)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 61) (((-639 (-531)) (-639 $)) 57)) (-3622 (((-3 $ "failed") $) 84)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($) 63) (($ $) 64)) (-3630 (($ $ $) 79)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) 54)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) 26)) (-4250 (((-110) $) 74)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) 34)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) 43)) (-4103 (($ $ $) 76)) (-1241 (($ $ $) 75)) (-3107 (($ $) NIL)) (-2428 (($ $) 40)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) 53)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) 31)) (-2529 (((-1049) $) NIL) (($ $) 33)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 118)) (-2109 (($ $ $) 85) (($ (-598 $)) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) 104)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) 83)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 78)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1651 (($ $) 32)) (-2480 (($ $) 30)) (-3318 (((-531) $) 39) (((-507) $) 51) (((-835 (-531)) $) NIL) (((-360) $) 46) (((-208) $) 48) (((-1085) $) 52)) (-2265 (((-806) $) 37) (($ (-531)) 38) (($ $) NIL) (($ (-531)) 38)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) 29)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) 41)) (-1620 (($ $) 62)) (-3035 (($) 27 T CONST)) (-3050 (($) 28 T CONST)) (-4231 (((-1085) $) 20) (((-1085) $ (-110)) 22) (((-1189) (-772) $) 23) (((-1189) (-772) $ (-110)) 24)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 65)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 66)) (-2250 (($ $) 67) (($ $ $) 69)) (-2237 (($ $ $) 68)) (** (($ $ (-864)) NIL) (($ $ (-721)) 73)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 71) (($ $ $) 70))) -(((-531) (-13 (-516) (-573 (-1085)) (-778) (-10 -8 (-15 -1381 ($ $)) (-6 -4260) (-6 -4265) (-6 -4261) (-6 -4255)))) (T -531)) -((-1381 (*1 *1 *1) (-5 *1 (-531)))) -(-13 (-516) (-573 (-1085)) (-778) (-10 -8 (-15 -1381 ($ $)) (-6 -4260) (-6 -4265) (-6 -4261) (-6 -4255))) -((-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719) (-998)) 108) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719)) 110)) (-1788 (((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1102)) 172) (((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1085)) 171) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360) (-998)) 176) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360)) 177) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360)) 178) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360))))) 179) (((-975) (-297 (-360)) (-1025 (-790 (-360)))) 167) (((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360)) 166) (((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360)) 162) (((-975) (-719)) 155) (((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360) (-998)) 161))) -(((-532) (-10 -7 (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360) (-998))) (-15 -1788 ((-975) (-719))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360) (-998))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719) (-998))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1085))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1102))))) (T -532)) -((-1788 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360)))) (-5 *5 (-1102)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360)))) (-5 *5 (-1085)) (-5 *2 (-975)) (-5 *1 (-532)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) (-5 *1 (-532)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532))))) -(-10 -7 (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360) (-998))) (-15 -1788 ((-975) (-719))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360) (-998))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719) (-998))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1085))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1102)))) -((-1627 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|)) 184)) (-2029 (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|)) 98)) (-1228 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2|) 180)) (-2042 (((-3 |#2| "failed") |#2| |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102))) 189)) (-4050 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-1102)) 197 (|has| |#3| (-609 |#2|))))) -(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -2029 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|))) (-15 -1228 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2|)) (-15 -1627 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|))) (-15 -2042 ((-3 |#2| "failed") |#2| |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)))) (IF (|has| |#3| (-609 |#2|)) (-15 -4050 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-1102))) |%noBranch|)) (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))) (-13 (-411 |#1|) (-27) (-1124)) (-1030)) (T -533)) -((-4050 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-571 *4)) (-5 *6 (-1102)) (-4 *4 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) (-2042 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-571 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-4 *2 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1030)))) (-1627 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1030)))) (-1228 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030)))) (-2029 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030))))) -(-10 -7 (-15 -2029 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|))) (-15 -1228 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2|)) (-15 -1627 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|))) (-15 -2042 ((-3 |#2| "failed") |#2| |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)))) (IF (|has| |#3| (-609 |#2|)) (-15 -4050 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-1102))) |%noBranch|)) -((-3845 (((-2 (|:| -3267 |#2|) (|:| |nconst| |#2|)) |#2| (-1102)) 64)) (-1781 (((-3 |#2| "failed") |#2| (-1102) (-790 |#2|) (-790 |#2|)) 164 (-12 (|has| |#2| (-1066)) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-829 (-531))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)) 147 (-12 (|has| |#2| (-584)) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-829 (-531)))))) (-4235 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)) 148 (-12 (|has| |#2| (-584)) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-829 (-531))))))) -(((-534 |#1| |#2|) (-10 -7 (-15 -3845 ((-2 (|:| -3267 |#2|) (|:| |nconst| |#2|)) |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (PROGN (IF (|has| |#2| (-584)) (PROGN (-15 -4235 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102))) (-15 -1781 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) (IF (|has| |#2| (-1066)) (-15 -1781 ((-3 |#2| "failed") |#2| (-1102) (-790 |#2|) (-790 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-797) (-977 (-531)) (-432) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -534)) -((-1781 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1102)) (-5 *4 (-790 *2)) (-4 *2 (-1066)) (-4 *2 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *1 (-534 *5 *2)))) (-1781 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-4235 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *2 (-2 (|:| -3267 *3) (|:| |nconst| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) -(-10 -7 (-15 -3845 ((-2 (|:| -3267 |#2|) (|:| |nconst| |#2|)) |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (PROGN (IF (|has| |#2| (-584)) (PROGN (-15 -4235 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102))) (-15 -1781 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) (IF (|has| |#2| (-1066)) (-15 -1781 ((-3 |#2| "failed") |#2| (-1102) (-790 |#2|) (-790 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1429 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-598 (-388 |#2|))) 41)) (-1788 (((-548 (-388 |#2|)) (-388 |#2|)) 28)) (-3325 (((-3 (-388 |#2|) "failed") (-388 |#2|)) 17)) (-2323 (((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|)) 48))) -(((-535 |#1| |#2|) (-10 -7 (-15 -1788 ((-548 (-388 |#2|)) (-388 |#2|))) (-15 -3325 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2323 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -1429 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-598 (-388 |#2|))))) (-13 (-344) (-140) (-977 (-531))) (-1160 |#1|)) (T -535)) -((-1429 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-598 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-535 *5 *6)))) (-2323 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -2351 (-388 *5)) (|:| |coeff| (-388 *5)))) (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5)))) (-3325 (*1 *2 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140) (-977 (-531)))) (-5 *1 (-535 *3 *4)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-548 (-388 *5))) (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5))))) -(-10 -7 (-15 -1788 ((-548 (-388 |#2|)) (-388 |#2|))) (-15 -3325 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2323 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -1429 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-598 (-388 |#2|))))) -((-3868 (((-3 (-531) "failed") |#1|) 14)) (-1939 (((-110) |#1|) 13)) (-3310 (((-531) |#1|) 9))) -(((-536 |#1|) (-10 -7 (-15 -3310 ((-531) |#1|)) (-15 -1939 ((-110) |#1|)) (-15 -3868 ((-3 (-531) "failed") |#1|))) (-977 (-531))) (T -536)) -((-3868 (*1 *2 *3) (|partial| -12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2)))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-536 *3)) (-4 *3 (-977 (-531))))) (-3310 (*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2))))) -(-10 -7 (-15 -3310 ((-531) |#1|)) (-15 -1939 ((-110) |#1|)) (-15 -3868 ((-3 (-531) "failed") |#1|))) -((-3090 (((-3 (-2 (|:| |mainpart| (-388 (-895 |#1|))) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 (-895 |#1|))) (|:| |logand| (-388 (-895 |#1|))))))) "failed") (-388 (-895 |#1|)) (-1102) (-598 (-388 (-895 |#1|)))) 48)) (-2987 (((-548 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-1102)) 28)) (-3946 (((-3 (-388 (-895 |#1|)) "failed") (-388 (-895 |#1|)) (-1102)) 23)) (-3815 (((-3 (-2 (|:| -2351 (-388 (-895 |#1|))) (|:| |coeff| (-388 (-895 |#1|)))) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))) 35))) -(((-537 |#1|) (-10 -7 (-15 -2987 ((-548 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -3946 ((-3 (-388 (-895 |#1|)) "failed") (-388 (-895 |#1|)) (-1102))) (-15 -3090 ((-3 (-2 (|:| |mainpart| (-388 (-895 |#1|))) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 (-895 |#1|))) (|:| |logand| (-388 (-895 |#1|))))))) "failed") (-388 (-895 |#1|)) (-1102) (-598 (-388 (-895 |#1|))))) (-15 -3815 ((-3 (-2 (|:| -2351 (-388 (-895 |#1|))) (|:| |coeff| (-388 (-895 |#1|)))) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))))) (-13 (-523) (-977 (-531)) (-140))) (T -537)) -((-3815 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-977 (-531)) (-140))) (-5 *2 (-2 (|:| -2351 (-388 (-895 *5))) (|:| |coeff| (-388 (-895 *5))))) (-5 *1 (-537 *5)) (-5 *3 (-388 (-895 *5))))) (-3090 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 (-388 (-895 *6)))) (-5 *3 (-388 (-895 *6))) (-4 *6 (-13 (-523) (-977 (-531)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-537 *6)))) (-3946 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-977 (-531)) (-140))) (-5 *1 (-537 *4)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-977 (-531)) (-140))) (-5 *2 (-548 (-388 (-895 *5)))) (-5 *1 (-537 *5)) (-5 *3 (-388 (-895 *5)))))) -(-10 -7 (-15 -2987 ((-548 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -3946 ((-3 (-388 (-895 |#1|)) "failed") (-388 (-895 |#1|)) (-1102))) (-15 -3090 ((-3 (-2 (|:| |mainpart| (-388 (-895 |#1|))) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 (-895 |#1|))) (|:| |logand| (-388 (-895 |#1|))))))) "failed") (-388 (-895 |#1|)) (-1102) (-598 (-388 (-895 |#1|))))) (-15 -3815 ((-3 (-2 (|:| -2351 (-388 (-895 |#1|))) (|:| |coeff| (-388 (-895 |#1|)))) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))))) -((-2247 (((-110) $ $) 58)) (-3019 (((-110) $) 36)) (-1463 ((|#1| $) 30)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) 62)) (-2367 (($ $) 122)) (-2218 (($ $) 102)) (-3818 ((|#1| $) 28)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL)) (-2343 (($ $) 124)) (-2198 (($ $) 98)) (-2391 (($ $) 126)) (-2241 (($ $) 106)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) 77)) (-2523 (((-531) $) 79)) (-3622 (((-3 $ "failed") $) 61)) (-2151 (($ |#1| |#1|) 26)) (-1599 (((-110) $) 33)) (-1880 (($) 88)) (-3481 (((-110) $) 43)) (-2249 (($ $ (-531)) NIL)) (-2985 (((-110) $) 34)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2076 (($ $) 90)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-3470 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-388 (-531))) 76)) (-4137 ((|#1| $) 27)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) 64) (($ (-598 $)) NIL)) (-3609 (((-3 $ "failed") $ $) 63)) (-2798 (($ $) 92)) (-2403 (($ $) 130)) (-2253 (($ $) 104)) (-2379 (($ $) 132)) (-2229 (($ $) 108)) (-2356 (($ $) 128)) (-2210 (($ $) 100)) (-3858 (((-110) $ |#1|) 31)) (-2265 (((-806) $) 84) (($ (-531)) 66) (($ $) NIL) (($ (-531)) 66)) (-2284 (((-721)) 86)) (-2442 (($ $) 144)) (-2292 (($ $) 114)) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) 142)) (-2266 (($ $) 110)) (-2468 (($ $) 140)) (-2318 (($ $) 120)) (-2753 (($ $) 138)) (-2331 (($ $) 118)) (-2456 (($ $) 136)) (-2305 (($ $) 116)) (-2429 (($ $) 134)) (-2279 (($ $) 112)) (-3035 (($) 21 T CONST)) (-3050 (($) 10 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 37)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 35)) (-2250 (($ $) 41) (($ $ $) 42)) (-2237 (($ $ $) 40)) (** (($ $ (-864)) 54) (($ $ (-721)) NIL) (($ $ $) 94) (($ $ (-388 (-531))) 146)) (* (($ (-864) $) 51) (($ (-721) $) NIL) (($ (-531) $) 50) (($ $ $) 48))) -(((-538 |#1|) (-521 |#1|) (-13 (-385) (-1124))) (T -538)) -NIL -(-521 |#1|) -((-4197 (((-3 (-598 (-1098 (-531))) "failed") (-598 (-1098 (-531))) (-1098 (-531))) 24))) -(((-539) (-10 -7 (-15 -4197 ((-3 (-598 (-1098 (-531))) "failed") (-598 (-1098 (-531))) (-1098 (-531)))))) (T -539)) -((-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 (-531)))) (-5 *3 (-1098 (-531))) (-5 *1 (-539))))) -(-10 -7 (-15 -4197 ((-3 (-598 (-1098 (-531))) "failed") (-598 (-1098 (-531))) (-1098 (-531))))) -((-2537 (((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-1102)) 19)) (-3999 (((-598 (-571 |#2|)) (-598 |#2|) (-1102)) 23)) (-4210 (((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-598 (-571 |#2|))) 11)) (-3893 ((|#2| |#2| (-1102)) 54 (|has| |#1| (-523)))) (-2101 ((|#2| |#2| (-1102)) 78 (-12 (|has| |#2| (-266)) (|has| |#1| (-432))))) (-2217 (((-571 |#2|) (-571 |#2|) (-598 (-571 |#2|)) (-1102)) 25)) (-3756 (((-571 |#2|) (-598 (-571 |#2|))) 24)) (-3937 (((-548 |#2|) |#2| (-1102) (-1 (-548 |#2|) |#2| (-1102)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102))) 103 (-12 (|has| |#2| (-266)) (|has| |#2| (-584)) (|has| |#2| (-977 (-1102))) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-432)) (|has| |#1| (-829 (-531))))))) -(((-540 |#1| |#2|) (-10 -7 (-15 -2537 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-1102))) (-15 -3756 ((-571 |#2|) (-598 (-571 |#2|)))) (-15 -2217 ((-571 |#2|) (-571 |#2|) (-598 (-571 |#2|)) (-1102))) (-15 -4210 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-598 (-571 |#2|)))) (-15 -3999 ((-598 (-571 |#2|)) (-598 |#2|) (-1102))) (IF (|has| |#1| (-523)) (-15 -3893 (|#2| |#2| (-1102))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2101 (|#2| |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (IF (|has| |#2| (-584)) (IF (|has| |#2| (-977 (-1102))) (-15 -3937 ((-548 |#2|) |#2| (-1102) (-1 (-548 |#2|) |#2| (-1102)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-797) (-411 |#1|)) (T -540)) -((-3937 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-548 *3) *3 (-1102))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1102))) (-4 *3 (-266)) (-4 *3 (-584)) (-4 *3 (-977 *4)) (-4 *3 (-411 *7)) (-5 *4 (-1102)) (-4 *7 (-573 (-835 (-531)))) (-4 *7 (-432)) (-4 *7 (-829 (-531))) (-4 *7 (-797)) (-5 *2 (-548 *3)) (-5 *1 (-540 *7 *3)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-432)) (-4 *4 (-797)) (-5 *1 (-540 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-523)) (-4 *4 (-797)) (-5 *1 (-540 *4 *2)) (-4 *2 (-411 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-1102)) (-4 *6 (-411 *5)) (-4 *5 (-797)) (-5 *2 (-598 (-571 *6))) (-5 *1 (-540 *5 *6)))) (-4210 (*1 *2 *2 *2) (-12 (-5 *2 (-598 (-571 *4))) (-4 *4 (-411 *3)) (-4 *3 (-797)) (-5 *1 (-540 *3 *4)))) (-2217 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-598 (-571 *6))) (-5 *4 (-1102)) (-5 *2 (-571 *6)) (-4 *6 (-411 *5)) (-4 *5 (-797)) (-5 *1 (-540 *5 *6)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-598 (-571 *5))) (-4 *4 (-797)) (-5 *2 (-571 *5)) (-5 *1 (-540 *4 *5)) (-4 *5 (-411 *4)))) (-2537 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-571 *5))) (-5 *3 (-1102)) (-4 *5 (-411 *4)) (-4 *4 (-797)) (-5 *1 (-540 *4 *5))))) -(-10 -7 (-15 -2537 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-1102))) (-15 -3756 ((-571 |#2|) (-598 (-571 |#2|)))) (-15 -2217 ((-571 |#2|) (-571 |#2|) (-598 (-571 |#2|)) (-1102))) (-15 -4210 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-598 (-571 |#2|)))) (-15 -3999 ((-598 (-571 |#2|)) (-598 |#2|) (-1102))) (IF (|has| |#1| (-523)) (-15 -3893 (|#2| |#2| (-1102))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2101 (|#2| |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (IF (|has| |#2| (-584)) (IF (|has| |#2| (-977 (-1102))) (-15 -3937 ((-548 |#2|) |#2| (-1102) (-1 (-548 |#2|) |#2| (-1102)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1628 (((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-598 |#1|) "failed") (-531) |#1| |#1|)) 172)) (-2588 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-598 (-388 |#2|))) 148)) (-1303 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-598 (-388 |#2|))) 145)) (-3228 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-4198 (((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-4116 (((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|)) 175)) (-3248 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|)) 178)) (-1661 (((-2 (|:| |ir| (-548 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 84)) (-2915 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3553 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-598 (-388 |#2|))) 152)) (-3961 (((-3 (-579 |#1| |#2|) "failed") (-579 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|)) 137)) (-2191 (((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|)) 162)) (-1892 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-388 |#2|)) 183))) -(((-541 |#1| |#2|) (-10 -7 (-15 -4198 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2191 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1628 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-598 |#1|) "failed") (-531) |#1| |#1|))) (-15 -3248 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -1892 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-388 |#2|))) (-15 -2588 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-598 (-388 |#2|)))) (-15 -3553 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-598 (-388 |#2|)))) (-15 -4116 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -1303 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-598 (-388 |#2|)))) (-15 -3228 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3961 ((-3 (-579 |#1| |#2|) "failed") (-579 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1661 ((-2 (|:| |ir| (-548 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2915 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-344) (-1160 |#1|)) (T -541)) -((-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-541 *5 *3)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |ir| (-548 (-388 *6))) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6)))) (-3961 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110))) (-531) *4)) (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *1 (-541 *4 *5)))) (-3228 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-344)) (-5 *1 (-541 *4 *2)) (-4 *2 (-1160 *4)))) (-1303 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-598 (-388 *7))) (-4 *7 (-1160 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-541 *6 *7)))) (-4116 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -2351 (-388 *6)) (|:| |coeff| (-388 *6)))) (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6)))) (-3553 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3157 *7) (|:| |sol?| (-110))) (-531) *7)) (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-541 *7 *8)))) (-2588 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-541 *7 *8)))) (-1892 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531) *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-3248 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-598 *6) "failed") (-531) *6 *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-2191 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531) *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-4198 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7))))) -(-10 -7 (-15 -4198 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2191 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1628 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-598 |#1|) "failed") (-531) |#1| |#1|))) (-15 -3248 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -1892 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-388 |#2|))) (-15 -2588 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-598 (-388 |#2|)))) (-15 -3553 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-598 (-388 |#2|)))) (-15 -4116 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -1303 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-598 (-388 |#2|)))) (-15 -3228 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3961 ((-3 (-579 |#1| |#2|) "failed") (-579 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1661 ((-2 (|:| |ir| (-548 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2915 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3793 (((-3 |#2| "failed") |#2| (-1102) (-1102)) 10))) -(((-542 |#1| |#2|) (-10 -7 (-15 -3793 ((-3 |#2| "failed") |#2| (-1102) (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-1066) (-29 |#1|))) (T -542)) -((-3793 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-542 *4 *2)) (-4 *2 (-13 (-1124) (-902) (-1066) (-29 *4)))))) -(-10 -7 (-15 -3793 ((-3 |#2| "failed") |#2| (-1102) (-1102)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $ (-531)) 66)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3071 (($ (-1098 (-531)) (-531)) 72)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 58)) (-3649 (($ $) 34)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3617 (((-721) $) 15)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 (((-531)) 29)) (-3045 (((-531) $) 32)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1846 (($ $ (-531)) 21)) (-3609 (((-3 $ "failed") $ $) 59)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) 16)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 61)) (-2890 (((-1083 (-531)) $) 18)) (-3437 (($ $) 23)) (-2265 (((-806) $) 87) (($ (-531)) 52) (($ $) NIL)) (-2284 (((-721)) 14)) (-2587 (((-110) $ $) NIL)) (-4148 (((-531) $ (-531)) 36)) (-3035 (($) 35 T CONST)) (-3050 (($) 19 T CONST)) (-2148 (((-110) $ $) 39)) (-2250 (($ $) 51) (($ $ $) 37)) (-2237 (($ $ $) 50)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 54) (($ $ $) 55))) -(((-543 |#1| |#2|) (-812 |#1|) (-531) (-110)) (T -543)) -NIL -(-812 |#1|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 21)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) 47)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 $ "failed") $) 75)) (-2523 (($ $) 74)) (-2767 (($ (-1184 $)) 73)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 49)) (-1971 (((-110) $) NIL)) (-3493 (($ $) NIL) (($ $ (-721)) NIL)) (-2534 (((-110) $) NIL)) (-3617 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3481 (((-110) $) NIL)) (-3323 (($) 37 (|has| $ (-349)))) (-3653 (((-110) $) NIL (|has| $ (-349)))) (-1899 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 $) $ (-864)) NIL (|has| $ (-349))) (((-1098 $) $) 83)) (-2211 (((-864) $) 55)) (-1832 (((-1098 $) $) NIL (|has| $ (-349)))) (-1612 (((-3 (-1098 $) "failed") $ $) NIL (|has| $ (-349))) (((-1098 $) $) NIL (|has| $ (-349)))) (-3601 (($ $ (-1098 $)) NIL (|has| $ (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL T CONST)) (-1889 (($ (-864)) 48)) (-3693 (((-110) $) 67)) (-2529 (((-1049) $) NIL)) (-1861 (($) 19 (|has| $ (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 42)) (-2552 (((-399 $) $) NIL)) (-3717 (((-864)) 66) (((-783 (-864))) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-3 (-721) "failed") $ $) NIL) (((-721) $) NIL)) (-2190 (((-130)) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-2012 (((-864) $) 65) (((-783 (-864)) $) NIL)) (-3608 (((-1098 $)) 82)) (-2498 (($) 54)) (-2389 (($) 38 (|has| $ (-349)))) (-3348 (((-639 $) (-1184 $)) NIL) (((-1184 $) $) 71)) (-3318 (((-531) $) 28)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) 30) (($ $) NIL) (($ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2284 (((-721)) 39)) (-3523 (((-1184 $) (-864)) 77) (((-1184 $)) 76)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 22 T CONST)) (-3050 (($) 18 T CONST)) (-2730 (($ $ (-721)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 26)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 61) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-544 |#1|) (-13 (-330) (-310 $) (-573 (-531))) (-864)) (T -544)) -NIL -(-13 (-330) (-310 $) (-573 (-531))) -((-3028 (((-1189) (-1085)) 10))) -(((-545) (-10 -7 (-15 -3028 ((-1189) (-1085))))) (T -545)) -((-3028 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-545))))) -(-10 -7 (-15 -3028 ((-1189) (-1085)))) -((-2040 (((-548 |#2|) (-548 |#2|)) 40)) (-2140 (((-598 |#2|) (-548 |#2|)) 42)) (-2139 ((|#2| (-548 |#2|)) 48))) -(((-546 |#1| |#2|) (-10 -7 (-15 -2040 ((-548 |#2|) (-548 |#2|))) (-15 -2140 ((-598 |#2|) (-548 |#2|))) (-15 -2139 (|#2| (-548 |#2|)))) (-13 (-432) (-977 (-531)) (-797) (-594 (-531))) (-13 (-29 |#1|) (-1124))) (T -546)) -((-2139 (*1 *2 *3) (-12 (-5 *3 (-548 *2)) (-4 *2 (-13 (-29 *4) (-1124))) (-5 *1 (-546 *4 *2)) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-548 *5)) (-4 *5 (-13 (-29 *4) (-1124))) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-598 *5)) (-5 *1 (-546 *4 *5)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-548 *4)) (-4 *4 (-13 (-29 *3) (-1124))) (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *1 (-546 *3 *4))))) -(-10 -7 (-15 -2040 ((-548 |#2|) (-548 |#2|))) (-15 -2140 ((-598 |#2|) (-548 |#2|))) (-15 -2139 (|#2| (-548 |#2|)))) -((-3261 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-548 |#2|) (-1 |#2| |#1|) (-548 |#1|)) 30))) -(((-547 |#1| |#2|) (-10 -7 (-15 -3261 ((-548 |#2|) (-1 |#2| |#1|) (-548 |#1|))) (-15 -3261 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3261 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3261 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-344) (-344)) (T -547)) -((-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-547 *5 *6)))) (-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-547 *5 *2)))) (-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2351 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -2351 *6) (|:| |coeff| *6))) (-5 *1 (-547 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-548 *5)) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-548 *6)) (-5 *1 (-547 *5 *6))))) -(-10 -7 (-15 -3261 ((-548 |#2|) (-1 |#2| |#1|) (-548 |#1|))) (-15 -3261 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3261 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3261 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 69)) (-2523 ((|#1| $) NIL)) (-2351 ((|#1| $) 26)) (-3354 (((-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3109 (($ |#1| (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) (-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1913 (((-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) $) 27)) (-1521 (((-1085) $) NIL)) (-2974 (($ |#1| |#1|) 33) (($ |#1| (-1102)) 44 (|has| |#1| (-977 (-1102))))) (-2529 (((-1049) $) NIL)) (-1414 (((-110) $) 30)) (-3352 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1102)) 82 (|has| |#1| (-843 (-1102))))) (-2265 (((-806) $) 96) (($ |#1|) 25)) (-3035 (($) 16 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) 15) (($ $ $) NIL)) (-2237 (($ $ $) 78)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 14) (($ (-388 (-531)) $) 36) (($ $ (-388 (-531))) NIL))) -(((-548 |#1|) (-13 (-668 (-388 (-531))) (-977 |#1|) (-10 -8 (-15 -3109 ($ |#1| (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) (-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2351 (|#1| $)) (-15 -1913 ((-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) $)) (-15 -3354 ((-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1414 ((-110) $)) (-15 -2974 ($ |#1| |#1|)) (-15 -3352 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-843 (-1102))) (-15 -3352 (|#1| $ (-1102))) |%noBranch|) (IF (|has| |#1| (-977 (-1102))) (-15 -2974 ($ |#1| (-1102))) |%noBranch|))) (-344)) (T -548)) -((-3109 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *2)) (|:| |logand| (-1098 *2))))) (-5 *4 (-598 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344)) (-5 *1 (-548 *2)))) (-2351 (*1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *3)) (|:| |logand| (-1098 *3))))) (-5 *1 (-548 *3)) (-4 *3 (-344)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-548 *3)) (-4 *3 (-344)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-344)))) (-2974 (*1 *1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-548 *2)) (-4 *2 (-344)))) (-3352 (*1 *2 *1 *3) (-12 (-4 *2 (-344)) (-4 *2 (-843 *3)) (-5 *1 (-548 *2)) (-5 *3 (-1102)))) (-2974 (*1 *1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *1 (-548 *2)) (-4 *2 (-977 *3)) (-4 *2 (-344))))) -(-13 (-668 (-388 (-531))) (-977 |#1|) (-10 -8 (-15 -3109 ($ |#1| (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) (-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2351 (|#1| $)) (-15 -1913 ((-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) $)) (-15 -3354 ((-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1414 ((-110) $)) (-15 -2974 ($ |#1| |#1|)) (-15 -3352 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-843 (-1102))) (-15 -3352 (|#1| $ (-1102))) |%noBranch|) (IF (|has| |#1| (-977 (-1102))) (-15 -2974 ($ |#1| (-1102))) |%noBranch|))) -((-4176 (((-110) |#1|) 16)) (-4047 (((-3 |#1| "failed") |#1|) 14)) (-3164 (((-2 (|:| -3276 |#1|) (|:| -1790 (-721))) |#1|) 31) (((-3 |#1| "failed") |#1| (-721)) 18)) (-2757 (((-110) |#1| (-721)) 19)) (-1452 ((|#1| |#1|) 32)) (-4159 ((|#1| |#1| (-721)) 34))) -(((-549 |#1|) (-10 -7 (-15 -2757 ((-110) |#1| (-721))) (-15 -3164 ((-3 |#1| "failed") |#1| (-721))) (-15 -3164 ((-2 (|:| -3276 |#1|) (|:| -1790 (-721))) |#1|)) (-15 -4159 (|#1| |#1| (-721))) (-15 -4176 ((-110) |#1|)) (-15 -4047 ((-3 |#1| "failed") |#1|)) (-15 -1452 (|#1| |#1|))) (-516)) (T -549)) -((-1452 (*1 *2 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-4047 (*1 *2 *2) (|partial| -12 (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-4176 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516)))) (-4159 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-3164 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3276 *3) (|:| -1790 (-721)))) (-5 *1 (-549 *3)) (-4 *3 (-516)))) (-3164 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516))))) -(-10 -7 (-15 -2757 ((-110) |#1| (-721))) (-15 -3164 ((-3 |#1| "failed") |#1| (-721))) (-15 -3164 ((-2 (|:| -3276 |#1|) (|:| -1790 (-721))) |#1|)) (-15 -4159 (|#1| |#1| (-721))) (-15 -4176 ((-110) |#1|)) (-15 -4047 ((-3 |#1| "failed") |#1|)) (-15 -1452 (|#1| |#1|))) -((-3000 (((-1098 |#1|) (-864)) 27))) -(((-550 |#1|) (-10 -7 (-15 -3000 ((-1098 |#1|) (-864)))) (-330)) (T -550)) -((-3000 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-550 *4)) (-4 *4 (-330))))) -(-10 -7 (-15 -3000 ((-1098 |#1|) (-864)))) -((-2040 (((-548 (-388 (-895 |#1|))) (-548 (-388 (-895 |#1|)))) 27)) (-1788 (((-3 (-297 |#1|) (-598 (-297 |#1|))) (-388 (-895 |#1|)) (-1102)) 34 (|has| |#1| (-140)))) (-2140 (((-598 (-297 |#1|)) (-548 (-388 (-895 |#1|)))) 19)) (-1578 (((-297 |#1|) (-388 (-895 |#1|)) (-1102)) 32 (|has| |#1| (-140)))) (-2139 (((-297 |#1|) (-548 (-388 (-895 |#1|)))) 21))) -(((-551 |#1|) (-10 -7 (-15 -2040 ((-548 (-388 (-895 |#1|))) (-548 (-388 (-895 |#1|))))) (-15 -2140 ((-598 (-297 |#1|)) (-548 (-388 (-895 |#1|))))) (-15 -2139 ((-297 |#1|) (-548 (-388 (-895 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1788 ((-3 (-297 |#1|) (-598 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1578 ((-297 |#1|) (-388 (-895 |#1|)) (-1102)))) |%noBranch|)) (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (T -551)) -((-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-297 *5)) (-5 *1 (-551 *5)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-3 (-297 *5) (-598 (-297 *5)))) (-5 *1 (-551 *5)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-548 (-388 (-895 *4)))) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-297 *4)) (-5 *1 (-551 *4)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-548 (-388 (-895 *4)))) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-598 (-297 *4))) (-5 *1 (-551 *4)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-548 (-388 (-895 *3)))) (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *1 (-551 *3))))) -(-10 -7 (-15 -2040 ((-548 (-388 (-895 |#1|))) (-548 (-388 (-895 |#1|))))) (-15 -2140 ((-598 (-297 |#1|)) (-548 (-388 (-895 |#1|))))) (-15 -2139 ((-297 |#1|) (-548 (-388 (-895 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1788 ((-3 (-297 |#1|) (-598 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1578 ((-297 |#1|) (-388 (-895 |#1|)) (-1102)))) |%noBranch|)) -((-2634 (((-598 (-639 (-531))) (-598 (-531)) (-598 (-848 (-531)))) 46) (((-598 (-639 (-531))) (-598 (-531))) 47) (((-639 (-531)) (-598 (-531)) (-848 (-531))) 42)) (-3326 (((-721) (-598 (-531))) 40))) -(((-552) (-10 -7 (-15 -3326 ((-721) (-598 (-531)))) (-15 -2634 ((-639 (-531)) (-598 (-531)) (-848 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)) (-598 (-848 (-531))))))) (T -552)) -((-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-531))) (-5 *4 (-598 (-848 (-531)))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-552)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-552)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-531))) (-5 *4 (-848 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-552)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-721)) (-5 *1 (-552))))) -(-10 -7 (-15 -3326 ((-721) (-598 (-531)))) (-15 -2634 ((-639 (-531)) (-598 (-531)) (-848 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)) (-598 (-848 (-531)))))) -((-2660 (((-598 |#5|) |#5| (-110)) 73)) (-1629 (((-110) |#5| (-598 |#5|)) 30))) -(((-553 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2660 ((-598 |#5|) |#5| (-110))) (-15 -1629 ((-110) |#5| (-598 |#5|)))) (-13 (-289) (-140)) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1039 |#1| |#2| |#3| |#4|)) (T -553)) -((-1629 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1039 *5 *6 *7 *8)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-553 *5 *6 *7 *8 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-598 *3)) (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-1039 *5 *6 *7 *8))))) -(-10 -7 (-15 -2660 ((-598 |#5|) |#5| (-110))) (-15 -1629 ((-110) |#5| (-598 |#5|)))) -((-2247 (((-110) $ $) NIL (|has| (-137) (-1030)))) (-2815 (($ $) 34)) (-4102 (($ $) NIL)) (-3634 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) 51)) (-2955 (((-110) $ $ (-531)) 46)) (-2040 (((-598 $) $ (-137)) 60) (((-598 $) $ (-134)) 61)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-137) (-797))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-137) $ (-531) (-137)) 45 (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2810 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2407 (($ $ (-1151 (-531)) $) 44)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2283 (($ (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) NIL (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) NIL)) (-3009 (((-110) $ $) 72)) (-1976 (((-531) (-1 (-110) (-137)) $) NIL) (((-531) (-137) $) NIL (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) 48 (|has| (-137) (-1030))) (((-531) $ $ (-531)) 47) (((-531) (-134) $ (-531)) 50)) (-2227 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) 9)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 28 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2327 (((-531) $) 42 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) 73)) (-2869 (((-721) $ $ (-137)) 70)) (-2680 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-1659 (($ $) 37)) (-2559 (($ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2821 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-1521 (((-1085) $) 38 (|has| (-137) (-1030)))) (-4059 (($ (-137) $ (-531)) NIL) (($ $ $ (-531)) 23)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-531) $) 69) (((-1049) $) NIL (|has| (-137) (-1030)))) (-3046 (((-137) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-3742 (($ $ (-137)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) NIL)) (-1589 (((-110) $) 12)) (-3781 (($) 10)) (-1785 (((-137) $ (-531) (-137)) NIL) (((-137) $ (-531)) 52) (($ $ (-1151 (-531))) 21) (($ $ $) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (((-721) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2162 (($ $ $ (-531)) 66 (|has| $ (-6 -4274)))) (-2480 (($ $) 17)) (-3318 (((-507) $) NIL (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) NIL)) (-3536 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-598 $)) 67)) (-2265 (($ (-137)) NIL) (((-806) $) 27 (|has| (-137) (-572 (-806))))) (-2060 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2148 (((-110) $ $) 14 (|has| (-137) (-1030)))) (-2195 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2174 (((-110) $ $) 15 (|has| (-137) (-797)))) (-2167 (((-721) $) 13 (|has| $ (-6 -4273))))) -(((-554 |#1|) (-13 (-1071) (-10 -8 (-15 -2529 ((-531) $)))) (-531)) (T -554)) -((-2529 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-554 *3)) (-14 *3 *2)))) -(-13 (-1071) (-10 -8 (-15 -2529 ((-531) $)))) -((-3539 (((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2| (-1025 |#4|)) 32))) -(((-555 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2| (-1025 |#4|))) (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2|))) (-743) (-797) (-523) (-892 |#3| |#1| |#2|)) (T -555)) -((-3539 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531)))) (-5 *1 (-555 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) (-3539 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1025 *3)) (-4 *3 (-892 *7 *6 *4)) (-4 *6 (-743)) (-4 *4 (-797)) (-4 *7 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531)))) (-5 *1 (-555 *6 *4 *7 *3))))) -(-10 -7 (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2| (-1025 |#4|))) (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 63)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 54) (($ $ (-531) (-531)) 55)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 60)) (-2158 (($ $) 100)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3509 (((-806) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) (-966 (-790 (-531))) (-1102) |#1| (-388 (-531))) 224)) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 34)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3201 (((-110) $) NIL)) (-3617 (((-531) $) 58) (((-531) $ (-531)) 59)) (-3481 (((-110) $) NIL)) (-3688 (($ $ (-864)) 76)) (-3192 (($ (-1 |#1| (-531)) $) 73)) (-3380 (((-110) $) 25)) (-2669 (($ |#1| (-531)) 22) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 67)) (-1446 (($ (-966 (-790 (-531))) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 13)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $) 150 (|has| |#1| (-37 (-388 (-531)))))) (-3673 (((-3 $ "failed") $ $ (-110)) 99)) (-2556 (($ $ $) 108)) (-2529 (((-1049) $) NIL)) (-3474 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 15)) (-1990 (((-966 (-790 (-531))) $) 14)) (-1846 (($ $ (-531)) 45)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-531)))))) (-1785 ((|#1| $ (-531)) 57) (($ $ $) NIL (|has| (-531) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2012 (((-531) $) NIL)) (-3437 (($ $) 46)) (-2265 (((-806) $) NIL) (($ (-531)) 28) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 27 (|has| |#1| (-162)))) (-3188 ((|#1| $ (-531)) 56)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 37)) (-3840 ((|#1| $) NIL)) (-2609 (($ $) 186 (|has| |#1| (-37 (-388 (-531)))))) (-1314 (($ $) 158 (|has| |#1| (-37 (-388 (-531)))))) (-3125 (($ $) 190 (|has| |#1| (-37 (-388 (-531)))))) (-3141 (($ $) 163 (|has| |#1| (-37 (-388 (-531)))))) (-3838 (($ $) 189 (|has| |#1| (-37 (-388 (-531)))))) (-3116 (($ $) 162 (|has| |#1| (-37 (-388 (-531)))))) (-3728 (($ $ (-388 (-531))) 166 (|has| |#1| (-37 (-388 (-531)))))) (-1562 (($ $ |#1|) 146 (|has| |#1| (-37 (-388 (-531)))))) (-3604 (($ $) 192 (|has| |#1| (-37 (-388 (-531)))))) (-3564 (($ $) 149 (|has| |#1| (-37 (-388 (-531)))))) (-2073 (($ $) 191 (|has| |#1| (-37 (-388 (-531)))))) (-2996 (($ $) 164 (|has| |#1| (-37 (-388 (-531)))))) (-2282 (($ $) 187 (|has| |#1| (-37 (-388 (-531)))))) (-2181 (($ $) 160 (|has| |#1| (-37 (-388 (-531)))))) (-3442 (($ $) 188 (|has| |#1| (-37 (-388 (-531)))))) (-1344 (($ $) 161 (|has| |#1| (-37 (-388 (-531)))))) (-1991 (($ $) 197 (|has| |#1| (-37 (-388 (-531)))))) (-3129 (($ $) 173 (|has| |#1| (-37 (-388 (-531)))))) (-2549 (($ $) 194 (|has| |#1| (-37 (-388 (-531)))))) (-3654 (($ $) 168 (|has| |#1| (-37 (-388 (-531)))))) (-3317 (($ $) 201 (|has| |#1| (-37 (-388 (-531)))))) (-3734 (($ $) 177 (|has| |#1| (-37 (-388 (-531)))))) (-2948 (($ $) 203 (|has| |#1| (-37 (-388 (-531)))))) (-1652 (($ $) 179 (|has| |#1| (-37 (-388 (-531)))))) (-1974 (($ $) 199 (|has| |#1| (-37 (-388 (-531)))))) (-3266 (($ $) 175 (|has| |#1| (-37 (-388 (-531)))))) (-3628 (($ $) 196 (|has| |#1| (-37 (-388 (-531)))))) (-1444 (($ $) 171 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-4148 ((|#1| $ (-531)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-3035 (($) 29 T CONST)) (-3050 (($) 38 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2148 (((-110) $ $) 65)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) 84) (($ $ $) 64)) (-2237 (($ $ $) 81)) (** (($ $ (-864)) NIL) (($ $ (-721)) 103)) (* (($ (-864) $) 89) (($ (-721) $) 87) (($ (-531) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-556 |#1|) (-13 (-1162 |#1| (-531)) (-10 -8 (-15 -1446 ($ (-966 (-790 (-531))) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -1990 ((-966 (-790 (-531))) $)) (-15 -3474 ((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $)) (-15 -4067 ($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -3380 ((-110) $)) (-15 -3192 ($ (-1 |#1| (-531)) $)) (-15 -3673 ((-3 $ "failed") $ $ (-110))) (-15 -2158 ($ $)) (-15 -2556 ($ $ $)) (-15 -3509 ((-806) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) (-966 (-790 (-531))) (-1102) |#1| (-388 (-531)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (-15 -1562 ($ $ |#1|)) (-15 -3728 ($ $ (-388 (-531)))) (-15 -3564 ($ $)) (-15 -3604 ($ $)) (-15 -3141 ($ $)) (-15 -1344 ($ $)) (-15 -1314 ($ $)) (-15 -2181 ($ $)) (-15 -3116 ($ $)) (-15 -2996 ($ $)) (-15 -3654 ($ $)) (-15 -1444 ($ $)) (-15 -3129 ($ $)) (-15 -3266 ($ $)) (-15 -3734 ($ $)) (-15 -1652 ($ $)) (-15 -3125 ($ $)) (-15 -3442 ($ $)) (-15 -2609 ($ $)) (-15 -2282 ($ $)) (-15 -3838 ($ $)) (-15 -2073 ($ $)) (-15 -2549 ($ $)) (-15 -3628 ($ $)) (-15 -1991 ($ $)) (-15 -1974 ($ $)) (-15 -3317 ($ $)) (-15 -2948 ($ $))) |%noBranch|))) (-986)) (T -556)) -((-3380 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-966 (-790 (-531)))) (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *4)))) (-4 *4 (-986)) (-5 *1 (-556 *4)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-966 (-790 (-531)))) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) (-4 *3 (-986)) (-5 *1 (-556 *3)))) (-3192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-556 *3)))) (-3673 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986)))) (-2556 (*1 *1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986)))) (-3509 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *6)))) (-5 *4 (-966 (-790 (-531)))) (-5 *5 (-1102)) (-5 *7 (-388 (-531))) (-4 *6 (-986)) (-5 *2 (-806)) (-5 *1 (-556 *6)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1562 (*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-556 *3)) (-4 *3 (-37 *2)) (-4 *3 (-986)))) (-3564 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3604 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3141 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1344 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2181 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3116 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2996 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3654 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3129 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3734 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3125 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3442 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2609 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2073 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2549 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1974 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3317 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(-13 (-1162 |#1| (-531)) (-10 -8 (-15 -1446 ($ (-966 (-790 (-531))) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -1990 ((-966 (-790 (-531))) $)) (-15 -3474 ((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $)) (-15 -4067 ($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -3380 ((-110) $)) (-15 -3192 ($ (-1 |#1| (-531)) $)) (-15 -3673 ((-3 $ "failed") $ $ (-110))) (-15 -2158 ($ $)) (-15 -2556 ($ $ $)) (-15 -3509 ((-806) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) (-966 (-790 (-531))) (-1102) |#1| (-388 (-531)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (-15 -1562 ($ $ |#1|)) (-15 -3728 ($ $ (-388 (-531)))) (-15 -3564 ($ $)) (-15 -3604 ($ $)) (-15 -3141 ($ $)) (-15 -1344 ($ $)) (-15 -1314 ($ $)) (-15 -2181 ($ $)) (-15 -3116 ($ $)) (-15 -2996 ($ $)) (-15 -3654 ($ $)) (-15 -1444 ($ $)) (-15 -3129 ($ $)) (-15 -3266 ($ $)) (-15 -3734 ($ $)) (-15 -1652 ($ $)) (-15 -3125 ($ $)) (-15 -3442 ($ $)) (-15 -2609 ($ $)) (-15 -2282 ($ $)) (-15 -3838 ($ $)) (-15 -2073 ($ $)) (-15 -2549 ($ $)) (-15 -3628 ($ $)) (-15 -1991 ($ $)) (-15 -1974 ($ $)) (-15 -3317 ($ $)) (-15 -2948 ($ $))) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4067 (($ (-1083 |#1|)) 9)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) 42)) (-3201 (((-110) $) 52)) (-3617 (((-721) $) 55) (((-721) $ (-721)) 54)) (-3481 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ $) 44 (|has| |#1| (-523)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-1083 |#1|) $) 23)) (-2284 (((-721)) 51)) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 10 T CONST)) (-3050 (($) 14 T CONST)) (-2148 (((-110) $ $) 22)) (-2250 (($ $) 30) (($ $ $) 16)) (-2237 (($ $ $) 25)) (** (($ $ (-864)) NIL) (($ $ (-721)) 49)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-531)) 36))) -(((-557 |#1|) (-13 (-986) (-10 -8 (-15 -2708 ((-1083 |#1|) $)) (-15 -4067 ($ (-1083 |#1|))) (-15 -3201 ((-110) $)) (-15 -3617 ((-721) $)) (-15 -3617 ((-721) $ (-721))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-531))) (IF (|has| |#1| (-523)) (-6 (-523)) |%noBranch|))) (-986)) (T -557)) -((-2708 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-557 *3)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (-3617 (*1 *2 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-557 *3)) (-4 *3 (-986))))) -(-13 (-986) (-10 -8 (-15 -2708 ((-1083 |#1|) $)) (-15 -4067 ($ (-1083 |#1|))) (-15 -3201 ((-110) $)) (-15 -3617 ((-721) $)) (-15 -3617 ((-721) $ (-721))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-531))) (IF (|has| |#1| (-523)) (-6 (-523)) |%noBranch|))) -((-3261 (((-561 |#2|) (-1 |#2| |#1|) (-561 |#1|)) 15))) -(((-558 |#1| |#2|) (-10 -7 (-15 -3261 ((-561 |#2|) (-1 |#2| |#1|) (-561 |#1|)))) (-1138) (-1138)) (T -558)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-561 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-561 *6)) (-5 *1 (-558 *5 *6))))) -(-10 -7 (-15 -3261 ((-561 |#2|) (-1 |#2| |#1|) (-561 |#1|)))) -((-3261 (((-1083 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-1083 |#2|)) 20) (((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-561 |#2|)) 19) (((-561 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-561 |#2|)) 18))) -(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-561 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-1083 |#2|)))) (-1138) (-1138) (-1138)) (T -559)) -((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-1083 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) (-5 *1 (-559 *6 *7 *8)))) (-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-561 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) (-5 *1 (-559 *6 *7 *8)))) (-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-561 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-561 *8)) (-5 *1 (-559 *6 *7 *8))))) -(-10 -7 (-15 -3261 ((-561 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-1083 |#2|)))) -((-2768 ((|#3| |#3| (-598 (-571 |#3|)) (-598 (-1102))) 55)) (-3962 (((-159 |#2|) |#3|) 117)) (-1415 ((|#3| (-159 |#2|)) 44)) (-4004 ((|#2| |#3|) 19)) (-1782 ((|#3| |#2|) 33))) -(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -1415 (|#3| (-159 |#2|))) (-15 -4004 (|#2| |#3|)) (-15 -1782 (|#3| |#2|)) (-15 -3962 ((-159 |#2|) |#3|)) (-15 -2768 (|#3| |#3| (-598 (-571 |#3|)) (-598 (-1102))))) (-13 (-523) (-797)) (-13 (-411 |#1|) (-943) (-1124)) (-13 (-411 (-159 |#1|)) (-943) (-1124))) (T -560)) -((-2768 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-598 (-1102))) (-4 *2 (-13 (-411 (-159 *5)) (-943) (-1124))) (-4 *5 (-13 (-523) (-797))) (-5 *1 (-560 *5 *6 *2)) (-4 *6 (-13 (-411 *5) (-943) (-1124))))) (-3962 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797))) (-5 *2 (-159 *5)) (-5 *1 (-560 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-943) (-1124))) (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124))))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797))) (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124))) (-5 *1 (-560 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-943) (-1124))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797))) (-4 *2 (-13 (-411 *4) (-943) (-1124))) (-5 *1 (-560 *4 *2 *3)) (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124))))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124))) (-4 *4 (-13 (-523) (-797))) (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124))) (-5 *1 (-560 *4 *5 *2))))) -(-10 -7 (-15 -1415 (|#3| (-159 |#2|))) (-15 -4004 (|#2| |#3|)) (-15 -1782 (|#3| |#2|)) (-15 -3962 ((-159 |#2|) |#3|)) (-15 -2768 (|#3| |#3| (-598 (-571 |#3|)) (-598 (-1102))))) -((-2177 (($ (-1 (-110) |#1|) $) 17)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2107 (($ (-1 |#1| |#1|) |#1|) 9)) (-2153 (($ (-1 (-110) |#1|) $) 13)) (-2164 (($ (-1 (-110) |#1|) $) 15)) (-2274 (((-1083 |#1|) $) 18)) (-2265 (((-806) $) NIL))) -(((-561 |#1|) (-13 (-572 (-806)) (-10 -8 (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)) (-15 -2177 ($ (-1 (-110) |#1|) $)) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2274 ((-1083 |#1|) $)))) (-1138)) (T -561)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2177 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-561 *3)) (-4 *3 (-1138))))) -(-13 (-572 (-806)) (-10 -8 (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)) (-15 -2177 ($ (-1 (-110) |#1|) $)) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2274 ((-1083 |#1|) $)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721)) NIL (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) NIL (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1408 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-3332 (((-110) $ (-721)) NIL)) (-2428 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-3225 ((|#1| $ $) NIL (|has| |#1| (-986)))) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2261 (($ $ $) NIL (|has| |#1| (-986)))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2237 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-531) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-677))) (($ $ |#1|) NIL (|has| |#1| (-677)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-562 |#1| |#2|) (-1182 |#1|) (-1138) (-531)) (T -562)) -NIL -(-1182 |#1|) -((-3137 (((-1189) $ |#2| |#2|) 36)) (-3804 ((|#2| $) 23)) (-2327 ((|#2| $) 21)) (-2680 (($ (-1 |#3| |#3|) $) 32)) (-3261 (($ (-1 |#3| |#3|) $) 30)) (-3046 ((|#3| $) 26)) (-3742 (($ $ |#3|) 33)) (-1545 (((-110) |#3| $) 17)) (-3163 (((-598 |#3|) $) 15)) (-1785 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-563 |#1| |#2| |#3|) (-10 -8 (-15 -3137 ((-1189) |#1| |#2| |#2|)) (-15 -3742 (|#1| |#1| |#3|)) (-15 -3046 (|#3| |#1|)) (-15 -3804 (|#2| |#1|)) (-15 -2327 (|#2| |#1|)) (-15 -1545 ((-110) |#3| |#1|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|))) (-564 |#2| |#3|) (-1030) (-1138)) (T -563)) -NIL -(-10 -8 (-15 -3137 ((-1189) |#1| |#2| |#2|)) (-15 -3742 (|#1| |#1| |#3|)) (-15 -3046 (|#3| |#1|)) (-15 -3804 (|#2| |#1|)) (-15 -2327 (|#2| |#1|)) (-15 -1545 ((-110) |#3| |#1|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#2| (-1030)))) (-3137 (((-1189) $ |#1| |#1|) 40 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-2693 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 51)) (-2227 (((-598 |#2|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-3804 ((|#1| $) 43 (|has| |#1| (-797)))) (-2445 (((-598 |#2|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2327 ((|#1| $) 44 (|has| |#1| (-797)))) (-2680 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#2| (-1030)))) (-3765 (((-598 |#1|) $) 46)) (-3059 (((-110) |#1| $) 47)) (-2529 (((-1049) $) 21 (|has| |#2| (-1030)))) (-3046 ((|#2| $) 42 (|has| |#1| (-797)))) (-3742 (($ $ |#2|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2539 (((-721) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4273))) (((-721) |#2| $) 28 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#2| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#2| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-564 |#1| |#2|) (-133) (-1030) (-1138)) (T -564)) -((-3163 (*1 *2 *1) (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-598 *4)))) (-3059 (*1 *2 *3 *1) (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-598 *3)))) (-1545 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-564 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030)) (-4 *2 (-797)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030)) (-4 *2 (-797)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) (-4 *3 (-797)) (-4 *2 (-1138)))) (-3742 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-3137 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-1189))))) -(-13 (-468 |t#2|) (-270 |t#1| |t#2|) (-10 -8 (-15 -3163 ((-598 |t#2|) $)) (-15 -3059 ((-110) |t#1| $)) (-15 -3765 ((-598 |t#1|) $)) (IF (|has| |t#2| (-1030)) (IF (|has| $ (-6 -4273)) (-15 -1545 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797)) (PROGN (-15 -2327 (|t#1| $)) (-15 -3804 (|t#1| $)) (-15 -3046 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4274)) (PROGN (-15 -3742 ($ $ |t#2|)) (-15 -3137 ((-1189) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#2| (-1030)) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-572 (-806)))) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-468 |#2|) . T) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-1030) |has| |#2| (-1030)) ((-1138) . T)) -((-2265 (((-806) $) 19) (((-127) $) 14) (($ (-127)) 13))) -(((-565) (-13 (-572 (-806)) (-572 (-127)) (-10 -8 (-15 -2265 ($ (-127)))))) (T -565)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-565))))) -(-13 (-572 (-806)) (-572 (-127)) (-10 -8 (-15 -2265 ($ (-127))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1184 (-639 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2022 (((-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2783 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3939 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1668 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2264 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1387 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3668 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3415 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3960 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3586 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1437 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2767 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1184 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2277 (((-864)) NIL (|has| |#2| (-348 |#1|)))) (-2629 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3769 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2298 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2816 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-1950 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1807 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3405 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2234 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2280 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1480 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3579 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1875 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2239 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3036 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1785 ((|#1| $ (-531)) NIL (|has| |#2| (-398 |#1|)))) (-3348 (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $) (-1184 $)) NIL (|has| |#2| (-348 |#1|))) (((-1184 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3318 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-2570 (((-598 (-895 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-598 (-895 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2265 (((-806) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3523 (((-1184 $)) NIL (|has| |#2| (-398 |#1|)))) (-2273 (((-598 (-1184 |#1|))) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2979 (($ (-639 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1964 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2819 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 24)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-566 |#1| |#2|) (-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-695 |#1|)) (T -566)) -((-2265 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-566 *3 *2)) (-4 *2 (-695 *3))))) -(-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-2618 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) 33)) (-2995 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL) (($) NIL)) (-3137 (((-1189) $ (-1085) (-1085)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-1085) |#1|) 43)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#1| "failed") (-1085) $) 46)) (-4082 (($) NIL T CONST)) (-1743 (($ $ (-1085)) 24)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2717 (((-3 |#1| "failed") (-1085) $) 47) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (|has| $ (-6 -4273)))) (-2283 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-1760 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-3641 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) 32)) (-2693 ((|#1| $ (-1085) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-1085)) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-1411 (($ $) 48)) (-1833 (($ (-369)) 22) (($ (-369) (-1085)) 21)) (-3955 (((-369) $) 34)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (((-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2327 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3345 (((-598 (-1085)) $) 39)) (-1727 (((-110) (-1085) $) NIL)) (-3454 (((-1085) $) 35)) (-3540 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3765 (((-598 (-1085)) $) NIL)) (-3059 (((-110) (-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 ((|#1| $) NIL (|has| (-1085) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) "failed") (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-598 (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 37)) (-1785 ((|#1| $ (-1085) |#1|) NIL) ((|#1| $ (-1085)) 42)) (-2543 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL) (($) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (((-721) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-721) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2265 (((-806) $) 20)) (-4074 (($ $) 25)) (-2524 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 19)) (-2167 (((-721) $) 41 (|has| $ (-6 -4273))))) -(((-567 |#1|) (-13 (-345 (-369) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-1115 (-1085) |#1|) (-10 -8 (-6 -4273) (-15 -1411 ($ $)))) (-1030)) (T -567)) -((-1411 (*1 *1 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1030))))) -(-13 (-345 (-369) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-1115 (-1085) |#1|) (-10 -8 (-6 -4273) (-15 -1411 ($ $)))) -((-1883 (((-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 15)) (-3345 (((-598 |#2|) $) 19)) (-1727 (((-110) |#2| $) 12))) -(((-568 |#1| |#2| |#3|) (-10 -8 (-15 -3345 ((-598 |#2|) |#1|)) (-15 -1727 ((-110) |#2| |#1|)) (-15 -1883 ((-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|))) (-569 |#2| |#3|) (-1030) (-1030)) (T -568)) -NIL -(-10 -8 (-15 -3345 ((-598 |#2|) |#1|)) (-15 -1727 ((-110) |#2| |#1|)) (-15 -1883 ((-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|))) -((-2247 (((-110) $ $) 19 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 55 (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 61)) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 46 (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 62)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 54 (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 56 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 53 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3345 (((-598 |#1|) $) 63)) (-1727 (((-110) |#1| $) 64)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 39)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 40)) (-2529 (((-1049) $) 21 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 51)) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 41)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 26 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 25 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 24 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 23 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2543 (($) 49) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 48)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 31 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 50)) (-2265 (((-806) $) 18 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 42)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-569 |#1| |#2|) (-133) (-1030) (-1030)) (T -569)) -((-1727 (*1 *2 *3 *1) (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-110)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-598 *3)))) (-2717 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2714 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))) -(-13 (-212 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|))) (-10 -8 (-15 -1727 ((-110) |t#1| $)) (-15 -3345 ((-598 |t#1|) $)) (-15 -2717 ((-3 |t#2| "failed") |t#1| $)) (-15 -2714 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-104 #0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-99) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) ((-572 (-806)) -1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))) ((-144 #0#) . T) ((-573 (-507)) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) ((-212 #0#) . T) ((-218 #0#) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-468 #0#) . T) ((-492 #0# #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-1030) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) ((-1138) . T)) -((-1567 (((-571 |#2|) |#1|) 15)) (-2341 (((-3 |#1| "failed") (-571 |#2|)) 19))) -(((-570 |#1| |#2|) (-10 -7 (-15 -1567 ((-571 |#2|) |#1|)) (-15 -2341 ((-3 |#1| "failed") (-571 |#2|)))) (-797) (-797)) (T -570)) -((-2341 (*1 *2 *3) (|partial| -12 (-5 *3 (-571 *4)) (-4 *4 (-797)) (-4 *2 (-797)) (-5 *1 (-570 *2 *4)))) (-1567 (*1 *2 *3) (-12 (-5 *2 (-571 *4)) (-5 *1 (-570 *3 *4)) (-4 *3 (-797)) (-4 *4 (-797))))) -(-10 -7 (-15 -1567 ((-571 |#2|) |#1|)) (-15 -2341 ((-3 |#1| "failed") (-571 |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3900 (((-3 (-1102) "failed") $) 37)) (-2310 (((-1189) $ (-721)) 26)) (-1976 (((-721) $) 25)) (-3254 (((-112) $) 12)) (-3955 (((-1102) $) 20)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-1930 (($ (-112) (-598 |#1|) (-721)) 30) (($ (-1102)) 31)) (-4247 (((-110) $ (-112)) 18) (((-110) $ (-1102)) 16)) (-4194 (((-721) $) 22)) (-2529 (((-1049) $) NIL)) (-3318 (((-835 (-531)) $) 77 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 84 (|has| |#1| (-573 (-835 (-360))))) (((-507) $) 69 (|has| |#1| (-573 (-507))))) (-2265 (((-806) $) 55)) (-3662 (((-598 |#1|) $) 24)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 41)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 42))) -(((-571 |#1|) (-13 (-129) (-827 |#1|) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3254 ((-112) $)) (-15 -3662 ((-598 |#1|) $)) (-15 -4194 ((-721) $)) (-15 -1930 ($ (-112) (-598 |#1|) (-721))) (-15 -1930 ($ (-1102))) (-15 -3900 ((-3 (-1102) "failed") $)) (-15 -4247 ((-110) $ (-112))) (-15 -4247 ((-110) $ (-1102))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) (-797)) (T -571)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-1930 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-797)) (-5 *1 (-571 *5)))) (-1930 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-3900 (*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797))))) -(-13 (-129) (-827 |#1|) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3254 ((-112) $)) (-15 -3662 ((-598 |#1|) $)) (-15 -4194 ((-721) $)) (-15 -1930 ($ (-112) (-598 |#1|) (-721))) (-15 -1930 ($ (-1102))) (-15 -3900 ((-3 (-1102) "failed") $)) (-15 -4247 ((-110) $ (-112))) (-15 -4247 ((-110) $ (-1102))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) -((-2265 ((|#1| $) 6))) -(((-572 |#1|) (-133) (-1138)) (T -572)) -((-2265 (*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1138))))) -(-13 (-10 -8 (-15 -2265 (|t#1| $)))) -((-3318 ((|#1| $) 6))) -(((-573 |#1|) (-133) (-1138)) (T -573)) -((-3318 (*1 *2 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1138))))) -(-13 (-10 -8 (-15 -3318 (|t#1| $)))) -((-3596 (((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)) 15) (((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 16))) -(((-574 |#1| |#2|) (-10 -7 (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)))) (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -574)) -((-3596 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-1098 (-388 *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-388 *6)))) (-3596 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-1098 (-388 *5))) (-5 *1 (-574 *4 *5)) (-5 *3 (-388 *5))))) -(-10 -7 (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)))) -((-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) 10))) -(((-575 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-576 |#2|) (-986)) (T -575)) -NIL -(-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 34)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-576 |#1|) (-133) (-986)) (T -576)) -((-2265 (*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-986))))) -(-13 (-986) (-601 |t#1|) (-10 -8 (-15 -2265 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3459 (((-531) $) NIL (|has| |#1| (-795)))) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-1599 (((-110) $) NIL (|has| |#1| (-795)))) (-3481 (((-110) $) NIL)) (-1840 ((|#1| $) 13)) (-2985 (((-110) $) NIL (|has| |#1| (-795)))) (-4103 (($ $ $) NIL (|has| |#1| (-795)))) (-1241 (($ $ $) NIL (|has| |#1| (-795)))) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1853 ((|#3| $) 15)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL)) (-2284 (((-721)) 20)) (-1620 (($ $) NIL (|has| |#1| (-795)))) (-3035 (($) NIL T CONST)) (-3050 (($) 12 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2263 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-577 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-677) |#2|)) (T -577)) -((-2263 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-677) *4)))) (-2263 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-577 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-677) *4)))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-577 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-677) *3)))) (-1853 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4)) (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $)))) -((-4036 ((|#2| |#2| (-1102) (-1102)) 18))) -(((-578 |#1| |#2|) (-10 -7 (-15 -4036 (|#2| |#2| (-1102) (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-29 |#1|))) (T -578)) -((-4036 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1124) (-902) (-29 *4)))))) -(-10 -7 (-15 -4036 (|#2| |#2| (-1102) (-1102)))) -((-2247 (((-110) $ $) 56)) (-3019 (((-110) $) 52)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2917 ((|#1| $) 49)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3245 (((-2 (|:| -1994 $) (|:| -1764 (-388 |#2|))) (-388 |#2|)) 97 (|has| |#1| (-344)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 24)) (-3622 (((-3 $ "failed") $) 75)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-3617 (((-531) $) 19)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) 36)) (-2669 (($ |#1| (-531)) 21)) (-2475 ((|#1| $) 51)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) 87 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ $) 79)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4100 (((-721) $) 99 (|has| |#1| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 98 (|has| |#1| (-344)))) (-3352 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2012 (((-531) $) 34)) (-3318 (((-388 |#2|) $) 42)) (-2265 (((-806) $) 62) (($ (-531)) 32) (($ $) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 31) (($ |#2|) 22)) (-3188 ((|#1| $ (-531)) 63)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 29)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 9 T CONST)) (-3050 (($) 12 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) 17)) (-2250 (($ $) 46) (($ $ $) NIL)) (-2237 (($ $ $) 76)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 26) (($ $ $) 44))) -(((-579 |#1| |#2|) (-13 (-214 |#2|) (-523) (-573 (-388 |#2|)) (-392 |#1|) (-977 |#2|) (-10 -8 (-15 -3380 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3617 ((-531) $)) (-15 -2500 ($ $)) (-15 -2475 (|#1| $)) (-15 -2917 (|#1| $)) (-15 -3188 (|#1| $ (-531))) (-15 -2669 ($ |#1| (-531))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -3245 ((-2 (|:| -1994 $) (|:| -1764 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) (-523) (-1160 |#1|)) (T -579)) -((-3380 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-110)) (-5 *1 (-579 *3 *4)) (-4 *4 (-1160 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4)) (-4 *4 (-1160 *3)))) (-3617 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4)) (-4 *4 (-1160 *3)))) (-2500 (*1 *1 *1) (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) (-2475 (*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) (-2917 (*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4)) (-4 *4 (-1160 *2)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4)) (-4 *4 (-1160 *2)))) (-3245 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-523)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -1994 (-579 *4 *5)) (|:| -1764 (-388 *5)))) (-5 *1 (-579 *4 *5)) (-5 *3 (-388 *5))))) -(-13 (-214 |#2|) (-523) (-573 (-388 |#2|)) (-392 |#1|) (-977 |#2|) (-10 -8 (-15 -3380 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3617 ((-531) $)) (-15 -2500 ($ $)) (-15 -2475 (|#1| $)) (-15 -2917 (|#1| $)) (-15 -3188 (|#1| $ (-531))) (-15 -2669 ($ |#1| (-531))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -3245 ((-2 (|:| -1994 $) (|:| -1764 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) -((-2855 (((-598 |#6|) (-598 |#4|) (-110)) 47)) (-3806 ((|#6| |#6|) 40))) -(((-580 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3806 (|#6| |#6|)) (-15 -2855 ((-598 |#6|) (-598 |#4|) (-110)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|) (-1039 |#1| |#2| |#3| |#4|)) (T -580)) -((-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *10)) (-5 *1 (-580 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *10 (-1039 *5 *6 *7 *8)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-580 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *2 (-1039 *3 *4 *5 *6))))) -(-10 -7 (-15 -3806 (|#6| |#6|)) (-15 -2855 ((-598 |#6|) (-598 |#4|) (-110)))) -((-1662 (((-110) |#3| (-721) (-598 |#3|)) 23)) (-2875 (((-3 (-2 (|:| |polfac| (-598 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-598 (-1098 |#3|)))) "failed") |#3| (-598 (-1098 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2721 (-598 (-2 (|:| |irr| |#4|) (|:| -2460 (-531)))))) (-598 |#3|) (-598 |#1|) (-598 |#3|)) 55))) -(((-581 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1662 ((-110) |#3| (-721) (-598 |#3|))) (-15 -2875 ((-3 (-2 (|:| |polfac| (-598 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-598 (-1098 |#3|)))) "failed") |#3| (-598 (-1098 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2721 (-598 (-2 (|:| |irr| |#4|) (|:| -2460 (-531)))))) (-598 |#3|) (-598 |#1|) (-598 |#3|)))) (-797) (-743) (-289) (-892 |#3| |#2| |#1|)) (T -581)) -((-2875 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2721 (-598 (-2 (|:| |irr| *10) (|:| -2460 (-531))))))) (-5 *6 (-598 *3)) (-5 *7 (-598 *8)) (-4 *8 (-797)) (-4 *3 (-289)) (-4 *10 (-892 *3 *9 *8)) (-4 *9 (-743)) (-5 *2 (-2 (|:| |polfac| (-598 *10)) (|:| |correct| *3) (|:| |corrfact| (-598 (-1098 *3))))) (-5 *1 (-581 *8 *9 *3 *10)) (-5 *4 (-598 (-1098 *3))))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-721)) (-5 *5 (-598 *3)) (-4 *3 (-289)) (-4 *6 (-797)) (-4 *7 (-743)) (-5 *2 (-110)) (-5 *1 (-581 *6 *7 *3 *8)) (-4 *8 (-892 *3 *7 *6))))) -(-10 -7 (-15 -1662 ((-110) |#3| (-721) (-598 |#3|))) (-15 -2875 ((-3 (-2 (|:| |polfac| (-598 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-598 (-1098 |#3|)))) "failed") |#3| (-598 (-1098 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2721 (-598 (-2 (|:| |irr| |#4|) (|:| -2460 (-531)))))) (-598 |#3|) (-598 |#1|) (-598 |#3|)))) -((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-4104 (($ $) 67)) (-2076 (((-617 |#1| |#2|) $) 52)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 70)) (-4237 (((-598 (-276 |#2|)) $ $) 33)) (-2529 (((-1049) $) NIL)) (-2798 (($ (-617 |#1| |#2|)) 48)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 58) (((-1197 |#1| |#2|) $) NIL) (((-1202 |#1| |#2|) $) 66)) (-3050 (($) 53 T CONST)) (-2773 (((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $) 31)) (-3242 (((-598 (-617 |#1| |#2|)) (-598 |#1|)) 65)) (-2400 (((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $) 37)) (-2148 (((-110) $ $) 54)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ $ $) 44))) -(((-582 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2798 ($ (-617 |#1| |#2|))) (-15 -2076 ((-617 |#1| |#2|) $)) (-15 -2400 ((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $)) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1202 |#1| |#2|) $)) (-15 -4104 ($ $)) (-15 -3798 ((-598 |#1|) $)) (-15 -3242 ((-598 (-617 |#1| |#2|)) (-598 |#1|))) (-15 -2773 ((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $)) (-15 -4237 ((-598 (-276 |#2|)) $ $)))) (-797) (-13 (-162) (-668 (-388 (-531)))) (-864)) (T -582)) -((-2798 (*1 *1 *2) (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-5 *1 (-582 *3 *4 *5)) (-14 *5 (-864)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-617 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| (-836 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-797)) (-4 *3 (-13 (-162) (-668 (-388 (-531))))) (-14 *4 (-864)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-617 *4 *5))) (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-162) (-668 (-388 (-531))))) (-14 *6 (-864)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| (-624 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-4237 (*1 *2 *1 *1) (-12 (-5 *2 (-598 (-276 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))) -(-13 (-453) (-10 -8 (-15 -2798 ($ (-617 |#1| |#2|))) (-15 -2076 ((-617 |#1| |#2|) $)) (-15 -2400 ((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $)) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1202 |#1| |#2|) $)) (-15 -4104 ($ $)) (-15 -3798 ((-598 |#1|) $)) (-15 -3242 ((-598 (-617 |#1| |#2|)) (-598 |#1|))) (-15 -2773 ((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $)) (-15 -4237 ((-598 (-276 |#2|)) $ $)))) -((-2855 (((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)) 72) (((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110)) 58)) (-3598 (((-110) (-598 (-730 |#1| (-808 |#2|)))) 23)) (-1669 (((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)) 71)) (-1348 (((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110)) 57)) (-3716 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|)))) 27)) (-3134 (((-3 (-598 (-730 |#1| (-808 |#2|))) "failed") (-598 (-730 |#1| (-808 |#2|)))) 26))) -(((-583 |#1| |#2|) (-10 -7 (-15 -3598 ((-110) (-598 (-730 |#1| (-808 |#2|))))) (-15 -3134 ((-3 (-598 (-730 |#1| (-808 |#2|))) "failed") (-598 (-730 |#1| (-808 |#2|))))) (-15 -3716 ((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))))) (-15 -1348 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -1669 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)))) (-432) (-598 (-1102))) (T -583)) -((-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6))))) (-5 *1 (-583 *5 *6)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-583 *5 *6)))) (-1669 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6))))) (-5 *1 (-583 *5 *6)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-583 *5 *6)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432)) (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4)))) (-3134 (*1 *2 *2) (|partial| -12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432)) (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-598 (-730 *4 (-808 *5)))) (-4 *4 (-432)) (-14 *5 (-598 (-1102))) (-5 *2 (-110)) (-5 *1 (-583 *4 *5))))) -(-10 -7 (-15 -3598 ((-110) (-598 (-730 |#1| (-808 |#2|))))) (-15 -3134 ((-3 (-598 (-730 |#1| (-808 |#2|))) "failed") (-598 (-730 |#1| (-808 |#2|))))) (-15 -3716 ((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))))) (-15 -1348 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -1669 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)))) -((-2367 (($ $) 38)) (-2218 (($ $) 21)) (-2343 (($ $) 37)) (-2198 (($ $) 22)) (-2391 (($ $) 36)) (-2241 (($ $) 23)) (-1880 (($) 48)) (-2076 (($ $) 45)) (-1805 (($ $) 17)) (-2974 (($ $ (-1023 $)) 7) (($ $ (-1102)) 6)) (-2798 (($ $) 46)) (-2152 (($ $) 15)) (-2187 (($ $) 16)) (-2403 (($ $) 35)) (-2253 (($ $) 24)) (-2379 (($ $) 34)) (-2229 (($ $) 25)) (-2356 (($ $) 33)) (-2210 (($ $) 26)) (-2442 (($ $) 44)) (-2292 (($ $) 32)) (-2416 (($ $) 43)) (-2266 (($ $) 31)) (-2468 (($ $) 42)) (-2318 (($ $) 30)) (-2753 (($ $) 41)) (-2331 (($ $) 29)) (-2456 (($ $) 40)) (-2305 (($ $) 28)) (-2429 (($ $) 39)) (-2279 (($ $) 27)) (-1677 (($ $) 19)) (-1400 (($ $) 20)) (-3510 (($ $) 18)) (** (($ $ $) 47))) -(((-584) (-133)) (T -584)) -((-1400 (*1 *1 *1) (-4 *1 (-584))) (-1677 (*1 *1 *1) (-4 *1 (-584))) (-3510 (*1 *1 *1) (-4 *1 (-584))) (-1805 (*1 *1 *1) (-4 *1 (-584))) (-2187 (*1 *1 *1) (-4 *1 (-584))) (-2152 (*1 *1 *1) (-4 *1 (-584)))) -(-13 (-902) (-1124) (-10 -8 (-15 -1400 ($ $)) (-15 -1677 ($ $)) (-15 -3510 ($ $)) (-15 -1805 ($ $)) (-15 -2187 ($ $)) (-15 -2152 ($ $)))) -(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-902) . T) ((-1124) . T) ((-1127) . T)) -((-3254 (((-112) (-112)) 83)) (-1805 ((|#2| |#2|) 30)) (-2974 ((|#2| |#2| (-1023 |#2|)) 79) ((|#2| |#2| (-1102)) 52)) (-2152 ((|#2| |#2|) 29)) (-2187 ((|#2| |#2|) 31)) (-3167 (((-110) (-112)) 34)) (-1677 ((|#2| |#2|) 26)) (-1400 ((|#2| |#2|) 28)) (-3510 ((|#2| |#2|) 27))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1400 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -2152 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -2974 (|#2| |#2| (-1102))) (-15 -2974 (|#2| |#2| (-1023 |#2|)))) (-13 (-797) (-523)) (-13 (-411 |#1|) (-943) (-1124))) (T -585)) -((-2974 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-943) (-1124))) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2)))) (-2974 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-411 *4) (-943) (-1124))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *4)) (-4 *4 (-13 (-411 *3) (-943) (-1124))))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-585 *4 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124)))))) -(-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1400 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -2152 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -2974 (|#2| |#2| (-1102))) (-15 -2974 (|#2| |#2| (-1023 |#2|)))) -((-1579 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 53)) (-3426 (((-598 (-230 |#1| |#2|)) (-598 (-460 |#1| |#2|))) 68)) (-1740 (((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-808 |#1|)) 70) (((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)) (-808 |#1|)) 69)) (-2704 (((-2 (|:| |gblist| (-598 (-230 |#1| |#2|))) (|:| |gvlist| (-598 (-531)))) (-598 (-460 |#1| |#2|))) 108)) (-1664 (((-598 (-460 |#1| |#2|)) (-808 |#1|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|))) 83)) (-3072 (((-2 (|:| |glbase| (-598 (-230 |#1| |#2|))) (|:| |glval| (-598 (-531)))) (-598 (-230 |#1| |#2|))) 118)) (-4096 (((-1184 |#2|) (-460 |#1| |#2|) (-598 (-460 |#1| |#2|))) 58)) (-3735 (((-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|))) 41)) (-3174 (((-230 |#1| |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|))) 50)) (-4219 (((-230 |#1| |#2|) (-598 |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|))) 91))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2704 ((-2 (|:| |gblist| (-598 (-230 |#1| |#2|))) (|:| |gvlist| (-598 (-531)))) (-598 (-460 |#1| |#2|)))) (-15 -3072 ((-2 (|:| |glbase| (-598 (-230 |#1| |#2|))) (|:| |glval| (-598 (-531)))) (-598 (-230 |#1| |#2|)))) (-15 -3426 ((-598 (-230 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -3735 ((-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -4096 ((-1184 |#2|) (-460 |#1| |#2|) (-598 (-460 |#1| |#2|)))) (-15 -4219 ((-230 |#1| |#2|) (-598 |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1664 ((-598 (-460 |#1| |#2|)) (-808 |#1|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -3174 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1579 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) (-598 (-1102)) (-432)) (T -586)) -((-1579 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-460 *4 *5)) (-5 *1 (-586 *4 *5)))) (-3174 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5)))) (-1664 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-808 *4)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5)))) (-4219 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-230 *5 *6))) (-4 *6 (-432)) (-5 *2 (-230 *5 *6)) (-14 *5 (-598 (-1102))) (-5 *1 (-586 *5 *6)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-1184 *6)) (-5 *1 (-586 *5 *6)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-598 (-460 *3 *4))) (-14 *3 (-598 (-1102))) (-4 *4 (-432)) (-5 *1 (-586 *3 *4)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5)) (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-432)))) (-1740 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5)) (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-432)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-598 (-230 *4 *5))) (-5 *1 (-586 *4 *5)))) (-3072 (*1 *2 *3) (-12 (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |glbase| (-598 (-230 *4 *5))) (|:| |glval| (-598 (-531))))) (-5 *1 (-586 *4 *5)) (-5 *3 (-598 (-230 *4 *5))))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |gblist| (-598 (-230 *4 *5))) (|:| |gvlist| (-598 (-531))))) (-5 *1 (-586 *4 *5))))) -(-10 -7 (-15 -2704 ((-2 (|:| |gblist| (-598 (-230 |#1| |#2|))) (|:| |gvlist| (-598 (-531)))) (-598 (-460 |#1| |#2|)))) (-15 -3072 ((-2 (|:| |glbase| (-598 (-230 |#1| |#2|))) (|:| |glval| (-598 (-531)))) (-598 (-230 |#1| |#2|)))) (-15 -3426 ((-598 (-230 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -3735 ((-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -4096 ((-1184 |#2|) (-460 |#1| |#2|) (-598 (-460 |#1| |#2|)))) (-15 -4219 ((-230 |#1| |#2|) (-598 |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1664 ((-598 (-460 |#1| |#2|)) (-808 |#1|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -3174 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1579 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-3137 (((-1189) $ (-1085) (-1085)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-51) $ (-1085) (-51)) 16) (((-51) $ (-1102) (-51)) 17)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 (-51) "failed") (-1085) $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-3 (-51) "failed") (-1085) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-51) $ (-1085) (-51)) NIL (|has| $ (-6 -4274)))) (-2627 (((-51) $ (-1085)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1411 (($ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-2327 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4245 (($ (-369)) 9)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-3345 (((-598 (-1085)) $) NIL)) (-1727 (((-110) (-1085) $) NIL)) (-3540 (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL)) (-3765 (((-598 (-1085)) $) NIL)) (-3059 (((-110) (-1085) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-3046 (((-51) $) NIL (|has| (-1085) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) "failed") (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL)) (-3742 (($ $ (-51)) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-51)) (-598 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-598 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-3163 (((-598 (-51)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-51) $ (-1085)) 14) (((-51) $ (-1085) (-51)) NIL) (((-51) $ (-1102)) 15)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (((-721) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030)))) (((-721) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-51) (-572 (-806))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-587) (-13 (-1115 (-1085) (-51)) (-10 -8 (-15 -4245 ($ (-369))) (-15 -1411 ($ $)) (-15 -1785 ((-51) $ (-1102))) (-15 -2454 ((-51) $ (-1102) (-51)))))) (T -587)) -((-4245 (*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-587)))) (-1411 (*1 *1 *1) (-5 *1 (-587))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-51)) (-5 *1 (-587)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1102)) (-5 *1 (-587))))) -(-13 (-1115 (-1085) (-51)) (-10 -8 (-15 -4245 ($ (-369))) (-15 -1411 ($ $)) (-15 -1785 ((-51) $ (-1102))) (-15 -2454 ((-51) $ (-1102) (-51))))) -((-2263 (($ $ |#2|) 10))) -(((-588 |#1| |#2|) (-10 -8 (-15 -2263 (|#1| |#1| |#2|))) (-589 |#2|) (-162)) (T -588)) -NIL -(-10 -8 (-15 -2263 (|#1| |#1| |#2|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2274 (($ $ $) 29)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 28 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-589 |#1|) (-133) (-162)) (T -589)) -((-2274 (*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)) (-4 *2 (-344))))) -(-13 (-668 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2274 ($ $ $)) (IF (|has| |t#1| (-344)) (-15 -2263 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1184 (-639 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2022 (((-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2783 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3939 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1668 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2264 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1387 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3668 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3415 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3960 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3586 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1437 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2767 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1184 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2277 (((-864)) NIL (|has| |#2| (-348 |#1|)))) (-2629 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3769 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2298 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2816 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-1950 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1807 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3405 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2234 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2280 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1480 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3579 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1875 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2239 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3036 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1785 ((|#1| $ (-531)) NIL (|has| |#2| (-398 |#1|)))) (-3348 (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $) (-1184 $)) NIL (|has| |#2| (-348 |#1|))) (((-1184 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3318 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-2570 (((-598 (-895 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-598 (-895 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2265 (((-806) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3523 (((-1184 $)) NIL (|has| |#2| (-398 |#1|)))) (-2273 (((-598 (-1184 |#1|))) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2979 (($ (-639 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1964 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2819 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3035 (($) 15 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 17)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-590 |#1| |#2|) (-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-695 |#1|)) (T -590)) -((-2265 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-590 *3 *2)) (-4 *2 (-695 *3))))) -(-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) -((-2657 (((-3 (-790 |#2|) "failed") |#2| (-276 |#2|) (-1085)) 82) (((-3 (-790 |#2|) (-2 (|:| |leftHandLimit| (-3 (-790 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-790 |#2|) "failed"))) "failed") |#2| (-276 (-790 |#2|))) 104)) (-2840 (((-3 (-783 |#2|) "failed") |#2| (-276 (-783 |#2|))) 109))) -(((-591 |#1| |#2|) (-10 -7 (-15 -2657 ((-3 (-790 |#2|) (-2 (|:| |leftHandLimit| (-3 (-790 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-790 |#2|) "failed"))) "failed") |#2| (-276 (-790 |#2|)))) (-15 -2840 ((-3 (-783 |#2|) "failed") |#2| (-276 (-783 |#2|)))) (-15 -2657 ((-3 (-790 |#2|) "failed") |#2| (-276 |#2|) (-1085)))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -591)) -((-2657 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1085)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-790 *3)) (-5 *1 (-591 *6 *3)))) (-2840 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-276 (-783 *3))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-783 *3)) (-5 *1 (-591 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-790 *3))) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (-790 *3) (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed")) (|:| |rightHandLimit| (-3 (-790 *3) "failed"))) "failed")) (-5 *1 (-591 *5 *3))))) -(-10 -7 (-15 -2657 ((-3 (-790 |#2|) (-2 (|:| |leftHandLimit| (-3 (-790 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-790 |#2|) "failed"))) "failed") |#2| (-276 (-790 |#2|)))) (-15 -2840 ((-3 (-783 |#2|) "failed") |#2| (-276 (-783 |#2|)))) (-15 -2657 ((-3 (-790 |#2|) "failed") |#2| (-276 |#2|) (-1085)))) -((-2657 (((-3 (-790 (-388 (-895 |#1|))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))) (-1085)) 80) (((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|)))) 20) (((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-790 (-895 |#1|)))) 35)) (-2840 (((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|)))) 23) (((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-783 (-895 |#1|)))) 43))) -(((-592 |#1|) (-10 -7 (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-790 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-783 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))) (-1085)))) (-432)) (T -592)) -((-2657 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 (-388 (-895 *6)))) (-5 *5 (-1085)) (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-790 *3)) (-5 *1 (-592 *6)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-432)) (-5 *2 (-783 *3)) (-5 *1 (-592 *5)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-783 (-895 *5)))) (-4 *5 (-432)) (-5 *2 (-783 (-388 (-895 *5)))) (-5 *1 (-592 *5)) (-5 *3 (-388 (-895 *5))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-432)) (-5 *2 (-3 (-790 *3) (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed")) (|:| |rightHandLimit| (-3 (-790 *3) "failed"))) "failed")) (-5 *1 (-592 *5)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-790 (-895 *5)))) (-4 *5 (-432)) (-5 *2 (-3 (-790 (-388 (-895 *5))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 *5))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 *5))) "failed"))) "failed")) (-5 *1 (-592 *5)) (-5 *3 (-388 (-895 *5)))))) -(-10 -7 (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-790 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-783 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))) (-1085)))) -((-3516 (((-3 (-1184 (-388 |#1|)) "failed") (-1184 |#2|) |#2|) 57 (-3745 (|has| |#1| (-344)))) (((-3 (-1184 |#1|) "failed") (-1184 |#2|) |#2|) 42 (|has| |#1| (-344)))) (-3797 (((-110) (-1184 |#2|)) 30)) (-3548 (((-3 (-1184 |#1|) "failed") (-1184 |#2|)) 33))) -(((-593 |#1| |#2|) (-10 -7 (-15 -3797 ((-110) (-1184 |#2|))) (-15 -3548 ((-3 (-1184 |#1|) "failed") (-1184 |#2|))) (IF (|has| |#1| (-344)) (-15 -3516 ((-3 (-1184 |#1|) "failed") (-1184 |#2|) |#2|)) (-15 -3516 ((-3 (-1184 (-388 |#1|)) "failed") (-1184 |#2|) |#2|)))) (-523) (-594 |#1|)) (T -593)) -((-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) (-3745 (-4 *5 (-344))) (-4 *5 (-523)) (-5 *2 (-1184 (-388 *5))) (-5 *1 (-593 *5 *4)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) (-4 *5 (-344)) (-4 *5 (-523)) (-5 *2 (-1184 *5)) (-5 *1 (-593 *5 *4)))) (-3548 (*1 *2 *3) (|partial| -12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523)) (-5 *2 (-1184 *4)) (-5 *1 (-593 *4 *5)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523)) (-5 *2 (-110)) (-5 *1 (-593 *4 *5))))) -(-10 -7 (-15 -3797 ((-110) (-1184 |#2|))) (-15 -3548 ((-3 (-1184 |#1|) "failed") (-1184 |#2|))) (IF (|has| |#1| (-344)) (-15 -3516 ((-3 (-1184 |#1|) "failed") (-1184 |#2|) |#2|)) (-15 -3516 ((-3 (-1184 (-388 |#1|)) "failed") (-1184 |#2|) |#2|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3073 (((-639 |#1|) (-639 $)) 34) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 33)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-594 |#1|) (-133) (-986)) (T -594)) -((-3073 (*1 *2 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-594 *4)) (-4 *4 (-986)) (-5 *2 (-639 *4)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *1)) (-5 *4 (-1184 *1)) (-4 *1 (-594 *5)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 *5))))))) -(-13 (-986) (-10 -8 (-15 -3073 ((-639 |t#1|) (-639 $))) (-15 -3073 ((-2 (|:| -1751 (-639 |t#1|)) (|:| |vec| (-1184 |t#1|))) (-639 $) (-1184 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2869 ((|#2| (-598 |#1|) (-598 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-598 |#1|) (-598 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) |#2|) 17) ((|#2| (-598 |#1|) (-598 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|)) 12))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) |#2|)) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| |#2|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) (-1 |#2| |#1|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| (-1 |#2| |#1|)))) (-1030) (-1138)) (T -595)) -((-2869 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) (-2869 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *1 (-595 *5 *6)))) (-2869 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) (-2869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 *5)) (-4 *6 (-1030)) (-4 *5 (-1138)) (-5 *2 (-1 *5 *6)) (-5 *1 (-595 *6 *5)))) (-2869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *2 (-1 *6 *5)) (-5 *1 (-595 *5 *6))))) -(-10 -7 (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) |#2|)) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| |#2|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) (-1 |#2| |#1|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| (-1 |#2| |#1|)))) -((-3203 (((-598 |#2|) (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|) 16)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|) 18)) (-3261 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 13))) -(((-596 |#1| |#2|) (-10 -7 (-15 -3203 ((-598 |#2|) (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1138) (-1138)) (T -596)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-598 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-596 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-598 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-598 *5)) (-5 *1 (-596 *6 *5))))) -(-10 -7 (-15 -3203 ((-598 |#2|) (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) -((-3261 (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 13))) -(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)))) (-1138) (-1138) (-1138)) (T -597)) -((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-598 *8)) (-5 *1 (-597 *6 *7 *8))))) -(-10 -7 (-15 -3261 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) NIL (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "rest" $) NIL (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2965 (($ $ $) 32 (|has| |#1| (-1030)))) (-2951 (($ $ $) 34 (|has| |#1| (-1030)))) (-2938 (($ $ $) 37 (|has| |#1| (-1030)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3062 (($ $) NIL) (($ $ (-721)) NIL)) (-2705 (($ $) NIL (|has| |#1| (-1030)))) (-3086 (($ $) 31 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030))) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3008 (((-110) $) 9)) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4120 (($) 7)) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3508 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2907 (($ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) 36) ((|#1| $ (-531) |#1|) NIL)) (-2357 (((-531) $ $) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2930 (((-110) $) NIL)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 45 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1566 (($ |#1| $) 10)) (-1818 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3536 (($ $ $) 30) (($ |#1| $) NIL) (($ (-598 $)) NIL) (($ $ |#1|) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2097 (($ $ $) 11)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4231 (((-1085) $) 26 (|has| |#1| (-778))) (((-1085) $ (-110)) 27 (|has| |#1| (-778))) (((-1189) (-772) $) 28 (|has| |#1| (-778))) (((-1189) (-772) $ (-110)) 29 (|has| |#1| (-778)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-598 |#1|) (-13 (-619 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -3008 ((-110) $)) (-15 -1566 ($ |#1| $)) (-15 -2097 ($ $ $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2965 ($ $ $)) (-15 -2951 ($ $ $)) (-15 -2938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|))) (-1138)) (T -598)) -((-4120 (*1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1138)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) (-2097 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) (-2965 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))) (-2951 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138))))) -(-13 (-619 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -3008 ((-110) $)) (-15 -1566 ($ |#1| $)) (-15 -2097 ($ $ $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2965 ($ $ $)) (-15 -2951 ($ $ $)) (-15 -2938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11) (((-1107) $) NIL) ((|#1| $) 8)) (-2148 (((-110) $ $) NIL))) -(((-599 |#1|) (-13 (-1015) (-572 |#1|)) (-1030)) (T -599)) -NIL -(-13 (-1015) (-572 |#1|)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3074 (($ |#1| |#1| $) 43)) (-4058 (((-110) $ (-721)) NIL)) (-2245 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2705 (($ $) 45)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) 52 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 9 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 37)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 46)) (-3944 (($ |#1| $) 26) (($ |#1| $ (-721)) 42)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-4192 ((|#1| $) 48)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 21)) (-3781 (($) 25)) (-1707 (((-110) $) 50)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 59)) (-2543 (($) 23) (($ (-598 |#1|)) 18)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) 56 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 19)) (-3318 (((-507) $) 34 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-2265 (((-806) $) 14 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 22)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 61 (|has| |#1| (-1030)))) (-2167 (((-721) $) 16 (|has| $ (-6 -4273))))) -(((-600 |#1|) (-13 (-645 |#1|) (-10 -8 (-6 -4273) (-15 -1707 ((-110) $)) (-15 -3074 ($ |#1| |#1| $)))) (-1030)) (T -600)) -((-1707 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3)) (-4 *3 (-1030)))) (-3074 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1030))))) -(-13 (-645 |#1|) (-10 -8 (-6 -4273) (-15 -1707 ((-110) $)) (-15 -3074 ($ |#1| |#1| $)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23))) -(((-601 |#1|) (-133) (-993)) (T -601)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-993))))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 59 (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) 23 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 21 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4301))) (($ $ "rest" $) 24 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-4146 (($ $) 28 (|has| $ (-6 -4301)))) (-3289 (($ $) 29)) (-3200 (($ $) 18) (($ $ (-731)) 32)) (-1376 (($ $) 55 (|has| |#1| (-1045)))) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045))) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) NIL)) (-3661 (((-606 |#1|) $) 27 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 31 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-1470 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1285 (($ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) 51 (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) 13) (($ $ (-731)) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 12)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) 17)) (-3425 (($) 16)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) NIL) ((|#1| $ (-537) |#1|) NIL)) (-2364 (((-537) $ $) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-3335 (((-111) $) 34)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) 36)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) 35)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 26)) (-3115 (($ $ $) 54) (($ $ |#1|) NIL)) (-3434 (($ $ $) NIL) (($ |#1| $) 10) (($ (-606 $)) NIL) (($ $ |#1|) NIL)) (-2341 (((-816) $) 46 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 48 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 9 (|has| $ (-6 -4300))))) +(((-501 |#1| |#2|) (-627 |#1|) (-1154) (-537)) (T -501)) +NIL +(-627 |#1|) +((-3630 ((|#4| |#4|) 27)) (-3705 (((-731) |#4|) 32)) (-2342 (((-731) |#4|) 33)) (-2630 (((-606 |#3|) |#4|) 40 (|has| |#3| (-6 -4301)))) (-1321 (((-3 |#4| "failed") |#4|) 51)) (-2708 ((|#4| |#4|) 44)) (-3075 ((|#1| |#4|) 43))) +(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3630 (|#4| |#4|)) (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (IF (|has| |#3| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|) (-15 -3075 (|#1| |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1321 ((-3 |#4| "failed") |#4|))) (-347) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -502)) +((-1321 (*1 *2 *2) (|partial| -12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-347)) (-5 *1 (-502 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) (-2630 (*1 *2 *3) (-12 (|has| *6 (-6 -4301)) (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(-10 -7 (-15 -3630 (|#4| |#4|)) (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (IF (|has| |#3| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|) (-15 -3075 (|#1| |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1321 ((-3 |#4| "failed") |#4|))) +((-3630 ((|#8| |#4|) 20)) (-2630 (((-606 |#3|) |#4|) 29 (|has| |#7| (-6 -4301)))) (-1321 (((-3 |#8| "failed") |#4|) 23))) +(((-503 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3630 (|#8| |#4|)) (-15 -1321 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|)) (-529) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|) (-945 |#1|) (-357 |#5|) (-357 |#5|) (-647 |#5| |#6| |#7|)) (T -503)) +((-2630 (*1 *2 *3) (-12 (|has| *9 (-6 -4301)) (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)) (-5 *2 (-606 *6)) (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-647 *4 *5 *6)) (-4 *10 (-647 *7 *8 *9)))) (-1321 (*1 *2 *3) (|partial| -12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) (-4 *8 (-357 *7)) (-4 *9 (-357 *7))))) +(-10 -7 (-15 -3630 (|#8| |#4|)) (-15 -1321 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4301)) (-15 -2630 ((-606 |#3|) |#4|)) |%noBranch|)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) NIL)) (-2417 (($ $ $) NIL)) (-3660 (($ (-568 |#1| |#3|)) NIL) (($ $) NIL)) (-3234 (((-111) $) NIL)) (-2324 (($ $ (-537) (-537)) 12)) (-1731 (($ $ (-537) (-537)) NIL)) (-4068 (($ $ (-537) (-537) (-537) (-537)) NIL)) (-2723 (($ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3632 (($ $ (-537) (-537) $) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) NIL)) (-2720 (($ $ (-537) (-568 |#1| |#3|)) NIL)) (-2573 (($ $ (-537) (-568 |#1| |#2|)) NIL)) (-3110 (($ (-731) |#1|) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 21 (|has| |#1| (-291)))) (-2964 (((-568 |#1| |#3|) $ (-537)) NIL)) (-3705 (((-731) $) 24 (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) NIL)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2342 (((-731) $) 26 (|has| |#1| (-529)))) (-2630 (((-606 (-568 |#1| |#2|)) $) 29 (|has| |#1| (-529)))) (-2931 (((-731) $) NIL)) (-3157 (($ (-731) (-731) |#1|) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#1| $) 19 (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) 10)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) 11)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#1|))) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3156 (((-606 (-606 |#1|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) 33 (|has| |#1| (-347)))) (-3120 (($ $ $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537))) NIL)) (-3189 (($ (-606 |#1|)) NIL) (($ (-606 $)) NIL)) (-3400 (((-111) $) NIL)) (-3075 ((|#1| $) 17 (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2198 (((-568 |#1| |#2|) $ (-537)) NIL)) (-2341 (($ (-568 |#1| |#2|)) NIL) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-537) $) NIL) (((-568 |#1| |#2|) $ (-568 |#1| |#2|)) NIL) (((-568 |#1| |#3|) (-568 |#1| |#3|) $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-504 |#1| |#2| |#3|) (-647 |#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) (-998) (-537) (-537)) (T -504)) +NIL +(-647 |#1| (-568 |#1| |#3|) (-568 |#1| |#2|)) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3584 (((-606 (-1153)) $) 13)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (($ (-606 (-1153))) 11)) (-2244 (((-111) $ $) NIL))) +(((-505) (-13 (-1029) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3584 ((-606 (-1153)) $))))) (T -505)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505))))) +(-13 (-1029) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3584 ((-606 (-1153)) $)))) +((-2330 (((-111) $ $) NIL)) (-1838 (((-1122) $) 13)) (-1654 (((-1100) $) NIL)) (-1851 (((-1117) $) 11)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-506) (-13 (-1029) (-10 -8 (-15 -1851 ((-1117) $)) (-15 -1838 ((-1122) $))))) (T -506)) +((-1851 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-506)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-506))))) +(-13 (-1029) (-10 -8 (-15 -1851 ((-1117) $)) (-15 -1838 ((-1122) $)))) +((-4178 (((-1113 |#1|) (-731)) 76)) (-1428 (((-1200 |#1|) (-1200 |#1|) (-874)) 69)) (-1686 (((-1205) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) |#1|) 84)) (-4259 (((-1200 |#1|) (-1200 |#1|) (-731)) 36)) (-1618 (((-1200 |#1|) (-874)) 71)) (-2890 (((-1200 |#1|) (-1200 |#1|) (-537)) 24)) (-2990 (((-1113 |#1|) (-1200 |#1|)) 77)) (-3522 (((-1200 |#1|) (-874)) 95)) (-3870 (((-111) (-1200 |#1|)) 80)) (-2055 (((-1200 |#1|) (-1200 |#1|) (-874)) 62)) (-3199 (((-1113 |#1|) (-1200 |#1|)) 89)) (-2334 (((-874) (-1200 |#1|)) 59)) (-3865 (((-1200 |#1|) (-1200 |#1|)) 30)) (-2009 (((-1200 |#1|) (-874) (-874)) 97)) (-3378 (((-1200 |#1|) (-1200 |#1|) (-1064) (-1064)) 23)) (-2313 (((-1200 |#1|) (-1200 |#1|) (-731) (-1064)) 37)) (-2122 (((-1200 (-1200 |#1|)) (-874)) 94)) (-2340 (((-1200 |#1|) (-1200 |#1|) (-1200 |#1|)) 81)) (** (((-1200 |#1|) (-1200 |#1|) (-537)) 45)) (* (((-1200 |#1|) (-1200 |#1|) (-1200 |#1|)) 25))) +(((-507 |#1|) (-10 -7 (-15 -1686 ((-1205) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) |#1|)) (-15 -1618 ((-1200 |#1|) (-874))) (-15 -2009 ((-1200 |#1|) (-874) (-874))) (-15 -2990 ((-1113 |#1|) (-1200 |#1|))) (-15 -4178 ((-1113 |#1|) (-731))) (-15 -2313 ((-1200 |#1|) (-1200 |#1|) (-731) (-1064))) (-15 -4259 ((-1200 |#1|) (-1200 |#1|) (-731))) (-15 -3378 ((-1200 |#1|) (-1200 |#1|) (-1064) (-1064))) (-15 -2890 ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 ** ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 * ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2340 ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2055 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -1428 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -3865 ((-1200 |#1|) (-1200 |#1|))) (-15 -2334 ((-874) (-1200 |#1|))) (-15 -3870 ((-111) (-1200 |#1|))) (-15 -2122 ((-1200 (-1200 |#1|)) (-874))) (-15 -3522 ((-1200 |#1|) (-874))) (-15 -3199 ((-1113 |#1|) (-1200 |#1|)))) (-333)) (T -507)) +((-3199 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 *4))) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-507 *4)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-874)) (-5 *1 (-507 *4)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) (-1428 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2340 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2890 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-3378 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1064)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-4259 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-507 *4)))) (-2313 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1200 *5)) (-5 *3 (-731)) (-5 *4 (-1064)) (-4 *5 (-333)) (-5 *1 (-507 *5)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)))) (-2009 (*1 *2 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) (-4 *4 (-333)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) (-4 *4 (-333)) (-5 *2 (-1205)) (-5 *1 (-507 *4))))) +(-10 -7 (-15 -1686 ((-1205) (-1200 (-606 (-2 (|:| -3619 |#1|) (|:| -2009 (-1064))))) |#1|)) (-15 -1618 ((-1200 |#1|) (-874))) (-15 -2009 ((-1200 |#1|) (-874) (-874))) (-15 -2990 ((-1113 |#1|) (-1200 |#1|))) (-15 -4178 ((-1113 |#1|) (-731))) (-15 -2313 ((-1200 |#1|) (-1200 |#1|) (-731) (-1064))) (-15 -4259 ((-1200 |#1|) (-1200 |#1|) (-731))) (-15 -3378 ((-1200 |#1|) (-1200 |#1|) (-1064) (-1064))) (-15 -2890 ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 ** ((-1200 |#1|) (-1200 |#1|) (-537))) (-15 * ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2340 ((-1200 |#1|) (-1200 |#1|) (-1200 |#1|))) (-15 -2055 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -1428 ((-1200 |#1|) (-1200 |#1|) (-874))) (-15 -3865 ((-1200 |#1|) (-1200 |#1|))) (-15 -2334 ((-874) (-1200 |#1|))) (-15 -3870 ((-111) (-1200 |#1|))) (-15 -2122 ((-1200 (-1200 |#1|)) (-874))) (-15 -3522 ((-1200 |#1|) (-874))) (-15 -3199 ((-1113 |#1|) (-1200 |#1|)))) +((-1894 (((-1 |#1| |#1|) |#1|) 11)) (-3424 (((-1 |#1| |#1|)) 10))) +(((-508 |#1|) (-10 -7 (-15 -3424 ((-1 |#1| |#1|))) (-15 -1894 ((-1 |#1| |#1|) |#1|))) (-13 (-687) (-25))) (T -508)) +((-1894 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25))))) (-3424 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25)))))) +(-10 -7 (-15 -3424 ((-1 |#1| |#1|))) (-15 -1894 ((-1 |#1| |#1|) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2169 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3733 (($ (-731) |#1|) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 (-731) (-731)) $) NIL)) (-3749 ((|#1| $) NIL)) (-3912 (((-731) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20)) (-2928 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL))) +(((-509 |#1|) (-13 (-753) (-490 (-731) |#1|)) (-807)) (T -509)) +NIL +(-13 (-753) (-490 (-731) |#1|)) +((-1480 (((-606 |#2|) (-1113 |#1|) |#3|) 83)) (-2015 (((-606 (-2 (|:| |outval| |#2|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#2|))))) (-649 |#1|) |#3| (-1 (-402 (-1113 |#1|)) (-1113 |#1|))) 100)) (-3085 (((-1113 |#1|) (-649 |#1|)) 95))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -3085 ((-1113 |#1|) (-649 |#1|))) (-15 -1480 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2015 ((-606 (-2 (|:| |outval| |#2|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#2|))))) (-649 |#1|) |#3| (-1 (-402 (-1113 |#1|)) (-1113 |#1|))))) (-347) (-347) (-13 (-347) (-805))) (T -510)) +((-2015 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *6)) (-5 *5 (-1 (-402 (-1113 *6)) (-1113 *6))) (-4 *6 (-347)) (-5 *2 (-606 (-2 (|:| |outval| *7) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 *7)))))) (-5 *1 (-510 *6 *7 *4)) (-4 *7 (-347)) (-4 *4 (-13 (-347) (-805))))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *5)) (-4 *5 (-347)) (-5 *2 (-606 *6)) (-5 *1 (-510 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805))))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-347)) (-5 *2 (-1113 *4)) (-5 *1 (-510 *4 *5 *6)) (-4 *5 (-347)) (-4 *6 (-13 (-347) (-805)))))) +(-10 -7 (-15 -3085 ((-1113 |#1|) (-649 |#1|))) (-15 -1480 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2015 ((-606 (-2 (|:| |outval| |#2|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#2|))))) (-649 |#1|) |#3| (-1 (-402 (-1113 |#1|)) (-1113 |#1|))))) +((-1548 (((-800 (-537))) 12)) (-1557 (((-800 (-537))) 14)) (-3349 (((-793 (-537))) 9))) +(((-511) (-10 -7 (-15 -3349 ((-793 (-537)))) (-15 -1548 ((-800 (-537)))) (-15 -1557 ((-800 (-537)))))) (T -511)) +((-1557 (*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) (-1548 (*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) (-3349 (*1 *2) (-12 (-5 *2 (-793 (-537))) (-5 *1 (-511))))) +(-10 -7 (-15 -3349 ((-793 (-537)))) (-15 -1548 ((-800 (-537)))) (-15 -1557 ((-800 (-537))))) +((-2473 (((-513) (-1117)) 15)) (-3443 ((|#1| (-513)) 20))) +(((-512 |#1|) (-10 -7 (-15 -2473 ((-513) (-1117))) (-15 -3443 (|#1| (-513)))) (-1154)) (T -512)) +((-3443 (*1 *2 *3) (-12 (-5 *3 (-513)) (-5 *1 (-512 *2)) (-4 *2 (-1154)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-513)) (-5 *1 (-512 *4)) (-4 *4 (-1154))))) +(-10 -7 (-15 -2473 ((-513) (-1117))) (-15 -3443 (|#1| (-513)))) +((-2330 (((-111) $ $) NIL)) (-1626 (((-1100) $) 48)) (-3128 (((-111) $) 43)) (-1694 (((-1117) $) 44)) (-3330 (((-111) $) 41)) (-3035 (((-1100) $) 42)) (-2114 (((-111) $) NIL)) (-2942 (((-111) $) NIL)) (-3477 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2173 (($ $ (-606 (-1117))) 20)) (-3443 (((-51) $) 22)) (-1660 (((-111) $) NIL)) (-1715 (((-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-2066 (($ $ (-606 (-1117)) (-1117)) 60)) (-2807 (((-111) $) NIL)) (-2851 (((-210) $) NIL)) (-2458 (($ $) 38)) (-1845 (((-816) $) NIL)) (-4113 (((-111) $ $) NIL)) (-1922 (($ $ (-537)) NIL) (($ $ (-606 (-537))) NIL)) (-3690 (((-606 $) $) 28)) (-3883 (((-1117) (-606 $)) 49)) (-3996 (($ (-606 $)) 53) (($ (-1100)) NIL) (($ (-1117)) 18) (($ (-537)) 8) (($ (-210)) 25) (($ (-816)) NIL) (((-1049) $) 11) (($ (-1049)) 12)) (-3599 (((-1117) (-1117) (-606 $)) 52)) (-2341 (((-816) $) 46)) (-1313 (($ $) 51)) (-1297 (($ $) 50)) (-2398 (($ $ (-606 $)) 57)) (-4233 (((-111) $) 27)) (-2928 (($) 9 T CONST)) (-2943 (($) 10 T CONST)) (-2244 (((-111) $ $) 61)) (-2340 (($ $ $) 66)) (-2318 (($ $ $) 62)) (** (($ $ (-731)) 65) (($ $ (-537)) 64)) (* (($ $ $) 63)) (-2258 (((-537) $) NIL))) +(((-513) (-13 (-1048 (-1100) (-1117) (-537) (-210) (-816)) (-580 (-1049)) (-10 -8 (-15 -3443 ((-51) $)) (-15 -3996 ($ (-1049))) (-15 -2398 ($ $ (-606 $))) (-15 -2066 ($ $ (-606 (-1117)) (-1117))) (-15 -2173 ($ $ (-606 (-1117)))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ (-537))) (-15 0 ($) -2787) (-15 1 ($) -2787) (-15 -2458 ($ $)) (-15 -1626 ((-1100) $)) (-15 -3883 ((-1117) (-606 $))) (-15 -3599 ((-1117) (-1117) (-606 $)))))) (T -513)) +((-3443 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-513)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-513)))) (-2398 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-513))) (-5 *1 (-513)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1117)) (-5 *1 (-513)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-513)))) (-2318 (*1 *1 *1 *1) (-5 *1 (-513))) (* (*1 *1 *1 *1) (-5 *1 (-513))) (-2340 (*1 *1 *1 *1) (-5 *1 (-513))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-513)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-513)))) (-2928 (*1 *1) (-5 *1 (-513))) (-2943 (*1 *1) (-5 *1 (-513))) (-2458 (*1 *1 *1) (-5 *1 (-513))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-513)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-606 (-513))) (-5 *2 (-1117)) (-5 *1 (-513)))) (-3599 (*1 *2 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-513))) (-5 *1 (-513))))) +(-13 (-1048 (-1100) (-1117) (-537) (-210) (-816)) (-580 (-1049)) (-10 -8 (-15 -3443 ((-51) $)) (-15 -3996 ($ (-1049))) (-15 -2398 ($ $ (-606 $))) (-15 -2066 ($ $ (-606 (-1117)) (-1117))) (-15 -2173 ($ $ (-606 (-1117)))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ (-537))) (-15 (-2928) ($) -2787) (-15 (-2943) ($) -2787) (-15 -2458 ($ $)) (-15 -1626 ((-1100) $)) (-15 -3883 ((-1117) (-606 $))) (-15 -3599 ((-1117) (-1117) (-606 $))))) +((-2339 ((|#2| |#2|) 17)) (-2965 ((|#2| |#2|) 13)) (-3005 ((|#2| |#2| (-537) (-537)) 20)) (-3481 ((|#2| |#2|) 15))) +(((-514 |#1| |#2|) (-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) (-13 (-529) (-141)) (-1191 |#1|)) (T -514)) +((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-514 *4 *2)) (-4 *2 (-1191 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) (-4 *2 (-1191 *3)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) (-4 *2 (-1191 *3)))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) (-4 *2 (-1191 *3))))) +(-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) +((-3793 (((-606 (-278 (-905 |#2|))) (-606 |#2|) (-606 (-1117))) 32)) (-2822 (((-606 |#2|) (-905 |#1|) |#3|) 53) (((-606 |#2|) (-1113 |#1|) |#3|) 52)) (-2185 (((-606 (-606 |#2|)) (-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)) |#3|) 91))) +(((-515 |#1| |#2| |#3|) (-10 -7 (-15 -2822 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2822 ((-606 |#2|) (-905 |#1|) |#3|)) (-15 -2185 ((-606 (-606 |#2|)) (-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)) |#3|)) (-15 -3793 ((-606 (-278 (-905 |#2|))) (-606 |#2|) (-606 (-1117))))) (-435) (-347) (-13 (-347) (-805))) (T -515)) +((-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1117))) (-4 *6 (-347)) (-5 *2 (-606 (-278 (-905 *6)))) (-5 *1 (-515 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-13 (-347) (-805))))) (-2185 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-606 (-606 *7))) (-5 *1 (-515 *6 *7 *5)) (-4 *7 (-347)) (-4 *5 (-13 (-347) (-805))))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805))))) (-2822 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805)))))) +(-10 -7 (-15 -2822 ((-606 |#2|) (-1113 |#1|) |#3|)) (-15 -2822 ((-606 |#2|) (-905 |#1|) |#3|)) (-15 -2185 ((-606 (-606 |#2|)) (-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)) |#3|)) (-15 -3793 ((-606 (-278 (-905 |#2|))) (-606 |#2|) (-606 (-1117))))) +((-1818 ((|#2| |#2| |#1|) 17)) (-3453 ((|#2| (-606 |#2|)) 27)) (-2745 ((|#2| (-606 |#2|)) 46))) +(((-516 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3453 (|#2| (-606 |#2|))) (-15 -2745 (|#2| (-606 |#2|))) (-15 -1818 (|#2| |#2| |#1|))) (-291) (-1176 |#1|) |#1| (-1 |#1| |#1| (-731))) (T -516)) +((-1818 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-731))) (-5 *1 (-516 *3 *2 *4 *5)) (-4 *2 (-1176 *3)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731))))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731)))))) +(-10 -7 (-15 -3453 (|#2| (-606 |#2|))) (-15 -2745 (|#2| (-606 |#2|))) (-15 -1818 (|#2| |#2| |#1|))) +((-3622 (((-402 (-1113 |#4|)) (-1113 |#4|) (-1 (-402 (-1113 |#3|)) (-1113 |#3|))) 80) (((-402 |#4|) |#4| (-1 (-402 (-1113 |#3|)) (-1113 |#3|))) 169))) +(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 (-1113 |#3|)) (-1113 |#3|)))) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|) (-1 (-402 (-1113 |#3|)) (-1113 |#3|))))) (-807) (-753) (-13 (-291) (-141)) (-902 |#3| |#2| |#1|)) (T -517)) +((-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *8 (-902 *7 *6 *5)) (-5 *2 (-402 (-1113 *8))) (-5 *1 (-517 *5 *6 *7 *8)) (-5 *3 (-1113 *8)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) (-5 *2 (-402 *3)) (-5 *1 (-517 *5 *6 *7 *3)) (-4 *3 (-902 *7 *6 *5))))) +(-10 -7 (-15 -3622 ((-402 |#4|) |#4| (-1 (-402 (-1113 |#3|)) (-1113 |#3|)))) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|) (-1 (-402 (-1113 |#3|)) (-1113 |#3|))))) +((-2339 ((|#4| |#4|) 74)) (-2965 ((|#4| |#4|) 70)) (-3005 ((|#4| |#4| (-537) (-537)) 76)) (-3481 ((|#4| |#4|) 72))) +(((-518 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2965 (|#4| |#4|)) (-15 -3481 (|#4| |#4|)) (-15 -2339 (|#4| |#4|)) (-15 -3005 (|#4| |#4| (-537) (-537)))) (-13 (-347) (-352) (-580 (-537))) (-1176 |#1|) (-685 |#1| |#2|) (-1191 |#3|)) (T -518)) +((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) (-4 *5 (-1176 *4)) (-4 *6 (-685 *4 *5)) (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-1191 *6)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5))))) +(-10 -7 (-15 -2965 (|#4| |#4|)) (-15 -3481 (|#4| |#4|)) (-15 -2339 (|#4| |#4|)) (-15 -3005 (|#4| |#4| (-537) (-537)))) +((-2339 ((|#2| |#2|) 27)) (-2965 ((|#2| |#2|) 23)) (-3005 ((|#2| |#2| (-537) (-537)) 29)) (-3481 ((|#2| |#2|) 25))) +(((-519 |#1| |#2|) (-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) (-13 (-347) (-352) (-580 (-537))) (-1191 |#1|)) (T -519)) +((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) (-5 *1 (-519 *4 *2)) (-4 *2 (-1191 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) (-4 *2 (-1191 *3)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) (-4 *2 (-1191 *3)))) (-2965 (*1 *2 *2) (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) (-4 *2 (-1191 *3))))) +(-10 -7 (-15 -2965 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -3005 (|#2| |#2| (-537) (-537)))) +((-2174 (((-3 (-537) "failed") |#2| |#1| (-1 (-3 (-537) "failed") |#1|)) 14) (((-3 (-537) "failed") |#2| |#1| (-537) (-1 (-3 (-537) "failed") |#1|)) 13) (((-3 (-537) "failed") |#2| (-537) (-1 (-3 (-537) "failed") |#1|)) 26))) +(((-520 |#1| |#2|) (-10 -7 (-15 -2174 ((-3 (-537) "failed") |#2| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-1 (-3 (-537) "failed") |#1|)))) (-998) (-1176 |#1|)) (T -520)) +((-2174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4)))) (-2174 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4)))) (-2174 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-537) "failed") *5)) (-4 *5 (-998)) (-5 *2 (-537)) (-5 *1 (-520 *5 *3)) (-4 *3 (-1176 *5))))) +(-10 -7 (-15 -2174 ((-3 (-537) "failed") |#2| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-537) (-1 (-3 (-537) "failed") |#1|))) (-15 -2174 ((-3 (-537) "failed") |#2| |#1| (-1 (-3 (-537) "failed") |#1|)))) +((-2675 (($ $ $) 79)) (-2414 (((-402 $) $) 47)) (-1516 (((-3 (-537) "failed") $) 59)) (-3958 (((-537) $) 37)) (-2484 (((-3 (-391 (-537)) "failed") $) 74)) (-1797 (((-111) $) 24)) (-2616 (((-391 (-537)) $) 72)) (-2639 (((-111) $) 50)) (-2238 (($ $ $ $) 86)) (-3797 (((-111) $) 16)) (-2967 (($ $ $) 57)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 69)) (-2824 (((-3 $ "failed") $) 64)) (-1454 (($ $) 23)) (-1753 (($ $ $) 84)) (-3956 (($) 60)) (-2871 (($ $) 53)) (-3622 (((-402 $) $) 45)) (-2977 (((-111) $) 14)) (-1930 (((-731) $) 28)) (-3456 (($ $ (-731)) NIL) (($ $) 10)) (-2494 (($ $) 17)) (-3996 (((-537) $) NIL) (((-513) $) 36) (((-845 (-537)) $) 40) (((-363) $) 31) (((-210) $) 33)) (-3654 (((-731)) 8)) (-3246 (((-111) $ $) 20)) (-2360 (($ $ $) 55))) +(((-521 |#1|) (-10 -8 (-15 -1753 (|#1| |#1| |#1|)) (-15 -2238 (|#1| |#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2675 (|#1| |#1| |#1|)) (-15 -3246 ((-111) |#1| |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3996 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3797 ((-111) |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -3654 ((-731)))) (-522)) (T -521)) +((-3654 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-521 *3)) (-4 *3 (-522))))) +(-10 -8 (-15 -1753 (|#1| |#1| |#1|)) (-15 -2238 (|#1| |#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2494 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2675 (|#1| |#1| |#1|)) (-15 -3246 ((-111) |#1| |#1|)) (-15 -2977 ((-111) |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2967 (|#1| |#1| |#1|)) (-15 -2871 (|#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3996 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3797 ((-111) |#1|)) (-15 -1930 ((-731) |#1|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -2639 ((-111) |#1|)) (-15 -3654 ((-731)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-2675 (($ $ $) 83)) (-3418 (((-3 $ "failed") $ $) 19)) (-3480 (($ $ $ $) 71)) (-1395 (($ $) 49)) (-2414 (((-402 $) $) 50)) (-4099 (((-111) $ $) 123)) (-2537 (((-537) $) 112)) (-3879 (($ $ $) 86)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 104)) (-3958 (((-537) $) 103)) (-3563 (($ $ $) 127)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 102) (((-649 (-537)) (-649 $)) 101)) (-3490 (((-3 $ "failed") $) 32)) (-2484 (((-3 (-391 (-537)) "failed") $) 80)) (-1797 (((-111) $) 82)) (-2616 (((-391 (-537)) $) 81)) (-1618 (($) 79) (($ $) 78)) (-3539 (($ $ $) 126)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 121)) (-2639 (((-111) $) 51)) (-2238 (($ $ $ $) 69)) (-1255 (($ $ $) 84)) (-3797 (((-111) $) 114)) (-2967 (($ $ $) 95)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 98)) (-2836 (((-111) $) 30)) (-2353 (((-111) $) 90)) (-2824 (((-3 $ "failed") $) 92)) (-2840 (((-111) $) 113)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 130)) (-1910 (($ $ $ $) 70)) (-2444 (($ $ $) 115)) (-3889 (($ $ $) 116)) (-1454 (($ $) 73)) (-3845 (($ $) 87)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-1753 (($ $ $) 68)) (-3956 (($) 91 T CONST)) (-4078 (($ $) 75)) (-2528 (((-1064) $) 10) (($ $) 77)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-2871 (($ $) 96)) (-3622 (((-402 $) $) 48)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 128)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 122)) (-2977 (((-111) $) 89)) (-1930 (((-731) $) 124)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 125)) (-3456 (($ $ (-731)) 109) (($ $) 107)) (-3089 (($ $) 74)) (-2494 (($ $) 76)) (-3996 (((-537) $) 106) (((-513) $) 100) (((-845 (-537)) $) 99) (((-363) $) 94) (((-210) $) 93)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-537)) 105)) (-3654 (((-731)) 28)) (-3246 (((-111) $ $) 85)) (-2360 (($ $ $) 97)) (-1605 (($) 88)) (-3276 (((-111) $ $) 37)) (-2319 (($ $ $ $) 72)) (-2209 (($ $) 111)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-731)) 110) (($ $) 108)) (-2293 (((-111) $ $) 118)) (-2271 (((-111) $ $) 119)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 117)) (-2263 (((-111) $ $) 120)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-522) (-134)) (T -522)) +((-2353 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-2977 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-1605 (*1 *1) (-4 *1 (-522))) (-3845 (*1 *1 *1) (-4 *1 (-522))) (-3879 (*1 *1 *1 *1) (-4 *1 (-522))) (-3246 (*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-1255 (*1 *1 *1 *1) (-4 *1 (-522))) (-2675 (*1 *1 *1 *1) (-4 *1 (-522))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) (-1618 (*1 *1) (-4 *1 (-522))) (-1618 (*1 *1 *1) (-4 *1 (-522))) (-2528 (*1 *1 *1) (-4 *1 (-522))) (-2494 (*1 *1 *1) (-4 *1 (-522))) (-4078 (*1 *1 *1) (-4 *1 (-522))) (-3089 (*1 *1 *1) (-4 *1 (-522))) (-1454 (*1 *1 *1) (-4 *1 (-522))) (-2319 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-3480 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-1910 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-2238 (*1 *1 *1 *1 *1) (-4 *1 (-522))) (-1753 (*1 *1 *1 *1) (-4 *1 (-522)))) +(-13 (-1158) (-291) (-780) (-218) (-580 (-537)) (-989 (-537)) (-602 (-537)) (-580 (-513)) (-580 (-845 (-537))) (-839 (-537)) (-137) (-973) (-141) (-1093) (-10 -8 (-15 -2353 ((-111) $)) (-15 -2977 ((-111) $)) (-6 -4299) (-15 -1605 ($)) (-15 -3845 ($ $)) (-15 -3879 ($ $ $)) (-15 -3246 ((-111) $ $)) (-15 -1255 ($ $ $)) (-15 -2675 ($ $ $)) (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $)) (-15 -1618 ($)) (-15 -1618 ($ $)) (-15 -2528 ($ $)) (-15 -2494 ($ $)) (-15 -4078 ($ $)) (-15 -3089 ($ $)) (-15 -1454 ($ $)) (-15 -2319 ($ $ $ $)) (-15 -3480 ($ $ $ $)) (-15 -1910 ($ $ $ $)) (-15 -2238 ($ $ $ $)) (-15 -1753 ($ $ $)) (-6 -4298))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-137) . T) ((-163) . T) ((-580 (-210)) . T) ((-580 (-363)) . T) ((-580 (-513)) . T) ((-580 (-537)) . T) ((-580 (-845 (-537))) . T) ((-218) . T) ((-274) . T) ((-291) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-602 (-537)) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-780) . T) ((-805) . T) ((-807) . T) ((-839 (-537)) . T) ((-873) . T) ((-973) . T) ((-989 (-537)) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) . T) ((-1158) . T)) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-523 |#1| |#2| |#3|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300)))) (T -523)) +NIL +(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) +((-2031 (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-1 (-1113 |#2|) (-1113 |#2|))) 51))) +(((-524 |#1| |#2|) (-10 -7 (-15 -2031 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-1 (-1113 |#2|) (-1113 |#2|))))) (-13 (-807) (-529)) (-13 (-27) (-414 |#1|))) (T -524)) +((-2031 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-578 *3)) (-5 *5 (-1 (-1113 *3) (-1113 *3))) (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-807) (-529))) (-5 *2 (-554 *3)) (-5 *1 (-524 *6 *3))))) +(-10 -7 (-15 -2031 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-1 (-1113 |#2|) (-1113 |#2|))))) +((-2918 (((-554 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3722 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2601 (((-554 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-525 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2601 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2918 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3722 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-807) (-529) (-989 (-537))) (-13 (-27) (-414 |#1|)) (-1176 |#2|) (-1176 (-391 |#3|)) (-326 |#2| |#3| |#4|)) (T -525)) +((-3722 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-4 *7 (-1176 (-391 *6))) (-5 *1 (-525 *4 *5 *6 *7 *2)) (-4 *2 (-326 *5 *6 *7)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) (-4 *3 (-326 *6 *7 *8)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) (-4 *3 (-326 *6 *7 *8))))) +(-10 -7 (-15 -2601 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2918 ((-554 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3722 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2578 (((-111) (-537) (-537)) 10)) (-1550 (((-537) (-537)) 7)) (-1885 (((-537) (-537) (-537)) 8))) +(((-526) (-10 -7 (-15 -1550 ((-537) (-537))) (-15 -1885 ((-537) (-537) (-537))) (-15 -2578 ((-111) (-537) (-537))))) (T -526)) +((-2578 (*1 *2 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-526)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526))))) +(-10 -7 (-15 -1550 ((-537) (-537))) (-15 -1885 ((-537) (-537) (-537))) (-15 -2578 ((-111) (-537) (-537)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1786 ((|#1| $) 59)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1403 (($ $) 89)) (-1247 (($ $) 72)) (-2169 ((|#1| $) 60)) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $) 71)) (-1378 (($ $) 88)) (-4270 (($ $) 73)) (-1429 (($ $) 87)) (-1273 (($ $) 74)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 67)) (-3958 (((-537) $) 66)) (-3490 (((-3 $ "failed") $) 32)) (-1632 (($ |#1| |#1|) 64)) (-3797 (((-111) $) 58)) (-3338 (($) 99)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 70)) (-2840 (((-111) $) 57)) (-2444 (($ $ $) 105)) (-3889 (($ $ $) 104)) (-2180 (($ $) 96)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-4228 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-391 (-537))) 62)) (-3406 ((|#1| $) 61)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3515 (((-3 $ "failed") $ $) 40)) (-4185 (($ $) 97)) (-1441 (($ $) 86)) (-1286 (($ $) 75)) (-1415 (($ $) 85)) (-1259 (($ $) 76)) (-1389 (($ $) 84)) (-1234 (($ $) 77)) (-1576 (((-111) $ |#1|) 56)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-537)) 68)) (-3654 (((-731)) 28)) (-1475 (($ $) 95)) (-1328 (($ $) 83)) (-3276 (((-111) $ $) 37)) (-1453 (($ $) 94)) (-1300 (($ $) 82)) (-1495 (($ $) 93)) (-1352 (($ $) 81)) (-4141 (($ $) 92)) (-1365 (($ $) 80)) (-1485 (($ $) 91)) (-1340 (($ $) 79)) (-1465 (($ $) 90)) (-1314 (($ $) 78)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 102)) (-2271 (((-111) $ $) 101)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 103)) (-2263 (((-111) $ $) 100)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ $) 98) (($ $ (-391 (-537))) 69)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-527 |#1|) (-134) (-13 (-388) (-1139))) (T -527)) +((-4228 (*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-1632 (*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-4228 (*1 *1 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) (-1576 (*1 *2 *1 *3) (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111))))) +(-13 (-435) (-807) (-1139) (-954) (-989 (-537)) (-10 -8 (-6 -4150) (-15 -4228 ($ |t#1| |t#1|)) (-15 -1632 ($ |t#1| |t#1|)) (-15 -4228 ($ |t#1|)) (-15 -4228 ($ (-391 (-537)))) (-15 -3406 (|t#1| $)) (-15 -2169 (|t#1| $)) (-15 -1786 (|t#1| $)) (-15 -3797 ((-111) $)) (-15 -2840 ((-111) $)) (-15 -1576 ((-111) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-268) . T) ((-274) . T) ((-435) . T) ((-474) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-807) . T) ((-954) . T) ((-989 (-537)) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) . T) ((-1142) . T)) +((-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 9)) (-3377 (($ $) 11)) (-4017 (((-111) $) 18)) (-3490 (((-3 $ "failed") $) 16)) (-3276 (((-111) $ $) 20))) +(((-528 |#1|) (-10 -8 (-15 -4017 ((-111) |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) (-529)) (T -528)) +NIL +(-10 -8 (-15 -4017 ((-111) |#1|)) (-15 -3276 ((-111) |#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3079 ((-2 (|:| -1397 |#1|) (|:| -4287 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-529) (-134)) (T -529)) +((-3515 (*1 *1 *1 *1) (|partial| -4 *1 (-529))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1397 *1) (|:| -4287 *1) (|:| |associate| *1))) (-4 *1 (-529)))) (-3377 (*1 *1 *1) (-4 *1 (-529))) (-3276 (*1 *2 *1 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111)))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111))))) +(-13 (-163) (-37 $) (-274) (-10 -8 (-15 -3515 ((-3 $ "failed") $ $)) (-15 -3079 ((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $)) (-15 -3377 ($ $)) (-15 -3276 ((-111) $ $)) (-15 -4017 ((-111) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1920 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1117) (-606 |#2|)) 37)) (-3258 (((-554 |#2|) |#2| (-1117)) 62)) (-2705 (((-3 |#2| "failed") |#2| (-1117)) 152)) (-1483 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) (-578 |#2|) (-606 (-578 |#2|))) 155)) (-1481 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) |#2|) 40))) +(((-530 |#1| |#2|) (-10 -7 (-15 -1481 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) |#2|)) (-15 -1920 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1117) (-606 |#2|))) (-15 -2705 ((-3 |#2| "failed") |#2| (-1117))) (-15 -3258 ((-554 |#2|) |#2| (-1117))) (-15 -1483 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) (-578 |#2|) (-606 (-578 |#2|))))) (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -530)) +((-1483 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-606 (-578 *3))) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *7))) (-4 *7 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-530 *7 *3)))) (-3258 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-530 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-530 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-1920 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-530 *6 *3)))) (-1481 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-530 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) +(-10 -7 (-15 -1481 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) |#2|)) (-15 -1920 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1117) (-606 |#2|))) (-15 -2705 ((-3 |#2| "failed") |#2| (-1117))) (-15 -3258 ((-554 |#2|) |#2| (-1117))) (-15 -1483 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1117) (-578 |#2|) (-606 (-578 |#2|))))) +((-2414 (((-402 |#1|) |#1|) 18)) (-3622 (((-402 |#1|) |#1|) 33)) (-4100 (((-3 |#1| "failed") |#1|) 44)) (-3044 (((-402 |#1|) |#1|) 51))) +(((-531 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3044 ((-402 |#1|) |#1|)) (-15 -4100 ((-3 |#1| "failed") |#1|))) (-522)) (T -531)) +((-4100 (*1 *2 *2) (|partial| -12 (-5 *1 (-531 *2)) (-4 *2 (-522)))) (-3044 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) (-2414 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522))))) +(-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -3044 ((-402 |#1|) |#1|)) (-15 -4100 ((-3 |#1| "failed") |#1|))) +((-3105 (($) 9)) (-1426 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 35)) (-1688 (((-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $) 32)) (-3499 (($ (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3367 (($ (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2140 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 39)) (-3010 (((-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1763 (((-1205)) 12))) +(((-532) (-10 -8 (-15 -3105 ($)) (-15 -1763 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3367 ($ (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1426 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3010 ((-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2140 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -532)) +((-2140 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-532)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-532)))) (-1426 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-532)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-532)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-532)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-5 *1 (-532)))) (-1763 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-532)))) (-3105 (*1 *1) (-5 *1 (-532)))) +(-10 -8 (-15 -3105 ($)) (-15 -1763 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3367 ($ (-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1426 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -3010 ((-606 (-2 (|:| -2926 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2140 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) +((-3588 (((-1113 (-391 (-1113 |#2|))) |#2| (-578 |#2|) (-578 |#2|) (-1113 |#2|)) 32)) (-1301 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) |#2| (-1113 |#2|)) 110)) (-2095 (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 80) (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|)) 52)) (-4193 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| (-578 |#2|) |#2| (-391 (-1113 |#2|))) 87) (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| |#2| (-1113 |#2|)) 109)) (-3953 (((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) |#2| (-1113 |#2|)) 111)) (-3877 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))) 128 (|has| |#3| (-617 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|)) 127 (|has| |#3| (-617 |#2|)))) (-3746 ((|#2| (-1113 (-391 (-1113 |#2|))) (-578 |#2|) |#2|) 50)) (-3183 (((-1113 (-391 (-1113 |#2|))) (-1113 |#2|) (-578 |#2|)) 31))) +(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| |#2| (-1113 |#2|))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) |#2| (-1113 |#2|))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) |#2| (-1113 |#2|))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3588 ((-1113 (-391 (-1113 |#2|))) |#2| (-578 |#2|) (-578 |#2|) (-1113 |#2|))) (-15 -3746 (|#2| (-1113 (-391 (-1113 |#2|))) (-578 |#2|) |#2|)) (-15 -3183 ((-1113 (-391 (-1113 |#2|))) (-1113 |#2|) (-578 |#2|))) (IF (|has| |#3| (-617 |#2|)) (PROGN (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))))) |%noBranch|)) (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537))) (-13 (-414 |#1|) (-27) (-1139)) (-1045)) (T -533)) +((-3877 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-578 *4)) (-5 *6 (-391 (-1113 *4))) (-4 *4 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) (-3877 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-578 *4)) (-5 *6 (-1113 *4)) (-4 *4 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-1113 (-391 (-1113 *6)))) (-5 *1 (-533 *5 *6 *7)) (-5 *3 (-1113 *6)) (-4 *7 (-1045)))) (-3746 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1113 (-391 (-1113 *2)))) (-5 *4 (-578 *2)) (-4 *2 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1045)))) (-3588 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-1113 (-391 (-1113 *3)))) (-5 *1 (-533 *6 *3 *7)) (-5 *5 (-1113 *3)) (-4 *7 (-1045)))) (-3953 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-5 *5 (-391 (-1113 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045)))) (-3953 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-5 *5 (-1113 *2)) (-4 *2 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045)))) (-1301 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-5 *6 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045)))) (-1301 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-5 *6 (-1113 *3)) (-4 *3 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045)))) (-4193 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) (-4193 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) (-2095 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) (-2095 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045))))) +(-10 -7 (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -2095 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| |#2| (-1113 |#2|))) (-15 -4193 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2| (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) |#2| (-1113 |#2|))) (-15 -1301 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) |#2| (-1113 |#2|))) (-15 -3953 ((-3 |#2| "failed") |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)) (-578 |#2|) |#2| (-391 (-1113 |#2|)))) (-15 -3588 ((-1113 (-391 (-1113 |#2|))) |#2| (-578 |#2|) (-578 |#2|) (-1113 |#2|))) (-15 -3746 (|#2| (-1113 (-391 (-1113 |#2|))) (-578 |#2|) |#2|)) (-15 -3183 ((-1113 (-391 (-1113 |#2|))) (-1113 |#2|) (-578 |#2|))) (IF (|has| |#3| (-617 |#2|)) (PROGN (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) |#2| (-1113 |#2|))) (-15 -3877 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-578 |#2|) |#2| (-391 (-1113 |#2|))))) |%noBranch|)) +((-2793 (((-537) (-537) (-731)) 66)) (-3954 (((-537) (-537)) 65)) (-3708 (((-537) (-537)) 64)) (-1242 (((-537) (-537)) 69)) (-3784 (((-537) (-537) (-537)) 49)) (-2839 (((-537) (-537) (-537)) 46)) (-2852 (((-391 (-537)) (-537)) 20)) (-2214 (((-537) (-537)) 21)) (-3802 (((-537) (-537)) 58)) (-4012 (((-537) (-537)) 32)) (-1778 (((-606 (-537)) (-537)) 63)) (-3747 (((-537) (-537) (-537) (-537) (-537)) 44)) (-2930 (((-391 (-537)) (-537)) 41))) +(((-534) (-10 -7 (-15 -2930 ((-391 (-537)) (-537))) (-15 -3747 ((-537) (-537) (-537) (-537) (-537))) (-15 -1778 ((-606 (-537)) (-537))) (-15 -4012 ((-537) (-537))) (-15 -3802 ((-537) (-537))) (-15 -2214 ((-537) (-537))) (-15 -2852 ((-391 (-537)) (-537))) (-15 -2839 ((-537) (-537) (-537))) (-15 -3784 ((-537) (-537) (-537))) (-15 -1242 ((-537) (-537))) (-15 -3708 ((-537) (-537))) (-15 -3954 ((-537) (-537))) (-15 -2793 ((-537) (-537) (-731))))) (T -534)) +((-2793 (*1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-731)) (-5 *1 (-534)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-1242 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-3784 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-2852 (*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537)))) (-2214 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-1778 (*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-534)) (-5 *3 (-537)))) (-3747 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) (-2930 (*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537))))) +(-10 -7 (-15 -2930 ((-391 (-537)) (-537))) (-15 -3747 ((-537) (-537) (-537) (-537) (-537))) (-15 -1778 ((-606 (-537)) (-537))) (-15 -4012 ((-537) (-537))) (-15 -3802 ((-537) (-537))) (-15 -2214 ((-537) (-537))) (-15 -2852 ((-391 (-537)) (-537))) (-15 -2839 ((-537) (-537) (-537))) (-15 -3784 ((-537) (-537) (-537))) (-15 -1242 ((-537) (-537))) (-15 -3708 ((-537) (-537))) (-15 -3954 ((-537) (-537))) (-15 -2793 ((-537) (-537) (-731)))) +((-1854 (((-2 (|:| |answer| |#4|) (|:| -4082 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1854 ((-2 (|:| |answer| |#4|) (|:| -4082 |#4|)) |#4| (-1 |#2| |#2|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -535)) +((-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-4 *7 (-1176 (-391 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4082 *3))) (-5 *1 (-535 *5 *6 *7 *3)) (-4 *3 (-326 *5 *6 *7))))) +(-10 -7 (-15 -1854 ((-2 (|:| |answer| |#4|) (|:| -4082 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1854 (((-2 (|:| |answer| (-391 |#2|)) (|:| -4082 (-391 |#2|)) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)) 18))) +(((-536 |#1| |#2|) (-10 -7 (-15 -1854 ((-2 (|:| |answer| (-391 |#2|)) (|:| -4082 (-391 |#2|)) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)))) (-347) (-1176 |#1|)) (T -536)) +((-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |answer| (-391 *6)) (|:| -4082 (-391 *6)) (|:| |specpart| (-391 *6)) (|:| |polypart| *6))) (-5 *1 (-536 *5 *6)) (-5 *3 (-391 *6))))) +(-10 -7 (-15 -1854 ((-2 (|:| |answer| (-391 |#2|)) (|:| -4082 (-391 |#2|)) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 25)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 87)) (-3377 (($ $) 88)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) 42)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) 81)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL)) (-3958 (((-537) $) NIL)) (-3563 (($ $ $) 80)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 61) (((-649 (-537)) (-649 $)) 57)) (-3490 (((-3 $ "failed") $) 84)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($) 63) (($ $) 64)) (-3539 (($ $ $) 79)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) 54)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) 26)) (-2353 (((-111) $) 74)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) 34)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) 43)) (-2444 (($ $ $) 76)) (-3889 (($ $ $) 75)) (-1454 (($ $) NIL)) (-3845 (($ $) 40)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) 53)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) 31)) (-2528 (((-1064) $) NIL) (($ $) 33)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 118)) (-2211 (($ $ $) 85) (($ (-606 $)) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) 104)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) 83)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 78)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3089 (($ $) 32)) (-2494 (($ $) 30)) (-3996 (((-537) $) 39) (((-513) $) 51) (((-845 (-537)) $) NIL) (((-363) $) 46) (((-210) $) 48) (((-1100) $) 52)) (-2341 (((-816) $) 37) (($ (-537)) 38) (($ $) NIL) (($ (-537)) 38)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) 29)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) 41)) (-2209 (($ $) 62)) (-2928 (($) 27 T CONST)) (-2943 (($) 28 T CONST)) (-1379 (((-1100) $) 20) (((-1100) $ (-111)) 22) (((-1205) (-782) $) 23) (((-1205) (-782) $ (-111)) 24)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 65)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 66)) (-2329 (($ $) 67) (($ $ $) 69)) (-2318 (($ $ $) 68)) (** (($ $ (-874)) NIL) (($ $ (-731)) 73)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 71) (($ $ $) 70))) +(((-537) (-13 (-522) (-580 (-1100)) (-788) (-10 -8 (-15 -1618 ($ $)) (-6 -4287) (-6 -4292) (-6 -4288) (-6 -4282)))) (T -537)) +((-1618 (*1 *1 *1) (-5 *1 (-537)))) +(-13 (-522) (-580 (-1100)) (-788) (-10 -8 (-15 -1618 ($ $)) (-6 -4287) (-6 -4292) (-6 -4288) (-6 -4282))) +((-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729) (-1010)) 108) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729)) 110)) (-3092 (((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1117)) 172) (((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1100)) 171) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363) (-1010)) 176) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363)) 177) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363)) 178) (((-986) (-300 (-363)) (-606 (-1040 (-800 (-363))))) 179) (((-986) (-300 (-363)) (-1040 (-800 (-363)))) 167) (((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363)) 166) (((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363)) 162) (((-986) (-729)) 155) (((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363) (-1010)) 161))) +(((-538) (-10 -7 (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363) (-1010))) (-15 -3092 ((-986) (-729))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363) (-1010))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729) (-1010))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1100))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1117))))) (T -538)) +((-3092 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) (-5 *5 (-1117)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) (-5 *5 (-1100)) (-5 *2 (-986)) (-5 *1 (-538)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-729)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) (-5 *1 (-538)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-729)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-729)) (-5 *2 (-986)) (-5 *1 (-538)))) (-3092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538))))) +(-10 -7 (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363) (-1010))) (-15 -3092 ((-986) (-729))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-1040 (-800 (-363))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363))) (-15 -3092 ((-986) (-300 (-363)) (-606 (-1040 (-800 (-363)))) (-363) (-363) (-1010))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986))) (-729) (-1010))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1100))) (-15 -3092 ((-3 (-986) "failed") (-300 (-363)) (-1038 (-800 (-363))) (-1117)))) +((-1510 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|)) 184)) (-2093 (((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|)) 98)) (-1399 (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2|) 180)) (-3977 (((-3 |#2| "failed") |#2| |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117))) 189)) (-3268 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-1117)) 197 (|has| |#3| (-617 |#2|))))) +(((-539 |#1| |#2| |#3|) (-10 -7 (-15 -2093 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|))) (-15 -1399 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2|)) (-15 -1510 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)))) (IF (|has| |#3| (-617 |#2|)) (-15 -3268 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-1117))) |%noBranch|)) (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537))) (-13 (-414 |#1|) (-27) (-1139)) (-1045)) (T -539)) +((-3268 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-578 *4)) (-5 *6 (-1117)) (-4 *4 (-13 (-414 *7) (-27) (-1139))) (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-539 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) (-3977 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-4 *2 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *1 (-539 *5 *2 *6)) (-4 *6 (-1045)))) (-1510 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-539 *6 *3 *7)) (-4 *7 (-1045)))) (-1399 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045)))) (-2093 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1139))) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-554 *3)) (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045))))) +(-10 -7 (-15 -2093 ((-554 |#2|) |#2| (-578 |#2|) (-578 |#2|))) (-15 -1399 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-578 |#2|) (-578 |#2|) |#2|)) (-15 -1510 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|) (-578 |#2|) (-606 |#2|))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| |#2| (-578 |#2|) (-578 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1117)))) (IF (|has| |#3| (-617 |#2|)) (-15 -3268 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2122 (-606 |#2|))) |#3| |#2| (-578 |#2|) (-578 |#2|) (-1117))) |%noBranch|)) +((-2656 (((-2 (|:| -2228 |#2|) (|:| |nconst| |#2|)) |#2| (-1117)) 64)) (-3794 (((-3 |#2| "failed") |#2| (-1117) (-800 |#2|) (-800 |#2|)) 164 (-12 (|has| |#2| (-1081)) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-839 (-537))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)) 147 (-12 (|has| |#2| (-592)) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-839 (-537)))))) (-3461 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)) 148 (-12 (|has| |#2| (-592)) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-839 (-537))))))) +(((-540 |#1| |#2|) (-10 -7 (-15 -2656 ((-2 (|:| -2228 |#2|) (|:| |nconst| |#2|)) |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (PROGN (IF (|has| |#2| (-592)) (PROGN (-15 -3461 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) (-15 -3794 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) (IF (|has| |#2| (-1081)) (-15 -3794 ((-3 |#2| "failed") |#2| (-1117) (-800 |#2|) (-800 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-807) (-989 (-537)) (-435) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -540)) +((-3794 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-800 *2)) (-4 *2 (-1081)) (-4 *2 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *1 (-540 *5 *2)))) (-3794 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-3461 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) (-5 *2 (-2 (|:| -2228 *3) (|:| |nconst| *3))) (-5 *1 (-540 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) +(-10 -7 (-15 -2656 ((-2 (|:| -2228 |#2|) (|:| |nconst| |#2|)) |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (PROGN (IF (|has| |#2| (-592)) (PROGN (-15 -3461 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) (-15 -3794 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) (IF (|has| |#2| (-1081)) (-15 -3794 ((-3 |#2| "failed") |#2| (-1117) (-800 |#2|) (-800 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2346 (((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-606 (-391 |#2|))) 41)) (-3092 (((-554 (-391 |#2|)) (-391 |#2|)) 28)) (-3764 (((-3 (-391 |#2|) "failed") (-391 |#2|)) 17)) (-1863 (((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-391 |#2|)) 48))) +(((-541 |#1| |#2|) (-10 -7 (-15 -3092 ((-554 (-391 |#2|)) (-391 |#2|))) (-15 -3764 ((-3 (-391 |#2|) "failed") (-391 |#2|))) (-15 -1863 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-391 |#2|))) (-15 -2346 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-606 (-391 |#2|))))) (-13 (-347) (-141) (-989 (-537))) (-1176 |#1|)) (T -541)) +((-2346 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-606 (-391 *6))) (-5 *3 (-391 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-541 *5 *6)))) (-1863 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -3121 (-391 *5)) (|:| |coeff| (-391 *5)))) (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5)))) (-3764 (*1 *2 *2) (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141) (-989 (-537)))) (-5 *1 (-541 *3 *4)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-554 (-391 *5))) (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5))))) +(-10 -7 (-15 -3092 ((-554 (-391 |#2|)) (-391 |#2|))) (-15 -3764 ((-3 (-391 |#2|) "failed") (-391 |#2|))) (-15 -1863 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-391 |#2|))) (-15 -2346 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-606 (-391 |#2|))))) +((-3006 (((-3 (-537) "failed") |#1|) 14)) (-1660 (((-111) |#1|) 13)) (-1715 (((-537) |#1|) 9))) +(((-542 |#1|) (-10 -7 (-15 -1715 ((-537) |#1|)) (-15 -1660 ((-111) |#1|)) (-15 -3006 ((-3 (-537) "failed") |#1|))) (-989 (-537))) (T -542)) +((-3006 (*1 *2 *3) (|partial| -12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2)))) (-1660 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-542 *3)) (-4 *3 (-989 (-537))))) (-1715 (*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2))))) +(-10 -7 (-15 -1715 ((-537) |#1|)) (-15 -1660 ((-111) |#1|)) (-15 -3006 ((-3 (-537) "failed") |#1|))) +((-3736 (((-3 (-2 (|:| |mainpart| (-391 (-905 |#1|))) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 (-905 |#1|))) (|:| |logand| (-391 (-905 |#1|))))))) "failed") (-391 (-905 |#1|)) (-1117) (-606 (-391 (-905 |#1|)))) 48)) (-3007 (((-554 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-1117)) 28)) (-3725 (((-3 (-391 (-905 |#1|)) "failed") (-391 (-905 |#1|)) (-1117)) 23)) (-1992 (((-3 (-2 (|:| -3121 (-391 (-905 |#1|))) (|:| |coeff| (-391 (-905 |#1|)))) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))) 35))) +(((-543 |#1|) (-10 -7 (-15 -3007 ((-554 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -3725 ((-3 (-391 (-905 |#1|)) "failed") (-391 (-905 |#1|)) (-1117))) (-15 -3736 ((-3 (-2 (|:| |mainpart| (-391 (-905 |#1|))) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 (-905 |#1|))) (|:| |logand| (-391 (-905 |#1|))))))) "failed") (-391 (-905 |#1|)) (-1117) (-606 (-391 (-905 |#1|))))) (-15 -1992 ((-3 (-2 (|:| -3121 (-391 (-905 |#1|))) (|:| |coeff| (-391 (-905 |#1|)))) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))))) (-13 (-529) (-989 (-537)) (-141))) (T -543)) +((-1992 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-989 (-537)) (-141))) (-5 *2 (-2 (|:| -3121 (-391 (-905 *5))) (|:| |coeff| (-391 (-905 *5))))) (-5 *1 (-543 *5)) (-5 *3 (-391 (-905 *5))))) (-3736 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 (-391 (-905 *6)))) (-5 *3 (-391 (-905 *6))) (-4 *6 (-13 (-529) (-989 (-537)) (-141))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-543 *6)))) (-3725 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-989 (-537)) (-141))) (-5 *1 (-543 *4)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-989 (-537)) (-141))) (-5 *2 (-554 (-391 (-905 *5)))) (-5 *1 (-543 *5)) (-5 *3 (-391 (-905 *5)))))) +(-10 -7 (-15 -3007 ((-554 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -3725 ((-3 (-391 (-905 |#1|)) "failed") (-391 (-905 |#1|)) (-1117))) (-15 -3736 ((-3 (-2 (|:| |mainpart| (-391 (-905 |#1|))) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 (-905 |#1|))) (|:| |logand| (-391 (-905 |#1|))))))) "failed") (-391 (-905 |#1|)) (-1117) (-606 (-391 (-905 |#1|))))) (-15 -1992 ((-3 (-2 (|:| -3121 (-391 (-905 |#1|))) (|:| |coeff| (-391 (-905 |#1|)))) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))))) +((-2330 (((-111) $ $) 58)) (-1656 (((-111) $) 36)) (-1786 ((|#1| $) 30)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) 62)) (-1403 (($ $) 122)) (-1247 (($ $) 102)) (-2169 ((|#1| $) 28)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL)) (-1378 (($ $) 124)) (-4270 (($ $) 98)) (-1429 (($ $) 126)) (-1273 (($ $) 106)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) 77)) (-3958 (((-537) $) 79)) (-3490 (((-3 $ "failed") $) 61)) (-1632 (($ |#1| |#1|) 26)) (-3797 (((-111) $) 33)) (-3338 (($) 88)) (-2836 (((-111) $) 43)) (-2590 (($ $ (-537)) NIL)) (-2840 (((-111) $) 34)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2180 (($ $) 90)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-4228 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-391 (-537))) 76)) (-3406 ((|#1| $) 27)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) 64) (($ (-606 $)) NIL)) (-3515 (((-3 $ "failed") $ $) 63)) (-4185 (($ $) 92)) (-1441 (($ $) 130)) (-1286 (($ $) 104)) (-1415 (($ $) 132)) (-1259 (($ $) 108)) (-1389 (($ $) 128)) (-1234 (($ $) 100)) (-1576 (((-111) $ |#1|) 31)) (-2341 (((-816) $) 84) (($ (-537)) 66) (($ $) NIL) (($ (-537)) 66)) (-3654 (((-731)) 86)) (-1475 (($ $) 144)) (-1328 (($ $) 114)) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) 142)) (-1300 (($ $) 110)) (-1495 (($ $) 140)) (-1352 (($ $) 120)) (-4141 (($ $) 138)) (-1365 (($ $) 118)) (-1485 (($ $) 136)) (-1340 (($ $) 116)) (-1465 (($ $) 134)) (-1314 (($ $) 112)) (-2928 (($) 21 T CONST)) (-2943 (($) 10 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 37)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 35)) (-2329 (($ $) 41) (($ $ $) 42)) (-2318 (($ $ $) 40)) (** (($ $ (-874)) 54) (($ $ (-731)) NIL) (($ $ $) 94) (($ $ (-391 (-537))) 146)) (* (($ (-874) $) 51) (($ (-731) $) NIL) (($ (-537) $) 50) (($ $ $) 48))) +(((-544 |#1|) (-527 |#1|) (-13 (-388) (-1139))) (T -544)) +NIL +(-527 |#1|) +((-2022 (((-3 (-606 (-1113 (-537))) "failed") (-606 (-1113 (-537))) (-1113 (-537))) 24))) +(((-545) (-10 -7 (-15 -2022 ((-3 (-606 (-1113 (-537))) "failed") (-606 (-1113 (-537))) (-1113 (-537)))))) (T -545)) +((-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 (-537)))) (-5 *3 (-1113 (-537))) (-5 *1 (-545))))) +(-10 -7 (-15 -2022 ((-3 (-606 (-1113 (-537))) "failed") (-606 (-1113 (-537))) (-1113 (-537))))) +((-1884 (((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-1117)) 19)) (-3420 (((-606 (-578 |#2|)) (-606 |#2|) (-1117)) 23)) (-4221 (((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-606 (-578 |#2|))) 11)) (-3853 ((|#2| |#2| (-1117)) 54 (|has| |#1| (-529)))) (-2834 ((|#2| |#2| (-1117)) 78 (-12 (|has| |#2| (-268)) (|has| |#1| (-435))))) (-1703 (((-578 |#2|) (-578 |#2|) (-606 (-578 |#2|)) (-1117)) 25)) (-2731 (((-578 |#2|) (-606 (-578 |#2|))) 24)) (-2222 (((-554 |#2|) |#2| (-1117) (-1 (-554 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117))) 103 (-12 (|has| |#2| (-268)) (|has| |#2| (-592)) (|has| |#2| (-989 (-1117))) (|has| |#1| (-580 (-845 (-537)))) (|has| |#1| (-435)) (|has| |#1| (-839 (-537))))))) +(((-546 |#1| |#2|) (-10 -7 (-15 -1884 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-1117))) (-15 -2731 ((-578 |#2|) (-606 (-578 |#2|)))) (-15 -1703 ((-578 |#2|) (-578 |#2|) (-606 (-578 |#2|)) (-1117))) (-15 -4221 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-606 (-578 |#2|)))) (-15 -3420 ((-606 (-578 |#2|)) (-606 |#2|) (-1117))) (IF (|has| |#1| (-529)) (-15 -3853 (|#2| |#2| (-1117))) |%noBranch|) (IF (|has| |#1| (-435)) (IF (|has| |#2| (-268)) (PROGN (-15 -2834 (|#2| |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (IF (|has| |#2| (-592)) (IF (|has| |#2| (-989 (-1117))) (-15 -2222 ((-554 |#2|) |#2| (-1117) (-1 (-554 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-807) (-414 |#1|)) (T -546)) +((-2222 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-554 *3) *3 (-1117))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1117))) (-4 *3 (-268)) (-4 *3 (-592)) (-4 *3 (-989 *4)) (-4 *3 (-414 *7)) (-5 *4 (-1117)) (-4 *7 (-580 (-845 (-537)))) (-4 *7 (-435)) (-4 *7 (-839 (-537))) (-4 *7 (-807)) (-5 *2 (-554 *3)) (-5 *1 (-546 *7 *3)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-435)) (-4 *4 (-807)) (-5 *1 (-546 *4 *2)) (-4 *2 (-268)) (-4 *2 (-414 *4)))) (-3853 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-529)) (-4 *4 (-807)) (-5 *1 (-546 *4 *2)) (-4 *2 (-414 *4)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-1117)) (-4 *6 (-414 *5)) (-4 *5 (-807)) (-5 *2 (-606 (-578 *6))) (-5 *1 (-546 *5 *6)))) (-4221 (*1 *2 *2 *2) (-12 (-5 *2 (-606 (-578 *4))) (-4 *4 (-414 *3)) (-4 *3 (-807)) (-5 *1 (-546 *3 *4)))) (-1703 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-606 (-578 *6))) (-5 *4 (-1117)) (-5 *2 (-578 *6)) (-4 *6 (-414 *5)) (-4 *5 (-807)) (-5 *1 (-546 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-606 (-578 *5))) (-4 *4 (-807)) (-5 *2 (-578 *5)) (-5 *1 (-546 *4 *5)) (-4 *5 (-414 *4)))) (-1884 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-578 *5))) (-5 *3 (-1117)) (-4 *5 (-414 *4)) (-4 *4 (-807)) (-5 *1 (-546 *4 *5))))) +(-10 -7 (-15 -1884 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-1117))) (-15 -2731 ((-578 |#2|) (-606 (-578 |#2|)))) (-15 -1703 ((-578 |#2|) (-578 |#2|) (-606 (-578 |#2|)) (-1117))) (-15 -4221 ((-606 (-578 |#2|)) (-606 (-578 |#2|)) (-606 (-578 |#2|)))) (-15 -3420 ((-606 (-578 |#2|)) (-606 |#2|) (-1117))) (IF (|has| |#1| (-529)) (-15 -3853 (|#2| |#2| (-1117))) |%noBranch|) (IF (|has| |#1| (-435)) (IF (|has| |#2| (-268)) (PROGN (-15 -2834 (|#2| |#2| (-1117))) (IF (|has| |#1| (-580 (-845 (-537)))) (IF (|has| |#1| (-839 (-537))) (IF (|has| |#2| (-592)) (IF (|has| |#2| (-989 (-1117))) (-15 -2222 ((-554 |#2|) |#2| (-1117) (-1 (-554 |#2|) |#2| (-1117)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1117)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1617 (((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-606 |#1|) "failed") (-537) |#1| |#1|)) 172)) (-3388 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-606 (-391 |#2|))) 148)) (-2846 (((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-606 (-391 |#2|))) 145)) (-2565 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2111 (((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3688 (((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-391 |#2|)) 175)) (-3863 (((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-391 |#2|)) 178)) (-3232 (((-2 (|:| |ir| (-554 (-391 |#2|))) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|)) 84)) (-3494 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1667 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-606 (-391 |#2|))) 152)) (-2603 (((-3 (-586 |#1| |#2|) "failed") (-586 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|)) 137)) (-1956 (((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|)) 162)) (-2584 (((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-391 |#2|)) 183))) +(((-547 |#1| |#2|) (-10 -7 (-15 -2111 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1956 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -1617 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-606 |#1|) "failed") (-537) |#1| |#1|))) (-15 -3863 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-391 |#2|))) (-15 -2584 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-391 |#2|))) (-15 -3388 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-606 (-391 |#2|)))) (-15 -1667 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-606 (-391 |#2|)))) (-15 -3688 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-391 |#2|))) (-15 -2846 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-606 (-391 |#2|)))) (-15 -2565 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2603 ((-3 (-586 |#1| |#2|) "failed") (-586 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -3232 ((-2 (|:| |ir| (-554 (-391 |#2|))) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-347) (-1176 |#1|)) (T -547)) +((-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-547 *5 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |ir| (-554 (-391 *6))) (|:| |specpart| (-391 *6)) (|:| |polypart| *6))) (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6)))) (-2603 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111))) (-537) *4)) (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *1 (-547 *4 *5)))) (-2565 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-347)) (-5 *1 (-547 *4 *2)) (-4 *2 (-1176 *4)))) (-2846 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-606 (-391 *7))) (-4 *7 (-1176 *6)) (-5 *3 (-391 *7)) (-4 *6 (-347)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *6 *7)))) (-3688 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -3121 (-391 *6)) (|:| |coeff| (-391 *6)))) (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6)))) (-1667 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3278 *7) (|:| |sol?| (-111))) (-537) *7)) (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) (-5 *3 (-391 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-547 *7 *8)))) (-3388 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3121 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) (-5 *3 (-391 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-547 *7 *8)))) (-2584 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-3863 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-606 *6) "failed") (-537) *6 *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-1956 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) +(-10 -7 (-15 -2111 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1956 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -1617 ((-2 (|:| |answer| (-554 (-391 |#2|))) (|:| |a0| |#1|)) (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-606 |#1|) "failed") (-537) |#1| |#1|))) (-15 -3863 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-391 |#2|))) (-15 -2584 ((-3 (-2 (|:| |answer| (-391 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-391 |#2|))) (-15 -3388 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-606 (-391 |#2|)))) (-15 -1667 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|))))))) (|:| |a0| |#1|)) "failed") (-391 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|) (-606 (-391 |#2|)))) (-15 -3688 ((-3 (-2 (|:| -3121 (-391 |#2|)) (|:| |coeff| (-391 |#2|))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-391 |#2|))) (-15 -2846 ((-3 (-2 (|:| |mainpart| (-391 |#2|)) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| (-391 |#2|)) (|:| |logand| (-391 |#2|)))))) "failed") (-391 |#2|) (-1 |#2| |#2|) (-606 (-391 |#2|)))) (-15 -2565 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2603 ((-3 (-586 |#1| |#2|) "failed") (-586 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3278 |#1|) (|:| |sol?| (-111))) (-537) |#1|))) (-15 -3232 ((-2 (|:| |ir| (-554 (-391 |#2|))) (|:| |specpart| (-391 |#2|)) (|:| |polypart| |#2|)) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3494 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2117 (((-3 |#2| "failed") |#2| (-1117) (-1117)) 10))) +(((-548 |#1| |#2|) (-10 -7 (-15 -2117 ((-3 |#2| "failed") |#2| (-1117) (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-1081) (-29 |#1|))) (T -548)) +((-2117 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-548 *4 *2)) (-4 *2 (-13 (-1139) (-912) (-1081) (-29 *4)))))) +(-10 -7 (-15 -2117 ((-3 |#2| "failed") |#2| (-1117) (-1117)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ (-537)) 66)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1858 (($ (-1113 (-537)) (-537)) 72)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 58)) (-3533 (($ $) 34)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4231 (((-731) $) 15)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 (((-537)) 29)) (-2089 (((-537) $) 32)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1540 (($ $ (-537)) 21)) (-3515 (((-3 $ "failed") $ $) 59)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) 16)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 61)) (-3025 (((-1098 (-537)) $) 18)) (-1577 (($ $) 23)) (-2341 (((-816) $) 87) (($ (-537)) 52) (($ $) NIL)) (-3654 (((-731)) 14)) (-3276 (((-111) $ $) NIL)) (-4150 (((-537) $ (-537)) 36)) (-2928 (($) 35 T CONST)) (-2943 (($) 19 T CONST)) (-2244 (((-111) $ $) 39)) (-2329 (($ $) 51) (($ $ $) 37)) (-2318 (($ $ $) 50)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 54) (($ $ $) 55))) +(((-549 |#1| |#2|) (-822 |#1|) (-537) (-111)) (T -549)) +NIL +(-822 |#1|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 21)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) 47)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 $ "failed") $) 75)) (-3958 (($ $) 74)) (-3447 (($ (-1200 $)) 73)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) 49)) (-2974 (((-111) $) NIL)) (-2642 (($ $) NIL) (($ $ (-731)) NIL)) (-2639 (((-111) $) NIL)) (-4231 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2836 (((-111) $) NIL)) (-3522 (($) 37 (|has| $ (-352)))) (-3870 (((-111) $) NIL (|has| $ (-352)))) (-2055 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 $) $ (-874)) NIL (|has| $ (-352))) (((-1113 $) $) 83)) (-2334 (((-874) $) 55)) (-1671 (((-1113 $) $) NIL (|has| $ (-352)))) (-2728 (((-3 (-1113 $) "failed") $ $) NIL (|has| $ (-352))) (((-1113 $) $) NIL (|has| $ (-352)))) (-2841 (($ $ (-1113 $)) NIL (|has| $ (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-2009 (($ (-874)) 48)) (-2933 (((-111) $) 67)) (-2528 (((-1064) $) NIL)) (-1524 (($) 19 (|has| $ (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 42)) (-3622 (((-402 $) $) NIL)) (-2685 (((-874)) 66) (((-793 (-874))) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-3 (-731) "failed") $ $) NIL) (((-731) $) NIL)) (-1839 (((-131)) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-2872 (((-874) $) 65) (((-793 (-874)) $) NIL)) (-2529 (((-1113 $)) 82)) (-3553 (($) 54)) (-3254 (($) 38 (|has| $ (-352)))) (-1484 (((-649 $) (-1200 $)) NIL) (((-1200 $) $) 71)) (-3996 (((-537) $) 28)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) 30) (($ $) NIL) (($ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3654 (((-731)) 39)) (-2122 (((-1200 $) (-874)) 77) (((-1200 $)) 76)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) 22 T CONST)) (-2943 (($) 18 T CONST)) (-1791 (($ $ (-731)) NIL (|has| $ (-352))) (($ $) NIL (|has| $ (-352)))) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 26)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 61) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-550 |#1|) (-13 (-333) (-313 $) (-580 (-537))) (-874)) (T -550)) +NIL +(-13 (-333) (-313 $) (-580 (-537))) +((-2961 (((-1205) (-1100)) 10))) +(((-551) (-10 -7 (-15 -2961 ((-1205) (-1100))))) (T -551)) +((-2961 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-551))))) +(-10 -7 (-15 -2961 ((-1205) (-1100)))) +((-3763 (((-554 |#2|) (-554 |#2|)) 40)) (-1905 (((-606 |#2|) (-554 |#2|)) 42)) (-3470 ((|#2| (-554 |#2|)) 48))) +(((-552 |#1| |#2|) (-10 -7 (-15 -3763 ((-554 |#2|) (-554 |#2|))) (-15 -1905 ((-606 |#2|) (-554 |#2|))) (-15 -3470 (|#2| (-554 |#2|)))) (-13 (-435) (-989 (-537)) (-807) (-602 (-537))) (-13 (-29 |#1|) (-1139))) (T -552)) +((-3470 (*1 *2 *3) (-12 (-5 *3 (-554 *2)) (-4 *2 (-13 (-29 *4) (-1139))) (-5 *1 (-552 *4 *2)) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-554 *5)) (-4 *5 (-13 (-29 *4) (-1139))) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-606 *5)) (-5 *1 (-552 *4 *5)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-554 *4)) (-4 *4 (-13 (-29 *3) (-1139))) (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *1 (-552 *3 *4))))) +(-10 -7 (-15 -3763 ((-554 |#2|) (-554 |#2|))) (-15 -1905 ((-606 |#2|) (-554 |#2|))) (-15 -3470 (|#2| (-554 |#2|)))) +((-1612 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-554 |#2|) (-1 |#2| |#1|) (-554 |#1|)) 30))) +(((-553 |#1| |#2|) (-10 -7 (-15 -1612 ((-554 |#2|) (-1 |#2| |#1|) (-554 |#1|))) (-15 -1612 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-347) (-347)) (T -553)) +((-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-347)) (-4 *6 (-347)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-553 *5 *6)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-347)) (-4 *2 (-347)) (-5 *1 (-553 *5 *2)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3121 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-347)) (-4 *6 (-347)) (-5 *2 (-2 (|:| -3121 *6) (|:| |coeff| *6))) (-5 *1 (-553 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-554 *5)) (-4 *5 (-347)) (-4 *6 (-347)) (-5 *2 (-554 *6)) (-5 *1 (-553 *5 *6))))) +(-10 -7 (-15 -1612 ((-554 |#2|) (-1 |#2| |#1|) (-554 |#1|))) (-15 -1612 ((-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3121 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1612 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1612 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 69)) (-3958 ((|#1| $) NIL)) (-3121 ((|#1| $) 26)) (-3808 (((-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-1698 (($ |#1| (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) (-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-4082 (((-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) $) 27)) (-1654 (((-1100) $) NIL)) (-1509 (($ |#1| |#1|) 33) (($ |#1| (-1117)) 44 (|has| |#1| (-989 (-1117))))) (-2528 (((-1064) $) NIL)) (-1664 (((-111) $) 30)) (-3456 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1117)) 82 (|has| |#1| (-853 (-1117))))) (-2341 (((-816) $) 96) (($ |#1|) 25)) (-2928 (($) 16 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) 15) (($ $ $) NIL)) (-2318 (($ $ $) 78)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 14) (($ (-391 (-537)) $) 36) (($ $ (-391 (-537))) NIL))) +(((-554 |#1|) (-13 (-678 (-391 (-537))) (-989 |#1|) (-10 -8 (-15 -1698 ($ |#1| (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) (-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3121 (|#1| $)) (-15 -4082 ((-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) $)) (-15 -3808 ((-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1664 ((-111) $)) (-15 -1509 ($ |#1| |#1|)) (-15 -3456 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-853 (-1117))) (-15 -3456 (|#1| $ (-1117))) |%noBranch|) (IF (|has| |#1| (-989 (-1117))) (-15 -1509 ($ |#1| (-1117))) |%noBranch|))) (-347)) (T -554)) +((-1698 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *2)) (|:| |logand| (-1113 *2))))) (-5 *4 (-606 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-347)) (-5 *1 (-554 *2)))) (-3121 (*1 *2 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *3)) (|:| |logand| (-1113 *3))))) (-5 *1 (-554 *3)) (-4 *3 (-347)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-554 *3)) (-4 *3 (-347)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-554 *3)) (-4 *3 (-347)))) (-1509 (*1 *1 *2 *2) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347)))) (-3456 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-554 *2)) (-4 *2 (-347)))) (-3456 (*1 *2 *1 *3) (-12 (-4 *2 (-347)) (-4 *2 (-853 *3)) (-5 *1 (-554 *2)) (-5 *3 (-1117)))) (-1509 (*1 *1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *1 (-554 *2)) (-4 *2 (-989 *3)) (-4 *2 (-347))))) +(-13 (-678 (-391 (-537))) (-989 |#1|) (-10 -8 (-15 -1698 ($ |#1| (-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) (-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3121 (|#1| $)) (-15 -4082 ((-606 (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 |#1|)) (|:| |logand| (-1113 |#1|)))) $)) (-15 -3808 ((-606 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1664 ((-111) $)) (-15 -1509 ($ |#1| |#1|)) (-15 -3456 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-853 (-1117))) (-15 -3456 (|#1| $ (-1117))) |%noBranch|) (IF (|has| |#1| (-989 (-1117))) (-15 -1509 ($ |#1| (-1117))) |%noBranch|))) +((-3675 (((-111) |#1|) 16)) (-3017 (((-3 |#1| "failed") |#1|) 14)) (-3137 (((-2 (|:| -1605 |#1|) (|:| -3283 (-731))) |#1|) 31) (((-3 |#1| "failed") |#1| (-731)) 18)) (-2004 (((-111) |#1| (-731)) 19)) (-2219 ((|#1| |#1|) 32)) (-2614 ((|#1| |#1| (-731)) 34))) +(((-555 |#1|) (-10 -7 (-15 -2004 ((-111) |#1| (-731))) (-15 -3137 ((-3 |#1| "failed") |#1| (-731))) (-15 -3137 ((-2 (|:| -1605 |#1|) (|:| -3283 (-731))) |#1|)) (-15 -2614 (|#1| |#1| (-731))) (-15 -3675 ((-111) |#1|)) (-15 -3017 ((-3 |#1| "failed") |#1|)) (-15 -2219 (|#1| |#1|))) (-522)) (T -555)) +((-2219 (*1 *2 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-3017 (*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522)))) (-2614 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1605 *3) (|:| -3283 (-731)))) (-5 *1 (-555 *3)) (-4 *3 (-522)))) (-3137 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522))))) +(-10 -7 (-15 -2004 ((-111) |#1| (-731))) (-15 -3137 ((-3 |#1| "failed") |#1| (-731))) (-15 -3137 ((-2 (|:| -1605 |#1|) (|:| -3283 (-731))) |#1|)) (-15 -2614 (|#1| |#1| (-731))) (-15 -3675 ((-111) |#1|)) (-15 -3017 ((-3 |#1| "failed") |#1|)) (-15 -2219 (|#1| |#1|))) +((-2548 (((-1113 |#1|) (-874)) 27))) +(((-556 |#1|) (-10 -7 (-15 -2548 ((-1113 |#1|) (-874)))) (-333)) (T -556)) +((-2548 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-556 *4)) (-4 *4 (-333))))) +(-10 -7 (-15 -2548 ((-1113 |#1|) (-874)))) +((-3763 (((-554 (-391 (-905 |#1|))) (-554 (-391 (-905 |#1|)))) 27)) (-3092 (((-3 (-300 |#1|) (-606 (-300 |#1|))) (-391 (-905 |#1|)) (-1117)) 34 (|has| |#1| (-141)))) (-1905 (((-606 (-300 |#1|)) (-554 (-391 (-905 |#1|)))) 19)) (-2402 (((-300 |#1|) (-391 (-905 |#1|)) (-1117)) 32 (|has| |#1| (-141)))) (-3470 (((-300 |#1|) (-554 (-391 (-905 |#1|)))) 21))) +(((-557 |#1|) (-10 -7 (-15 -3763 ((-554 (-391 (-905 |#1|))) (-554 (-391 (-905 |#1|))))) (-15 -1905 ((-606 (-300 |#1|)) (-554 (-391 (-905 |#1|))))) (-15 -3470 ((-300 |#1|) (-554 (-391 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -3092 ((-3 (-300 |#1|) (-606 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -2402 ((-300 |#1|) (-391 (-905 |#1|)) (-1117)))) |%noBranch|)) (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (T -557)) +((-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-300 *5)) (-5 *1 (-557 *5)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-3 (-300 *5) (-606 (-300 *5)))) (-5 *1 (-557 *5)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-554 (-391 (-905 *4)))) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-300 *4)) (-5 *1 (-557 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-554 (-391 (-905 *4)))) (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *2 (-606 (-300 *4))) (-5 *1 (-557 *4)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-554 (-391 (-905 *3)))) (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) (-5 *1 (-557 *3))))) +(-10 -7 (-15 -3763 ((-554 (-391 (-905 |#1|))) (-554 (-391 (-905 |#1|))))) (-15 -1905 ((-606 (-300 |#1|)) (-554 (-391 (-905 |#1|))))) (-15 -3470 ((-300 |#1|) (-554 (-391 (-905 |#1|))))) (IF (|has| |#1| (-141)) (PROGN (-15 -3092 ((-3 (-300 |#1|) (-606 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -2402 ((-300 |#1|) (-391 (-905 |#1|)) (-1117)))) |%noBranch|)) +((-3758 (((-606 (-649 (-537))) (-606 (-537)) (-606 (-858 (-537)))) 46) (((-606 (-649 (-537))) (-606 (-537))) 47) (((-649 (-537)) (-606 (-537)) (-858 (-537))) 42)) (-3871 (((-731) (-606 (-537))) 40))) +(((-558) (-10 -7 (-15 -3871 ((-731) (-606 (-537)))) (-15 -3758 ((-649 (-537)) (-606 (-537)) (-858 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)) (-606 (-858 (-537))))))) (T -558)) +((-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-537))) (-5 *4 (-606 (-858 (-537)))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-558)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-558)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-537))) (-5 *4 (-858 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-558)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-731)) (-5 *1 (-558))))) +(-10 -7 (-15 -3871 ((-731) (-606 (-537)))) (-15 -3758 ((-649 (-537)) (-606 (-537)) (-858 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -3758 ((-606 (-649 (-537))) (-606 (-537)) (-606 (-858 (-537)))))) +((-4167 (((-606 |#5|) |#5| (-111)) 73)) (-2284 (((-111) |#5| (-606 |#5|)) 30))) +(((-559 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4167 ((-606 |#5|) |#5| (-111))) (-15 -2284 ((-111) |#5| (-606 |#5|)))) (-13 (-291) (-141)) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -559)) +((-2284 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-559 *5 *6 *7 *8 *3)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-606 *3)) (-5 *1 (-559 *5 *6 *7 *8 *3)) (-4 *3 (-1054 *5 *6 *7 *8))))) +(-10 -7 (-15 -4167 ((-606 |#5|) |#5| (-111))) (-15 -2284 ((-111) |#5| (-606 |#5|)))) +((-2330 (((-111) $ $) NIL (|has| (-138) (-1045)))) (-1561 (($ $) 34)) (-2099 (($ $) NIL)) (-2594 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) 51)) (-1315 (((-111) $ $ (-537)) 46)) (-3763 (((-606 $) $ (-138)) 60) (((-606 $) $ (-135)) 61)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-138) (-807))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-138) $ (-537) (-138)) 45 (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-2972 (($ $ (-138)) 64) (($ $ (-135)) 65)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-2619 (($ $ (-1167 (-537)) $) 44)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2355 (($ (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) NIL (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) NIL)) (-1367 (((-111) $ $) 72)) (-2299 (((-537) (-1 (-111) (-138)) $) NIL) (((-537) (-138) $) NIL (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) 48 (|has| (-138) (-1045))) (((-537) $ $ (-537)) 47) (((-537) (-135) $ (-537)) 50)) (-3661 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) 9)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 28 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2187 (((-537) $) 42 (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) 73)) (-1244 (((-731) $ $ (-138)) 70)) (-4081 (($ (-1 (-138) (-138)) $) 33 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3037 (($ $) 37)) (-2602 (($ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-2985 (($ $ (-138)) 62) (($ $ (-135)) 63)) (-1654 (((-1100) $) 38 (|has| (-138) (-1045)))) (-4049 (($ (-138) $ (-537)) NIL) (($ $ $ (-537)) 23)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-537) $) 69) (((-1064) $) NIL (|has| (-138) (-1045)))) (-3188 (((-138) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-3040 (($ $ (-138)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) NIL)) (-2193 (((-111) $) 12)) (-3425 (($) 10)) (-1922 (((-138) $ (-537) (-138)) NIL) (((-138) $ (-537)) 52) (($ $ (-1167 (-537))) 21) (($ $ $) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (((-731) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-1241 (($ $ $ (-537)) 66 (|has| $ (-6 -4301)))) (-2494 (($ $) 17)) (-3996 (((-513) $) NIL (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) NIL)) (-3434 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) 16) (($ (-606 $)) 67)) (-2341 (($ (-138)) NIL) (((-816) $) 27 (|has| (-138) (-579 (-816))))) (-2030 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2244 (((-111) $ $) 14 (|has| (-138) (-1045)))) (-2282 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2263 (((-111) $ $) 15 (|has| (-138) (-807)))) (-2258 (((-731) $) 13 (|has| $ (-6 -4300))))) +(((-560 |#1|) (-13 (-1086) (-10 -8 (-15 -2528 ((-537) $)))) (-537)) (T -560)) +((-2528 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-560 *3)) (-14 *3 *2)))) +(-13 (-1086) (-10 -8 (-15 -2528 ((-537) $)))) +((-4236 (((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2| (-1040 |#4|)) 32))) +(((-561 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2| (-1040 |#4|))) (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2|))) (-753) (-807) (-529) (-902 |#3| |#1| |#2|)) (T -561)) +((-4236 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-529)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) (-5 *1 (-561 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) (-4236 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1040 *3)) (-4 *3 (-902 *7 *6 *4)) (-4 *6 (-753)) (-4 *4 (-807)) (-4 *7 (-529)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) (-5 *1 (-561 *6 *4 *7 *3))))) +(-10 -7 (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2| (-1040 |#4|))) (-15 -4236 ((-2 (|:| |num| |#4|) (|:| |den| (-537))) |#4| |#2|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 63)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 54) (($ $ (-537) (-537)) 55)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 60)) (-3963 (($ $) 100)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1559 (((-816) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) (-977 (-800 (-537))) (-1117) |#1| (-391 (-537))) 224)) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 34)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2362 (((-111) $) NIL)) (-4231 (((-537) $) 58) (((-537) $ (-537)) 59)) (-2836 (((-111) $) NIL)) (-3172 (($ $ (-874)) 76)) (-3968 (($ (-1 |#1| (-537)) $) 73)) (-1538 (((-111) $) 25)) (-3733 (($ |#1| (-537)) 22) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 67)) (-2805 (($ (-977 (-800 (-537))) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 13)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $) 150 (|has| |#1| (-37 (-391 (-537)))))) (-4200 (((-3 $ "failed") $ $ (-111)) 99)) (-2393 (($ $ $) 108)) (-2528 (((-1064) $) NIL)) (-1624 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 15)) (-1987 (((-977 (-800 (-537))) $) 14)) (-1540 (($ $ (-537)) 45)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-537)))))) (-1922 ((|#1| $ (-537)) 57) (($ $ $) NIL (|has| (-537) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2872 (((-537) $) NIL)) (-1577 (($ $) 46)) (-2341 (((-816) $) NIL) (($ (-537)) 28) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 27 (|has| |#1| (-163)))) (-3500 ((|#1| $ (-537)) 56)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 37)) (-2184 ((|#1| $) NIL)) (-3513 (($ $) 186 (|has| |#1| (-37 (-391 (-537)))))) (-1405 (($ $) 158 (|has| |#1| (-37 (-391 (-537)))))) (-3686 (($ $) 190 (|has| |#1| (-37 (-391 (-537)))))) (-1803 (($ $) 163 (|has| |#1| (-37 (-391 (-537)))))) (-3252 (($ $) 189 (|has| |#1| (-37 (-391 (-537)))))) (-4166 (($ $) 162 (|has| |#1| (-37 (-391 (-537)))))) (-1344 (($ $ (-391 (-537))) 166 (|has| |#1| (-37 (-391 (-537)))))) (-4033 (($ $ |#1|) 146 (|has| |#1| (-37 (-391 (-537)))))) (-3231 (($ $) 192 (|has| |#1| (-37 (-391 (-537)))))) (-1522 (($ $) 149 (|has| |#1| (-37 (-391 (-537)))))) (-2312 (($ $) 191 (|has| |#1| (-37 (-391 (-537)))))) (-2434 (($ $) 164 (|has| |#1| (-37 (-391 (-537)))))) (-3537 (($ $) 187 (|has| |#1| (-37 (-391 (-537)))))) (-2261 (($ $) 160 (|has| |#1| (-37 (-391 (-537)))))) (-3789 (($ $) 188 (|has| |#1| (-37 (-391 (-537)))))) (-1798 (($ $) 161 (|has| |#1| (-37 (-391 (-537)))))) (-2068 (($ $) 197 (|has| |#1| (-37 (-391 (-537)))))) (-2847 (($ $) 173 (|has| |#1| (-37 (-391 (-537)))))) (-3696 (($ $) 194 (|has| |#1| (-37 (-391 (-537)))))) (-3987 (($ $) 168 (|has| |#1| (-37 (-391 (-537)))))) (-1248 (($ $) 201 (|has| |#1| (-37 (-391 (-537)))))) (-3560 (($ $) 177 (|has| |#1| (-37 (-391 (-537)))))) (-2898 (($ $) 203 (|has| |#1| (-37 (-391 (-537)))))) (-3579 (($ $) 179 (|has| |#1| (-37 (-391 (-537)))))) (-3185 (($ $) 199 (|has| |#1| (-37 (-391 (-537)))))) (-4001 (($ $) 175 (|has| |#1| (-37 (-391 (-537)))))) (-2858 (($ $) 196 (|has| |#1| (-37 (-391 (-537)))))) (-2730 (($ $) 171 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4150 ((|#1| $ (-537)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-2928 (($) 29 T CONST)) (-2943 (($) 38 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2244 (((-111) $ $) 65)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) 84) (($ $ $) 64)) (-2318 (($ $ $) 81)) (** (($ $ (-874)) NIL) (($ $ (-731)) 103)) (* (($ (-874) $) 89) (($ (-731) $) 87) (($ (-537) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-562 |#1|) (-13 (-1178 |#1| (-537)) (-10 -8 (-15 -2805 ($ (-977 (-800 (-537))) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1987 ((-977 (-800 (-537))) $)) (-15 -1624 ((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $)) (-15 -2411 ($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1538 ((-111) $)) (-15 -3968 ($ (-1 |#1| (-537)) $)) (-15 -4200 ((-3 $ "failed") $ $ (-111))) (-15 -3963 ($ $)) (-15 -2393 ($ $ $)) (-15 -1559 ((-816) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) (-977 (-800 (-537))) (-1117) |#1| (-391 (-537)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1344 ($ $ (-391 (-537)))) (-15 -1522 ($ $)) (-15 -3231 ($ $)) (-15 -1803 ($ $)) (-15 -1798 ($ $)) (-15 -1405 ($ $)) (-15 -2261 ($ $)) (-15 -4166 ($ $)) (-15 -2434 ($ $)) (-15 -3987 ($ $)) (-15 -2730 ($ $)) (-15 -2847 ($ $)) (-15 -4001 ($ $)) (-15 -3560 ($ $)) (-15 -3579 ($ $)) (-15 -3686 ($ $)) (-15 -3789 ($ $)) (-15 -3513 ($ $)) (-15 -3537 ($ $)) (-15 -3252 ($ $)) (-15 -2312 ($ $)) (-15 -3696 ($ $)) (-15 -2858 ($ $)) (-15 -2068 ($ $)) (-15 -3185 ($ $)) (-15 -1248 ($ $)) (-15 -2898 ($ $))) |%noBranch|))) (-998)) (T -562)) +((-1538 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-2805 (*1 *1 *2 *3) (-12 (-5 *2 (-977 (-800 (-537)))) (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *4)))) (-4 *4 (-998)) (-5 *1 (-562 *4)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-977 (-800 (-537)))) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) (-4 *3 (-998)) (-5 *1 (-562 *3)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-562 *3)))) (-4200 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998)))) (-3963 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998)))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998)))) (-1559 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *6)))) (-5 *4 (-977 (-800 (-537)))) (-5 *5 (-1117)) (-5 *7 (-391 (-537))) (-4 *6 (-998)) (-5 *2 (-816)) (-5 *1 (-562 *6)))) (-3092 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-4033 (*1 *1 *1 *2) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-562 *3)) (-4 *3 (-37 *2)) (-4 *3 (-998)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3231 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1803 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1798 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1405 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-4166 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2434 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3987 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2730 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2847 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3560 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3686 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3513 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3537 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3252 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2312 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3696 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2858 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2068 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-3185 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-1248 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) (-2898 (*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(-13 (-1178 |#1| (-537)) (-10 -8 (-15 -2805 ($ (-977 (-800 (-537))) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1987 ((-977 (-800 (-537))) $)) (-15 -1624 ((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $)) (-15 -2411 ($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))))) (-15 -1538 ((-111) $)) (-15 -3968 ($ (-1 |#1| (-537)) $)) (-15 -4200 ((-3 $ "failed") $ $ (-111))) (-15 -3963 ($ $)) (-15 -2393 ($ $ $)) (-15 -1559 ((-816) (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) (-977 (-800 (-537))) (-1117) |#1| (-391 (-537)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1344 ($ $ (-391 (-537)))) (-15 -1522 ($ $)) (-15 -3231 ($ $)) (-15 -1803 ($ $)) (-15 -1798 ($ $)) (-15 -1405 ($ $)) (-15 -2261 ($ $)) (-15 -4166 ($ $)) (-15 -2434 ($ $)) (-15 -3987 ($ $)) (-15 -2730 ($ $)) (-15 -2847 ($ $)) (-15 -4001 ($ $)) (-15 -3560 ($ $)) (-15 -3579 ($ $)) (-15 -3686 ($ $)) (-15 -3789 ($ $)) (-15 -3513 ($ $)) (-15 -3537 ($ $)) (-15 -3252 ($ $)) (-15 -2312 ($ $)) (-15 -3696 ($ $)) (-15 -2858 ($ $)) (-15 -2068 ($ $)) (-15 -3185 ($ $)) (-15 -1248 ($ $)) (-15 -2898 ($ $))) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-2411 (($ (-1098 |#1|)) 9)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) 42)) (-2362 (((-111) $) 52)) (-4231 (((-731) $) 55) (((-731) $ (-731)) 54)) (-2836 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ $) 44 (|has| |#1| (-529)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-1098 |#1|) $) 23)) (-3654 (((-731)) 51)) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 10 T CONST)) (-2943 (($) 14 T CONST)) (-2244 (((-111) $ $) 22)) (-2329 (($ $) 30) (($ $ $) 16)) (-2318 (($ $ $) 25)) (** (($ $ (-874)) NIL) (($ $ (-731)) 49)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-537)) 36))) +(((-563 |#1|) (-13 (-998) (-10 -8 (-15 -3459 ((-1098 |#1|) $)) (-15 -2411 ($ (-1098 |#1|))) (-15 -2362 ((-111) $)) (-15 -4231 ((-731) $)) (-15 -4231 ((-731) $ (-731))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-537))) (IF (|has| |#1| (-529)) (-6 (-529)) |%noBranch|))) (-998)) (T -563)) +((-3459 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-563 *3)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (-4231 (*1 *2 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-563 *3)) (-4 *3 (-998))))) +(-13 (-998) (-10 -8 (-15 -3459 ((-1098 |#1|) $)) (-15 -2411 ($ (-1098 |#1|))) (-15 -2362 ((-111) $)) (-15 -4231 ((-731) $)) (-15 -4231 ((-731) $ (-731))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-537))) (IF (|has| |#1| (-529)) (-6 (-529)) |%noBranch|))) +((-1612 (((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)) 15))) +(((-564 |#1| |#2|) (-10 -7 (-15 -1612 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)))) (-1154) (-1154)) (T -564)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-567 *6)) (-5 *1 (-564 *5 *6))))) +(-10 -7 (-15 -1612 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)))) +((-1612 (((-1098 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-1098 |#2|)) 20) (((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-567 |#2|)) 19) (((-567 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-567 |#2|)) 18))) +(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-567 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-1098 |#2|)))) (-1154) (-1154) (-1154)) (T -565)) +((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-1098 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) (-5 *1 (-565 *6 *7 *8)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-567 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) (-5 *1 (-565 *6 *7 *8)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-567 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-567 *8)) (-5 *1 (-565 *6 *7 *8))))) +(-10 -7 (-15 -1612 ((-567 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-567 |#2|))) (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-567 |#1|) (-1098 |#2|)))) +((-3566 ((|#3| |#3| (-606 (-578 |#3|)) (-606 (-1117))) 55)) (-2686 (((-160 |#2|) |#3|) 117)) (-3520 ((|#3| (-160 |#2|)) 44)) (-3783 ((|#2| |#3|) 19)) (-3915 ((|#3| |#2|) 33))) +(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -3520 (|#3| (-160 |#2|))) (-15 -3783 (|#2| |#3|)) (-15 -3915 (|#3| |#2|)) (-15 -2686 ((-160 |#2|) |#3|)) (-15 -3566 (|#3| |#3| (-606 (-578 |#3|)) (-606 (-1117))))) (-13 (-529) (-807)) (-13 (-414 |#1|) (-954) (-1139)) (-13 (-414 (-160 |#1|)) (-954) (-1139))) (T -566)) +((-3566 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-606 (-1117))) (-4 *2 (-13 (-414 (-160 *5)) (-954) (-1139))) (-4 *5 (-13 (-529) (-807))) (-5 *1 (-566 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-954) (-1139))))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807))) (-5 *2 (-160 *5)) (-5 *1 (-566 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139))))) (-3915 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807))) (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) (-5 *1 (-566 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-954) (-1139))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-807))) (-4 *2 (-13 (-414 *4) (-954) (-1139))) (-5 *1 (-566 *4 *2 *3)) (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139))))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-160 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) (-4 *4 (-13 (-529) (-807))) (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) (-5 *1 (-566 *4 *5 *2))))) +(-10 -7 (-15 -3520 (|#3| (-160 |#2|))) (-15 -3783 (|#2| |#3|)) (-15 -3915 (|#3| |#2|)) (-15 -2686 ((-160 |#2|) |#3|)) (-15 -3566 (|#3| |#3| (-606 (-578 |#3|)) (-606 (-1117))))) +((-1936 (($ (-1 (-111) |#1|) $) 17)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1873 (($ (-1 |#1| |#1|) |#1|) 9)) (-1915 (($ (-1 (-111) |#1|) $) 13)) (-1926 (($ (-1 (-111) |#1|) $) 15)) (-2350 (((-1098 |#1|) $) 18)) (-2341 (((-816) $) NIL))) +(((-567 |#1|) (-13 (-579 (-816)) (-10 -8 (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)) (-15 -1936 ($ (-1 (-111) |#1|) $)) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -2350 ((-1098 |#1|) $)))) (-1154)) (T -567)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1915 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1154))))) +(-13 (-579 (-816)) (-10 -8 (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)) (-15 -1936 ($ (-1 (-111) |#1|) $)) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -2350 ((-1098 |#1|) $)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731)) NIL (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) NIL (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2259 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-2489 (((-111) $ (-731)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3416 ((|#1| $ $) NIL (|has| |#1| (-998)))) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2218 (($ $ $) NIL (|has| |#1| (-998)))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2318 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-537) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-687))) (($ $ |#1|) NIL (|has| |#1| (-687)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-568 |#1| |#2|) (-1198 |#1|) (-1154) (-537)) (T -568)) +NIL +(-1198 |#1|) +((-1279 (((-1205) $ |#2| |#2|) 36)) (-1659 ((|#2| $) 23)) (-2187 ((|#2| $) 21)) (-4081 (($ (-1 |#3| |#3|) $) 32)) (-1612 (($ (-1 |#3| |#3|) $) 30)) (-3188 ((|#3| $) 26)) (-3040 (($ $ |#3|) 33)) (-2700 (((-111) |#3| $) 17)) (-3010 (((-606 |#3|) $) 15)) (-1922 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-569 |#1| |#2| |#3|) (-10 -8 (-15 -1279 ((-1205) |#1| |#2| |#2|)) (-15 -3040 (|#1| |#1| |#3|)) (-15 -3188 (|#3| |#1|)) (-15 -1659 (|#2| |#1|)) (-15 -2187 (|#2| |#1|)) (-15 -2700 ((-111) |#3| |#1|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|))) (-570 |#2| |#3|) (-1045) (-1154)) (T -569)) +NIL +(-10 -8 (-15 -1279 ((-1205) |#1| |#2| |#2|)) (-15 -3040 (|#1| |#1| |#3|)) (-15 -3188 (|#3| |#1|)) (-15 -1659 (|#2| |#1|)) (-15 -2187 (|#2| |#1|)) (-15 -2700 ((-111) |#3| |#1|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#2| (-1045)))) (-1279 (((-1205) $ |#1| |#1|) 40 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-4091 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 51)) (-3661 (((-606 |#2|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-1659 ((|#1| $) 43 (|has| |#1| (-807)))) (-3703 (((-606 |#2|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2187 ((|#1| $) 44 (|has| |#1| (-807)))) (-4081 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#2| (-1045)))) (-1270 (((-606 |#1|) $) 46)) (-1641 (((-111) |#1| $) 47)) (-2528 (((-1064) $) 21 (|has| |#2| (-1045)))) (-3188 ((|#2| $) 42 (|has| |#1| (-807)))) (-3040 (($ $ |#2|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) 26 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 25 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 23 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2539 (((-731) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4300))) (((-731) |#2| $) 28 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#2| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#2| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-570 |#1| |#2|) (-134) (-1045) (-1154)) (T -570)) +((-3010 (*1 *2 *1) (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-606 *4)))) (-1641 (*1 *2 *3 *1) (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-111)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-606 *3)))) (-2700 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-570 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) (-4 *2 (-807)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) (-4 *2 (-807)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) (-4 *3 (-807)) (-4 *2 (-1154)))) (-3040 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) (-1279 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) (-5 *2 (-1205))))) +(-13 (-471 |t#2|) (-272 |t#1| |t#2|) (-10 -8 (-15 -3010 ((-606 |t#2|) $)) (-15 -1641 ((-111) |t#1| $)) (-15 -1270 ((-606 |t#1|) $)) (IF (|has| |t#2| (-1045)) (IF (|has| $ (-6 -4300)) (-15 -2700 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-807)) (PROGN (-15 -2187 (|t#1| $)) (-15 -1659 (|t#1| $)) (-15 -3188 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3040 ($ $ |t#2|)) (-15 -1279 ((-1205) $ |t#1| |t#1|))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#2| (-1045)) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-579 (-816)))) ((-270 |#1| |#2|) . T) ((-272 |#1| |#2|) . T) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-471 |#2|) . T) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-1045) |has| |#2| (-1045)) ((-1154) . T)) +((-2341 (((-816) $) 19) (((-128) $) 14) (($ (-128)) 13))) +(((-571) (-13 (-579 (-816)) (-579 (-128)) (-10 -8 (-15 -2341 ($ (-128)))))) (T -571)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-571))))) +(-13 (-579 (-816)) (-579 (-128)) (-10 -8 (-15 -2341 ($ (-128))))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (((-1153) $) 14) (($ (-606 (-1153))) 13)) (-3302 (((-606 (-1153)) $) 10)) (-2244 (((-111) $ $) NIL))) +(((-572) (-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3302 ((-606 (-1153)) $))))) (T -572)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572))))) +(-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-606 (-1153)))) (-15 -3302 ((-606 (-1153)) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-1200 (-649 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2568 (((-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2649 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4263 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2624 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-4246 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3800 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1899 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3112 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2503 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1889 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-1855 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3447 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (($ (-1200 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3705 (((-874)) NIL (|has| |#2| (-351 |#1|)))) (-3364 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1684 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3468 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1652 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3699 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4217 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3486 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3820 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4096 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-2818 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2757 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4207 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-2987 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2077 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2415 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1922 ((|#1| $ (-537)) NIL (|has| |#2| (-401 |#1|)))) (-1484 (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $) (-1200 $)) NIL (|has| |#2| (-351 |#1|))) (((-1200 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3996 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-4183 (((-606 (-905 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-606 (-905 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2341 (((-816) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2122 (((-1200 $)) NIL (|has| |#2| (-401 |#1|)))) (-3678 (((-606 (-1200 |#1|))) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3127 (($ (-649 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3530 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1972 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 24)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-573 |#1| |#2|) (-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) (-163) (-705 |#1|)) (T -573)) +((-2341 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-573 *3 *2)) (-4 *2 (-705 *3))))) +(-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-3160 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) 33)) (-3144 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL) (($) NIL)) (-1279 (((-1205) $ (-1100) (-1100)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-1100) |#1|) 43)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#1| "failed") (-1100) $) 46)) (-3832 (($) NIL T CONST)) (-1898 (($ $ (-1100)) 24)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-3026 (((-3 |#1| "failed") (-1100) $) 47) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (|has| $ (-6 -4300)))) (-2355 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-3195 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-2151 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) 32)) (-4091 ((|#1| $ (-1100) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-1100)) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-1362 (($ $) 48)) (-3309 (($ (-372)) 22) (($ (-372) (-1100)) 21)) (-3923 (((-372) $) 34)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1100) $) NIL (|has| (-1100) (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300))) (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (((-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-2187 (((-1100) $) NIL (|has| (-1100) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1688 (((-606 (-1100)) $) 39)) (-4011 (((-111) (-1100) $) NIL)) (-3216 (((-1100) $) 35)) (-2783 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-1270 (((-606 (-1100)) $) NIL)) (-1641 (((-111) (-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 ((|#1| $) NIL (|has| (-1100) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) "failed") (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-606 (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 37)) (-1922 ((|#1| $ (-1100) |#1|) NIL) ((|#1| $ (-1100)) 42)) (-1341 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL) (($) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (((-731) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-731) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2341 (((-816) $) 20)) (-1338 (($ $) 25)) (-2753 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 19)) (-2258 (((-731) $) 41 (|has| $ (-6 -4300))))) +(((-574 |#1|) (-13 (-348 (-372) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-1130 (-1100) |#1|) (-10 -8 (-6 -4300) (-15 -1362 ($ $)))) (-1045)) (T -574)) +((-1362 (*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1045))))) +(-13 (-348 (-372) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-1130 (-1100) |#1|) (-10 -8 (-6 -4300) (-15 -1362 ($ $)))) +((-3122 (((-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 15)) (-1688 (((-606 |#2|) $) 19)) (-4011 (((-111) |#2| $) 12))) +(((-575 |#1| |#2| |#3|) (-10 -8 (-15 -1688 ((-606 |#2|) |#1|)) (-15 -4011 ((-111) |#2| |#1|)) (-15 -3122 ((-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|))) (-576 |#2| |#3|) (-1045) (-1045)) (T -575)) +NIL +(-10 -8 (-15 -1688 ((-606 |#2|) |#1|)) (-15 -4011 ((-111) |#2| |#1|)) (-15 -3122 ((-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|))) +((-2330 (((-111) $ $) 19 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 55 (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 61)) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 46 (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 62)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 54 (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 56 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 53 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-1688 (((-606 |#1|) $) 63)) (-4011 (((-111) |#1| $) 64)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 39)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 40)) (-2528 (((-1064) $) 21 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 51)) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 41)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 26 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 25 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 24 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 23 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1341 (($) 49) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 48)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 31 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 50)) (-2341 (((-816) $) 18 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 42)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-576 |#1| |#2|) (-134) (-1045) (-1045)) (T -576)) +((-4011 (*1 *2 *3 *1) (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-111)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-5 *2 (-606 *3)))) (-3026 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-2859 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) +(-13 (-214 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|))) (-10 -8 (-15 -4011 ((-111) |t#1| $)) (-15 -1688 ((-606 |t#1|) $)) (-15 -3026 ((-3 |t#2| "failed") |t#1| $)) (-15 -2859 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-105 #0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-100) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) ((-579 (-816)) -1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))) ((-145 #0#) . T) ((-580 (-513)) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) ((-214 #0#) . T) ((-220 #0#) . T) ((-293 #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-471 #0#) . T) ((-495 #0# #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-1045) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) ((-1154) . T)) +((-3992 (((-578 |#2|) |#1|) 15)) (-4004 (((-3 |#1| "failed") (-578 |#2|)) 19))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3992 ((-578 |#2|) |#1|)) (-15 -4004 ((-3 |#1| "failed") (-578 |#2|)))) (-807) (-807)) (T -577)) +((-4004 (*1 *2 *3) (|partial| -12 (-5 *3 (-578 *4)) (-4 *4 (-807)) (-4 *2 (-807)) (-5 *1 (-577 *2 *4)))) (-3992 (*1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *1 (-577 *3 *4)) (-4 *3 (-807)) (-4 *4 (-807))))) +(-10 -7 (-15 -3992 ((-578 |#2|) |#1|)) (-15 -4004 ((-3 |#1| "failed") (-578 |#2|)))) +((-2330 (((-111) $ $) NIL)) (-2289 (((-3 (-1117) "failed") $) 37)) (-3219 (((-1205) $ (-731)) 26)) (-2299 (((-731) $) 25)) (-3979 (((-113) $) 12)) (-3923 (((-1117) $) 20)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3381 (($ (-113) (-606 |#1|) (-731)) 30) (($ (-1117)) 31)) (-3215 (((-111) $ (-113)) 18) (((-111) $ (-1117)) 16)) (-2545 (((-731) $) 22)) (-2528 (((-1064) $) NIL)) (-3996 (((-845 (-537)) $) 77 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 84 (|has| |#1| (-580 (-845 (-363))))) (((-513) $) 69 (|has| |#1| (-580 (-513))))) (-2341 (((-816) $) 55)) (-2449 (((-606 |#1|) $) 24)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 41)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 42))) +(((-578 |#1|) (-13 (-130) (-837 |#1|) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3979 ((-113) $)) (-15 -2449 ((-606 |#1|) $)) (-15 -2545 ((-731) $)) (-15 -3381 ($ (-113) (-606 |#1|) (-731))) (-15 -3381 ($ (-1117))) (-15 -2289 ((-3 (-1117) "failed") $)) (-15 -3215 ((-111) $ (-113))) (-15 -3215 ((-111) $ (-1117))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) (-807)) (T -578)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-3381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-807)) (-5 *1 (-578 *5)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-2289 (*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) (-3215 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807)))) (-3215 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807))))) +(-13 (-130) (-837 |#1|) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3979 ((-113) $)) (-15 -2449 ((-606 |#1|) $)) (-15 -2545 ((-731) $)) (-15 -3381 ($ (-113) (-606 |#1|) (-731))) (-15 -3381 ($ (-1117))) (-15 -2289 ((-3 (-1117) "failed") $)) (-15 -3215 ((-111) $ (-113))) (-15 -3215 ((-111) $ (-1117))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) +((-2341 ((|#1| $) 6))) +(((-579 |#1|) (-134) (-1154)) (T -579)) +((-2341 (*1 *2 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-1154))))) +(-13 (-10 -8 (-15 -2341 (|t#1| $)))) +((-3996 ((|#1| $) 6))) +(((-580 |#1|) (-134) (-1154)) (T -580)) +((-3996 (*1 *2 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-1154))))) +(-13 (-10 -8 (-15 -3996 (|t#1| $)))) +((-3517 (((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 (-402 |#2|) |#2|)) 15) (((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)) 16))) +(((-581 |#1| |#2|) (-10 -7 (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|))) (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 (-402 |#2|) |#2|)))) (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -581)) +((-3517 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-1113 (-391 *6))) (-5 *1 (-581 *5 *6)) (-5 *3 (-391 *6)))) (-3517 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-1113 (-391 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-391 *5))))) +(-10 -7 (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|))) (-15 -3517 ((-3 (-1113 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 (-402 |#2|) |#2|)))) +((-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) 10))) +(((-582 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-583 |#2|) (-998)) (T -582)) +NIL +(-10 -8 (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 34)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-583 |#1|) (-134) (-998)) (T -583)) +((-2341 (*1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-998))))) +(-13 (-998) (-609 |t#1|) (-10 -8 (-15 -2341 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-2537 (((-537) $) NIL (|has| |#1| (-805)))) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-3797 (((-111) $) NIL (|has| |#1| (-805)))) (-2836 (((-111) $) NIL)) (-3301 ((|#1| $) 13)) (-2840 (((-111) $) NIL (|has| |#1| (-805)))) (-2444 (($ $ $) NIL (|has| |#1| (-805)))) (-3889 (($ $ $) NIL (|has| |#1| (-805)))) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3315 ((|#3| $) 15)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL)) (-3654 (((-731)) 20)) (-2209 (($ $) NIL (|has| |#1| (-805)))) (-2928 (($) NIL T CONST)) (-2943 (($) 12 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2340 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-584 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) (-37 |#2|) (-163) (|SubsetCategory| (-687) |#2|)) (T -584)) +((-2340 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-687) *4)))) (-2340 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-584 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-687) *4)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-584 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-687) *3)))) (-3315 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) +((-1595 ((|#2| |#2| (-1117) (-1117)) 18))) +(((-585 |#1| |#2|) (-10 -7 (-15 -1595 (|#2| |#2| (-1117) (-1117)))) (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-912) (-29 |#1|))) (T -585)) +((-1595 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1139) (-912) (-29 *4)))))) +(-10 -7 (-15 -1595 (|#2| |#2| (-1117) (-1117)))) +((-2330 (((-111) $ $) 56)) (-1656 (((-111) $) 52)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3700 ((|#1| $) 49)) (-3418 (((-3 $ "failed") $ $) NIL)) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-3655 (((-2 (|:| -4144 $) (|:| -2660 (-391 |#2|))) (-391 |#2|)) 97 (|has| |#1| (-347)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 24)) (-3490 (((-3 $ "failed") $) 75)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-4231 (((-537) $) 19)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) 36)) (-3733 (($ |#1| (-537)) 21)) (-3912 ((|#1| $) 51)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) 87 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ $) 79)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1930 (((-731) $) 99 (|has| |#1| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 98 (|has| |#1| (-347)))) (-3456 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2872 (((-537) $) 34)) (-3996 (((-391 |#2|) $) 42)) (-2341 (((-816) $) 62) (($ (-537)) 32) (($ $) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 31) (($ |#2|) 22)) (-3500 ((|#1| $ (-537)) 63)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 29)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 9 T CONST)) (-2943 (($) 12 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2244 (((-111) $ $) 17)) (-2329 (($ $) 46) (($ $ $) NIL)) (-2318 (($ $ $) 76)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 26) (($ $ $) 44))) +(((-586 |#1| |#2|) (-13 (-216 |#2|) (-529) (-580 (-391 |#2|)) (-395 |#1|) (-989 |#2|) (-10 -8 (-15 -1538 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -4231 ((-537) $)) (-15 -3940 ($ $)) (-15 -3912 (|#1| $)) (-15 -3700 (|#1| $)) (-15 -3500 (|#1| $ (-537))) (-15 -3733 ($ |#1| (-537))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-291)) (-15 -3655 ((-2 (|:| -4144 $) (|:| -2660 (-391 |#2|))) (-391 |#2|)))) |%noBranch|))) (-529) (-1176 |#1|)) (T -586)) +((-1538 (*1 *2 *1) (-12 (-4 *3 (-529)) (-5 *2 (-111)) (-5 *1 (-586 *3 *4)) (-4 *4 (-1176 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) (-4 *4 (-1176 *3)))) (-4231 (*1 *2 *1) (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) (-4 *4 (-1176 *3)))) (-3940 (*1 *1 *1) (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) (-3912 (*1 *2 *1) (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) (-3700 (*1 *2 *1) (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) (-4 *4 (-1176 *2)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) (-4 *4 (-1176 *2)))) (-3655 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *4 (-529)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -4144 (-586 *4 *5)) (|:| -2660 (-391 *5)))) (-5 *1 (-586 *4 *5)) (-5 *3 (-391 *5))))) +(-13 (-216 |#2|) (-529) (-580 (-391 |#2|)) (-395 |#1|) (-989 |#2|) (-10 -8 (-15 -1538 ((-111) $)) (-15 -2872 ((-537) $)) (-15 -4231 ((-537) $)) (-15 -3940 ($ $)) (-15 -3912 (|#1| $)) (-15 -3700 (|#1| $)) (-15 -3500 (|#1| $ (-537))) (-15 -3733 ($ |#1| (-537))) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-6 (-291)) (-15 -3655 ((-2 (|:| -4144 $) (|:| -2660 (-391 |#2|))) (-391 |#2|)))) |%noBranch|))) +((-3448 (((-606 |#6|) (-606 |#4|) (-111)) 47)) (-3609 ((|#6| |#6|) 40))) +(((-587 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3609 (|#6| |#6|)) (-15 -3448 ((-606 |#6|) (-606 |#4|) (-111)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|) (-1054 |#1| |#2| |#3| |#4|)) (T -587)) +((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *10)) (-5 *1 (-587 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *10 (-1054 *5 *6 *7 *8)))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-587 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *2 (-1054 *3 *4 *5 *6))))) +(-10 -7 (-15 -3609 (|#6| |#6|)) (-15 -3448 ((-606 |#6|) (-606 |#4|) (-111)))) +((-3333 (((-111) |#3| (-731) (-606 |#3|)) 23)) (-2024 (((-3 (-2 (|:| |polfac| (-606 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-606 (-1113 |#3|)))) "failed") |#3| (-606 (-1113 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3415 (-606 (-2 (|:| |irr| |#4|) (|:| -2430 (-537)))))) (-606 |#3|) (-606 |#1|) (-606 |#3|)) 55))) +(((-588 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3333 ((-111) |#3| (-731) (-606 |#3|))) (-15 -2024 ((-3 (-2 (|:| |polfac| (-606 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-606 (-1113 |#3|)))) "failed") |#3| (-606 (-1113 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3415 (-606 (-2 (|:| |irr| |#4|) (|:| -2430 (-537)))))) (-606 |#3|) (-606 |#1|) (-606 |#3|)))) (-807) (-753) (-291) (-902 |#3| |#2| |#1|)) (T -588)) +((-2024 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3415 (-606 (-2 (|:| |irr| *10) (|:| -2430 (-537))))))) (-5 *6 (-606 *3)) (-5 *7 (-606 *8)) (-4 *8 (-807)) (-4 *3 (-291)) (-4 *10 (-902 *3 *9 *8)) (-4 *9 (-753)) (-5 *2 (-2 (|:| |polfac| (-606 *10)) (|:| |correct| *3) (|:| |corrfact| (-606 (-1113 *3))))) (-5 *1 (-588 *8 *9 *3 *10)) (-5 *4 (-606 (-1113 *3))))) (-3333 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-731)) (-5 *5 (-606 *3)) (-4 *3 (-291)) (-4 *6 (-807)) (-4 *7 (-753)) (-5 *2 (-111)) (-5 *1 (-588 *6 *7 *3 *8)) (-4 *8 (-902 *3 *7 *6))))) +(-10 -7 (-15 -3333 ((-111) |#3| (-731) (-606 |#3|))) (-15 -2024 ((-3 (-2 (|:| |polfac| (-606 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-606 (-1113 |#3|)))) "failed") |#3| (-606 (-1113 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3415 (-606 (-2 (|:| |irr| |#4|) (|:| -2430 (-537)))))) (-606 |#3|) (-606 |#1|) (-606 |#3|)))) +((-2330 (((-111) $ $) NIL)) (-2880 (((-1122) $) 11)) (-2869 (((-1122) $) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-589) (-13 (-1029) (-10 -8 (-15 -2869 ((-1122) $)) (-15 -2880 ((-1122) $))))) (T -589)) +((-2869 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589))))) +(-13 (-1029) (-10 -8 (-15 -2869 ((-1122) $)) (-15 -2880 ((-1122) $)))) +((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2177 (($ $) 67)) (-2180 (((-625 |#1| |#2|) $) 52)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 70)) (-3717 (((-606 (-278 |#2|)) $ $) 33)) (-2528 (((-1064) $) NIL)) (-4185 (($ (-625 |#1| |#2|)) 48)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 58) (((-1214 |#1| |#2|) $) NIL) (((-1219 |#1| |#2|) $) 66)) (-2943 (($) 53 T CONST)) (-2842 (((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $) 31)) (-1598 (((-606 (-625 |#1| |#2|)) (-606 |#1|)) 65)) (-1820 (((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $) 37)) (-2244 (((-111) $ $) 54)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ $ $) 44))) +(((-590 |#1| |#2| |#3|) (-13 (-456) (-10 -8 (-15 -4185 ($ (-625 |#1| |#2|))) (-15 -2180 ((-625 |#1| |#2|) $)) (-15 -1820 ((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $)) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1219 |#1| |#2|) $)) (-15 -2177 ($ $)) (-15 -2163 ((-606 |#1|) $)) (-15 -1598 ((-606 (-625 |#1| |#2|)) (-606 |#1|))) (-15 -2842 ((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $)) (-15 -3717 ((-606 (-278 |#2|)) $ $)))) (-807) (-13 (-163) (-678 (-391 (-537)))) (-874)) (T -590)) +((-4185 (*1 *1 *2) (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-5 *1 (-590 *3 *4 *5)) (-14 *5 (-874)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-625 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| (-846 *3)) (|:| |c| *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1219 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-807)) (-4 *3 (-13 (-163) (-678 (-391 (-537))))) (-14 *4 (-874)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-625 *4 *5))) (-5 *1 (-590 *4 *5 *6)) (-4 *5 (-13 (-163) (-678 (-391 (-537))))) (-14 *6 (-874)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| (-633 *3)) (|:| |c| *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) (-3717 (*1 *2 *1 *1) (-12 (-5 *2 (-606 (-278 *4))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874))))) +(-13 (-456) (-10 -8 (-15 -4185 ($ (-625 |#1| |#2|))) (-15 -2180 ((-625 |#1| |#2|) $)) (-15 -1820 ((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $)) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1219 |#1| |#2|) $)) (-15 -2177 ($ $)) (-15 -2163 ((-606 |#1|) $)) (-15 -1598 ((-606 (-625 |#1| |#2|)) (-606 |#1|))) (-15 -2842 ((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $)) (-15 -3717 ((-606 (-278 |#2|)) $ $)))) +((-3448 (((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)) 72) (((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111)) 58)) (-3759 (((-111) (-606 (-740 |#1| (-818 |#2|)))) 23)) (-2693 (((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)) 71)) (-3961 (((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111)) 57)) (-2597 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|)))) 27)) (-3362 (((-3 (-606 (-740 |#1| (-818 |#2|))) "failed") (-606 (-740 |#1| (-818 |#2|)))) 26))) +(((-591 |#1| |#2|) (-10 -7 (-15 -3759 ((-111) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3362 ((-3 (-606 (-740 |#1| (-818 |#2|))) "failed") (-606 (-740 |#1| (-818 |#2|))))) (-15 -2597 ((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3961 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -2693 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)))) (-435) (-606 (-1117))) (T -591)) +((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) (-5 *1 (-591 *5 *6)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-591 *5 *6)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) (-5 *1 (-591 *5 *6)))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-591 *5 *6)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4)))) (-3362 (*1 *2 *2) (|partial| -12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-606 (-740 *4 (-818 *5)))) (-4 *4 (-435)) (-14 *5 (-606 (-1117))) (-5 *2 (-111)) (-5 *1 (-591 *4 *5))))) +(-10 -7 (-15 -3759 ((-111) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3362 ((-3 (-606 (-740 |#1| (-818 |#2|))) "failed") (-606 (-740 |#1| (-818 |#2|))))) (-15 -2597 ((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))))) (-15 -3961 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -2693 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-995 |#1| |#2|)) (-606 (-740 |#1| (-818 |#2|))) (-111))) (-15 -3448 ((-606 (-1088 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|)))) (-606 (-740 |#1| (-818 |#2|))) (-111)))) +((-1403 (($ $) 38)) (-1247 (($ $) 21)) (-1378 (($ $) 37)) (-4270 (($ $) 22)) (-1429 (($ $) 36)) (-1273 (($ $) 23)) (-3338 (($) 48)) (-2180 (($ $) 45)) (-2126 (($ $) 17)) (-1509 (($ $ (-1038 $)) 7) (($ $ (-1117)) 6)) (-4185 (($ $) 46)) (-4218 (($ $) 15)) (-4256 (($ $) 16)) (-1441 (($ $) 35)) (-1286 (($ $) 24)) (-1415 (($ $) 34)) (-1259 (($ $) 25)) (-1389 (($ $) 33)) (-1234 (($ $) 26)) (-1475 (($ $) 44)) (-1328 (($ $) 32)) (-1453 (($ $) 43)) (-1300 (($ $) 31)) (-1495 (($ $) 42)) (-1352 (($ $) 30)) (-4141 (($ $) 41)) (-1365 (($ $) 29)) (-1485 (($ $) 40)) (-1340 (($ $) 28)) (-1465 (($ $) 39)) (-1314 (($ $) 27)) (-2175 (($ $) 19)) (-2637 (($ $) 20)) (-3191 (($ $) 18)) (** (($ $ $) 47))) +(((-592) (-134)) (T -592)) +((-2637 (*1 *1 *1) (-4 *1 (-592))) (-2175 (*1 *1 *1) (-4 *1 (-592))) (-3191 (*1 *1 *1) (-4 *1 (-592))) (-2126 (*1 *1 *1) (-4 *1 (-592))) (-4256 (*1 *1 *1) (-4 *1 (-592))) (-4218 (*1 *1 *1) (-4 *1 (-592)))) +(-13 (-912) (-1139) (-10 -8 (-15 -2637 ($ $)) (-15 -2175 ($ $)) (-15 -3191 ($ $)) (-15 -2126 ($ $)) (-15 -4256 ($ $)) (-15 -4218 ($ $)))) +(((-34) . T) ((-93) . T) ((-268) . T) ((-474) . T) ((-912) . T) ((-1139) . T) ((-1142) . T)) +((-3979 (((-113) (-113)) 83)) (-2126 ((|#2| |#2|) 30)) (-1509 ((|#2| |#2| (-1038 |#2|)) 79) ((|#2| |#2| (-1117)) 52)) (-4218 ((|#2| |#2|) 29)) (-4256 ((|#2| |#2|) 31)) (-2336 (((-111) (-113)) 34)) (-2175 ((|#2| |#2|) 26)) (-2637 ((|#2| |#2|) 28)) (-3191 ((|#2| |#2|) 27))) +(((-593 |#1| |#2|) (-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2637 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -3191 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -1509 (|#2| |#2| (-1117))) (-15 -1509 (|#2| |#2| (-1038 |#2|)))) (-13 (-807) (-529)) (-13 (-414 |#1|) (-954) (-1139))) (T -593)) +((-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-954) (-1139))) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)))) (-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)) (-4 *2 (-13 (-414 *4) (-954) (-1139))))) (-4256 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-2126 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-3191 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) (-4 *2 (-13 (-414 *3) (-954) (-1139))))) (-3979 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *4)) (-4 *4 (-13 (-414 *3) (-954) (-1139))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-593 *4 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139)))))) +(-10 -7 (-15 -2336 ((-111) (-113))) (-15 -3979 ((-113) (-113))) (-15 -2637 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -3191 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -4218 (|#2| |#2|)) (-15 -4256 (|#2| |#2|)) (-15 -1509 (|#2| |#2| (-1117))) (-15 -1509 (|#2| |#2| (-1038 |#2|)))) +((-2470 (((-463 |#1| |#2|) (-232 |#1| |#2|)) 53)) (-1875 (((-606 (-232 |#1| |#2|)) (-606 (-463 |#1| |#2|))) 68)) (-2711 (((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-818 |#1|)) 70) (((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)) (-818 |#1|)) 69)) (-1282 (((-2 (|:| |gblist| (-606 (-232 |#1| |#2|))) (|:| |gvlist| (-606 (-537)))) (-606 (-463 |#1| |#2|))) 108)) (-2377 (((-606 (-463 |#1| |#2|)) (-818 |#1|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|))) 83)) (-1963 (((-2 (|:| |glbase| (-606 (-232 |#1| |#2|))) (|:| |glval| (-606 (-537)))) (-606 (-232 |#1| |#2|))) 118)) (-2658 (((-1200 |#2|) (-463 |#1| |#2|) (-606 (-463 |#1| |#2|))) 58)) (-3676 (((-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|))) 41)) (-1777 (((-232 |#1| |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|))) 50)) (-2347 (((-232 |#1| |#2|) (-606 |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|))) 91))) +(((-594 |#1| |#2|) (-10 -7 (-15 -1282 ((-2 (|:| |gblist| (-606 (-232 |#1| |#2|))) (|:| |gvlist| (-606 (-537)))) (-606 (-463 |#1| |#2|)))) (-15 -1963 ((-2 (|:| |glbase| (-606 (-232 |#1| |#2|))) (|:| |glval| (-606 (-537)))) (-606 (-232 |#1| |#2|)))) (-15 -1875 ((-606 (-232 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -3676 ((-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2658 ((-1200 |#2|) (-463 |#1| |#2|) (-606 (-463 |#1| |#2|)))) (-15 -2347 ((-232 |#1| |#2|) (-606 |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2377 ((-606 (-463 |#1| |#2|)) (-818 |#1|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -1777 ((-232 |#1| |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2470 ((-463 |#1| |#2|) (-232 |#1| |#2|)))) (-606 (-1117)) (-435)) (T -594)) +((-2470 (*1 *2 *3) (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-463 *4 *5)) (-5 *1 (-594 *4 *5)))) (-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-232 *4 *5))) (-5 *2 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5)))) (-2377 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-818 *4)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5)))) (-2347 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-232 *5 *6))) (-4 *6 (-435)) (-5 *2 (-232 *5 *6)) (-14 *5 (-606 (-1117))) (-5 *1 (-594 *5 *6)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-463 *5 *6))) (-5 *3 (-463 *5 *6)) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-1200 *6)) (-5 *1 (-594 *5 *6)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-606 (-463 *3 *4))) (-14 *3 (-606 (-1117))) (-4 *4 (-435)) (-5 *1 (-594 *3 *4)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) (-4 *6 (-435)))) (-2711 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) (-4 *6 (-435)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-606 (-232 *4 *5))) (-5 *1 (-594 *4 *5)))) (-1963 (*1 *2 *3) (-12 (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-2 (|:| |glbase| (-606 (-232 *4 *5))) (|:| |glval| (-606 (-537))))) (-5 *1 (-594 *4 *5)) (-5 *3 (-606 (-232 *4 *5))))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *2 (-2 (|:| |gblist| (-606 (-232 *4 *5))) (|:| |gvlist| (-606 (-537))))) (-5 *1 (-594 *4 *5))))) +(-10 -7 (-15 -1282 ((-2 (|:| |gblist| (-606 (-232 |#1| |#2|))) (|:| |gvlist| (-606 (-537)))) (-606 (-463 |#1| |#2|)))) (-15 -1963 ((-2 (|:| |glbase| (-606 (-232 |#1| |#2|))) (|:| |glval| (-606 (-537)))) (-606 (-232 |#1| |#2|)))) (-15 -1875 ((-606 (-232 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -2711 ((-463 |#1| |#2|) (-606 (-463 |#1| |#2|)) (-818 |#1|))) (-15 -3676 ((-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -2658 ((-1200 |#2|) (-463 |#1| |#2|) (-606 (-463 |#1| |#2|)))) (-15 -2347 ((-232 |#1| |#2|) (-606 |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2377 ((-606 (-463 |#1| |#2|)) (-818 |#1|) (-606 (-463 |#1| |#2|)) (-606 (-463 |#1| |#2|)))) (-15 -1777 ((-232 |#1| |#2|) (-232 |#1| |#2|) (-606 (-232 |#1| |#2|)))) (-15 -2470 ((-463 |#1| |#2|) (-232 |#1| |#2|)))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-1279 (((-1205) $ (-1100) (-1100)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-51) $ (-1100) (-51)) 16) (((-51) $ (-1117) (-51)) 17)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 (-51) "failed") (-1100) $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-3 (-51) "failed") (-1100) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-51) $ (-1100) (-51)) NIL (|has| $ (-6 -4301)))) (-4030 (((-51) $ (-1100)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-1362 (($ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1100) $) NIL (|has| (-1100) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-2187 (((-1100) $) NIL (|has| (-1100) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4269 (($ (-372)) 9)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-1688 (((-606 (-1100)) $) NIL)) (-4011 (((-111) (-1100) $) NIL)) (-2783 (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL)) (-1270 (((-606 (-1100)) $) NIL)) (-1641 (((-111) (-1100) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-3188 (((-51) $) NIL (|has| (-1100) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) "failed") (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL)) (-3040 (($ $ (-51)) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-51)) (-606 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-278 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-606 (-278 (-51)))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-3010 (((-606 (-51)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-51) $ (-1100)) 14) (((-51) $ (-1100) (-51)) NIL) (((-51) $ (-1117)) 15)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045)))) (((-731) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045)))) (((-731) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-51) (-579 (-816))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 (-51))) (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-595) (-13 (-1130 (-1100) (-51)) (-10 -8 (-15 -4269 ($ (-372))) (-15 -1362 ($ $)) (-15 -1922 ((-51) $ (-1117))) (-15 -2476 ((-51) $ (-1117) (-51)))))) (T -595)) +((-4269 (*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-595)))) (-1362 (*1 *1 *1) (-5 *1 (-595))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-51)) (-5 *1 (-595)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-595))))) +(-13 (-1130 (-1100) (-51)) (-10 -8 (-15 -4269 ($ (-372))) (-15 -1362 ($ $)) (-15 -1922 ((-51) $ (-1117))) (-15 -2476 ((-51) $ (-1117) (-51))))) +((-2340 (($ $ |#2|) 10))) +(((-596 |#1| |#2|) (-10 -8 (-15 -2340 (|#1| |#1| |#2|))) (-597 |#2|) (-163)) (T -596)) +NIL +(-10 -8 (-15 -2340 (|#1| |#1| |#2|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2350 (($ $ $) 29)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 28 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-597 |#1|) (-134) (-163)) (T -597)) +((-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)) (-4 *2 (-347))))) +(-13 (-678 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2350 ($ $ $)) (IF (|has| |t#1| (-347)) (-15 -2340 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-1200 (-649 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2568 (((-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3832 (($) NIL T CONST)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2649 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4263 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-2624 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-4246 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3800 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1899 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3112 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2503 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1889 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-1855 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3447 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (($ (-1200 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3705 (((-874)) NIL (|has| |#2| (-351 |#1|)))) (-3364 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1891 (($ $ (-874)) NIL)) (-2186 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1684 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3468 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-1652 (((-3 $ "failed")) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3699 (((-649 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4217 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-3486 (((-649 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3820 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-4096 (((-1113 (-905 |#1|))) NIL (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-347))))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#1| $) NIL (|has| |#2| (-351 |#1|)))) (-2818 (((-1113 |#1|) $) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-2757 ((|#1|) NIL (|has| |#2| (-401 |#1|))) ((|#1| (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-4207 (((-1113 |#1|) $) NIL (|has| |#2| (-351 |#1|)))) (-2987 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2077 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2415 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1922 ((|#1| $ (-537)) NIL (|has| |#2| (-401 |#1|)))) (-1484 (((-649 |#1|) (-1200 $)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|))) (((-649 |#1|) (-1200 $) (-1200 $)) NIL (|has| |#2| (-351 |#1|))) (((-1200 |#1|) $ (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-3996 (($ (-1200 |#1|)) NIL (|has| |#2| (-401 |#1|))) (((-1200 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-4183 (((-606 (-905 |#1|))) NIL (|has| |#2| (-401 |#1|))) (((-606 (-905 |#1|)) (-1200 $)) NIL (|has| |#2| (-351 |#1|)))) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2341 (((-816) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2122 (((-1200 $)) NIL (|has| |#2| (-401 |#1|)))) (-3678 (((-606 (-1200 |#1|))) NIL (-1533 (-12 (|has| |#2| (-351 |#1|)) (|has| |#1| (-529))) (-12 (|has| |#2| (-401 |#1|)) (|has| |#1| (-529)))))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3127 (($ (-649 |#1|) $) NIL (|has| |#2| (-401 |#1|)))) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-3530 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-1972 (((-111)) NIL (|has| |#2| (-351 |#1|)))) (-2928 (($) 15 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 17)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-598 |#1| |#2|) (-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) (-163) (-705 |#1|)) (T -598)) +((-2341 (*1 *1 *2) (-12 (-4 *3 (-163)) (-5 *1 (-598 *3 *2)) (-4 *2 (-705 *3))))) +(-13 (-705 |#1|) (-579 |#2|) (-10 -8 (-15 -2341 ($ |#2|)) (IF (|has| |#2| (-401 |#1|)) (-6 (-401 |#1|)) |%noBranch|) (IF (|has| |#2| (-351 |#1|)) (-6 (-351 |#1|)) |%noBranch|))) +((-2165 (((-3 (-800 |#2|) "failed") |#2| (-278 |#2|) (-1100)) 82) (((-3 (-800 |#2|) (-2 (|:| |leftHandLimit| (-3 (-800 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-800 |#2|) "failed"))) "failed") |#2| (-278 (-800 |#2|))) 104)) (-2195 (((-3 (-793 |#2|) "failed") |#2| (-278 (-793 |#2|))) 109))) +(((-599 |#1| |#2|) (-10 -7 (-15 -2165 ((-3 (-800 |#2|) (-2 (|:| |leftHandLimit| (-3 (-800 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-800 |#2|) "failed"))) "failed") |#2| (-278 (-800 |#2|)))) (-15 -2195 ((-3 (-793 |#2|) "failed") |#2| (-278 (-793 |#2|)))) (-15 -2165 ((-3 (-800 |#2|) "failed") |#2| (-278 |#2|) (-1100)))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -599)) +((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1100)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-800 *3)) (-5 *1 (-599 *6 *3)))) (-2195 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-278 (-793 *3))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-793 *3)) (-5 *1 (-599 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-800 *3))) (-4 *3 (-13 (-27) (-1139) (-414 *5))) (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-3 (-800 *3) (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) "failed")) (-5 *1 (-599 *5 *3))))) +(-10 -7 (-15 -2165 ((-3 (-800 |#2|) (-2 (|:| |leftHandLimit| (-3 (-800 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-800 |#2|) "failed"))) "failed") |#2| (-278 (-800 |#2|)))) (-15 -2195 ((-3 (-793 |#2|) "failed") |#2| (-278 (-793 |#2|)))) (-15 -2165 ((-3 (-800 |#2|) "failed") |#2| (-278 |#2|) (-1100)))) +((-2165 (((-3 (-800 (-391 (-905 |#1|))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))) (-1100)) 80) (((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|)))) 20) (((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-800 (-905 |#1|)))) 35)) (-2195 (((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|)))) 23) (((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-793 (-905 |#1|)))) 43))) +(((-600 |#1|) (-10 -7 (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-800 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-793 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))) (-1100)))) (-435)) (T -600)) +((-2165 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-278 (-391 (-905 *6)))) (-5 *5 (-1100)) (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-800 *3)) (-5 *1 (-600 *6)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-435)) (-5 *2 (-793 *3)) (-5 *1 (-600 *5)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-793 (-905 *5)))) (-4 *5 (-435)) (-5 *2 (-793 (-391 (-905 *5)))) (-5 *1 (-600 *5)) (-5 *3 (-391 (-905 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-435)) (-5 *2 (-3 (-800 *3) (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) "failed")) (-5 *1 (-600 *5)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-278 (-800 (-905 *5)))) (-4 *5 (-435)) (-5 *2 (-3 (-800 (-391 (-905 *5))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 *5))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 *5))) "failed"))) "failed")) (-5 *1 (-600 *5)) (-5 *3 (-391 (-905 *5)))))) +(-10 -7 (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-800 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-800 (-391 (-905 |#1|))) "failed"))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-793 (-905 |#1|))))) (-15 -2195 ((-793 (-391 (-905 |#1|))) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -2165 ((-3 (-800 (-391 (-905 |#1|))) "failed") (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))) (-1100)))) +((-2609 (((-3 (-1200 (-391 |#1|)) "failed") (-1200 |#2|) |#2|) 57 (-3679 (|has| |#1| (-347)))) (((-3 (-1200 |#1|) "failed") (-1200 |#2|) |#2|) 42 (|has| |#1| (-347)))) (-4274 (((-111) (-1200 |#2|)) 30)) (-2348 (((-3 (-1200 |#1|) "failed") (-1200 |#2|)) 33))) +(((-601 |#1| |#2|) (-10 -7 (-15 -4274 ((-111) (-1200 |#2|))) (-15 -2348 ((-3 (-1200 |#1|) "failed") (-1200 |#2|))) (IF (|has| |#1| (-347)) (-15 -2609 ((-3 (-1200 |#1|) "failed") (-1200 |#2|) |#2|)) (-15 -2609 ((-3 (-1200 (-391 |#1|)) "failed") (-1200 |#2|) |#2|)))) (-529) (-602 |#1|)) (T -601)) +((-2609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) (-3679 (-4 *5 (-347))) (-4 *5 (-529)) (-5 *2 (-1200 (-391 *5))) (-5 *1 (-601 *5 *4)))) (-2609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) (-4 *5 (-347)) (-4 *5 (-529)) (-5 *2 (-1200 *5)) (-5 *1 (-601 *5 *4)))) (-2348 (*1 *2 *3) (|partial| -12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) (-5 *2 (-1200 *4)) (-5 *1 (-601 *4 *5)))) (-4274 (*1 *2 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) (-5 *2 (-111)) (-5 *1 (-601 *4 *5))))) +(-10 -7 (-15 -4274 ((-111) (-1200 |#2|))) (-15 -2348 ((-3 (-1200 |#1|) "failed") (-1200 |#2|))) (IF (|has| |#1| (-347)) (-15 -2609 ((-3 (-1200 |#1|) "failed") (-1200 |#2|) |#2|)) (-15 -2609 ((-3 (-1200 (-391 |#1|)) "failed") (-1200 |#2|) |#2|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2053 (((-649 |#1|) (-649 $)) 34) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 33)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-602 |#1|) (-134) (-998)) (T -602)) +((-2053 (*1 *2 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-602 *4)) (-4 *4 (-998)) (-5 *2 (-649 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *1)) (-5 *4 (-1200 *1)) (-4 *1 (-602 *5)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 *5))))))) +(-13 (-998) (-10 -8 (-15 -2053 ((-649 |t#1|) (-649 $))) (-15 -2053 ((-2 (|:| -2756 (-649 |t#1|)) (|:| |vec| (-1200 |t#1|))) (-649 $) (-1200 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1244 ((|#2| (-606 |#1|) (-606 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-606 |#1|) (-606 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) |#2|) 17) ((|#2| (-606 |#1|) (-606 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|)) 12))) +(((-603 |#1| |#2|) (-10 -7 (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) |#2|)) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| |#2|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) (-1 |#2| |#1|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| (-1 |#2| |#1|)))) (-1045) (-1154)) (T -603)) +((-1244 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) (-1244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *1 (-603 *5 *6)))) (-1244 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) (-1244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 *5)) (-4 *6 (-1045)) (-4 *5 (-1154)) (-5 *2 (-1 *5 *6)) (-5 *1 (-603 *6 *5)))) (-1244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-603 *5 *6))))) +(-10 -7 (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) |#2|)) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| |#2|)) (-15 -1244 ((-1 |#2| |#1|) (-606 |#1|) (-606 |#2|) (-1 |#2| |#1|))) (-15 -1244 (|#2| (-606 |#1|) (-606 |#2|) |#1| (-1 |#2| |#1|)))) +((-2547 (((-606 |#2|) (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|) 16)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|) 18)) (-1612 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 13))) +(((-604 |#1| |#2|) (-10 -7 (-15 -2547 ((-606 |#2|) (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1154) (-1154)) (T -604)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-606 *6)) (-5 *1 (-604 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-604 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-606 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-606 *5)) (-5 *1 (-604 *6 *5))))) +(-10 -7 (-15 -2547 ((-606 |#2|) (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-606 |#1|) |#2|)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) +((-1612 (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 13))) +(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)))) (-1154) (-1154) (-1154)) (T -605)) +((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-606 *8)) (-5 *1 (-605 *6 *7 *8))))) +(-10 -7 (-15 -1612 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) $) NIL (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-1543 (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1566 (($ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "rest" $) NIL (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3114 (($ $ $) 32 (|has| |#1| (-1045)))) (-3101 (($ $ $) 34 (|has| |#1| (-1045)))) (-1326 (($ $ $) 37 (|has| |#1| (-1045)))) (-3435 (($ (-1 (-111) |#1|) $) NIL)) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3200 (($ $) NIL) (($ $ (-731)) NIL)) (-1376 (($ $) NIL (|has| |#1| (-1045)))) (-3221 (($ $) 31 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) NIL (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) NIL)) (-2355 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-2299 (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045))) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2902 (((-111) $) 9)) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-4120 (($) 7)) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1646 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-1470 (($ $ $) NIL (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1285 (($ |#1|) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-3499 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1492 (((-111) $) NIL)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) 36) ((|#1| $ (-537) |#1|) NIL)) (-2364 (((-537) $ $) NIL)) (-3282 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-3335 (((-111) $) NIL)) (-3136 (($ $) NIL)) (-3743 (($ $) NIL (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 45 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-1683 (($ |#1| $) 10)) (-3115 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3434 (($ $ $) 30) (($ |#1| $) NIL) (($ (-606 $)) NIL) (($ $ |#1|) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2203 (($ $ $) 11)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1379 (((-1100) $) 26 (|has| |#1| (-788))) (((-1100) $ (-111)) 27 (|has| |#1| (-788))) (((-1205) (-782) $) 28 (|has| |#1| (-788))) (((-1205) (-782) $ (-111)) 29 (|has| |#1| (-788)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-606 |#1|) (-13 (-627 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -2902 ((-111) $)) (-15 -1683 ($ |#1| $)) (-15 -2203 ($ $ $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3114 ($ $ $)) (-15 -3101 ($ $ $)) (-15 -1326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) (-1154)) (T -606)) +((-4120 (*1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-606 *3)) (-4 *3 (-1154)))) (-1683 (*1 *1 *2 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) (-2203 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) (-3114 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)))) (-3101 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)))) (-1326 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) +(-13 (-627 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -2902 ((-111) $)) (-15 -1683 ($ |#1| $)) (-15 -2203 ($ $ $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3114 ($ $ $)) (-15 -3101 ($ $ $)) (-15 -1326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11) (((-1122) $) NIL) ((|#1| $) 8)) (-2244 (((-111) $ $) NIL))) +(((-607 |#1|) (-13 (-1029) (-579 |#1|)) (-1045)) (T -607)) +NIL +(-13 (-1029) (-579 |#1|)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3207 (($ |#1| |#1| $) 43)) (-2506 (((-111) $ (-731)) NIL)) (-3435 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-1376 (($ $) 45)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) 52 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 9 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 37)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 46)) (-3499 (($ |#1| $) 26) (($ |#1| $ (-731)) 42)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1599 ((|#1| $) 48)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 21)) (-3425 (($) 25)) (-2752 (((-111) $) 50)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 59)) (-1341 (($) 23) (($ (-606 |#1|)) 18)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) 56 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 19)) (-3996 (((-513) $) 34 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-2341 (((-816) $) 14 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 22)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 61 (|has| |#1| (-1045)))) (-2258 (((-731) $) 16 (|has| $ (-6 -4300))))) +(((-608 |#1|) (-13 (-655 |#1|) (-10 -8 (-6 -4300) (-15 -2752 ((-111) $)) (-15 -3207 ($ |#1| |#1| $)))) (-1045)) (T -608)) +((-2752 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-608 *3)) (-4 *3 (-1045)))) (-3207 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1045))))) +(-13 (-655 |#1|) (-10 -8 (-6 -4300) (-15 -2752 ((-111) $)) (-15 -3207 ($ |#1| |#1| $)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23))) +(((-609 |#1|) (-134) (-1005)) (T -609)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1005))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3006 (((-721) $) 15)) (-3392 (($ $ |#1|) 56)) (-4106 (($ $) 32)) (-1828 (($ $) 31)) (-3154 (((-3 |#1| "failed") $) 48)) (-2523 ((|#1| $) NIL)) (-3930 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-1362 (((-806) $ (-1 (-806) (-806) (-806)) (-1 (-806) (-806) (-806)) (-531)) 46)) (-3616 ((|#1| $ (-531)) 30)) (-4173 ((|#2| $ (-531)) 29)) (-2483 (($ (-1 |#1| |#1|) $) 34)) (-3080 (($ (-1 |#2| |#2|) $) 38)) (-4080 (($) 10)) (-1905 (($ |#1| |#2|) 22)) (-1962 (($ (-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|)))) 23)) (-2621 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $) 13)) (-2683 (($ |#1| $) 57)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2105 (((-110) $ $) 60)) (-2265 (((-806) $) 19) (($ |#1|) 16)) (-2148 (((-110) $ $) 25))) -(((-602 |#1| |#2| |#3|) (-13 (-1030) (-977 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-1 (-806) (-806) (-806)) (-1 (-806) (-806) (-806)) (-531))) (-15 -2621 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $)) (-15 -1905 ($ |#1| |#2|)) (-15 -1962 ($ (-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))))) (-15 -4173 (|#2| $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -1828 ($ $)) (-15 -4106 ($ $)) (-15 -3006 ((-721) $)) (-15 -4080 ($)) (-15 -3392 ($ $ |#1|)) (-15 -2683 ($ |#1| $)) (-15 -3930 ($ |#1| |#2| $)) (-15 -3930 ($ $ $)) (-15 -2105 ((-110) $ $)) (-15 -3080 ($ (-1 |#2| |#2|) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)))) (-1030) (-23) |#2|) (T -602)) -((-1362 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-806) (-806) (-806))) (-5 *4 (-531)) (-5 *2 (-806)) (-5 *1 (-602 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-23)) (-14 *7 *6))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))) (-1905 (*1 *1 *2 *3) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-602 *3 *4 *5)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-23)) (-5 *1 (-602 *4 *2 *5)) (-4 *4 (-1030)) (-14 *5 *2))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-1030)) (-5 *1 (-602 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1828 (*1 *1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))) (-4080 (*1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3392 (*1 *1 *1 *2) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-2683 (*1 *1 *2 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3930 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3930 (*1 *1 *1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-2105 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-602 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1030) (-977 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-1 (-806) (-806) (-806)) (-1 (-806) (-806) (-806)) (-531))) (-15 -2621 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $)) (-15 -1905 ($ |#1| |#2|)) (-15 -1962 ($ (-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))))) (-15 -4173 (|#2| $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -1828 ($ $)) (-15 -4106 ($ $)) (-15 -3006 ((-721) $)) (-15 -4080 ($)) (-15 -3392 ($ $ |#1|)) (-15 -2683 ($ |#1| $)) (-15 -3930 ($ |#1| |#2| $)) (-15 -3930 ($ $ $)) (-15 -2105 ((-110) $ $)) (-15 -3080 ($ (-1 |#2| |#2|) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)))) -((-2327 (((-531) $) 24)) (-4059 (($ |#2| $ (-531)) 22) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) 12)) (-3059 (((-110) (-531) $) 15)) (-3536 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-598 $)) NIL))) -(((-603 |#1| |#2|) (-10 -8 (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2327 ((-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -3059 ((-110) (-531) |#1|))) (-604 |#2|) (-1138)) (T -603)) -NIL -(-10 -8 (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2327 ((-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -3059 ((-110) (-531) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-604 |#1|) (-133) (-1138)) (T -604)) -((-3010 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-3536 (*1 *1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-4059 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-4059 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1151 (-531))) (|has| *1 (-6 -4274)) (-4 *1 (-604 *2)) (-4 *2 (-1138))))) -(-13 (-564 (-531) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3010 ($ (-721) |t#1|)) (-15 -3536 ($ $ |t#1|)) (-15 -3536 ($ |t#1| $)) (-15 -3536 ($ $ $)) (-15 -3536 ($ (-598 $))) (-15 -3261 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1785 ($ $ (-1151 (-531)))) (-15 -1723 ($ $ (-531))) (-15 -1723 ($ $ (-1151 (-531)))) (-15 -4059 ($ |t#1| $ (-531))) (-15 -4059 ($ $ $ (-531))) (IF (|has| $ (-6 -4274)) (-15 -2454 (|t#1| $ (-1151 (-531)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-1871 (((-3 |#2| "failed") |#3| |#2| (-1102) |#2| (-598 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) "failed") |#3| |#2| (-1102)) 44))) -(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) "failed") |#3| |#2| (-1102))) (-15 -1871 ((-3 |#2| "failed") |#3| |#2| (-1102) |#2| (-598 |#2|)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902)) (-609 |#2|)) (T -605)) -((-1871 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *2)) (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-605 *6 *2 *3)) (-4 *3 (-609 *2)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1102)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-4 *4 (-13 (-29 *6) (-1124) (-902))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4)))) (-5 *1 (-605 *6 *4 *3)) (-4 *3 (-609 *4))))) -(-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) "failed") |#3| |#2| (-1102))) (-15 -1871 ((-3 |#2| "failed") |#3| |#2| (-1102) |#2| (-598 |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3723 (($ $) NIL (|has| |#1| (-344)))) (-3243 (($ $ $) NIL (|has| |#1| (-344)))) (-1496 (($ $ (-721)) NIL (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) NIL)) (-4239 (($ $ $) NIL (|has| |#1| (-344)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) NIL)) (-2661 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-606 |#1|) (-609 |#1|) (-216)) (T -606)) -NIL -(-609 |#1|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3723 (($ $) NIL (|has| |#1| (-344)))) (-3243 (($ $ $) NIL (|has| |#1| (-344)))) (-1496 (($ $ (-721)) NIL (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4239 (($ $ $) NIL (|has| |#1| (-344)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) NIL)) (-2661 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-607 |#1| |#2|) (-13 (-609 |#1|) (-268 |#2| |#2|)) (-216) (-13 (-601 |#1|) (-10 -8 (-15 -3352 ($ $))))) (T -607)) -NIL -(-13 (-609 |#1|) (-268 |#2| |#2|)) -((-3723 (($ $) 26)) (-2661 (($ $) 24)) (-4020 (($) 12))) -(((-608 |#1| |#2|) (-10 -8 (-15 -3723 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -4020 (|#1|))) (-609 |#2|) (-986)) (T -608)) -NIL -(-10 -8 (-15 -3723 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -4020 (|#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3723 (($ $) 80 (|has| |#1| (-344)))) (-3243 (($ $ $) 82 (|has| |#1| (-344)))) (-1496 (($ $ (-721)) 81 (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2089 (($ $ $) 43 (|has| |#1| (-344)))) (-2643 (($ $ $) 44 (|has| |#1| (-344)))) (-1866 (($ $ $) 46 (|has| |#1| (-344)))) (-3812 (($ $ $) 41 (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 40 (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 45 (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) 72 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 70 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 67)) (-2523 (((-531) $) 73 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 71 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 66)) (-2500 (($ $) 62)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 53 (|has| |#1| (-432)))) (-3481 (((-110) $) 30)) (-2669 (($ |#1| (-721)) 60)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 56 (|has| |#1| (-523)))) (-3005 (((-721) $) 64)) (-3215 (($ $ $) 50 (|has| |#1| (-344)))) (-3351 (($ $ $) 51 (|has| |#1| (-344)))) (-2321 (($ $ $) 39 (|has| |#1| (-344)))) (-1884 (($ $ $) 48 (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 47 (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 52 (|has| |#1| (-344)))) (-2475 ((|#1| $) 63)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) 85)) (-4239 (($ $ $) 79 (|has| |#1| (-344)))) (-2012 (((-721) $) 65)) (-1767 ((|#1| $) 54 (|has| |#1| (-432)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 69 (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 68)) (-2708 (((-598 |#1|) $) 59)) (-3188 ((|#1| $ (-721)) 61)) (-2284 (((-721)) 28)) (-2979 ((|#1| $ |#1| |#1|) 58)) (-2661 (($ $) 83)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($) 84)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-609 |#1|) (-133) (-986)) (T -609)) -((-4020 (*1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)))) (-2661 (*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)))) (-3243 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-609 *3)) (-4 *3 (-986)) (-4 *3 (-344)))) (-3723 (*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-4239 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(-13 (-799 |t#1|) (-268 |t#1| |t#1|) (-10 -8 (-15 -4020 ($)) (-15 -2661 ($ $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -3243 ($ $ $)) (-15 -1496 ($ $ (-721))) (-15 -3723 ($ $)) (-15 -4239 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-268 |#1| |#1|) . T) ((-392 |#1|) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-799 |#1|) . T)) -((-2371 (((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))) 74 (|has| |#1| (-27)))) (-2552 (((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))) 73 (|has| |#1| (-27))) (((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 17))) -(((-610 |#1| |#2|) (-10 -7 (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)))) (-15 -2371 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))))) |%noBranch|)) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -610)) -((-2371 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-606 (-388 *6)))) (-5 *1 (-610 *5 *6)) (-5 *3 (-606 (-388 *6)))))) -(-10 -7 (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)))) (-15 -2371 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))))) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3723 (($ $) NIL (|has| |#1| (-344)))) (-3243 (($ $ $) 28 (|has| |#1| (-344)))) (-1496 (($ $ (-721)) 31 (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) 24)) (-4239 (($ $ $) 33 (|has| |#1| (-344)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) 20) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) 23)) (-2661 (($ $) NIL)) (-3035 (($) 21 T CONST)) (-3050 (($) 8 T CONST)) (-4020 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-611 |#1| |#2|) (-609 |#1|) (-986) (-1 |#1| |#1|)) (T -611)) -NIL -(-609 |#1|) -((-3243 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1496 ((|#2| |#2| (-721) (-1 |#1| |#1|)) 40)) (-4239 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-612 |#1| |#2|) (-10 -7 (-15 -3243 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1496 (|#2| |#2| (-721) (-1 |#1| |#1|))) (-15 -4239 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-344) (-609 |#1|)) (T -612)) -((-4239 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2)) (-4 *2 (-609 *4)))) (-1496 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-612 *5 *2)) (-4 *2 (-609 *5)))) (-3243 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2)) (-4 *2 (-609 *4))))) -(-10 -7 (-15 -3243 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1496 (|#2| |#2| (-721) (-1 |#1| |#1|))) (-15 -4239 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-1868 (($ $ $) 9))) -(((-613 |#1|) (-10 -8 (-15 -1868 (|#1| |#1| |#1|))) (-614)) (T -613)) -NIL -(-10 -8 (-15 -1868 (|#1| |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-1813 (($ $) 10)) (-1868 (($ $ $) 8)) (-2148 (((-110) $ $) 6)) (-1854 (($ $ $) 9))) -(((-614) (-133)) (T -614)) -((-1813 (*1 *1 *1) (-4 *1 (-614))) (-1854 (*1 *1 *1 *1) (-4 *1 (-614))) (-1868 (*1 *1 *1 *1) (-4 *1 (-614)))) -(-13 (-99) (-10 -8 (-15 -1813 ($ $)) (-15 -1854 ($ $ $)) (-15 -1868 ($ $ $)))) -(((-99) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 15)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1840 ((|#1| $) 21)) (-4103 (($ $ $) NIL (|has| |#1| (-741)))) (-1241 (($ $ $) NIL (|has| |#1| (-741)))) (-1521 (((-1085) $) 46)) (-2529 (((-1049) $) NIL)) (-1853 ((|#3| $) 22)) (-2265 (((-806) $) 42)) (-3035 (($) 10 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-741)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-741)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL (|has| |#1| (-741)))) (-2174 (((-110) $ $) 24 (|has| |#1| (-741)))) (-2263 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2250 (($ $) 17) (($ $ $) NIL)) (-2237 (($ $ $) 27)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-13 (-668 |#2|) (-10 -8 (IF (|has| |#1| (-741)) (-6 (-741)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $)))) (-668 |#2|) (-162) (|SubsetCategory| (-677) |#2|)) (T -615)) -((-2263 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4)) (-4 *2 (|SubsetCategory| (-677) *4)))) (-2263 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-615 *2 *4 *3)) (-4 *2 (-668 *4)) (-4 *3 (|SubsetCategory| (-677) *4)))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-668 *3)) (-5 *1 (-615 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-677) *3)))) (-1853 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4)) (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4))))) -(-13 (-668 |#2|) (-10 -8 (IF (|has| |#1| (-741)) (-6 (-741)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $)))) -((-4248 (((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|)) 33))) -(((-616 |#1|) (-10 -7 (-15 -4248 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|)))) (-852)) (T -616)) -((-4248 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *4))) (-5 *3 (-1098 *4)) (-4 *4 (-852)) (-5 *1 (-616 *4))))) -(-10 -7 (-15 -4248 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 82)) (-2879 (($ $ (-721)) 90)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2489 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 48)) (-3154 (((-3 (-624 |#1|) "failed") $) NIL)) (-2523 (((-624 |#1|) $) NIL)) (-2500 (($ $) 89)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-624 |#1|) |#2|) 68)) (-4104 (($ $) 86)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2931 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 47)) (-3226 (((-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2462 (((-624 |#1|) $) NIL)) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-4115 (($ $ |#1| $) 30) (($ $ (-598 |#1|) (-598 $)) 32)) (-2012 (((-721) $) 88)) (-2274 (($ $ $) 20) (($ (-624 |#1|) (-624 |#1|)) 77) (($ (-624 |#1|) $) 75) (($ $ (-624 |#1|)) 76)) (-2265 (((-806) $) NIL) (($ |#1|) 74) (((-1197 |#1| |#2|) $) 58) (((-1206 |#1| |#2|) $) 41) (($ (-624 |#1|)) 25)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-624 |#1|)) NIL)) (-2005 ((|#2| (-1206 |#1| |#2|) $) 43)) (-3035 (($) 23 T CONST)) (-2400 (((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2802 (((-3 $ "failed") (-1197 |#1| |#2|)) 60)) (-2043 (($ (-624 |#1|)) 14)) (-2148 (((-110) $ $) 44)) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) 66) (($ $ $) NIL)) (-2237 (($ $ $) 29)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-624 |#1|)) NIL))) -(((-617 |#1| |#2|) (-13 (-355 |#1| |#2|) (-363 |#2| (-624 |#1|)) (-10 -8 (-15 -2802 ((-3 $ "failed") (-1197 |#1| |#2|))) (-15 -2274 ($ (-624 |#1|) (-624 |#1|))) (-15 -2274 ($ (-624 |#1|) $)) (-15 -2274 ($ $ (-624 |#1|))))) (-797) (-162)) (T -617)) -((-2802 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *1 (-617 *3 *4)))) (-2274 (*1 *1 *2 *2) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) (-4 *4 (-162)))) (-2274 (*1 *1 *2 *1) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) (-4 *4 (-162)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) (-4 *4 (-162))))) -(-13 (-355 |#1| |#2|) (-363 |#2| (-624 |#1|)) (-10 -8 (-15 -2802 ((-3 $ "failed") (-1197 |#1| |#2|))) (-15 -2274 ($ (-624 |#1|) (-624 |#1|))) (-15 -2274 ($ (-624 |#1|) $)) (-15 -2274 ($ $ (-624 |#1|))))) -((-3202 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-2375 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-2245 (($ (-1 (-110) |#2|) $) 28)) (-4106 (($ $) 56)) (-2705 (($ $) 64)) (-2717 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-1760 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1976 (((-531) |#2| $ (-531)) 61) (((-531) |#2| $) NIL) (((-531) (-1 (-110) |#2|) $) 47)) (-3010 (($ (-721) |#2|) 54)) (-3611 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-3508 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-3261 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2907 (($ |#2|) 15)) (-3944 (($ $ $ (-531)) 36) (($ |#2| $ (-531)) 34)) (-4190 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-1551 (($ $ (-1151 (-531))) 44) (($ $ (-531)) 38)) (-2162 (($ $ $ (-531)) 60)) (-2480 (($ $) 58)) (-2174 (((-110) $ $) 66))) -(((-618 |#1| |#2|) (-10 -8 (-15 -2907 (|#1| |#2|)) (-15 -1551 (|#1| |#1| (-531))) (-15 -1551 (|#1| |#1| (-1151 (-531)))) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3944 (|#1| |#2| |#1| (-531))) (-15 -3944 (|#1| |#1| |#1| (-531))) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -3611 (|#1| |#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -4106 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3010 (|#1| (-721) |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|))) (-619 |#2|) (-1138)) (T -618)) -NIL -(-10 -8 (-15 -2907 (|#1| |#2|)) (-15 -1551 (|#1| |#1| (-531))) (-15 -1551 (|#1| |#1| (-1151 (-531)))) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3944 (|#1| |#2| |#1| (-531))) (-15 -3944 (|#1| |#1| |#1| (-531))) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -3611 (|#1| |#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -4106 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3010 (|#1| (-721) |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-3137 (((-1189) $ (-531) (-531)) 97 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-3202 (((-110) $) 142 (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-2375 (($ $) 146 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4274)))) (-1332 (($ $) 141 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 117 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 86 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) 129)) (-2177 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4273)))) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-4106 (($ $) 144 (|has| $ (-6 -4274)))) (-1828 (($ $) 134)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-2705 (($ $) 131 (|has| |#1| (-1030)))) (-3086 (($ $) 99 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 130 (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) 125)) (-2283 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4273))) (($ |#1| $) 100 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2693 ((|#1| $ (-531) |#1|) 85 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 87)) (-2141 (((-110) $) 83)) (-1976 (((-531) |#1| $ (-531)) 139 (|has| |#1| (-1030))) (((-531) |#1| $) 138 (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) 137)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) 108)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 95 (|has| (-531) (-797)))) (-4103 (($ $ $) 147 (|has| |#1| (-797)))) (-3611 (($ $ $) 132 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-3508 (($ $ $) 140 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 94 (|has| (-531) (-797)))) (-1241 (($ $ $) 148 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2907 (($ |#1|) 122)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-3944 (($ $ $ (-531)) 127) (($ |#1| $ (-531)) 126)) (-4059 (($ $ $ (-531)) 116) (($ |#1| $ (-531)) 115)) (-3765 (((-598 (-531)) $) 92)) (-3059 (((-110) (-531) $) 91)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-3742 (($ $ |#1|) 96 (|has| $ (-6 -4274)))) (-2765 (((-110) $) 84)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 90)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1151 (-531))) 112) ((|#1| $ (-531)) 89) ((|#1| $ (-531) |#1|) 88)) (-2357 (((-531) $ $) 44)) (-1551 (($ $ (-1151 (-531))) 124) (($ $ (-531)) 123)) (-1723 (($ $ (-1151 (-531))) 114) (($ $ (-531)) 113)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 143 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 98 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 107)) (-1818 (($ $ $) 61) (($ $ |#1|) 60)) (-3536 (($ $ $) 78) (($ |#1| $) 77) (($ (-598 $)) 110) (($ $ |#1|) 109)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 150 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 151 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 149 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 152 (|has| |#1| (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-619 |#1|) (-133) (-1138)) (T -619)) -((-2907 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1138))))) -(-13 (-1076 |t#1|) (-354 |t#1|) (-264 |t#1|) (-10 -8 (-15 -2907 ($ |t#1|)))) -(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-264 |#1|) . T) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-797) |has| |#1| (-797)) ((-951 |#1|) . T) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1076 |#1|) . T) ((-1138) . T) ((-1172 |#1|) . T)) -((-1871 (((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-598 (-598 |#1|)) (-598 (-1184 |#1|))) 22) (((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-639 |#1|) (-598 (-1184 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-598 (-598 |#1|)) (-1184 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)) 14)) (-2277 (((-721) (-639 |#1|) (-1184 |#1|)) 30)) (-2197 (((-3 (-1184 |#1|) "failed") (-639 |#1|) (-1184 |#1|)) 24)) (-1753 (((-110) (-639 |#1|) (-1184 |#1|)) 27))) -(((-620 |#1|) (-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|))) (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-598 (-598 |#1|)) (-1184 |#1|))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-639 |#1|) (-598 (-1184 |#1|)))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-598 (-598 |#1|)) (-598 (-1184 |#1|)))) (-15 -2197 ((-3 (-1184 |#1|) "failed") (-639 |#1|) (-1184 |#1|))) (-15 -1753 ((-110) (-639 |#1|) (-1184 |#1|))) (-15 -2277 ((-721) (-639 |#1|) (-1184 |#1|)))) (-344)) (T -620)) -((-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-5 *2 (-721)) (-5 *1 (-620 *5)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-5 *2 (-110)) (-5 *1 (-620 *5)))) (-2197 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1184 *4)) (-5 *3 (-639 *4)) (-4 *4 (-344)) (-5 *1 (-620 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344)) (-5 *2 (-598 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5)))))) (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-4 *5 (-344)) (-5 *2 (-598 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5)))))) (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5))))) (-5 *1 (-620 *5)) (-5 *4 (-1184 *5)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5))))) (-5 *1 (-620 *5)) (-5 *4 (-1184 *5))))) -(-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|))) (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-598 (-598 |#1|)) (-1184 |#1|))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-639 |#1|) (-598 (-1184 |#1|)))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-598 (-598 |#1|)) (-598 (-1184 |#1|)))) (-15 -2197 ((-3 (-1184 |#1|) "failed") (-639 |#1|) (-1184 |#1|))) (-15 -1753 ((-110) (-639 |#1|) (-1184 |#1|))) (-15 -2277 ((-721) (-639 |#1|) (-1184 |#1|)))) -((-1871 (((-598 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|)))) |#4| (-598 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|) 45)) (-2277 (((-721) |#4| |#3|) 17)) (-2197 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1753 (((-110) |#4| |#3|) 13))) -(((-621 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|)) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|)))) |#4| (-598 |#3|))) (-15 -2197 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1753 ((-110) |#4| |#3|)) (-15 -2277 ((-721) |#4| |#3|))) (-344) (-13 (-354 |#1|) (-10 -7 (-6 -4274))) (-13 (-354 |#1|) (-10 -7 (-6 -4274))) (-637 |#1| |#2| |#3|)) (T -621)) -((-2277 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-721)) (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) (-1753 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-110)) (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) (-2197 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4274)))) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))) (-5 *1 (-621 *4 *5 *2 *3)) (-4 *3 (-637 *4 *5 *2)))) (-1871 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-598 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3523 (-598 *7))))) (-5 *1 (-621 *5 *6 *7 *3)) (-5 *4 (-598 *7)) (-4 *3 (-637 *5 *6 *7)))) (-1871 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4))))) -(-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|)) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|)))) |#4| (-598 |#3|))) (-15 -2197 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1753 ((-110) |#4| |#3|)) (-15 -2277 ((-721) |#4| |#3|))) -((-4113 (((-2 (|:| |particular| (-3 (-1184 (-388 |#4|)) "failed")) (|:| -3523 (-598 (-1184 (-388 |#4|))))) (-598 |#4|) (-598 |#3|)) 45))) -(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4113 ((-2 (|:| |particular| (-3 (-1184 (-388 |#4|)) "failed")) (|:| -3523 (-598 (-1184 (-388 |#4|))))) (-598 |#4|) (-598 |#3|)))) (-523) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -622)) -((-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *7)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 (-388 *8)) "failed")) (|:| -3523 (-598 (-1184 (-388 *8)))))) (-5 *1 (-622 *5 *6 *7 *8))))) -(-10 -7 (-15 -4113 ((-2 (|:| |particular| (-3 (-1184 (-388 |#4|)) "failed")) (|:| -3523 (-598 (-1184 (-388 |#4|))))) (-598 |#4|) (-598 |#3|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (|has| |#2| (-523)))) (-1354 ((|#2| $) NIL)) (-2719 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#2|))) NIL) (((-1184 (-639 |#2|)) (-1184 $)) NIL)) (-1878 (((-110) $) NIL)) (-2022 (((-1184 $)) 37)) (-4058 (((-110) $ (-721)) NIL)) (-3264 (($ |#2|) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) NIL (|has| |#2| (-289)))) (-4011 (((-223 |#1| |#2|) $ (-531)) NIL)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#2| (-523)))) (-2783 (((-3 $ "failed")) NIL (|has| |#2| (-523)))) (-3939 (((-639 |#2|)) NIL) (((-639 |#2|) (-1184 $)) NIL)) (-1668 ((|#2| $) NIL)) (-2264 (((-639 |#2|) $) NIL) (((-639 |#2|) $ (-1184 $)) NIL)) (-1387 (((-3 $ "failed") $) NIL (|has| |#2| (-523)))) (-3668 (((-1098 (-895 |#2|))) NIL (|has| |#2| (-344)))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#2| $) NIL)) (-3415 (((-1098 |#2|) $) NIL (|has| |#2| (-523)))) (-3960 ((|#2|) NIL) ((|#2| (-1184 $)) NIL)) (-3586 (((-1098 |#2|) $) NIL)) (-1437 (((-110)) NIL)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) NIL)) (-2767 (($ (-1184 |#2|)) NIL) (($ (-1184 |#2|) (-1184 $)) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2277 (((-721) $) NIL (|has| |#2| (-523))) (((-864)) 38)) (-2627 ((|#2| $ (-531) (-531)) NIL)) (-2629 (((-110)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL)) (-4091 (((-721) $) NIL (|has| |#2| (-523)))) (-3001 (((-598 (-223 |#1| |#2|)) $) NIL (|has| |#2| (-523)))) (-1548 (((-721) $) NIL)) (-2790 (((-110)) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#2| $) NIL (|has| |#2| (-6 (-4275 "*"))))) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#2|))) NIL)) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3924 (((-598 (-598 |#2|)) $) NIL)) (-3769 (((-110)) NIL)) (-2298 (((-110)) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#2| (-523)))) (-2816 (((-3 $ "failed")) NIL (|has| |#2| (-523)))) (-1950 (((-639 |#2|)) NIL) (((-639 |#2|) (-1184 $)) NIL)) (-1807 ((|#2| $) NIL)) (-3405 (((-639 |#2|) $) NIL) (((-639 |#2|) $ (-1184 $)) NIL)) (-2234 (((-3 $ "failed") $) NIL (|has| |#2| (-523)))) (-2280 (((-1098 (-895 |#2|))) NIL (|has| |#2| (-344)))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#2| $) NIL)) (-1480 (((-1098 |#2|) $) NIL (|has| |#2| (-523)))) (-3579 ((|#2|) NIL) ((|#2| (-1184 $)) NIL)) (-1875 (((-1098 |#2|) $) NIL)) (-2239 (((-110)) NIL)) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL)) (-1561 (((-110)) NIL)) (-3036 (((-110)) NIL)) (-2147 (((-3 $ "failed") $) NIL (|has| |#2| (-344)))) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) NIL)) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) (-531) |#2|) NIL) ((|#2| $ (-531) (-531)) 22) ((|#2| $ (-531)) NIL)) (-3352 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2806 ((|#2| $) NIL)) (-3223 (($ (-598 |#2|)) NIL)) (-1439 (((-110) $) NIL)) (-2823 (((-223 |#1| |#2|) $) NIL)) (-3253 ((|#2| $) NIL (|has| |#2| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-3348 (((-639 |#2|) (-1184 $)) NIL) (((-1184 |#2|) $) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $ (-1184 $)) 25)) (-3318 (($ (-1184 |#2|)) NIL) (((-1184 |#2|) $) NIL)) (-2570 (((-598 (-895 |#2|))) NIL) (((-598 (-895 |#2|)) (-1184 $)) NIL)) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL)) (-3431 (((-223 |#1| |#2|) $ (-531)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) NIL) (((-639 |#2|) $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) 36)) (-2273 (((-598 (-1184 |#2|))) NIL (|has| |#2| (-523)))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL)) (-2979 (($ (-639 |#2|) $) NIL)) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL)) (-1964 (((-110)) NIL)) (-2819 (((-110)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#2| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) NIL) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-623 |#1| |#2|) (-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-398 |#2|)) (-864) (-162)) (T -623)) -NIL -(-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-398 |#2|)) -((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) NIL)) (-3157 (($ $) 52)) (-1922 (((-110) $) NIL)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2268 (((-3 $ "failed") (-769 |#1|)) 23)) (-2393 (((-110) (-769 |#1|)) 15)) (-3037 (($ (-769 |#1|)) 24)) (-4122 (((-110) $ $) 30)) (-2428 (((-864) $) 37)) (-3144 (($ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2552 (((-598 $) (-769 |#1|)) 17)) (-2265 (((-806) $) 43) (($ |#1|) 34) (((-769 |#1|) $) 39) (((-628 |#1|) $) 44)) (-1399 (((-57 (-598 $)) (-598 |#1|) (-864)) 57)) (-1315 (((-598 $) (-598 |#1|) (-864)) 60)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 53)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 38))) -(((-624 |#1|) (-13 (-797) (-977 |#1|) (-10 -8 (-15 -1922 ((-110) $)) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ((-628 |#1|) $)) (-15 -2552 ((-598 $) (-769 |#1|))) (-15 -2393 ((-110) (-769 |#1|))) (-15 -3037 ($ (-769 |#1|))) (-15 -2268 ((-3 $ "failed") (-769 |#1|))) (-15 -3798 ((-598 |#1|) $)) (-15 -1399 ((-57 (-598 $)) (-598 |#1|) (-864))) (-15 -1315 ((-598 $) (-598 |#1|) (-864))))) (-797)) (T -624)) -((-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-3144 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-628 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-624 *4))) (-5 *1 (-624 *4)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-110)) (-5 *1 (-624 *4)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3)))) (-2268 (*1 *1 *2) (|partial| -12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797)) (-5 *2 (-57 (-598 (-624 *5)))) (-5 *1 (-624 *5)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797)) (-5 *2 (-598 (-624 *5))) (-5 *1 (-624 *5))))) -(-13 (-797) (-977 |#1|) (-10 -8 (-15 -1922 ((-110) $)) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ((-628 |#1|) $)) (-15 -2552 ((-598 $) (-769 |#1|))) (-15 -2393 ((-110) (-769 |#1|))) (-15 -3037 ($ (-769 |#1|))) (-15 -2268 ((-3 $ "failed") (-769 |#1|))) (-15 -3798 ((-598 |#1|) $)) (-15 -1399 ((-57 (-598 $)) (-598 |#1|) (-864))) (-15 -1315 ((-598 $) (-598 |#1|) (-864))))) -((-3482 ((|#2| $) 76)) (-2072 (($ $) 96)) (-4058 (((-110) $ (-721)) 26)) (-3062 (($ $) 85) (($ $ (-721)) 88)) (-2141 (((-110) $) 97)) (-1555 (((-598 $) $) 72)) (-1478 (((-110) $ $) 71)) (-3280 (((-110) $ (-721)) 24)) (-3804 (((-531) $) 46)) (-2327 (((-531) $) 45)) (-3332 (((-110) $ (-721)) 22)) (-2672 (((-110) $) 74)) (-2309 ((|#2| $) 89) (($ $ (-721)) 92)) (-4059 (($ $ $ (-531)) 62) (($ |#2| $ (-531)) 61)) (-3765 (((-598 (-531)) $) 44)) (-3059 (((-110) (-531) $) 42)) (-3046 ((|#2| $) NIL) (($ $ (-721)) 84)) (-1846 (($ $ (-531)) 100)) (-2765 (((-110) $) 99)) (-2294 (((-110) (-1 (-110) |#2|) $) 32)) (-3163 (((-598 |#2|) $) 33)) (-1785 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1151 (-531))) 58) ((|#2| $ (-531)) 40) ((|#2| $ (-531) |#2|) 41)) (-2357 (((-531) $ $) 70)) (-1723 (($ $ (-1151 (-531))) 57) (($ $ (-531)) 51)) (-2930 (((-110) $) 66)) (-1958 (($ $) 81)) (-3124 (((-721) $) 80)) (-2874 (($ $) 79)) (-2274 (($ (-598 |#2|)) 37)) (-3437 (($ $) 101)) (-3495 (((-598 $) $) 69)) (-2910 (((-110) $ $) 68)) (-2060 (((-110) (-1 (-110) |#2|) $) 31)) (-2148 (((-110) $ $) 18)) (-2167 (((-721) $) 29))) -(((-625 |#1| |#2|) (-10 -8 (-15 -3437 (|#1| |#1|)) (-15 -1846 (|#1| |#1| (-531))) (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3163 ((-598 |#2|) |#1|)) (-15 -3059 ((-110) (-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -2327 ((-531) |#1|)) (-15 -3804 ((-531) |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -2357 ((-531) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721)))) (-626 |#2|) (-1138)) (T -625)) -NIL -(-10 -8 (-15 -3437 (|#1| |#1|)) (-15 -1846 (|#1| |#1| (-531))) (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3163 ((-598 |#2|) |#1|)) (-15 -3059 ((-110) (-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -2327 ((-531) |#1|)) (-15 -3804 ((-531) |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -2357 ((-531) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-3137 (((-1189) $ (-531) (-531)) 97 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 117 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 86 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 102)) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-1969 (($ $) 124)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-3086 (($ $) 99 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 100 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 103)) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2693 ((|#1| $ (-531) |#1|) 85 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 87)) (-2141 (((-110) $) 83)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3971 (((-721) $) 123)) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) 108)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 95 (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 94 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1630 (($ $) 126)) (-2952 (((-110) $) 127)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-4059 (($ $ $ (-531)) 116) (($ |#1| $ (-531)) 115)) (-3765 (((-598 (-531)) $) 92)) (-3059 (((-110) (-531) $) 91)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-1366 ((|#1| $) 125)) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-3742 (($ $ |#1|) 96 (|has| $ (-6 -4274)))) (-1846 (($ $ (-531)) 122)) (-2765 (((-110) $) 84)) (-3339 (((-110) $) 128)) (-1643 (((-110) $) 129)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 90)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1151 (-531))) 112) ((|#1| $ (-531)) 89) ((|#1| $ (-531) |#1|) 88)) (-2357 (((-531) $ $) 44)) (-1723 (($ $ (-1151 (-531))) 114) (($ $ (-531)) 113)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 98 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 107)) (-1818 (($ $ $) 61 (|has| $ (-6 -4274))) (($ $ |#1|) 60 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 77) (($ (-598 $)) 110) (($ $ |#1|) 109)) (-3437 (($ $) 121)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-626 |#1|) (-133) (-1138)) (T -626)) -((-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) (-2177 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-1630 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) (-3437 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138))))) -(-13 (-1076 |t#1|) (-10 -8 (-15 -2283 ($ (-1 (-110) |t#1|) $)) (-15 -2177 ($ (-1 (-110) |t#1|) $)) (-15 -1643 ((-110) $)) (-15 -3339 ((-110) $)) (-15 -2952 ((-110) $)) (-15 -1630 ($ $)) (-15 -1366 (|t#1| $)) (-15 -1969 ($ $)) (-15 -3971 ((-721) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $)))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1076 |#1|) . T) ((-1138) . T) ((-1172 |#1|) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1266 (($ (-721) (-721) (-721)) 33 (|has| |#1| (-986)))) (-4058 (((-110) $ (-721)) NIL)) (-1773 ((|#1| $ (-721) (-721) (-721) |#1|) 27)) (-4082 (($) NIL T CONST)) (-3930 (($ $ $) 37 (|has| |#1| (-986)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1959 (((-1184 (-721)) $) 9)) (-1791 (($ (-1102) $ $) 22)) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1951 (($ (-721)) 35 (|has| |#1| (-986)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-721) (-721) (-721)) 25)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2274 (($ (-598 (-598 (-598 |#1|)))) 44)) (-2265 (($ (-901 (-901 (-901 |#1|)))) 15) (((-901 (-901 (-901 |#1|))) $) 12) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-627 |#1|) (-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-986)) (PROGN (-15 -1266 ($ (-721) (-721) (-721))) (-15 -1951 ($ (-721))) (-15 -3930 ($ $ $))) |%noBranch|) (-15 -2274 ($ (-598 (-598 (-598 |#1|))))) (-15 -1785 (|#1| $ (-721) (-721) (-721))) (-15 -1773 (|#1| $ (-721) (-721) (-721) |#1|)) (-15 -2265 ($ (-901 (-901 (-901 |#1|))))) (-15 -2265 ((-901 (-901 (-901 |#1|))) $)) (-15 -1791 ($ (-1102) $ $)) (-15 -1959 ((-1184 (-721)) $)))) (-1030)) (T -627)) -((-1266 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030)))) (-3930 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-986)) (-4 *2 (-1030)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-598 *3)))) (-4 *3 (-1030)) (-5 *1 (-627 *3)))) (-1785 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030)))) (-1773 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-4 *3 (-1030)) (-5 *1 (-627 *3)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-5 *1 (-627 *3)) (-4 *3 (-1030)))) (-1791 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-627 *3)) (-4 *3 (-1030)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-1184 (-721))) (-5 *1 (-627 *3)) (-4 *3 (-1030))))) -(-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-986)) (PROGN (-15 -1266 ($ (-721) (-721) (-721))) (-15 -1951 ($ (-721))) (-15 -3930 ($ $ $))) |%noBranch|) (-15 -2274 ($ (-598 (-598 (-598 |#1|))))) (-15 -1785 (|#1| $ (-721) (-721) (-721))) (-15 -1773 (|#1| $ (-721) (-721) (-721) |#1|)) (-15 -2265 ($ (-901 (-901 (-901 |#1|))))) (-15 -2265 ((-901 (-901 (-901 |#1|))) $)) (-15 -1791 ($ (-1102) $ $)) (-15 -1959 ((-1184 (-721)) $)))) -((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) 14)) (-3157 (($ $) 18)) (-1922 (((-110) $) 19)) (-3154 (((-3 |#1| "failed") $) 22)) (-2523 ((|#1| $) 20)) (-3062 (($ $) 36)) (-4104 (($ $) 24)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-4122 (((-110) $ $) 42)) (-2428 (((-864) $) 38)) (-3144 (($ $) 17)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 ((|#1| $) 35)) (-2265 (((-806) $) 31) (($ |#1|) 23) (((-769 |#1|) $) 27)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 12)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 40)) (* (($ $ $) 34))) -(((-628 |#1|) (-13 (-797) (-977 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -3046 (|#1| $)) (-15 -3144 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -4104 ($ $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3157 ($ $)) (-15 -3798 ((-598 |#1|) $)))) (-797)) (T -628)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-3046 (*1 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-3144 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797))))) -(-13 (-797) (-977 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -3046 (|#1| $)) (-15 -3144 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -4104 ($ $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3157 ($ $)) (-15 -3798 ((-598 |#1|) $)))) -((-2848 ((|#1| (-1 |#1| (-721) |#1|) (-721) |#1|) 11)) (-2735 ((|#1| (-1 |#1| |#1|) (-721) |#1|) 9))) -(((-629 |#1|) (-10 -7 (-15 -2735 (|#1| (-1 |#1| |#1|) (-721) |#1|)) (-15 -2848 (|#1| (-1 |#1| (-721) |#1|) (-721) |#1|))) (-1030)) (T -629)) -((-2848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-721) *2)) (-5 *4 (-721)) (-4 *2 (-1030)) (-5 *1 (-629 *2)))) (-2735 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-721)) (-4 *2 (-1030)) (-5 *1 (-629 *2))))) -(-10 -7 (-15 -2735 (|#1| (-1 |#1| |#1|) (-721) |#1|)) (-15 -2848 (|#1| (-1 |#1| (-721) |#1|) (-721) |#1|))) -((-2838 ((|#2| |#1| |#2|) 9)) (-2826 ((|#1| |#1| |#2|) 8))) -(((-630 |#1| |#2|) (-10 -7 (-15 -2826 (|#1| |#1| |#2|)) (-15 -2838 (|#2| |#1| |#2|))) (-1030) (-1030)) (T -630)) -((-2838 (*1 *2 *3 *2) (-12 (-5 *1 (-630 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2826 (*1 *2 *2 *3) (-12 (-5 *1 (-630 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(-10 -7 (-15 -2826 (|#1| |#1| |#2|)) (-15 -2838 (|#2| |#1| |#2|))) -((-1759 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-631 |#1| |#2| |#3|) (-10 -7 (-15 -1759 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1030) (-1030) (-1030)) (T -631)) -((-1759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)) (-5 *1 (-631 *5 *6 *2))))) -(-10 -7 (-15 -1759 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2848 (((-1 |#1| (-721) |#1|) (-1 |#1| (-721) |#1|)) 23)) (-2658 (((-1 |#1|) |#1|) 8)) (-2968 ((|#1| |#1|) 16)) (-2567 (((-598 |#1|) (-1 (-598 |#1|) (-598 |#1|)) (-531)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2265 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-721)) 20))) -(((-632 |#1|) (-10 -7 (-15 -2658 ((-1 |#1|) |#1|)) (-15 -2265 ((-1 |#1|) |#1|)) (-15 -2567 (|#1| (-1 |#1| |#1|))) (-15 -2567 ((-598 |#1|) (-1 (-598 |#1|) (-598 |#1|)) (-531))) (-15 -2968 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-721))) (-15 -2848 ((-1 |#1| (-721) |#1|) (-1 |#1| (-721) |#1|)))) (-1030)) (T -632)) -((-2848 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-721) *3)) (-4 *3 (-1030)) (-5 *1 (-632 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *4 (-1030)) (-5 *1 (-632 *4)))) (-2968 (*1 *2 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-1030)))) (-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-598 *5) (-598 *5))) (-5 *4 (-531)) (-5 *2 (-598 *5)) (-5 *1 (-632 *5)) (-4 *5 (-1030)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-632 *2)) (-4 *2 (-1030)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030)))) (-2658 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030))))) -(-10 -7 (-15 -2658 ((-1 |#1|) |#1|)) (-15 -2265 ((-1 |#1|) |#1|)) (-15 -2567 (|#1| (-1 |#1| |#1|))) (-15 -2567 ((-598 |#1|) (-1 (-598 |#1|) (-598 |#1|)) (-531))) (-15 -2968 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-721))) (-15 -2848 ((-1 |#1| (-721) |#1|) (-1 |#1| (-721) |#1|)))) -((-2755 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2415 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2651 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3267 (((-1 |#2| |#1|) |#2|) 11))) -(((-633 |#1| |#2|) (-10 -7 (-15 -3267 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2651 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2755 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1030) (-1030)) (T -633)) -((-2755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-5 *2 (-1 *5 *4)) (-5 *1 (-633 *4 *5)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1030)) (-5 *2 (-1 *5 *4)) (-5 *1 (-633 *4 *5)) (-4 *4 (-1030)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-5 *2 (-1 *5)) (-5 *1 (-633 *4 *5)))) (-3267 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-633 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-1030))))) -(-10 -7 (-15 -3267 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2651 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2755 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2137 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2011 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1368 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2016 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1635 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -2011 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1368 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2016 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1635 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2137 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1030) (-1030) (-1030)) (T -634)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-1 *7 *5)) (-5 *1 (-634 *5 *6 *7)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-634 *4 *5 *6)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *4 (-1030)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *5 (-1030)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *4 *5 *6)))) (-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1030)) (-4 *4 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *5 *4 *6))))) -(-10 -7 (-15 -2011 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1368 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2016 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1635 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2137 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-1760 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3261 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-635 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3261 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1760 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-986) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|) (-986) (-354 |#5|) (-354 |#5|) (-637 |#5| |#6| |#7|)) (T -635)) -((-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-986)) (-4 *2 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2)) (-4 *9 (-354 *2)) (-5 *1 (-635 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-637 *5 *6 *7)) (-4 *10 (-637 *2 *8 *9)))) (-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-986)) (-4 *8 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-637 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-637 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-986)) (-4 *8 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-637 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-637 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8))))) -(-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3261 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1760 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-4222 (($ (-721) (-721)) 33)) (-1761 (($ $ $) 56)) (-2096 (($ |#3|) 52) (($ $) 53)) (-2719 (((-110) $) 28)) (-3034 (($ $ (-531) (-531)) 58)) (-1987 (($ $ (-531) (-531)) 59)) (-2159 (($ $ (-531) (-531) (-531) (-531)) 63)) (-2870 (($ $) 54)) (-1878 (((-110) $) 14)) (-3680 (($ $ (-531) (-531) $) 64)) (-2454 ((|#2| $ (-531) (-531) |#2|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) 62)) (-3264 (($ (-721) |#2|) 39)) (-2200 (($ (-598 (-598 |#2|))) 37)) (-3924 (((-598 (-598 |#2|)) $) 57)) (-2069 (($ $ $) 55)) (-3609 (((-3 $ "failed") $ |#2|) 91)) (-1785 ((|#2| $ (-531) (-531)) NIL) ((|#2| $ (-531) (-531) |#2|) NIL) (($ $ (-598 (-531)) (-598 (-531))) 61)) (-3223 (($ (-598 |#2|)) 40) (($ (-598 $)) 42)) (-1439 (((-110) $) 24)) (-2265 (($ |#4|) 47) (((-806) $) NIL)) (-2116 (((-110) $) 30)) (-2263 (($ $ |#2|) 93)) (-2250 (($ $ $) 68) (($ $) 71)) (-2237 (($ $ $) 66)) (** (($ $ (-721)) 80) (($ $ (-531)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-531) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-636 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#2|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3680 (|#1| |#1| (-531) (-531) |#1|)) (-15 -2159 (|#1| |#1| (-531) (-531) (-531) (-531))) (-15 -1987 (|#1| |#1| (-531) (-531))) (-15 -3034 (|#1| |#1| (-531) (-531))) (-15 -2454 (|#1| |#1| (-598 (-531)) (-598 (-531)) |#1|)) (-15 -1785 (|#1| |#1| (-598 (-531)) (-598 (-531)))) (-15 -3924 ((-598 (-598 |#2|)) |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -2096 (|#1| |#1|)) (-15 -2096 (|#1| |#3|)) (-15 -2265 (|#1| |#4|)) (-15 -3223 (|#1| (-598 |#1|))) (-15 -3223 (|#1| (-598 |#2|))) (-15 -3264 (|#1| (-721) |#2|)) (-15 -2200 (|#1| (-598 (-598 |#2|)))) (-15 -4222 (|#1| (-721) (-721))) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531)))) (-637 |#2| |#3| |#4|) (-986) (-354 |#2|) (-354 |#2|)) (T -636)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#2|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3680 (|#1| |#1| (-531) (-531) |#1|)) (-15 -2159 (|#1| |#1| (-531) (-531) (-531) (-531))) (-15 -1987 (|#1| |#1| (-531) (-531))) (-15 -3034 (|#1| |#1| (-531) (-531))) (-15 -2454 (|#1| |#1| (-598 (-531)) (-598 (-531)) |#1|)) (-15 -1785 (|#1| |#1| (-598 (-531)) (-598 (-531)))) (-15 -3924 ((-598 (-598 |#2|)) |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -2096 (|#1| |#1|)) (-15 -2096 (|#1| |#3|)) (-15 -2265 (|#1| |#4|)) (-15 -3223 (|#1| (-598 |#1|))) (-15 -3223 (|#1| (-598 |#2|))) (-15 -3264 (|#1| (-721) |#2|)) (-15 -2200 (|#1| (-598 (-598 |#2|)))) (-15 -4222 (|#1| (-721) (-721))) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) 97)) (-1761 (($ $ $) 87)) (-2096 (($ |#2|) 91) (($ $) 90)) (-2719 (((-110) $) 99)) (-3034 (($ $ (-531) (-531)) 83)) (-1987 (($ $ (-531) (-531)) 82)) (-2159 (($ $ (-531) (-531) (-531) (-531)) 81)) (-2870 (($ $) 89)) (-1878 (((-110) $) 101)) (-4058 (((-110) $ (-721)) 8)) (-3680 (($ $ (-531) (-531) $) 80)) (-2454 ((|#1| $ (-531) (-531) |#1|) 44) (($ $ (-598 (-531)) (-598 (-531)) $) 84)) (-2398 (($ $ (-531) |#2|) 42)) (-3492 (($ $ (-531) |#3|) 41)) (-3264 (($ (-721) |#1|) 95)) (-4082 (($) 7 T CONST)) (-2800 (($ $) 67 (|has| |#1| (-289)))) (-4011 ((|#2| $ (-531)) 46)) (-2277 (((-721) $) 66 (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) 43)) (-2627 ((|#1| $ (-531) (-531)) 48)) (-2227 (((-598 |#1|) $) 30)) (-4091 (((-721) $) 65 (|has| |#1| (-523)))) (-3001 (((-598 |#3|) $) 64 (|has| |#1| (-523)))) (-1548 (((-721) $) 51)) (-3010 (($ (-721) (-721) |#1|) 57)) (-1557 (((-721) $) 50)) (-3280 (((-110) $ (-721)) 9)) (-2803 ((|#1| $) 62 (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) 55)) (-1665 (((-531) $) 53)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 54)) (-2394 (((-531) $) 52)) (-2200 (($ (-598 (-598 |#1|))) 96)) (-2680 (($ (-1 |#1| |#1|) $) 34)) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3924 (((-598 (-598 |#1|)) $) 86)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) 61 (|has| |#1| (-344)))) (-2069 (($ $ $) 88)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) 56)) (-3609 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) (-531)) 49) ((|#1| $ (-531) (-531) |#1|) 47) (($ $ (-598 (-531)) (-598 (-531))) 85)) (-3223 (($ (-598 |#1|)) 94) (($ (-598 $)) 93)) (-1439 (((-110) $) 100)) (-3253 ((|#1| $) 63 (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3431 ((|#3| $ (-531)) 45)) (-2265 (($ |#3|) 92) (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2116 (((-110) $) 98)) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) 68 (|has| |#1| (-344)))) (-2250 (($ $ $) 78) (($ $) 77)) (-2237 (($ $ $) 79)) (** (($ $ (-721)) 70) (($ $ (-531)) 60 (|has| |#1| (-344)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-531) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-637 |#1| |#2| |#3|) (-133) (-986) (-354 |t#1|) (-354 |t#1|)) (T -637)) -((-1878 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-4222 (*1 *1 *2 *2) (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3264 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *2)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (-2096 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *2 *4)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (-2096 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2870 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2069 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-598 (-598 *3))))) (-1785 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2454 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3034 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1987 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2159 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3680 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-637 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-637 *3 *2 *4)) (-4 *3 (-986)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-523)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (-2800 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-289)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-598 *5)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2147 (*1 *1 *1) (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1878 ((-110) $)) (-15 -1439 ((-110) $)) (-15 -2719 ((-110) $)) (-15 -2116 ((-110) $)) (-15 -4222 ($ (-721) (-721))) (-15 -2200 ($ (-598 (-598 |t#1|)))) (-15 -3264 ($ (-721) |t#1|)) (-15 -3223 ($ (-598 |t#1|))) (-15 -3223 ($ (-598 $))) (-15 -2265 ($ |t#3|)) (-15 -2096 ($ |t#2|)) (-15 -2096 ($ $)) (-15 -2870 ($ $)) (-15 -2069 ($ $ $)) (-15 -1761 ($ $ $)) (-15 -3924 ((-598 (-598 |t#1|)) $)) (-15 -1785 ($ $ (-598 (-531)) (-598 (-531)))) (-15 -2454 ($ $ (-598 (-531)) (-598 (-531)) $)) (-15 -3034 ($ $ (-531) (-531))) (-15 -1987 ($ $ (-531) (-531))) (-15 -2159 ($ $ (-531) (-531) (-531) (-531))) (-15 -3680 ($ $ (-531) (-531) $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2250 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-531) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-721))) (IF (|has| |t#1| (-523)) (-15 -3609 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2263 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-289)) (-15 -2800 ($ $)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -2277 ((-721) $)) (-15 -4091 ((-721) $)) (-15 -3001 ((-598 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4275 "*"))) (PROGN (-15 -3253 (|t#1| $)) (-15 -2803 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -2147 ((-3 $ "failed") $)) (-15 ** ($ $ (-531)))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-55 |#1| |#2| |#3|) . T) ((-1138) . T)) -((-2800 ((|#4| |#4|) 72 (|has| |#1| (-289)))) (-2277 (((-721) |#4|) 99 (|has| |#1| (-523)))) (-4091 (((-721) |#4|) 76 (|has| |#1| (-523)))) (-3001 (((-598 |#3|) |#4|) 83 (|has| |#1| (-523)))) (-3795 (((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|) 111 (|has| |#1| (-289)))) (-2803 ((|#1| |#4|) 35)) (-2344 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-523)))) (-2147 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-344)))) (-2888 ((|#4| |#4|) 68 (|has| |#1| (-523)))) (-3368 ((|#4| |#4| |#1| (-531) (-531)) 43)) (-3923 ((|#4| |#4| (-531) (-531)) 38)) (-3525 ((|#4| |#4| |#1| (-531) (-531)) 48)) (-3253 ((|#1| |#4|) 78)) (-2661 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-523))))) -(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3253 (|#1| |#4|)) (-15 -2803 (|#1| |#4|)) (-15 -3923 (|#4| |#4| (-531) (-531))) (-15 -3368 (|#4| |#4| |#1| (-531) (-531))) (-15 -3525 (|#4| |#4| |#1| (-531) (-531))) (IF (|has| |#1| (-523)) (PROGN (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (-15 -3001 ((-598 |#3|) |#4|)) (-15 -2888 (|#4| |#4|)) (-15 -2344 ((-3 |#4| "failed") |#4|)) (-15 -2661 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -2800 (|#4| |#4|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -638)) -((-2147 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3795 (*1 *2 *3 *3) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-638 *3 *4 *5 *6)) (-4 *6 (-637 *3 *4 *5)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-2661 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2344 (*1 *2 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-2888 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2277 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-3525 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2)) (-4 *2 (-637 *3 *5 *6)))) (-3368 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2)) (-4 *2 (-637 *3 *5 *6)))) (-3923 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *1 (-638 *4 *5 *6 *2)) (-4 *2 (-637 *4 *5 *6)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5))))) -(-10 -7 (-15 -3253 (|#1| |#4|)) (-15 -2803 (|#1| |#4|)) (-15 -3923 (|#4| |#4| (-531) (-531))) (-15 -3368 (|#4| |#4| |#1| (-531) (-531))) (-15 -3525 (|#4| |#4| |#1| (-531) (-531))) (IF (|has| |#1| (-523)) (PROGN (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (-15 -3001 ((-598 |#3|) |#4|)) (-15 -2888 (|#4| |#4|)) (-15 -2344 ((-3 |#4| "failed") |#4|)) (-15 -2661 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -2800 (|#4| |#4|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) 47)) (-1761 (($ $ $) NIL)) (-2096 (($ (-1184 |#1|)) NIL) (($ $) NIL)) (-2719 (((-110) $) NIL)) (-3034 (($ $ (-531) (-531)) 12)) (-1987 (($ $ (-531) (-531)) NIL)) (-2159 (($ $ (-531) (-531) (-531) (-531)) NIL)) (-2870 (($ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3680 (($ $ (-531) (-531) $) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) NIL)) (-2398 (($ $ (-531) (-1184 |#1|)) NIL)) (-3492 (($ $ (-531) (-1184 |#1|)) NIL)) (-3264 (($ (-721) |#1|) 22)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 31 (|has| |#1| (-289)))) (-4011 (((-1184 |#1|) $ (-531)) NIL)) (-2277 (((-721) $) 33 (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) 51)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-4091 (((-721) $) 35 (|has| |#1| (-523)))) (-3001 (((-598 (-1184 |#1|)) $) 38 (|has| |#1| (-523)))) (-1548 (((-721) $) 20)) (-3010 (($ (-721) (-721) |#1|) 16)) (-1557 (((-721) $) 21)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#1| $) 29 (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) 9)) (-1665 (((-531) $) 10)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) 11)) (-2394 (((-531) $) 48)) (-2200 (($ (-598 (-598 |#1|))) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3924 (((-598 (-598 |#1|)) $) 60)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) 45 (|has| |#1| (-344)))) (-2069 (($ $ $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531))) NIL)) (-3223 (($ (-598 |#1|)) NIL) (($ (-598 $)) NIL) (($ (-1184 |#1|)) 52)) (-1439 (((-110) $) NIL)) (-3253 ((|#1| $) 27 (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 64 (|has| |#1| (-573 (-507))))) (-3431 (((-1184 |#1|) $ (-531)) NIL)) (-2265 (($ (-1184 |#1|)) NIL) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) 23) (($ $ (-531)) 46 (|has| |#1| (-344)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-531) $) NIL) (((-1184 |#1|) $ (-1184 |#1|)) NIL) (((-1184 |#1|) (-1184 |#1|) $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-639 |#1|) (-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 -3223 ($ (-1184 |#1|))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 $ "failed") $)) |%noBranch|))) (-986)) (T -639)) -((-2147 (*1 *1 *1) (|partial| -12 (-5 *1 (-639 *2)) (-4 *2 (-344)) (-4 *2 (-986)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-639 *3))))) -(-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 -3223 ($ (-1184 |#1|))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 $ "failed") $)) |%noBranch|))) -((-3462 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|)) 25)) (-4214 (((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|) 21)) (-2877 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-721)) 26)) (-2725 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|)) 14)) (-2716 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|)) 18) (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 16)) (-2988 (((-639 |#1|) (-639 |#1|) |#1| (-639 |#1|)) 20)) (-2528 (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 12)) (** (((-639 |#1|) (-639 |#1|) (-721)) 30))) -(((-640 |#1|) (-10 -7 (-15 -2528 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2725 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2988 ((-639 |#1|) (-639 |#1|) |#1| (-639 |#1|))) (-15 -4214 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -3462 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2877 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-721))) (-15 ** ((-639 |#1|) (-639 |#1|) (-721)))) (-986)) (T -640)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-640 *4)))) (-2877 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-640 *4)))) (-3462 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-4214 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2988 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2716 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2716 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2725 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2528 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) -(-10 -7 (-15 -2528 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2725 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2988 ((-639 |#1|) (-639 |#1|) |#1| (-639 |#1|))) (-15 -4214 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -3462 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2877 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-721))) (-15 ** ((-639 |#1|) (-639 |#1|) (-721)))) -((-1473 (($) 8 T CONST)) (-2265 (((-806) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3022 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -1473)) 16)) (-2520 ((|#1| $) 11))) -(((-641 |#1|) (-13 (-1179) (-572 (-806)) (-10 -8 (-15 -3022 ((-110) $ (|[\|\|]| |#1|))) (-15 -3022 ((-110) $ (|[\|\|]| -1473))) (-15 -2265 ($ |#1|)) (-15 -2265 (|#1| $)) (-15 -2520 (|#1| $)) (-15 -1473 ($) -2651))) (-572 (-806))) (T -641)) -((-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-572 (-806))) (-5 *2 (-110)) (-5 *1 (-641 *4)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1473)) (-5 *2 (-110)) (-5 *1 (-641 *4)) (-4 *4 (-572 (-806))))) (-2265 (*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) (-2265 (*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) (-2520 (*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) (-1473 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806)))))) -(-13 (-1179) (-572 (-806)) (-10 -8 (-15 -3022 ((-110) $ (|[\|\|]| |#1|))) (-15 -3022 ((-110) $ (|[\|\|]| -1473))) (-15 -2265 ($ |#1|)) (-15 -2265 (|#1| $)) (-15 -2520 (|#1| $)) (-15 -1473 ($) -2651))) -((-4099 ((|#2| |#2| |#4|) 25)) (-1487 (((-639 |#2|) |#3| |#4|) 31)) (-2183 (((-639 |#2|) |#2| |#4|) 30)) (-1613 (((-1184 |#2|) |#2| |#4|) 16)) (-3469 ((|#2| |#3| |#4|) 24)) (-1663 (((-639 |#2|) |#3| |#4| (-721) (-721)) 38)) (-3259 (((-639 |#2|) |#2| |#4| (-721)) 37))) -(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-1184 |#2|) |#2| |#4|)) (-15 -3469 (|#2| |#3| |#4|)) (-15 -4099 (|#2| |#2| |#4|)) (-15 -2183 ((-639 |#2|) |#2| |#4|)) (-15 -3259 ((-639 |#2|) |#2| |#4| (-721))) (-15 -1487 ((-639 |#2|) |#3| |#4|)) (-15 -1663 ((-639 |#2|) |#3| |#4| (-721) (-721)))) (-1030) (-843 |#1|) (-354 |#2|) (-13 (-354 |#1|) (-10 -7 (-6 -4273)))) (T -642)) -((-1663 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *7 (-843 *6)) (-5 *2 (-639 *7)) (-5 *1 (-642 *6 *7 *3 *4)) (-4 *3 (-354 *7)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273)))))) (-1487 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *6 (-843 *5)) (-5 *2 (-639 *6)) (-5 *1 (-642 *5 *6 *3 *4)) (-4 *3 (-354 *6)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))) (-3259 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *3 (-843 *6)) (-5 *2 (-639 *3)) (-5 *1 (-642 *6 *3 *7 *4)) (-4 *7 (-354 *3)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273)))))) (-2183 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-639 *3)) (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))) (-4099 (*1 *2 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-843 *4)) (-5 *1 (-642 *4 *2 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4273)))))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *2 (-843 *5)) (-5 *1 (-642 *5 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))) (-1613 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-1184 *3)) (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273))))))) -(-10 -7 (-15 -1613 ((-1184 |#2|) |#2| |#4|)) (-15 -3469 (|#2| |#3| |#4|)) (-15 -4099 (|#2| |#2| |#4|)) (-15 -2183 ((-639 |#2|) |#2| |#4|)) (-15 -3259 ((-639 |#2|) |#2| |#4| (-721))) (-15 -1487 ((-639 |#2|) |#3| |#4|)) (-15 -1663 ((-639 |#2|) |#3| |#4| (-721) (-721)))) -((-1682 (((-2 (|:| |num| (-639 |#1|)) (|:| |den| |#1|)) (-639 |#2|)) 20)) (-2807 ((|#1| (-639 |#2|)) 9)) (-1349 (((-639 |#1|) (-639 |#2|)) 18))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2807 (|#1| (-639 |#2|))) (-15 -1349 ((-639 |#1|) (-639 |#2|))) (-15 -1682 ((-2 (|:| |num| (-639 |#1|)) (|:| |den| |#1|)) (-639 |#2|)))) (-523) (-934 |#1|)) (T -643)) -((-1682 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |num| (-639 *4)) (|:| |den| *4))) (-5 *1 (-643 *4 *5)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523)) (-5 *2 (-639 *4)) (-5 *1 (-643 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-643 *2 *4))))) -(-10 -7 (-15 -2807 (|#1| (-639 |#2|))) (-15 -1349 ((-639 |#1|) (-639 |#2|))) (-15 -1682 ((-2 (|:| |num| (-639 |#1|)) (|:| |den| |#1|)) (-639 |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-1849 (((-639 (-649))) NIL) (((-639 (-649)) (-1184 $)) NIL)) (-1354 (((-649) $) NIL)) (-2367 (($ $) NIL (|has| (-649) (-1124)))) (-2218 (($ $) NIL (|has| (-649) (-1124)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-649) (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-3240 (($ $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-2956 (((-399 $) $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-2563 (($ $) NIL (-12 (|has| (-649) (-943)) (|has| (-649) (-1124))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-2760 (((-110) $ $) NIL (|has| (-649) (-289)))) (-3006 (((-721)) NIL (|has| (-649) (-349)))) (-2343 (($ $) NIL (|has| (-649) (-1124)))) (-2198 (($ $) NIL (|has| (-649) (-1124)))) (-2391 (($ $) NIL (|has| (-649) (-1124)))) (-2241 (($ $) NIL (|has| (-649) (-1124)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-649) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-649) (-977 (-388 (-531)))))) (-2523 (((-531) $) NIL) (((-649) $) NIL) (((-388 (-531)) $) NIL (|has| (-649) (-977 (-388 (-531)))))) (-2767 (($ (-1184 (-649))) NIL) (($ (-1184 (-649)) (-1184 $)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-649) (-330)))) (-3650 (($ $ $) NIL (|has| (-649) (-289)))) (-1982 (((-639 (-649)) $) NIL) (((-639 (-649)) $ (-1184 $)) NIL)) (-3073 (((-639 (-649)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-649))) (|:| |vec| (-1184 (-649)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-649) (-594 (-531)))) (((-639 (-531)) (-639 $)) NIL (|has| (-649) (-594 (-531))))) (-1760 (((-3 $ "failed") (-388 (-1098 (-649)))) NIL (|has| (-649) (-344))) (($ (-1098 (-649))) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2577 (((-649) $) 29)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| (-649) (-516)))) (-3004 (((-110) $) NIL (|has| (-649) (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| (-649) (-516)))) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| (-649) (-349)))) (-3630 (($ $ $) NIL (|has| (-649) (-289)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| (-649) (-289)))) (-1806 (($) NIL (|has| (-649) (-330)))) (-1971 (((-110) $) NIL (|has| (-649) (-330)))) (-3493 (($ $) NIL (|has| (-649) (-330))) (($ $ (-721)) NIL (|has| (-649) (-330)))) (-2534 (((-110) $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-3389 (((-2 (|:| |r| (-649)) (|:| |phi| (-649))) $) NIL (-12 (|has| (-649) (-995)) (|has| (-649) (-1124))))) (-1880 (($) NIL (|has| (-649) (-1124)))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-649) (-829 (-360)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-649) (-829 (-531))))) (-3617 (((-783 (-864)) $) NIL (|has| (-649) (-330))) (((-864) $) NIL (|has| (-649) (-330)))) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (-12 (|has| (-649) (-943)) (|has| (-649) (-1124))))) (-1899 (((-649) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-649) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-649) (-289)))) (-1233 (((-1098 (-649)) $) NIL (|has| (-649) (-344)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 (-649) (-649)) $) NIL)) (-2211 (((-864) $) NIL (|has| (-649) (-349)))) (-2076 (($ $) NIL (|has| (-649) (-1124)))) (-1749 (((-1098 (-649)) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| (-649) (-289))) (($ $ $) NIL (|has| (-649) (-289)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| (-649) (-344)))) (-3788 (($) NIL (|has| (-649) (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| (-649) (-349)))) (-2215 (($) NIL)) (-2590 (((-649) $) 31)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| (-649) (-289)))) (-2109 (($ (-598 $)) NIL (|has| (-649) (-289))) (($ $ $) NIL (|has| (-649) (-289)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-649) (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-2552 (((-399 $) $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-649) (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| (-649) (-289)))) (-3609 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-649)) NIL (|has| (-649) (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-649) (-289)))) (-2798 (($ $) NIL (|has| (-649) (-1124)))) (-4115 (($ $ (-1102) (-649)) NIL (|has| (-649) (-492 (-1102) (-649)))) (($ $ (-598 (-1102)) (-598 (-649))) NIL (|has| (-649) (-492 (-1102) (-649)))) (($ $ (-598 (-276 (-649)))) NIL (|has| (-649) (-291 (-649)))) (($ $ (-276 (-649))) NIL (|has| (-649) (-291 (-649)))) (($ $ (-649) (-649)) NIL (|has| (-649) (-291 (-649)))) (($ $ (-598 (-649)) (-598 (-649))) NIL (|has| (-649) (-291 (-649))))) (-4100 (((-721) $) NIL (|has| (-649) (-289)))) (-1785 (($ $ (-649)) NIL (|has| (-649) (-268 (-649) (-649))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| (-649) (-289)))) (-3176 (((-649)) NIL) (((-649) (-1184 $)) NIL)) (-2350 (((-3 (-721) "failed") $ $) NIL (|has| (-649) (-330))) (((-721) $) NIL (|has| (-649) (-330)))) (-3352 (($ $ (-1 (-649) (-649))) NIL) (($ $ (-1 (-649) (-649)) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-721)) NIL (|has| (-649) (-216))) (($ $) NIL (|has| (-649) (-216)))) (-3381 (((-639 (-649)) (-1184 $) (-1 (-649) (-649))) NIL (|has| (-649) (-344)))) (-3608 (((-1098 (-649))) NIL)) (-2403 (($ $) NIL (|has| (-649) (-1124)))) (-2253 (($ $) NIL (|has| (-649) (-1124)))) (-2498 (($) NIL (|has| (-649) (-330)))) (-2379 (($ $) NIL (|has| (-649) (-1124)))) (-2229 (($ $) NIL (|has| (-649) (-1124)))) (-2356 (($ $) NIL (|has| (-649) (-1124)))) (-2210 (($ $) NIL (|has| (-649) (-1124)))) (-3348 (((-639 (-649)) (-1184 $)) NIL) (((-1184 (-649)) $) NIL) (((-639 (-649)) (-1184 $) (-1184 $)) NIL) (((-1184 (-649)) $ (-1184 $)) NIL)) (-3318 (((-507) $) NIL (|has| (-649) (-573 (-507)))) (((-159 (-208)) $) NIL (|has| (-649) (-962))) (((-159 (-360)) $) NIL (|has| (-649) (-962))) (((-835 (-360)) $) NIL (|has| (-649) (-573 (-835 (-360))))) (((-835 (-531)) $) NIL (|has| (-649) (-573 (-835 (-531))))) (($ (-1098 (-649))) NIL) (((-1098 (-649)) $) NIL) (($ (-1184 (-649))) NIL) (((-1184 (-649)) $) NIL)) (-4164 (($ $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| $ (-138)) (|has| (-649) (-852))) (|has| (-649) (-330))))) (-4157 (($ (-649) (-649)) 12)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-531)) NIL) (($ (-649)) NIL) (($ (-159 (-360))) 13) (($ (-159 (-531))) 19) (($ (-159 (-649))) 28) (($ (-159 (-651))) 25) (((-159 (-360)) $) 33) (($ (-388 (-531))) NIL (-1435 (|has| (-649) (-977 (-388 (-531)))) (|has| (-649) (-344))))) (-2750 (($ $) NIL (|has| (-649) (-330))) (((-3 $ "failed") $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| $ (-138)) (|has| (-649) (-852))) (|has| (-649) (-138))))) (-3369 (((-1098 (-649)) $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL)) (-2442 (($ $) NIL (|has| (-649) (-1124)))) (-2292 (($ $) NIL (|has| (-649) (-1124)))) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) NIL (|has| (-649) (-1124)))) (-2266 (($ $) NIL (|has| (-649) (-1124)))) (-2468 (($ $) NIL (|has| (-649) (-1124)))) (-2318 (($ $) NIL (|has| (-649) (-1124)))) (-3662 (((-649) $) NIL (|has| (-649) (-1124)))) (-2753 (($ $) NIL (|has| (-649) (-1124)))) (-2331 (($ $) NIL (|has| (-649) (-1124)))) (-2456 (($ $) NIL (|has| (-649) (-1124)))) (-2305 (($ $) NIL (|has| (-649) (-1124)))) (-2429 (($ $) NIL (|has| (-649) (-1124)))) (-2279 (($ $) NIL (|has| (-649) (-1124)))) (-1620 (($ $) NIL (|has| (-649) (-995)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1 (-649) (-649))) NIL) (($ $ (-1 (-649) (-649)) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-721)) NIL (|has| (-649) (-216))) (($ $) NIL (|has| (-649) (-216)))) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL (|has| (-649) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ $) NIL (|has| (-649) (-1124))) (($ $ (-388 (-531))) NIL (-12 (|has| (-649) (-943)) (|has| (-649) (-1124)))) (($ $ (-531)) NIL (|has| (-649) (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ (-649) $) NIL) (($ $ (-649)) NIL) (($ (-388 (-531)) $) NIL (|has| (-649) (-344))) (($ $ (-388 (-531))) NIL (|has| (-649) (-344))))) -(((-644) (-13 (-368) (-156 (-649)) (-10 -8 (-15 -2265 ($ (-159 (-360)))) (-15 -2265 ($ (-159 (-531)))) (-15 -2265 ($ (-159 (-649)))) (-15 -2265 ($ (-159 (-651)))) (-15 -2265 ((-159 (-360)) $))))) (T -644)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-531))) (-5 *1 (-644)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-644)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-651))) (-5 *1 (-644)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644))))) -(-13 (-368) (-156 (-649)) (-10 -8 (-15 -2265 ($ (-159 (-360)))) (-15 -2265 ($ (-159 (-531)))) (-15 -2265 ($ (-159 (-649)))) (-15 -2265 ($ (-159 (-651)))) (-15 -2265 ((-159 (-360)) $)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 62)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40) (($ |#1| $ (-721)) 63)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 61)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-645 |#1|) (-133) (-1030)) (T -645)) -((-3944 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-645 *2)) (-4 *2 (-1030)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1030)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-1030)) (-5 *2 (-598 (-2 (|:| -1798 *3) (|:| -2539 (-721)))))))) -(-13 (-218 |t#1|) (-10 -8 (-15 -3944 ($ |t#1| $ (-721))) (-15 -2705 ($ $)) (-15 -3555 ((-598 (-2 (|:| -1798 |t#1|) (|:| -2539 (-721)))) $)))) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-4215 (((-598 |#1|) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) (-531)) 47)) (-3697 ((|#1| |#1| (-531)) 46)) (-2109 ((|#1| |#1| |#1| (-531)) 36)) (-2552 (((-598 |#1|) |#1| (-531)) 39)) (-3180 ((|#1| |#1| (-531) |#1| (-531)) 32)) (-3091 (((-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) |#1| (-531)) 45))) -(((-646 |#1|) (-10 -7 (-15 -2109 (|#1| |#1| |#1| (-531))) (-15 -3697 (|#1| |#1| (-531))) (-15 -2552 ((-598 |#1|) |#1| (-531))) (-15 -3091 ((-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) |#1| (-531))) (-15 -4215 ((-598 |#1|) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) (-531))) (-15 -3180 (|#1| |#1| (-531) |#1| (-531)))) (-1160 (-531))) (T -646)) -((-3180 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| -2552 *5) (|:| -2012 (-531))))) (-5 *4 (-531)) (-4 *5 (-1160 *4)) (-5 *2 (-598 *5)) (-5 *1 (-646 *5)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -2012 *4)))) (-5 *1 (-646 *3)) (-4 *3 (-1160 *4)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-5 *2 (-598 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1160 *4)))) (-3697 (*1 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))) (-2109 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3))))) -(-10 -7 (-15 -2109 (|#1| |#1| |#1| (-531))) (-15 -3697 (|#1| |#1| (-531))) (-15 -2552 ((-598 |#1|) |#1| (-531))) (-15 -3091 ((-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) |#1| (-531))) (-15 -4215 ((-598 |#1|) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) (-531))) (-15 -3180 (|#1| |#1| (-531) |#1| (-531)))) -((-3541 (((-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 17)) (-3839 (((-1062 (-208)) (-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 40) (((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 42) (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 44)) (-3485 (((-1062 (-208)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-598 (-245))) NIL)) (-4153 (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 45))) -(((-647) (-10 -7 (-15 -3839 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -4153 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3485 ((-1062 (-208)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3541 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -647)) -((-3541 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1 (-208) (-208) (-208) (-208))) (-5 *2 (-1 (-886 (-208)) (-208) (-208))) (-5 *1 (-647)))) (-3485 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) (-4153 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) (-3839 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-208))) (-5 *5 (-598 (-245))) (-5 *1 (-647)))) (-3839 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-208))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) (-3839 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647))))) -(-10 -7 (-15 -3839 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -4153 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3485 ((-1062 (-208)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3541 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))))) -((-2552 (((-399 (-1098 |#4|)) (-1098 |#4|)) 73) (((-399 |#4|) |#4|) 221))) -(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|)))) (-797) (-743) (-330) (-892 |#3| |#2| |#1|)) (T -648)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-648 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4))))) -(-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 84)) (-1317 (((-531) $) 30)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2796 (($ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-4082 (($) NIL T CONST)) (-1694 (($ $) NIL)) (-3154 (((-3 (-531) "failed") $) 73) (((-3 (-388 (-531)) "failed") $) 26) (((-3 (-360) "failed") $) 70)) (-2523 (((-531) $) 75) (((-388 (-531)) $) 67) (((-360) $) 68)) (-3650 (($ $ $) 96)) (-3622 (((-3 $ "failed") $) 87)) (-3630 (($ $ $) 95)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3963 (((-864)) 77) (((-864) (-864)) 76)) (-1599 (((-110) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL)) (-3617 (((-531) $) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-1899 (($ $) NIL)) (-2985 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2232 (((-531) (-531)) 81) (((-531)) 82)) (-4103 (($ $ $) NIL) (($) NIL (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-3440 (((-531) (-531)) 79) (((-531)) 80)) (-1241 (($ $ $) NIL) (($) NIL (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-2580 (((-531) $) 16)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 91)) (-3704 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL)) (-2943 (($ $) NIL)) (-2947 (($ (-531) (-531)) NIL) (($ (-531) (-531) (-864)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) 92)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1790 (((-531) $) 22)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 94)) (-2890 (((-864)) NIL) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3529 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-3318 (((-360) $) NIL) (((-208) $) NIL) (((-835 (-360)) $) NIL)) (-2265 (((-806) $) 52) (($ (-531)) 63) (($ $) NIL) (($ (-388 (-531))) 66) (($ (-531)) 63) (($ (-388 (-531))) 66) (($ (-360)) 60) (((-360) $) 50) (($ (-651)) 55)) (-2284 (((-721)) 103)) (-2772 (($ (-531) (-531) (-864)) 44)) (-3831 (($ $) NIL)) (-2138 (((-864)) NIL) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3276 (((-864)) 35) (((-864) (-864)) 78)) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) 32 T CONST)) (-3050 (($) 17 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 83)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 101)) (-2263 (($ $ $) 65)) (-2250 (($ $) 99) (($ $ $) 100)) (-2237 (($ $ $) 98)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ $ (-388 (-531))) 90)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 97) (($ $ $) 88) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-649) (-13 (-385) (-368) (-344) (-977 (-360)) (-977 (-388 (-531))) (-140) (-10 -8 (-15 -3963 ((-864) (-864))) (-15 -3963 ((-864))) (-15 -3276 ((-864) (-864))) (-15 -3276 ((-864))) (-15 -3440 ((-531) (-531))) (-15 -3440 ((-531))) (-15 -2232 ((-531) (-531))) (-15 -2232 ((-531))) (-15 -2265 ((-360) $)) (-15 -2265 ($ (-651))) (-15 -2580 ((-531) $)) (-15 -1790 ((-531) $)) (-15 -2772 ($ (-531) (-531) (-864)))))) (T -649)) -((-3276 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-3963 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-3440 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2232 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-649)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-651)) (-5 *1 (-649)))) (-2772 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-5 *1 (-649))))) -(-13 (-385) (-368) (-344) (-977 (-360)) (-977 (-388 (-531))) (-140) (-10 -8 (-15 -3963 ((-864) (-864))) (-15 -3963 ((-864))) (-15 -3276 ((-864) (-864))) (-15 -3276 ((-864))) (-15 -3440 ((-531) (-531))) (-15 -3440 ((-531))) (-15 -2232 ((-531) (-531))) (-15 -2232 ((-531))) (-15 -2265 ((-360) $)) (-15 -2265 ($ (-651))) (-15 -2580 ((-531) $)) (-15 -1790 ((-531) $)) (-15 -2772 ($ (-531) (-531) (-864))))) -((-2684 (((-639 |#1|) (-639 |#1|) |#1| |#1|) 65)) (-2800 (((-639 |#1|) (-639 |#1|) |#1|) 48)) (-3444 (((-639 |#1|) (-639 |#1|) |#1|) 66)) (-2087 (((-639 |#1|) (-639 |#1|)) 49)) (-3795 (((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|) 64))) -(((-650 |#1|) (-10 -7 (-15 -2087 ((-639 |#1|) (-639 |#1|))) (-15 -2800 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -3444 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -2684 ((-639 |#1|) (-639 |#1|) |#1| |#1|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) (-289)) (T -650)) -((-3795 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-650 *3)) (-4 *3 (-289)))) (-2684 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) (-2800 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3))))) -(-10 -7 (-15 -2087 ((-639 |#1|) (-639 |#1|))) (-15 -2800 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -3444 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -2684 ((-639 |#1|) (-639 |#1|) |#1| |#1|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) 27)) (-2523 (((-531) $) 25)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($ $) NIL) (($) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) NIL)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) NIL)) (-4103 (($ $ $) NIL)) (-1300 (((-864) (-864)) 10) (((-864)) 9)) (-1241 (($ $ $) NIL)) (-3107 (($ $) NIL)) (-2428 (($ $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) NIL)) (-2529 (((-1049) $) NIL) (($ $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL) (($ $ (-721)) NIL)) (-1651 (($ $) NIL)) (-2480 (($ $) NIL)) (-3318 (((-208) $) NIL) (((-360) $) NIL) (((-835 (-531)) $) NIL) (((-507) $) NIL) (((-531) $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) 24) (($ $) NIL) (($ (-531)) 24) (((-297 $) (-297 (-531))) 18)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) NIL)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL) (($ $ (-721)) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL))) -(((-651) (-13 (-368) (-516) (-10 -8 (-15 -1300 ((-864) (-864))) (-15 -1300 ((-864))) (-15 -2265 ((-297 $) (-297 (-531))))))) (T -651)) -((-1300 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651)))) (-1300 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-297 (-531))) (-5 *2 (-297 (-651))) (-5 *1 (-651))))) -(-13 (-368) (-516) (-10 -8 (-15 -1300 ((-864) (-864))) (-15 -1300 ((-864))) (-15 -2265 ((-297 $) (-297 (-531)))))) -((-3538 (((-1 |#4| |#2| |#3|) |#1| (-1102) (-1102)) 19)) (-1830 (((-1 |#4| |#2| |#3|) (-1102)) 12))) -(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1830 ((-1 |#4| |#2| |#3|) (-1102))) (-15 -3538 ((-1 |#4| |#2| |#3|) |#1| (-1102) (-1102)))) (-573 (-507)) (-1138) (-1138) (-1138)) (T -652)) -((-3538 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *3 *5 *6 *7)) (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)) (-4 *7 (-1138)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *4 *5 *6 *7)) (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)) (-4 *7 (-1138))))) -(-10 -7 (-15 -1830 ((-1 |#4| |#2| |#3|) (-1102))) (-15 -3538 ((-1 |#4| |#2| |#3|) |#1| (-1102) (-1102)))) -((-2247 (((-110) $ $) NIL)) (-2310 (((-1189) $ (-721)) 14)) (-1976 (((-721) $) 12)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 25)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 24))) -(((-653 |#1|) (-13 (-129) (-572 |#1|) (-10 -8 (-15 -2265 ($ |#1|)))) (-1030)) (T -653)) -((-2265 (*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1030))))) -(-13 (-129) (-572 |#1|) (-10 -8 (-15 -2265 ($ |#1|)))) -((-2711 (((-1 (-208) (-208) (-208)) |#1| (-1102) (-1102)) 34) (((-1 (-208) (-208)) |#1| (-1102)) 39))) -(((-654 |#1|) (-10 -7 (-15 -2711 ((-1 (-208) (-208)) |#1| (-1102))) (-15 -2711 ((-1 (-208) (-208) (-208)) |#1| (-1102) (-1102)))) (-573 (-507))) (T -654)) -((-2711 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-654 *3)) (-4 *3 (-573 (-507))))) (-2711 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-654 *3)) (-4 *3 (-573 (-507)))))) -(-10 -7 (-15 -2711 ((-1 (-208) (-208)) |#1| (-1102))) (-15 -2711 ((-1 (-208) (-208) (-208)) |#1| (-1102) (-1102)))) -((-1956 (((-1102) |#1| (-1102) (-598 (-1102))) 9) (((-1102) |#1| (-1102) (-1102) (-1102)) 12) (((-1102) |#1| (-1102) (-1102)) 11) (((-1102) |#1| (-1102)) 10))) -(((-655 |#1|) (-10 -7 (-15 -1956 ((-1102) |#1| (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-598 (-1102))))) (-573 (-507))) (T -655)) -((-1956 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) (-1956 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) (-1956 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) (-1956 (*1 *2 *3 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507)))))) -(-10 -7 (-15 -1956 ((-1102) |#1| (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-598 (-1102))))) -((-2240 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-656 |#1| |#2|) (-10 -7 (-15 -2240 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1138) (-1138)) (T -656)) -((-2240 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-656 *3 *4)) (-4 *3 (-1138)) (-4 *4 (-1138))))) -(-10 -7 (-15 -2240 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2975 (((-1 |#3| |#2|) (-1102)) 11)) (-3538 (((-1 |#3| |#2|) |#1| (-1102)) 21))) -(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -2975 ((-1 |#3| |#2|) (-1102))) (-15 -3538 ((-1 |#3| |#2|) |#1| (-1102)))) (-573 (-507)) (-1138) (-1138)) (T -657)) -((-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *3 *5 *6)) (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *4 *5 *6)) (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138))))) -(-10 -7 (-15 -2975 ((-1 |#3| |#2|) (-1102))) (-15 -3538 ((-1 |#3| |#2|) |#1| (-1102)))) -((-3755 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#4|)) (-598 |#3|) (-598 |#4|) (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#4|)))) (-598 (-721)) (-1184 (-598 (-1098 |#3|))) |#3|) 62)) (-3997 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#3|)) (-598 |#3|) (-598 |#4|) (-598 (-721)) |#3|) 75)) (-3757 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 |#3|) (-598 (-721)) (-598 (-1098 |#4|)) (-1184 (-598 (-1098 |#3|))) |#3|) 34))) -(((-658 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3757 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 |#3|) (-598 (-721)) (-598 (-1098 |#4|)) (-1184 (-598 (-1098 |#3|))) |#3|)) (-15 -3997 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#3|)) (-598 |#3|) (-598 |#4|) (-598 (-721)) |#3|)) (-15 -3755 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#4|)) (-598 |#3|) (-598 |#4|) (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#4|)))) (-598 (-721)) (-1184 (-598 (-1098 |#3|))) |#3|))) (-743) (-797) (-289) (-892 |#3| |#1| |#2|)) (T -658)) -((-3755 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-598 (-1098 *13))) (-5 *3 (-1098 *13)) (-5 *4 (-598 *12)) (-5 *5 (-598 *10)) (-5 *6 (-598 *13)) (-5 *7 (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *13))))) (-5 *8 (-598 (-721))) (-5 *9 (-1184 (-598 (-1098 *10)))) (-4 *12 (-797)) (-4 *10 (-289)) (-4 *13 (-892 *10 *11 *12)) (-4 *11 (-743)) (-5 *1 (-658 *11 *12 *10 *13)))) (-3997 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-598 *11)) (-5 *5 (-598 (-1098 *9))) (-5 *6 (-598 *9)) (-5 *7 (-598 *12)) (-5 *8 (-598 (-721))) (-4 *11 (-797)) (-4 *9 (-289)) (-4 *12 (-892 *9 *10 *11)) (-4 *10 (-743)) (-5 *2 (-598 (-1098 *12))) (-5 *1 (-658 *10 *11 *9 *12)) (-5 *3 (-1098 *12)))) (-3757 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-598 (-1098 *11))) (-5 *3 (-1098 *11)) (-5 *4 (-598 *10)) (-5 *5 (-598 *8)) (-5 *6 (-598 (-721))) (-5 *7 (-1184 (-598 (-1098 *8)))) (-4 *10 (-797)) (-4 *8 (-289)) (-4 *11 (-892 *8 *9 *10)) (-4 *9 (-743)) (-5 *1 (-658 *9 *10 *8 *11))))) -(-10 -7 (-15 -3757 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 |#3|) (-598 (-721)) (-598 (-1098 |#4|)) (-1184 (-598 (-1098 |#3|))) |#3|)) (-15 -3997 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#3|)) (-598 |#3|) (-598 |#4|) (-598 (-721)) |#3|)) (-15 -3755 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#4|)) (-598 |#3|) (-598 |#4|) (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#4|)))) (-598 (-721)) (-1184 (-598 (-1098 |#3|))) |#3|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 39)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-2669 (($ |#1| (-721)) 37)) (-3005 (((-721) $) 41)) (-2475 ((|#1| $) 40)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 (((-721) $) 42)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 36 (|has| |#1| (-162)))) (-3188 ((|#1| $ (-721)) 38)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-659 |#1|) (-133) (-986)) (T -659)) -((-2012 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986))))) -(-13 (-986) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2012 ((-721) $)) (-15 -3005 ((-721) $)) (-15 -2475 (|t#1| $)) (-15 -2500 ($ $)) (-15 -3188 (|t#1| $ (-721))) (-15 -2669 ($ |t#1| (-721))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3261 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-660 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3261 (|#6| (-1 |#4| |#1|) |#3|))) (-523) (-1160 |#1|) (-1160 (-388 |#2|)) (-523) (-1160 |#4|) (-1160 (-388 |#5|))) (T -660)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-523)) (-4 *7 (-523)) (-4 *6 (-1160 *5)) (-4 *2 (-1160 (-388 *8))) (-5 *1 (-660 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1160 (-388 *6))) (-4 *8 (-1160 *7))))) -(-10 -7 (-15 -3261 (|#6| (-1 |#4| |#1|) |#3|))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3648 (((-1085) (-806)) 31)) (-2286 (((-1189) (-1085)) 28)) (-2354 (((-1085) (-806)) 24)) (-3105 (((-1085) (-806)) 25)) (-2265 (((-806) $) NIL) (((-1085) (-806)) 23)) (-2148 (((-110) $ $) NIL))) -(((-661) (-13 (-1030) (-10 -7 (-15 -2265 ((-1085) (-806))) (-15 -2354 ((-1085) (-806))) (-15 -3105 ((-1085) (-806))) (-15 -3648 ((-1085) (-806))) (-15 -2286 ((-1189) (-1085)))))) (T -661)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-661))))) -(-13 (-1030) (-10 -7 (-15 -2265 ((-1085) (-806))) (-15 -2354 ((-1085) (-806))) (-15 -3105 ((-1085) (-806))) (-15 -3648 ((-1085) (-806))) (-15 -2286 ((-1189) (-1085))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-1760 (($ |#1| |#2|) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 ((|#2| $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2966 (((-3 $ "failed") $ $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) ((|#1| $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-662 |#1| |#2| |#3| |#4| |#5|) (-13 (-344) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -662)) -((-1406 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-662 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-344) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)))) -((-2247 (((-110) $ $) 78)) (-3019 (((-110) $) 30)) (-3191 (((-1184 |#1|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#1|)) NIL)) (-2516 (((-1098 $) $ (-1014)) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) NIL (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3006 (((-721)) 47 (|has| |#1| (-349)))) (-3767 (($ $ (-721)) NIL)) (-3441 (($ $ (-721)) NIL)) (-3016 ((|#2| |#2|) 44)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1014) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 34)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-1760 (($ |#2|) 42)) (-3622 (((-3 $ "failed") $) 86)) (-1381 (($) 51 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-1376 (($ $ $) NIL)) (-1570 (($ $ $) NIL (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2460 (((-901 $)) 80)) (-2490 (($ $ |#1| (-721) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ $) NIL (|has| |#1| (-523)))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) NIL) (($ (-1098 $) (-1014)) NIL)) (-3688 (($ $ (-721)) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 77) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1406 ((|#2|) 45)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3294 (((-1098 |#1|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1749 ((|#2| $) 41)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) 28)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4147 (($ $) 79 (|has| |#1| (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#1|) NIL) (($ $ (-598 (-1014)) (-598 |#1|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 87 (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2012 (((-721) $) 32) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-1917 (((-901 $)) 36)) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-523)))) (-2265 (((-806) $) 61) (($ (-531)) NIL) (($ |#1|) 58) (($ (-1014)) NIL) (($ |#2|) 68) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) 63) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 20 T CONST)) (-1598 (((-1184 |#1|) $) 75)) (-4107 (($ (-1184 |#1|)) 50)) (-3050 (($) 8 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3347 (((-1184 |#1|) $) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 69)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) 72) (($ $ $) NIL)) (-2237 (($ $ $) 33)) (** (($ $ (-864)) NIL) (($ $ (-721)) 81)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 57) (($ $ $) 74) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-663 |#1| |#2|) (-13 (-1160 |#1|) (-10 -8 (-15 -3016 (|#2| |#2|)) (-15 -1406 (|#2|)) (-15 -1760 ($ |#2|)) (-15 -1749 (|#2| $)) (-15 -2265 ($ |#2|)) (-15 -1598 ((-1184 |#1|) $)) (-15 -4107 ($ (-1184 |#1|))) (-15 -3347 ((-1184 |#1|) $)) (-15 -2460 ((-901 $))) (-15 -1917 ((-901 $))) (IF (|has| |#1| (-330)) (-15 -4147 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) (-986) (-1160 |#1|)) (T -663)) -((-3016 (*1 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) (-1406 (*1 *2) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986)))) (-1760 (*1 *1 *2) (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) (-1749 (*1 *2 *1) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) (-1598 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-3347 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-2460 (*1 *2) (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-1917 (*1 *2) (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-4147 (*1 *1 *1) (-12 (-4 *2 (-330)) (-4 *2 (-986)) (-5 *1 (-663 *2 *3)) (-4 *3 (-1160 *2))))) -(-13 (-1160 |#1|) (-10 -8 (-15 -3016 (|#2| |#2|)) (-15 -1406 (|#2|)) (-15 -1760 ($ |#2|)) (-15 -1749 (|#2| $)) (-15 -2265 ($ |#2|)) (-15 -1598 ((-1184 |#1|) $)) (-15 -4107 ($ (-1184 |#1|))) (-15 -3347 ((-1184 |#1|) $)) (-15 -2460 ((-901 $))) (-15 -1917 ((-901 $))) (IF (|has| |#1| (-330)) (-15 -4147 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-1889 ((|#1| $) 13)) (-2529 (((-1049) $) NIL)) (-1790 ((|#2| $) 12)) (-2274 (($ |#1| |#2|) 16)) (-2265 (((-806) $) NIL) (($ (-2 (|:| -1889 |#1|) (|:| -1790 |#2|))) 15) (((-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) $) 14)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 11))) -(((-664 |#1| |#2| |#3|) (-13 (-797) (-10 -8 (-15 -1790 (|#2| $)) (-15 -1889 (|#1| $)) (-15 -2265 ($ (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)))) (-15 -2265 ((-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) $)) (-15 -2274 ($ |#1| |#2|)))) (-797) (-1030) (-1 (-110) (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)))) (T -664)) -((-1790 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-664 *3 *2 *4)) (-4 *3 (-797)) (-14 *4 (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *2)) (-2 (|:| -1889 *3) (|:| -1790 *2)))))) (-1889 (*1 *2 *1) (-12 (-4 *2 (-797)) (-5 *1 (-664 *2 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3)) (-2 (|:| -1889 *2) (|:| -1790 *3)))))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) (-4 *3 (-797)) (-4 *4 (-1030)) (-5 *1 (-664 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) (-5 *1 (-664 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-1030)) (-14 *5 (-1 (-110) *2 *2)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-664 *2 *3 *4)) (-4 *2 (-797)) (-4 *3 (-1030)) (-14 *4 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3)) (-2 (|:| -1889 *2) (|:| -1790 *3))))))) -(-13 (-797) (-10 -8 (-15 -1790 (|#2| $)) (-15 -1889 (|#1| $)) (-15 -2265 ($ (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)))) (-15 -2265 ((-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) $)) (-15 -2274 ($ |#1| |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 59)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 89) (((-3 (-112) "failed") $) 95)) (-2523 ((|#1| $) NIL) (((-112) $) 39)) (-3622 (((-3 $ "failed") $) 90)) (-4168 ((|#2| (-112) |#2|) 82)) (-3481 (((-110) $) NIL)) (-1611 (($ |#1| (-342 (-112))) 14)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3087 (($ $ (-1 |#2| |#2|)) 58)) (-2678 (($ $ (-1 |#2| |#2|)) 44)) (-1785 ((|#2| $ |#2|) 33)) (-2650 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-2265 (((-806) $) 66) (($ (-531)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 37)) (-2661 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-3035 (($) 21 T CONST)) (-3050 (($) 9 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) 48) (($ $ $) NIL)) (-2237 (($ $ $) 73)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ (-112) (-531)) NIL) (($ $ (-531)) 57)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162))))) -(((-665 |#1| |#2|) (-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#2| |#2|))) (-15 -3087 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#2| (-112) |#2|)) (-15 -1611 ($ |#1| (-342 (-112)))))) (-986) (-601 |#1|)) (T -665)) -((-2661 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) (-4 *3 (-601 *2)))) (-2661 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) (-4 *3 (-601 *2)))) (-2650 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) (-4 *3 (-601 *2)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)))) (-3087 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-665 *4 *5)) (-4 *5 (-601 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)) (-4 *4 (-601 *3)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-986)) (-5 *1 (-665 *4 *2)) (-4 *2 (-601 *4)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-4 *2 (-986)) (-5 *1 (-665 *2 *4)) (-4 *4 (-601 *2))))) -(-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#2| |#2|))) (-15 -3087 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#2| (-112) |#2|)) (-15 -1611 ($ |#1| (-342 (-112)))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 33)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ |#1| |#2|) 25)) (-3622 (((-3 $ "failed") $) 48)) (-3481 (((-110) $) 35)) (-1406 ((|#2| $) 12)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 49)) (-2529 (((-1049) $) NIL)) (-2966 (((-3 $ "failed") $ $) 47)) (-2265 (((-806) $) 24) (($ (-531)) 19) ((|#1| $) 13)) (-2284 (((-721)) 28)) (-3035 (($) 16 T CONST)) (-3050 (($) 30 T CONST)) (-2148 (((-110) $ $) 38)) (-2250 (($ $) 43) (($ $ $) 37)) (-2237 (($ $ $) 40)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 21) (($ $ $) 20))) -(((-666 |#1| |#2| |#3| |#4| |#5|) (-13 (-986) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -666)) -((-3622 (*1 *1 *1) (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1406 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-666 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2422 (*1 *1 *1) (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-986) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)))) -((* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-667 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-668 |#2|) (-162)) (T -667)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-668 |#1|) (-133) (-162)) (T -668)) -NIL -(-13 (-109 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3709 (($ |#1|) 17) (($ $ |#1|) 20)) (-3030 (($ |#1|) 18) (($ $ |#1|) 21)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3481 (((-110) $) NIL)) (-1571 (($ |#1| |#1| |#1| |#1|) 8)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 16)) (-2529 (((-1049) $) NIL)) (-4115 ((|#1| $ |#1|) 24) (((-783 |#1|) $ (-783 |#1|)) 32)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 39)) (-3050 (($) 9 T CONST)) (-2148 (((-110) $ $) 44)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ $ $) 14))) -(((-669 |#1|) (-13 (-453) (-10 -8 (-15 -1571 ($ |#1| |#1| |#1| |#1|)) (-15 -3709 ($ |#1|)) (-15 -3030 ($ |#1|)) (-15 -3622 ($)) (-15 -3709 ($ $ |#1|)) (-15 -3030 ($ $ |#1|)) (-15 -3622 ($ $)) (-15 -4115 (|#1| $ |#1|)) (-15 -4115 ((-783 |#1|) $ (-783 |#1|))))) (-344)) (T -669)) -((-1571 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3709 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3030 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3622 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3622 (*1 *1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-4115 (*1 *2 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-4115 (*1 *2 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *3 (-344)) (-5 *1 (-669 *3))))) -(-13 (-453) (-10 -8 (-15 -1571 ($ |#1| |#1| |#1| |#1|)) (-15 -3709 ($ |#1|)) (-15 -3030 ($ |#1|)) (-15 -3622 ($)) (-15 -3709 ($ $ |#1|)) (-15 -3030 ($ $ |#1|)) (-15 -3622 ($ $)) (-15 -4115 (|#1| $ |#1|)) (-15 -4115 ((-783 |#1|) $ (-783 |#1|))))) -((-1666 (($ $ (-864)) 12)) (-2585 (($ $ (-864)) 13)) (** (($ $ (-864)) 10))) -(((-670 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864)))) (-671)) (T -670)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-1666 (($ $ (-864)) 15)) (-2585 (($ $ (-864)) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13)) (* (($ $ $) 16))) -(((-671) (-133)) (T -671)) -((* (*1 *1 *1 *1) (-4 *1 (-671))) (-1666 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) (-2585 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864))))) -(-13 (-1030) (-10 -8 (-15 * ($ $ $)) (-15 -1666 ($ $ (-864))) (-15 -2585 ($ $ (-864))) (-15 ** ($ $ (-864))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-1666 (($ $ (-864)) NIL) (($ $ (-721)) 17)) (-3481 (((-110) $) 10)) (-2585 (($ $ (-864)) NIL) (($ $ (-721)) 18)) (** (($ $ (-864)) NIL) (($ $ (-721)) 15))) -(((-672 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-721))) (-15 -2585 (|#1| |#1| (-721))) (-15 -1666 (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864)))) (-673)) (T -672)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-721))) (-15 -2585 (|#1| |#1| (-721))) (-15 -1666 (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-1387 (((-3 $ "failed") $) 17)) (-1666 (($ $ (-864)) 15) (($ $ (-721)) 22)) (-3622 (((-3 $ "failed") $) 19)) (-3481 (((-110) $) 23)) (-2234 (((-3 $ "failed") $) 18)) (-2585 (($ $ (-864)) 14) (($ $ (-721)) 21)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3050 (($) 24 T CONST)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13) (($ $ (-721)) 20)) (* (($ $ $) 16))) -(((-673) (-133)) (T -673)) -((-3050 (*1 *1) (-4 *1 (-673))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-673)) (-5 *2 (-110)))) (-1666 (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) (-2585 (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) (-3622 (*1 *1 *1) (|partial| -4 *1 (-673))) (-2234 (*1 *1 *1) (|partial| -4 *1 (-673))) (-1387 (*1 *1 *1) (|partial| -4 *1 (-673)))) -(-13 (-671) (-10 -8 (-15 (-3050) ($) -2651) (-15 -3481 ((-110) $)) (-15 -1666 ($ $ (-721))) (-15 -2585 ($ $ (-721))) (-15 ** ($ $ (-721))) (-15 -3622 ((-3 $ "failed") $)) (-15 -2234 ((-3 $ "failed") $)) (-15 -1387 ((-3 $ "failed") $)))) -(((-99) . T) ((-572 (-806)) . T) ((-671) . T) ((-1030) . T)) -((-3006 (((-721)) 34)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 22)) (-1760 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) 44)) (-3622 (((-3 $ "failed") $) 64)) (-1381 (($) 38)) (-1899 ((|#2| $) 20)) (-1861 (($) 17)) (-3352 (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-3381 (((-639 |#2|) (-1184 $) (-1 |#2| |#2|)) 59)) (-3318 (((-1184 |#2|) $) NIL) (($ (-1184 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3369 ((|#3| $) 32)) (-3523 (((-1184 $)) 29))) -(((-674 |#1| |#2| |#3|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -1381 (|#1|)) (-15 -3006 ((-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3381 ((-639 |#2|) (-1184 |#1|) (-1 |#2| |#2|))) (-15 -1760 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3318 (|#1| |#3|)) (-15 -1760 (|#1| |#3|)) (-15 -1861 (|#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 (|#3| |#1|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3523 ((-1184 |#1|))) (-15 -3369 (|#3| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|))) (-675 |#2| |#3|) (-162) (-1160 |#2|)) (T -674)) -((-3006 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-721)) (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-675 *4 *5))))) -(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -1381 (|#1|)) (-15 -3006 ((-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3381 ((-639 |#2|) (-1184 |#1|) (-1 |#2| |#2|))) (-15 -1760 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3318 (|#1| |#3|)) (-15 -1760 (|#1| |#3|)) (-15 -1861 (|#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 (|#3| |#1|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3523 ((-1184 |#1|))) (-15 -3369 (|#3| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 91 (|has| |#1| (-344)))) (-3258 (($ $) 92 (|has| |#1| (-344)))) (-2921 (((-110) $) 94 (|has| |#1| (-344)))) (-1849 (((-639 |#1|) (-1184 $)) 44) (((-639 |#1|)) 59)) (-1354 ((|#1| $) 50)) (-3646 (((-1112 (-864) (-721)) (-531)) 144 (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 111 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 112 (|has| |#1| (-344)))) (-2760 (((-110) $ $) 102 (|has| |#1| (-344)))) (-3006 (((-721)) 85 (|has| |#1| (-349)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 166 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 164 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 163)) (-2523 (((-531) $) 167 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 165 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 162)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46) (($ (-1184 |#1|)) 62)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3650 (($ $ $) 106 (|has| |#1| (-344)))) (-1982 (((-639 |#1|) $ (-1184 $)) 51) (((-639 |#1|) $) 57)) (-3073 (((-639 (-531)) (-639 $)) 161 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 160 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 159) (((-639 |#1|) (-639 $)) 158)) (-1760 (($ |#2|) 155) (((-3 $ "failed") (-388 |#2|)) 152 (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-864)) 52)) (-1381 (($) 88 (|has| |#1| (-349)))) (-3630 (($ $ $) 105 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 100 (|has| |#1| (-344)))) (-1806 (($) 146 (|has| |#1| (-330)))) (-1971 (((-110) $) 147 (|has| |#1| (-330)))) (-3493 (($ $ (-721)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-2534 (((-110) $) 113 (|has| |#1| (-344)))) (-3617 (((-864) $) 149 (|has| |#1| (-330))) (((-783 (-864)) $) 135 (|has| |#1| (-330)))) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 49)) (-2342 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 109 (|has| |#1| (-344)))) (-1233 ((|#2| $) 42 (|has| |#1| (-344)))) (-2211 (((-864) $) 87 (|has| |#1| (-349)))) (-1749 ((|#2| $) 153)) (-2078 (($ (-598 $)) 98 (|has| |#1| (-344))) (($ $ $) 97 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 114 (|has| |#1| (-344)))) (-3788 (($) 140 (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) 86 (|has| |#1| (-349)))) (-2529 (((-1049) $) 10)) (-1861 (($) 157)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 99 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 96 (|has| |#1| (-344))) (($ $ $) 95 (|has| |#1| (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 143 (|has| |#1| (-330)))) (-2552 (((-399 $) $) 110 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 107 (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ $) 90 (|has| |#1| (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 101 (|has| |#1| (-344)))) (-4100 (((-721) $) 103 (|has| |#1| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 104 (|has| |#1| (-344)))) (-3176 ((|#1| (-1184 $)) 45) ((|#1|) 58)) (-2350 (((-721) $) 148 (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) 136 (|has| |#1| (-330)))) (-3352 (($ $) 134 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) 132 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) 130 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102))) 129 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1102) (-721)) 128 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-721))) 127 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-721)) 120 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-344)))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-3608 ((|#2|) 156)) (-2498 (($) 145 (|has| |#1| (-330)))) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47) (((-1184 |#1|) $) 64) (((-639 |#1|) (-1184 $)) 63)) (-3318 (((-1184 |#1|) $) 61) (($ (-1184 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 142 (|has| |#1| (-330)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-344))) (($ (-388 (-531))) 84 (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-3369 ((|#2| $) 43)) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 65)) (-2587 (((-110) $ $) 93 (|has| |#1| (-344)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 133 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) 131 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) 126 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102))) 125 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1102) (-721)) 124 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-721))) 123 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-721)) 122 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-344)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 118 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 115 (|has| |#1| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-531)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-531))) 116 (|has| |#1| (-344))))) -(((-675 |#1| |#2|) (-133) (-162) (-1160 |t#1|)) (T -675)) -((-1861 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-675 *2 *3)) (-4 *3 (-1160 *2)))) (-3608 (*1 *2) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) (-1760 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3)))) (-3318 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) (-1760 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-344)) (-4 *3 (-162)) (-4 *1 (-675 *3 *4)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-4 *1 (-675 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1160 *5)) (-5 *2 (-639 *5))))) -(-13 (-390 |t#1| |t#2|) (-162) (-573 |t#2|) (-392 |t#1|) (-358 |t#1|) (-10 -8 (-15 -1861 ($)) (-15 -3608 (|t#2|)) (-15 -1760 ($ |t#2|)) (-15 -3318 ($ |t#2|)) (-15 -1749 (|t#2| $)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-6 (-214 |t#1|)) (-15 -1760 ((-3 $ "failed") (-388 |t#2|))) (-15 -3381 ((-639 |t#1|) (-1184 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-330)) (-6 (-330)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-99) . T) ((-109 #0# #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 |#2|) . T) ((-214 |#1|) |has| |#1| (-344)) ((-216) -1435 (|has| |#1| (-330)) (-12 (|has| |#1| (-216)) (|has| |#1| (-344)))) ((-226) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-272) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-289) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-344) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1435 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| |#2|) . T) ((-390 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-523) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-601 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-668 |#1|) . T) ((-668 $) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102)))) ((-863) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-330)) ((-1142) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)))) -((-4082 (($) 11)) (-3622 (((-3 $ "failed") $) 13)) (-3481 (((-110) $) 10)) (** (($ $ (-864)) NIL) (($ $ (-721)) 18))) -(((-676 |#1|) (-10 -8 (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 ** (|#1| |#1| (-864)))) (-677)) (T -676)) -NIL -(-10 -8 (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 ** (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-4082 (($) 18 T CONST)) (-3622 (((-3 $ "failed") $) 15)) (-3481 (((-110) $) 17)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3050 (($) 19 T CONST)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13) (($ $ (-721)) 16)) (* (($ $ $) 14))) -(((-677) (-133)) (T -677)) -((-3050 (*1 *1) (-4 *1 (-677))) (-4082 (*1 *1) (-4 *1 (-677))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-677)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-677)) (-5 *2 (-721)))) (-3622 (*1 *1 *1) (|partial| -4 *1 (-677)))) -(-13 (-1042) (-10 -8 (-15 (-3050) ($) -2651) (-15 -4082 ($) -2651) (-15 -3481 ((-110) $)) (-15 ** ($ $ (-721))) (-15 -3622 ((-3 $ "failed") $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1042) . T) ((-1030) . T)) -((-1847 (((-2 (|:| -4216 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2040 (((-2 (|:| -4216 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1803 ((|#2| (-388 |#2|) (-1 |#2| |#2|)) 13)) (-4044 (((-2 (|:| |poly| |#2|) (|:| -4216 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)) 47))) -(((-678 |#1| |#2|) (-10 -7 (-15 -2040 ((-2 (|:| -4216 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1847 ((-2 (|:| -4216 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1803 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -4044 ((-2 (|:| |poly| |#2|) (|:| -4216 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1160 |#1|)) (T -678)) -((-4044 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4216 (-388 *6)) (|:| |special| (-388 *6)))) (-5 *1 (-678 *5 *6)) (-5 *3 (-388 *6)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1160 *5)) (-5 *1 (-678 *5 *2)) (-4 *5 (-344)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4216 (-399 *3)) (|:| |special| (-399 *3)))) (-5 *1 (-678 *5 *3)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4216 *3) (|:| |special| *3))) (-5 *1 (-678 *5 *3))))) -(-10 -7 (-15 -2040 ((-2 (|:| -4216 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1847 ((-2 (|:| -4216 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1803 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -4044 ((-2 (|:| |poly| |#2|) (|:| -4216 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) -((-3186 ((|#7| (-598 |#5|) |#6|) NIL)) (-3261 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-679 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3261 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3186 (|#7| (-598 |#5|) |#6|))) (-797) (-743) (-743) (-986) (-986) (-892 |#4| |#2| |#1|) (-892 |#5| |#3| |#1|)) (T -679)) -((-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *9)) (-4 *9 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *8 (-986)) (-4 *2 (-892 *9 *7 *5)) (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743)) (-4 *4 (-892 *8 *6 *5)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-986)) (-4 *9 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *2 (-892 *9 *7 *5)) (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743)) (-4 *4 (-892 *8 *6 *5))))) -(-10 -7 (-15 -3261 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3186 (|#7| (-598 |#5|) |#6|))) -((-3261 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3261 (|#7| (-1 |#2| |#1|) |#6|))) (-797) (-797) (-743) (-743) (-986) (-892 |#5| |#3| |#1|) (-892 |#5| |#4| |#2|)) (T -680)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-797)) (-4 *6 (-797)) (-4 *7 (-743)) (-4 *9 (-986)) (-4 *2 (-892 *9 *8 *6)) (-5 *1 (-680 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-743)) (-4 *4 (-892 *9 *7 *5))))) -(-10 -7 (-15 -3261 (|#7| (-1 |#2| |#1|) |#6|))) -((-2552 (((-399 |#4|) |#4|) 41))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|))) (-743) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102))))) (-289) (-892 (-895 |#3|) |#1| |#2|)) (T -681)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-892 (-895 *6) *4 *5))))) -(-10 -7 (-15 -2552 ((-399 |#4|) |#4|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-808 |#1|)) $) NIL)) (-2516 (((-1098 $) $ (-808 |#1|)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-503 (-808 |#1|)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) NIL) (($ (-1098 $) (-808 |#1|)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-503 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 (((-503 (-808 |#1|)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-503 (-808 |#1|)) (-503 (-808 |#1|))) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) NIL) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) NIL) (($ $ (-808 |#1|) $) NIL) (($ $ (-598 (-808 |#1|)) (-598 $)) NIL)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 (((-503 (-808 |#1|)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-808 |#1|)) NIL) (($ $) NIL (|has| |#2| (-523))) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531))))))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-503 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-682 |#1| |#2|) (-892 |#2| (-503 (-808 |#1|)) (-808 |#1|)) (-598 (-1102)) (-986)) (T -682)) -NIL -(-892 |#2| (-503 (-808 |#1|)) (-808 |#1|)) -((-1670 (((-2 (|:| -3818 (-895 |#3|)) (|:| -4137 (-895 |#3|))) |#4|) 14)) (-3199 ((|#4| |#4| |#2|) 33)) (-1909 ((|#4| (-388 (-895 |#3|)) |#2|) 64)) (-2889 ((|#4| (-1098 (-895 |#3|)) |#2|) 77)) (-2532 ((|#4| (-1098 |#4|) |#2|) 51)) (-1863 ((|#4| |#4| |#2|) 54)) (-2552 (((-399 |#4|) |#4|) 40))) -(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1670 ((-2 (|:| -3818 (-895 |#3|)) (|:| -4137 (-895 |#3|))) |#4|)) (-15 -1863 (|#4| |#4| |#2|)) (-15 -2532 (|#4| (-1098 |#4|) |#2|)) (-15 -3199 (|#4| |#4| |#2|)) (-15 -2889 (|#4| (-1098 (-895 |#3|)) |#2|)) (-15 -1909 (|#4| (-388 (-895 |#3|)) |#2|)) (-15 -2552 ((-399 |#4|) |#4|))) (-743) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)))) (-523) (-892 (-388 (-895 |#3|)) |#1| |#2|)) (T -683)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-892 (-388 (-895 *6)) *4 *5)))) (-1909 (*1 *2 *3 *4) (-12 (-4 *6 (-523)) (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) (-5 *3 (-388 (-895 *6))) (-4 *5 (-743)) (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 (-895 *6))) (-4 *6 (-523)) (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) (-4 *5 (-743)) (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))))) (-3199 (*1 *2 *2 *3) (-12 (-4 *4 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523)) (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) (-4 *5 (-743)) (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)))) (-1863 (*1 *2 *2 *3) (-12 (-4 *4 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523)) (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3)))) (-1670 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)) (-5 *2 (-2 (|:| -3818 (-895 *6)) (|:| -4137 (-895 *6)))) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-892 (-388 (-895 *6)) *4 *5))))) -(-10 -7 (-15 -1670 ((-2 (|:| -3818 (-895 |#3|)) (|:| -4137 (-895 |#3|))) |#4|)) (-15 -1863 (|#4| |#4| |#2|)) (-15 -2532 (|#4| (-1098 |#4|) |#2|)) (-15 -3199 (|#4| |#4| |#2|)) (-15 -2889 (|#4| (-1098 (-895 |#3|)) |#2|)) (-15 -1909 (|#4| (-388 (-895 |#3|)) |#2|)) (-15 -2552 ((-399 |#4|) |#4|))) -((-2552 (((-399 |#4|) |#4|) 52))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|))) (-743) (-797) (-13 (-289) (-140)) (-892 (-388 |#3|) |#1| |#2|)) (T -684)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-892 (-388 *6) *4 *5))))) -(-10 -7 (-15 -2552 ((-399 |#4|) |#4|))) -((-3261 (((-686 |#2| |#3|) (-1 |#2| |#1|) (-686 |#1| |#3|)) 18))) -(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-686 |#2| |#3|) (-1 |#2| |#1|) (-686 |#1| |#3|)))) (-986) (-986) (-677)) (T -685)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-686 *5 *7)) (-4 *5 (-986)) (-4 *6 (-986)) (-4 *7 (-677)) (-5 *2 (-686 *6 *7)) (-5 *1 (-685 *5 *6 *7))))) -(-10 -7 (-15 -3261 ((-686 |#2| |#3|) (-1 |#2| |#1|) (-686 |#1| |#3|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 28)) (-4034 (((-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))) $) 29)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721)) 20 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2523 ((|#2| $) NIL) ((|#1| $) NIL)) (-2500 (($ $) 79 (|has| |#2| (-797)))) (-3622 (((-3 $ "failed") $) 65)) (-1381 (($) 35 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 55)) (-1230 (((-598 $) $) 39)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| |#2|) 16)) (-3261 (($ (-1 |#1| |#1|) $) 54)) (-2211 (((-864) $) 32 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2462 ((|#2| $) 78 (|has| |#2| (-797)))) (-2475 ((|#1| $) 77 (|has| |#2| (-797)))) (-1521 (((-1085) $) NIL)) (-1889 (($ (-864)) 27 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 76) (($ (-531)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|)))) 11)) (-2708 (((-598 |#1|) $) 41)) (-3188 ((|#1| $ |#2|) 88)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3035 (($) 12 T CONST)) (-3050 (($) 33 T CONST)) (-2148 (((-110) $ $) 80)) (-2250 (($ $) 47) (($ $ $) NIL)) (-2237 (($ $ $) 26)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))))) -(((-686 |#1| |#2|) (-13 (-986) (-977 |#2|) (-977 |#1|) (-10 -8 (-15 -2669 ($ |#1| |#2|)) (-15 -3188 (|#1| $ |#2|)) (-15 -2265 ($ (-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))))) (-15 -4034 ((-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -3380 ((-110) $)) (-15 -2708 ((-598 |#1|) $)) (-15 -1230 ((-598 $) $)) (-15 -3517 ((-721) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-797)) (PROGN (-15 -2462 (|#2| $)) (-15 -2475 (|#1| $)) (-15 -2500 ($ $))) |%noBranch|))) (-986) (-677)) (T -686)) -((-2669 (*1 *1 *2 *3) (-12 (-5 *1 (-686 *2 *3)) (-4 *2 (-986)) (-4 *3 (-677)))) (-3188 (*1 *2 *1 *3) (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-677)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) (-4 *3 (-986)) (-4 *4 (-677)) (-5 *1 (-686 *3 *4)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-686 *3 *4)) (-4 *4 (-677)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-1230 (*1 *2 *1) (-12 (-5 *2 (-598 (-686 *3 *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-2462 (*1 *2 *1) (-12 (-4 *2 (-677)) (-4 *2 (-797)) (-5 *1 (-686 *3 *2)) (-4 *3 (-986)))) (-2475 (*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) (-4 *3 (-677)))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) (-4 *2 (-986)) (-4 *3 (-677))))) -(-13 (-986) (-977 |#2|) (-977 |#1|) (-10 -8 (-15 -2669 ($ |#1| |#2|)) (-15 -3188 (|#1| $ |#2|)) (-15 -2265 ($ (-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))))) (-15 -4034 ((-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -3380 ((-110) $)) (-15 -2708 ((-598 |#1|) $)) (-15 -1230 ((-598 $) $)) (-15 -3517 ((-721) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-797)) (PROGN (-15 -2462 (|#2| $)) (-15 -2475 (|#1| $)) (-15 -2500 ($ $))) |%noBranch|))) -((-2247 (((-110) $ $) 19)) (-4210 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3252 (($ $ $) 72)) (-3890 (((-110) $ $) 73)) (-4058 (((-110) $ (-721)) 8)) (-1245 (($ (-598 |#1|)) 68) (($) 67)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 62)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 64)) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22)) (-1301 (($ $ $) 69)) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40) (($ |#1| $ (-721)) 63)) (-2529 (((-1049) $) 21)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 61)) (-1786 (($ $ |#1|) 71) (($ $ $) 70)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18)) (-3445 (($ (-598 |#1|)) 66) (($) 65)) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-687 |#1|) (-133) (-1030)) (T -687)) -NIL -(-13 (-645 |t#1|) (-1028 |t#1|)) -(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-645 |#1|) . T) ((-1028 |#1|) . T) ((-1030) . T) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-4210 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3252 (($ $ $) 79)) (-3890 (((-110) $ $) 83)) (-4058 (((-110) $ (-721)) NIL)) (-1245 (($ (-598 |#1|)) 24) (($) 16)) (-2245 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2705 (($ $) 71)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) 61 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4273))) (($ |#1| $ (-531)) 62) (($ (-1 (-110) |#1|) $ (-531)) 65)) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $ (-531)) 67) (($ (-1 (-110) |#1|) $ (-531)) 68)) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 32 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 82)) (-2212 (($) 14) (($ |#1|) 26) (($ (-598 |#1|)) 21)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) 38)) (-1883 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 75)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 77)) (-3540 ((|#1| $) 55)) (-3944 (($ |#1| $) 56) (($ |#1| $ (-721)) 72)) (-2529 (((-1049) $) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-4192 ((|#1| $) 54)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 50)) (-3781 (($) 13)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 48)) (-1786 (($ $ |#1|) NIL) (($ $ $) 78)) (-2543 (($) 15) (($ (-598 |#1|)) 23)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) 60 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 66)) (-3318 (((-507) $) 36 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 20)) (-2265 (((-806) $) 44)) (-3445 (($ (-598 |#1|)) 25) (($) 17)) (-2524 (($ (-598 |#1|)) 22)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 81)) (-2167 (((-721) $) 59 (|has| $ (-6 -4273))))) -(((-688 |#1|) (-13 (-687 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -2212 ($)) (-15 -2212 ($ |#1|)) (-15 -2212 ($ (-598 |#1|))) (-15 -2445 ((-598 |#1|) $)) (-15 -2283 ($ |#1| $ (-531))) (-15 -2283 ($ (-1 (-110) |#1|) $ (-531))) (-15 -2717 ($ |#1| $ (-531))) (-15 -2717 ($ (-1 (-110) |#1|) $ (-531))))) (-1030)) (T -688)) -((-2212 (*1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2212 (*1 *1 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-688 *3)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1030)))) (-2283 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2283 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030)) (-5 *1 (-688 *4)))) (-2717 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2717 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030)) (-5 *1 (-688 *4))))) -(-13 (-687 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -2212 ($)) (-15 -2212 ($ |#1|)) (-15 -2212 ($ (-598 |#1|))) (-15 -2445 ((-598 |#1|) $)) (-15 -2283 ($ |#1| $ (-531))) (-15 -2283 ($ (-1 (-110) |#1|) $ (-531))) (-15 -2717 ($ |#1| $ (-531))) (-15 -2717 ($ (-1 (-110) |#1|) $ (-531))))) -((-4188 (((-1189) (-1085)) 8))) -(((-689) (-10 -7 (-15 -4188 ((-1189) (-1085))))) (T -689)) -((-4188 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-689))))) -(-10 -7 (-15 -4188 ((-1189) (-1085)))) -((-4149 (((-598 |#1|) (-598 |#1|) (-598 |#1|)) 10))) -(((-690 |#1|) (-10 -7 (-15 -4149 ((-598 |#1|) (-598 |#1|) (-598 |#1|)))) (-797)) (T -690)) -((-4149 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-690 *3))))) -(-10 -7 (-15 -4149 ((-598 |#1|) (-598 |#1|) (-598 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#2|) $) 134)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 127 (|has| |#1| (-523)))) (-3258 (($ $) 126 (|has| |#1| (-523)))) (-2921 (((-110) $) 124 (|has| |#1| (-523)))) (-2367 (($ $) 83 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 66 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $) 65 (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 82 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 67 (|has| |#1| (-37 (-388 (-531)))))) (-2391 (($ $) 81 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 68 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-2500 (($ $) 118)) (-3622 (((-3 $ "failed") $) 32)) (-3383 (((-895 |#1|) $ (-721)) 96) (((-895 |#1|) $ (-721) (-721)) 95)) (-3201 (((-110) $) 135)) (-1880 (($) 93 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $ |#2|) 98) (((-721) $ |#2| (-721)) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 64 (|has| |#1| (-37 (-388 (-531)))))) (-3380 (((-110) $) 116)) (-2669 (($ $ (-598 |#2|) (-598 (-503 |#2|))) 133) (($ $ |#2| (-503 |#2|)) 132) (($ |#1| (-503 |#2|)) 117) (($ $ |#2| (-721)) 100) (($ $ (-598 |#2|) (-598 (-721))) 99)) (-3261 (($ (-1 |#1| |#1|) $) 115)) (-2076 (($ $) 90 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 113)) (-2475 ((|#1| $) 112)) (-1521 (((-1085) $) 9)) (-1788 (($ $ |#2|) 94 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) 10)) (-1846 (($ $ (-721)) 101)) (-3609 (((-3 $ "failed") $ $) 128 (|has| |#1| (-523)))) (-2798 (($ $) 91 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (($ $ |#2| $) 109) (($ $ (-598 |#2|) (-598 $)) 108) (($ $ (-598 (-276 $))) 107) (($ $ (-276 $)) 106) (($ $ $ $) 105) (($ $ (-598 $) (-598 $)) 104)) (-3352 (($ $ |#2|) 40) (($ $ (-598 |#2|)) 39) (($ $ |#2| (-721)) 38) (($ $ (-598 |#2|) (-598 (-721))) 37)) (-2012 (((-503 |#2|) $) 114)) (-2403 (($ $) 80 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 69 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 79 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 70 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 78 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 71 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 136)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 131 (|has| |#1| (-162))) (($ $) 129 (|has| |#1| (-523))) (($ (-388 (-531))) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3188 ((|#1| $ (-503 |#2|)) 119) (($ $ |#2| (-721)) 103) (($ $ (-598 |#2|) (-598 (-721))) 102)) (-2750 (((-3 $ "failed") $) 130 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2442 (($ $) 89 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 77 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 125 (|has| |#1| (-523)))) (-2416 (($ $) 88 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 76 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 87 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 75 (|has| |#1| (-37 (-388 (-531)))))) (-2753 (($ $) 86 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 74 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 85 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 73 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 84 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 72 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#2|) 36) (($ $ (-598 |#2|)) 35) (($ $ |#2| (-721)) 34) (($ $ (-598 |#2|) (-598 (-721))) 33)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 120 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ $) 92 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 63 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 123 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 122 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-691 |#1| |#2|) (-133) (-986) (-797)) (T -691)) -((-3188 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986)) (-4 *2 (-797)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-691 *3 *4)) (-4 *3 (-986)) (-4 *4 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986)) (-4 *2 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)))) (-3617 (*1 *2 *1 *3) (-12 (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3617 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-721)) (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) (-4 *3 (-797)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)) (-5 *2 (-895 *4)))) (-3383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)) (-5 *2 (-895 *4)))) (-1788 (*1 *1 *1 *2) (-12 (-4 *1 (-691 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797)) (-4 *3 (-37 (-388 (-531))))))) -(-13 (-843 |t#2|) (-915 |t#1| (-503 |t#2|) |t#2|) (-492 |t#2| $) (-291 $) (-10 -8 (-15 -3188 ($ $ |t#2| (-721))) (-15 -3188 ($ $ (-598 |t#2|) (-598 (-721)))) (-15 -1846 ($ $ (-721))) (-15 -2669 ($ $ |t#2| (-721))) (-15 -2669 ($ $ (-598 |t#2|) (-598 (-721)))) (-15 -3617 ((-721) $ |t#2|)) (-15 -3617 ((-721) $ |t#2| (-721))) (-15 -3383 ((-895 |t#1|) $ (-721))) (-15 -3383 ((-895 |t#1|) $ (-721) (-721))) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ |t#2|)) (-6 (-943)) (-6 (-1124))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-503 |#2|)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-272) |has| |#1| (-523)) ((-291 $) . T) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-492 |#2| $) . T) ((-492 $ $) . T) ((-523) |has| |#1| (-523)) ((-601 #1#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-843 |#2|) . T) ((-915 |#1| #0# |#2|) . T) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531))))) -((-2552 (((-399 (-1098 |#4|)) (-1098 |#4|)) 30) (((-399 |#4|) |#4|) 26))) -(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|)))) (-797) (-743) (-13 (-289) (-140)) (-892 |#3| |#2| |#1|)) (T -692)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-692 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4))))) -(-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|)))) -((-2144 (((-399 |#4|) |#4| |#2|) 120)) (-1372 (((-399 |#4|) |#4|) NIL)) (-2956 (((-399 (-1098 |#4|)) (-1098 |#4|)) 111) (((-399 |#4|) |#4|) 41)) (-3978 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 |#4|)) (|:| -1790 (-531)))))) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|))) 69)) (-3300 (((-1098 |#3|) (-1098 |#3|) (-531)) 139)) (-3171 (((-598 (-721)) (-1098 |#4|) (-598 |#2|) (-721)) 61)) (-1749 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-1098 |#3|) (-1098 |#3|) |#4| (-598 |#2|) (-598 (-721)) (-598 |#3|)) 65)) (-1653 (((-2 (|:| |upol| (-1098 |#3|)) (|:| |Lval| (-598 |#3|)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) (|:| |ctpol| |#3|)) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|))) 26)) (-2256 (((-2 (|:| -2451 (-1098 |#4|)) (|:| |polval| (-1098 |#3|))) (-1098 |#4|) (-1098 |#3|) (-531)) 57)) (-1520 (((-531) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) 136)) (-1926 ((|#4| (-531) (-399 |#4|)) 58)) (-1321 (((-110) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) NIL))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-399 |#4|) |#4|)) (-15 -2956 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -1372 ((-399 |#4|) |#4|)) (-15 -1520 ((-531) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -2144 ((-399 |#4|) |#4| |#2|)) (-15 -2256 ((-2 (|:| -2451 (-1098 |#4|)) (|:| |polval| (-1098 |#3|))) (-1098 |#4|) (-1098 |#3|) (-531))) (-15 -3978 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 |#4|)) (|:| -1790 (-531)))))) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1653 ((-2 (|:| |upol| (-1098 |#3|)) (|:| |Lval| (-598 |#3|)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) (|:| |ctpol| |#3|)) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1926 (|#4| (-531) (-399 |#4|))) (-15 -1321 ((-110) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -1749 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-1098 |#3|) (-1098 |#3|) |#4| (-598 |#2|) (-598 (-721)) (-598 |#3|))) (-15 -3171 ((-598 (-721)) (-1098 |#4|) (-598 |#2|) (-721))) (-15 -3300 ((-1098 |#3|) (-1098 |#3|) (-531)))) (-743) (-797) (-289) (-892 |#3| |#1| |#2|)) (T -693)) -((-3300 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *6)) (-5 *3 (-531)) (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-3171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-4 *7 (-797)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-4 *8 (-289)) (-5 *2 (-598 (-721))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *5 (-721)))) (-1749 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1098 *11)) (-5 *6 (-598 *10)) (-5 *7 (-598 (-721))) (-5 *8 (-598 *11)) (-4 *10 (-797)) (-4 *11 (-289)) (-4 *9 (-743)) (-4 *5 (-892 *11 *9 *10)) (-5 *2 (-598 (-1098 *5))) (-5 *1 (-693 *9 *10 *11 *5)) (-5 *3 (-1098 *5)))) (-1321 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531))))) (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-531)) (-5 *4 (-399 *2)) (-4 *2 (-892 *7 *5 *6)) (-5 *1 (-693 *5 *6 *7 *2)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-289)))) (-1653 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) (-4 *7 (-797)) (-4 *8 (-289)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-5 *2 (-2 (|:| |upol| (-1098 *8)) (|:| |Lval| (-598 *8)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 *8)) (|:| -1790 (-531))))) (|:| |ctpol| *8))) (-5 *1 (-693 *6 *7 *8 *9)))) (-3978 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) (-4 *7 (-797)) (-4 *8 (-289)) (-4 *6 (-743)) (-4 *9 (-892 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 *9)) (|:| -1790 (-531))))))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)))) (-2256 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-531)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-289)) (-4 *9 (-892 *8 *6 *7)) (-5 *2 (-2 (|:| -2451 (-1098 *9)) (|:| |polval| (-1098 *8)))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)) (-5 *4 (-1098 *8)))) (-2144 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-693 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531))))) (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-1372 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5))))) -(-10 -7 (-15 -2956 ((-399 |#4|) |#4|)) (-15 -2956 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -1372 ((-399 |#4|) |#4|)) (-15 -1520 ((-531) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -2144 ((-399 |#4|) |#4| |#2|)) (-15 -2256 ((-2 (|:| -2451 (-1098 |#4|)) (|:| |polval| (-1098 |#3|))) (-1098 |#4|) (-1098 |#3|) (-531))) (-15 -3978 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 |#4|)) (|:| -1790 (-531)))))) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1653 ((-2 (|:| |upol| (-1098 |#3|)) (|:| |Lval| (-598 |#3|)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) (|:| |ctpol| |#3|)) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1926 (|#4| (-531) (-399 |#4|))) (-15 -1321 ((-110) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -1749 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-1098 |#3|) (-1098 |#3|) |#4| (-598 |#2|) (-598 (-721)) (-598 |#3|))) (-15 -3171 ((-598 (-721)) (-1098 |#4|) (-598 |#2|) (-721))) (-15 -3300 ((-1098 |#3|) (-1098 |#3|) (-531)))) -((-2083 (($ $ (-864)) 12))) -(((-694 |#1| |#2|) (-10 -8 (-15 -2083 (|#1| |#1| (-864)))) (-695 |#2|) (-162)) (T -694)) -NIL -(-10 -8 (-15 -2083 (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1666 (($ $ (-864)) 28)) (-2083 (($ $ (-864)) 33)) (-2585 (($ $ (-864)) 29)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3214 (($ $ $) 25)) (-2265 (((-806) $) 11)) (-2801 (($ $ $ $) 26)) (-1605 (($ $ $) 24)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-695 |#1|) (-133) (-162)) (T -695)) -((-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-695 *3)) (-4 *3 (-162))))) -(-13 (-712) (-668 |t#1|) (-10 -8 (-15 -2083 ($ $ (-864))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-671) . T) ((-712) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-2799 (((-975) (-639 (-208)) (-531) (-110) (-531)) 25)) (-3130 (((-975) (-639 (-208)) (-531) (-110) (-531)) 24))) -(((-696) (-10 -7 (-15 -3130 ((-975) (-639 (-208)) (-531) (-110) (-531))) (-15 -2799 ((-975) (-639 (-208)) (-531) (-110) (-531))))) (T -696)) -((-2799 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-696)))) (-3130 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-696))))) -(-10 -7 (-15 -3130 ((-975) (-639 (-208)) (-531) (-110) (-531))) (-15 -2799 ((-975) (-639 (-208)) (-531) (-110) (-531)))) -((-1674 (((-975) (-531) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) 43)) (-2864 (((-975) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) 39)) (-4114 (((-975) (-208) (-208) (-208) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 32))) -(((-697) (-10 -7 (-15 -4114 ((-975) (-208) (-208) (-208) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2864 ((-975) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -1674 ((-975) (-531) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))) (T -697)) -((-1674 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-975)) (-5 *1 (-697)))) (-2864 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-975)) (-5 *1 (-697)))) (-4114 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-697))))) -(-10 -7 (-15 -4114 ((-975) (-208) (-208) (-208) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2864 ((-975) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -1674 ((-975) (-531) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))))) -((-3869 (((-975) (-531) (-531) (-639 (-208)) (-531)) 34)) (-1494 (((-975) (-531) (-531) (-639 (-208)) (-531)) 33)) (-3302 (((-975) (-531) (-639 (-208)) (-531)) 32)) (-1471 (((-975) (-531) (-639 (-208)) (-531)) 31)) (-2631 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 30)) (-2352 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 29)) (-3371 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531)) 28)) (-1248 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531)) 27)) (-3557 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 24)) (-3092 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531)) 23)) (-2295 (((-975) (-531) (-639 (-208)) (-531)) 22)) (-3175 (((-975) (-531) (-639 (-208)) (-531)) 21))) -(((-698) (-10 -7 (-15 -3175 ((-975) (-531) (-639 (-208)) (-531))) (-15 -2295 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3092 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3557 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1248 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3371 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2352 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2631 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1471 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3302 ((-975) (-531) (-639 (-208)) (-531))) (-15 -1494 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -3869 ((-975) (-531) (-531) (-639 (-208)) (-531))))) (T -698)) -((-3869 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-1494 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3302 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-1471 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-2631 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-2352 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3371 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-1248 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3557 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3092 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-2295 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3175 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698))))) -(-10 -7 (-15 -3175 ((-975) (-531) (-639 (-208)) (-531))) (-15 -2295 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3092 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3557 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1248 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3371 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2352 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2631 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1471 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3302 ((-975) (-531) (-639 (-208)) (-531))) (-15 -1494 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -3869 ((-975) (-531) (-531) (-639 (-208)) (-531)))) -((-3312 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2452 (((-975) (-639 (-208)) (-639 (-208)) (-531) (-531)) 51)) (-1384 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2025 (((-975) (-208) (-208) (-531) (-531) (-531) (-531)) 46)) (-1257 (((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 45)) (-4162 (((-975) (-208) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 44)) (-2091 (((-975) (-208) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 43)) (-2066 (((-975) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 42)) (-2387 (((-975) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 38)) (-2834 (((-975) (-208) (-208) (-531) (-639 (-208)) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 37)) (-2299 (((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 33)) (-3635 (((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 32))) -(((-699) (-10 -7 (-15 -3635 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2299 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2834 ((-975) (-208) (-208) (-531) (-639 (-208)) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2387 ((-975) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2066 ((-975) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2091 ((-975) (-208) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4162 ((-975) (-208) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1257 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2025 ((-975) (-208) (-208) (-531) (-531) (-531) (-531))) (-15 -1384 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -2452 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-531))) (-15 -3312 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))) (T -699)) -((-3312 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2452 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-699)))) (-1384 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2025 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-699)))) (-1257 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-4162 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2091 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2066 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2387 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2834 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-699)))) (-2299 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-3635 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-699))))) -(-10 -7 (-15 -3635 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2299 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2834 ((-975) (-208) (-208) (-531) (-639 (-208)) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2387 ((-975) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2066 ((-975) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2091 ((-975) (-208) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4162 ((-975) (-208) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1257 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2025 ((-975) (-208) (-208) (-531) (-531) (-531) (-531))) (-15 -1384 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -2452 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-531))) (-15 -3312 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))))) -((-3987 (((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-4048 (((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369)) 69) (((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3574 (((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) 57)) (-3666 (((-975) (-639 (-208)) (-639 (-208)) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 50)) (-3865 (((-975) (-208) (-531) (-531) (-1085) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3589 (((-975) (-208) (-531) (-531) (-208) (-1085) (-208) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 45)) (-4158 (((-975) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 42)) (-3544 (((-975) (-208) (-531) (-531) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-700) (-10 -7 (-15 -3544 ((-975) (-208) (-531) (-531) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4158 ((-975) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3589 ((-975) (-208) (-531) (-531) (-208) (-1085) (-208) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3865 ((-975) (-208) (-531) (-531) (-1085) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3666 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3574 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -3987 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -700)) -((-3987 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-4048 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-369)) (-5 *2 (-975)) (-5 *1 (-700)))) (-4048 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-975)) (-5 *1 (-700)))) (-3574 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-3666 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-975)) (-5 *1 (-700)))) (-3865 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-3589 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-4158 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-3544 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700))))) -(-10 -7 (-15 -3544 ((-975) (-208) (-531) (-531) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4158 ((-975) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3589 ((-975) (-208) (-531) (-531) (-208) (-1085) (-208) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3865 ((-975) (-208) (-531) (-531) (-1085) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3666 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3574 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -3987 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))))) -((-3182 (((-975) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-627 (-208)) (-531)) 45)) (-1676 (((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-1085) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) 41)) (-3752 (((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 23))) -(((-701) (-10 -7 (-15 -3752 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1676 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-1085) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3182 ((-975) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-627 (-208)) (-531))))) (T -701)) -((-3182 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-627 (-208))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-701)))) (-1676 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-975)) (-5 *1 (-701)))) (-3752 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-701))))) -(-10 -7 (-15 -3752 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1676 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-1085) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3182 ((-975) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-627 (-208)) (-531)))) -((-2992 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-639 (-208)) (-208) (-208) (-531)) 35)) (-2533 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-208) (-208) (-531)) 34)) (-1632 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-639 (-208)) (-208) (-208) (-531)) 33)) (-2788 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 29)) (-2784 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 28)) (-3238 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531)) 27)) (-3938 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531)) 24)) (-4084 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531)) 23)) (-2361 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531)) 22)) (-1636 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)) 21))) -(((-702) (-10 -7 (-15 -1636 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2361 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4084 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3938 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3238 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2784 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2788 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1632 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2533 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-208) (-208) (-531))) (-15 -2992 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-639 (-208)) (-208) (-208) (-531))))) (T -702)) -((-2992 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-702)))) (-2533 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-702)))) (-1632 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-702)))) (-2788 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-2784 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-3238 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-702)))) (-3938 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-4084 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-2361 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-1636 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702))))) -(-10 -7 (-15 -1636 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2361 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4084 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3938 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3238 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2784 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2788 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1632 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2533 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-208) (-208) (-531))) (-15 -2992 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-639 (-208)) (-208) (-208) (-531)))) -((-4070 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)) 45)) (-2837 (((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-531)) 44)) (-3576 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)) 43)) (-4142 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 42)) (-3549 (((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531)) 41)) (-1518 (((-975) (-1085) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531)) 40)) (-1359 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531) (-531) (-531) (-208) (-639 (-208)) (-531)) 39)) (-1641 (((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531))) 38)) (-1481 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531)) 35)) (-2491 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531)) 34)) (-1898 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531)) 33)) (-3147 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 32)) (-3333 (((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531)) 31)) (-3801 (((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-531)) 30)) (-3429 (((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-531) (-531) (-531)) 29)) (-2779 (((-975) (-531) (-531) (-531) (-208) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-531)) (-531) (-531) (-531)) 28)) (-1470 (((-975) (-531) (-639 (-208)) (-208) (-531)) 24)) (-1831 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 21))) -(((-703) (-10 -7 (-15 -1831 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1470 ((-975) (-531) (-639 (-208)) (-208) (-531))) (-15 -2779 ((-975) (-531) (-531) (-531) (-208) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-531)) (-531) (-531) (-531))) (-15 -3429 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -3801 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-531))) (-15 -3333 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531))) (-15 -3147 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1898 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531))) (-15 -2491 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531))) (-15 -1481 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1641 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)))) (-15 -1359 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531) (-531) (-531) (-208) (-639 (-208)) (-531))) (-15 -1518 ((-975) (-1085) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -3549 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4142 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3576 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2837 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4070 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))))) (T -703)) -((-4070 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-2837 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3576 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-4142 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-3549 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1518 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1359 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1641 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1481 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-2491 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1898 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3147 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-3333 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3801 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3429 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-2779 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1470 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1831 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703))))) -(-10 -7 (-15 -1831 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1470 ((-975) (-531) (-639 (-208)) (-208) (-531))) (-15 -2779 ((-975) (-531) (-531) (-531) (-208) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-531)) (-531) (-531) (-531))) (-15 -3429 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -3801 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-531))) (-15 -3333 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531))) (-15 -3147 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1898 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531))) (-15 -2491 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531))) (-15 -1481 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1641 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)))) (-15 -1359 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531) (-531) (-531) (-208) (-639 (-208)) (-531))) (-15 -1518 ((-975) (-1085) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -3549 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4142 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3576 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2837 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4070 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)))) -((-2620 (((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-531) (-639 (-208)) (-531)) 63)) (-1580 (((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-110) (-208) (-531) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-531) (-531) (-531) (-531) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2450 (((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-110) (-110) (-531) (-531) (-639 (-208)) (-639 (-531)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) 58)) (-4144 (((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-531) (-531) (-639 (-208)) (-531)) 51)) (-3907 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3407 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2542 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3675 (((-975) (-531) (-208) (-208) (-531) (-208) (-110) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 38))) -(((-704) (-10 -7 (-15 -3675 ((-975) (-531) (-208) (-208) (-531) (-208) (-110) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2542 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -3407 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3907 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -4144 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-531) (-531) (-639 (-208)) (-531))) (-15 -2450 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-110) (-110) (-531) (-531) (-639 (-208)) (-639 (-531)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1580 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-110) (-208) (-531) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-531) (-531) (-531) (-531) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2620 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-531) (-639 (-208)) (-531))))) (T -704)) -((-2620 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))) (-1580 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-639 (-531))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-704)))) (-2450 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-639 (-208))) (-5 *6 (-110)) (-5 *7 (-639 (-531))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))) (-4144 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-704)))) (-3907 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-975)) (-5 *1 (-704)))) (-3407 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-975)) (-5 *1 (-704)))) (-2542 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-975)) (-5 *1 (-704)))) (-3675 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704))))) -(-10 -7 (-15 -3675 ((-975) (-531) (-208) (-208) (-531) (-208) (-110) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2542 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -3407 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3907 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -4144 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-531) (-531) (-639 (-208)) (-531))) (-15 -2450 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-110) (-110) (-531) (-531) (-639 (-208)) (-639 (-531)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1580 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-110) (-208) (-531) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-531) (-531) (-531) (-531) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2620 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-531) (-639 (-208)) (-531)))) -((-2963 (((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531)) 47)) (-3502 (((-975) (-1085) (-1085) (-531) (-531) (-639 (-159 (-208))) (-531) (-639 (-159 (-208))) (-531) (-531) (-639 (-159 (-208))) (-531)) 46)) (-3656 (((-975) (-531) (-531) (-531) (-639 (-159 (-208))) (-531)) 45)) (-1815 (((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 40)) (-3958 (((-975) (-1085) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)) (-531)) 39)) (-1706 (((-975) (-531) (-531) (-531) (-639 (-208)) (-531)) 36)) (-2426 (((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531)) 35)) (-2707 (((-975) (-531) (-531) (-531) (-531) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-208) (-208) (-531)) 34)) (-2878 (((-975) (-531) (-531) (-531) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-110) (-208) (-110) (-639 (-531)) (-639 (-208)) (-531)) 33)) (-1367 (((-975) (-531) (-531) (-531) (-531) (-208) (-110) (-110) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-531)) 32))) -(((-705) (-10 -7 (-15 -1367 ((-975) (-531) (-531) (-531) (-531) (-208) (-110) (-110) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-531))) (-15 -2878 ((-975) (-531) (-531) (-531) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-110) (-208) (-110) (-639 (-531)) (-639 (-208)) (-531))) (-15 -2707 ((-975) (-531) (-531) (-531) (-531) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-208) (-208) (-531))) (-15 -2426 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531))) (-15 -1706 ((-975) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -3958 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)) (-531))) (-15 -1815 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3656 ((-975) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -3502 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-159 (-208))) (-531) (-639 (-159 (-208))) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -2963 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531))))) (T -705)) -((-2963 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-705)))) (-3502 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-705)))) (-3656 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-705)))) (-1815 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-705)))) (-3958 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-705)))) (-1706 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-705)))) (-2426 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-705)))) (-2707 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-598 (-110))) (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *7 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-705)))) (-2878 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-639 (-531))) (-5 *5 (-110)) (-5 *7 (-639 (-208))) (-5 *3 (-531)) (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-705)))) (-1367 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-598 (-110))) (-5 *7 (-639 (-208))) (-5 *8 (-639 (-531))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-705))))) -(-10 -7 (-15 -1367 ((-975) (-531) (-531) (-531) (-531) (-208) (-110) (-110) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-531))) (-15 -2878 ((-975) (-531) (-531) (-531) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-110) (-208) (-110) (-639 (-531)) (-639 (-208)) (-531))) (-15 -2707 ((-975) (-531) (-531) (-531) (-531) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-208) (-208) (-531))) (-15 -2426 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531))) (-15 -1706 ((-975) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -3958 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)) (-531))) (-15 -1815 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3656 ((-975) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -3502 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-159 (-208))) (-531) (-639 (-159 (-208))) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -2963 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531)))) -((-3355 (((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531)) 65)) (-2791 (((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531)) 60)) (-1309 (((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369)) 56) (((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) 55)) (-4236 (((-975) (-531) (-531) (-531) (-208) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531)) 37)) (-1559 (((-975) (-531) (-531) (-208) (-208) (-531) (-531) (-639 (-208)) (-531)) 33)) (-3284 (((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531) (-531)) 30)) (-1870 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 29)) (-3949 (((-975) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 28)) (-2225 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 27)) (-4043 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531)) 26)) (-3750 (((-975) (-531) (-531) (-639 (-208)) (-531)) 25)) (-3571 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 24)) (-3212 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 23)) (-1778 (((-975) (-639 (-208)) (-531) (-531) (-531) (-531)) 22)) (-3992 (((-975) (-531) (-531) (-639 (-208)) (-531)) 21))) -(((-706) (-10 -7 (-15 -3992 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -1778 ((-975) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -3212 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3571 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3750 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -4043 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -2225 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3949 ((-975) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1870 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3284 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -1559 ((-975) (-531) (-531) (-208) (-208) (-531) (-531) (-639 (-208)) (-531))) (-15 -4236 ((-975) (-531) (-531) (-531) (-208) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2791 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3355 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531))))) (T -706)) -((-3355 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-706)))) (-2791 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-1309 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-1309 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-4236 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-1559 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-3284 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-706)))) (-1870 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3949 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-2225 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-4043 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3750 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3571 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3212 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-1778 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-706)))) (-3992 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706))))) -(-10 -7 (-15 -3992 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -1778 ((-975) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -3212 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3571 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3750 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -4043 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -2225 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3949 ((-975) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1870 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3284 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -1559 ((-975) (-531) (-531) (-208) (-208) (-531) (-531) (-639 (-208)) (-531))) (-15 -4236 ((-975) (-531) (-531) (-531) (-208) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2791 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3355 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531)))) -((-2335 (((-975) (-531) (-531) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) 61)) (-3678 (((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531)) 57)) (-1420 (((-975) (-531) (-639 (-208)) (-110) (-208) (-531) (-531) (-531) (-531) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) 56)) (-4038 (((-975) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531)) 37)) (-3932 (((-975) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-531)) 36)) (-3928 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 33)) (-3349 (((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208))) 32)) (-3836 (((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531)) 28)) (-2478 (((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531)) 27)) (-4131 (((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531)) 26)) (-1693 (((-975) (-531) (-639 (-159 (-208))) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-531)) 22))) -(((-707) (-10 -7 (-15 -1693 ((-975) (-531) (-639 (-159 (-208))) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -4131 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -2478 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3836 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531))) (-15 -3349 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)))) (-15 -3928 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3932 ((-975) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4038 ((-975) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -1420 ((-975) (-531) (-639 (-208)) (-110) (-208) (-531) (-531) (-531) (-531) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3678 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -2335 ((-975) (-531) (-531) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))) (T -707)) -((-2335 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3678 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-1420 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-975)) (-5 *1 (-707)))) (-4038 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3932 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3928 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-707)))) (-3349 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3836 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-2478 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-707)))) (-4131 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-707)))) (-1693 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-707))))) -(-10 -7 (-15 -1693 ((-975) (-531) (-639 (-159 (-208))) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -4131 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -2478 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3836 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531))) (-15 -3349 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)))) (-15 -3928 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3932 ((-975) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4038 ((-975) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -1420 ((-975) (-531) (-639 (-208)) (-110) (-208) (-531) (-531) (-531) (-531) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3678 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -2335 ((-975) (-531) (-531) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))))) -((-1531 (((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-531) (-639 (-208))) 29)) (-1380 (((-975) (-1085) (-531) (-531) (-639 (-208))) 28)) (-3213 (((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-208))) 27)) (-2176 (((-975) (-531) (-531) (-531) (-639 (-208))) 21))) -(((-708) (-10 -7 (-15 -2176 ((-975) (-531) (-531) (-531) (-639 (-208)))) (-15 -3213 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-208)))) (-15 -1380 ((-975) (-1085) (-531) (-531) (-639 (-208)))) (-15 -1531 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)))))) (T -708)) -((-1531 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-708)))) (-1380 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-708)))) (-3213 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-708)))) (-2176 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-708))))) -(-10 -7 (-15 -2176 ((-975) (-531) (-531) (-531) (-639 (-208)))) (-15 -3213 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-208)))) (-15 -1380 ((-975) (-1085) (-531) (-531) (-639 (-208)))) (-15 -1531 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-531) (-639 (-208))))) -((-3834 (((-975) (-208) (-208) (-208) (-208) (-531)) 62)) (-2568 (((-975) (-208) (-208) (-208) (-531)) 61)) (-3901 (((-975) (-208) (-208) (-208) (-531)) 60)) (-3871 (((-975) (-208) (-208) (-531)) 59)) (-3746 (((-975) (-208) (-531)) 58)) (-2574 (((-975) (-208) (-531)) 57)) (-3512 (((-975) (-208) (-531)) 56)) (-2425 (((-975) (-208) (-531)) 55)) (-2192 (((-975) (-208) (-531)) 54)) (-2673 (((-975) (-208) (-531)) 53)) (-2967 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 52)) (-3968 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 51)) (-4200 (((-975) (-208) (-531)) 50)) (-2202 (((-975) (-208) (-531)) 49)) (-2045 (((-975) (-208) (-531)) 48)) (-4134 (((-975) (-208) (-531)) 47)) (-1534 (((-975) (-531) (-208) (-159 (-208)) (-531) (-1085) (-531)) 46)) (-2064 (((-975) (-1085) (-159 (-208)) (-1085) (-531)) 45)) (-3972 (((-975) (-1085) (-159 (-208)) (-1085) (-531)) 44)) (-3366 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 43)) (-2797 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 42)) (-4226 (((-975) (-208) (-531)) 39)) (-2887 (((-975) (-208) (-531)) 38)) (-2835 (((-975) (-208) (-531)) 37)) (-3291 (((-975) (-208) (-531)) 36)) (-4053 (((-975) (-208) (-531)) 35)) (-1712 (((-975) (-208) (-531)) 34)) (-4078 (((-975) (-208) (-531)) 33)) (-3534 (((-975) (-208) (-531)) 32)) (-1297 (((-975) (-208) (-531)) 31)) (-4133 (((-975) (-208) (-531)) 30)) (-3935 (((-975) (-208) (-208) (-208) (-531)) 29)) (-3885 (((-975) (-208) (-531)) 28)) (-3989 (((-975) (-208) (-531)) 27)) (-1268 (((-975) (-208) (-531)) 26)) (-2789 (((-975) (-208) (-531)) 25)) (-2977 (((-975) (-208) (-531)) 24)) (-4031 (((-975) (-159 (-208)) (-531)) 21))) -(((-709) (-10 -7 (-15 -4031 ((-975) (-159 (-208)) (-531))) (-15 -2977 ((-975) (-208) (-531))) (-15 -2789 ((-975) (-208) (-531))) (-15 -1268 ((-975) (-208) (-531))) (-15 -3989 ((-975) (-208) (-531))) (-15 -3885 ((-975) (-208) (-531))) (-15 -3935 ((-975) (-208) (-208) (-208) (-531))) (-15 -4133 ((-975) (-208) (-531))) (-15 -1297 ((-975) (-208) (-531))) (-15 -3534 ((-975) (-208) (-531))) (-15 -4078 ((-975) (-208) (-531))) (-15 -1712 ((-975) (-208) (-531))) (-15 -4053 ((-975) (-208) (-531))) (-15 -3291 ((-975) (-208) (-531))) (-15 -2835 ((-975) (-208) (-531))) (-15 -2887 ((-975) (-208) (-531))) (-15 -4226 ((-975) (-208) (-531))) (-15 -2797 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3366 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3972 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -2064 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -1534 ((-975) (-531) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -4134 ((-975) (-208) (-531))) (-15 -2045 ((-975) (-208) (-531))) (-15 -2202 ((-975) (-208) (-531))) (-15 -4200 ((-975) (-208) (-531))) (-15 -3968 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2967 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2673 ((-975) (-208) (-531))) (-15 -2192 ((-975) (-208) (-531))) (-15 -2425 ((-975) (-208) (-531))) (-15 -3512 ((-975) (-208) (-531))) (-15 -2574 ((-975) (-208) (-531))) (-15 -3746 ((-975) (-208) (-531))) (-15 -3871 ((-975) (-208) (-208) (-531))) (-15 -3901 ((-975) (-208) (-208) (-208) (-531))) (-15 -2568 ((-975) (-208) (-208) (-208) (-531))) (-15 -3834 ((-975) (-208) (-208) (-208) (-208) (-531))))) (T -709)) -((-3834 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2568 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3901 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3871 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2425 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2967 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3968 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1534 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-531)) (-5 *5 (-159 (-208))) (-5 *6 (-1085)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2064 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3972 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3366 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2797 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4226 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3935 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1268 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2977 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(-10 -7 (-15 -4031 ((-975) (-159 (-208)) (-531))) (-15 -2977 ((-975) (-208) (-531))) (-15 -2789 ((-975) (-208) (-531))) (-15 -1268 ((-975) (-208) (-531))) (-15 -3989 ((-975) (-208) (-531))) (-15 -3885 ((-975) (-208) (-531))) (-15 -3935 ((-975) (-208) (-208) (-208) (-531))) (-15 -4133 ((-975) (-208) (-531))) (-15 -1297 ((-975) (-208) (-531))) (-15 -3534 ((-975) (-208) (-531))) (-15 -4078 ((-975) (-208) (-531))) (-15 -1712 ((-975) (-208) (-531))) (-15 -4053 ((-975) (-208) (-531))) (-15 -3291 ((-975) (-208) (-531))) (-15 -2835 ((-975) (-208) (-531))) (-15 -2887 ((-975) (-208) (-531))) (-15 -4226 ((-975) (-208) (-531))) (-15 -2797 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3366 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3972 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -2064 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -1534 ((-975) (-531) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -4134 ((-975) (-208) (-531))) (-15 -2045 ((-975) (-208) (-531))) (-15 -2202 ((-975) (-208) (-531))) (-15 -4200 ((-975) (-208) (-531))) (-15 -3968 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2967 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2673 ((-975) (-208) (-531))) (-15 -2192 ((-975) (-208) (-531))) (-15 -2425 ((-975) (-208) (-531))) (-15 -3512 ((-975) (-208) (-531))) (-15 -2574 ((-975) (-208) (-531))) (-15 -3746 ((-975) (-208) (-531))) (-15 -3871 ((-975) (-208) (-208) (-531))) (-15 -3901 ((-975) (-208) (-208) (-208) (-531))) (-15 -2568 ((-975) (-208) (-208) (-208) (-531))) (-15 -3834 ((-975) (-208) (-208) (-208) (-208) (-531)))) -((-2839 (((-1189)) 18)) (-4028 (((-1085)) 22)) (-1529 (((-1085)) 21)) (-3794 (((-1034) (-1102) (-639 (-531))) 37) (((-1034) (-1102) (-639 (-208))) 32)) (-1732 (((-110)) 16)) (-3993 (((-1085) (-1085)) 25))) -(((-710) (-10 -7 (-15 -1529 ((-1085))) (-15 -4028 ((-1085))) (-15 -3993 ((-1085) (-1085))) (-15 -3794 ((-1034) (-1102) (-639 (-208)))) (-15 -3794 ((-1034) (-1102) (-639 (-531)))) (-15 -1732 ((-110))) (-15 -2839 ((-1189))))) (T -710)) -((-2839 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-710)))) (-1732 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-710)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-531))) (-5 *2 (-1034)) (-5 *1 (-710)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-208))) (-5 *2 (-1034)) (-5 *1 (-710)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))) (-4028 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))) (-1529 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710))))) -(-10 -7 (-15 -1529 ((-1085))) (-15 -4028 ((-1085))) (-15 -3993 ((-1085) (-1085))) (-15 -3794 ((-1034) (-1102) (-639 (-208)))) (-15 -3794 ((-1034) (-1102) (-639 (-531)))) (-15 -1732 ((-110))) (-15 -2839 ((-1189)))) -((-3214 (($ $ $) 10)) (-2801 (($ $ $ $) 9)) (-1605 (($ $ $) 12))) -(((-711 |#1|) (-10 -8 (-15 -1605 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1| |#1|))) (-712)) (T -711)) -NIL -(-10 -8 (-15 -1605 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1666 (($ $ (-864)) 28)) (-2585 (($ $ (-864)) 29)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3214 (($ $ $) 25)) (-2265 (((-806) $) 11)) (-2801 (($ $ $ $) 26)) (-1605 (($ $ $) 24)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27))) -(((-712) (-133)) (T -712)) -((-2801 (*1 *1 *1 *1 *1) (-4 *1 (-712))) (-3214 (*1 *1 *1 *1) (-4 *1 (-712))) (-1605 (*1 *1 *1 *1) (-4 *1 (-712)))) -(-13 (-21) (-671) (-10 -8 (-15 -2801 ($ $ $ $)) (-15 -3214 ($ $ $)) (-15 -1605 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-671) . T) ((-1030) . T)) -((-2265 (((-806) $) NIL) (($ (-531)) 10))) -(((-713 |#1|) (-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-714)) (T -713)) -NIL -(-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1387 (((-3 $ "failed") $) 40)) (-1666 (($ $ (-864)) 28) (($ $ (-721)) 35)) (-3622 (((-3 $ "failed") $) 38)) (-3481 (((-110) $) 34)) (-2234 (((-3 $ "failed") $) 39)) (-2585 (($ $ (-864)) 29) (($ $ (-721)) 36)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3214 (($ $ $) 25)) (-2265 (((-806) $) 11) (($ (-531)) 31)) (-2284 (((-721)) 32)) (-2801 (($ $ $ $) 26)) (-1605 (($ $ $) 24)) (-3035 (($) 18 T CONST)) (-3050 (($) 33 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30) (($ $ (-721)) 37)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27))) -(((-714) (-133)) (T -714)) -((-2284 (*1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-714))))) -(-13 (-712) (-673) (-10 -8 (-15 -2284 ((-721))) (-15 -2265 ($ (-531))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-671) . T) ((-673) . T) ((-712) . T) ((-1030) . T)) -((-1402 (((-598 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 |#1|)))))) (-639 (-159 (-388 (-531)))) |#1|) 33)) (-3682 (((-598 (-159 |#1|)) (-639 (-159 (-388 (-531)))) |#1|) 23)) (-3369 (((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))) (-1102)) 20) (((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531))))) 19))) -(((-715 |#1|) (-10 -7 (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))))) (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))) (-1102))) (-15 -3682 ((-598 (-159 |#1|)) (-639 (-159 (-388 (-531)))) |#1|)) (-15 -1402 ((-598 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 |#1|)))))) (-639 (-159 (-388 (-531)))) |#1|))) (-13 (-344) (-795))) (T -715)) -((-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-598 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 *4))))))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *4 (-1102)) (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *5)) (-4 *5 (-13 (-344) (-795))))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795)))))) -(-10 -7 (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))))) (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))) (-1102))) (-15 -3682 ((-598 (-159 |#1|)) (-639 (-159 (-388 (-531)))) |#1|)) (-15 -1402 ((-598 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 |#1|)))))) (-639 (-159 (-388 (-531)))) |#1|))) -((-3591 (((-163 (-531)) |#1|) 25))) -(((-716 |#1|) (-10 -7 (-15 -3591 ((-163 (-531)) |#1|))) (-385)) (T -716)) -((-3591 (*1 *2 *3) (-12 (-5 *2 (-163 (-531))) (-5 *1 (-716 *3)) (-4 *3 (-385))))) -(-10 -7 (-15 -3591 ((-163 (-531)) |#1|))) -((-3215 ((|#1| |#1| |#1|) 24)) (-3351 ((|#1| |#1| |#1|) 23)) (-2321 ((|#1| |#1| |#1|) 32)) (-1884 ((|#1| |#1| |#1|) 28)) (-3894 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1912 (((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|) 22))) -(((-717 |#1| |#2|) (-10 -7 (-15 -1912 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|))) (-659 |#2|) (-344)) (T -717)) -((-2321 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-1884 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-3894 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-3215 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-3351 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-1912 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-717 *3 *4)) (-4 *3 (-659 *4))))) -(-10 -7 (-15 -1912 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|))) -((-2720 (((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))) (-531)) 59)) (-2670 (((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531))))) 57)) (-3176 (((-531)) 71))) -(((-718 |#1| |#2|) (-10 -7 (-15 -3176 ((-531))) (-15 -2670 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))))) (-15 -2720 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))) (-531)))) (-1160 (-531)) (-390 (-531) |#1|)) (T -718)) -((-2720 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-718 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2670 (*1 *2) (-12 (-4 *3 (-1160 (-531))) (-5 *2 (-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531))))) (-5 *1 (-718 *3 *4)) (-4 *4 (-390 (-531) *3)))) (-3176 (*1 *2) (-12 (-4 *3 (-1160 *2)) (-5 *2 (-531)) (-5 *1 (-718 *3 *4)) (-4 *4 (-390 *2 *3))))) -(-10 -7 (-15 -3176 ((-531))) (-15 -2670 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))))) (-15 -2720 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))) (-531)))) -((-2247 (((-110) $ $) NIL)) (-2523 (((-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20) (($ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) 18)) (-2148 (((-110) $ $) NIL))) -(((-719) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))) (T -719)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-719)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-719)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-719)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-719)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-719))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $)))) -((-1504 (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))) 18) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102))) 17)) (-1871 (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))) 20) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102))) 19))) -(((-720 |#1|) (-10 -7 (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))))) (-523)) (T -720)) -((-1871 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5))))) -(-10 -7 (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3818 (($ $ $) 6)) (-2128 (((-3 $ "failed") $ $) 9)) (-3709 (($ $ (-531)) 7)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($ $) NIL)) (-3630 (($ $ $) NIL)) (-3481 (((-110) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2109 (($ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ $ $) NIL))) -(((-721) (-13 (-743) (-677) (-10 -8 (-15 -3630 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2109 ($ $ $)) (-15 -2100 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3609 ((-3 $ "failed") $ $)) (-15 -3709 ($ $ (-531))) (-15 -1381 ($ $)) (-6 (-4275 "*"))))) (T -721)) -((-3630 (*1 *1 *1 *1) (-5 *1 (-721))) (-3650 (*1 *1 *1 *1) (-5 *1 (-721))) (-2109 (*1 *1 *1 *1) (-5 *1 (-721))) (-2100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2937 (-721)) (|:| -4124 (-721)))) (-5 *1 (-721)))) (-3609 (*1 *1 *1 *1) (|partial| -5 *1 (-721))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-721)))) (-1381 (*1 *1 *1) (-5 *1 (-721)))) -(-13 (-743) (-677) (-10 -8 (-15 -3630 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2109 ($ $ $)) (-15 -2100 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3609 ((-3 $ "failed") $ $)) (-15 -3709 ($ $ (-531))) (-15 -1381 ($ $)) (-6 (-4275 "*")))) -((-1871 (((-3 |#2| "failed") |#2| |#2| (-112) (-1102)) 35))) -(((-722 |#1| |#2|) (-10 -7 (-15 -1871 ((-3 |#2| "failed") |#2| |#2| (-112) (-1102)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902))) (T -722)) -((-1871 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-722 *5 *2)) (-4 *2 (-13 (-29 *5) (-1124) (-902)))))) -(-10 -7 (-15 -1871 ((-3 |#2| "failed") |#2| |#2| (-112) (-1102)))) -((-2265 (((-724) |#1|) 8))) -(((-723 |#1|) (-10 -7 (-15 -2265 ((-724) |#1|))) (-1138)) (T -723)) -((-2265 (*1 *2 *3) (-12 (-5 *2 (-724)) (-5 *1 (-723 *3)) (-4 *3 (-1138))))) -(-10 -7 (-15 -2265 ((-724) |#1|))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-2148 (((-110) $ $) 9))) -(((-724) (-1030)) (T -724)) -NIL -(-1030) -((-1899 ((|#2| |#4|) 35))) -(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1899 (|#2| |#4|))) (-432) (-1160 |#1|) (-675 |#1| |#2|) (-1160 |#3|)) (T -725)) -((-1899 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-675 *4 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-725 *4 *2 *5 *3)) (-4 *3 (-1160 *5))))) -(-10 -7 (-15 -1899 (|#2| |#4|))) -((-3622 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3374 (((-1189) (-1085) (-1085) |#4| |#5|) 33)) (-2269 ((|#4| |#4| |#5|) 73)) (-2748 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|) 77)) (-1911 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 16))) -(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3622 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2269 (|#4| |#4| |#5|)) (-15 -2748 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3374 ((-1189) (-1085) (-1085) |#4| |#5|)) (-15 -1911 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -726)) -((-1911 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3374 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1085)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *4 (-1000 *6 *7 *8)) (-5 *2 (-1189)) (-5 *1 (-726 *6 *7 *8 *4 *5)) (-4 *5 (-1005 *6 *7 *8 *4)))) (-2748 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2269 (*1 *2 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *2 (-1000 *4 *5 *6)) (-5 *1 (-726 *4 *5 *6 *2 *3)) (-4 *3 (-1005 *4 *5 *6 *2)))) (-3622 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(-10 -7 (-15 -3622 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2269 (|#4| |#4| |#5|)) (-15 -2748 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3374 ((-1189) (-1085) (-1085) |#4| |#5|)) (-15 -1911 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|))) -((-3154 (((-3 (-1098 (-1098 |#1|)) "failed") |#4|) 43)) (-1346 (((-598 |#4|) |#4|) 15)) (-2730 ((|#4| |#4|) 11))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1346 ((-598 |#4|) |#4|)) (-15 -3154 ((-3 (-1098 (-1098 |#1|)) "failed") |#4|)) (-15 -2730 (|#4| |#4|))) (-330) (-310 |#1|) (-1160 |#2|) (-1160 |#3|) (-864)) (T -727)) -((-2730 (*1 *2 *2) (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1160 *4)) (-5 *1 (-727 *3 *4 *5 *2 *6)) (-4 *2 (-1160 *5)) (-14 *6 (-864)))) (-3154 (*1 *2 *3) (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5)) (-5 *2 (-1098 (-1098 *4))) (-5 *1 (-727 *4 *5 *6 *3 *7)) (-4 *3 (-1160 *6)) (-14 *7 (-864)))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5)) (-5 *2 (-598 *3)) (-5 *1 (-727 *4 *5 *6 *3 *7)) (-4 *3 (-1160 *6)) (-14 *7 (-864))))) -(-10 -7 (-15 -1346 ((-598 |#4|) |#4|)) (-15 -3154 ((-3 (-1098 (-1098 |#1|)) "failed") |#4|)) (-15 -2730 (|#4| |#4|))) -((-4056 (((-2 (|:| |deter| (-598 (-1098 |#5|))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-598 |#1|)) (|:| |nlead| (-598 |#5|))) (-1098 |#5|) (-598 |#1|) (-598 |#5|)) 54)) (-3329 (((-598 (-721)) |#1|) 13))) -(((-728 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4056 ((-2 (|:| |deter| (-598 (-1098 |#5|))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-598 |#1|)) (|:| |nlead| (-598 |#5|))) (-1098 |#5|) (-598 |#1|) (-598 |#5|))) (-15 -3329 ((-598 (-721)) |#1|))) (-1160 |#4|) (-743) (-797) (-289) (-892 |#4| |#2| |#3|)) (T -728)) -((-3329 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-598 (-721))) (-5 *1 (-728 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *6)) (-4 *7 (-892 *6 *4 *5)))) (-4056 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1160 *9)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-289)) (-4 *10 (-892 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-598 (-1098 *10))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *10))))) (|:| |nfacts| (-598 *6)) (|:| |nlead| (-598 *10)))) (-5 *1 (-728 *6 *7 *8 *9 *10)) (-5 *3 (-1098 *10)) (-5 *4 (-598 *6)) (-5 *5 (-598 *10))))) -(-10 -7 (-15 -4056 ((-2 (|:| |deter| (-598 (-1098 |#5|))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-598 |#1|)) (|:| |nlead| (-598 |#5|))) (-1098 |#5|) (-598 |#1|) (-598 |#5|))) (-15 -3329 ((-598 (-721)) |#1|))) -((-2739 (((-598 (-2 (|:| |outval| |#1|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#1|))))) (-639 (-388 (-531))) |#1|) 31)) (-2586 (((-598 |#1|) (-639 (-388 (-531))) |#1|) 21)) (-3369 (((-895 (-388 (-531))) (-639 (-388 (-531))) (-1102)) 18) (((-895 (-388 (-531))) (-639 (-388 (-531)))) 17))) -(((-729 |#1|) (-10 -7 (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))))) (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))) (-1102))) (-15 -2586 ((-598 |#1|) (-639 (-388 (-531))) |#1|)) (-15 -2739 ((-598 (-2 (|:| |outval| |#1|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#1|))))) (-639 (-388 (-531))) |#1|))) (-13 (-344) (-795))) (T -729)) -((-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-598 (-2 (|:| |outval| *4) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 *4)))))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *4 (-1102)) (-5 *2 (-895 (-388 (-531)))) (-5 *1 (-729 *5)) (-4 *5 (-13 (-344) (-795))))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-895 (-388 (-531)))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795)))))) -(-10 -7 (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))))) (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))) (-1102))) (-15 -2586 ((-598 |#1|) (-639 (-388 (-531))) |#1|)) (-15 -2739 ((-598 (-2 (|:| |outval| |#1|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#1|))))) (-639 (-388 (-531))) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 34)) (-2695 (((-598 |#2|) $) NIL)) (-2516 (((-1098 $) $ |#2|) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 |#2|)) NIL)) (-2072 (($ $) 28)) (-1993 (((-110) $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) 93 (|has| |#1| (-523)))) (-1954 (((-598 $) $ $) 106 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-895 (-388 (-531)))) NIL (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))))) (((-3 $ "failed") (-895 (-531))) NIL (-1435 (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531)))))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102)))))) (((-3 $ "failed") (-895 |#1|)) NIL (-1435 (-12 (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531))))) (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-516)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-934 (-531))))))) (((-3 (-1054 |#1| |#2|) "failed") $) 18)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) ((|#2| $) NIL) (($ (-895 (-388 (-531)))) NIL (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))))) (($ (-895 (-531))) NIL (-1435 (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531)))))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102)))))) (($ (-895 |#1|)) NIL (-1435 (-12 (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531))))) (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-516)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-934 (-531))))))) (((-1054 |#1| |#2|) $) NIL)) (-3115 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-523)))) (-2500 (($ $) NIL) (($ $ |#2|) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-2125 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-4009 (((-110) $) NIL)) (-1647 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 70)) (-4228 (($ $) 119 (|has| |#1| (-432)))) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-3230 (($ $) NIL (|has| |#1| (-523)))) (-3592 (($ $) NIL (|has| |#1| (-523)))) (-2579 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1879 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2490 (($ $ |#1| (-503 |#2|) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1426 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-2418 (($ $ $ $ $) 90 (|has| |#1| (-523)))) (-4075 ((|#2| $) 19)) (-2682 (($ (-1098 |#1|) |#2|) NIL) (($ (-1098 $) |#2|) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 |#2|)) NIL) (($ $ |#2| (-721)) 36) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-4174 (($ $ $) 60)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#2|) NIL)) (-1448 (((-110) $) NIL)) (-3005 (((-503 |#2|) $) NIL) (((-721) $ |#2|) NIL) (((-598 (-721)) $ (-598 |#2|)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3096 (((-721) $) 20)) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 |#2|) (-503 |#2|)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3471 (((-3 |#2| "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-432)))) (-3773 (($ $) NIL (|has| |#1| (-432)))) (-1680 (((-598 $) $) NIL)) (-3577 (($ $) 37)) (-1246 (($ $) NIL (|has| |#1| (-432)))) (-3029 (((-598 $) $) 41)) (-3546 (($ $) 39)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $) 82)) (-1547 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 67) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |#2|) NIL)) (-1716 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $) NIL) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |#2|) NIL)) (-2847 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3146 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1521 (((-1085) $) NIL)) (-2255 (($ $ $) 108 (|has| |#1| (-523)))) (-3337 (((-598 $) $) 30)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-721))) "failed") $) NIL)) (-2009 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-1279 (($ $ $) NIL)) (-3788 (($ $) 21)) (-1744 (((-110) $ $) NIL)) (-2421 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-3044 (($ $ $) NIL)) (-3162 (($ $) 23)) (-2529 (((-1049) $) NIL)) (-3002 (((-2 (|:| -2109 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-523)))) (-2362 (((-2 (|:| -2109 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-523)))) (-2435 (((-110) $) 52)) (-2448 ((|#1| $) 55)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 ((|#1| |#1| $) 116 (|has| |#1| (-432))) (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3075 (((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-2209 (($ $ |#1|) 112 (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-2004 (($ $ |#1|) 111 (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-598 |#2|) (-598 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-598 |#2|) (-598 $)) NIL)) (-3176 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3352 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2012 (((-503 |#2|) $) NIL) (((-721) $ |#2|) 43) (((-598 (-721)) $ (-598 |#2|)) NIL)) (-3637 (($ $) NIL)) (-3451 (($ $) 33)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507))))) (($ (-895 (-388 (-531)))) NIL (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))))) (($ (-895 (-531))) NIL (-1435 (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531)))))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102)))))) (($ (-895 |#1|)) NIL (|has| |#2| (-573 (-1102)))) (((-1085) $) NIL (-12 (|has| |#1| (-977 (-531))) (|has| |#2| (-573 (-1102))))) (((-895 |#1|) $) NIL (|has| |#2| (-573 (-1102))))) (-1767 ((|#1| $) 115 (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-895 |#1|) $) NIL (|has| |#2| (-573 (-1102)))) (((-1054 |#1| |#2|) $) 15) (($ (-1054 |#1| |#2|)) 16) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 |#2|)) NIL) (($ $ |#2| (-721)) 44) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 13 T CONST)) (-2316 (((-3 (-110) "failed") $ $) NIL)) (-3050 (($) 35 T CONST)) (-3135 (($ $ $ $ (-721)) 88 (|has| |#1| (-523)))) (-1705 (($ $ $ (-721)) 87 (|has| |#1| (-523)))) (-4020 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 54)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 64)) (-2237 (($ $ $) 74)) (** (($ $ (-864)) NIL) (($ $ (-721)) 61)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 59) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-730 |#1| |#2|) (-13 (-1000 |#1| (-503 |#2|) |#2|) (-572 (-1054 |#1| |#2|)) (-977 (-1054 |#1| |#2|))) (-986) (-797)) (T -730)) -NIL -(-13 (-1000 |#1| (-503 |#2|) |#2|) (-572 (-1054 |#1| |#2|)) (-977 (-1054 |#1| |#2|))) -((-3261 (((-732 |#2|) (-1 |#2| |#1|) (-732 |#1|)) 13))) -(((-731 |#1| |#2|) (-10 -7 (-15 -3261 ((-732 |#2|) (-1 |#2| |#1|) (-732 |#1|)))) (-986) (-986)) (T -731)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-732 *6)) (-5 *1 (-731 *5 *6))))) -(-10 -7 (-15 -3261 ((-732 |#2|) (-1 |#2| |#1|) (-732 |#1|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 12)) (-3191 (((-1184 |#1|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#1|)) NIL)) (-2516 (((-1098 $) $ (-1014)) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2235 (((-598 $) $ $) 39 (|has| |#1| (-523)))) (-3720 (($ $ $) 35 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3767 (($ $ (-721)) NIL)) (-3441 (($ $ (-721)) NIL)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL) (((-3 (-1098 |#1|) "failed") $) 10)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1014) $) NIL) (((-1098 |#1|) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-1376 (($ $ $) NIL)) (-1570 (($ $ $) 71 (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) 70 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-721) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ $) NIL (|has| |#1| (-523)))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) NIL) (($ (-1098 $) (-1014)) NIL)) (-3688 (($ $ (-721)) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-4174 (($ $ $) 20)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3294 (((-1098 |#1|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3158 (-721))) $ $) 26)) (-4233 (($ $ $) 29)) (-3498 (($ $ $) 32)) (-1547 (((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 31)) (-1521 (((-1085) $) NIL)) (-2255 (($ $ $) 41 (|has| |#1| (-523)))) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-3002 (((-2 (|:| -2109 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-523)))) (-2362 (((-2 (|:| -2109 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-523)))) (-3279 (((-2 (|:| -3115 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-523)))) (-2038 (((-2 (|:| -3115 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-523)))) (-2435 (((-110) $) 13)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1816 (($ $ (-721) |#1| $) 19)) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3075 (((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-523)))) (-3556 (((-2 (|:| -3115 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-523)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#1|) NIL) (($ $ (-598 (-1014)) (-598 |#1|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2012 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-523)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-1014)) NIL) (((-1098 |#1|) $) 7) (($ (-1098 |#1|)) 8) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 21 T CONST)) (-3050 (($) 24 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) 28) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-732 |#1|) (-13 (-1160 |#1|) (-572 (-1098 |#1|)) (-977 (-1098 |#1|)) (-10 -8 (-15 -1816 ($ $ (-721) |#1| $)) (-15 -4174 ($ $ $)) (-15 -4165 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3158 (-721))) $ $)) (-15 -4233 ($ $ $)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3498 ($ $ $)) (IF (|has| |#1| (-523)) (PROGN (-15 -2235 ((-598 $) $ $)) (-15 -2255 ($ $ $)) (-15 -3075 ((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2362 ((-2 (|:| -2109 $) (|:| |coef1| $)) $ $)) (-15 -3002 ((-2 (|:| -2109 $) (|:| |coef2| $)) $ $)) (-15 -3556 ((-2 (|:| -3115 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2038 ((-2 (|:| -3115 |#1|) (|:| |coef1| $)) $ $)) (-15 -3279 ((-2 (|:| -3115 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-986)) (T -732)) -((-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-721)) (-5 *1 (-732 *3)) (-4 *3 (-986)))) (-4174 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) (-4165 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-732 *3)) (|:| |polden| *3) (|:| -3158 (-721)))) (-5 *1 (-732 *3)) (-4 *3 (-986)))) (-4233 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2005 *3) (|:| |gap| (-721)) (|:| -2937 (-732 *3)) (|:| -4124 (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-986)))) (-3498 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) (-2235 (*1 *2 *1 *1) (-12 (-5 *2 (-598 (-732 *3))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-2255 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-523)) (-4 *2 (-986)))) (-3075 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3)) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-2362 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-3002 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-3556 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-2038 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-3279 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))) -(-13 (-1160 |#1|) (-572 (-1098 |#1|)) (-977 (-1098 |#1|)) (-10 -8 (-15 -1816 ($ $ (-721) |#1| $)) (-15 -4174 ($ $ $)) (-15 -4165 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3158 (-721))) $ $)) (-15 -4233 ($ $ $)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3498 ($ $ $)) (IF (|has| |#1| (-523)) (PROGN (-15 -2235 ((-598 $) $ $)) (-15 -2255 ($ $ $)) (-15 -3075 ((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2362 ((-2 (|:| -2109 $) (|:| |coef1| $)) $ $)) (-15 -3002 ((-2 (|:| -2109 $) (|:| |coef2| $)) $ $)) (-15 -3556 ((-2 (|:| -3115 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2038 ((-2 (|:| -3115 |#1|) (|:| |coef1| $)) $ $)) (-15 -3279 ((-2 (|:| -3115 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2536 ((|#1| (-721) |#1|) 32 (|has| |#1| (-37 (-388 (-531)))))) (-3913 ((|#1| (-721) |#1|) 22)) (-2850 ((|#1| (-721) |#1|) 34 (|has| |#1| (-37 (-388 (-531))))))) -(((-733 |#1|) (-10 -7 (-15 -3913 (|#1| (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -2850 (|#1| (-721) |#1|)) (-15 -2536 (|#1| (-721) |#1|))) |%noBranch|)) (-162)) (T -733)) -((-2536 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-162)))) (-2850 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-162)))) (-3913 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-162))))) -(-10 -7 (-15 -3913 (|#1| (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -2850 (|#1| (-721) |#1|)) (-15 -2536 (|#1| (-721) |#1|))) |%noBranch|)) -((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273))))) -(((-734 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -734)) -NIL -(-13 (-1005 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1005 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T)) -((-4060 (((-3 (-360) "failed") (-297 |#1|) (-864)) 62 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-360) "failed") (-297 |#1|)) 54 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-360) "failed") (-388 (-895 |#1|)) (-864)) 41 (|has| |#1| (-523))) (((-3 (-360) "failed") (-388 (-895 |#1|))) 40 (|has| |#1| (-523))) (((-3 (-360) "failed") (-895 |#1|) (-864)) 31 (|has| |#1| (-986))) (((-3 (-360) "failed") (-895 |#1|)) 30 (|has| |#1| (-986)))) (-3535 (((-360) (-297 |#1|) (-864)) 99 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-360) (-297 |#1|)) 94 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-360) (-388 (-895 |#1|)) (-864)) 91 (|has| |#1| (-523))) (((-360) (-388 (-895 |#1|))) 90 (|has| |#1| (-523))) (((-360) (-895 |#1|) (-864)) 86 (|has| |#1| (-986))) (((-360) (-895 |#1|)) 85 (|has| |#1| (-986))) (((-360) |#1| (-864)) 76) (((-360) |#1|) 22)) (-4055 (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-864)) 71 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|))) 70 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-297 |#1|) (-864)) 63 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-297 |#1|)) 61 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))) (-864)) 46 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|)))) 45 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)) (-864)) 39 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-388 (-895 |#1|))) 38 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-895 |#1|) (-864)) 28 (|has| |#1| (-986))) (((-3 (-159 (-360)) "failed") (-895 |#1|)) 26 (|has| |#1| (-986))) (((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)) (-864)) 18 (|has| |#1| (-162))) (((-3 (-159 (-360)) "failed") (-895 (-159 |#1|))) 15 (|has| |#1| (-162)))) (-2476 (((-159 (-360)) (-297 (-159 |#1|)) (-864)) 102 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-297 (-159 |#1|))) 101 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-297 |#1|) (-864)) 100 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-297 |#1|)) 98 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-388 (-895 (-159 |#1|))) (-864)) 93 (|has| |#1| (-523))) (((-159 (-360)) (-388 (-895 (-159 |#1|)))) 92 (|has| |#1| (-523))) (((-159 (-360)) (-388 (-895 |#1|)) (-864)) 89 (|has| |#1| (-523))) (((-159 (-360)) (-388 (-895 |#1|))) 88 (|has| |#1| (-523))) (((-159 (-360)) (-895 |#1|) (-864)) 84 (|has| |#1| (-986))) (((-159 (-360)) (-895 |#1|)) 83 (|has| |#1| (-986))) (((-159 (-360)) (-895 (-159 |#1|)) (-864)) 78 (|has| |#1| (-162))) (((-159 (-360)) (-895 (-159 |#1|))) 77 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|) (-864)) 80 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|)) 79 (|has| |#1| (-162))) (((-159 (-360)) |#1| (-864)) 27) (((-159 (-360)) |#1|) 25))) -(((-735 |#1|) (-10 -7 (-15 -3535 ((-360) |#1|)) (-15 -3535 ((-360) |#1| (-864))) (-15 -2476 ((-159 (-360)) |#1|)) (-15 -2476 ((-159 (-360)) |#1| (-864))) (IF (|has| |#1| (-162)) (PROGN (-15 -2476 ((-159 (-360)) (-159 |#1|))) (-15 -2476 ((-159 (-360)) (-159 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -3535 ((-360) (-895 |#1|))) (-15 -3535 ((-360) (-895 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 |#1|))) (-15 -2476 ((-159 (-360)) (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -3535 ((-360) (-388 (-895 |#1|)))) (-15 -3535 ((-360) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -3535 ((-360) (-297 |#1|))) (-15 -3535 ((-360) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 |#1|))) (-15 -2476 ((-159 (-360)) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-895 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-895 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)))) (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-297 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|)) (-573 (-360))) (T -735)) -((-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-4060 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-4060 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-4060 (*1 *2 *3) (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-864)) (-4 *5 (-162)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) (-4 *3 (-573 (-360))))) (-2476 (*1 *2 *3) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) (-4 *3 (-573 (-360))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-360)) (-5 *1 (-735 *3)) (-4 *3 (-573 *2)))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-735 *3)) (-4 *3 (-573 *2))))) -(-10 -7 (-15 -3535 ((-360) |#1|)) (-15 -3535 ((-360) |#1| (-864))) (-15 -2476 ((-159 (-360)) |#1|)) (-15 -2476 ((-159 (-360)) |#1| (-864))) (IF (|has| |#1| (-162)) (PROGN (-15 -2476 ((-159 (-360)) (-159 |#1|))) (-15 -2476 ((-159 (-360)) (-159 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -3535 ((-360) (-895 |#1|))) (-15 -3535 ((-360) (-895 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 |#1|))) (-15 -2476 ((-159 (-360)) (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -3535 ((-360) (-388 (-895 |#1|)))) (-15 -3535 ((-360) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -3535 ((-360) (-297 |#1|))) (-15 -3535 ((-360) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 |#1|))) (-15 -2476 ((-159 (-360)) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-895 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-895 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)))) (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-297 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|)) -((-2000 (((-864) (-1085)) 66)) (-3743 (((-3 (-360) "failed") (-1085)) 33)) (-1610 (((-360) (-1085)) 31)) (-2604 (((-864) (-1085)) 54)) (-4207 (((-1085) (-864)) 56)) (-3425 (((-1085) (-864)) 53))) -(((-736) (-10 -7 (-15 -3425 ((-1085) (-864))) (-15 -2604 ((-864) (-1085))) (-15 -4207 ((-1085) (-864))) (-15 -2000 ((-864) (-1085))) (-15 -1610 ((-360) (-1085))) (-15 -3743 ((-3 (-360) "failed") (-1085))))) (T -736)) -((-3743 (*1 *2 *3) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736))))) -(-10 -7 (-15 -3425 ((-1085) (-864))) (-15 -2604 ((-864) (-1085))) (-15 -4207 ((-1085) (-864))) (-15 -2000 ((-864) (-1085))) (-15 -1610 ((-360) (-1085))) (-15 -3743 ((-3 (-360) "failed") (-1085)))) -((-2247 (((-110) $ $) 7)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 15) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 13)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-737) (-133)) (T -737)) -((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975)))))) (-3895 (*1 *2 *3 *2) (-12 (-4 *1 (-737)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975)))))) (-3895 (*1 *2 *3 *2) (-12 (-4 *1 (-737)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) -(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3895 ((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3895 ((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2881 (((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360))) 44) (((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 43)) (-2493 (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 50)) (-4110 (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 41)) (-1320 (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360))) 52) (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 51))) -(((-738) (-10 -7 (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -4110 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -2493 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))))) (T -738)) -((-2493 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-2881 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-531)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360)))) (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-2881 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-531)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360)))) (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-4110 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-1320 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-1320 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738))))) -(-10 -7 (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -4110 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -2493 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))))) -((-2776 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 53)) (-4175 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 31)) (-3933 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 52)) (-1540 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 29)) (-2287 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 51)) (-2228 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 19)) (-2681 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531)) 32)) (-3774 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531)) 30)) (-1586 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531)) 28))) -(((-739) (-10 -7 (-15 -1586 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -3774 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2681 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2228 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -1540 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -4175 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2287 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -3933 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2776 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))))) (T -739)) -((-2776 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-3933 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-2287 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-4175 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-1540 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-2228 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-2681 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-3774 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-1586 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531))))) -(-10 -7 (-15 -1586 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -3774 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2681 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2228 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -1540 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -4175 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2287 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -3933 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2776 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)))) -((-1952 (((-1134 |#1|) |#1| (-208) (-531)) 46))) -(((-740 |#1|) (-10 -7 (-15 -1952 ((-1134 |#1|) |#1| (-208) (-531)))) (-916)) (T -740)) -((-1952 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-208)) (-5 *5 (-531)) (-5 *2 (-1134 *3)) (-5 *1 (-740 *3)) (-4 *3 (-916))))) -(-10 -7 (-15 -1952 ((-1134 |#1|) |#1| (-208) (-531)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-2128 (((-3 $ "failed") $ $) 26)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2250 (($ $ $) 28) (($ $) 27)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25) (($ (-531) $) 29))) -(((-741) (-133)) (T -741)) -NIL -(-13 (-745) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-797) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25))) -(((-742) (-133)) (T -742)) -NIL -(-13 (-744) (-23)) -(((-23) . T) ((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-744) . T) ((-797) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-3818 (($ $ $) 27)) (-2128 (((-3 $ "failed") $ $) 26)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25))) -(((-743) (-133)) (T -743)) -((-3818 (*1 *1 *1 *1) (-4 *1 (-743)))) -(-13 (-745) (-10 -8 (-15 -3818 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-797) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21))) -(((-744) (-133)) (T -744)) -NIL -(-13 (-797) (-25)) -(((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-2128 (((-3 $ "failed") $ $) 26)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25))) -(((-745) (-133)) (T -745)) -NIL -(-13 (-742) (-128)) -(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-742) . T) ((-744) . T) ((-797) . T) ((-1030) . T)) -((-3019 (((-110) $) 41)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 42)) (-1609 (((-3 (-388 (-531)) "failed") $) 78)) (-3004 (((-110) $) 72)) (-2727 (((-388 (-531)) $) 76)) (-1899 ((|#2| $) 26)) (-3261 (($ (-1 |#2| |#2|) $) 23)) (-2422 (($ $) 61)) (-3318 (((-507) $) 67)) (-4164 (($ $) 21)) (-2265 (((-806) $) 56) (($ (-531)) 39) (($ |#2|) 37) (($ (-388 (-531))) NIL)) (-2284 (((-721)) 10)) (-1620 ((|#2| $) 71)) (-2148 (((-110) $ $) 29)) (-2174 (((-110) $ $) 69)) (-2250 (($ $) 31) (($ $ $) NIL)) (-2237 (($ $ $) 30)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-746 |#1| |#2|) (-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-747 |#2|) (-162)) (T -746)) -((-2284 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-746 *3 *4)) (-4 *3 (-747 *4))))) -(-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-3006 (((-721)) 51 (|has| |#1| (-349)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 92 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 90 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 88)) (-2523 (((-531) $) 93 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 91 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 87)) (-3622 (((-3 $ "failed") $) 32)) (-2577 ((|#1| $) 77)) (-1609 (((-3 (-388 (-531)) "failed") $) 64 (|has| |#1| (-516)))) (-3004 (((-110) $) 66 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 65 (|has| |#1| (-516)))) (-1381 (($) 54 (|has| |#1| (-349)))) (-3481 (((-110) $) 30)) (-3309 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-1899 ((|#1| $) 69)) (-4103 (($ $ $) 60 (|has| |#1| (-797)))) (-1241 (($ $ $) 59 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 79)) (-2211 (((-864) $) 53 (|has| |#1| (-349)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 63 (|has| |#1| (-344)))) (-1889 (($ (-864)) 52 (|has| |#1| (-349)))) (-3698 ((|#1| $) 74)) (-4121 ((|#1| $) 75)) (-2193 ((|#1| $) 76)) (-1614 ((|#1| $) 70)) (-2600 ((|#1| $) 71)) (-2774 ((|#1| $) 72)) (-2876 ((|#1| $) 73)) (-2529 (((-1049) $) 10)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 85 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 83 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 82 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 81 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 80 (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) 86 (|has| |#1| (-268 |#1| |#1|)))) (-3318 (((-507) $) 61 (|has| |#1| (-573 (-507))))) (-4164 (($ $) 78)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ (-388 (-531))) 89 (|has| |#1| (-977 (-388 (-531)))))) (-2750 (((-3 $ "failed") $) 62 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-1620 ((|#1| $) 67 (|has| |#1| (-995)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 57 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 56 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 58 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 55 (|has| |#1| (-797)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-747 |#1|) (-133) (-162)) (T -747)) -((-4164 (*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-3309 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-2422 (*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-344))))) -(-13 (-37 |t#1|) (-392 |t#1|) (-319 |t#1|) (-10 -8 (-15 -4164 ($ $)) (-15 -2577 (|t#1| $)) (-15 -2193 (|t#1| $)) (-15 -4121 (|t#1| $)) (-15 -3698 (|t#1| $)) (-15 -2876 (|t#1| $)) (-15 -2774 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -1614 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -3309 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -1620 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2422 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-349) |has| |#1| (-349)) ((-319 |#1|) . T) ((-392 |#1|) . T) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-797) |has| |#1| (-797)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3261 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) (-747 |#2|) (-162) (-747 |#4|) (-162)) (T -748)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-747 *6)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *4 (-747 *5))))) -(-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-940 |#1|) "failed") $) 35) (((-3 (-531) "failed") $) NIL (-1435 (|has| (-940 |#1|) (-977 (-531))) (|has| |#1| (-977 (-531))))) (((-3 (-388 (-531)) "failed") $) NIL (-1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 ((|#1| $) NIL) (((-940 |#1|) $) 33) (((-531) $) NIL (-1435 (|has| (-940 |#1|) (-977 (-531))) (|has| |#1| (-977 (-531))))) (((-388 (-531)) $) NIL (-1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-3622 (((-3 $ "failed") $) NIL)) (-2577 ((|#1| $) 16)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-516)))) (-3004 (((-110) $) NIL (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| |#1| (-516)))) (-1381 (($) NIL (|has| |#1| (-349)))) (-3481 (((-110) $) NIL)) (-3309 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-940 |#1|) (-940 |#1|)) 29)) (-1899 ((|#1| $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3698 ((|#1| $) 22)) (-4121 ((|#1| $) 20)) (-2193 ((|#1| $) 18)) (-1614 ((|#1| $) 26)) (-2600 ((|#1| $) 25)) (-2774 ((|#1| $) 24)) (-2876 ((|#1| $) 23)) (-2529 (((-1049) $) NIL)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-4164 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-940 |#1|)) 30) (($ (-388 (-531))) NIL (-1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-1620 ((|#1| $) NIL (|has| |#1| (-995)))) (-3035 (($) 8 T CONST)) (-3050 (($) 12 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-749 |#1|) (-13 (-747 |#1|) (-392 (-940 |#1|)) (-10 -8 (-15 -3309 ($ (-940 |#1|) (-940 |#1|))))) (-162)) (T -749)) -((-3309 (*1 *1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-162)) (-5 *1 (-749 *3))))) -(-13 (-747 |#1|) (-392 (-940 |#1|)) (-10 -8 (-15 -3309 ($ (-940 |#1|) (-940 |#1|))))) -((-2247 (((-110) $ $) 7)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13)) (-2148 (((-110) $ $) 6))) -(((-750) (-133)) (T -750)) -((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-750)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-2146 (*1 *2 *3) (-12 (-4 *1 (-750)) (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-975))))) -(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2146 ((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2220 (((-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#3| |#2| (-1102)) 19))) -(((-751 |#1| |#2| |#3|) (-10 -7 (-15 -2220 ((-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#3| |#2| (-1102)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902)) (-609 |#2|)) (T -751)) -((-2220 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1102)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-4 *4 (-13 (-29 *6) (-1124) (-902))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4)))) (-5 *1 (-751 *6 *4 *3)) (-4 *3 (-609 *4))))) -(-10 -7 (-15 -2220 ((-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#3| |#2| (-1102)))) -((-1871 (((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-598 |#2|)) 28) (((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") |#2| (-112) (-1102)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1102)) 18) (((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 |#2|) (-598 (-112)) (-1102)) 24) (((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 (-276 |#2|)) (-598 (-112)) (-1102)) 26) (((-3 (-598 (-1184 |#2|)) "failed") (-639 |#2|) (-1102)) 37) (((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-639 |#2|) (-1184 |#2|) (-1102)) 35))) -(((-752 |#1| |#2|) (-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-639 |#2|) (-1184 |#2|) (-1102))) (-15 -1871 ((-3 (-598 (-1184 |#2|)) "failed") (-639 |#2|) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 (-276 |#2|)) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 |#2|) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") |#2| (-112) (-1102))) (-15 -1871 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -1871 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-598 |#2|)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902))) (T -752)) -((-1871 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-598 *2)) (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-752 *6 *2)))) (-1871 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-598 *2)) (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-5 *1 (-752 *6 *2)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))))) (-1871 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1102)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3523 (-598 *3))) *3 "failed")) (-5 *1 (-752 *6 *3)) (-4 *3 (-13 (-29 *6) (-1124) (-902))))) (-1871 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3523 (-598 *7))) *7 "failed")) (-5 *1 (-752 *6 *7)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) (-5 *1 (-752 *6 *7)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) (-5 *1 (-752 *6 *7)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-639 *6)) (-5 *4 (-1102)) (-4 *6 (-13 (-29 *5) (-1124) (-902))) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-1184 *6))) (-5 *1 (-752 *5 *6)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-639 *7)) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) (-5 *1 (-752 *6 *7)) (-5 *4 (-1184 *7))))) -(-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-639 |#2|) (-1184 |#2|) (-1102))) (-15 -1871 ((-3 (-598 (-1184 |#2|)) "failed") (-639 |#2|) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 (-276 |#2|)) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 |#2|) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") |#2| (-112) (-1102))) (-15 -1871 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -1871 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-598 |#2|)))) -((-4138 (($) 9)) (-3478 (((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 31)) (-3345 (((-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 28)) (-3944 (($ (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) 25)) (-2939 (($ (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) 23)) (-4029 (((-1189)) 12))) -(((-753) (-10 -8 (-15 -4138 ($)) (-15 -4029 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2939 ($ (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -3478 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -753)) -((-3478 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *1 (-753)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) (-5 *1 (-753)))) (-2939 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-5 *1 (-753)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-753)))) (-4029 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-753)))) (-4138 (*1 *1) (-5 *1 (-753)))) -(-10 -8 (-15 -4138 ($)) (-15 -4029 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2939 ($ (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -3478 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) -((-4150 ((|#2| |#2| (-1102)) 16)) (-1688 ((|#2| |#2| (-1102)) 51)) (-4032 (((-1 |#2| |#2|) (-1102)) 11))) -(((-754 |#1| |#2|) (-10 -7 (-15 -4150 (|#2| |#2| (-1102))) (-15 -1688 (|#2| |#2| (-1102))) (-15 -4032 ((-1 |#2| |#2|) (-1102)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902))) (T -754)) -((-4032 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-754 *4 *5)) (-4 *5 (-13 (-29 *4) (-1124) (-902))))) (-1688 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902))))) (-4150 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902)))))) -(-10 -7 (-15 -4150 (|#2| |#2| (-1102))) (-15 -1688 (|#2| |#2| (-1102))) (-15 -4032 ((-1 |#2| |#2|) (-1102)))) -((-1871 (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360) (-360)) 116) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360)) 117) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-598 (-360)) (-360)) 119) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-360)) 120) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-360)) 121) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360))) 122) (((-975) (-758) (-998)) 108) (((-975) (-758)) 109)) (-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758) (-998)) 75) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758)) 77))) -(((-755) (-10 -7 (-15 -1871 ((-975) (-758))) (-15 -1871 ((-975) (-758) (-998))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360) (-360))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758) (-998))))) (T -755)) -((-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-755)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-975)) (-5 *1 (-755))))) -(-10 -7 (-15 -1871 ((-975) (-758))) (-15 -1871 ((-975) (-758) (-998))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360) (-360))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758) (-998)))) -((-1858 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3523 (-598 |#4|))) (-606 |#4|) |#4|) 35))) -(((-756 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1858 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3523 (-598 |#4|))) (-606 |#4|) |#4|))) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -756)) -((-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *4)) (-4 *4 (-323 *5 *6 *7)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-756 *5 *6 *7 *4))))) -(-10 -7 (-15 -1858 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3523 (-598 |#4|))) (-606 |#4|) |#4|))) -((-1682 (((-2 (|:| -2723 |#3|) (|:| |rh| (-598 (-388 |#2|)))) |#4| (-598 (-388 |#2|))) 52)) (-1672 (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4| |#2|) 60) (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4|) 59) (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3| |#2|) 20) (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3|) 21)) (-2465 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1224 ((|#2| |#3| (-598 (-388 |#2|))) 93) (((-3 |#2| "failed") |#3| (-388 |#2|)) 90))) -(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1224 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -1224 (|#2| |#3| (-598 (-388 |#2|)))) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3| |#2|)) (-15 -2465 (|#2| |#3| |#1|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4| |#2|)) (-15 -2465 (|#2| |#4| |#1|)) (-15 -1682 ((-2 (|:| -2723 |#3|) (|:| |rh| (-598 (-388 |#2|)))) |#4| (-598 (-388 |#2|))))) (-13 (-344) (-140) (-977 (-388 (-531)))) (-1160 |#1|) (-609 |#2|) (-609 (-388 |#2|))) (T -757)) -((-1682 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-2 (|:| -2723 *7) (|:| |rh| (-598 (-388 *6))))) (-5 *1 (-757 *5 *6 *7 *3)) (-5 *4 (-598 (-388 *6))) (-4 *7 (-609 *6)) (-4 *3 (-609 (-388 *6))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *5 *3)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-609 *2)) (-4 *3 (-609 (-388 *2))))) (-1672 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4)))) (-5 *1 (-757 *5 *4 *6 *3)) (-4 *6 (-609 *4)) (-4 *3 (-609 (-388 *4))))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5)))) (-5 *1 (-757 *4 *5 *6 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 (-388 *5))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *5 (-609 (-388 *2))))) (-1672 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4)))) (-5 *1 (-757 *5 *4 *3 *6)) (-4 *3 (-609 *4)) (-4 *6 (-609 (-388 *4))))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5)))) (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))) (-1224 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-388 *2))) (-4 *2 (-1160 *5)) (-5 *1 (-757 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *6 (-609 (-388 *2))))) (-1224 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1160 *5)) (-5 *1 (-757 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *6 (-609 *4))))) -(-10 -7 (-15 -1224 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -1224 (|#2| |#3| (-598 (-388 |#2|)))) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3| |#2|)) (-15 -2465 (|#2| |#3| |#1|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4| |#2|)) (-15 -2465 (|#2| |#4| |#1|)) (-15 -1682 ((-2 (|:| -2723 |#3|) (|:| |rh| (-598 (-388 |#2|)))) |#4| (-598 (-388 |#2|))))) -((-2247 (((-110) $ $) NIL)) (-2523 (((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $) 13)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 15) (($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 12)) (-2148 (((-110) $ $) NIL))) -(((-758) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))) (T -758)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-758)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-758)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-758))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $)))) -((-3940 (((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 |#3|))) |#3| (-1 (-598 |#2|) |#2| (-1098 |#2|)) (-1 (-399 |#2|) |#2|)) 118)) (-1741 (((-598 (-2 (|:| |poly| |#2|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|)) 46)) (-2461 (((-598 (-2 (|:| |deg| (-721)) (|:| -2723 |#2|))) |#3|) 95)) (-1721 ((|#2| |#3|) 37)) (-2635 (((-598 (-2 (|:| -2651 |#1|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|)) 82)) (-1758 ((|#3| |#3| (-388 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-759 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1721 (|#2| |#3|)) (-15 -2461 ((-598 (-2 (|:| |deg| (-721)) (|:| -2723 |#2|))) |#3|)) (-15 -2635 ((-598 (-2 (|:| -2651 |#1|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 |#3|))) |#3| (-1 (-598 |#2|) |#2| (-1098 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1758 (|#3| |#3| |#2|)) (-15 -1758 (|#3| |#3| (-388 |#2|)))) (-13 (-344) (-140) (-977 (-388 (-531)))) (-1160 |#1|) (-609 |#2|) (-609 (-388 |#2|))) (T -759)) -((-1758 (*1 *2 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *1 (-759 *4 *5 *2 *6)) (-4 *2 (-609 *5)) (-4 *6 (-609 *3)))) (-1758 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-1160 *4)) (-5 *1 (-759 *4 *3 *2 *5)) (-4 *2 (-609 *3)) (-4 *5 (-609 (-388 *3))))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-598 *7) *7 (-1098 *7))) (-5 *5 (-1 (-399 *7) *7)) (-4 *7 (-1160 *6)) (-4 *6 (-13 (-344) (-140) (-977 (-388 (-531))))) (-5 *2 (-598 (-2 (|:| |frac| (-388 *7)) (|:| -2723 *3)))) (-5 *1 (-759 *6 *7 *3 *8)) (-4 *3 (-609 *7)) (-4 *8 (-609 (-388 *7))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 *3)))) (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -2651 *5) (|:| -2723 *3)))) (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -2723 *5)))) (-5 *1 (-759 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))) (-1721 (*1 *2 *3) (-12 (-4 *2 (-1160 *4)) (-5 *1 (-759 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *5 (-609 (-388 *2)))))) -(-10 -7 (-15 -1721 (|#2| |#3|)) (-15 -2461 ((-598 (-2 (|:| |deg| (-721)) (|:| -2723 |#2|))) |#3|)) (-15 -2635 ((-598 (-2 (|:| -2651 |#1|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 |#3|))) |#3| (-1 (-598 |#2|) |#2| (-1098 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1758 (|#3| |#3| |#2|)) (-15 -1758 (|#3| |#3| (-388 |#2|)))) -((-3106 (((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-607 |#2| (-388 |#2|)) (-598 (-388 |#2|))) 121) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|)) 120) (((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-606 (-388 |#2|)) (-598 (-388 |#2|))) 115) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|)) 113)) (-2281 ((|#2| (-607 |#2| (-388 |#2|))) 80) ((|#2| (-606 (-388 |#2|))) 83))) -(((-760 |#1| |#2|) (-10 -7 (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-606 (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-607 |#2| (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -2281 (|#2| (-606 (-388 |#2|)))) (-15 -2281 (|#2| (-607 |#2| (-388 |#2|))))) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -760)) -((-2281 (*1 *2 *3) (-12 (-5 *3 (-607 *2 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-760 *4 *2)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-606 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-760 *4 *2)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5)))) (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-760 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5)))) (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-760 *5 *6))))) -(-10 -7 (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-606 (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-607 |#2| (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -2281 (|#2| (-606 (-388 |#2|)))) (-15 -2281 (|#2| (-607 |#2| (-388 |#2|))))) -((-2761 (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) |#5| |#4|) 48))) -(((-761 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2761 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) |#5| |#4|))) (-344) (-609 |#1|) (-1160 |#1|) (-675 |#1| |#3|) (-609 |#4|)) (T -761)) -((-2761 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *7 (-1160 *5)) (-4 *4 (-675 *5 *7)) (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5)))) (-5 *1 (-761 *5 *6 *7 *4 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 *4))))) -(-10 -7 (-15 -2761 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) |#5| |#4|))) -((-3940 (((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 47)) (-2882 (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|))) 138 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-606 (-388 |#2|))) 140 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 38) (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 39) (((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 36) (((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 37)) (-1741 (((-598 (-2 (|:| |poly| |#2|) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 83))) -(((-762 |#1| |#2|) (-10 -7 (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|)) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -762)) -((-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-607 *5 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-606 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 (-607 *6 (-388 *6)))))) (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-2 (|:| |frac| (-388 *6)) (|:| -2723 (-607 *6 (-388 *6)))))) (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *7 (-388 *7))) (-5 *4 (-1 (-598 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-388 *7))) (-5 *4 (-1 (-598 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6))))) -(-10 -7 (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|)) -((-1874 (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) (-639 |#2|) (-1184 |#1|)) 85) (((-2 (|:| A (-639 |#1|)) (|:| |eqs| (-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)) (|:| -2723 |#2|) (|:| |rh| |#1|))))) (-639 |#1|) (-1184 |#1|)) 15)) (-1504 (((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#2|) (-1184 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3523 (-598 |#1|))) |#2| |#1|)) 92)) (-1871 (((-3 (-2 (|:| |particular| (-1184 |#1|)) (|:| -3523 (-639 |#1|))) "failed") (-639 |#1|) (-1184 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed") |#2| |#1|)) 43))) -(((-763 |#1| |#2|) (-10 -7 (-15 -1874 ((-2 (|:| A (-639 |#1|)) (|:| |eqs| (-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)) (|:| -2723 |#2|) (|:| |rh| |#1|))))) (-639 |#1|) (-1184 |#1|))) (-15 -1874 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) (-639 |#2|) (-1184 |#1|))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#1|)) (|:| -3523 (-639 |#1|))) "failed") (-639 |#1|) (-1184 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed") |#2| |#1|))) (-15 -1504 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#2|) (-1184 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3523 (-598 |#1|))) |#2| |#1|)))) (-344) (-609 |#1|)) (T -763)) -((-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3523 (-598 *6))) *7 *6)) (-4 *6 (-344)) (-4 *7 (-609 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 *6) "failed")) (|:| -3523 (-598 (-1184 *6))))) (-5 *1 (-763 *6 *7)) (-5 *4 (-1184 *6)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3523 (-598 *6))) "failed") *7 *6)) (-4 *6 (-344)) (-4 *7 (-609 *6)) (-5 *2 (-2 (|:| |particular| (-1184 *6)) (|:| -3523 (-639 *6)))) (-5 *1 (-763 *6 *7)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *6)))) (-1874 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-609 *5)) (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5)))) (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *5)))) (-1874 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| A (-639 *5)) (|:| |eqs| (-598 (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5)) (|:| -2723 *6) (|:| |rh| *5)))))) (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *6 (-609 *5))))) -(-10 -7 (-15 -1874 ((-2 (|:| A (-639 |#1|)) (|:| |eqs| (-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)) (|:| -2723 |#2|) (|:| |rh| |#1|))))) (-639 |#1|) (-1184 |#1|))) (-15 -1874 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) (-639 |#2|) (-1184 |#1|))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#1|)) (|:| -3523 (-639 |#1|))) "failed") (-639 |#1|) (-1184 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed") |#2| |#1|))) (-15 -1504 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#2|) (-1184 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3523 (-598 |#1|))) |#2| |#1|)))) -((-3131 (((-639 |#1|) (-598 |#1|) (-721)) 13) (((-639 |#1|) (-598 |#1|)) 14)) (-2102 (((-3 (-1184 |#1|) "failed") |#2| |#1| (-598 |#1|)) 34)) (-2197 (((-3 |#1| "failed") |#2| |#1| (-598 |#1|) (-1 |#1| |#1|)) 42))) -(((-764 |#1| |#2|) (-10 -7 (-15 -3131 ((-639 |#1|) (-598 |#1|))) (-15 -3131 ((-639 |#1|) (-598 |#1|) (-721))) (-15 -2102 ((-3 (-1184 |#1|) "failed") |#2| |#1| (-598 |#1|))) (-15 -2197 ((-3 |#1| "failed") |#2| |#1| (-598 |#1|) (-1 |#1| |#1|)))) (-344) (-609 |#1|)) (T -764)) -((-2197 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-598 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) (-5 *1 (-764 *2 *3)) (-4 *3 (-609 *2)))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-1184 *4)) (-5 *1 (-764 *4 *3)) (-4 *3 (-609 *4)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-344)) (-5 *2 (-639 *5)) (-5 *1 (-764 *5 *6)) (-4 *6 (-609 *5)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-639 *4)) (-5 *1 (-764 *4 *5)) (-4 *5 (-609 *4))))) -(-10 -7 (-15 -3131 ((-639 |#1|) (-598 |#1|))) (-15 -3131 ((-639 |#1|) (-598 |#1|) (-721))) (-15 -2102 ((-3 (-1184 |#1|) "failed") |#2| |#1| (-598 |#1|))) (-15 -2197 ((-3 |#1| "failed") |#2| |#1| (-598 |#1|) (-1 |#1| |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-3019 (((-110) $) NIL (|has| |#2| (-128)))) (-1685 (($ (-864)) NIL (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#2| (-349)))) (-3459 (((-531) $) NIL (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) NIL (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) NIL (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) NIL (|has| |#2| (-677)))) (-1381 (($) NIL (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) NIL)) (-1599 (((-110) $) NIL (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#2| (-677)))) (-2985 (((-110) $) NIL (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#2| (-349)))) (-2529 (((-1049) $) NIL (|has| |#2| (-1030)))) (-3046 ((|#2| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) NIL)) (-3225 ((|#2| $ $) NIL (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) NIL)) (-2190 (((-130)) NIL (|has| |#2| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#2|) $) NIL) (($ (-531)) NIL (-1435 (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) NIL (|has| |#2| (-1030))) (((-806) $) NIL (|has| |#2| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#2| (-795)))) (-3035 (($) NIL (|has| |#2| (-128)) CONST)) (-3050 (($) NIL (|has| |#2| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2148 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2174 (((-110) $ $) 11 (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $ $) NIL (|has| |#2| (-986))) (($ $) NIL (|has| |#2| (-986)))) (-2237 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-721)) NIL (|has| |#2| (-677))) (($ $ (-864)) NIL (|has| |#2| (-677)))) (* (($ (-531) $) NIL (|has| |#2| (-986))) (($ $ $) NIL (|has| |#2| (-677))) (($ $ |#2|) NIL (|has| |#2| (-677))) (($ |#2| $) NIL (|has| |#2| (-677))) (($ (-721) $) NIL (|has| |#2| (-128))) (($ (-864) $) NIL (|has| |#2| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-765 |#1| |#2| |#3|) (-221 |#1| |#2|) (-721) (-743) (-1 (-110) (-1184 |#2|) (-1184 |#2|))) (T -765)) -NIL -(-221 |#1| |#2|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1584 (((-598 (-721)) $) NIL) (((-598 (-721)) $ (-1102)) NIL)) (-3449 (((-721) $) NIL) (((-721) $ (-1102)) NIL)) (-2695 (((-598 (-768 (-1102))) $) NIL)) (-2516 (((-1098 $) $ (-768 (-1102))) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-768 (-1102)))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-1524 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-768 (-1102)) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL) (((-3 (-1054 |#1| (-1102)) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-768 (-1102)) $) NIL) (((-1102) $) NIL) (((-1054 |#1| (-1102)) $) NIL)) (-3115 (($ $ $ (-768 (-1102))) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-768 (-1102))) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 (-768 (-1102))) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-768 (-1102)) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-768 (-1102)) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ (-1102)) NIL) (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) (-768 (-1102))) NIL) (($ (-1098 $) (-768 (-1102))) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-768 (-1102))) NIL)) (-3005 (((-503 (-768 (-1102))) $) NIL) (((-721) $ (-768 (-1102))) NIL) (((-598 (-721)) $ (-598 (-768 (-1102)))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 (-768 (-1102))) (-503 (-768 (-1102)))) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-4252 (((-1 $ (-721)) (-1102)) NIL) (((-1 $ (-721)) $) NIL (|has| |#1| (-216)))) (-3471 (((-3 (-768 (-1102)) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2941 (((-768 (-1102)) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1921 (((-110) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-768 (-1102))) (|:| -1790 (-721))) "failed") $) NIL)) (-2319 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-768 (-1102)) |#1|) NIL) (($ $ (-598 (-768 (-1102))) (-598 |#1|)) NIL) (($ $ (-768 (-1102)) $) NIL) (($ $ (-598 (-768 (-1102))) (-598 $)) NIL) (($ $ (-1102) $) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 $)) NIL (|has| |#1| (-216))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-216)))) (-3176 (($ $ (-768 (-1102))) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-768 (-1102))) NIL) (($ $ (-598 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3288 (((-598 (-1102)) $) NIL)) (-2012 (((-503 (-768 (-1102))) $) NIL) (((-721) $ (-768 (-1102))) NIL) (((-598 (-721)) $ (-598 (-768 (-1102)))) NIL) (((-721) $ (-1102)) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-768 (-1102)) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-768 (-1102)) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-768 (-1102)) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-768 (-1102))) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-768 (-1102))) NIL) (($ (-1102)) NIL) (($ (-1054 |#1| (-1102))) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-768 (-1102))) NIL) (($ $ (-598 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-766 |#1|) (-13 (-235 |#1| (-1102) (-768 (-1102)) (-503 (-768 (-1102)))) (-977 (-1054 |#1| (-1102)))) (-986)) (T -766)) -NIL -(-13 (-235 |#1| (-1102) (-768 (-1102)) (-503 (-768 (-1102)))) (-977 (-1054 |#1| (-1102)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-344)))) (-3258 (($ $) NIL (|has| |#2| (-344)))) (-2921 (((-110) $) NIL (|has| |#2| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#2| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-344)))) (-2760 (((-110) $ $) NIL (|has| |#2| (-344)))) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL (|has| |#2| (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#2| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#2| (-344)))) (-2534 (((-110) $) NIL (|has| |#2| (-344)))) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-2078 (($ (-598 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 20 (|has| |#2| (-344)))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-4100 (((-721) $) NIL (|has| |#2| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-3352 (($ $ (-721)) NIL) (($ $) 13)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-388 (-531))) NIL (|has| |#2| (-344))) (($ $) NIL (|has| |#2| (-344)))) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) 15 (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL) (($ $ (-531)) 18 (|has| |#2| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-388 (-531)) $) NIL (|has| |#2| (-344))) (($ $ (-388 (-531))) NIL (|has| |#2| (-344))))) -(((-767 |#1| |#2| |#3|) (-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2265 ($ |#2|)) (-15 -2265 (|#2| $)))) (-1030) (-843 |#1|) |#1|) (T -767)) -((-2265 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-14 *4 *3) (-5 *1 (-767 *3 *2 *4)) (-4 *2 (-843 *3)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-843 *3)) (-5 *1 (-767 *3 *2 *4)) (-4 *3 (-1030)) (-14 *4 *3)))) -(-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2265 ($ |#2|)) (-15 -2265 (|#2| $)))) -((-2247 (((-110) $ $) NIL)) (-3449 (((-721) $) NIL)) (-3524 ((|#1| $) 10)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3617 (((-721) $) 11)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-4252 (($ |#1| (-721)) 9)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3352 (($ $) NIL) (($ $ (-721)) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL))) -(((-768 |#1|) (-248 |#1|) (-797)) (T -768)) -NIL -(-248 |#1|) -((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) 29)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-2489 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3062 (($ $) 31)) (-3622 (((-3 $ "failed") $) NIL)) (-1273 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3481 (((-110) $) NIL)) (-3616 ((|#1| $ (-531)) NIL)) (-4173 (((-721) $ (-531)) NIL)) (-4104 (($ $) 36)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2931 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4122 (((-110) $ $) 34)) (-2428 (((-721) $) 25)) (-1521 (((-1085) $) NIL)) (-2236 (($ $ $) NIL)) (-2592 (($ $ $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 ((|#1| $) 30)) (-2721 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $) NIL)) (-3620 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-3050 (($) 15 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 35)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ |#1| (-721)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-769 |#1|) (-13 (-793) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -3046 (|#1| $)) (-15 -3062 ($ $)) (-15 -4104 ($ $)) (-15 -4122 ((-110) $ $)) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2931 ((-3 $ "failed") $ |#1|)) (-15 -2489 ((-3 $ "failed") $ |#1|)) (-15 -3620 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -2428 ((-721) $)) (-15 -3798 ((-598 |#1|) $)))) (-797)) (T -769)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-3046 (*1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-2592 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2236 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2931 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2931 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2489 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-3620 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-769 *3)) (|:| |rm| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-1273 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-769 *3)) (|:| |mm| (-769 *3)) (|:| |rm| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-769 *4)) (-4 *4 (-797)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721))))) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-769 *3)) (-4 *3 (-797))))) -(-13 (-793) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -3046 (|#1| $)) (-15 -3062 ($ $)) (-15 -4104 ($ $)) (-15 -4122 ((-110) $ $)) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2931 ((-3 $ "failed") $ |#1|)) (-15 -2489 ((-3 $ "failed") $ |#1|)) (-15 -3620 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -2428 ((-721) $)) (-15 -3798 ((-598 |#1|) $)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3459 (((-531) $) 51)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-1599 (((-110) $) 49)) (-3481 (((-110) $) 30)) (-2985 (((-110) $) 50)) (-4103 (($ $ $) 48)) (-1241 (($ $ $) 47)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 52)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 45)) (-2184 (((-110) $ $) 44)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 46)) (-2174 (((-110) $ $) 43)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-770) (-133)) (T -770)) -NIL -(-13 (-523) (-795)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-1522 (($ (-1049)) 7)) (-3249 (((-110) $ (-1085) (-1049)) 15)) (-2178 (((-772) $) 12)) (-1588 (((-772) $) 11)) (-2715 (((-1189) $) 9)) (-2243 (((-110) $ (-1049)) 16))) -(((-771) (-10 -8 (-15 -1522 ($ (-1049))) (-15 -2715 ((-1189) $)) (-15 -1588 ((-772) $)) (-15 -2178 ((-772) $)) (-15 -3249 ((-110) $ (-1085) (-1049))) (-15 -2243 ((-110) $ (-1049))))) (T -771)) -((-2243 (*1 *2 *1 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-110)) (-5 *1 (-771)))) (-3249 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1049)) (-5 *2 (-110)) (-5 *1 (-771)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-771)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-771))))) -(-10 -8 (-15 -1522 ($ (-1049))) (-15 -2715 ((-1189) $)) (-15 -1588 ((-772) $)) (-15 -2178 ((-772) $)) (-15 -3249 ((-110) $ (-1085) (-1049))) (-15 -2243 ((-110) $ (-1049)))) -((-1649 (((-1189) $ (-773)) 12)) (-2762 (((-1189) $ (-1102)) 32)) (-2048 (((-1189) $ (-1085) (-1085)) 34)) (-3256 (((-1189) $ (-1085)) 33)) (-4086 (((-1189) $) 19)) (-1644 (((-1189) $ (-531)) 28)) (-3060 (((-1189) $ (-208)) 30)) (-3336 (((-1189) $) 18)) (-3679 (((-1189) $) 26)) (-1811 (((-1189) $) 25)) (-1710 (((-1189) $) 23)) (-3466 (((-1189) $) 24)) (-2926 (((-1189) $) 22)) (-3220 (((-1189) $) 21)) (-1881 (((-1189) $) 20)) (-3412 (((-1189) $) 16)) (-3747 (((-1189) $) 17)) (-2104 (((-1189) $) 15)) (-2909 (((-1189) $) 14)) (-3434 (((-1189) $) 13)) (-2173 (($ (-1085) (-773)) 9)) (-2547 (($ (-1085) (-1085) (-773)) 8)) (-1639 (((-1102) $) 51)) (-1364 (((-1102) $) 55)) (-1802 (((-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))) $) 54)) (-1465 (((-1085) $) 52)) (-2312 (((-1189) $) 41)) (-3475 (((-531) $) 49)) (-1593 (((-208) $) 50)) (-3313 (((-1189) $) 40)) (-3229 (((-1189) $) 48)) (-3362 (((-1189) $) 47)) (-3346 (((-1189) $) 45)) (-2363 (((-1189) $) 46)) (-1918 (((-1189) $) 44)) (-2383 (((-1189) $) 43)) (-2544 (((-1189) $) 42)) (-4049 (((-1189) $) 38)) (-3404 (((-1189) $) 39)) (-2067 (((-1189) $) 37)) (-1734 (((-1189) $) 36)) (-1519 (((-1189) $) 35)) (-3607 (((-1189) $) 11))) -(((-772) (-10 -8 (-15 -2547 ($ (-1085) (-1085) (-773))) (-15 -2173 ($ (-1085) (-773))) (-15 -3607 ((-1189) $)) (-15 -1649 ((-1189) $ (-773))) (-15 -3434 ((-1189) $)) (-15 -2909 ((-1189) $)) (-15 -2104 ((-1189) $)) (-15 -3412 ((-1189) $)) (-15 -3747 ((-1189) $)) (-15 -3336 ((-1189) $)) (-15 -4086 ((-1189) $)) (-15 -1881 ((-1189) $)) (-15 -3220 ((-1189) $)) (-15 -2926 ((-1189) $)) (-15 -1710 ((-1189) $)) (-15 -3466 ((-1189) $)) (-15 -1811 ((-1189) $)) (-15 -3679 ((-1189) $)) (-15 -1644 ((-1189) $ (-531))) (-15 -3060 ((-1189) $ (-208))) (-15 -2762 ((-1189) $ (-1102))) (-15 -3256 ((-1189) $ (-1085))) (-15 -2048 ((-1189) $ (-1085) (-1085))) (-15 -1519 ((-1189) $)) (-15 -1734 ((-1189) $)) (-15 -2067 ((-1189) $)) (-15 -4049 ((-1189) $)) (-15 -3404 ((-1189) $)) (-15 -3313 ((-1189) $)) (-15 -2312 ((-1189) $)) (-15 -2544 ((-1189) $)) (-15 -2383 ((-1189) $)) (-15 -1918 ((-1189) $)) (-15 -3346 ((-1189) $)) (-15 -2363 ((-1189) $)) (-15 -3362 ((-1189) $)) (-15 -3229 ((-1189) $)) (-15 -3475 ((-531) $)) (-15 -1593 ((-208) $)) (-15 -1639 ((-1102) $)) (-15 -1465 ((-1085) $)) (-15 -1802 ((-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))) $)) (-15 -1364 ((-1102) $)))) (T -772)) -((-1364 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1085)) (|:| -3955 (-1085)))) (-5 *1 (-772)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-772)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-772)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-772)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2048 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3256 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-2762 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3060 (*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-1644 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2173 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772)))) (-2547 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772))))) -(-10 -8 (-15 -2547 ($ (-1085) (-1085) (-773))) (-15 -2173 ($ (-1085) (-773))) (-15 -3607 ((-1189) $)) (-15 -1649 ((-1189) $ (-773))) (-15 -3434 ((-1189) $)) (-15 -2909 ((-1189) $)) (-15 -2104 ((-1189) $)) (-15 -3412 ((-1189) $)) (-15 -3747 ((-1189) $)) (-15 -3336 ((-1189) $)) (-15 -4086 ((-1189) $)) (-15 -1881 ((-1189) $)) (-15 -3220 ((-1189) $)) (-15 -2926 ((-1189) $)) (-15 -1710 ((-1189) $)) (-15 -3466 ((-1189) $)) (-15 -1811 ((-1189) $)) (-15 -3679 ((-1189) $)) (-15 -1644 ((-1189) $ (-531))) (-15 -3060 ((-1189) $ (-208))) (-15 -2762 ((-1189) $ (-1102))) (-15 -3256 ((-1189) $ (-1085))) (-15 -2048 ((-1189) $ (-1085) (-1085))) (-15 -1519 ((-1189) $)) (-15 -1734 ((-1189) $)) (-15 -2067 ((-1189) $)) (-15 -4049 ((-1189) $)) (-15 -3404 ((-1189) $)) (-15 -3313 ((-1189) $)) (-15 -2312 ((-1189) $)) (-15 -2544 ((-1189) $)) (-15 -2383 ((-1189) $)) (-15 -1918 ((-1189) $)) (-15 -3346 ((-1189) $)) (-15 -2363 ((-1189) $)) (-15 -3362 ((-1189) $)) (-15 -3229 ((-1189) $)) (-15 -3475 ((-531) $)) (-15 -1593 ((-208) $)) (-15 -1639 ((-1102) $)) (-15 -1465 ((-1085) $)) (-15 -1802 ((-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))) $)) (-15 -1364 ((-1102) $))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 12)) (-2999 (($) 15)) (-3982 (($) 13)) (-3807 (($) 16)) (-3390 (($) 14)) (-2148 (((-110) $ $) 8))) -(((-773) (-13 (-1030) (-10 -8 (-15 -3982 ($)) (-15 -2999 ($)) (-15 -3807 ($)) (-15 -3390 ($))))) (T -773)) -((-3982 (*1 *1) (-5 *1 (-773))) (-2999 (*1 *1) (-5 *1 (-773))) (-3807 (*1 *1) (-5 *1 (-773))) (-3390 (*1 *1) (-5 *1 (-773)))) -(-13 (-1030) (-10 -8 (-15 -3982 ($)) (-15 -2999 ($)) (-15 -3807 ($)) (-15 -3390 ($)))) -((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 21) (($ (-1102)) 17)) (-2036 (((-110) $) 10)) (-2446 (((-110) $) 9)) (-3328 (((-110) $) 11)) (-3691 (((-110) $) 8)) (-2148 (((-110) $ $) 19))) -(((-774) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3691 ((-110) $)) (-15 -2446 ((-110) $)) (-15 -2036 ((-110) $)) (-15 -3328 ((-110) $))))) (T -774)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-774)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3691 ((-110) $)) (-15 -2446 ((-110) $)) (-15 -2036 ((-110) $)) (-15 -3328 ((-110) $)))) -((-2247 (((-110) $ $) NIL)) (-3375 (($ (-774) (-598 (-1102))) 24)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-4030 (((-774) $) 25)) (-2782 (((-598 (-1102)) $) 26)) (-2265 (((-806) $) 23)) (-2148 (((-110) $ $) NIL))) -(((-775) (-13 (-1030) (-10 -8 (-15 -4030 ((-774) $)) (-15 -2782 ((-598 (-1102)) $)) (-15 -3375 ($ (-774) (-598 (-1102))))))) (T -775)) -((-4030 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-775)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-775)))) (-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-598 (-1102))) (-5 *1 (-775))))) -(-13 (-1030) (-10 -8 (-15 -4030 ((-774) $)) (-15 -2782 ((-598 (-1102)) $)) (-15 -3375 ($ (-774) (-598 (-1102)))))) -((-4231 (((-1189) (-772) (-297 |#1|) (-110)) 23) (((-1189) (-772) (-297 |#1|)) 79) (((-1085) (-297 |#1|) (-110)) 78) (((-1085) (-297 |#1|)) 77))) -(((-776 |#1|) (-10 -7 (-15 -4231 ((-1085) (-297 |#1|))) (-15 -4231 ((-1085) (-297 |#1|) (-110))) (-15 -4231 ((-1189) (-772) (-297 |#1|))) (-15 -4231 ((-1189) (-772) (-297 |#1|) (-110)))) (-13 (-778) (-797) (-986))) (T -776)) -((-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-5 *4 (-297 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-778) (-797) (-986))) (-5 *2 (-1189)) (-5 *1 (-776 *6)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-297 *5)) (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1189)) (-5 *1 (-776 *5)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1085)) (-5 *1 (-776 *5)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-778) (-797) (-986))) (-5 *2 (-1085)) (-5 *1 (-776 *4))))) -(-10 -7 (-15 -4231 ((-1085) (-297 |#1|))) (-15 -4231 ((-1085) (-297 |#1|) (-110))) (-15 -4231 ((-1189) (-772) (-297 |#1|))) (-15 -4231 ((-1189) (-772) (-297 |#1|) (-110)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-4066 ((|#1| $) 10)) (-4155 (($ |#1|) 9)) (-3481 (((-110) $) NIL)) (-2669 (($ |#2| (-721)) NIL)) (-3005 (((-721) $) NIL)) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3352 (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2012 (((-721) $) NIL)) (-2265 (((-806) $) 17) (($ (-531)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-3188 ((|#2| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-777 |#1| |#2|) (-13 (-659 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4155 ($ |#1|)) (-15 -4066 (|#1| $)))) (-659 |#2|) (-986)) (T -777)) -((-4155 (*1 *1 *2) (-12 (-4 *3 (-986)) (-5 *1 (-777 *2 *3)) (-4 *2 (-659 *3)))) (-4066 (*1 *2 *1) (-12 (-4 *2 (-659 *3)) (-5 *1 (-777 *2 *3)) (-4 *3 (-986))))) -(-13 (-659 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4155 ($ |#1|)) (-15 -4066 (|#1| $)))) -((-4231 (((-1189) (-772) $ (-110)) 9) (((-1189) (-772) $) 8) (((-1085) $ (-110)) 7) (((-1085) $) 6))) -(((-778) (-133)) (T -778)) -((-4231 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *4 (-110)) (-5 *2 (-1189)))) (-4231 (*1 *2 *3 *1) (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *2 (-1189)))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-778)) (-5 *3 (-110)) (-5 *2 (-1085)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-778)) (-5 *2 (-1085))))) -(-13 (-10 -8 (-15 -4231 ((-1085) $)) (-15 -4231 ((-1085) $ (-110))) (-15 -4231 ((-1189) (-772) $)) (-15 -4231 ((-1189) (-772) $ (-110))))) -((-2595 (((-293) (-1085) (-1085)) 12)) (-1326 (((-110) (-1085) (-1085)) 34)) (-3209 (((-110) (-1085)) 33)) (-3561 (((-51) (-1085)) 25)) (-3655 (((-51) (-1085)) 23)) (-3581 (((-51) (-772)) 17)) (-1796 (((-598 (-1085)) (-1085)) 28)) (-4224 (((-598 (-1085))) 27))) -(((-779) (-10 -7 (-15 -3581 ((-51) (-772))) (-15 -3655 ((-51) (-1085))) (-15 -3561 ((-51) (-1085))) (-15 -4224 ((-598 (-1085)))) (-15 -1796 ((-598 (-1085)) (-1085))) (-15 -3209 ((-110) (-1085))) (-15 -1326 ((-110) (-1085) (-1085))) (-15 -2595 ((-293) (-1085) (-1085))))) (T -779)) -((-2595 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-779)))) (-1326 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779)))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)) (-5 *3 (-1085)))) (-4224 (*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-51)) (-5 *1 (-779))))) -(-10 -7 (-15 -3581 ((-51) (-772))) (-15 -3655 ((-51) (-1085))) (-15 -3561 ((-51) (-1085))) (-15 -4224 ((-598 (-1085)))) (-15 -1796 ((-598 (-1085)) (-1085))) (-15 -3209 ((-110) (-1085))) (-15 -1326 ((-110) (-1085) (-1085))) (-15 -2595 ((-293) (-1085) (-1085)))) -((-2247 (((-110) $ $) 19)) (-4210 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3252 (($ $ $) 72)) (-3890 (((-110) $ $) 73)) (-4058 (((-110) $ (-721)) 8)) (-1245 (($ (-598 |#1|)) 68) (($) 67)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 62)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 64)) (-3280 (((-110) $ (-721)) 9)) (-4103 ((|#1| $) 78)) (-3611 (($ $ $) 81)) (-3508 (($ $ $) 80)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1241 ((|#1| $) 79)) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22)) (-1301 (($ $ $) 69)) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40) (($ |#1| $ (-721)) 63)) (-2529 (((-1049) $) 21)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 61)) (-1786 (($ $ |#1|) 71) (($ $ $) 70)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18)) (-3445 (($ (-598 |#1|)) 66) (($) 65)) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-780 |#1|) (-133) (-797)) (T -780)) -((-4103 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-797))))) -(-13 (-687 |t#1|) (-911 |t#1|) (-10 -8 (-15 -4103 (|t#1| $)))) -(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-645 |#1|) . T) ((-687 |#1|) . T) ((-911 |#1|) . T) ((-1028 |#1|) . T) ((-1030) . T) ((-1138) . T)) -((-2576 (((-1189) (-1049) (-1049)) 47)) (-2156 (((-1189) (-771) (-51)) 44)) (-3585 (((-51) (-771)) 16))) -(((-781) (-10 -7 (-15 -3585 ((-51) (-771))) (-15 -2156 ((-1189) (-771) (-51))) (-15 -2576 ((-1189) (-1049) (-1049))))) (T -781)) -((-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-1189)) (-5 *1 (-781)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-51)) (-5 *2 (-1189)) (-5 *1 (-781)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-51)) (-5 *1 (-781))))) -(-10 -7 (-15 -3585 ((-51) (-771))) (-15 -2156 ((-1189) (-771) (-51))) (-15 -2576 ((-1189) (-1049) (-1049)))) -((-3261 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|) (-783 |#2|)) 12) (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13))) -(((-782 |#1| |#2|) (-10 -7 (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))) (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|) (-783 |#2|)))) (-1030) (-1030)) (T -782)) -((-3261 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-783 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-782 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))) -(-10 -7 (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))) (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|) (-783 |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL (|has| |#1| (-21)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3459 (((-531) $) NIL (|has| |#1| (-795)))) (-4082 (($) NIL (|has| |#1| (-21)) CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 15)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 9)) (-3622 (((-3 $ "failed") $) 40 (|has| |#1| (-795)))) (-1609 (((-3 (-388 (-531)) "failed") $) 49 (|has| |#1| (-516)))) (-3004 (((-110) $) 43 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 46 (|has| |#1| (-516)))) (-1599 (((-110) $) NIL (|has| |#1| (-795)))) (-3481 (((-110) $) NIL (|has| |#1| (-795)))) (-2985 (((-110) $) NIL (|has| |#1| (-795)))) (-4103 (($ $ $) NIL (|has| |#1| (-795)))) (-1241 (($ $ $) NIL (|has| |#1| (-795)))) (-1521 (((-1085) $) NIL)) (-1893 (($) 13)) (-3285 (((-110) $) 12)) (-2529 (((-1049) $) NIL)) (-2311 (((-110) $) 11)) (-2265 (((-806) $) 18) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 8) (($ (-531)) NIL (-1435 (|has| |#1| (-795)) (|has| |#1| (-977 (-531)))))) (-2284 (((-721)) 34 (|has| |#1| (-795)))) (-1620 (($ $) NIL (|has| |#1| (-795)))) (-3035 (($) 22 (|has| |#1| (-21)) CONST)) (-3050 (($) 31 (|has| |#1| (-795)) CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2174 (((-110) $ $) 42 (|has| |#1| (-795)))) (-2250 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2237 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-864)) NIL (|has| |#1| (-795))) (($ $ (-721)) NIL (|has| |#1| (-795)))) (* (($ $ $) 37 (|has| |#1| (-795))) (($ (-531) $) 25 (|has| |#1| (-21))) (($ (-721) $) NIL (|has| |#1| (-21))) (($ (-864) $) NIL (|has| |#1| (-21))))) -(((-783 |#1|) (-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1893 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) (-1030)) (T -783)) -((-1893 (*1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1030)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-1609 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030))))) -(-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1893 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-112) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-112) $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-4168 ((|#1| (-112) |#1|) NIL)) (-3481 (((-110) $) NIL)) (-1611 (($ |#1| (-342 (-112))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3087 (($ $ (-1 |#1| |#1|)) NIL)) (-2678 (($ $ (-1 |#1| |#1|)) NIL)) (-1785 ((|#1| $ |#1|) NIL)) (-2650 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2661 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ (-112) (-531)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))))) -(((-784 |#1|) (-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#1| |#1|))) (-15 -3087 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#1| (-112) |#1|)) (-15 -1611 ($ |#1| (-342 (-112)))))) (-986)) (T -784)) -((-2661 (*1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) (-2661 (*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) (-2650 (*1 *2 *2) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3)))) (-3087 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-5 *1 (-784 *4)) (-4 *4 (-986)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-784 *3)) (-4 *3 (-986)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-784 *2)) (-4 *2 (-986)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-5 *1 (-784 *2)) (-4 *2 (-986))))) -(-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#1| |#1|))) (-15 -3087 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#1| (-112) |#1|)) (-15 -1611 ($ |#1| (-342 (-112)))))) -((-2746 (((-198 (-480)) (-1085)) 9))) -(((-785) (-10 -7 (-15 -2746 ((-198 (-480)) (-1085))))) (T -785)) -((-2746 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-198 (-480))) (-5 *1 (-785))))) -(-10 -7 (-15 -2746 ((-198 (-480)) (-1085)))) -((-2247 (((-110) $ $) 7)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 14) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 13)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 16) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 15)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-786) (-133)) (T -786)) -((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-786)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-786)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-2922 (*1 *2 *3) (-12 (-4 *1 (-786)) (-5 *3 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-975)))) (-2922 (*1 *2 *3) (-12 (-4 *1 (-786)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *2 (-975))))) -(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2922 ((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2922 ((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-4010 (((-975) (-598 (-297 (-360))) (-598 (-360))) 147) (((-975) (-297 (-360)) (-598 (-360))) 145) (((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-790 (-360)))) 144) (((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-297 (-360))) (-598 (-790 (-360)))) 143) (((-975) (-788)) 117) (((-975) (-788) (-998)) 116)) (-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788) (-998)) 82) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788)) 84)) (-2689 (((-975) (-598 (-297 (-360))) (-598 (-360))) 148) (((-975) (-788)) 133))) -(((-787) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788) (-998))) (-15 -4010 ((-975) (-788) (-998))) (-15 -4010 ((-975) (-788))) (-15 -2689 ((-975) (-788))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-297 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)))) (-15 -4010 ((-975) (-598 (-297 (-360))) (-598 (-360)))) (-15 -2689 ((-975) (-598 (-297 (-360))) (-598 (-360)))))) (T -787)) -((-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) (-5 *5 (-598 (-790 (-360)))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-598 (-360))) (-5 *5 (-598 (-790 (-360)))) (-5 *6 (-598 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-787)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-787)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-787))))) -(-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788) (-998))) (-15 -4010 ((-975) (-788) (-998))) (-15 -4010 ((-975) (-788))) (-15 -2689 ((-975) (-788))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-297 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)))) (-15 -4010 ((-975) (-598 (-297 (-360))) (-598 (-360)))) (-15 -2689 ((-975) (-598 (-297 (-360))) (-598 (-360))))) -((-2247 (((-110) $ $) NIL)) (-2523 (((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) $) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 14) (($ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) 18)) (-2148 (((-110) $ $) NIL))) -(((-788) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -2265 ($ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2265 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) $))))) (T -788)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-788)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *1 (-788)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *1 (-788)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) (-5 *1 (-788)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) (-5 *1 (-788))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -2265 ($ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2265 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) $)))) -((-3261 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|) (-790 |#2|) (-790 |#2|)) 13) (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 14))) -(((-789 |#1| |#2|) (-10 -7 (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|))) (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|) (-790 |#2|) (-790 |#2|)))) (-1030) (-1030)) (T -789)) -((-3261 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-790 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-789 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))) -(-10 -7 (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|))) (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|) (-790 |#2|) (-790 |#2|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL (|has| |#1| (-21)))) (-2495 (((-1049) $) 24)) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3459 (((-531) $) NIL (|has| |#1| (-795)))) (-4082 (($) NIL (|has| |#1| (-21)) CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 16)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 9)) (-3622 (((-3 $ "failed") $) 47 (|has| |#1| (-795)))) (-1609 (((-3 (-388 (-531)) "failed") $) 54 (|has| |#1| (-516)))) (-3004 (((-110) $) 49 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 52 (|has| |#1| (-516)))) (-1599 (((-110) $) NIL (|has| |#1| (-795)))) (-1447 (($) 13)) (-3481 (((-110) $) NIL (|has| |#1| (-795)))) (-2985 (((-110) $) NIL (|has| |#1| (-795)))) (-1458 (($) 14)) (-4103 (($ $ $) NIL (|has| |#1| (-795)))) (-1241 (($ $ $) NIL (|has| |#1| (-795)))) (-1521 (((-1085) $) NIL)) (-3285 (((-110) $) 12)) (-2529 (((-1049) $) NIL)) (-2311 (((-110) $) 11)) (-2265 (((-806) $) 22) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 8) (($ (-531)) NIL (-1435 (|has| |#1| (-795)) (|has| |#1| (-977 (-531)))))) (-2284 (((-721)) 41 (|has| |#1| (-795)))) (-1620 (($ $) NIL (|has| |#1| (-795)))) (-3035 (($) 29 (|has| |#1| (-21)) CONST)) (-3050 (($) 38 (|has| |#1| (-795)) CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 27)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2174 (((-110) $ $) 48 (|has| |#1| (-795)))) (-2250 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2237 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-864)) NIL (|has| |#1| (-795))) (($ $ (-721)) NIL (|has| |#1| (-795)))) (* (($ $ $) 44 (|has| |#1| (-795))) (($ (-531) $) 32 (|has| |#1| (-21))) (($ (-721) $) NIL (|has| |#1| (-21))) (($ (-864) $) NIL (|has| |#1| (-21))))) -(((-790 |#1|) (-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1447 ($)) (-15 -1458 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (-15 -2495 ((-1049) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) (-1030)) (T -790)) -((-1447 (*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030)))) (-1458 (*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-1609 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030))))) -(-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1447 ($)) (-15 -1458 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (-15 -2495 ((-1049) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) -((-2247 (((-110) $ $) 7)) (-3006 (((-721)) 20)) (-1381 (($) 23)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-2211 (((-864) $) 22)) (-1521 (((-1085) $) 9)) (-1889 (($ (-864)) 21)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18))) -(((-791) (-133)) (T -791)) -NIL -(-13 (-797) (-349)) -(((-99) . T) ((-572 (-806)) . T) ((-349) . T) ((-797) . T) ((-1030) . T)) -((-2275 (((-110) (-1184 |#2|) (-1184 |#2|)) 17)) (-3916 (((-110) (-1184 |#2|) (-1184 |#2|)) 18)) (-1733 (((-110) (-1184 |#2|) (-1184 |#2|)) 14))) -(((-792 |#1| |#2|) (-10 -7 (-15 -1733 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -2275 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -3916 ((-110) (-1184 |#2|) (-1184 |#2|)))) (-721) (-742)) (T -792)) -((-3916 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))) (-2275 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))) (-1733 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) (-5 *1 (-792 *4 *5)) (-14 *4 (-721))))) -(-10 -7 (-15 -1733 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -2275 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -3916 ((-110) (-1184 |#2|) (-1184 |#2|)))) -((-2247 (((-110) $ $) 7)) (-4082 (($) 23 T CONST)) (-3622 (((-3 $ "failed") $) 26)) (-3481 (((-110) $) 24)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3050 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (** (($ $ (-864)) 21) (($ $ (-721)) 25)) (* (($ $ $) 20))) -(((-793) (-133)) (T -793)) -NIL -(-13 (-804) (-677)) -(((-99) . T) ((-572 (-806)) . T) ((-677) . T) ((-804) . T) ((-797) . T) ((-1042) . T) ((-1030) . T)) -((-3459 (((-531) $) 17)) (-1599 (((-110) $) 10)) (-2985 (((-110) $) 11)) (-1620 (($ $) 19))) -(((-794 |#1|) (-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -3459 ((-531) |#1|)) (-15 -2985 ((-110) |#1|)) (-15 -1599 ((-110) |#1|))) (-795)) (T -794)) -NIL -(-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -3459 ((-531) |#1|)) (-15 -2985 ((-110) |#1|)) (-15 -1599 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-2128 (((-3 $ "failed") $ $) 26)) (-3459 (((-531) $) 33)) (-4082 (($) 23 T CONST)) (-3622 (((-3 $ "failed") $) 38)) (-1599 (((-110) $) 35)) (-3481 (((-110) $) 40)) (-2985 (((-110) $) 34)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 43)) (-2284 (((-721)) 42)) (-1620 (($ $) 32)) (-3035 (($) 22 T CONST)) (-3050 (($) 41 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2250 (($ $ $) 28) (($ $) 27)) (-2237 (($ $ $) 20)) (** (($ $ (-721)) 39) (($ $ (-864)) 36)) (* (($ (-864) $) 21) (($ (-721) $) 25) (($ (-531) $) 29) (($ $ $) 37))) -(((-795) (-133)) (T -795)) -((-1599 (*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-531)))) (-1620 (*1 *1 *1) (-4 *1 (-795)))) -(-13 (-741) (-986) (-677) (-10 -8 (-15 -1599 ((-110) $)) (-15 -2985 ((-110) $)) (-15 -3459 ((-531) $)) (-15 -1620 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-797) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-4103 (($ $ $) 10)) (-1241 (($ $ $) 9)) (-2207 (((-110) $ $) 13)) (-2184 (((-110) $ $) 11)) (-2195 (((-110) $ $) 14))) -(((-796 |#1|) (-10 -8 (-15 -4103 (|#1| |#1| |#1|)) (-15 -1241 (|#1| |#1| |#1|)) (-15 -2195 ((-110) |#1| |#1|)) (-15 -2207 ((-110) |#1| |#1|)) (-15 -2184 ((-110) |#1| |#1|))) (-797)) (T -796)) -NIL -(-10 -8 (-15 -4103 (|#1| |#1| |#1|)) (-15 -1241 (|#1| |#1| |#1|)) (-15 -2195 ((-110) |#1| |#1|)) (-15 -2207 ((-110) |#1| |#1|)) (-15 -2184 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18))) -(((-797) (-133)) (T -797)) -((-2174 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-2184 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-2207 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-2195 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-1241 (*1 *1 *1 *1) (-4 *1 (-797))) (-4103 (*1 *1 *1 *1) (-4 *1 (-797)))) -(-13 (-1030) (-10 -8 (-15 -2174 ((-110) $ $)) (-15 -2184 ((-110) $ $)) (-15 -2207 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -1241 ($ $ $)) (-15 -4103 ($ $ $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2089 (($ $ $) 45)) (-2643 (($ $ $) 44)) (-1866 (($ $ $) 42)) (-3812 (($ $ $) 51)) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 46)) (-2470 (((-3 $ "failed") $ $) 49)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2226 (($ $) 35)) (-3215 (($ $ $) 39)) (-3351 (($ $ $) 38)) (-2321 (($ $ $) 47)) (-1884 (($ $ $) 53)) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 41)) (-3894 (((-3 $ "failed") $ $) 48)) (-3609 (((-3 $ "failed") $ |#2|) 28)) (-1767 ((|#2| $) 32)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ |#2|) 12)) (-2708 (((-598 |#2|) $) 18)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-798 |#1| |#2|) (-10 -8 (-15 -2321 (|#1| |#1| |#1|)) (-15 -3665 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3812 (|#1| |#1| |#1|)) (-15 -2470 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2643 (|#1| |#1| |#1|)) (-15 -1866 (|#1| |#1| |#1|)) (-15 -3460 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2265 ((-806) |#1|))) (-799 |#2|) (-986)) (T -798)) -NIL -(-10 -8 (-15 -2321 (|#1| |#1| |#1|)) (-15 -3665 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3812 (|#1| |#1| |#1|)) (-15 -2470 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2643 (|#1| |#1| |#1|)) (-15 -1866 (|#1| |#1| |#1|)) (-15 -3460 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2089 (($ $ $) 43 (|has| |#1| (-344)))) (-2643 (($ $ $) 44 (|has| |#1| (-344)))) (-1866 (($ $ $) 46 (|has| |#1| (-344)))) (-3812 (($ $ $) 41 (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 40 (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 45 (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) 72 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 70 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 67)) (-2523 (((-531) $) 73 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 71 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 66)) (-2500 (($ $) 62)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 53 (|has| |#1| (-432)))) (-3481 (((-110) $) 30)) (-2669 (($ |#1| (-721)) 60)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 56 (|has| |#1| (-523)))) (-3005 (((-721) $) 64)) (-3215 (($ $ $) 50 (|has| |#1| (-344)))) (-3351 (($ $ $) 51 (|has| |#1| (-344)))) (-2321 (($ $ $) 39 (|has| |#1| (-344)))) (-1884 (($ $ $) 48 (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 47 (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 52 (|has| |#1| (-344)))) (-2475 ((|#1| $) 63)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-523)))) (-2012 (((-721) $) 65)) (-1767 ((|#1| $) 54 (|has| |#1| (-432)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 69 (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 68)) (-2708 (((-598 |#1|) $) 59)) (-3188 ((|#1| $ (-721)) 61)) (-2284 (((-721)) 28)) (-2979 ((|#1| $ |#1| |#1|) 58)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-799 |#1|) (-133) (-986)) (T -799)) -((-2012 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-598 *3)))) (-2979 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-2517 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-2856 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432)))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432)))) (-1912 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-3351 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3215 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3894 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1884 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3460 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) (-4 *1 (-799 *3)))) (-1866 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-2932 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-2643 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-2089 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-2470 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3812 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3665 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) (-4 *1 (-799 *3)))) (-2321 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(-13 (-986) (-109 |t#1| |t#1|) (-392 |t#1|) (-10 -8 (-15 -2012 ((-721) $)) (-15 -3005 ((-721) $)) (-15 -2475 (|t#1| $)) (-15 -2500 ($ $)) (-15 -3188 (|t#1| $ (-721))) (-15 -2669 ($ |t#1| (-721))) (-15 -2708 ((-598 |t#1|) $)) (-15 -2979 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3609 ((-3 $ "failed") $ |t#1|)) (-15 -2517 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -2856 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -1767 (|t#1| $)) (-15 -2226 ($ $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -1912 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3351 ($ $ $)) (-15 -3215 ($ $ $)) (-15 -3894 ((-3 $ "failed") $ $)) (-15 -1884 ($ $ $)) (-15 -3460 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $)) (-15 -1866 ($ $ $)) (-15 -2932 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -2643 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -2470 ((-3 $ "failed") $ $)) (-15 -3812 ($ $ $)) (-15 -3665 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $)) (-15 -2321 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-392 |#1|) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3974 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-2932 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-344)))) (-2856 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-523)))) (-1912 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-344)))) (-2979 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31))) -(((-800 |#1| |#2|) (-10 -7 (-15 -3974 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2979 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-523)) (PROGN (-15 -2517 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2856 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1912 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2932 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-986) (-799 |#1|)) (T -800)) -((-2932 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-1912 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-2856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-2517 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-2979 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-986)) (-5 *1 (-800 *2 *3)) (-4 *3 (-799 *2)))) (-3974 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-986)) (-5 *1 (-800 *5 *2)) (-4 *2 (-799 *5))))) -(-10 -7 (-15 -3974 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2979 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-523)) (PROGN (-15 -2517 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2856 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1912 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2932 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 32 (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-1362 (((-806) $ (-806)) NIL)) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 28 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 26 (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 30 (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) 15)) (-3035 (($) NIL T CONST)) (-3050 (($) 20 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 19) (($ $ (-721)) 22)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-801 |#1| |#2| |#3|) (-13 (-799 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))))) (-986) (-96 |#1|) (-1 |#1| |#1|)) (T -801)) -((-1362 (*1 *2 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-801 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-799 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#2| (-344)))) (-2643 (($ $ $) NIL (|has| |#2| (-344)))) (-1866 (($ $ $) NIL (|has| |#2| (-344)))) (-3812 (($ $ $) NIL (|has| |#2| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#2| (-721)) 16)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#2| (-344)))) (-3351 (($ $ $) NIL (|has| |#2| (-344)))) (-2321 (($ $ $) NIL (|has| |#2| (-344)))) (-1884 (($ $ $) NIL (|has| |#2| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2012 (((-721) $) NIL)) (-1767 ((|#2| $) NIL (|has| |#2| (-432)))) (-2265 (((-806) $) 23) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) NIL) (($ (-1180 |#1|)) 18)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#2| $ |#2| |#2|) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) 13 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-802 |#1| |#2| |#3| |#4|) (-13 (-799 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))))) (-1102) (-986) (-96 |#2|) (-1 |#2| |#2|)) (T -802)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-802 *3 *4 *5 *6)) (-4 *4 (-986)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-799 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))))) -((-1941 ((|#1| (-721) |#1|) 35 (|has| |#1| (-37 (-388 (-531)))))) (-1234 ((|#1| (-721) (-721) |#1|) 27) ((|#1| (-721) |#1|) 20)) (-2612 ((|#1| (-721) |#1|) 31)) (-3376 ((|#1| (-721) |#1|) 29)) (-1554 ((|#1| (-721) |#1|) 28))) -(((-803 |#1|) (-10 -7 (-15 -1554 (|#1| (-721) |#1|)) (-15 -3376 (|#1| (-721) |#1|)) (-15 -2612 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1941 (|#1| (-721) |#1|)) |%noBranch|)) (-162)) (T -803)) -((-1941 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-162)))) (-1234 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-1234 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-1554 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162))))) -(-10 -7 (-15 -1554 (|#1| (-721) |#1|)) (-15 -3376 (|#1| (-721) |#1|)) (-15 -2612 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1941 (|#1| (-721) |#1|)) |%noBranch|)) -((-2247 (((-110) $ $) 7)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (** (($ $ (-864)) 21)) (* (($ $ $) 20))) -(((-804) (-133)) (T -804)) -NIL -(-13 (-797) (-1042)) -(((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3482 (((-531) $) 12)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 18) (($ (-531)) 11)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 8)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 9))) -(((-805) (-13 (-797) (-10 -8 (-15 -2265 ($ (-531))) (-15 -3482 ((-531) $))))) (T -805)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-805)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-805))))) -(-13 (-797) (-10 -8 (-15 -2265 ($ (-531))) (-15 -3482 ((-531) $)))) -((-2247 (((-110) $ $) NIL) (($ $ $) 77)) (-1395 (($ $ $) 115)) (-1463 (((-531) $) 30) (((-531)) 35)) (-2510 (($ (-531)) 44)) (-2406 (($ $ $) 45) (($ (-598 $)) 76)) (-3391 (($ $ (-598 $)) 74)) (-1621 (((-531) $) 33)) (-4040 (($ $ $) 63)) (-3539 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2288 (((-531) $) 32)) (-1250 (($ $ $) 62)) (-3149 (($ $) 105)) (-4016 (($ $ $) 119)) (-2817 (($ (-598 $)) 52)) (-2441 (($ $ (-598 $)) 69)) (-1699 (($ (-531) (-531)) 46)) (-3071 (($ $) 116) (($ $ $) 117)) (-3157 (($ $ (-531)) 40) (($ $) 43)) (-3650 (($ $ $) 89)) (-2413 (($ $ $) 122)) (-3651 (($ $) 106)) (-3630 (($ $ $) 90)) (-3239 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-4094 (((-1189) $) 8)) (-1658 (($ $) 109) (($ $ (-721)) 112)) (-3104 (($ $ $) 65)) (-3394 (($ $ $) 64)) (-3936 (($ $ (-598 $)) 100)) (-3480 (($ $ $) 104)) (-3764 (($ (-598 $)) 50)) (-1238 (($ $) 60) (($ (-598 $)) 61)) (-2328 (($ $ $) 113)) (-3763 (($ $) 107)) (-2093 (($ $ $) 118)) (-1362 (($ (-531)) 20) (($ (-1102)) 22) (($ (-1085)) 29) (($ (-208)) 24)) (-2726 (($ $ $) 93)) (-3745 (($ $) 94)) (-2944 (((-1189) (-1085)) 14)) (-2092 (($ (-1085)) 13)) (-2200 (($ (-598 (-598 $))) 49)) (-3144 (($ $ (-531)) 39) (($ $) 42)) (-1521 (((-1085) $) NIL)) (-3117 (($ $ $) 121)) (-4150 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3095 (((-110) $) 98)) (-3150 (($ $ (-598 $)) 102) (($ $ $ $) 103)) (-1856 (($ (-531)) 36)) (-4194 (((-531) $) 31) (((-531)) 34)) (-2074 (($ $ $) 37) (($ (-598 $)) 75)) (-2529 (((-1049) $) NIL)) (-3609 (($ $ $) 91)) (-3781 (($) 12)) (-1785 (($ $ (-598 $)) 99)) (-3225 (($ $) 108) (($ $ (-721)) 111)) (-3620 (($ $ $) 88)) (-3352 (($ $ (-721)) 127)) (-3049 (($ (-598 $)) 51)) (-2265 (((-806) $) 18)) (-3840 (($ $ (-531)) 38) (($ $) 41)) (-3802 (($ $) 58) (($ (-598 $)) 59)) (-3445 (($ $) 56) (($ (-598 $)) 57)) (-3504 (($ $) 114)) (-3897 (($ (-598 $)) 55)) (-2589 (($ $ $) 97)) (-3447 (($ $ $) 120)) (-3427 (($ $ $) 92)) (-3941 (($ $ $) 95) (($ $) 96)) (-2207 (($ $ $) 81)) (-2184 (($ $ $) 79)) (-2148 (((-110) $ $) 15) (($ $ $) 16)) (-2195 (($ $ $) 80)) (-2174 (($ $ $) 78)) (-2263 (($ $ $) 86)) (-2250 (($ $ $) 83) (($ $) 84)) (-2237 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-806) (-13 (-1030) (-10 -8 (-15 -4094 ((-1189) $)) (-15 -2092 ($ (-1085))) (-15 -2944 ((-1189) (-1085))) (-15 -1362 ($ (-531))) (-15 -1362 ($ (-1102))) (-15 -1362 ($ (-1085))) (-15 -1362 ($ (-208))) (-15 -3781 ($)) (-15 -1463 ((-531) $)) (-15 -4194 ((-531) $)) (-15 -1463 ((-531))) (-15 -4194 ((-531))) (-15 -2288 ((-531) $)) (-15 -1621 ((-531) $)) (-15 -1856 ($ (-531))) (-15 -2510 ($ (-531))) (-15 -1699 ($ (-531) (-531))) (-15 -3144 ($ $ (-531))) (-15 -3157 ($ $ (-531))) (-15 -3840 ($ $ (-531))) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -3840 ($ $)) (-15 -2074 ($ $ $)) (-15 -2406 ($ $ $)) (-15 -2074 ($ (-598 $))) (-15 -2406 ($ (-598 $))) (-15 -3936 ($ $ (-598 $))) (-15 -3150 ($ $ (-598 $))) (-15 -3150 ($ $ $ $)) (-15 -3480 ($ $ $)) (-15 -3095 ((-110) $)) (-15 -1785 ($ $ (-598 $))) (-15 -3149 ($ $)) (-15 -3117 ($ $ $)) (-15 -3504 ($ $)) (-15 -2200 ($ (-598 (-598 $)))) (-15 -1395 ($ $ $)) (-15 -3071 ($ $)) (-15 -3071 ($ $ $)) (-15 -2093 ($ $ $)) (-15 -4016 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -2413 ($ $ $)) (-15 -3352 ($ $ (-721))) (-15 -2589 ($ $ $)) (-15 -1250 ($ $ $)) (-15 -4040 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -2441 ($ $ (-598 $))) (-15 -3391 ($ $ (-598 $))) (-15 -3651 ($ $)) (-15 -3225 ($ $)) (-15 -3225 ($ $ (-721))) (-15 -1658 ($ $)) (-15 -1658 ($ $ (-721))) (-15 -3763 ($ $)) (-15 -2328 ($ $ $)) (-15 -3539 ($ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ $ $)) (-15 -3239 ($ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ $ $)) (-15 -4150 ($ $)) (-15 -4150 ($ $ $)) (-15 -4150 ($ $ $ $)) (-15 -3445 ($ $)) (-15 -3445 ($ (-598 $))) (-15 -3802 ($ $)) (-15 -3802 ($ (-598 $))) (-15 -1238 ($ $)) (-15 -1238 ($ (-598 $))) (-15 -3764 ($ (-598 $))) (-15 -3049 ($ (-598 $))) (-15 -2817 ($ (-598 $))) (-15 -3897 ($ (-598 $))) (-15 -2148 ($ $ $)) (-15 -2247 ($ $ $)) (-15 -2174 ($ $ $)) (-15 -2184 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2250 ($ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ $)) (-15 -3620 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3630 ($ $ $)) (-15 -3609 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3745 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ $))))) (T -806)) -((-4094 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-806)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-806)))) (-3781 (*1 *1) (-5 *1 (-806))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1463 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-4194 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1856 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-2510 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1699 (*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3144 (*1 *1 *1) (-5 *1 (-806))) (-3157 (*1 *1 *1) (-5 *1 (-806))) (-3840 (*1 *1 *1) (-5 *1 (-806))) (-2074 (*1 *1 *1 *1) (-5 *1 (-806))) (-2406 (*1 *1 *1 *1) (-5 *1 (-806))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3150 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3150 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-3480 (*1 *1 *1 *1) (-5 *1 (-806))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-806)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3149 (*1 *1 *1) (-5 *1 (-806))) (-3117 (*1 *1 *1 *1) (-5 *1 (-806))) (-3504 (*1 *1 *1) (-5 *1 (-806))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-806)))) (-1395 (*1 *1 *1 *1) (-5 *1 (-806))) (-3071 (*1 *1 *1) (-5 *1 (-806))) (-3071 (*1 *1 *1 *1) (-5 *1 (-806))) (-2093 (*1 *1 *1 *1) (-5 *1 (-806))) (-4016 (*1 *1 *1 *1) (-5 *1 (-806))) (-3447 (*1 *1 *1 *1) (-5 *1 (-806))) (-2413 (*1 *1 *1 *1) (-5 *1 (-806))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) (-2589 (*1 *1 *1 *1) (-5 *1 (-806))) (-1250 (*1 *1 *1 *1) (-5 *1 (-806))) (-4040 (*1 *1 *1 *1) (-5 *1 (-806))) (-3394 (*1 *1 *1 *1) (-5 *1 (-806))) (-3104 (*1 *1 *1 *1) (-5 *1 (-806))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3651 (*1 *1 *1) (-5 *1 (-806))) (-3225 (*1 *1 *1) (-5 *1 (-806))) (-3225 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) (-1658 (*1 *1 *1) (-5 *1 (-806))) (-1658 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) (-3763 (*1 *1 *1) (-5 *1 (-806))) (-2328 (*1 *1 *1 *1) (-5 *1 (-806))) (-3539 (*1 *1 *1) (-5 *1 (-806))) (-3539 (*1 *1 *1 *1) (-5 *1 (-806))) (-3539 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-3239 (*1 *1 *1) (-5 *1 (-806))) (-3239 (*1 *1 *1 *1) (-5 *1 (-806))) (-3239 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-4150 (*1 *1 *1) (-5 *1 (-806))) (-4150 (*1 *1 *1 *1) (-5 *1 (-806))) (-4150 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-3445 (*1 *1 *1) (-5 *1 (-806))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3802 (*1 *1 *1) (-5 *1 (-806))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-1238 (*1 *1 *1) (-5 *1 (-806))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3049 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-2148 (*1 *1 *1 *1) (-5 *1 (-806))) (-2247 (*1 *1 *1 *1) (-5 *1 (-806))) (-2174 (*1 *1 *1 *1) (-5 *1 (-806))) (-2184 (*1 *1 *1 *1) (-5 *1 (-806))) (-2195 (*1 *1 *1 *1) (-5 *1 (-806))) (-2207 (*1 *1 *1 *1) (-5 *1 (-806))) (-2237 (*1 *1 *1 *1) (-5 *1 (-806))) (-2250 (*1 *1 *1 *1) (-5 *1 (-806))) (-2250 (*1 *1 *1) (-5 *1 (-806))) (* (*1 *1 *1 *1) (-5 *1 (-806))) (-2263 (*1 *1 *1 *1) (-5 *1 (-806))) (** (*1 *1 *1 *1) (-5 *1 (-806))) (-3620 (*1 *1 *1 *1) (-5 *1 (-806))) (-3650 (*1 *1 *1 *1) (-5 *1 (-806))) (-3630 (*1 *1 *1 *1) (-5 *1 (-806))) (-3609 (*1 *1 *1 *1) (-5 *1 (-806))) (-3427 (*1 *1 *1 *1) (-5 *1 (-806))) (-2726 (*1 *1 *1 *1) (-5 *1 (-806))) (-3745 (*1 *1 *1) (-5 *1 (-806))) (-3941 (*1 *1 *1 *1) (-5 *1 (-806))) (-3941 (*1 *1 *1) (-5 *1 (-806)))) -(-13 (-1030) (-10 -8 (-15 -4094 ((-1189) $)) (-15 -2092 ($ (-1085))) (-15 -2944 ((-1189) (-1085))) (-15 -1362 ($ (-531))) (-15 -1362 ($ (-1102))) (-15 -1362 ($ (-1085))) (-15 -1362 ($ (-208))) (-15 -3781 ($)) (-15 -1463 ((-531) $)) (-15 -4194 ((-531) $)) (-15 -1463 ((-531))) (-15 -4194 ((-531))) (-15 -2288 ((-531) $)) (-15 -1621 ((-531) $)) (-15 -1856 ($ (-531))) (-15 -2510 ($ (-531))) (-15 -1699 ($ (-531) (-531))) (-15 -3144 ($ $ (-531))) (-15 -3157 ($ $ (-531))) (-15 -3840 ($ $ (-531))) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -3840 ($ $)) (-15 -2074 ($ $ $)) (-15 -2406 ($ $ $)) (-15 -2074 ($ (-598 $))) (-15 -2406 ($ (-598 $))) (-15 -3936 ($ $ (-598 $))) (-15 -3150 ($ $ (-598 $))) (-15 -3150 ($ $ $ $)) (-15 -3480 ($ $ $)) (-15 -3095 ((-110) $)) (-15 -1785 ($ $ (-598 $))) (-15 -3149 ($ $)) (-15 -3117 ($ $ $)) (-15 -3504 ($ $)) (-15 -2200 ($ (-598 (-598 $)))) (-15 -1395 ($ $ $)) (-15 -3071 ($ $)) (-15 -3071 ($ $ $)) (-15 -2093 ($ $ $)) (-15 -4016 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -2413 ($ $ $)) (-15 -3352 ($ $ (-721))) (-15 -2589 ($ $ $)) (-15 -1250 ($ $ $)) (-15 -4040 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -2441 ($ $ (-598 $))) (-15 -3391 ($ $ (-598 $))) (-15 -3651 ($ $)) (-15 -3225 ($ $)) (-15 -3225 ($ $ (-721))) (-15 -1658 ($ $)) (-15 -1658 ($ $ (-721))) (-15 -3763 ($ $)) (-15 -2328 ($ $ $)) (-15 -3539 ($ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ $ $)) (-15 -3239 ($ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ $ $)) (-15 -4150 ($ $)) (-15 -4150 ($ $ $)) (-15 -4150 ($ $ $ $)) (-15 -3445 ($ $)) (-15 -3445 ($ (-598 $))) (-15 -3802 ($ $)) (-15 -3802 ($ (-598 $))) (-15 -1238 ($ $)) (-15 -1238 ($ (-598 $))) (-15 -3764 ($ (-598 $))) (-15 -3049 ($ (-598 $))) (-15 -2817 ($ (-598 $))) (-15 -3897 ($ (-598 $))) (-15 -2148 ($ $ $)) (-15 -2247 ($ $ $)) (-15 -2174 ($ $ $)) (-15 -2184 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2250 ($ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ $)) (-15 -3620 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3630 ($ $ $)) (-15 -3609 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3745 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ $)))) -((-4135 (((-1189) (-598 (-51))) 24)) (-2131 (((-1189) (-1085) (-806)) 14) (((-1189) (-806)) 9) (((-1189) (-1085)) 11))) -(((-807) (-10 -7 (-15 -2131 ((-1189) (-1085))) (-15 -2131 ((-1189) (-806))) (-15 -2131 ((-1189) (-1085) (-806))) (-15 -4135 ((-1189) (-598 (-51)))))) (T -807)) -((-4135 (*1 *2 *3) (-12 (-5 *3 (-598 (-51))) (-5 *2 (-1189)) (-5 *1 (-807)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-807)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-807)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-807))))) -(-10 -7 (-15 -2131 ((-1189) (-1085))) (-15 -2131 ((-1189) (-806))) (-15 -2131 ((-1189) (-1085) (-806))) (-15 -4135 ((-1189) (-598 (-51))))) -((-2247 (((-110) $ $) NIL)) (-3524 (((-3 $ "failed") (-1102)) 33)) (-3006 (((-721)) 31)) (-1381 (($) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2211 (((-864) $) 29)) (-1521 (((-1085) $) 39)) (-1889 (($ (-864)) 28)) (-2529 (((-1049) $) NIL)) (-3318 (((-1102) $) 13) (((-507) $) 19) (((-835 (-360)) $) 26) (((-835 (-531)) $) 22)) (-2265 (((-806) $) 16)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 36)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 35))) -(((-808 |#1|) (-13 (-791) (-573 (-1102)) (-573 (-507)) (-573 (-835 (-360))) (-573 (-835 (-531))) (-10 -8 (-15 -3524 ((-3 $ "failed") (-1102))))) (-598 (-1102))) (T -808)) -((-3524 (*1 *1 *2) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-808 *3)) (-14 *3 (-598 *2))))) -(-13 (-791) (-573 (-1102)) (-573 (-507)) (-573 (-835 (-360))) (-573 (-835 (-531))) (-10 -8 (-15 -3524 ((-3 $ "failed") (-1102))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (((-895 |#1|) $) NIL) (($ (-895 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-2284 (((-721)) NIL)) (-3575 (((-1189) (-721)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))))) -(((-809 |#1| |#2| |#3| |#4|) (-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 ((-895 |#1|) $)) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3575 ((-1189) (-721))))) (-986) (-598 (-1102)) (-598 (-721)) (-721)) (T -809)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-809 *3 *4 *5 *6)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-809 *3 *4 *5 *6)) (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721)))) (-2263 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-809 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-721))) (-14 *5 (-721)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-809 *4 *5 *6 *7)) (-4 *4 (-986)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 *3)) (-14 *7 *3)))) -(-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 ((-895 |#1|) $)) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3575 ((-1189) (-721))))) -((-2157 (((-3 (-163 |#3|) "failed") (-721) (-721) |#2| |#2|) 31)) (-1462 (((-3 (-388 |#3|) "failed") (-721) (-721) |#2| |#2|) 24))) -(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-3 (-388 |#3|) "failed") (-721) (-721) |#2| |#2|)) (-15 -2157 ((-3 (-163 |#3|) "failed") (-721) (-721) |#2| |#2|))) (-344) (-1175 |#1|) (-1160 |#1|)) (T -810)) -((-2157 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-163 *6)) (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5)))) (-1462 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-388 *6)) (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5))))) -(-10 -7 (-15 -1462 ((-3 (-388 |#3|) "failed") (-721) (-721) |#2| |#2|)) (-15 -2157 ((-3 (-163 |#3|) "failed") (-721) (-721) |#2| |#2|))) -((-1462 (((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|)) 28) (((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) 26))) -(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|)))) (-344) (-1102) |#1|) (T -811)) -((-1462 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5))) (-5 *1 (-811 *5 *6 *7)))) (-1462 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5))) (-5 *1 (-811 *5 *6 *7))))) -(-10 -7 (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $ (-531)) 60)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3071 (($ (-1098 (-531)) (-531)) 59)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3649 (($ $) 62)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3617 (((-721) $) 67)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-1406 (((-531)) 64)) (-3045 (((-531) $) 63)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1846 (($ $ (-531)) 66)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2890 (((-1083 (-531)) $) 68)) (-3437 (($ $) 65)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-4148 (((-531) $ (-531)) 61)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-812 |#1|) (-133) (-531)) (T -812)) -((-2890 (*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-1083 (-531))))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-721)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3437 (*1 *1 *1) (-4 *1 (-812 *2))) (-1406 (*1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3649 (*1 *1 *1) (-4 *1 (-812 *2))) (-4148 (*1 *2 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-2563 (*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *3 (-531)) (-4 *1 (-812 *4))))) -(-13 (-289) (-140) (-10 -8 (-15 -2890 ((-1083 (-531)) $)) (-15 -3617 ((-721) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $)) (-15 -1406 ((-531))) (-15 -3045 ((-531) $)) (-15 -3649 ($ $)) (-15 -4148 ((-531) $ (-531))) (-15 -2563 ($ $ (-531))) (-15 -3071 ($ (-1098 (-531)) (-531))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $ (-531)) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3071 (($ (-1098 (-531)) (-531)) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3649 (($ $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3617 (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 (((-531)) NIL)) (-3045 (((-531) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1846 (($ $ (-531)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-1083 (-531)) $) NIL)) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-4148 (((-531) $ (-531)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL))) -(((-813 |#1|) (-812 |#1|) (-531)) (T -813)) -NIL -(-812 |#1|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-813 |#1|) $) NIL (|has| (-813 |#1|) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-813 |#1|) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-813 |#1|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-813 |#1|) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-813 |#1|) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-813 |#1|) (-977 (-531))))) (-2523 (((-813 |#1|) $) NIL) (((-1102) $) NIL (|has| (-813 |#1|) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-813 |#1|) (-977 (-531)))) (((-531) $) NIL (|has| (-813 |#1|) (-977 (-531))))) (-2581 (($ $) NIL) (($ (-531) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-813 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-813 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-813 |#1|))) (|:| |vec| (-1184 (-813 |#1|)))) (-639 $) (-1184 $)) NIL) (((-639 (-813 |#1|)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-813 |#1|) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-813 |#1|) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-813 |#1|) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-813 |#1|) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-813 |#1|) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-813 |#1|) (-1078)))) (-2985 (((-110) $) NIL (|has| (-813 |#1|) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-813 |#1|) (-797)))) (-1241 (($ $ $) NIL (|has| (-813 |#1|) (-797)))) (-3261 (($ (-1 (-813 |#1|) (-813 |#1|)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-813 |#1|) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-813 |#1|) (-289)))) (-2943 (((-813 |#1|) $) NIL (|has| (-813 |#1|) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-813 |#1|)) (-598 (-813 |#1|))) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-813 |#1|) (-813 |#1|)) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-276 (-813 |#1|))) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-598 (-276 (-813 |#1|)))) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-598 (-1102)) (-598 (-813 |#1|))) NIL (|has| (-813 |#1|) (-492 (-1102) (-813 |#1|)))) (($ $ (-1102) (-813 |#1|)) NIL (|has| (-813 |#1|) (-492 (-1102) (-813 |#1|))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-813 |#1|)) NIL (|has| (-813 |#1|) (-268 (-813 |#1|) (-813 |#1|))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-813 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-813 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1 (-813 |#1|) (-813 |#1|)) (-721)) NIL) (($ $ (-1 (-813 |#1|) (-813 |#1|))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-813 |#1|) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-813 |#1|) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-813 |#1|) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-813 |#1|) (-573 (-507)))) (((-360) $) NIL (|has| (-813 |#1|) (-962))) (((-208) $) NIL (|has| (-813 |#1|) (-962)))) (-3591 (((-163 (-388 (-531))) $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-813 |#1|) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-813 |#1|)) NIL) (($ (-1102)) NIL (|has| (-813 |#1|) (-977 (-1102))))) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-813 |#1|) (-852))) (|has| (-813 |#1|) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-813 |#1|) $) NIL (|has| (-813 |#1|) (-516)))) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ (-531)) NIL)) (-1620 (($ $) NIL (|has| (-813 |#1|) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-813 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-813 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1 (-813 |#1|) (-813 |#1|)) (-721)) NIL) (($ $ (-1 (-813 |#1|) (-813 |#1|))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2263 (($ $ $) NIL) (($ (-813 |#1|) (-813 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-813 |#1|) $) NIL) (($ $ (-813 |#1|)) NIL))) -(((-814 |#1|) (-13 (-934 (-813 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) (-531)) (T -814)) -((-4148 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-814 *4)) (-14 *4 *3) (-5 *3 (-531)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-814 *3)) (-14 *3 (-531)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-14 *2 (-531)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-814 *3)) (-14 *3 *2)))) -(-13 (-934 (-813 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 ((|#2| $) NIL (|has| |#2| (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| |#2| (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| |#2| (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531))))) (-2523 ((|#2| $) NIL) (((-1102) $) NIL (|has| |#2| (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-531)))) (((-531) $) NIL (|has| |#2| (-977 (-531))))) (-2581 (($ $) 31) (($ (-531) $) 32)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 53)) (-1381 (($) NIL (|has| |#2| (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| |#2| (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| |#2| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| |#2| (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 ((|#2| $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#2| (-1078)))) (-2985 (((-110) $) NIL (|has| |#2| (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 49)) (-3788 (($) NIL (|has| |#2| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| |#2| (-289)))) (-2943 ((|#2| $) NIL (|has| |#2| (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 |#2|) (-598 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-291 |#2|))) (($ $ (-276 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ (-598 (-276 |#2|))) NIL (|has| |#2| (-291 |#2|))) (($ $ (-598 (-1102)) (-598 |#2|)) NIL (|has| |#2| (-492 (-1102) |#2|))) (($ $ (-1102) |#2|) NIL (|has| |#2| (-492 (-1102) |#2|)))) (-4100 (((-721) $) NIL)) (-1785 (($ $ |#2|) NIL (|has| |#2| (-268 |#2| |#2|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| |#2| (-216))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2842 (($ $) NIL)) (-1853 ((|#2| $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| |#2| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#2| (-573 (-835 (-360))))) (((-507) $) NIL (|has| |#2| (-573 (-507)))) (((-360) $) NIL (|has| |#2| (-962))) (((-208) $) NIL (|has| |#2| (-962)))) (-3591 (((-163 (-388 (-531))) $) 68)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) 87) (($ (-531)) 19) (($ $) NIL) (($ (-388 (-531))) 24) (($ |#2|) 18) (($ (-1102)) NIL (|has| |#2| (-977 (-1102))))) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-3831 ((|#2| $) NIL (|has| |#2| (-516)))) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ (-531)) 60)) (-1620 (($ $) NIL (|has| |#2| (-770)))) (-3035 (($) 14 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $) NIL (|has| |#2| (-216))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) 35)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2250 (($ $) 39) (($ $ $) 41)) (-2237 (($ $ $) 37)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 50)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 42) (($ $ $) 44) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-815 |#1| |#2|) (-13 (-934 |#2|) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) (-531) (-812 |#1|)) (T -815)) -((-4148 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-388 (-531))) (-5 *1 (-815 *4 *5)) (-5 *3 (-531)) (-4 *5 (-812 *4)))) (-3591 (*1 *2 *1) (-12 (-14 *3 (-531)) (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-815 *3 *4)) (-4 *4 (-812 *3)))) (-2581 (*1 *1 *1) (-12 (-14 *2 (-531)) (-5 *1 (-815 *2 *3)) (-4 *3 (-812 *2)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-14 *3 *2) (-5 *1 (-815 *3 *4)) (-4 *4 (-812 *3))))) -(-13 (-934 |#2|) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) -((-2247 (((-110) $ $) NIL (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) (-3297 ((|#2| $) 12)) (-1924 (($ |#1| |#2|) 9)) (-1521 (((-1085) $) NIL (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) (-2529 (((-1049) $) NIL (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#1| $) 11)) (-2274 (($ |#1| |#2|) 10)) (-2265 (((-806) $) 18 (-1435 (-12 (|has| |#1| (-572 (-806))) (|has| |#2| (-572 (-806)))) (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030)))))) (-2148 (((-110) $ $) 22 (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030)))))) -(((-816 |#1| |#2|) (-13 (-1138) (-10 -8 (IF (|has| |#1| (-572 (-806))) (IF (|has| |#2| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1030)) (IF (|has| |#2| (-1030)) (-6 (-1030)) |%noBranch|) |%noBranch|) (-15 -1924 ($ |#1| |#2|)) (-15 -2274 ($ |#1| |#2|)) (-15 -3046 (|#1| $)) (-15 -3297 (|#2| $)))) (-1138) (-1138)) (T -816)) -((-1924 (*1 *1 *2 *3) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138)))) (-3046 (*1 *2 *1) (-12 (-4 *2 (-1138)) (-5 *1 (-816 *2 *3)) (-4 *3 (-1138)))) (-3297 (*1 *2 *1) (-12 (-4 *2 (-1138)) (-5 *1 (-816 *3 *2)) (-4 *3 (-1138))))) -(-13 (-1138) (-10 -8 (IF (|has| |#1| (-572 (-806))) (IF (|has| |#2| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1030)) (IF (|has| |#2| (-1030)) (-6 (-1030)) |%noBranch|) |%noBranch|) (-15 -1924 ($ |#1| |#2|)) (-15 -2274 ($ |#1| |#2|)) (-15 -3046 (|#1| $)) (-15 -3297 (|#2| $)))) -((-2247 (((-110) $ $) NIL)) (-2059 (((-531) $) 15)) (-3151 (($ (-148)) 11)) (-2384 (($ (-148)) 12)) (-1521 (((-1085) $) NIL)) (-2697 (((-148) $) 13)) (-2529 (((-1049) $) NIL)) (-3169 (($ (-148)) 9)) (-2584 (($ (-148)) 8)) (-2265 (((-806) $) 23) (($ (-148)) 16)) (-1667 (($ (-148)) 10)) (-2148 (((-110) $ $) NIL))) -(((-817) (-13 (-1030) (-10 -8 (-15 -2584 ($ (-148))) (-15 -3169 ($ (-148))) (-15 -1667 ($ (-148))) (-15 -3151 ($ (-148))) (-15 -2384 ($ (-148))) (-15 -2697 ((-148) $)) (-15 -2059 ((-531) $)) (-15 -2265 ($ (-148)))))) (T -817)) -((-2584 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-2384 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-817)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))) -(-13 (-1030) (-10 -8 (-15 -2584 ($ (-148))) (-15 -3169 ($ (-148))) (-15 -1667 ($ (-148))) (-15 -3151 ($ (-148))) (-15 -2384 ($ (-148))) (-15 -2697 ((-148) $)) (-15 -2059 ((-531) $)) (-15 -2265 ($ (-148))))) -((-2265 (((-297 (-531)) (-388 (-895 (-47)))) 23) (((-297 (-531)) (-895 (-47))) 18))) -(((-818) (-10 -7 (-15 -2265 ((-297 (-531)) (-895 (-47)))) (-15 -2265 ((-297 (-531)) (-388 (-895 (-47))))))) (T -818)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 (-47)))) (-5 *2 (-297 (-531))) (-5 *1 (-818)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-895 (-47))) (-5 *2 (-297 (-531))) (-5 *1 (-818))))) -(-10 -7 (-15 -2265 ((-297 (-531)) (-895 (-47)))) (-15 -2265 ((-297 (-531)) (-388 (-895 (-47)))))) -((-3261 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14))) -(((-819 |#1| |#2|) (-10 -7 (-15 -3261 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1138) (-1138)) (T -819)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))) -(-10 -7 (-15 -3261 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) -((-2430 (($ |#1| |#1|) 8)) (-3810 ((|#1| $ (-721)) 10))) -(((-820 |#1|) (-10 -8 (-15 -2430 ($ |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) (-1138)) (T -820)) -((-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-820 *2)) (-4 *2 (-1138)))) (-2430 (*1 *1 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1138))))) -(-10 -8 (-15 -2430 ($ |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) -((-3261 (((-822 |#2|) (-1 |#2| |#1|) (-822 |#1|)) 14))) -(((-821 |#1| |#2|) (-10 -7 (-15 -3261 ((-822 |#2|) (-1 |#2| |#1|) (-822 |#1|)))) (-1138) (-1138)) (T -821)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-822 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-822 *6)) (-5 *1 (-821 *5 *6))))) -(-10 -7 (-15 -3261 ((-822 |#2|) (-1 |#2| |#1|) (-822 |#1|)))) -((-2430 (($ |#1| |#1| |#1|) 8)) (-3810 ((|#1| $ (-721)) 10))) -(((-822 |#1|) (-10 -8 (-15 -2430 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) (-1138)) (T -822)) -((-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-822 *2)) (-4 *2 (-1138)))) (-2430 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-1138))))) -(-10 -8 (-15 -2430 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) -((-3023 (((-598 (-1107)) (-1085)) 9))) -(((-823) (-10 -7 (-15 -3023 ((-598 (-1107)) (-1085))))) (T -823)) -((-3023 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-823))))) -(-10 -7 (-15 -3023 ((-598 (-1107)) (-1085)))) -((-3261 (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)) 14))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3261 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) (-1138) (-1138)) (T -824)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -3261 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) -((-1687 (($ |#1| |#1| |#1|) 8)) (-3810 ((|#1| $ (-721)) 10))) -(((-825 |#1|) (-10 -8 (-15 -1687 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) (-1138)) (T -825)) -((-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-825 *2)) (-4 *2 (-1138)))) (-1687 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1138))))) -(-10 -8 (-15 -1687 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) -((-3925 (((-1083 (-598 (-531))) (-598 (-531)) (-1083 (-598 (-531)))) 32)) (-2503 (((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531))) 28)) (-1500 (((-1083 (-598 (-531))) (-598 (-531))) 41) (((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531))) 40)) (-3334 (((-1083 (-598 (-531))) (-531)) 42)) (-2062 (((-1083 (-598 (-531))) (-531) (-531)) 22) (((-1083 (-598 (-531))) (-531)) 16) (((-1083 (-598 (-531))) (-531) (-531) (-531)) 12)) (-1243 (((-1083 (-598 (-531))) (-1083 (-598 (-531)))) 26)) (-4164 (((-598 (-531)) (-598 (-531))) 25))) -(((-826) (-10 -7 (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531))) (-15 -4164 ((-598 (-531)) (-598 (-531)))) (-15 -1243 ((-1083 (-598 (-531))) (-1083 (-598 (-531))))) (-15 -2503 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -3925 ((-1083 (-598 (-531))) (-598 (-531)) (-1083 (-598 (-531))))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)))) (-15 -3334 ((-1083 (-598 (-531))) (-531))))) (T -826)) -((-3334 (*1 *2 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-598 (-531))))) (-1500 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-598 (-531))))) (-3925 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *3 (-598 (-531))) (-5 *1 (-826)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-598 (-531))))) (-1243 (*1 *2 *2) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-826)))) (-2062 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) (-2062 (*1 *2 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) (-2062 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531))))) -(-10 -7 (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531))) (-15 -4164 ((-598 (-531)) (-598 (-531)))) (-15 -1243 ((-1083 (-598 (-531))) (-1083 (-598 (-531))))) (-15 -2503 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -3925 ((-1083 (-598 (-531))) (-598 (-531)) (-1083 (-598 (-531))))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)))) (-15 -3334 ((-1083 (-598 (-531))) (-531)))) -((-3318 (((-835 (-360)) $) 9 (|has| |#1| (-573 (-835 (-360))))) (((-835 (-531)) $) 8 (|has| |#1| (-573 (-835 (-531))))))) -(((-827 |#1|) (-133) (-1138)) (T -827)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-573 (-835 (-531)))) (-6 (-573 (-835 (-531)))) |%noBranch|) (IF (|has| |t#1| (-573 (-835 (-360)))) (-6 (-573 (-835 (-360)))) |%noBranch|))) -(((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531))))) -((-2247 (((-110) $ $) NIL)) (-3010 (($) 14)) (-4001 (($ (-832 |#1| |#2|) (-832 |#1| |#3|)) 27)) (-2355 (((-832 |#1| |#3|) $) 16)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2610 (((-110) $) 22)) (-4062 (($) 19)) (-2265 (((-806) $) 30)) (-2053 (((-832 |#1| |#2|) $) 15)) (-2148 (((-110) $ $) 25))) -(((-828 |#1| |#2| |#3|) (-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4001 ($ (-832 |#1| |#2|) (-832 |#1| |#3|))) (-15 -2053 ((-832 |#1| |#2|) $)) (-15 -2355 ((-832 |#1| |#3|) $)))) (-1030) (-1030) (-619 |#2|)) (T -828)) -((-2610 (*1 *2 *1) (-12 (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-828 *3 *4 *5)) (-4 *3 (-1030)) (-4 *5 (-619 *4)))) (-4062 (*1 *1) (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030)) (-4 *4 (-619 *3)))) (-3010 (*1 *1) (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030)) (-4 *4 (-619 *3)))) (-4001 (*1 *1 *2 *3) (-12 (-5 *2 (-832 *4 *5)) (-5 *3 (-832 *4 *6)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-619 *5)) (-5 *1 (-828 *4 *5 *6)))) (-2053 (*1 *2 *1) (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *4)) (-5 *1 (-828 *3 *4 *5)) (-4 *3 (-1030)) (-4 *5 (-619 *4)))) (-2355 (*1 *2 *1) (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *5)) (-5 *1 (-828 *3 *4 *5)) (-4 *3 (-1030)) (-4 *5 (-619 *4))))) -(-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4001 ($ (-832 |#1| |#2|) (-832 |#1| |#3|))) (-15 -2053 ((-832 |#1| |#2|) $)) (-15 -2355 ((-832 |#1| |#3|) $)))) -((-2247 (((-110) $ $) 7)) (-2792 (((-832 |#1| $) $ (-835 |#1|) (-832 |#1| $)) 13)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-829 |#1|) (-133) (-1030)) (T -829)) -((-2792 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-832 *4 *1)) (-5 *3 (-835 *4)) (-4 *1 (-829 *4)) (-4 *4 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -2792 ((-832 |t#1| $) $ (-835 |t#1|) (-832 |t#1| $))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-4247 (((-110) (-598 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-3513 (((-832 |#1| |#2|) |#2| |#3|) 43 (-12 (-3745 (|has| |#2| (-977 (-1102)))) (-3745 (|has| |#2| (-986))))) (((-598 (-276 (-895 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-986)) (-3745 (|has| |#2| (-977 (-1102)))))) (((-598 (-276 |#2|)) |#2| |#3|) 35 (|has| |#2| (-977 (-1102)))) (((-828 |#1| |#2| (-598 |#2|)) (-598 |#2|) |#3|) 21))) -(((-830 |#1| |#2| |#3|) (-10 -7 (-15 -4247 ((-110) |#2| |#3|)) (-15 -4247 ((-110) (-598 |#2|) |#3|)) (-15 -3513 ((-828 |#1| |#2| (-598 |#2|)) (-598 |#2|) |#3|)) (IF (|has| |#2| (-977 (-1102))) (-15 -3513 ((-598 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-986)) (-15 -3513 ((-598 (-276 (-895 |#2|))) |#2| |#3|)) (-15 -3513 ((-832 |#1| |#2|) |#2| |#3|))))) (-1030) (-829 |#1|) (-573 (-835 |#1|))) (T -830)) -((-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-832 *5 *3)) (-5 *1 (-830 *5 *3 *4)) (-3745 (-4 *3 (-977 (-1102)))) (-3745 (-4 *3 (-986))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 (-895 *3)))) (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-986)) (-3745 (-4 *3 (-977 (-1102)))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 *3))) (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-977 (-1102))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *6 (-829 *5)) (-5 *2 (-828 *5 *6 (-598 *6))) (-5 *1 (-830 *5 *6 *4)) (-5 *3 (-598 *6)) (-4 *4 (-573 (-835 *5))))) (-4247 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-4 *6 (-829 *5)) (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-830 *5 *6 *4)) (-4 *4 (-573 (-835 *5))))) (-4247 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5)))))) -(-10 -7 (-15 -4247 ((-110) |#2| |#3|)) (-15 -4247 ((-110) (-598 |#2|) |#3|)) (-15 -3513 ((-828 |#1| |#2| (-598 |#2|)) (-598 |#2|) |#3|)) (IF (|has| |#2| (-977 (-1102))) (-15 -3513 ((-598 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-986)) (-15 -3513 ((-598 (-276 (-895 |#2|))) |#2| |#3|)) (-15 -3513 ((-832 |#1| |#2|) |#2| |#3|))))) -((-3261 (((-832 |#1| |#3|) (-1 |#3| |#2|) (-832 |#1| |#2|)) 22))) -(((-831 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-832 |#1| |#3|) (-1 |#3| |#2|) (-832 |#1| |#2|)))) (-1030) (-1030) (-1030)) (T -831)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-832 *5 *6)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-832 *5 *7)) (-5 *1 (-831 *5 *6 *7))))) -(-10 -7 (-15 -3261 ((-832 |#1| |#3|) (-1 |#3| |#2|) (-832 |#1| |#2|)))) -((-2247 (((-110) $ $) NIL)) (-4210 (($ $ $) 39)) (-2867 (((-3 (-110) "failed") $ (-835 |#1|)) 36)) (-3010 (($) 12)) (-1521 (((-1085) $) NIL)) (-4087 (($ (-835 |#1|) |#2| $) 20)) (-2529 (((-1049) $) NIL)) (-1323 (((-3 |#2| "failed") (-835 |#1|) $) 50)) (-2610 (((-110) $) 15)) (-4062 (($) 13)) (-2625 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))) $) 25)) (-2274 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|)))) 23)) (-2265 (((-806) $) 44)) (-2306 (($ (-835 |#1|) |#2| $ |#2|) 48)) (-1765 (($ (-835 |#1|) |#2| $) 47)) (-2148 (((-110) $ $) 41))) -(((-832 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4210 ($ $ $)) (-15 -1323 ((-3 |#2| "failed") (-835 |#1|) $)) (-15 -1765 ($ (-835 |#1|) |#2| $)) (-15 -4087 ($ (-835 |#1|) |#2| $)) (-15 -2306 ($ (-835 |#1|) |#2| $ |#2|)) (-15 -2625 ((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))))) (-15 -2867 ((-3 (-110) "failed") $ (-835 |#1|))))) (-1030) (-1030)) (T -832)) -((-2610 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-4062 (*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-3010 (*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-4210 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1323 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-4 *2 (-1030)) (-5 *1 (-832 *4 *2)))) (-1765 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1030)))) (-4087 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1030)))) (-2306 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1030)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4)))) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4)))) (-4 *4 (-1030)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)))) (-2867 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-832 *4 *5)) (-4 *5 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4210 ($ $ $)) (-15 -1323 ((-3 |#2| "failed") (-835 |#1|) $)) (-15 -1765 ($ (-835 |#1|) |#2| $)) (-15 -4087 ($ (-835 |#1|) |#2| $)) (-15 -2306 ($ (-835 |#1|) |#2| $ |#2|)) (-15 -2625 ((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))))) (-15 -2867 ((-3 (-110) "failed") $ (-835 |#1|))))) -((-2583 (((-835 |#1|) (-835 |#1|) (-598 (-1102)) (-1 (-110) (-598 |#2|))) 32) (((-835 |#1|) (-835 |#1|) (-598 (-1 (-110) |#2|))) 43) (((-835 |#1|) (-835 |#1|) (-1 (-110) |#2|)) 35)) (-2867 (((-110) (-598 |#2|) (-835 |#1|)) 40) (((-110) |#2| (-835 |#1|)) 36)) (-3081 (((-1 (-110) |#2|) (-835 |#1|)) 16)) (-1967 (((-598 |#2|) (-835 |#1|)) 24)) (-3627 (((-835 |#1|) (-835 |#1|) |#2|) 20))) -(((-833 |#1| |#2|) (-10 -7 (-15 -2583 ((-835 |#1|) (-835 |#1|) (-1 (-110) |#2|))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1 (-110) |#2|)))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1102)) (-1 (-110) (-598 |#2|)))) (-15 -3081 ((-1 (-110) |#2|) (-835 |#1|))) (-15 -2867 ((-110) |#2| (-835 |#1|))) (-15 -2867 ((-110) (-598 |#2|) (-835 |#1|))) (-15 -3627 ((-835 |#1|) (-835 |#1|) |#2|)) (-15 -1967 ((-598 |#2|) (-835 |#1|)))) (-1030) (-1138)) (T -833)) -((-1967 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-598 *5)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1138)))) (-3627 (*1 *2 *2 *3) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1138)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *2 (-110)) (-5 *1 (-833 *5 *6)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-833 *5 *3)) (-4 *3 (-1138)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1138)))) (-2583 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-835 *5)) (-5 *3 (-598 (-1102))) (-5 *4 (-1 (-110) (-598 *6))) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *1 (-833 *5 *6)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *2 (-835 *4)) (-5 *3 (-598 (-1 (-110) *5))) (-4 *4 (-1030)) (-4 *5 (-1138)) (-5 *1 (-833 *4 *5)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *2 (-835 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1030)) (-4 *5 (-1138)) (-5 *1 (-833 *4 *5))))) -(-10 -7 (-15 -2583 ((-835 |#1|) (-835 |#1|) (-1 (-110) |#2|))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1 (-110) |#2|)))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1102)) (-1 (-110) (-598 |#2|)))) (-15 -3081 ((-1 (-110) |#2|) (-835 |#1|))) (-15 -2867 ((-110) |#2| (-835 |#1|))) (-15 -2867 ((-110) (-598 |#2|) (-835 |#1|))) (-15 -3627 ((-835 |#1|) (-835 |#1|) |#2|)) (-15 -1967 ((-598 |#2|) (-835 |#1|)))) -((-3261 (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)) 19))) -(((-834 |#1| |#2|) (-10 -7 (-15 -3261 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) (-1030) (-1030)) (T -834)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6))))) -(-10 -7 (-15 -3261 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) -((-2247 (((-110) $ $) NIL)) (-2084 (($ $ (-598 (-51))) 64)) (-2695 (((-598 $) $) 118)) (-3550 (((-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))) $) 24)) (-1660 (((-110) $) 30)) (-2110 (($ $ (-598 (-1102)) (-51)) 25)) (-2818 (($ $ (-598 (-51))) 63)) (-3154 (((-3 |#1| "failed") $) 61) (((-3 (-1102) "failed") $) 140)) (-2523 ((|#1| $) 58) (((-1102) $) NIL)) (-3305 (($ $) 108)) (-1937 (((-110) $) 47)) (-4033 (((-598 (-51)) $) 45)) (-4218 (($ (-1102) (-110) (-110) (-110)) 65)) (-3643 (((-3 (-598 $) "failed") (-598 $)) 72)) (-2189 (((-110) $) 50)) (-4085 (((-110) $) 49)) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) 36)) (-4146 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 $)) "failed") $) 83)) (-2077 (((-3 (-598 $) "failed") $) 33)) (-2846 (((-3 (-598 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 $))) "failed") $) 95)) (-1783 (((-3 (-598 $) "failed") $) 37)) (-3448 (((-3 (-2 (|:| |val| $) (|:| -1790 (-721))) "failed") $) 40)) (-1896 (((-110) $) 29)) (-2529 (((-1049) $) NIL)) (-1900 (((-110) $) 21)) (-3761 (((-110) $) 46)) (-4243 (((-598 (-51)) $) 111)) (-4177 (((-110) $) 48)) (-1785 (($ (-112) (-598 $)) 92)) (-1216 (((-721) $) 28)) (-2480 (($ $) 62)) (-3318 (($ (-598 $)) 59)) (-3012 (((-110) $) 26)) (-2265 (((-806) $) 53) (($ |#1|) 18) (($ (-1102)) 66)) (-3627 (($ $ (-51)) 110)) (-3035 (($) 91 T CONST)) (-3050 (($) 73 T CONST)) (-2148 (((-110) $ $) 79)) (-2263 (($ $ $) 100)) (-2237 (($ $ $) 104)) (** (($ $ (-721)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-835 |#1|) (-13 (-1030) (-977 |#1|) (-977 (-1102)) (-10 -8 (-15 0 ($) -2651) (-15 1 ($) -2651) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -2846 ((-3 (-598 $) "failed") $ (-112))) (-15 -2846 ((-3 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 $))) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |val| $) (|:| -1790 (-721))) "failed") $)) (-15 -4146 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1783 ((-3 (-598 $) "failed") $)) (-15 -3058 ((-3 (-2 (|:| |val| $) (|:| -1790 $)) "failed") $)) (-15 -1785 ($ (-112) (-598 $))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ $)) (-15 -2263 ($ $ $)) (-15 -1216 ((-721) $)) (-15 -3318 ($ (-598 $))) (-15 -2480 ($ $)) (-15 -1896 ((-110) $)) (-15 -1937 ((-110) $)) (-15 -1660 ((-110) $)) (-15 -3012 ((-110) $)) (-15 -4177 ((-110) $)) (-15 -4085 ((-110) $)) (-15 -2189 ((-110) $)) (-15 -3761 ((-110) $)) (-15 -4033 ((-598 (-51)) $)) (-15 -2818 ($ $ (-598 (-51)))) (-15 -2084 ($ $ (-598 (-51)))) (-15 -4218 ($ (-1102) (-110) (-110) (-110))) (-15 -2110 ($ $ (-598 (-1102)) (-51))) (-15 -3550 ((-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))) $)) (-15 -1900 ((-110) $)) (-15 -3305 ($ $)) (-15 -3627 ($ $ (-51))) (-15 -4243 ((-598 (-51)) $)) (-15 -2695 ((-598 $) $)) (-15 -3643 ((-3 (-598 $) "failed") (-598 $))))) (-1030)) (T -835)) -((-3035 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-3050 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-2077 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2846 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-835 *4))) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-2846 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 (-835 *3))))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3448 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-721)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4146 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-835 *3)) (|:| |den| (-835 *3)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3058 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-835 *3)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 (-835 *4))) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-2237 (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-2263 (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-1216 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4218 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-110)) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-2110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-51)) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3305 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3643 (*1 *2 *2) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(-13 (-1030) (-977 |#1|) (-977 (-1102)) (-10 -8 (-15 (-3035) ($) -2651) (-15 (-3050) ($) -2651) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -2846 ((-3 (-598 $) "failed") $ (-112))) (-15 -2846 ((-3 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 $))) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |val| $) (|:| -1790 (-721))) "failed") $)) (-15 -4146 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1783 ((-3 (-598 $) "failed") $)) (-15 -3058 ((-3 (-2 (|:| |val| $) (|:| -1790 $)) "failed") $)) (-15 -1785 ($ (-112) (-598 $))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ $)) (-15 -2263 ($ $ $)) (-15 -1216 ((-721) $)) (-15 -3318 ($ (-598 $))) (-15 -2480 ($ $)) (-15 -1896 ((-110) $)) (-15 -1937 ((-110) $)) (-15 -1660 ((-110) $)) (-15 -3012 ((-110) $)) (-15 -4177 ((-110) $)) (-15 -4085 ((-110) $)) (-15 -2189 ((-110) $)) (-15 -3761 ((-110) $)) (-15 -4033 ((-598 (-51)) $)) (-15 -2818 ($ $ (-598 (-51)))) (-15 -2084 ($ $ (-598 (-51)))) (-15 -4218 ($ (-1102) (-110) (-110) (-110))) (-15 -2110 ($ $ (-598 (-1102)) (-51))) (-15 -3550 ((-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))) $)) (-15 -1900 ((-110) $)) (-15 -3305 ($ $)) (-15 -3627 ($ $ (-51))) (-15 -4243 ((-598 (-51)) $)) (-15 -2695 ((-598 $) $)) (-15 -3643 ((-3 (-598 $) "failed") (-598 $))))) -((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) 16)) (-1922 (((-110) $) 38)) (-3154 (((-3 (-624 |#1|) "failed") $) 43)) (-2523 (((-624 |#1|) $) 41)) (-3062 (($ $) 18)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2428 (((-721) $) 46)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-624 |#1|) $) 17)) (-2265 (((-806) $) 37) (($ (-624 |#1|)) 21) (((-769 |#1|) $) 27) (($ |#1|) 20)) (-3050 (($) 8 T CONST)) (-2400 (((-598 (-624 |#1|)) $) 23)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 11)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 49))) -(((-836 |#1|) (-13 (-797) (-977 (-624 |#1|)) (-10 -8 (-15 1 ($) -2651) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ($ |#1|)) (-15 -3046 ((-624 |#1|) $)) (-15 -2428 ((-721) $)) (-15 -2400 ((-598 (-624 |#1|)) $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3798 ((-598 |#1|) $)))) (-797)) (T -836)) -((-3050 (*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-2265 (*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-624 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-598 (-624 *3))) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797))))) -(-13 (-797) (-977 (-624 |#1|)) (-10 -8 (-15 (-3050) ($) -2651) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ($ |#1|)) (-15 -3046 ((-624 |#1|) $)) (-15 -2428 ((-721) $)) (-15 -2400 ((-598 (-624 |#1|)) $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3798 ((-598 |#1|) $)))) -((-3990 ((|#1| |#1| |#1|) 19))) -(((-837 |#1| |#2|) (-10 -7 (-15 -3990 (|#1| |#1| |#1|))) (-1160 |#2|) (-986)) (T -837)) -((-3990 (*1 *2 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1160 *3))))) -(-10 -7 (-15 -3990 (|#1| |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-1932 (((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 13)) (-2148 (((-110) $ $) 6))) -(((-838) (-133)) (T -838)) -((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-838)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-1932 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *3 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *2 (-975))))) -(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))) (-15 -1932 ((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-3859 ((|#1| |#1| (-721)) 24)) (-3286 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4044 (((-3 (-2 (|:| -3144 |#1|) (|:| -3157 |#1|)) "failed") |#1| (-721) (-721)) 27) (((-598 |#1|) |#1|) 29))) -(((-839 |#1| |#2|) (-10 -7 (-15 -4044 ((-598 |#1|) |#1|)) (-15 -4044 ((-3 (-2 (|:| -3144 |#1|) (|:| -3157 |#1|)) "failed") |#1| (-721) (-721))) (-15 -3286 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3859 (|#1| |#1| (-721)))) (-1160 |#2|) (-344)) (T -839)) -((-3859 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-5 *1 (-839 *2 *4)) (-4 *2 (-1160 *4)))) (-3286 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-839 *2 *3)) (-4 *2 (-1160 *3)))) (-4044 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-721)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-839 *3 *5)) (-4 *3 (-1160 *5)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-839 *3 *4)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -4044 ((-598 |#1|) |#1|)) (-15 -4044 ((-3 (-2 (|:| -3144 |#1|) (|:| -3157 |#1|)) "failed") |#1| (-721) (-721))) (-15 -3286 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3859 (|#1| |#1| (-721)))) -((-1871 (((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085)) 96) (((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085) (-208)) 91) (((-975) (-841) (-998)) 83) (((-975) (-841)) 84)) (-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841) (-998)) 59) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841)) 61))) -(((-840) (-10 -7 (-15 -1871 ((-975) (-841))) (-15 -1871 ((-975) (-841) (-998))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085) (-208))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841) (-998))))) (T -840)) -((-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-840)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-840)))) (-1871 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085)) (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-975)) (-5 *1 (-840)))) (-1871 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085)) (-5 *8 (-208)) (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-975)) (-5 *1 (-840)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-840)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-975)) (-5 *1 (-840))))) -(-10 -7 (-15 -1871 ((-975) (-841))) (-15 -1871 ((-975) (-841) (-998))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085) (-208))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841) (-998)))) -((-2247 (((-110) $ $) NIL)) (-2523 (((-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))) $) 19)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 21) (($ (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 18)) (-2148 (((-110) $ $) NIL))) -(((-841) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))) $))))) (T -841)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-841)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *1 (-841)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *1 (-841))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))) $)))) -((-3352 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) 10) (($ $ |#2| (-721)) 12) (($ $ (-598 |#2|) (-598 (-721))) 15)) (-4020 (($ $ |#2|) 16) (($ $ (-598 |#2|)) 18) (($ $ |#2| (-721)) 19) (($ $ (-598 |#2|) (-598 (-721))) 21))) -(((-842 |#1| |#2|) (-10 -8 (-15 -4020 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -4020 (|#1| |#1| |#2| (-721))) (-15 -4020 (|#1| |#1| (-598 |#2|))) (-15 -4020 (|#1| |#1| |#2|)) (-15 -3352 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#2| (-721))) (-15 -3352 (|#1| |#1| (-598 |#2|))) (-15 -3352 (|#1| |#1| |#2|))) (-843 |#2|) (-1030)) (T -842)) -NIL -(-10 -8 (-15 -4020 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -4020 (|#1| |#1| |#2| (-721))) (-15 -4020 (|#1| |#1| (-598 |#2|))) (-15 -4020 (|#1| |#1| |#2|)) (-15 -3352 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#2| (-721))) (-15 -3352 (|#1| |#1| (-598 |#2|))) (-15 -3352 (|#1| |#1| |#2|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $ |#1|) 40) (($ $ (-598 |#1|)) 39) (($ $ |#1| (-721)) 38) (($ $ (-598 |#1|) (-598 (-721))) 37)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#1|) 36) (($ $ (-598 |#1|)) 35) (($ $ |#1| (-721)) 34) (($ $ (-598 |#1|) (-598 (-721))) 33)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-843 |#1|) (-133) (-1030)) (T -843)) -((-3352 (*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030)))) (-3352 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-3352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4)) (-4 *4 (-1030)))) (-4020 (*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4)) (-4 *4 (-1030))))) -(-13 (-986) (-10 -8 (-15 -3352 ($ $ |t#1|)) (-15 -3352 ($ $ (-598 |t#1|))) (-15 -3352 ($ $ |t#1| (-721))) (-15 -3352 ($ $ (-598 |t#1|) (-598 (-721)))) (-15 -4020 ($ $ |t#1|)) (-15 -4020 ($ $ (-598 |t#1|))) (-15 -4020 ($ $ |t#1| (-721))) (-15 -4020 ($ $ (-598 |t#1|) (-598 (-721)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 26)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3303 (($ $ $) NIL (|has| $ (-6 -4274)))) (-1508 (($ $ $) NIL (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 25)) (-2873 (($ |#1|) 12) (($ $ $) 17)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 23)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) 20)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1125 |#1|) $) 9) (((-806) $) 29 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 21 (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-844 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2873 ($ |#1|)) (-15 -2873 ($ $ $)) (-15 -2265 ((-1125 |#1|) $)))) (-1030)) (T -844)) -((-2873 (*1 *1 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030)))) (-2873 (*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-844 *3)) (-4 *3 (-1030))))) -(-13 (-117 |#1|) (-10 -8 (-15 -2873 ($ |#1|)) (-15 -2873 ($ $ $)) (-15 -2265 ((-1125 |#1|) $)))) -((-3740 ((|#2| (-1069 |#1| |#2|)) 40))) -(((-845 |#1| |#2|) (-10 -7 (-15 -3740 (|#2| (-1069 |#1| |#2|)))) (-864) (-13 (-986) (-10 -7 (-6 (-4275 "*"))))) (T -845)) -((-3740 (*1 *2 *3) (-12 (-5 *3 (-1069 *4 *2)) (-14 *4 (-864)) (-4 *2 (-13 (-986) (-10 -7 (-6 (-4275 "*"))))) (-5 *1 (-845 *4 *2))))) -(-10 -7 (-15 -3740 (|#2| (-1069 |#1| |#2|)))) -((-2247 (((-110) $ $) 7)) (-4082 (($) 18 T CONST)) (-3622 (((-3 $ "failed") $) 15)) (-1218 (((-1032 |#1|) $ |#1|) 32)) (-3481 (((-110) $) 17)) (-4103 (($ $ $) 30 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-1241 (($ $ $) 29 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 24)) (-2529 (((-1049) $) 10)) (-4115 ((|#1| $ |#1|) 34)) (-1785 ((|#1| $ |#1|) 33)) (-2049 (($ (-598 (-598 |#1|))) 35)) (-3436 (($ (-598 |#1|)) 36)) (-4164 (($ $ $) 21)) (-3214 (($ $ $) 20)) (-2265 (((-806) $) 11)) (-3050 (($) 19 T CONST)) (-2207 (((-110) $ $) 27 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-2184 (((-110) $ $) 26 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 28 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-2174 (((-110) $ $) 31)) (-2263 (($ $ $) 23)) (** (($ $ (-864)) 13) (($ $ (-721)) 16) (($ $ (-531)) 22)) (* (($ $ $) 14))) -(((-846 |#1|) (-133) (-1030)) (T -846)) -((-3436 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-846 *3)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-4 *1 (-846 *3)))) (-4115 (*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030)))) (-1785 (*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030)))) (-1218 (*1 *2 *1 *3) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-1032 *3)))) (-2174 (*1 *2 *1 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-110))))) -(-13 (-453) (-10 -8 (-15 -3436 ($ (-598 |t#1|))) (-15 -2049 ($ (-598 (-598 |t#1|)))) (-15 -4115 (|t#1| $ |t#1|)) (-15 -1785 (|t#1| $ |t#1|)) (-15 -1218 ((-1032 |t#1|) $ |t#1|)) (-15 -2174 ((-110) $ $)) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-797)) |%noBranch|))) -(((-99) . T) ((-572 (-806)) . T) ((-453) . T) ((-677) . T) ((-797) -1435 (|has| |#1| (-797)) (|has| |#1| (-349))) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-2023 (((-598 (-598 (-721))) $) 108)) (-2722 (((-598 (-721)) (-848 |#1|) $) 130)) (-1842 (((-598 (-721)) (-848 |#1|) $) 131)) (-2205 (((-598 (-848 |#1|)) $) 98)) (-1381 (((-848 |#1|) $ (-531)) 103) (((-848 |#1|) $) 104)) (-2222 (($ (-598 (-848 |#1|))) 110)) (-3617 (((-721) $) 105)) (-3552 (((-1032 (-1032 |#1|)) $) 128)) (-1218 (((-1032 |#1|) $ |#1|) 121) (((-1032 (-1032 |#1|)) $ (-1032 |#1|)) 139) (((-1032 (-598 |#1|)) $ (-598 |#1|)) 142)) (-1466 (((-1032 |#1|) $) 101)) (-1883 (((-110) (-848 |#1|) $) 92)) (-1521 (((-1085) $) NIL)) (-3830 (((-1189) $) 95) (((-1189) $ (-531) (-531)) 143)) (-2529 (((-1049) $) NIL)) (-3304 (((-598 (-848 |#1|)) $) 96)) (-1785 (((-848 |#1|) $ (-721)) 99)) (-2012 (((-721) $) 106)) (-2265 (((-806) $) 119) (((-598 (-848 |#1|)) $) 23) (($ (-598 (-848 |#1|))) 109)) (-3276 (((-598 |#1|) $) 107)) (-2148 (((-110) $ $) 136)) (-2195 (((-110) $ $) 134)) (-2174 (((-110) $ $) 133))) -(((-847 |#1|) (-13 (-1030) (-10 -8 (-15 -2265 ((-598 (-848 |#1|)) $)) (-15 -3304 ((-598 (-848 |#1|)) $)) (-15 -1785 ((-848 |#1|) $ (-721))) (-15 -1381 ((-848 |#1|) $ (-531))) (-15 -1381 ((-848 |#1|) $)) (-15 -3617 ((-721) $)) (-15 -2012 ((-721) $)) (-15 -3276 ((-598 |#1|) $)) (-15 -2205 ((-598 (-848 |#1|)) $)) (-15 -2023 ((-598 (-598 (-721))) $)) (-15 -2265 ($ (-598 (-848 |#1|)))) (-15 -2222 ($ (-598 (-848 |#1|)))) (-15 -1218 ((-1032 |#1|) $ |#1|)) (-15 -3552 ((-1032 (-1032 |#1|)) $)) (-15 -1218 ((-1032 (-1032 |#1|)) $ (-1032 |#1|))) (-15 -1218 ((-1032 (-598 |#1|)) $ (-598 |#1|))) (-15 -1883 ((-110) (-848 |#1|) $)) (-15 -2722 ((-598 (-721)) (-848 |#1|) $)) (-15 -1842 ((-598 (-721)) (-848 |#1|) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2174 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -3830 ((-1189) $)) (-15 -3830 ((-1189) $ (-531) (-531))))) (-1030)) (T -847)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4)) (-4 *4 (-1030)))) (-1381 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4)) (-4 *4 (-1030)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-848 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-721)))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3)))) (-1218 (*1 *2 *1 *3) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-1032 (-1032 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-1218 (*1 *2 *1 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-1032 *4))) (-5 *1 (-847 *4)) (-5 *3 (-1032 *4)))) (-1218 (*1 *2 *1 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-598 *4))) (-5 *1 (-847 *4)) (-5 *3 (-598 *4)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-847 *4)))) (-2722 (*1 *2 *3 *1) (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721))) (-5 *1 (-847 *4)))) (-1842 (*1 *2 *3 *1) (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721))) (-5 *1 (-847 *4)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2174 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2195 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3830 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-847 *4)) (-4 *4 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -2265 ((-598 (-848 |#1|)) $)) (-15 -3304 ((-598 (-848 |#1|)) $)) (-15 -1785 ((-848 |#1|) $ (-721))) (-15 -1381 ((-848 |#1|) $ (-531))) (-15 -1381 ((-848 |#1|) $)) (-15 -3617 ((-721) $)) (-15 -2012 ((-721) $)) (-15 -3276 ((-598 |#1|) $)) (-15 -2205 ((-598 (-848 |#1|)) $)) (-15 -2023 ((-598 (-598 (-721))) $)) (-15 -2265 ($ (-598 (-848 |#1|)))) (-15 -2222 ($ (-598 (-848 |#1|)))) (-15 -1218 ((-1032 |#1|) $ |#1|)) (-15 -3552 ((-1032 (-1032 |#1|)) $)) (-15 -1218 ((-1032 (-1032 |#1|)) $ (-1032 |#1|))) (-15 -1218 ((-1032 (-598 |#1|)) $ (-598 |#1|))) (-15 -1883 ((-110) (-848 |#1|) $)) (-15 -2722 ((-598 (-721)) (-848 |#1|) $)) (-15 -1842 ((-598 (-721)) (-848 |#1|) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2174 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -3830 ((-1189) $)) (-15 -3830 ((-1189) $ (-531) (-531))))) -((-2247 (((-110) $ $) NIL)) (-1332 (((-598 $) (-598 $)) 77)) (-3459 (((-531) $) 60)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3617 (((-721) $) 58)) (-1218 (((-1032 |#1|) $ |#1|) 49)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) 63)) (-2163 (((-721) $) 61)) (-1466 (((-1032 |#1|) $) 42)) (-4103 (($ $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-1241 (($ $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-3251 (((-2 (|:| |preimage| (-598 |#1|)) (|:| |image| (-598 |#1|))) $) 37)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 93)) (-2529 (((-1049) $) NIL)) (-3875 (((-1032 |#1|) $) 100 (|has| |#1| (-349)))) (-1787 (((-110) $) 59)) (-4115 ((|#1| $ |#1|) 47)) (-1785 ((|#1| $ |#1|) 94)) (-2012 (((-721) $) 44)) (-2049 (($ (-598 (-598 |#1|))) 85)) (-2113 (((-913) $) 53)) (-3436 (($ (-598 |#1|)) 21)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2771 (($ (-598 (-598 |#1|))) 39)) (-2388 (($ (-598 (-598 |#1|))) 88)) (-3583 (($ (-598 |#1|)) 96)) (-2265 (((-806) $) 84) (($ (-598 (-598 |#1|))) 66) (($ (-598 |#1|)) 67)) (-3050 (($) 16 T CONST)) (-2207 (((-110) $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-2148 (((-110) $ $) 45)) (-2195 (((-110) $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-2174 (((-110) $ $) 65)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ $ $) 22))) -(((-848 |#1|) (-13 (-846 |#1|) (-10 -8 (-15 -3251 ((-2 (|:| |preimage| (-598 |#1|)) (|:| |image| (-598 |#1|))) $)) (-15 -2771 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 |#1|))) (-15 -2388 ($ (-598 (-598 |#1|)))) (-15 -2012 ((-721) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2113 ((-913) $)) (-15 -3617 ((-721) $)) (-15 -2163 ((-721) $)) (-15 -3459 ((-531) $)) (-15 -1787 ((-110) $)) (-15 -4250 ((-110) $)) (-15 -1332 ((-598 $) (-598 $))) (IF (|has| |#1| (-349)) (-15 -3875 ((-1032 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-516)) (-15 -3583 ($ (-598 |#1|))) (IF (|has| |#1| (-349)) (-15 -3583 ($ (-598 |#1|))) |%noBranch|)))) (-1030)) (T -848)) -((-3251 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-598 *3)) (|:| |image| (-598 *3)))) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-913)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-349)) (-4 *3 (-1030)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3))))) -(-13 (-846 |#1|) (-10 -8 (-15 -3251 ((-2 (|:| |preimage| (-598 |#1|)) (|:| |image| (-598 |#1|))) $)) (-15 -2771 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 |#1|))) (-15 -2388 ($ (-598 (-598 |#1|)))) (-15 -2012 ((-721) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2113 ((-913) $)) (-15 -3617 ((-721) $)) (-15 -2163 ((-721) $)) (-15 -3459 ((-531) $)) (-15 -1787 ((-110) $)) (-15 -4250 ((-110) $)) (-15 -1332 ((-598 $) (-598 $))) (IF (|has| |#1| (-349)) (-15 -3875 ((-1032 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-516)) (-15 -3583 ($ (-598 |#1|))) (IF (|has| |#1| (-349)) (-15 -3583 ($ (-598 |#1|))) |%noBranch|)))) -((-1713 (((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|)) 128)) (-3530 ((|#1|) 77)) (-2079 (((-399 (-1098 |#4|)) (-1098 |#4|)) 137)) (-2526 (((-399 (-1098 |#4|)) (-598 |#3|) (-1098 |#4|)) 69)) (-3672 (((-399 (-1098 |#4|)) (-1098 |#4|)) 147)) (-2794 (((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|) |#3|) 92))) -(((-849 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|))) (-15 -3672 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -2079 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -3530 (|#1|)) (-15 -2794 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|) |#3|)) (-15 -2526 ((-399 (-1098 |#4|)) (-598 |#3|) (-1098 |#4|)))) (-852) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -849)) -((-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *7)) (-4 *7 (-797)) (-4 *5 (-852)) (-4 *6 (-743)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-399 (-1098 *8))) (-5 *1 (-849 *5 *6 *7 *8)) (-5 *4 (-1098 *8)))) (-2794 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7)) (-4 *7 (-892 *5 *6 *4)) (-4 *5 (-852)) (-4 *6 (-743)) (-4 *4 (-797)) (-5 *1 (-849 *5 *6 *4 *7)))) (-3530 (*1 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852)) (-5 *1 (-849 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-3672 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-1713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-849 *4 *5 *6 *7))))) -(-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|))) (-15 -3672 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -2079 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -3530 (|#1|)) (-15 -2794 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|) |#3|)) (-15 -2526 ((-399 (-1098 |#4|)) (-598 |#3|) (-1098 |#4|)))) -((-1713 (((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)) 36)) (-3530 ((|#1|) 54)) (-2079 (((-399 (-1098 |#2|)) (-1098 |#2|)) 102)) (-2526 (((-399 (-1098 |#2|)) (-1098 |#2|)) 90)) (-3672 (((-399 (-1098 |#2|)) (-1098 |#2|)) 113))) -(((-850 |#1| |#2|) (-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|))) (-15 -3672 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -2079 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -3530 (|#1|)) (-15 -2526 ((-399 (-1098 |#2|)) (-1098 |#2|)))) (-852) (-1160 |#1|)) (T -850)) -((-2526 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))) (-3530 (*1 *2) (-12 (-4 *2 (-852)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1160 *2)))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))) (-3672 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))) (-1713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-852)) (-5 *1 (-850 *4 *5))))) -(-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|))) (-15 -3672 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -2079 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -3530 (|#1|)) (-15 -2526 ((-399 (-1098 |#2|)) (-1098 |#2|)))) -((-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 41)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 18)) (-2750 (((-3 $ "failed") $) 35))) -(((-851 |#1|) (-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)))) (-852)) (T -851)) -NIL -(-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 58)) (-3240 (($ $) 49)) (-2956 (((-399 $) $) 50)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 55)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-2534 (((-110) $) 51)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3799 (((-399 (-1098 $)) (-1098 $)) 56)) (-2894 (((-399 (-1098 $)) (-1098 $)) 57)) (-2552 (((-399 $) $) 48)) (-3609 (((-3 $ "failed") $ $) 40)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 54 (|has| $ (-138)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2750 (((-3 $ "failed") $) 53 (|has| $ (-138)))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-852) (-133)) (T -852)) -((-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-852)))) (-1383 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))) (-2894 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))) (-3799 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))) (-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *1))) (-5 *3 (-1098 *1)) (-4 *1 (-852)))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-138)) (-4 *1 (-852)) (-5 *2 (-1184 *1)))) (-2750 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-852))))) -(-13 (-1142) (-10 -8 (-15 -1383 ((-399 (-1098 $)) (-1098 $))) (-15 -2894 ((-399 (-1098 $)) (-1098 $))) (-15 -3799 ((-399 (-1098 $)) (-1098 $))) (-15 -2993 ((-1098 $) (-1098 $) (-1098 $))) (-15 -4197 ((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $))) (IF (|has| $ (-138)) (PROGN (-15 -1737 ((-3 (-1184 $) "failed") (-639 $))) (-15 -2750 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 $ "failed") $) NIL)) (-2523 (($ $) NIL)) (-2767 (($ (-1184 $)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL)) (-1971 (((-110) $) NIL)) (-3493 (($ $) NIL) (($ $ (-721)) NIL)) (-2534 (((-110) $) NIL)) (-3617 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| $ (-349)))) (-3653 (((-110) $) NIL (|has| $ (-349)))) (-1899 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 $) $ (-864)) NIL (|has| $ (-349))) (((-1098 $) $) NIL)) (-2211 (((-864) $) NIL)) (-1832 (((-1098 $) $) NIL (|has| $ (-349)))) (-1612 (((-3 (-1098 $) "failed") $ $) NIL (|has| $ (-349))) (((-1098 $) $) NIL (|has| $ (-349)))) (-3601 (($ $ (-1098 $)) NIL (|has| $ (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL T CONST)) (-1889 (($ (-864)) NIL)) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| $ (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL)) (-2552 (((-399 $) $) NIL)) (-3717 (((-864)) NIL) (((-783 (-864))) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-3 (-721) "failed") $ $) NIL) (((-721) $) NIL)) (-2190 (((-130)) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-2012 (((-864) $) NIL) (((-783 (-864)) $) NIL)) (-3608 (((-1098 $)) NIL)) (-2498 (($) NIL)) (-2389 (($) NIL (|has| $ (-349)))) (-3348 (((-639 $) (-1184 $)) NIL) (((-1184 $) $) NIL)) (-3318 (((-531) $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $) (-864)) NIL) (((-1184 $)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $ (-721)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-853 |#1|) (-13 (-330) (-310 $) (-573 (-531))) (-864)) (T -853)) -NIL -(-13 (-330) (-310 $) (-573 (-531))) -((-1350 (((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)) 79)) (-4005 (((-110) (-317 |#2| |#3| |#4| |#5|)) 17)) (-3617 (((-3 (-721) "failed") (-317 |#2| |#3| |#4| |#5|)) 15))) -(((-854 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -4005 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)))) (-13 (-797) (-523) (-977 (-531))) (-411 |#1|) (-1160 |#2|) (-1160 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -854)) -((-1350 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *8))) (-5 *1 (-854 *4 *5 *6 *7 *8)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-110)) (-5 *1 (-854 *4 *5 *6 *7 *8)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-721)) (-5 *1 (-854 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -4005 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)))) -((-1350 (((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#3|)) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)) 56)) (-4005 (((-110) (-317 (-388 (-531)) |#1| |#2| |#3|)) 16)) (-3617 (((-3 (-721) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)) 14))) -(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -4005 ((-110) (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#3|)) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)))) (-1160 (-388 (-531))) (-1160 (-388 |#1|)) (-323 (-388 (-531)) |#1| |#2|)) (T -855)) -((-1350 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *6))) (-5 *1 (-855 *4 *5 *6)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-855 *4 *5 *6)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-721)) (-5 *1 (-855 *4 *5 *6))))) -(-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -4005 ((-110) (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#3|)) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)))) -((-1726 ((|#2| |#2|) 26)) (-3569 (((-531) (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))))) 15)) (-3902 (((-864) (-531)) 35)) (-1280 (((-531) |#2|) 42)) (-2710 (((-531) |#2|) 21) (((-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))) |#1|) 20))) -(((-856 |#1| |#2|) (-10 -7 (-15 -3902 ((-864) (-531))) (-15 -2710 ((-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))) |#1|)) (-15 -2710 ((-531) |#2|)) (-15 -3569 ((-531) (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))))) (-15 -1280 ((-531) |#2|)) (-15 -1726 (|#2| |#2|))) (-1160 (-388 (-531))) (-1160 (-388 |#1|))) (T -856)) -((-1726 (*1 *2 *2) (-12 (-4 *3 (-1160 (-388 (-531)))) (-5 *1 (-856 *3 *2)) (-4 *2 (-1160 (-388 *3))))) (-1280 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1160 (-388 *4))))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))))) (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1160 (-388 *4))))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1160 (-388 *4))))) (-2710 (*1 *2 *3) (-12 (-4 *3 (-1160 (-388 (-531)))) (-5 *2 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))) (-5 *1 (-856 *3 *4)) (-4 *4 (-1160 (-388 *3))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-1160 (-388 *3))) (-5 *2 (-864)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1160 (-388 *4)))))) -(-10 -7 (-15 -3902 ((-864) (-531))) (-15 -2710 ((-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))) |#1|)) (-15 -2710 ((-531) |#2|)) (-15 -3569 ((-531) (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))))) (-15 -1280 ((-531) |#2|)) (-15 -1726 (|#2| |#2|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 ((|#1| $) 81)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 75)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1464 (($ |#1| (-399 |#1|)) 73)) (-2636 (((-1098 |#1|) |#1| |#1|) 41)) (-2324 (($ $) 49)) (-3481 (((-110) $) NIL)) (-2071 (((-531) $) 78)) (-3500 (($ $ (-531)) 80)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1281 ((|#1| $) 77)) (-2830 (((-399 |#1|) $) 76)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) 74)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3770 (($ $) 39)) (-2265 (((-806) $) 99) (($ (-531)) 54) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 31) (((-388 |#1|) $) 59) (($ (-388 (-399 |#1|))) 67)) (-2284 (((-721)) 52)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 23 T CONST)) (-3050 (($) 12 T CONST)) (-2148 (((-110) $ $) 68)) (-2263 (($ $ $) NIL)) (-2250 (($ $) 88) (($ $ $) NIL)) (-2237 (($ $ $) 38)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 90) (($ $ $) 37) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-857 |#1|) (-13 (-344) (-37 |#1|) (-10 -8 (-15 -2265 ((-388 |#1|) $)) (-15 -2265 ($ (-388 (-399 |#1|)))) (-15 -3770 ($ $)) (-15 -2830 ((-399 |#1|) $)) (-15 -1281 (|#1| $)) (-15 -3500 ($ $ (-531))) (-15 -2071 ((-531) $)) (-15 -2636 ((-1098 |#1|) |#1| |#1|)) (-15 -2324 ($ $)) (-15 -1464 ($ |#1| (-399 |#1|))) (-15 -1317 (|#1| $)))) (-289)) (T -857)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-857 *3)))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-1281 (*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2636 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) (-1464 (*1 *1 *2 *3) (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-857 *2)))) (-1317 (*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289))))) -(-13 (-344) (-37 |#1|) (-10 -8 (-15 -2265 ((-388 |#1|) $)) (-15 -2265 ($ (-388 (-399 |#1|)))) (-15 -3770 ($ $)) (-15 -2830 ((-399 |#1|) $)) (-15 -1281 (|#1| $)) (-15 -3500 ($ $ (-531))) (-15 -2071 ((-531) $)) (-15 -2636 ((-1098 |#1|) |#1| |#1|)) (-15 -2324 ($ $)) (-15 -1464 ($ |#1| (-399 |#1|))) (-15 -1317 (|#1| $)))) -((-1464 (((-51) (-895 |#1|) (-399 (-895 |#1|)) (-1102)) 17) (((-51) (-388 (-895 |#1|)) (-1102)) 18))) -(((-858 |#1|) (-10 -7 (-15 -1464 ((-51) (-388 (-895 |#1|)) (-1102))) (-15 -1464 ((-51) (-895 |#1|) (-399 (-895 |#1|)) (-1102)))) (-13 (-289) (-140))) (T -858)) -((-1464 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-399 (-895 *6))) (-5 *5 (-1102)) (-5 *3 (-895 *6)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *6)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *5))))) -(-10 -7 (-15 -1464 ((-51) (-388 (-895 |#1|)) (-1102))) (-15 -1464 ((-51) (-895 |#1|) (-399 (-895 |#1|)) (-1102)))) -((-2822 ((|#4| (-598 |#4|)) 121) (((-1098 |#4|) (-1098 |#4|) (-1098 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2109 (((-1098 |#4|) (-598 (-1098 |#4|))) 114) (((-1098 |#4|) (-1098 |#4|) (-1098 |#4|)) 50) ((|#4| (-598 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2109 (|#4| |#4| |#4|)) (-15 -2109 (|#4| (-598 |#4|))) (-15 -2109 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2109 ((-1098 |#4|) (-598 (-1098 |#4|)))) (-15 -2822 (|#4| |#4| |#4|)) (-15 -2822 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2822 (|#4| (-598 |#4|)))) (-743) (-797) (-289) (-892 |#3| |#1| |#2|)) (T -859)) -((-2822 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)))) (-2822 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6)))) (-2822 (*1 *2 *2 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-598 (-1098 *7))) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-1098 *7)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)))) (-2109 (*1 *2 *2 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4))))) -(-10 -7 (-15 -2109 (|#4| |#4| |#4|)) (-15 -2109 (|#4| (-598 |#4|))) (-15 -2109 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2109 ((-1098 |#4|) (-598 (-1098 |#4|)))) (-15 -2822 (|#4| |#4| |#4|)) (-15 -2822 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2822 (|#4| (-598 |#4|)))) -((-3683 (((-847 (-531)) (-913)) 23) (((-847 (-531)) (-598 (-531))) 20)) (-1563 (((-847 (-531)) (-598 (-531))) 48) (((-847 (-531)) (-864)) 49)) (-2469 (((-847 (-531))) 24)) (-1876 (((-847 (-531))) 38) (((-847 (-531)) (-598 (-531))) 37)) (-1992 (((-847 (-531))) 36) (((-847 (-531)) (-598 (-531))) 35)) (-3851 (((-847 (-531))) 34) (((-847 (-531)) (-598 (-531))) 33)) (-2459 (((-847 (-531))) 32) (((-847 (-531)) (-598 (-531))) 31)) (-1546 (((-847 (-531))) 30) (((-847 (-531)) (-598 (-531))) 29)) (-2859 (((-847 (-531))) 40) (((-847 (-531)) (-598 (-531))) 39)) (-1385 (((-847 (-531)) (-598 (-531))) 52) (((-847 (-531)) (-864)) 53)) (-1490 (((-847 (-531)) (-598 (-531))) 50) (((-847 (-531)) (-864)) 51)) (-1282 (((-847 (-531)) (-598 (-531))) 46) (((-847 (-531)) (-864)) 47)) (-4002 (((-847 (-531)) (-598 (-864))) 43))) -(((-860) (-10 -7 (-15 -1563 ((-847 (-531)) (-864))) (-15 -1563 ((-847 (-531)) (-598 (-531)))) (-15 -1282 ((-847 (-531)) (-864))) (-15 -1282 ((-847 (-531)) (-598 (-531)))) (-15 -4002 ((-847 (-531)) (-598 (-864)))) (-15 -1490 ((-847 (-531)) (-864))) (-15 -1490 ((-847 (-531)) (-598 (-531)))) (-15 -1385 ((-847 (-531)) (-864))) (-15 -1385 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)))) (-15 -2459 ((-847 (-531)) (-598 (-531)))) (-15 -2459 ((-847 (-531)))) (-15 -3851 ((-847 (-531)) (-598 (-531)))) (-15 -3851 ((-847 (-531)))) (-15 -1992 ((-847 (-531)) (-598 (-531)))) (-15 -1992 ((-847 (-531)))) (-15 -1876 ((-847 (-531)) (-598 (-531)))) (-15 -1876 ((-847 (-531)))) (-15 -2859 ((-847 (-531)) (-598 (-531)))) (-15 -2859 ((-847 (-531)))) (-15 -2469 ((-847 (-531)))) (-15 -3683 ((-847 (-531)) (-598 (-531)))) (-15 -3683 ((-847 (-531)) (-913))))) (T -860)) -((-3683 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2469 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2859 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1876 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1992 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-3851 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2459 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1546 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-598 (-864))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(-10 -7 (-15 -1563 ((-847 (-531)) (-864))) (-15 -1563 ((-847 (-531)) (-598 (-531)))) (-15 -1282 ((-847 (-531)) (-864))) (-15 -1282 ((-847 (-531)) (-598 (-531)))) (-15 -4002 ((-847 (-531)) (-598 (-864)))) (-15 -1490 ((-847 (-531)) (-864))) (-15 -1490 ((-847 (-531)) (-598 (-531)))) (-15 -1385 ((-847 (-531)) (-864))) (-15 -1385 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)))) (-15 -2459 ((-847 (-531)) (-598 (-531)))) (-15 -2459 ((-847 (-531)))) (-15 -3851 ((-847 (-531)) (-598 (-531)))) (-15 -3851 ((-847 (-531)))) (-15 -1992 ((-847 (-531)) (-598 (-531)))) (-15 -1992 ((-847 (-531)))) (-15 -1876 ((-847 (-531)) (-598 (-531)))) (-15 -1876 ((-847 (-531)))) (-15 -2859 ((-847 (-531)) (-598 (-531)))) (-15 -2859 ((-847 (-531)))) (-15 -2469 ((-847 (-531)))) (-15 -3683 ((-847 (-531)) (-598 (-531)))) (-15 -3683 ((-847 (-531)) (-913)))) -((-3490 (((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))) 12)) (-1468 (((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))) 11))) -(((-861 |#1|) (-10 -7 (-15 -1468 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -3490 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))))) (-432)) (T -861)) -((-3490 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432)) (-5 *1 (-861 *4)))) (-1468 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432)) (-5 *1 (-861 *4))))) -(-10 -7 (-15 -1468 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -3490 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))))) -((-2265 (((-297 |#1|) (-457)) 16))) -(((-862 |#1|) (-10 -7 (-15 -2265 ((-297 |#1|) (-457)))) (-13 (-797) (-523))) (T -862)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-862 *4)) (-4 *4 (-13 (-797) (-523)))))) -(-10 -7 (-15 -2265 ((-297 |#1|) (-457)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-863) (-133)) (T -863)) -((-2434 (*1 *2 *3) (-12 (-4 *1 (-863)) (-5 *2 (-2 (|:| -2005 (-598 *1)) (|:| -1861 *1))) (-5 *3 (-598 *1)))) (-1995 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-863))))) -(-13 (-432) (-10 -8 (-15 -2434 ((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $))) (-15 -1995 ((-3 (-598 $) "failed") (-598 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2109 (($ $ $) NIL)) (-2265 (((-806) $) NIL)) (-3050 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ $ $) NIL))) -(((-864) (-13 (-744) (-677) (-10 -8 (-15 -2109 ($ $ $)) (-6 (-4275 "*"))))) (T -864)) -((-2109 (*1 *1 *1 *1) (-5 *1 (-864)))) -(-13 (-744) (-677) (-10 -8 (-15 -2109 ($ $ $)) (-6 (-4275 "*")))) -((-1221 ((|#2| (-598 |#1|) (-598 |#1|)) 24))) -(((-865 |#1| |#2|) (-10 -7 (-15 -1221 (|#2| (-598 |#1|) (-598 |#1|)))) (-344) (-1160 |#1|)) (T -865)) -((-1221 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-4 *2 (-1160 *4)) (-5 *1 (-865 *4 *2))))) -(-10 -7 (-15 -1221 (|#2| (-598 |#1|) (-598 |#1|)))) -((-3476 (((-1098 |#2|) (-598 |#2|) (-598 |#2|)) 17) (((-1157 |#1| |#2|) (-1157 |#1| |#2|) (-598 |#2|) (-598 |#2|)) 13))) -(((-866 |#1| |#2|) (-10 -7 (-15 -3476 ((-1157 |#1| |#2|) (-1157 |#1| |#2|) (-598 |#2|) (-598 |#2|))) (-15 -3476 ((-1098 |#2|) (-598 |#2|) (-598 |#2|)))) (-1102) (-344)) (T -866)) -((-3476 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-344)) (-5 *2 (-1098 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-1102)))) (-3476 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4 *5)) (-5 *3 (-598 *5)) (-14 *4 (-1102)) (-4 *5 (-344)) (-5 *1 (-866 *4 *5))))) -(-10 -7 (-15 -3476 ((-1157 |#1| |#2|) (-1157 |#1| |#2|) (-598 |#2|) (-598 |#2|))) (-15 -3476 ((-1098 |#2|) (-598 |#2|) (-598 |#2|)))) -((-3438 (((-531) (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085)) 139)) (-2632 ((|#4| |#4|) 155)) (-3759 (((-598 (-388 (-895 |#1|))) (-598 (-1102))) 118)) (-2694 (((-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-598 (-598 |#4|)) (-721) (-721) (-531)) 75)) (-4213 (((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-598 |#4|)) 59)) (-1393 (((-639 |#4|) (-639 |#4|) (-598 |#4|)) 55)) (-3866 (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085)) 151)) (-3685 (((-531) (-639 |#4|) (-864) (-1085)) 132) (((-531) (-639 |#4|) (-598 (-1102)) (-864) (-1085)) 131) (((-531) (-639 |#4|) (-598 |#4|) (-864) (-1085)) 130) (((-531) (-639 |#4|) (-1085)) 127) (((-531) (-639 |#4|) (-598 (-1102)) (-1085)) 126) (((-531) (-639 |#4|) (-598 |#4|) (-1085)) 125) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-864)) 124) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)) (-864)) 123) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|) (-864)) 122) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|)) 120) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102))) 119) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|)) 115)) (-3942 ((|#4| (-895 |#1|)) 68)) (-2804 (((-110) (-598 |#4|) (-598 (-598 |#4|))) 152)) (-2477 (((-598 (-598 (-531))) (-531) (-531)) 129)) (-3805 (((-598 (-598 |#4|)) (-598 (-598 |#4|))) 88)) (-3388 (((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|))))) 86)) (-1857 (((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|))))) 85)) (-3210 (((-110) (-598 (-895 |#1|))) 17) (((-110) (-598 |#4|)) 13)) (-2861 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-598 |#4|)) (|:| |n0| (-598 |#4|))) (-598 |#4|) (-598 |#4|)) 71)) (-2290 (((-598 |#4|) |#4|) 49)) (-2836 (((-598 (-388 (-895 |#1|))) (-598 |#4|)) 114) (((-639 (-388 (-895 |#1|))) (-639 |#4|)) 56) (((-388 (-895 |#1|)) |#4|) 111)) (-2271 (((-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))))) (|:| |rgsz| (-531))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-721) (-1085) (-531)) 93)) (-1469 (((-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))) (-639 |#4|) (-721)) 84)) (-3367 (((-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-639 |#4|) (-721)) 101)) (-2940 (((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| -1751 (-639 (-388 (-895 |#1|)))) (|:| |vec| (-598 (-388 (-895 |#1|)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) 48))) -(((-867 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-864))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-864) (-1085))) (-15 -3438 ((-531) (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -3866 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -2271 ((-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))))) (|:| |rgsz| (-531))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-721) (-1085) (-531))) (-15 -2836 ((-388 (-895 |#1|)) |#4|)) (-15 -2836 ((-639 (-388 (-895 |#1|))) (-639 |#4|))) (-15 -2836 ((-598 (-388 (-895 |#1|))) (-598 |#4|))) (-15 -3759 ((-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3942 (|#4| (-895 |#1|))) (-15 -2861 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-598 |#4|)) (|:| |n0| (-598 |#4|))) (-598 |#4|) (-598 |#4|))) (-15 -1469 ((-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))) (-639 |#4|) (-721))) (-15 -4213 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-598 |#4|))) (-15 -2940 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| -1751 (-639 (-388 (-895 |#1|)))) (|:| |vec| (-598 (-388 (-895 |#1|)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (-15 -2290 ((-598 |#4|) |#4|)) (-15 -1857 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3388 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3805 ((-598 (-598 |#4|)) (-598 (-598 |#4|)))) (-15 -2477 ((-598 (-598 (-531))) (-531) (-531))) (-15 -2804 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -3367 ((-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-639 |#4|) (-721))) (-15 -1393 ((-639 |#4|) (-639 |#4|) (-598 |#4|))) (-15 -2694 ((-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-598 (-598 |#4|)) (-721) (-721) (-531))) (-15 -2632 (|#4| |#4|)) (-15 -3210 ((-110) (-598 |#4|))) (-15 -3210 ((-110) (-598 (-895 |#1|))))) (-13 (-289) (-140)) (-13 (-797) (-573 (-1102))) (-743) (-892 |#1| |#3| |#2|)) (T -867)) -((-3210 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *4 *5 *6 *7)))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102)))) (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *2)) (-4 *2 (-892 *3 *5 *4)))) (-2694 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-5 *4 (-639 *12)) (-5 *5 (-598 (-388 (-895 *9)))) (-5 *6 (-598 (-598 *12))) (-5 *7 (-721)) (-5 *8 (-531)) (-4 *9 (-13 (-289) (-140))) (-4 *12 (-892 *9 *11 *10)) (-4 *10 (-13 (-797) (-573 (-1102)))) (-4 *11 (-743)) (-5 *2 (-2 (|:| |eqzro| (-598 *12)) (|:| |neqzro| (-598 *12)) (|:| |wcond| (-598 (-895 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *9)))) (|:| -3523 (-598 (-1184 (-388 (-895 *9))))))))) (-5 *1 (-867 *9 *10 *11 *12)))) (-1393 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-721)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |det| *8) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (-5 *1 (-867 *5 *6 *7 *8)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *5 *6 *7 *8)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-598 (-531)))) (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *6 *5)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-598 (-598 *6))) (-4 *6 (-892 *3 *5 *4)) (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102)))) (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *6)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| *7) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 *7))))) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721)) (-5 *1 (-867 *4 *5 *6 *7)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| *7) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 *7))))) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721)) (-5 *1 (-867 *4 *5 *6 *7)))) (-2290 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 *3)) (-5 *1 (-867 *4 *5 *6 *3)) (-4 *3 (-892 *4 *6 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1751 (-639 (-388 (-895 *4)))) (|:| |vec| (-598 (-388 (-895 *4)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-4213 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))) (-5 *3 (-598 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-892 *4 *6 *5)) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| *8) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 *8))))) (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-721)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-4 *7 (-892 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-598 *7)) (|:| |n0| (-598 *7)))) (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-892 *4 *6 *5)) (-5 *1 (-867 *4 *5 *6 *2)) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-639 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-388 (-895 *4))) (-5 *1 (-867 *4 *5 *6 *3)) (-4 *3 (-892 *4 *6 *5)))) (-2271 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-639 *11)) (-5 *4 (-598 (-388 (-895 *8)))) (-5 *5 (-721)) (-5 *6 (-1085)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-892 *8 *10 *9)) (-4 *9 (-13 (-797) (-573 (-1102)))) (-4 *10 (-743)) (-5 *2 (-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 *11)) (|:| |neqzro| (-598 *11)) (|:| |wcond| (-598 (-895 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *8)))) (|:| -3523 (-598 (-1184 (-388 (-895 *8)))))))))) (|:| |rgsz| (-531)))) (-5 *1 (-867 *8 *9 *10 *11)) (-5 *7 (-531)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7)) (|:| |wcond| (-598 (-895 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))))) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *4 (-1085)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-892 *5 *7 *6)) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-864)) (-5 *5 (-1085)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 (-1102))) (-5 *5 (-864)) (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *7 *8 *9 *10)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 *10)) (-5 *5 (-864)) (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *7 *8 *9 *10)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-1085)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-1085)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 *9)) (-5 *5 (-1085)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-864)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-864)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9)) (|:| |wcond| (-598 (-895 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *6)))) (|:| -3523 (-598 (-1184 (-388 (-895 *6)))))))))) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *5 (-864)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9)) (|:| |wcond| (-598 (-895 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *6)))) (|:| -3523 (-598 (-1184 (-388 (-895 *6)))))))))) (-5 *1 (-867 *6 *7 *8 *9)) (-5 *4 (-598 *9)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7)) (|:| |wcond| (-598 (-895 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))))) (-5 *1 (-867 *4 *5 *6 *7)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-598 (-1102))) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-598 *8))))) -(-10 -7 (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-864))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-864) (-1085))) (-15 -3438 ((-531) (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -3866 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -2271 ((-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))))) (|:| |rgsz| (-531))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-721) (-1085) (-531))) (-15 -2836 ((-388 (-895 |#1|)) |#4|)) (-15 -2836 ((-639 (-388 (-895 |#1|))) (-639 |#4|))) (-15 -2836 ((-598 (-388 (-895 |#1|))) (-598 |#4|))) (-15 -3759 ((-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3942 (|#4| (-895 |#1|))) (-15 -2861 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-598 |#4|)) (|:| |n0| (-598 |#4|))) (-598 |#4|) (-598 |#4|))) (-15 -1469 ((-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))) (-639 |#4|) (-721))) (-15 -4213 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-598 |#4|))) (-15 -2940 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| -1751 (-639 (-388 (-895 |#1|)))) (|:| |vec| (-598 (-388 (-895 |#1|)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (-15 -2290 ((-598 |#4|) |#4|)) (-15 -1857 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3388 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3805 ((-598 (-598 |#4|)) (-598 (-598 |#4|)))) (-15 -2477 ((-598 (-598 (-531))) (-531) (-531))) (-15 -2804 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -3367 ((-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-639 |#4|) (-721))) (-15 -1393 ((-639 |#4|) (-639 |#4|) (-598 |#4|))) (-15 -2694 ((-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-598 (-598 |#4|)) (-721) (-721) (-531))) (-15 -2632 (|#4| |#4|)) (-15 -3210 ((-110) (-598 |#4|))) (-15 -3210 ((-110) (-598 (-895 |#1|))))) -((-4193 (((-870) |#1| (-1102)) 17) (((-870) |#1| (-1102) (-1025 (-208))) 21)) (-3289 (((-870) |#1| |#1| (-1102) (-1025 (-208))) 19) (((-870) |#1| (-1102) (-1025 (-208))) 15))) -(((-868 |#1|) (-10 -7 (-15 -3289 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -3289 ((-870) |#1| |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102)))) (-573 (-507))) (T -868)) -((-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) (-3289 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507)))))) -(-10 -7 (-15 -3289 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -3289 ((-870) |#1| |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102)))) -((-3026 (($ $ (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 70)) (-2671 (((-1025 (-208)) $) 40)) (-2659 (((-1025 (-208)) $) 39)) (-2647 (((-1025 (-208)) $) 38)) (-1412 (((-598 (-598 (-208))) $) 43)) (-1418 (((-1025 (-208)) $) 41)) (-1810 (((-531) (-531)) 32)) (-1708 (((-531) (-531)) 28)) (-1423 (((-531) (-531)) 30)) (-1407 (((-110) (-110)) 35)) (-1972 (((-531)) 31)) (-2522 (($ $ (-1025 (-208))) 73) (($ $) 74)) (-1576 (($ (-1 (-886 (-208)) (-208)) (-1025 (-208))) 78) (($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 79)) (-3289 (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 82) (($ $ (-1025 (-208))) 76)) (-2486 (((-531)) 36)) (-3433 (((-531)) 27)) (-2953 (((-531)) 29)) (-2126 (((-598 (-598 (-886 (-208)))) $) 95)) (-3018 (((-110) (-110)) 37)) (-2265 (((-806) $) 94)) (-3409 (((-110)) 34))) -(((-869) (-13 (-916) (-10 -8 (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -1412 ((-598 (-598 (-208))) $)) (-15 -3433 ((-531))) (-15 -1708 ((-531) (-531))) (-15 -2953 ((-531))) (-15 -1423 ((-531) (-531))) (-15 -1972 ((-531))) (-15 -1810 ((-531) (-531))) (-15 -3409 ((-110))) (-15 -1407 ((-110) (-110))) (-15 -2486 ((-531))) (-15 -3018 ((-110) (-110)))))) (T -869)) -((-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-1576 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-3289 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-3289 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-3026 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-2522 (*1 *1 *1) (-5 *1 (-869))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-869)))) (-3433 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-2953 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1972 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-3409 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))) (-2486 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869))))) -(-13 (-916) (-10 -8 (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -1412 ((-598 (-598 (-208))) $)) (-15 -3433 ((-531))) (-15 -1708 ((-531) (-531))) (-15 -2953 ((-531))) (-15 -1423 ((-531) (-531))) (-15 -1972 ((-531))) (-15 -1810 ((-531) (-531))) (-15 -3409 ((-110))) (-15 -1407 ((-110) (-110))) (-15 -2486 ((-531))) (-15 -3018 ((-110) (-110))))) -((-3026 (($ $ (-1025 (-208))) 70) (($ $ (-1025 (-208)) (-1025 (-208))) 71)) (-2659 (((-1025 (-208)) $) 44)) (-2647 (((-1025 (-208)) $) 43)) (-1418 (((-1025 (-208)) $) 45)) (-1747 (((-531) (-531)) 37)) (-1308 (((-531) (-531)) 33)) (-3837 (((-531) (-531)) 35)) (-1430 (((-110) (-110)) 39)) (-3905 (((-531)) 36)) (-2522 (($ $ (-1025 (-208))) 74) (($ $) 75)) (-1576 (($ (-1 (-886 (-208)) (-208)) (-1025 (-208))) 84) (($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 85)) (-4193 (($ (-1 (-208) (-208)) (-1025 (-208))) 92) (($ (-1 (-208) (-208))) 95)) (-3289 (($ (-1 (-208) (-208)) (-1025 (-208))) 79) (($ (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208))) 80) (($ (-598 (-1 (-208) (-208))) (-1025 (-208))) 87) (($ (-598 (-1 (-208) (-208))) (-1025 (-208)) (-1025 (-208))) 88) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 82) (($ $ (-1025 (-208))) 76)) (-3505 (((-110) $) 40)) (-1511 (((-531)) 41)) (-3664 (((-531)) 32)) (-2828 (((-531)) 34)) (-2126 (((-598 (-598 (-886 (-208)))) $) 23)) (-4008 (((-110) (-110)) 42)) (-2265 (((-806) $) 106)) (-3681 (((-110)) 38))) -(((-870) (-13 (-898) (-10 -8 (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3505 ((-110) $)) (-15 -3026 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -3664 ((-531))) (-15 -1308 ((-531) (-531))) (-15 -2828 ((-531))) (-15 -3837 ((-531) (-531))) (-15 -3905 ((-531))) (-15 -1747 ((-531) (-531))) (-15 -3681 ((-110))) (-15 -1430 ((-110) (-110))) (-15 -1511 ((-531))) (-15 -4008 ((-110) (-110)))))) (T -870)) -((-3289 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *3) (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-1576 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-4193 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-870)))) (-3026 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-3026 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-2522 (*1 *1 *1) (-5 *1 (-870))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-3664 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-1308 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-2828 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-3905 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-3681 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))) (-1511 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870))))) -(-13 (-898) (-10 -8 (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3505 ((-110) $)) (-15 -3026 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -3664 ((-531))) (-15 -1308 ((-531) (-531))) (-15 -2828 ((-531))) (-15 -3837 ((-531) (-531))) (-15 -3905 ((-531))) (-15 -1747 ((-531) (-531))) (-15 -3681 ((-110))) (-15 -1430 ((-110) (-110))) (-15 -1511 ((-531))) (-15 -4008 ((-110) (-110))))) -((-1906 (((-598 (-1025 (-208))) (-598 (-598 (-886 (-208))))) 24))) -(((-871) (-10 -7 (-15 -1906 ((-598 (-1025 (-208))) (-598 (-598 (-886 (-208)))))))) (T -871)) -((-1906 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-598 (-1025 (-208)))) (-5 *1 (-871))))) -(-10 -7 (-15 -1906 ((-598 (-1025 (-208))) (-598 (-598 (-886 (-208))))))) -((-1515 ((|#2| |#2|) 26)) (-2494 ((|#2| |#2|) 27)) (-2651 ((|#2| |#2|) 25)) (-3973 ((|#2| |#2| (-1085)) 24))) -(((-872 |#1| |#2|) (-10 -7 (-15 -3973 (|#2| |#2| (-1085))) (-15 -2651 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -2494 (|#2| |#2|))) (-797) (-411 |#1|)) (T -872)) -((-2494 (*1 *2 *2) (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) (-3973 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-797)) (-5 *1 (-872 *4 *2)) (-4 *2 (-411 *4))))) -(-10 -7 (-15 -3973 (|#2| |#2| (-1085))) (-15 -2651 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -2494 (|#2| |#2|))) -((-1515 (((-297 (-531)) (-1102)) 16)) (-2494 (((-297 (-531)) (-1102)) 14)) (-2651 (((-297 (-531)) (-1102)) 12)) (-3973 (((-297 (-531)) (-1102) (-1085)) 19))) -(((-873) (-10 -7 (-15 -3973 ((-297 (-531)) (-1102) (-1085))) (-15 -2651 ((-297 (-531)) (-1102))) (-15 -1515 ((-297 (-531)) (-1102))) (-15 -2494 ((-297 (-531)) (-1102))))) (T -873)) -((-2494 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-1085)) (-5 *2 (-297 (-531))) (-5 *1 (-873))))) -(-10 -7 (-15 -3973 ((-297 (-531)) (-1102) (-1085))) (-15 -2651 ((-297 (-531)) (-1102))) (-15 -1515 ((-297 (-531)) (-1102))) (-15 -2494 ((-297 (-531)) (-1102)))) -((-2792 (((-832 |#1| |#3|) |#2| (-835 |#1|) (-832 |#1| |#3|)) 25)) (-3775 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13))) -(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -3775 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2792 ((-832 |#1| |#3|) |#2| (-835 |#1|) (-832 |#1| |#3|)))) (-1030) (-829 |#1|) (-13 (-1030) (-977 |#2|))) (T -874)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-13 (-1030) (-977 *3))) (-4 *3 (-829 *5)) (-5 *1 (-874 *5 *3 *6)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1030) (-977 *5))) (-4 *5 (-829 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-874 *4 *5 *6))))) -(-10 -7 (-15 -3775 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2792 ((-832 |#1| |#3|) |#2| (-835 |#1|) (-832 |#1| |#3|)))) -((-2792 (((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)) 30))) -(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-1030) (-13 (-523) (-797) (-829 |#1|)) (-13 (-411 |#2|) (-573 (-835 |#1|)) (-829 |#1|) (-977 (-571 $)))) (T -875)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-13 (-411 *6) (-573 *4) (-829 *5) (-977 (-571 $)))) (-5 *4 (-835 *5)) (-4 *6 (-13 (-523) (-797) (-829 *5))) (-5 *1 (-875 *5 *6 *3))))) -(-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) -((-2792 (((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|)) 13))) -(((-876 |#1|) (-10 -7 (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|)))) (-516)) (T -876)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 (-531) *3)) (-5 *4 (-835 (-531))) (-4 *3 (-516)) (-5 *1 (-876 *3))))) -(-10 -7 (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|)))) -((-2792 (((-832 |#1| |#2|) (-571 |#2|) (-835 |#1|) (-832 |#1| |#2|)) 54))) -(((-877 |#1| |#2|) (-10 -7 (-15 -2792 ((-832 |#1| |#2|) (-571 |#2|) (-835 |#1|) (-832 |#1| |#2|)))) (-1030) (-13 (-797) (-977 (-571 $)) (-573 (-835 |#1|)) (-829 |#1|))) (T -877)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *6)) (-5 *3 (-571 *6)) (-4 *5 (-1030)) (-4 *6 (-13 (-797) (-977 (-571 $)) (-573 *4) (-829 *5))) (-5 *4 (-835 *5)) (-5 *1 (-877 *5 *6))))) -(-10 -7 (-15 -2792 ((-832 |#1| |#2|) (-571 |#2|) (-835 |#1|) (-832 |#1| |#2|)))) -((-2792 (((-828 |#1| |#2| |#3|) |#3| (-835 |#1|) (-828 |#1| |#2| |#3|)) 15))) -(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-828 |#1| |#2| |#3|) |#3| (-835 |#1|) (-828 |#1| |#2| |#3|)))) (-1030) (-829 |#1|) (-619 |#2|)) (T -878)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *6 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-829 *5)) (-4 *3 (-619 *6)) (-5 *1 (-878 *5 *6 *3))))) -(-10 -7 (-15 -2792 ((-828 |#1| |#2| |#3|) |#3| (-835 |#1|) (-828 |#1| |#2| |#3|)))) -((-2792 (((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|)) 17 (|has| |#3| (-829 |#1|))) (((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|) (-1 (-832 |#1| |#5|) |#3| (-835 |#1|) (-832 |#1| |#5|))) 16))) -(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|) (-1 (-832 |#1| |#5|) |#3| (-835 |#1|) (-832 |#1| |#5|)))) (IF (|has| |#3| (-829 |#1|)) (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|))) |%noBranch|)) (-1030) (-743) (-797) (-13 (-986) (-797) (-829 |#1|)) (-13 (-892 |#4| |#2| |#3|) (-573 (-835 |#1|)))) (T -879)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-13 (-892 *8 *6 *7) (-573 *4))) (-5 *4 (-835 *5)) (-4 *7 (-829 *5)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-13 (-986) (-797) (-829 *5))) (-5 *1 (-879 *5 *6 *7 *8 *3)))) (-2792 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-832 *6 *3) *8 (-835 *6) (-832 *6 *3))) (-4 *8 (-797)) (-5 *2 (-832 *6 *3)) (-5 *4 (-835 *6)) (-4 *6 (-1030)) (-4 *3 (-13 (-892 *9 *7 *8) (-573 *4))) (-4 *7 (-743)) (-4 *9 (-13 (-986) (-797) (-829 *6))) (-5 *1 (-879 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|) (-1 (-832 |#1| |#5|) |#3| (-835 |#1|) (-832 |#1| |#5|)))) (IF (|has| |#3| (-829 |#1|)) (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|))) |%noBranch|)) -((-2583 ((|#2| |#2| (-598 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13))) -(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2583 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2583 (|#2| |#2| (-598 (-1 (-110) |#3|))))) (-797) (-411 |#1|) (-1138)) (T -880)) -((-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) (-4 *4 (-797)) (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1138)) (-4 *4 (-797)) (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4))))) -(-10 -7 (-15 -2583 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2583 (|#2| |#2| (-598 (-1 (-110) |#3|))))) -((-2583 (((-297 (-531)) (-1102) (-598 (-1 (-110) |#1|))) 18) (((-297 (-531)) (-1102) (-1 (-110) |#1|)) 15))) -(((-881 |#1|) (-10 -7 (-15 -2583 ((-297 (-531)) (-1102) (-1 (-110) |#1|))) (-15 -2583 ((-297 (-531)) (-1102) (-598 (-1 (-110) |#1|))))) (-1138)) (T -881)) -((-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) (-5 *2 (-297 (-531))) (-5 *1 (-881 *5)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1138)) (-5 *2 (-297 (-531))) (-5 *1 (-881 *5))))) -(-10 -7 (-15 -2583 ((-297 (-531)) (-1102) (-1 (-110) |#1|))) (-15 -2583 ((-297 (-531)) (-1102) (-598 (-1 (-110) |#1|))))) -((-2792 (((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)) 25))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-1030) (-13 (-523) (-829 |#1|) (-573 (-835 |#1|))) (-934 |#2|)) (T -882)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-934 *6)) (-4 *6 (-13 (-523) (-829 *5) (-573 *4))) (-5 *4 (-835 *5)) (-5 *1 (-882 *5 *6 *3))))) -(-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) -((-2792 (((-832 |#1| (-1102)) (-1102) (-835 |#1|) (-832 |#1| (-1102))) 17))) -(((-883 |#1|) (-10 -7 (-15 -2792 ((-832 |#1| (-1102)) (-1102) (-835 |#1|) (-832 |#1| (-1102))))) (-1030)) (T -883)) -((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 (-1102))) (-5 *3 (-1102)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-5 *1 (-883 *5))))) -(-10 -7 (-15 -2792 ((-832 |#1| (-1102)) (-1102) (-835 |#1|) (-832 |#1| (-1102))))) -((-3684 (((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) 33)) (-2792 (((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-1 |#3| (-598 |#3|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) 32))) -(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-1 |#3| (-598 |#3|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-15 -3684 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))))) (-1030) (-13 (-986) (-797)) (-13 (-986) (-573 (-835 |#1|)) (-977 |#2|))) (T -884)) -((-3684 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-835 *6))) (-5 *5 (-1 (-832 *6 *8) *8 (-835 *6) (-832 *6 *8))) (-4 *6 (-1030)) (-4 *8 (-13 (-986) (-573 (-835 *6)) (-977 *7))) (-5 *2 (-832 *6 *8)) (-4 *7 (-13 (-986) (-797))) (-5 *1 (-884 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-598 (-835 *7))) (-5 *5 (-1 *9 (-598 *9))) (-5 *6 (-1 (-832 *7 *9) *9 (-835 *7) (-832 *7 *9))) (-4 *7 (-1030)) (-4 *9 (-13 (-986) (-573 (-835 *7)) (-977 *8))) (-5 *2 (-832 *7 *9)) (-5 *3 (-598 *9)) (-4 *8 (-13 (-986) (-797))) (-5 *1 (-884 *7 *8 *9))))) -(-10 -7 (-15 -2792 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-1 |#3| (-598 |#3|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-15 -3684 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))))) -((-3270 (((-1098 (-388 (-531))) (-531)) 63)) (-2849 (((-1098 (-531)) (-531)) 66)) (-3098 (((-1098 (-531)) (-531)) 60)) (-2696 (((-531) (-1098 (-531))) 55)) (-2135 (((-1098 (-388 (-531))) (-531)) 49)) (-3913 (((-1098 (-531)) (-531)) 38)) (-3376 (((-1098 (-531)) (-531)) 68)) (-1554 (((-1098 (-531)) (-531)) 67)) (-2349 (((-1098 (-388 (-531))) (-531)) 51))) -(((-885) (-10 -7 (-15 -2349 ((-1098 (-388 (-531))) (-531))) (-15 -1554 ((-1098 (-531)) (-531))) (-15 -3376 ((-1098 (-531)) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -2135 ((-1098 (-388 (-531))) (-531))) (-15 -2696 ((-531) (-1098 (-531)))) (-15 -3098 ((-1098 (-531)) (-531))) (-15 -2849 ((-1098 (-531)) (-531))) (-15 -3270 ((-1098 (-388 (-531))) (-531))))) (T -885)) -((-3270 (*1 *2 *3) (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))) (-2849 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-531)) (-5 *1 (-885)))) (-2135 (*1 *2 *3) (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-3376 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531))))) -(-10 -7 (-15 -2349 ((-1098 (-388 (-531))) (-531))) (-15 -1554 ((-1098 (-531)) (-531))) (-15 -3376 ((-1098 (-531)) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -2135 ((-1098 (-388 (-531))) (-531))) (-15 -2696 ((-531) (-1098 (-531)))) (-15 -3098 ((-1098 (-531)) (-531))) (-15 -2849 ((-1098 (-531)) (-531))) (-15 -3270 ((-1098 (-388 (-531))) (-531)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721)) NIL (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 11 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-4042 (($ (-598 |#1|)) 13)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) NIL (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) 8)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 10 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1408 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-3332 (((-110) $ (-721)) NIL)) (-2428 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-1846 (($ $ (-598 |#1|)) 26)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 20) (($ $ (-1151 (-531))) NIL)) (-3225 ((|#1| $ $) NIL (|has| |#1| (-986)))) (-2190 (((-864) $) 16)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2261 (($ $ $) 24)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507)))) (($ (-598 |#1|)) 17)) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2237 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-531) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-677))) (($ $ |#1|) NIL (|has| |#1| (-677)))) (-2167 (((-721) $) 14 (|has| $ (-6 -4273))))) -(((-886 |#1|) (-922 |#1|) (-986)) (T -886)) -NIL -(-922 |#1|) -((-1960 (((-460 |#1| |#2|) (-895 |#2|)) 20)) (-2969 (((-230 |#1| |#2|) (-895 |#2|)) 33)) (-1812 (((-895 |#2|) (-460 |#1| |#2|)) 25)) (-1262 (((-230 |#1| |#2|) (-460 |#1| |#2|)) 55)) (-2028 (((-895 |#2|) (-230 |#1| |#2|)) 30)) (-2608 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 46))) -(((-887 |#1| |#2|) (-10 -7 (-15 -2608 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -1262 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1960 ((-460 |#1| |#2|) (-895 |#2|))) (-15 -1812 ((-895 |#2|) (-460 |#1| |#2|))) (-15 -2028 ((-895 |#2|) (-230 |#1| |#2|))) (-15 -2969 ((-230 |#1| |#2|) (-895 |#2|)))) (-598 (-1102)) (-986)) (T -887)) -((-2969 (*1 *2 *3) (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-230 *4 *5)) (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102))))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-460 *4 *5)) (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102))))) (-1262 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-230 *4 *5)) (-5 *1 (-887 *4 *5)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-460 *4 *5)) (-5 *1 (-887 *4 *5))))) -(-10 -7 (-15 -2608 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -1262 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1960 ((-460 |#1| |#2|) (-895 |#2|))) (-15 -1812 ((-895 |#2|) (-460 |#1| |#2|))) (-15 -2028 ((-895 |#2|) (-230 |#1| |#2|))) (-15 -2969 ((-230 |#1| |#2|) (-895 |#2|)))) -((-1582 (((-598 |#2|) |#2| |#2|) 10)) (-4064 (((-721) (-598 |#1|)) 37 (|has| |#1| (-795)))) (-3732 (((-598 |#2|) |#2|) 11)) (-1925 (((-721) (-598 |#1|) (-531) (-531)) 39 (|has| |#1| (-795)))) (-1739 ((|#1| |#2|) 32 (|has| |#1| (-795))))) -(((-888 |#1| |#2|) (-10 -7 (-15 -1582 ((-598 |#2|) |#2| |#2|)) (-15 -3732 ((-598 |#2|) |#2|)) (IF (|has| |#1| (-795)) (PROGN (-15 -1739 (|#1| |#2|)) (-15 -4064 ((-721) (-598 |#1|))) (-15 -1925 ((-721) (-598 |#1|) (-531) (-531)))) |%noBranch|)) (-344) (-1160 |#1|)) (T -888)) -((-1925 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-531)) (-4 *5 (-795)) (-4 *5 (-344)) (-5 *2 (-721)) (-5 *1 (-888 *5 *6)) (-4 *6 (-1160 *5)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-795)) (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-888 *4 *5)) (-4 *5 (-1160 *4)))) (-1739 (*1 *2 *3) (-12 (-4 *2 (-344)) (-4 *2 (-795)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1160 *2)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1160 *4)))) (-1582 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -1582 ((-598 |#2|) |#2| |#2|)) (-15 -3732 ((-598 |#2|) |#2|)) (IF (|has| |#1| (-795)) (PROGN (-15 -1739 (|#1| |#2|)) (-15 -4064 ((-721) (-598 |#1|))) (-15 -1925 ((-721) (-598 |#1|) (-531) (-531)))) |%noBranch|)) -((-3261 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 19))) -(((-889 |#1| |#2|) (-10 -7 (-15 -3261 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-986) (-986)) (T -889)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-895 *6)) (-5 *1 (-889 *5 *6))))) -(-10 -7 (-15 -3261 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) -((-2516 (((-1157 |#1| (-895 |#2|)) (-895 |#2|) (-1180 |#1|)) 18))) -(((-890 |#1| |#2|) (-10 -7 (-15 -2516 ((-1157 |#1| (-895 |#2|)) (-895 |#2|) (-1180 |#1|)))) (-1102) (-986)) (T -890)) -((-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-14 *5 (-1102)) (-4 *6 (-986)) (-5 *2 (-1157 *5 (-895 *6))) (-5 *1 (-890 *5 *6)) (-5 *3 (-895 *6))))) -(-10 -7 (-15 -2516 ((-1157 |#1| (-895 |#2|)) (-895 |#2|) (-1180 |#1|)))) -((-4109 (((-721) $) 71) (((-721) $ (-598 |#4|)) 74)) (-3240 (($ $) 173)) (-2956 (((-399 $) $) 165)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 116)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL) (((-531) $) NIL) ((|#4| $) 59)) (-3115 (($ $ $ |#4|) 76)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 106) (((-639 |#2|) (-639 $)) 99)) (-2226 (($ $) 180) (($ $ |#4|) 183)) (-2488 (((-598 $) $) 63)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 199) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 192)) (-1230 (((-598 $) $) 28)) (-2669 (($ |#2| |#3|) NIL) (($ $ |#4| (-721)) NIL) (($ $ (-598 |#4|) (-598 (-721))) 57)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#4|) 162)) (-3443 (((-3 (-598 $) "failed") $) 42)) (-2077 (((-3 (-598 $) "failed") $) 31)) (-3448 (((-3 (-2 (|:| |var| |#4|) (|:| -1790 (-721))) "failed") $) 47)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 109)) (-3799 (((-399 (-1098 $)) (-1098 $)) 122)) (-2894 (((-399 (-1098 $)) (-1098 $)) 120)) (-2552 (((-399 $) $) 140)) (-4115 (($ $ (-598 (-276 $))) 21) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-598 |#4|) (-598 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-598 |#4|) (-598 $)) NIL)) (-3176 (($ $ |#4|) 78)) (-3318 (((-835 (-360)) $) 213) (((-835 (-531)) $) 206) (((-507) $) 221)) (-1767 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 154)) (-3188 ((|#2| $ |#3|) NIL) (($ $ |#4| (-721)) 52) (($ $ (-598 |#4|) (-598 (-721))) 55)) (-2750 (((-3 $ "failed") $) 156)) (-2174 (((-110) $ $) 186))) -(((-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2226 (|#1| |#1| |#4|)) (-15 -1767 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#1| |#4|)) (-15 -2488 ((-598 |#1|) |#1|)) (-15 -4109 ((-721) |#1| (-598 |#4|))) (-15 -4109 ((-721) |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| |#4|) (|:| -1790 (-721))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2669 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -2669 (|#1| |#1| |#4| (-721))) (-15 -2382 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1230 ((-598 |#1|) |#1|)) (-15 -3188 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3188 (|#1| |#1| |#4| (-721))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2669 (|#1| |#2| |#3|)) (-15 -3188 (|#2| |#1| |#3|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -2226 (|#1| |#1|))) (-892 |#2| |#3| |#4|) (-986) (-743) (-797)) (T -891)) -NIL -(-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2226 (|#1| |#1| |#4|)) (-15 -1767 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#1| |#4|)) (-15 -2488 ((-598 |#1|) |#1|)) (-15 -4109 ((-721) |#1| (-598 |#4|))) (-15 -4109 ((-721) |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| |#4|) (|:| -1790 (-721))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2669 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -2669 (|#1| |#1| |#4| (-721))) (-15 -2382 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1230 ((-598 |#1|) |#1|)) (-15 -3188 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3188 (|#1| |#1| |#4| (-721))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2669 (|#1| |#2| |#3|)) (-15 -3188 (|#2| |#1| |#3|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -2226 (|#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#3|) $) 108)) (-2516 (((-1098 $) $ |#3|) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 |#3|)) 109)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) 134)) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) ((|#3| $) 133)) (-3115 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2500 (($ $) 152)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-2490 (($ $ |#1| |#2| $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| |#3| (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| |#3| (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-2682 (($ (-1098 |#1|) |#3|) 115) (($ (-1098 $) |#3|) 114)) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| |#2|) 151) (($ $ |#3| (-721)) 117) (($ $ (-598 |#3|) (-598 (-721))) 116)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 118)) (-3005 ((|#2| $) 168) (((-721) $ |#3|) 120) (((-598 (-721)) $ (-598 |#3|)) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 |#2| |#2|) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-3471 (((-3 |#3| "failed") $) 121)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1521 (((-1085) $) 9)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) 111)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-598 |#3|) (-598 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-598 |#3|) (-598 $)) 136)) (-3176 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3352 (($ $ |#3|) 40) (($ $ (-598 |#3|)) 39) (($ $ |#3| (-721)) 38) (($ $ (-598 |#3|) (-598 (-721))) 37)) (-2012 ((|#2| $) 148) (((-721) $ |#3|) 128) (((-598 (-721)) $ (-598 |#3|)) 127)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| |#3| (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| |#3| (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| |#3| (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-523))) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531))))))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ |#2|) 153) (($ $ |#3| (-721)) 126) (($ $ (-598 |#3|) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#3|) 36) (($ $ (-598 |#3|)) 35) (($ $ |#3| (-721)) 34) (($ $ (-598 |#3|) (-598 (-721))) 33)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-892 |#1| |#2| |#3|) (-133) (-986) (-743) (-797)) (T -892)) -((-2226 (*1 *1 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-721)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721))))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *2 (-797)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)))) (-1230 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-2516 (*1 *2 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-1098 *1)) (-4 *1 (-892 *4 *5 *3)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-1098 *3)))) (-3471 (*1 *2 *1) (|partial| -12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-3005 (*1 *2 *1 *3) (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721))))) (-2382 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-892 *4 *5 *3)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *2 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *4)) (-4 *4 (-986)) (-4 *1 (-892 *4 *5 *3)) (-4 *5 (-743)) (-4 *3 (-797)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)))) (-2077 (*1 *2 *1) (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-3448 (*1 *2 *1) (|partial| -12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-721)))))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-721)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *5)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-3115 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-162)))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-162)))) (-1767 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-432)))) (-2226 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-432)))) (-3240 (*1 *1 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-2956 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-399 *1)) (-4 *1 (-892 *3 *4 *5))))) -(-13 (-843 |t#3|) (-307 |t#1| |t#2|) (-291 $) (-492 |t#3| |t#1|) (-492 |t#3| $) (-977 |t#3|) (-358 |t#1|) (-10 -8 (-15 -2012 ((-721) $ |t#3|)) (-15 -2012 ((-598 (-721)) $ (-598 |t#3|))) (-15 -3188 ($ $ |t#3| (-721))) (-15 -3188 ($ $ (-598 |t#3|) (-598 (-721)))) (-15 -1230 ((-598 $) $)) (-15 -2516 ((-1098 $) $ |t#3|)) (-15 -2516 ((-1098 |t#1|) $)) (-15 -3471 ((-3 |t#3| "failed") $)) (-15 -3005 ((-721) $ |t#3|)) (-15 -3005 ((-598 (-721)) $ (-598 |t#3|))) (-15 -2382 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |t#3|)) (-15 -2669 ($ $ |t#3| (-721))) (-15 -2669 ($ $ (-598 |t#3|) (-598 (-721)))) (-15 -2682 ($ (-1098 |t#1|) |t#3|)) (-15 -2682 ($ (-1098 $) |t#3|)) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |var| |t#3|) (|:| -1790 (-721))) "failed") $)) (-15 -4109 ((-721) $)) (-15 -4109 ((-721) $ (-598 |t#3|))) (-15 -2695 ((-598 |t#3|) $)) (-15 -2488 ((-598 $) $)) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (IF (|has| |t#3| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-573 (-835 (-531)))) (IF (|has| |t#3| (-573 (-835 (-531)))) (-6 (-573 (-835 (-531)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-573 (-835 (-360)))) (IF (|has| |t#3| (-573 (-835 (-360)))) (-6 (-573 (-835 (-360)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-829 (-531))) (IF (|has| |t#3| (-829 (-531))) (-6 (-829 (-531))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-829 (-360))) (IF (|has| |t#3| (-829 (-360))) (-6 (-829 (-360))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3115 ($ $ $ |t#3|)) (-15 -3176 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-6 (-432)) (-15 -1767 ($ $ |t#3|)) (-15 -2226 ($ $)) (-15 -2226 ($ $ |t#3|)) (-15 -2956 ((-399 $) $)) (-15 -3240 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4271)) (-6 -4271) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432))) ((-492 |#3| |#1|) . T) ((-492 |#3| $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 |#3|) . T) ((-829 (-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) ((-852) |has| |#1| (-852)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-977 |#3|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) |has| |#1| (-852))) -((-2695 (((-598 |#2|) |#5|) 36)) (-2516 (((-1098 |#5|) |#5| |#2| (-1098 |#5|)) 23) (((-388 (-1098 |#5|)) |#5| |#2|) 16)) (-2682 ((|#5| (-388 (-1098 |#5|)) |#2|) 30)) (-3471 (((-3 |#2| "failed") |#5|) 65)) (-3443 (((-3 (-598 |#5|) "failed") |#5|) 59)) (-3058 (((-3 (-2 (|:| |val| |#5|) (|:| -1790 (-531))) "failed") |#5|) 47)) (-2077 (((-3 (-598 |#5|) "failed") |#5|) 61)) (-3448 (((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-531))) "failed") |#5|) 51))) -(((-893 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2695 ((-598 |#2|) |#5|)) (-15 -3471 ((-3 |#2| "failed") |#5|)) (-15 -2516 ((-388 (-1098 |#5|)) |#5| |#2|)) (-15 -2682 (|#5| (-388 (-1098 |#5|)) |#2|)) (-15 -2516 ((-1098 |#5|) |#5| |#2| (-1098 |#5|))) (-15 -2077 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3443 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3448 ((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-531))) "failed") |#5|)) (-15 -3058 ((-3 (-2 (|:| |val| |#5|) (|:| -1790 (-531))) "failed") |#5|))) (-743) (-797) (-986) (-892 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -2265 ($ |#4|)) (-15 -1840 (|#4| $)) (-15 -1853 (|#4| $))))) (T -893)) -((-3058 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1790 (-531)))) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-3448 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-531)))) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-3443 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3)) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-2077 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3)) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-2516 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))) (-4 *7 (-892 *6 *5 *4)) (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) (-5 *1 (-893 *5 *4 *6 *7 *3)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1098 *2))) (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) (-4 *2 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))) (-5 *1 (-893 *5 *4 *6 *7 *2)) (-4 *7 (-892 *6 *5 *4)))) (-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-388 (-1098 *3))) (-5 *1 (-893 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-3471 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-986)) (-4 *6 (-892 *5 *4 *2)) (-4 *2 (-797)) (-5 *1 (-893 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *6)) (-15 -1840 (*6 $)) (-15 -1853 (*6 $))))))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *5)) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $)))))))) -(-10 -7 (-15 -2695 ((-598 |#2|) |#5|)) (-15 -3471 ((-3 |#2| "failed") |#5|)) (-15 -2516 ((-388 (-1098 |#5|)) |#5| |#2|)) (-15 -2682 (|#5| (-388 (-1098 |#5|)) |#2|)) (-15 -2516 ((-1098 |#5|) |#5| |#2| (-1098 |#5|))) (-15 -2077 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3443 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3448 ((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-531))) "failed") |#5|)) (-15 -3058 ((-3 (-2 (|:| |val| |#5|) (|:| -1790 (-531))) "failed") |#5|))) -((-3261 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3261 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-743) (-797) (-986) (-892 |#3| |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721)))))) (T -894)) -((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-797)) (-4 *8 (-986)) (-4 *6 (-743)) (-4 *2 (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721)))))) (-5 *1 (-894 *6 *7 *8 *5 *2)) (-4 *5 (-892 *8 *6 *7))))) -(-10 -7 (-15 -3261 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1102)) $) 16)) (-2516 (((-1098 $) $ (-1102)) 21) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1102))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 8) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1102) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1102) $) NIL)) (-3115 (($ $ $ (-1102)) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1102)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 (-1102)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1102) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1102) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) (-1102)) NIL) (($ (-1098 $) (-1102)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1102)) NIL)) (-3005 (((-503 (-1102)) $) NIL) (((-721) $ (-1102)) NIL) (((-598 (-721)) $ (-598 (-1102))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 (-1102)) (-503 (-1102))) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3471 (((-3 (-1102) "failed") $) 19)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1102)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $ (-1102)) 29 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1102) |#1|) NIL) (($ $ (-598 (-1102)) (-598 |#1|)) NIL) (($ $ (-1102) $) NIL) (($ $ (-598 (-1102)) (-598 $)) NIL)) (-3176 (($ $ (-1102)) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2012 (((-503 (-1102)) $) NIL) (((-721) $ (-1102)) NIL) (((-598 (-721)) $ (-598 (-1102))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1102) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1102) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1102) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1102)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 25) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-1102)) 27) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-895 |#1|) (-13 (-892 |#1| (-503 (-1102)) (-1102)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1102))) |%noBranch|))) (-986)) (T -895)) -((-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-895 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986))))) -(-13 (-892 |#1| (-503 (-1102)) (-1102)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1102))) |%noBranch|))) -((-2246 (((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#3| (-721)) 38)) (-2168 (((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) (-388 (-531)) (-721)) 34)) (-1756 (((-2 (|:| -1790 (-721)) (|:| -2005 |#4|) (|:| |radicand| (-598 |#4|))) |#4| (-721)) 54)) (-1290 (((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#5| (-721)) 64 (|has| |#3| (-432))))) -(((-896 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2246 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#3| (-721))) (-15 -2168 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) (-388 (-531)) (-721))) (IF (|has| |#3| (-432)) (-15 -1290 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#5| (-721))) |%noBranch|) (-15 -1756 ((-2 (|:| -1790 (-721)) (|:| -2005 |#4|) (|:| |radicand| (-598 |#4|))) |#4| (-721)))) (-743) (-797) (-523) (-892 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1840 (|#4| $)) (-15 -1853 (|#4| $)) (-15 -2265 ($ |#4|))))) (T -896)) -((-1756 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) (-4 *3 (-892 *7 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| (-598 *3)))) (-5 *1 (-896 *5 *6 *7 *3 *8)) (-5 *4 (-721)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1840 (*3 $)) (-15 -1853 (*3 $)) (-15 -2265 ($ *3))))))) (-1290 (*1 *2 *3 *4) (-12 (-4 *7 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) (-4 *8 (-892 *7 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *3))) (-5 *1 (-896 *5 *6 *7 *8 *3)) (-5 *4 (-721)) (-4 *3 (-13 (-344) (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8))))))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-531))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) (-4 *8 (-892 *7 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *9) (|:| |radicand| *9))) (-5 *1 (-896 *5 *6 *7 *8 *9)) (-5 *4 (-721)) (-4 *9 (-13 (-344) (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8))))))) (-2246 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-523)) (-4 *7 (-892 *3 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *8) (|:| |radicand| *8))) (-5 *1 (-896 *5 *6 *3 *7 *8)) (-5 *4 (-721)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1840 (*7 $)) (-15 -1853 (*7 $)) (-15 -2265 ($ *7)))))))) -(-10 -7 (-15 -2246 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#3| (-721))) (-15 -2168 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) (-388 (-531)) (-721))) (IF (|has| |#3| (-432)) (-15 -1290 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#5| (-721))) |%noBranch|) (-15 -1756 ((-2 (|:| -1790 (-721)) (|:| -2005 |#4|) (|:| |radicand| (-598 |#4|))) |#4| (-721)))) -((-2247 (((-110) $ $) NIL)) (-2338 (($ (-1049)) 8)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 14) (((-1049) $) 11)) (-2148 (((-110) $ $) 10))) -(((-897) (-13 (-1030) (-572 (-1049)) (-10 -8 (-15 -2338 ($ (-1049)))))) (T -897)) -((-2338 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-897))))) -(-13 (-1030) (-572 (-1049)) (-10 -8 (-15 -2338 ($ (-1049))))) -((-2659 (((-1025 (-208)) $) 8)) (-2647 (((-1025 (-208)) $) 9)) (-2126 (((-598 (-598 (-886 (-208)))) $) 10)) (-2265 (((-806) $) 6))) -(((-898) (-133)) (T -898)) -((-2126 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-598 (-598 (-886 (-208))))))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208))))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208)))))) -(-13 (-572 (-806)) (-10 -8 (-15 -2126 ((-598 (-598 (-886 (-208)))) $)) (-15 -2647 ((-1025 (-208)) $)) (-15 -2659 ((-1025 (-208)) $)))) -(((-572 (-806)) . T)) -((-2924 (((-3 (-639 |#1|) "failed") |#2| (-864)) 15))) -(((-899 |#1| |#2|) (-10 -7 (-15 -2924 ((-3 (-639 |#1|) "failed") |#2| (-864)))) (-523) (-609 |#1|)) (T -899)) -((-2924 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-864)) (-4 *5 (-523)) (-5 *2 (-639 *5)) (-5 *1 (-899 *5 *3)) (-4 *3 (-609 *5))))) -(-10 -7 (-15 -2924 ((-3 (-639 |#1|) "failed") |#2| (-864)))) -((-3203 (((-901 |#2|) (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|) 16)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|) 18)) (-3261 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 13))) -(((-900 |#1| |#2|) (-10 -7 (-15 -3203 ((-901 |#2|) (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -3261 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1138) (-1138)) (T -900)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-901 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-900 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-901 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-901 *5)) (-5 *1 (-900 *6 *5))))) -(-10 -7 (-15 -3203 ((-901 |#2|) (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -3261 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 16 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 15 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 13)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 12)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 10 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) 17 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 11)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 14) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 8 (|has| $ (-6 -4273))))) -(((-901 |#1|) (-19 |#1|) (-1138)) (T -901)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3151 (((-731) $) 15)) (-3643 (($ $ |#1|) 56)) (-4146 (($ $) 32)) (-3289 (($ $) 31)) (-1516 (((-3 |#1| "failed") $) 48)) (-3958 ((|#1| $) NIL)) (-2290 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3819 (((-816) $ (-1 (-816) (-816) (-816)) (-1 (-816) (-816) (-816)) (-537)) 46)) (-4125 ((|#1| $ (-537)) 30)) (-1628 ((|#2| $ (-537)) 29)) (-3572 (($ (-1 |#1| |#1|) $) 34)) (-1325 (($ (-1 |#2| |#2|) $) 38)) (-3614 (($) 10)) (-1518 (($ |#1| |#2|) 22)) (-3432 (($ (-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|)))) 23)) (-4018 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $) 13)) (-3382 (($ |#1| $) 57)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3261 (((-111) $ $) 60)) (-2341 (((-816) $) 19) (($ |#1|) 16)) (-2244 (((-111) $ $) 25))) +(((-610 |#1| |#2| |#3|) (-13 (-1045) (-989 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-1 (-816) (-816) (-816)) (-1 (-816) (-816) (-816)) (-537))) (-15 -4018 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $)) (-15 -1518 ($ |#1| |#2|)) (-15 -3432 ($ (-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))))) (-15 -1628 (|#2| $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3289 ($ $)) (-15 -4146 ($ $)) (-15 -3151 ((-731) $)) (-15 -3614 ($)) (-15 -3643 ($ $ |#1|)) (-15 -3382 ($ |#1| $)) (-15 -2290 ($ |#1| |#2| $)) (-15 -2290 ($ $ $)) (-15 -3261 ((-111) $ $)) (-15 -1325 ($ (-1 |#2| |#2|) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)))) (-1045) (-23) |#2|) (T -610)) +((-3819 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-816) (-816) (-816))) (-5 *4 (-537)) (-5 *2 (-816)) (-5 *1 (-610 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-23)) (-14 *7 *6))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4))) (-1518 (*1 *1 *2 *3) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-610 *3 *4 *5)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-23)) (-5 *1 (-610 *4 *2 *5)) (-4 *4 (-1045)) (-14 *5 *2))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *2 (-1045)) (-5 *1 (-610 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3289 (*1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4))) (-3614 (*1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3643 (*1 *1 *1 *2) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3382 (*1 *1 *2 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) (-14 *4 *3))) (-3261 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4))) (-1325 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)))) (-3572 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-610 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1045) (-989 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-1 (-816) (-816) (-816)) (-1 (-816) (-816) (-816)) (-537))) (-15 -4018 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))) $)) (-15 -1518 ($ |#1| |#2|)) (-15 -3432 ($ (-606 (-2 (|:| |gen| |#1|) (|:| -4185 |#2|))))) (-15 -1628 (|#2| $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3289 ($ $)) (-15 -4146 ($ $)) (-15 -3151 ((-731) $)) (-15 -3614 ($)) (-15 -3643 ($ $ |#1|)) (-15 -3382 ($ |#1| $)) (-15 -2290 ($ |#1| |#2| $)) (-15 -2290 ($ $ $)) (-15 -3261 ((-111) $ $)) (-15 -1325 ($ (-1 |#2| |#2|) $)) (-15 -3572 ($ (-1 |#1| |#1|) $)))) +((-2187 (((-537) $) 24)) (-4049 (($ |#2| $ (-537)) 22) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) 12)) (-1641 (((-111) (-537) $) 15)) (-3434 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-606 $)) NIL))) +(((-611 |#1| |#2|) (-10 -8 (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2187 ((-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -1641 ((-111) (-537) |#1|))) (-612 |#2|) (-1154)) (T -611)) +NIL +(-10 -8 (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -3434 (|#1| (-606 |#1|))) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -2187 ((-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -1641 ((-111) (-537) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-612 |#1|) (-134) (-1154)) (T -612)) +((-3157 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-4049 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-612 *2)) (-4 *2 (-1154)))) (-4049 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1167 (-537))) (|has| *1 (-6 -4301)) (-4 *1 (-612 *2)) (-4 *2 (-1154))))) +(-13 (-570 (-537) |t#1|) (-145 |t#1|) (-10 -8 (-15 -3157 ($ (-731) |t#1|)) (-15 -3434 ($ $ |t#1|)) (-15 -3434 ($ |t#1| $)) (-15 -3434 ($ $ $)) (-15 -3434 ($ (-606 $))) (-15 -1612 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1922 ($ $ (-1167 (-537)))) (-15 -1856 ($ $ (-537))) (-15 -1856 ($ $ (-1167 (-537)))) (-15 -4049 ($ |t#1| $ (-537))) (-15 -4049 ($ $ $ (-537))) (IF (|has| $ (-6 -4301)) (-15 -2476 (|t#1| $ (-1167 (-537)) |t#1|)) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-1895 (((-3 |#2| "failed") |#3| |#2| (-1117) |#2| (-606 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) "failed") |#3| |#2| (-1117)) 44))) +(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) "failed") |#3| |#2| (-1117))) (-15 -1895 ((-3 |#2| "failed") |#3| |#2| (-1117) |#2| (-606 |#2|)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912)) (-617 |#2|)) (T -613)) +((-1895 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *2)) (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-613 *6 *2 *3)) (-4 *3 (-617 *2)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1117)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-4 *4 (-13 (-29 *6) (-1139) (-912))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) (-5 *1 (-613 *6 *4 *3)) (-4 *3 (-617 *4))))) +(-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) "failed") |#3| |#2| (-1117))) (-15 -1895 ((-3 |#2| "failed") |#3| |#2| (-1117) |#2| (-606 |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-347)))) (-1691 (($ $ $) NIL (|has| |#1| (-347)))) (-1907 (($ $ (-731)) NIL (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) NIL)) (-3957 (($ $ $) NIL (|has| |#1| (-347)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) NIL)) (-4273 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($) NIL)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-614 |#1|) (-617 |#1|) (-218)) (T -614)) +NIL +(-617 |#1|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-347)))) (-1691 (($ $ $) NIL (|has| |#1| (-347)))) (-1907 (($ $ (-731)) NIL (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3957 (($ $ $) NIL (|has| |#1| (-347)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) NIL)) (-4273 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($) NIL)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-615 |#1| |#2|) (-13 (-617 |#1|) (-270 |#2| |#2|)) (-218) (-13 (-609 |#1|) (-10 -8 (-15 -3456 ($ $))))) (T -615)) +NIL +(-13 (-617 |#1|) (-270 |#2| |#2|)) +((-2078 (($ $) 26)) (-4273 (($ $) 24)) (-4230 (($) 12))) +(((-616 |#1| |#2|) (-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -4273 (|#1| |#1|)) (-15 -4230 (|#1|))) (-617 |#2|) (-998)) (T -616)) +NIL +(-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -4273 (|#1| |#1|)) (-15 -4230 (|#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2078 (($ $) 80 (|has| |#1| (-347)))) (-1691 (($ $ $) 82 (|has| |#1| (-347)))) (-1907 (($ $ (-731)) 81 (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-4279 (($ $ $) 43 (|has| |#1| (-347)))) (-2262 (($ $ $) 44 (|has| |#1| (-347)))) (-2623 (($ $ $) 46 (|has| |#1| (-347)))) (-1704 (($ $ $) 41 (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 40 (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) 42 (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 45 (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) 72 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 70 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 67)) (-3958 (((-537) $) 73 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 71 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 66)) (-3940 (($ $) 62)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 53 (|has| |#1| (-435)))) (-2836 (((-111) $) 30)) (-3733 (($ |#1| (-731)) 60)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 56 (|has| |#1| (-529)))) (-1883 (((-731) $) 64)) (-3555 (($ $ $) 50 (|has| |#1| (-347)))) (-3592 (($ $ $) 51 (|has| |#1| (-347)))) (-1690 (($ $ $) 39 (|has| |#1| (-347)))) (-3193 (($ $ $) 48 (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 47 (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) 49 (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 52 (|has| |#1| (-347)))) (-3912 ((|#1| $) 63)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) 85)) (-3957 (($ $ $) 79 (|has| |#1| (-347)))) (-2872 (((-731) $) 65)) (-1835 ((|#1| $) 54 (|has| |#1| (-435)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 69 (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 68)) (-3459 (((-606 |#1|) $) 59)) (-3500 ((|#1| $ (-731)) 61)) (-3654 (((-731)) 28)) (-3127 ((|#1| $ |#1| |#1|) 58)) (-4273 (($ $) 83)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($) 84)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-617 |#1|) (-134) (-998)) (T -617)) +((-4230 (*1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) (-4273 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) (-1691 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-1907 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-617 *3)) (-4 *3 (-998)) (-4 *3 (-347)))) (-2078 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3957 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(-13 (-809 |t#1|) (-270 |t#1| |t#1|) (-10 -8 (-15 -4230 ($)) (-15 -4273 ($ $)) (IF (|has| |t#1| (-347)) (PROGN (-15 -1691 ($ $ $)) (-15 -1907 ($ $ (-731))) (-15 -2078 ($ $)) (-15 -3957 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-270 |#1| |#1|) . T) ((-395 |#1|) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-809 |#1|) . T)) +((-4251 (((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))) 74 (|has| |#1| (-27)))) (-3622 (((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))) 73 (|has| |#1| (-27))) (((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 17))) +(((-618 |#1| |#2|) (-10 -7 (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)))) (-15 -4251 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))))) |%noBranch|)) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -618)) +((-4251 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5))))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-614 (-391 *6)))) (-5 *1 (-618 *5 *6)) (-5 *3 (-614 (-391 *6)))))) +(-10 -7 (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3622 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|)))) (-15 -4251 ((-606 (-614 (-391 |#2|))) (-614 (-391 |#2|))))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2078 (($ $) NIL (|has| |#1| (-347)))) (-1691 (($ $ $) 28 (|has| |#1| (-347)))) (-1907 (($ $ (-731)) 31 (|has| |#1| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-1922 ((|#1| $ |#1|) 24)) (-3957 (($ $ $) 33 (|has| |#1| (-347)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) 20) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) 23)) (-4273 (($ $) NIL)) (-2928 (($) 21 T CONST)) (-2943 (($) 8 T CONST)) (-4230 (($) NIL)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-617 |#1|) (-998) (-1 |#1| |#1|)) (T -619)) +NIL +(-617 |#1|) +((-1691 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1907 ((|#2| |#2| (-731) (-1 |#1| |#1|)) 40)) (-3957 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-620 |#1| |#2|) (-10 -7 (-15 -1691 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1907 (|#2| |#2| (-731) (-1 |#1| |#1|))) (-15 -3957 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-347) (-617 |#1|)) (T -620)) +((-3957 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) (-4 *2 (-617 *4)))) (-1907 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) (-5 *1 (-620 *5 *2)) (-4 *2 (-617 *5)))) (-1691 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) (-4 *2 (-617 *4))))) +(-10 -7 (-15 -1691 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1907 (|#2| |#2| (-731) (-1 |#1| |#1|))) (-15 -3957 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-1512 (($ $ $) 9))) +(((-621 |#1|) (-10 -8 (-15 -1512 (|#1| |#1| |#1|))) (-622)) (T -621)) +NIL +(-10 -8 (-15 -1512 (|#1| |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-3284 (($ $) 10)) (-1512 (($ $ $) 8)) (-2244 (((-111) $ $) 6)) (-1501 (($ $ $) 9))) +(((-622) (-134)) (T -622)) +((-3284 (*1 *1 *1) (-4 *1 (-622))) (-1501 (*1 *1 *1 *1) (-4 *1 (-622))) (-1512 (*1 *1 *1 *1) (-4 *1 (-622)))) +(-13 (-100) (-10 -8 (-15 -3284 ($ $)) (-15 -1501 ($ $ $)) (-15 -1512 ($ $ $)))) +(((-100) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 15)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3301 ((|#1| $) 21)) (-2444 (($ $ $) NIL (|has| |#1| (-751)))) (-3889 (($ $ $) NIL (|has| |#1| (-751)))) (-1654 (((-1100) $) 46)) (-2528 (((-1064) $) NIL)) (-3315 ((|#3| $) 22)) (-2341 (((-816) $) 42)) (-2928 (($) 10 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-751)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-751)))) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) NIL (|has| |#1| (-751)))) (-2263 (((-111) $ $) 24 (|has| |#1| (-751)))) (-2340 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2329 (($ $) 17) (($ $ $) NIL)) (-2318 (($ $ $) 27)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-623 |#1| |#2| |#3|) (-13 (-678 |#2|) (-10 -8 (IF (|has| |#1| (-751)) (-6 (-751)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) (-678 |#2|) (-163) (|SubsetCategory| (-687) |#2|)) (T -623)) +((-2340 (*1 *1 *1 *2) (-12 (-4 *4 (-163)) (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4)) (-4 *2 (|SubsetCategory| (-687) *4)))) (-2340 (*1 *1 *2 *3) (-12 (-4 *4 (-163)) (-5 *1 (-623 *2 *4 *3)) (-4 *2 (-678 *4)) (-4 *3 (|SubsetCategory| (-687) *4)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-163)) (-4 *2 (-678 *3)) (-5 *1 (-623 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-687) *3)))) (-3315 (*1 *2 *1) (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4))))) +(-13 (-678 |#2|) (-10 -8 (IF (|has| |#1| (-751)) (-6 (-751)) |%noBranch|) (-15 -2340 ($ $ |#3|)) (-15 -2340 ($ |#1| |#3|)) (-15 -3301 (|#1| $)) (-15 -3315 (|#3| $)))) +((-3328 (((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|)) 33))) +(((-624 |#1|) (-10 -7 (-15 -3328 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|)))) (-862)) (T -624)) +((-3328 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *4))) (-5 *3 (-1113 *4)) (-4 *4 (-862)) (-5 *1 (-624 *4))))) +(-10 -7 (-15 -3328 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 82)) (-1233 (($ $ (-731)) 90)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3139 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 48)) (-1516 (((-3 (-633 |#1|) "failed") $) NIL)) (-3958 (((-633 |#1|) $) NIL)) (-3940 (($ $) 89)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-633 |#1|) |#2|) 68)) (-2177 (($ $) 86)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (((-1223 |#1| |#2|) (-1223 |#1| |#2|) $) 47)) (-2370 (((-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3901 (((-633 |#1|) $) NIL)) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4116 (($ $ |#1| $) 30) (($ $ (-606 |#1|) (-606 $)) 32)) (-2872 (((-731) $) 88)) (-2350 (($ $ $) 20) (($ (-633 |#1|) (-633 |#1|)) 77) (($ (-633 |#1|) $) 75) (($ $ (-633 |#1|)) 76)) (-2341 (((-816) $) NIL) (($ |#1|) 74) (((-1214 |#1| |#2|) $) 58) (((-1223 |#1| |#2|) $) 41) (($ (-633 |#1|)) 25)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-633 |#1|)) NIL)) (-3449 ((|#2| (-1223 |#1| |#2|) $) 43)) (-2928 (($) 23 T CONST)) (-1820 (((-606 (-2 (|:| |k| (-633 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3836 (((-3 $ "failed") (-1214 |#1| |#2|)) 60)) (-4071 (($ (-633 |#1|)) 14)) (-2244 (((-111) $ $) 44)) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) 66) (($ $ $) NIL)) (-2318 (($ $ $) 29)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-633 |#1|)) NIL))) +(((-625 |#1| |#2|) (-13 (-358 |#1| |#2|) (-366 |#2| (-633 |#1|)) (-10 -8 (-15 -3836 ((-3 $ "failed") (-1214 |#1| |#2|))) (-15 -2350 ($ (-633 |#1|) (-633 |#1|))) (-15 -2350 ($ (-633 |#1|) $)) (-15 -2350 ($ $ (-633 |#1|))))) (-807) (-163)) (T -625)) +((-3836 (*1 *1 *2) (|partial| -12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *1 (-625 *3 *4)))) (-2350 (*1 *1 *2 *2) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) (-4 *4 (-163)))) (-2350 (*1 *1 *2 *1) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) (-4 *4 (-163)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) (-4 *4 (-163))))) +(-13 (-358 |#1| |#2|) (-366 |#2| (-633 |#1|)) (-10 -8 (-15 -3836 ((-3 $ "failed") (-1214 |#1| |#2|))) (-15 -2350 ($ (-633 |#1|) (-633 |#1|))) (-15 -2350 ($ (-633 |#1|) $)) (-15 -2350 ($ $ (-633 |#1|))))) +((-2450 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-1543 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-3435 (($ (-1 (-111) |#2|) $) 28)) (-4146 (($ $) 56)) (-1376 (($ $) 64)) (-3026 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-3195 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2299 (((-537) |#2| $ (-537)) 61) (((-537) |#2| $) NIL) (((-537) (-1 (-111) |#2|) $) 47)) (-3157 (($ (-731) |#2|) 54)) (-1646 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-1470 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-1612 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1285 (($ |#2|) 15)) (-3499 (($ $ $ (-537)) 36) (($ |#2| $ (-537)) 34)) (-1266 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-3282 (($ $ (-1167 (-537))) 44) (($ $ (-537)) 38)) (-1241 (($ $ $ (-537)) 60)) (-2494 (($ $) 58)) (-2263 (((-111) $ $) 66))) +(((-626 |#1| |#2|) (-10 -8 (-15 -1285 (|#1| |#2|)) (-15 -3282 (|#1| |#1| (-537))) (-15 -3282 (|#1| |#1| (-1167 (-537)))) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3499 (|#1| |#2| |#1| (-537))) (-15 -3499 (|#1| |#1| |#1| (-537))) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -1646 (|#1| |#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -4146 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3157 (|#1| (-731) |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) (-627 |#2|) (-1154)) (T -626)) +NIL +(-10 -8 (-15 -1285 (|#1| |#2|)) (-15 -3282 (|#1| |#1| (-537))) (-15 -3282 (|#1| |#1| (-1167 (-537)))) (-15 -3026 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3499 (|#1| |#2| |#1| (-537))) (-15 -3499 (|#1| |#1| |#1| (-537))) (-15 -1646 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -3435 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3026 (|#1| |#2| |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -1646 (|#1| |#1| |#1|)) (-15 -1470 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2450 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2299 ((-537) (-1 (-111) |#2|) |#1|)) (-15 -2299 ((-537) |#2| |#1|)) (-15 -2299 ((-537) |#2| |#1| (-537))) (-15 -1470 (|#1| |#1| |#1|)) (-15 -2450 ((-111) |#1|)) (-15 -1241 (|#1| |#1| |#1| (-537))) (-15 -4146 (|#1| |#1|)) (-15 -1543 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1543 (|#1| |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3195 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1266 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -3157 (|#1| (-731) |#2|)) (-15 -1612 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2494 (|#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-1279 (((-1205) $ (-537) (-537)) 97 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2450 (((-111) $) 142 (|has| |#1| (-807))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-1543 (($ $) 146 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4301)))) (-1566 (($ $) 141 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 117 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 86 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3435 (($ (-1 (-111) |#1|) $) 129)) (-1936 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4300)))) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-4146 (($ $) 144 (|has| $ (-6 -4301)))) (-3289 (($ $) 134)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-1376 (($ $) 131 (|has| |#1| (-1045)))) (-3221 (($ $) 99 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 130 (|has| |#1| (-1045))) (($ (-1 (-111) |#1|) $) 125)) (-2355 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4300))) (($ |#1| $) 100 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4091 ((|#1| $ (-537) |#1|) 85 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 87)) (-4254 (((-111) $) 83)) (-2299 (((-537) |#1| $ (-537)) 139 (|has| |#1| (-1045))) (((-537) |#1| $) 138 (|has| |#1| (-1045))) (((-537) (-1 (-111) |#1|) $) 137)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) 108)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 95 (|has| (-537) (-807)))) (-2444 (($ $ $) 147 (|has| |#1| (-807)))) (-1646 (($ $ $) 132 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-1470 (($ $ $) 140 (|has| |#1| (-807))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 94 (|has| (-537) (-807)))) (-3889 (($ $ $) 148 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1285 (($ |#1|) 122)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-3499 (($ $ $ (-537)) 127) (($ |#1| $ (-537)) 126)) (-4049 (($ $ $ (-537)) 116) (($ |#1| $ (-537)) 115)) (-1270 (((-606 (-537)) $) 92)) (-1641 (((-111) (-537) $) 91)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-3040 (($ $ |#1|) 96 (|has| $ (-6 -4301)))) (-1492 (((-111) $) 84)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 90)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1167 (-537))) 112) ((|#1| $ (-537)) 89) ((|#1| $ (-537) |#1|) 88)) (-2364 (((-537) $ $) 44)) (-3282 (($ $ (-1167 (-537))) 124) (($ $ (-537)) 123)) (-1856 (($ $ (-1167 (-537))) 114) (($ $ (-537)) 113)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 143 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 98 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 107)) (-3115 (($ $ $) 61) (($ $ |#1|) 60)) (-3434 (($ $ $) 78) (($ |#1| $) 77) (($ (-606 $)) 110) (($ $ |#1|) 109)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 150 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 151 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 149 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 152 (|has| |#1| (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-627 |#1|) (-134) (-1154)) (T -627)) +((-1285 (*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1154))))) +(-13 (-1091 |t#1|) (-357 |t#1|) (-266 |t#1|) (-10 -8 (-15 -1285 ($ |t#1|)))) +(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-266 |#1|) . T) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-807) |has| |#1| (-807)) ((-962 |#1|) . T) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1091 |#1|) . T) ((-1154) . T) ((-1188 |#1|) . T)) +((-1895 (((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-606 (-606 |#1|)) (-606 (-1200 |#1|))) 22) (((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-649 |#1|) (-606 (-1200 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-606 (-606 |#1|)) (-1200 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)) 14)) (-3705 (((-731) (-649 |#1|) (-1200 |#1|)) 30)) (-1431 (((-3 (-1200 |#1|) "failed") (-649 |#1|) (-1200 |#1|)) 24)) (-2955 (((-111) (-649 |#1|) (-1200 |#1|)) 27))) +(((-628 |#1|) (-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|))) (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-606 (-606 |#1|)) (-1200 |#1|))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-649 |#1|) (-606 (-1200 |#1|)))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-606 (-606 |#1|)) (-606 (-1200 |#1|)))) (-15 -1431 ((-3 (-1200 |#1|) "failed") (-649 |#1|) (-1200 |#1|))) (-15 -2955 ((-111) (-649 |#1|) (-1200 |#1|))) (-15 -3705 ((-731) (-649 |#1|) (-1200 |#1|)))) (-347)) (T -628)) +((-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-5 *2 (-731)) (-5 *1 (-628 *5)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-5 *2 (-111)) (-5 *1 (-628 *5)))) (-1431 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1200 *4)) (-5 *3 (-649 *4)) (-4 *4 (-347)) (-5 *1 (-628 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) (-5 *2 (-606 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5)))))) (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 (-606 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5)))))) (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5))))) (-5 *1 (-628 *5)) (-5 *4 (-1200 *5)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 *5) "failed")) (|:| -2122 (-606 (-1200 *5))))) (-5 *1 (-628 *5)) (-5 *4 (-1200 *5))))) +(-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|))) (-15 -1895 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-606 (-606 |#1|)) (-1200 |#1|))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-649 |#1|) (-606 (-1200 |#1|)))) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|))))) (-606 (-606 |#1|)) (-606 (-1200 |#1|)))) (-15 -1431 ((-3 (-1200 |#1|) "failed") (-649 |#1|) (-1200 |#1|))) (-15 -2955 ((-111) (-649 |#1|) (-1200 |#1|))) (-15 -3705 ((-731) (-649 |#1|) (-1200 |#1|)))) +((-1895 (((-606 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|)))) |#4| (-606 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|) 45)) (-3705 (((-731) |#4| |#3|) 17)) (-1431 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2955 (((-111) |#4| |#3|) 13))) +(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|)) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|)))) |#4| (-606 |#3|))) (-15 -1431 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2955 ((-111) |#4| |#3|)) (-15 -3705 ((-731) |#4| |#3|))) (-347) (-13 (-357 |#1|) (-10 -7 (-6 -4301))) (-13 (-357 |#1|) (-10 -7 (-6 -4301))) (-647 |#1| |#2| |#3|)) (T -629)) +((-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-731)) (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) (-2955 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-111)) (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) (-1431 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-347)) (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4301)))) (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))) (-5 *1 (-629 *4 *5 *2 *3)) (-4 *3 (-647 *4 *5 *2)))) (-1895 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-606 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2122 (-606 *7))))) (-5 *1 (-629 *5 *6 *7 *3)) (-5 *4 (-606 *7)) (-4 *3 (-647 *5 *6 *7)))) (-1895 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4))))) +(-10 -7 (-15 -1895 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|)) (-15 -1895 ((-606 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|)))) |#4| (-606 |#3|))) (-15 -1431 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2955 ((-111) |#4| |#3|)) (-15 -3705 ((-731) |#4| |#3|))) +((-1712 (((-2 (|:| |particular| (-3 (-1200 (-391 |#4|)) "failed")) (|:| -2122 (-606 (-1200 (-391 |#4|))))) (-606 |#4|) (-606 |#3|)) 45))) +(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1712 ((-2 (|:| |particular| (-3 (-1200 (-391 |#4|)) "failed")) (|:| -2122 (-606 (-1200 (-391 |#4|))))) (-606 |#4|) (-606 |#3|)))) (-529) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -630)) +((-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *7)) (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 (-391 *8)) "failed")) (|:| -2122 (-606 (-1200 (-391 *8)))))) (-5 *1 (-630 *5 *6 *7 *8))))) +(-10 -7 (-15 -1712 ((-2 (|:| |particular| (-3 (-1200 (-391 |#4|)) "failed")) (|:| -2122 (-606 (-1200 (-391 |#4|))))) (-606 |#4|) (-606 |#3|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1397 (((-3 $ "failed")) NIL (|has| |#2| (-529)))) (-1428 ((|#2| $) NIL)) (-3234 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3822 (((-1200 (-649 |#2|))) NIL) (((-1200 (-649 |#2|)) (-1200 $)) NIL)) (-3348 (((-111) $) NIL)) (-2568 (((-1200 $)) 37)) (-2506 (((-111) $ (-731)) NIL)) (-3110 (($ |#2|) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) NIL (|has| |#2| (-291)))) (-2964 (((-225 |#1| |#2|) $ (-537)) NIL)) (-2472 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#2| (-529)))) (-2649 (((-3 $ "failed")) NIL (|has| |#2| (-529)))) (-4263 (((-649 |#2|)) NIL) (((-649 |#2|) (-1200 $)) NIL)) (-2624 ((|#2| $) NIL)) (-4246 (((-649 |#2|) $) NIL) (((-649 |#2|) $ (-1200 $)) NIL)) (-3800 (((-3 $ "failed") $) NIL (|has| |#2| (-529)))) (-1899 (((-1113 (-905 |#2|))) NIL (|has| |#2| (-347)))) (-2541 (($ $ (-874)) NIL)) (-4260 ((|#2| $) NIL)) (-3112 (((-1113 |#2|) $) NIL (|has| |#2| (-529)))) (-2503 ((|#2|) NIL) ((|#2| (-1200 $)) NIL)) (-1889 (((-1113 |#2|) $) NIL)) (-1855 (((-111)) NIL)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) NIL)) (-3447 (($ (-1200 |#2|)) NIL) (($ (-1200 |#2|) (-1200 $)) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3705 (((-731) $) NIL (|has| |#2| (-529))) (((-874)) 38)) (-4030 ((|#2| $ (-537) (-537)) NIL)) (-3364 (((-111)) NIL)) (-1891 (($ $ (-874)) NIL)) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL)) (-2342 (((-731) $) NIL (|has| |#2| (-529)))) (-2630 (((-606 (-225 |#1| |#2|)) $) NIL (|has| |#2| (-529)))) (-2931 (((-731) $) NIL)) (-2186 (((-111)) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#2| $) NIL (|has| |#2| (-6 (-4302 "*"))))) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#2|))) NIL)) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3156 (((-606 (-606 |#2|)) $) NIL)) (-1684 (((-111)) NIL)) (-3468 (((-111)) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3324 (((-3 (-2 (|:| |particular| $) (|:| -2122 (-606 $))) "failed")) NIL (|has| |#2| (-529)))) (-1652 (((-3 $ "failed")) NIL (|has| |#2| (-529)))) (-3699 (((-649 |#2|)) NIL) (((-649 |#2|) (-1200 $)) NIL)) (-4217 ((|#2| $) NIL)) (-3486 (((-649 |#2|) $) NIL) (((-649 |#2|) $ (-1200 $)) NIL)) (-3820 (((-3 $ "failed") $) NIL (|has| |#2| (-529)))) (-4096 (((-1113 (-905 |#2|))) NIL (|has| |#2| (-347)))) (-3060 (($ $ (-874)) NIL)) (-3408 ((|#2| $) NIL)) (-2818 (((-1113 |#2|) $) NIL (|has| |#2| (-529)))) (-2757 ((|#2|) NIL) ((|#2| (-1200 $)) NIL)) (-4207 (((-1113 |#2|) $) NIL)) (-2987 (((-111)) NIL)) (-1654 (((-1100) $) NIL)) (-2631 (((-111)) NIL)) (-2077 (((-111)) NIL)) (-2415 (((-111)) NIL)) (-1321 (((-3 $ "failed") $) NIL (|has| |#2| (-347)))) (-2528 (((-1064) $) NIL)) (-3162 (((-111)) NIL)) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) (-537) |#2|) NIL) ((|#2| $ (-537) (-537)) 22) ((|#2| $ (-537)) NIL)) (-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-3018 ((|#2| $) NIL)) (-3189 (($ (-606 |#2|)) NIL)) (-3400 (((-111) $) NIL)) (-4089 (((-225 |#1| |#2|) $) NIL)) (-3075 ((|#2| $) NIL (|has| |#2| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-1484 (((-649 |#2|) (-1200 $)) NIL) (((-1200 |#2|) $) NIL) (((-649 |#2|) (-1200 $) (-1200 $)) NIL) (((-1200 |#2|) $ (-1200 $)) 25)) (-3996 (($ (-1200 |#2|)) NIL) (((-1200 |#2|) $) NIL)) (-4183 (((-606 (-905 |#2|))) NIL) (((-606 (-905 |#2|)) (-1200 $)) NIL)) (-1674 (($ $ $) NIL)) (-3365 (((-111)) NIL)) (-2198 (((-225 |#1| |#2|) $ (-537)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) NIL) (((-649 |#2|) $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) 36)) (-3678 (((-606 (-1200 |#2|))) NIL (|has| |#2| (-529)))) (-3727 (($ $ $ $) NIL)) (-2510 (((-111)) NIL)) (-3127 (($ (-649 |#2|) $) NIL)) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-3212 (($ $ $) NIL)) (-3750 (((-111)) NIL)) (-3530 (((-111)) NIL)) (-1972 (((-111)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#2| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) NIL) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-631 |#1| |#2|) (-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-401 |#2|)) (-874) (-163)) (T -631)) +NIL +(-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-401 |#2|)) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2243 (((-606 (-1122)) $) 10)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-632) (-13 (-1029) (-10 -8 (-15 -2243 ((-606 (-1122)) $))))) (T -632)) +((-2243 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-632))))) +(-13 (-1029) (-10 -8 (-15 -2243 ((-606 (-1122)) $)))) +((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) NIL)) (-3278 (($ $) 52)) (-2615 (((-111) $) NIL)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1427 (((-3 $ "failed") (-779 |#1|)) 23)) (-2399 (((-111) (-779 |#1|)) 15)) (-2504 (($ (-779 |#1|)) 24)) (-2680 (((-111) $ $) 30)) (-3845 (((-874) $) 37)) (-3267 (($ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3622 (((-606 $) (-779 |#1|)) 17)) (-2341 (((-816) $) 43) (($ |#1|) 34) (((-779 |#1|) $) 39) (((-637 |#1|) $) 44)) (-2557 (((-57 (-606 $)) (-606 |#1|) (-874)) 57)) (-2301 (((-606 $) (-606 |#1|) (-874)) 60)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 53)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 38))) +(((-633 |#1|) (-13 (-807) (-989 |#1|) (-10 -8 (-15 -2615 ((-111) $)) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ((-637 |#1|) $)) (-15 -3622 ((-606 $) (-779 |#1|))) (-15 -2399 ((-111) (-779 |#1|))) (-15 -2504 ($ (-779 |#1|))) (-15 -1427 ((-3 $ "failed") (-779 |#1|))) (-15 -2163 ((-606 |#1|) $)) (-15 -2557 ((-57 (-606 $)) (-606 |#1|) (-874))) (-15 -2301 ((-606 $) (-606 |#1|) (-874))))) (-807)) (T -633)) +((-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-3267 (*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-633 *4))) (-5 *1 (-633 *4)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-111)) (-5 *1 (-633 *4)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3)))) (-1427 (*1 *1 *2) (|partial| -12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) (-5 *2 (-57 (-606 (-633 *5)))) (-5 *1 (-633 *5)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) (-5 *2 (-606 (-633 *5))) (-5 *1 (-633 *5))))) +(-13 (-807) (-989 |#1|) (-10 -8 (-15 -2615 ((-111) $)) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ((-637 |#1|) $)) (-15 -3622 ((-606 $) (-779 |#1|))) (-15 -2399 ((-111) (-779 |#1|))) (-15 -2504 ($ (-779 |#1|))) (-15 -1427 ((-3 $ "failed") (-779 |#1|))) (-15 -2163 ((-606 |#1|) $)) (-15 -2557 ((-57 (-606 $)) (-606 |#1|) (-874))) (-15 -2301 ((-606 $) (-606 |#1|) (-874))))) +((-3619 ((|#2| $) 76)) (-4199 (($ $) 96)) (-2506 (((-111) $ (-731)) 26)) (-3200 (($ $) 85) (($ $ (-731)) 88)) (-4254 (((-111) $) 97)) (-2570 (((-606 $) $) 72)) (-3868 (((-111) $ $) 71)) (-1642 (((-111) $ (-731)) 24)) (-1659 (((-537) $) 46)) (-2187 (((-537) $) 45)) (-2489 (((-111) $ (-731)) 22)) (-3862 (((-111) $) 74)) (-2375 ((|#2| $) 89) (($ $ (-731)) 92)) (-4049 (($ $ $ (-537)) 62) (($ |#2| $ (-537)) 61)) (-1270 (((-606 (-537)) $) 44)) (-1641 (((-111) (-537) $) 42)) (-3188 ((|#2| $) NIL) (($ $ (-731)) 84)) (-1540 (($ $ (-537)) 100)) (-1492 (((-111) $) 99)) (-3206 (((-111) (-1 (-111) |#2|) $) 32)) (-3010 (((-606 |#2|) $) 33)) (-1922 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1167 (-537))) 58) ((|#2| $ (-537)) 40) ((|#2| $ (-537) |#2|) 41)) (-2364 (((-537) $ $) 70)) (-1856 (($ $ (-1167 (-537))) 57) (($ $ (-537)) 51)) (-3335 (((-111) $) 66)) (-3136 (($ $) 81)) (-3597 (((-731) $) 80)) (-1935 (($ $) 79)) (-2350 (($ (-606 |#2|)) 37)) (-1577 (($ $) 101)) (-2804 (((-606 $) $) 69)) (-4261 (((-111) $ $) 68)) (-2030 (((-111) (-1 (-111) |#2|) $) 31)) (-2244 (((-111) $ $) 18)) (-2258 (((-731) $) 29))) +(((-634 |#1| |#2|) (-10 -8 (-15 -1577 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-537))) (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3010 ((-606 |#2|) |#1|)) (-15 -1641 ((-111) (-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -2187 ((-537) |#1|)) (-15 -1659 ((-537) |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -2364 ((-537) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) (-635 |#2|) (-1154)) (T -634)) +NIL +(-10 -8 (-15 -1577 (|#1| |#1|)) (-15 -1540 (|#1| |#1| (-537))) (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3010 ((-606 |#2|) |#1|)) (-15 -1641 ((-111) (-537) |#1|)) (-15 -1270 ((-606 (-537)) |#1|)) (-15 -2187 ((-537) |#1|)) (-15 -1659 ((-537) |#1|)) (-15 -2350 (|#1| (-606 |#2|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1856 (|#1| |#1| (-537))) (-15 -1856 (|#1| |#1| (-1167 (-537)))) (-15 -4049 (|#1| |#2| |#1| (-537))) (-15 -4049 (|#1| |#1| |#1| (-537))) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3868 ((-111) |#1| |#1|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -2364 ((-537) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -3206 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-1279 (((-1205) $ (-537) (-537)) 97 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 117 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 86 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 102)) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-2784 (($ $) 124)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-3221 (($ $) 99 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 100 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 103)) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4091 ((|#1| $ (-537) |#1|) 85 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 87)) (-4254 (((-111) $) 83)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2227 (((-731) $) 123)) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) 108)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 95 (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 94 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-4201 (($ $) 126)) (-3253 (((-111) $) 127)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-4049 (($ $ $ (-537)) 116) (($ |#1| $ (-537)) 115)) (-1270 (((-606 (-537)) $) 92)) (-1641 (((-111) (-537) $) 91)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-2950 ((|#1| $) 125)) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-3040 (($ $ |#1|) 96 (|has| $ (-6 -4301)))) (-1540 (($ $ (-537)) 122)) (-1492 (((-111) $) 84)) (-1892 (((-111) $) 128)) (-2848 (((-111) $) 129)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 90)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1167 (-537))) 112) ((|#1| $ (-537)) 89) ((|#1| $ (-537) |#1|) 88)) (-2364 (((-537) $ $) 44)) (-1856 (($ $ (-1167 (-537))) 114) (($ $ (-537)) 113)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 98 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 107)) (-3115 (($ $ $) 61 (|has| $ (-6 -4301))) (($ $ |#1|) 60 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 77) (($ (-606 $)) 110) (($ $ |#1|) 109)) (-1577 (($ $) 121)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-635 |#1|) (-134) (-1154)) (T -635)) +((-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-4201 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) (-2784 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) +(-13 (-1091 |t#1|) (-10 -8 (-15 -2355 ($ (-1 (-111) |t#1|) $)) (-15 -1936 ($ (-1 (-111) |t#1|) $)) (-15 -2848 ((-111) $)) (-15 -1892 ((-111) $)) (-15 -3253 ((-111) $)) (-15 -4201 ($ $)) (-15 -2950 (|t#1| $)) (-15 -2784 ($ $)) (-15 -2227 ((-731) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1091 |#1|) . T) ((-1154) . T) ((-1188 |#1|) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1775 (($ (-731) (-731) (-731)) 33 (|has| |#1| (-998)))) (-2506 (((-111) $ (-731)) NIL)) (-4204 ((|#1| $ (-731) (-731) (-731) |#1|) 27)) (-3832 (($) NIL T CONST)) (-2290 (($ $ $) 37 (|has| |#1| (-998)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3249 (((-1200 (-731)) $) 9)) (-2250 (($ (-1117) $ $) 22)) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-3779 (($ (-731)) 35 (|has| |#1| (-998)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-731) (-731) (-731)) 25)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2350 (($ (-606 (-606 (-606 |#1|)))) 44)) (-2341 (($ (-911 (-911 (-911 |#1|)))) 15) (((-911 (-911 (-911 |#1|))) $) 12) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-636 |#1|) (-13 (-471 |#1|) (-10 -8 (IF (|has| |#1| (-998)) (PROGN (-15 -1775 ($ (-731) (-731) (-731))) (-15 -3779 ($ (-731))) (-15 -2290 ($ $ $))) |%noBranch|) (-15 -2350 ($ (-606 (-606 (-606 |#1|))))) (-15 -1922 (|#1| $ (-731) (-731) (-731))) (-15 -4204 (|#1| $ (-731) (-731) (-731) |#1|)) (-15 -2341 ($ (-911 (-911 (-911 |#1|))))) (-15 -2341 ((-911 (-911 (-911 |#1|))) $)) (-15 -2250 ($ (-1117) $ $)) (-15 -3249 ((-1200 (-731)) $)))) (-1045)) (T -636)) +((-1775 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045)))) (-2290 (*1 *1 *1 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-606 *3)))) (-4 *3 (-1045)) (-5 *1 (-636 *3)))) (-1922 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045)))) (-4204 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-4 *3 (-1045)) (-5 *1 (-636 *3)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-5 *1 (-636 *3)) (-4 *3 (-1045)))) (-2250 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-636 *3)) (-4 *3 (-1045)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-1200 (-731))) (-5 *1 (-636 *3)) (-4 *3 (-1045))))) +(-13 (-471 |#1|) (-10 -8 (IF (|has| |#1| (-998)) (PROGN (-15 -1775 ($ (-731) (-731) (-731))) (-15 -3779 ($ (-731))) (-15 -2290 ($ $ $))) |%noBranch|) (-15 -2350 ($ (-606 (-606 (-606 |#1|))))) (-15 -1922 (|#1| $ (-731) (-731) (-731))) (-15 -4204 (|#1| $ (-731) (-731) (-731) |#1|)) (-15 -2341 ($ (-911 (-911 (-911 |#1|))))) (-15 -2341 ((-911 (-911 (-911 |#1|))) $)) (-15 -2250 ($ (-1117) $ $)) (-15 -3249 ((-1200 (-731)) $)))) +((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) 14)) (-3278 (($ $) 18)) (-2615 (((-111) $) 19)) (-1516 (((-3 |#1| "failed") $) 22)) (-3958 ((|#1| $) 20)) (-3200 (($ $) 36)) (-2177 (($ $) 24)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2680 (((-111) $ $) 42)) (-3845 (((-874) $) 38)) (-3267 (($ $) 17)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 ((|#1| $) 35)) (-2341 (((-816) $) 31) (($ |#1|) 23) (((-779 |#1|) $) 27)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 12)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 40)) (* (($ $ $) 34))) +(((-637 |#1|) (-13 (-807) (-989 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -3188 (|#1| $)) (-15 -3267 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2177 ($ $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -3278 ($ $)) (-15 -2163 ((-606 |#1|) $)))) (-807)) (T -637)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-3188 (*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-3267 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807))))) +(-13 (-807) (-989 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2341 ((-779 |#1|) $)) (-15 -3188 (|#1| $)) (-15 -3267 ($ $)) (-15 -3845 ((-874) $)) (-15 -2680 ((-111) $ $)) (-15 -2177 ($ $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -3278 ($ $)) (-15 -2163 ((-606 |#1|) $)))) +((-1967 ((|#1| (-1 |#1| (-731) |#1|) (-731) |#1|) 11)) (-4124 ((|#1| (-1 |#1| |#1|) (-731) |#1|) 9))) +(((-638 |#1|) (-10 -7 (-15 -4124 (|#1| (-1 |#1| |#1|) (-731) |#1|)) (-15 -1967 (|#1| (-1 |#1| (-731) |#1|) (-731) |#1|))) (-1045)) (T -638)) +((-1967 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-731) *2)) (-5 *4 (-731)) (-4 *2 (-1045)) (-5 *1 (-638 *2)))) (-4124 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-731)) (-4 *2 (-1045)) (-5 *1 (-638 *2))))) +(-10 -7 (-15 -4124 (|#1| (-1 |#1| |#1|) (-731) |#1|)) (-15 -1967 (|#1| (-1 |#1| (-731) |#1|) (-731) |#1|))) +((-4252 ((|#2| |#1| |#2|) 9)) (-4239 ((|#1| |#1| |#2|) 8))) +(((-639 |#1| |#2|) (-10 -7 (-15 -4239 (|#1| |#1| |#2|)) (-15 -4252 (|#2| |#1| |#2|))) (-1045) (-1045)) (T -639)) +((-4252 (*1 *2 *3 *2) (-12 (-5 *1 (-639 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-4239 (*1 *2 *2 *3) (-12 (-5 *1 (-639 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) +(-10 -7 (-15 -4239 (|#1| |#1| |#2|)) (-15 -4252 (|#2| |#1| |#2|))) +((-3864 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -3864 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1045) (-1045) (-1045)) (T -640)) +((-3864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)) (-5 *1 (-640 *5 *6 *2))))) +(-10 -7 (-15 -3864 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1796 (((-1153) $) 20)) (-1744 (((-606 (-1153)) $) 18)) (-3687 (($ (-606 (-1153)) (-1153)) 13)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (((-1153) $) 21) (($ (-1062)) 10)) (-2244 (((-111) $ $) NIL))) +(((-641) (-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-1062))) (-15 -3687 ($ (-606 (-1153)) (-1153))) (-15 -1744 ((-606 (-1153)) $)) (-15 -1796 ((-1153) $))))) (T -641)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-641)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *2 (-606 (-1153))) (-5 *3 (-1153)) (-5 *1 (-641)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-641)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-641))))) +(-13 (-1029) (-579 (-1153)) (-10 -8 (-15 -2341 ($ (-1062))) (-15 -3687 ($ (-606 (-1153)) (-1153))) (-15 -1744 ((-606 (-1153)) $)) (-15 -1796 ((-1153) $)))) +((-1967 (((-1 |#1| (-731) |#1|) (-1 |#1| (-731) |#1|)) 23)) (-4085 (((-1 |#1|) |#1|) 8)) (-3119 ((|#1| |#1|) 16)) (-2074 (((-606 |#1|) (-1 (-606 |#1|) (-606 |#1|)) (-537)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2341 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-731)) 20))) +(((-642 |#1|) (-10 -7 (-15 -4085 ((-1 |#1|) |#1|)) (-15 -2341 ((-1 |#1|) |#1|)) (-15 -2074 (|#1| (-1 |#1| |#1|))) (-15 -2074 ((-606 |#1|) (-1 (-606 |#1|) (-606 |#1|)) (-537))) (-15 -3119 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-731))) (-15 -1967 ((-1 |#1| (-731) |#1|) (-1 |#1| (-731) |#1|)))) (-1045)) (T -642)) +((-1967 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-731) *3)) (-4 *3 (-1045)) (-5 *1 (-642 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *4 (-1045)) (-5 *1 (-642 *4)))) (-3119 (*1 *2 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1045)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-606 *5) (-606 *5))) (-5 *4 (-537)) (-5 *2 (-606 *5)) (-5 *1 (-642 *5)) (-4 *5 (-1045)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-642 *2)) (-4 *2 (-1045)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045)))) (-4085 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045))))) +(-10 -7 (-15 -4085 ((-1 |#1|) |#1|)) (-15 -2341 ((-1 |#1|) |#1|)) (-15 -2074 (|#1| (-1 |#1| |#1|))) (-15 -2074 ((-606 |#1|) (-1 (-606 |#1|) (-606 |#1|)) (-537))) (-15 -3119 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-731))) (-15 -1967 ((-1 |#1| (-731) |#1|) (-1 |#1| (-731) |#1|)))) +((-1804 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3203 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2787 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2228 (((-1 |#2| |#1|) |#2|) 11))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2228 ((-1 |#2| |#1|) |#2|)) (-15 -3203 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2787 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1804 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1045) (-1045)) (T -643)) +((-1804 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-5 *2 (-1 *5 *4)) (-5 *1 (-643 *4 *5)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1045)) (-5 *2 (-1 *5 *4)) (-5 *1 (-643 *4 *5)) (-4 *4 (-1045)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-5 *2 (-1 *5)) (-5 *1 (-643 *4 *5)))) (-2228 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-643 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-1045))))) +(-10 -7 (-15 -2228 ((-1 |#2| |#1|) |#2|)) (-15 -3203 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2787 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1804 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3187 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4034 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3138 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3280 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1621 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3138 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3280 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1621 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3187 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1045) (-1045) (-1045)) (T -644)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-1 *7 *5)) (-5 *1 (-644 *5 *6 *7)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-644 *4 *5 *6)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-1045)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-1045)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1045)) (-4 *4 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *5 *4 *6))))) +(-10 -7 (-15 -4034 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3138 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3280 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1621 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3187 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3195 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1612 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-645 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3195 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-998) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|) (-998) (-357 |#5|) (-357 |#5|) (-647 |#5| |#6| |#7|)) (T -645)) +((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-998)) (-4 *2 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) (-4 *9 (-357 *2)) (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-647 *5 *6 *7)) (-4 *10 (-647 *2 *8 *9)))) (-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-998)) (-4 *8 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-647 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-647 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-998)) (-4 *8 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-647 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-647 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8))))) +(-10 -7 (-15 -1612 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1612 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3195 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2591 (($ (-731) (-731)) 33)) (-2417 (($ $ $) 56)) (-3660 (($ |#3|) 52) (($ $) 53)) (-3234 (((-111) $) 28)) (-2324 (($ $ (-537) (-537)) 58)) (-1731 (($ $ (-537) (-537)) 59)) (-4068 (($ $ (-537) (-537) (-537) (-537)) 63)) (-2723 (($ $) 54)) (-3348 (((-111) $) 14)) (-3632 (($ $ (-537) (-537) $) 64)) (-2476 ((|#2| $ (-537) (-537) |#2|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) 62)) (-3110 (($ (-731) |#2|) 39)) (-3299 (($ (-606 (-606 |#2|))) 37)) (-3156 (((-606 (-606 |#2|)) $) 57)) (-3120 (($ $ $) 55)) (-3515 (((-3 $ "failed") $ |#2|) 91)) (-1922 ((|#2| $ (-537) (-537)) NIL) ((|#2| $ (-537) (-537) |#2|) NIL) (($ $ (-606 (-537)) (-606 (-537))) 61)) (-3189 (($ (-606 |#2|)) 40) (($ (-606 $)) 42)) (-3400 (((-111) $) 24)) (-2341 (($ |#4|) 47) (((-816) $) NIL)) (-1830 (((-111) $) 30)) (-2340 (($ $ |#2|) 93)) (-2329 (($ $ $) 68) (($ $) 71)) (-2318 (($ $ $) 66)) (** (($ $ (-731)) 80) (($ $ (-537)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-537) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-646 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#2|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#1| (-537) (-537) |#1|)) (-15 -4068 (|#1| |#1| (-537) (-537) (-537) (-537))) (-15 -1731 (|#1| |#1| (-537) (-537))) (-15 -2324 (|#1| |#1| (-537) (-537))) (-15 -2476 (|#1| |#1| (-606 (-537)) (-606 (-537)) |#1|)) (-15 -1922 (|#1| |#1| (-606 (-537)) (-606 (-537)))) (-15 -3156 ((-606 (-606 |#2|)) |#1|)) (-15 -2417 (|#1| |#1| |#1|)) (-15 -3120 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3660 (|#1| |#3|)) (-15 -2341 (|#1| |#4|)) (-15 -3189 (|#1| (-606 |#1|))) (-15 -3189 (|#1| (-606 |#2|))) (-15 -3110 (|#1| (-731) |#2|)) (-15 -3299 (|#1| (-606 (-606 |#2|)))) (-15 -2591 (|#1| (-731) (-731))) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537)))) (-647 |#2| |#3| |#4|) (-998) (-357 |#2|) (-357 |#2|)) (T -646)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -2340 (|#1| |#1| |#2|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-731))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -3632 (|#1| |#1| (-537) (-537) |#1|)) (-15 -4068 (|#1| |#1| (-537) (-537) (-537) (-537))) (-15 -1731 (|#1| |#1| (-537) (-537))) (-15 -2324 (|#1| |#1| (-537) (-537))) (-15 -2476 (|#1| |#1| (-606 (-537)) (-606 (-537)) |#1|)) (-15 -1922 (|#1| |#1| (-606 (-537)) (-606 (-537)))) (-15 -3156 ((-606 (-606 |#2|)) |#1|)) (-15 -2417 (|#1| |#1| |#1|)) (-15 -3120 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3660 (|#1| |#3|)) (-15 -2341 (|#1| |#4|)) (-15 -3189 (|#1| (-606 |#1|))) (-15 -3189 (|#1| (-606 |#2|))) (-15 -3110 (|#1| (-731) |#2|)) (-15 -3299 (|#1| (-606 (-606 |#2|)))) (-15 -2591 (|#1| (-731) (-731))) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) (-537)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) 97)) (-2417 (($ $ $) 87)) (-3660 (($ |#2|) 91) (($ $) 90)) (-3234 (((-111) $) 99)) (-2324 (($ $ (-537) (-537)) 83)) (-1731 (($ $ (-537) (-537)) 82)) (-4068 (($ $ (-537) (-537) (-537) (-537)) 81)) (-2723 (($ $) 89)) (-3348 (((-111) $) 101)) (-2506 (((-111) $ (-731)) 8)) (-3632 (($ $ (-537) (-537) $) 80)) (-2476 ((|#1| $ (-537) (-537) |#1|) 44) (($ $ (-606 (-537)) (-606 (-537)) $) 84)) (-2720 (($ $ (-537) |#2|) 42)) (-2573 (($ $ (-537) |#3|) 41)) (-3110 (($ (-731) |#1|) 95)) (-3832 (($) 7 T CONST)) (-3630 (($ $) 67 (|has| |#1| (-291)))) (-2964 ((|#2| $ (-537)) 46)) (-3705 (((-731) $) 66 (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) 43)) (-4030 ((|#1| $ (-537) (-537)) 48)) (-3661 (((-606 |#1|) $) 30)) (-2342 (((-731) $) 65 (|has| |#1| (-529)))) (-2630 (((-606 |#3|) $) 64 (|has| |#1| (-529)))) (-2931 (((-731) $) 51)) (-3157 (($ (-731) (-731) |#1|) 57)) (-2945 (((-731) $) 50)) (-1642 (((-111) $ (-731)) 9)) (-3960 ((|#1| $) 62 (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) 55)) (-2454 (((-537) $) 53)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 54)) (-2485 (((-537) $) 52)) (-3299 (($ (-606 (-606 |#1|))) 96)) (-4081 (($ (-1 |#1| |#1|) $) 34)) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3156 (((-606 (-606 |#1|)) $) 86)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) 61 (|has| |#1| (-347)))) (-3120 (($ $ $) 88)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) 56)) (-3515 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) (-537)) 49) ((|#1| $ (-537) (-537) |#1|) 47) (($ $ (-606 (-537)) (-606 (-537))) 85)) (-3189 (($ (-606 |#1|)) 94) (($ (-606 $)) 93)) (-3400 (((-111) $) 100)) (-3075 ((|#1| $) 63 (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2198 ((|#3| $ (-537)) 45)) (-2341 (($ |#3|) 92) (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-1830 (((-111) $) 98)) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) 68 (|has| |#1| (-347)))) (-2329 (($ $ $) 78) (($ $) 77)) (-2318 (($ $ $) 79)) (** (($ $ (-731)) 70) (($ $ (-537)) 60 (|has| |#1| (-347)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-537) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-647 |#1| |#2| |#3|) (-134) (-998) (-357 |t#1|) (-357 |t#1|)) (T -647)) +((-3348 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-111)))) (-2591 (*1 *1 *2 *2) (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3110 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *2)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (-3660 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *2 *4)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2723 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3120 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2417 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-606 (-606 *3))))) (-1922 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2476 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2324 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-1731 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-4068 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3632 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2329 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-647 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *2 (-357 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-647 *3 *2 *4)) (-4 *3 (-998)) (-4 *2 (-357 *3)) (-4 *4 (-357 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-529)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-347)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-291)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-606 *5)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-1321 (*1 *1 *1) (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-347)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-347))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4301) (-6 -4300) (-15 -3348 ((-111) $)) (-15 -3400 ((-111) $)) (-15 -3234 ((-111) $)) (-15 -1830 ((-111) $)) (-15 -2591 ($ (-731) (-731))) (-15 -3299 ($ (-606 (-606 |t#1|)))) (-15 -3110 ($ (-731) |t#1|)) (-15 -3189 ($ (-606 |t#1|))) (-15 -3189 ($ (-606 $))) (-15 -2341 ($ |t#3|)) (-15 -3660 ($ |t#2|)) (-15 -3660 ($ $)) (-15 -2723 ($ $)) (-15 -3120 ($ $ $)) (-15 -2417 ($ $ $)) (-15 -3156 ((-606 (-606 |t#1|)) $)) (-15 -1922 ($ $ (-606 (-537)) (-606 (-537)))) (-15 -2476 ($ $ (-606 (-537)) (-606 (-537)) $)) (-15 -2324 ($ $ (-537) (-537))) (-15 -1731 ($ $ (-537) (-537))) (-15 -4068 ($ $ (-537) (-537) (-537) (-537))) (-15 -3632 ($ $ (-537) (-537) $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2329 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-537) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-731))) (IF (|has| |t#1| (-529)) (-15 -3515 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-347)) (-15 -2340 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-291)) (-15 -3630 ($ $)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-15 -3705 ((-731) $)) (-15 -2342 ((-731) $)) (-15 -2630 ((-606 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4302 "*"))) (PROGN (-15 -3075 (|t#1| $)) (-15 -3960 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-15 -1321 ((-3 $ "failed") $)) (-15 ** ($ $ (-537)))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-55 |#1| |#2| |#3|) . T) ((-1154) . T)) +((-3630 ((|#4| |#4|) 72 (|has| |#1| (-291)))) (-3705 (((-731) |#4|) 99 (|has| |#1| (-529)))) (-2342 (((-731) |#4|) 76 (|has| |#1| (-529)))) (-2630 (((-606 |#3|) |#4|) 83 (|has| |#1| (-529)))) (-2272 (((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|) 111 (|has| |#1| (-291)))) (-3960 ((|#1| |#4|) 35)) (-2883 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-529)))) (-1321 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-347)))) (-4072 ((|#4| |#4|) 68 (|has| |#1| (-529)))) (-2659 ((|#4| |#4| |#1| (-537) (-537)) 43)) (-3041 ((|#4| |#4| (-537) (-537)) 38)) (-4039 ((|#4| |#4| |#1| (-537) (-537)) 48)) (-3075 ((|#1| |#4|) 78)) (-4273 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-529))))) +(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3075 (|#1| |#4|)) (-15 -3960 (|#1| |#4|)) (-15 -3041 (|#4| |#4| (-537) (-537))) (-15 -2659 (|#4| |#4| |#1| (-537) (-537))) (-15 -4039 (|#4| |#4| |#1| (-537) (-537))) (IF (|has| |#1| (-529)) (PROGN (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (-15 -2630 ((-606 |#3|) |#4|)) (-15 -4072 (|#4| |#4|)) (-15 -2883 ((-3 |#4| "failed") |#4|)) (-15 -4273 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-291)) (PROGN (-15 -3630 (|#4| |#4|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-163) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -648)) +((-1321 (*1 *2 *2) (|partial| -12 (-4 *3 (-347)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-2272 (*1 *2 *3 *3) (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-648 *3 *4 *5 *6)) (-4 *6 (-647 *3 *4 *5)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-4273 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-2883 (*1 *2 *2) (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-4039 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) (-4 *2 (-647 *3 *5 *6)))) (-2659 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) (-4 *2 (-647 *3 *5 *6)))) (-3041 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-537)) (-4 *4 (-163)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *1 (-648 *4 *5 *6 *2)) (-4 *2 (-647 *4 *5 *6)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5))))) +(-10 -7 (-15 -3075 (|#1| |#4|)) (-15 -3960 (|#1| |#4|)) (-15 -3041 (|#4| |#4| (-537) (-537))) (-15 -2659 (|#4| |#4| |#1| (-537) (-537))) (-15 -4039 (|#4| |#4| |#1| (-537) (-537))) (IF (|has| |#1| (-529)) (PROGN (-15 -3705 ((-731) |#4|)) (-15 -2342 ((-731) |#4|)) (-15 -2630 ((-606 |#3|) |#4|)) (-15 -4072 (|#4| |#4|)) (-15 -2883 ((-3 |#4| "failed") |#4|)) (-15 -4273 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-291)) (PROGN (-15 -3630 (|#4| |#4|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731) (-731)) 47)) (-2417 (($ $ $) NIL)) (-3660 (($ (-1200 |#1|)) NIL) (($ $) NIL)) (-3234 (((-111) $) NIL)) (-2324 (($ $ (-537) (-537)) 12)) (-1731 (($ $ (-537) (-537)) NIL)) (-4068 (($ $ (-537) (-537) (-537) (-537)) NIL)) (-2723 (($ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3632 (($ $ (-537) (-537) $) NIL)) (-2476 ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537)) $) NIL)) (-2720 (($ $ (-537) (-1200 |#1|)) NIL)) (-2573 (($ $ (-537) (-1200 |#1|)) NIL)) (-3110 (($ (-731) |#1|) 22)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 31 (|has| |#1| (-291)))) (-2964 (((-1200 |#1|) $ (-537)) NIL)) (-3705 (((-731) $) 33 (|has| |#1| (-529)))) (-4091 ((|#1| $ (-537) (-537) |#1|) 51)) (-4030 ((|#1| $ (-537) (-537)) NIL)) (-3661 (((-606 |#1|) $) NIL)) (-2342 (((-731) $) 35 (|has| |#1| (-529)))) (-2630 (((-606 (-1200 |#1|)) $) 38 (|has| |#1| (-529)))) (-2931 (((-731) $) 20)) (-3157 (($ (-731) (-731) |#1|) 16)) (-2945 (((-731) $) 21)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#1| $) 29 (|has| |#1| (-6 (-4302 "*"))))) (-4111 (((-537) $) 9)) (-2454 (((-537) $) 10)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3126 (((-537) $) 11)) (-2485 (((-537) $) 48)) (-3299 (($ (-606 (-606 |#1|))) NIL)) (-4081 (($ (-1 |#1| |#1|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3156 (((-606 (-606 |#1|)) $) 60)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1321 (((-3 $ "failed") $) 45 (|has| |#1| (-347)))) (-3120 (($ $ $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3040 (($ $ |#1|) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) (-537)) NIL) ((|#1| $ (-537) (-537) |#1|) NIL) (($ $ (-606 (-537)) (-606 (-537))) NIL)) (-3189 (($ (-606 |#1|)) NIL) (($ (-606 $)) NIL) (($ (-1200 |#1|)) 52)) (-3400 (((-111) $) NIL)) (-3075 ((|#1| $) 27 (|has| |#1| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 64 (|has| |#1| (-580 (-513))))) (-2198 (((-1200 |#1|) $ (-537)) NIL)) (-2341 (($ (-1200 |#1|)) NIL) (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $ $) NIL) (($ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) 23) (($ $ (-537)) 46 (|has| |#1| (-347)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-537) $) NIL) (((-1200 |#1|) $ (-1200 |#1|)) NIL) (((-1200 |#1|) (-1200 |#1|) $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-649 |#1|) (-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 -3189 ($ (-1200 |#1|))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 $ "failed") $)) |%noBranch|))) (-998)) (T -649)) +((-1321 (*1 *1 *1) (|partial| -12 (-5 *1 (-649 *2)) (-4 *2 (-347)) (-4 *2 (-998)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-649 *3))))) +(-13 (-647 |#1| (-1200 |#1|) (-1200 |#1|)) (-10 -8 (-15 -3189 ($ (-1200 |#1|))) (IF (|has| |#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |#1| (-347)) (-15 -1321 ((-3 $ "failed") $)) |%noBranch|))) +((-2758 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|)) 25)) (-3022 (((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|) 21)) (-2232 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-731)) 26)) (-2543 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|)) 14)) (-2911 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|)) 18) (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 16)) (-3096 (((-649 |#1|) (-649 |#1|) |#1| (-649 |#1|)) 20)) (-3241 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 12)) (** (((-649 |#1|) (-649 |#1|) (-731)) 30))) +(((-650 |#1|) (-10 -7 (-15 -3241 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2543 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3096 ((-649 |#1|) (-649 |#1|) |#1| (-649 |#1|))) (-15 -3022 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -2758 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2232 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-731))) (-15 ** ((-649 |#1|) (-649 |#1|) (-731)))) (-998)) (T -650)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-650 *4)))) (-2232 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-650 *4)))) (-2758 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-3022 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-3096 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-2911 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-2911 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-2543 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) (-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(-10 -7 (-15 -3241 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2543 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2911 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3096 ((-649 |#1|) (-649 |#1|) |#1| (-649 |#1|))) (-15 -3022 ((-649 |#1|) (-649 |#1|) (-649 |#1|) |#1|)) (-15 -2758 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -2232 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-649 |#1|) (-731))) (-15 ** ((-649 |#1|) (-649 |#1|) (-731)))) +((-3557 (($) 8 T CONST)) (-2341 (((-816) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2915 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -3557)) 16)) (-2522 ((|#1| $) 11))) +(((-651 |#1|) (-13 (-1195) (-579 (-816)) (-10 -8 (-15 -2915 ((-111) $ (|[\|\|]| |#1|))) (-15 -2915 ((-111) $ (|[\|\|]| -3557))) (-15 -2341 ($ |#1|)) (-15 -2341 (|#1| $)) (-15 -2522 (|#1| $)) (-15 -3557 ($) -2787))) (-579 (-816))) (T -651)) +((-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-579 (-816))) (-5 *2 (-111)) (-5 *1 (-651 *4)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3557)) (-5 *2 (-111)) (-5 *1 (-651 *4)) (-4 *4 (-579 (-816))))) (-2341 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) (-2341 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) (-2522 (*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) (-3557 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816)))))) +(-13 (-1195) (-579 (-816)) (-10 -8 (-15 -2915 ((-111) $ (|[\|\|]| |#1|))) (-15 -2915 ((-111) $ (|[\|\|]| -3557))) (-15 -2341 ($ |#1|)) (-15 -2341 (|#1| $)) (-15 -2522 (|#1| $)) (-15 -3557 ($) -2787))) +((-1831 ((|#2| |#2| |#4|) 25)) (-2302 (((-649 |#2|) |#3| |#4|) 31)) (-2366 (((-649 |#2|) |#2| |#4|) 30)) (-2803 (((-1200 |#2|) |#2| |#4|) 16)) (-4151 ((|#2| |#3| |#4|) 24)) (-2281 (((-649 |#2|) |#3| |#4| (-731) (-731)) 38)) (-4229 (((-649 |#2|) |#2| |#4| (-731)) 37))) +(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 ((-1200 |#2|) |#2| |#4|)) (-15 -4151 (|#2| |#3| |#4|)) (-15 -1831 (|#2| |#2| |#4|)) (-15 -2366 ((-649 |#2|) |#2| |#4|)) (-15 -4229 ((-649 |#2|) |#2| |#4| (-731))) (-15 -2302 ((-649 |#2|) |#3| |#4|)) (-15 -2281 ((-649 |#2|) |#3| |#4| (-731) (-731)))) (-1045) (-853 |#1|) (-357 |#2|) (-13 (-357 |#1|) (-10 -7 (-6 -4300)))) (T -652)) +((-2281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *7 (-853 *6)) (-5 *2 (-649 *7)) (-5 *1 (-652 *6 *7 *3 *4)) (-4 *3 (-357 *7)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300)))))) (-2302 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *6 (-853 *5)) (-5 *2 (-649 *6)) (-5 *1 (-652 *5 *6 *3 *4)) (-4 *3 (-357 *6)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300)))))) (-4229 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *3 (-853 *6)) (-5 *2 (-649 *3)) (-5 *1 (-652 *6 *3 *7 *4)) (-4 *7 (-357 *3)) (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300)))))) (-2366 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-649 *3)) (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300)))))) (-1831 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-853 *4)) (-5 *1 (-652 *4 *2 *5 *3)) (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4300)))))) (-4151 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *2 (-853 *5)) (-5 *1 (-652 *5 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300)))))) (-2803 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-1200 *3)) (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) +(-10 -7 (-15 -2803 ((-1200 |#2|) |#2| |#4|)) (-15 -4151 (|#2| |#3| |#4|)) (-15 -1831 (|#2| |#2| |#4|)) (-15 -2366 ((-649 |#2|) |#2| |#4|)) (-15 -4229 ((-649 |#2|) |#2| |#4| (-731))) (-15 -2302 ((-649 |#2|) |#3| |#4|)) (-15 -2281 ((-649 |#2|) |#3| |#4| (-731) (-731)))) +((-1478 (((-2 (|:| |num| (-649 |#1|)) (|:| |den| |#1|)) (-649 |#2|)) 20)) (-1246 ((|#1| (-649 |#2|)) 9)) (-4067 (((-649 |#1|) (-649 |#2|)) 18))) +(((-653 |#1| |#2|) (-10 -7 (-15 -1246 (|#1| (-649 |#2|))) (-15 -4067 ((-649 |#1|) (-649 |#2|))) (-15 -1478 ((-2 (|:| |num| (-649 |#1|)) (|:| |den| |#1|)) (-649 |#2|)))) (-529) (-945 |#1|)) (T -653)) +((-1478 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |num| (-649 *4)) (|:| |den| *4))) (-5 *1 (-653 *4 *5)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) (-5 *2 (-649 *4)) (-5 *1 (-653 *4 *5)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-653 *2 *4))))) +(-10 -7 (-15 -1246 (|#1| (-649 |#2|))) (-15 -4067 ((-649 |#1|) (-649 |#2|))) (-15 -1478 ((-2 (|:| |num| (-649 |#1|)) (|:| |den| |#1|)) (-649 |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3623 (((-649 (-659))) NIL) (((-649 (-659)) (-1200 $)) NIL)) (-1428 (((-659) $) NIL)) (-1403 (($ $) NIL (|has| (-659) (-1139)))) (-1247 (($ $) NIL (|has| (-659) (-1139)))) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-659) (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-1395 (($ $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-2414 (((-402 $) $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-3633 (($ $) NIL (-12 (|has| (-659) (-954)) (|has| (-659) (-1139))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-4099 (((-111) $ $) NIL (|has| (-659) (-291)))) (-3151 (((-731)) NIL (|has| (-659) (-352)))) (-1378 (($ $) NIL (|has| (-659) (-1139)))) (-4270 (($ $) NIL (|has| (-659) (-1139)))) (-1429 (($ $) NIL (|has| (-659) (-1139)))) (-1273 (($ $) NIL (|has| (-659) (-1139)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-659) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-659) (-989 (-391 (-537)))))) (-3958 (((-537) $) NIL) (((-659) $) NIL) (((-391 (-537)) $) NIL (|has| (-659) (-989 (-391 (-537)))))) (-3447 (($ (-1200 (-659))) NIL) (($ (-1200 (-659)) (-1200 $)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-659) (-333)))) (-3563 (($ $ $) NIL (|has| (-659) (-291)))) (-2664 (((-649 (-659)) $) NIL) (((-649 (-659)) $ (-1200 $)) NIL)) (-2053 (((-649 (-659)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-659))) (|:| |vec| (-1200 (-659)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-659) (-602 (-537)))) (((-649 (-537)) (-649 $)) NIL (|has| (-659) (-602 (-537))))) (-3195 (((-3 $ "failed") (-391 (-1113 (-659)))) NIL (|has| (-659) (-347))) (($ (-1113 (-659))) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3645 (((-659) $) 29)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| (-659) (-522)))) (-1797 (((-111) $) NIL (|has| (-659) (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| (-659) (-522)))) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| (-659) (-352)))) (-3539 (($ $ $) NIL (|has| (-659) (-291)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| (-659) (-291)))) (-4145 (($) NIL (|has| (-659) (-333)))) (-2974 (((-111) $) NIL (|has| (-659) (-333)))) (-2642 (($ $) NIL (|has| (-659) (-333))) (($ $ (-731)) NIL (|has| (-659) (-333)))) (-2639 (((-111) $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-4087 (((-2 (|:| |r| (-659)) (|:| |phi| (-659))) $) NIL (-12 (|has| (-659) (-1007)) (|has| (-659) (-1139))))) (-3338 (($) NIL (|has| (-659) (-1139)))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-659) (-839 (-363)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-659) (-839 (-537))))) (-4231 (((-793 (-874)) $) NIL (|has| (-659) (-333))) (((-874) $) NIL (|has| (-659) (-333)))) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (-12 (|has| (-659) (-954)) (|has| (-659) (-1139))))) (-2055 (((-659) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-659) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-659) (-291)))) (-3199 (((-1113 (-659)) $) NIL (|has| (-659) (-347)))) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1612 (($ (-1 (-659) (-659)) $) NIL)) (-2334 (((-874) $) NIL (|has| (-659) (-352)))) (-2180 (($ $) NIL (|has| (-659) (-1139)))) (-3183 (((-1113 (-659)) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| (-659) (-291))) (($ $ $) NIL (|has| (-659) (-291)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| (-659) (-347)))) (-3956 (($) NIL (|has| (-659) (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| (-659) (-352)))) (-2629 (($) NIL)) (-3656 (((-659) $) 31)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| (-659) (-291)))) (-2211 (($ (-606 $)) NIL (|has| (-659) (-291))) (($ $ $) NIL (|has| (-659) (-291)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-659) (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-659) (-291)) (|has| (-659) (-862))))) (-3622 (((-402 $) $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| (-659) (-862))) (|has| (-659) (-347))))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-659) (-291))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| (-659) (-291)))) (-3515 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-659)) NIL (|has| (-659) (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-659) (-291)))) (-4185 (($ $) NIL (|has| (-659) (-1139)))) (-4116 (($ $ (-1117) (-659)) NIL (|has| (-659) (-495 (-1117) (-659)))) (($ $ (-606 (-1117)) (-606 (-659))) NIL (|has| (-659) (-495 (-1117) (-659)))) (($ $ (-606 (-278 (-659)))) NIL (|has| (-659) (-293 (-659)))) (($ $ (-278 (-659))) NIL (|has| (-659) (-293 (-659)))) (($ $ (-659) (-659)) NIL (|has| (-659) (-293 (-659)))) (($ $ (-606 (-659)) (-606 (-659))) NIL (|has| (-659) (-293 (-659))))) (-1930 (((-731) $) NIL (|has| (-659) (-291)))) (-1922 (($ $ (-659)) NIL (|has| (-659) (-270 (-659) (-659))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| (-659) (-291)))) (-2067 (((-659)) NIL) (((-659) (-1200 $)) NIL)) (-3030 (((-3 (-731) "failed") $ $) NIL (|has| (-659) (-333))) (((-731) $) NIL (|has| (-659) (-333)))) (-3456 (($ $ (-1 (-659) (-659))) NIL) (($ $ (-1 (-659) (-659)) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-731)) NIL (|has| (-659) (-218))) (($ $) NIL (|has| (-659) (-218)))) (-1630 (((-649 (-659)) (-1200 $) (-1 (-659) (-659))) NIL (|has| (-659) (-347)))) (-2529 (((-1113 (-659))) NIL)) (-1441 (($ $) NIL (|has| (-659) (-1139)))) (-1286 (($ $) NIL (|has| (-659) (-1139)))) (-3553 (($) NIL (|has| (-659) (-333)))) (-1415 (($ $) NIL (|has| (-659) (-1139)))) (-1259 (($ $) NIL (|has| (-659) (-1139)))) (-1389 (($ $) NIL (|has| (-659) (-1139)))) (-1234 (($ $) NIL (|has| (-659) (-1139)))) (-1484 (((-649 (-659)) (-1200 $)) NIL) (((-1200 (-659)) $) NIL) (((-649 (-659)) (-1200 $) (-1200 $)) NIL) (((-1200 (-659)) $ (-1200 $)) NIL)) (-3996 (((-513) $) NIL (|has| (-659) (-580 (-513)))) (((-160 (-210)) $) NIL (|has| (-659) (-973))) (((-160 (-363)) $) NIL (|has| (-659) (-973))) (((-845 (-363)) $) NIL (|has| (-659) (-580 (-845 (-363))))) (((-845 (-537)) $) NIL (|has| (-659) (-580 (-845 (-537))))) (($ (-1113 (-659))) NIL) (((-1113 (-659)) $) NIL) (($ (-1200 (-659))) NIL) (((-1200 (-659)) $) NIL)) (-1978 (($ $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| $ (-139)) (|has| (-659) (-862))) (|has| (-659) (-333))))) (-4161 (($ (-659) (-659)) 12)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-537)) NIL) (($ (-659)) NIL) (($ (-160 (-363))) 13) (($ (-160 (-537))) 19) (($ (-160 (-659))) 28) (($ (-160 (-661))) 25) (((-160 (-363)) $) 33) (($ (-391 (-537))) NIL (-1533 (|has| (-659) (-989 (-391 (-537)))) (|has| (-659) (-347))))) (-2644 (($ $) NIL (|has| (-659) (-333))) (((-3 $ "failed") $) NIL (-1533 (-12 (|has| (-659) (-291)) (|has| $ (-139)) (|has| (-659) (-862))) (|has| (-659) (-139))))) (-2736 (((-1113 (-659)) $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $)) NIL)) (-1475 (($ $) NIL (|has| (-659) (-1139)))) (-1328 (($ $) NIL (|has| (-659) (-1139)))) (-3276 (((-111) $ $) NIL)) (-1453 (($ $) NIL (|has| (-659) (-1139)))) (-1300 (($ $) NIL (|has| (-659) (-1139)))) (-1495 (($ $) NIL (|has| (-659) (-1139)))) (-1352 (($ $) NIL (|has| (-659) (-1139)))) (-2449 (((-659) $) NIL (|has| (-659) (-1139)))) (-4141 (($ $) NIL (|has| (-659) (-1139)))) (-1365 (($ $) NIL (|has| (-659) (-1139)))) (-1485 (($ $) NIL (|has| (-659) (-1139)))) (-1340 (($ $) NIL (|has| (-659) (-1139)))) (-1465 (($ $) NIL (|has| (-659) (-1139)))) (-1314 (($ $) NIL (|has| (-659) (-1139)))) (-2209 (($ $) NIL (|has| (-659) (-1007)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1 (-659) (-659))) NIL) (($ $ (-1 (-659) (-659)) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-1117)) NIL (|has| (-659) (-853 (-1117)))) (($ $ (-731)) NIL (|has| (-659) (-218))) (($ $) NIL (|has| (-659) (-218)))) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL (|has| (-659) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ $) NIL (|has| (-659) (-1139))) (($ $ (-391 (-537))) NIL (-12 (|has| (-659) (-954)) (|has| (-659) (-1139)))) (($ $ (-537)) NIL (|has| (-659) (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ (-659) $) NIL) (($ $ (-659)) NIL) (($ (-391 (-537)) $) NIL (|has| (-659) (-347))) (($ $ (-391 (-537))) NIL (|has| (-659) (-347))))) +(((-654) (-13 (-371) (-157 (-659)) (-10 -8 (-15 -2341 ($ (-160 (-363)))) (-15 -2341 ($ (-160 (-537)))) (-15 -2341 ($ (-160 (-659)))) (-15 -2341 ($ (-160 (-661)))) (-15 -2341 ((-160 (-363)) $))))) (T -654)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-537))) (-5 *1 (-654)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-659))) (-5 *1 (-654)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-160 (-661))) (-5 *1 (-654)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654))))) +(-13 (-371) (-157 (-659)) (-10 -8 (-15 -2341 ($ (-160 (-363)))) (-15 -2341 ($ (-160 (-537)))) (-15 -2341 ($ (-160 (-659)))) (-15 -2341 ($ (-160 (-661)))) (-15 -2341 ((-160 (-363)) $)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 62)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40) (($ |#1| $ (-731)) 63)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 61)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-655 |#1|) (-134) (-1045)) (T -655)) +((-3499 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-655 *2)) (-4 *2 (-1045)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1045)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-655 *3)) (-4 *3 (-1045)) (-5 *2 (-606 (-2 (|:| -2140 *3) (|:| -2539 (-731)))))))) +(-13 (-220 |t#1|) (-10 -8 (-15 -3499 ($ |t#1| $ (-731))) (-15 -1376 ($ $)) (-15 -1864 ((-606 (-2 (|:| -2140 |t#1|) (|:| -2539 (-731)))) $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-3149 (((-606 |#1|) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) (-537)) 47)) (-3375 ((|#1| |#1| (-537)) 46)) (-2211 ((|#1| |#1| |#1| (-537)) 36)) (-3622 (((-606 |#1|) |#1| (-537)) 39)) (-4243 ((|#1| |#1| (-537) |#1| (-537)) 32)) (-3829 (((-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) |#1| (-537)) 45))) +(((-656 |#1|) (-10 -7 (-15 -2211 (|#1| |#1| |#1| (-537))) (-15 -3375 (|#1| |#1| (-537))) (-15 -3622 ((-606 |#1|) |#1| (-537))) (-15 -3829 ((-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) |#1| (-537))) (-15 -3149 ((-606 |#1|) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) (-537))) (-15 -4243 (|#1| |#1| (-537) |#1| (-537)))) (-1176 (-537))) (T -656)) +((-4243 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| -3622 *5) (|:| -2872 (-537))))) (-5 *4 (-537)) (-4 *5 (-1176 *4)) (-5 *2 (-606 *5)) (-5 *1 (-656 *5)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -2872 *4)))) (-5 *1 (-656 *3)) (-4 *3 (-1176 *4)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-5 *2 (-606 *3)) (-5 *1 (-656 *3)) (-4 *3 (-1176 *4)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3)))) (-2211 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3))))) +(-10 -7 (-15 -2211 (|#1| |#1| |#1| (-537))) (-15 -3375 (|#1| |#1| (-537))) (-15 -3622 ((-606 |#1|) |#1| (-537))) (-15 -3829 ((-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) |#1| (-537))) (-15 -3149 ((-606 |#1|) (-606 (-2 (|:| -3622 |#1|) (|:| -2872 (-537)))) (-537))) (-15 -4243 (|#1| |#1| (-537) |#1| (-537)))) +((-2877 (((-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))) 17)) (-2241 (((-1077 (-210)) (-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 40) (((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 42) (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 44)) (-3155 (((-1077 (-210)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-606 (-247))) NIL)) (-2291 (((-1077 (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247))) 45))) +(((-657) (-10 -7 (-15 -2241 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2291 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -3155 ((-1077 (-210)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2877 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210) (-210)))))) (T -657)) +((-2877 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1 (-210) (-210) (-210) (-210))) (-5 *2 (-1 (-896 (-210)) (-210) (-210))) (-5 *1 (-657)))) (-3155 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) (-2291 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) (-2241 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-210))) (-5 *5 (-606 (-247))) (-5 *1 (-657)))) (-2241 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-210))) (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) (-2241 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657))))) +(-10 -7 (-15 -2241 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2241 ((-1077 (-210)) (-1077 (-210)) (-1 (-896 (-210)) (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2291 ((-1077 (-210)) (-1 (-210) (-210) (-210)) (-3 (-1 (-210) (-210) (-210) (-210)) "undefined") (-1040 (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -3155 ((-1077 (-210)) (-300 (-537)) (-300 (-537)) (-300 (-537)) (-1 (-210) (-210)) (-1040 (-210)) (-606 (-247)))) (-15 -2877 ((-1 (-896 (-210)) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210)) (-1 (-210) (-210) (-210) (-210))))) +((-3622 (((-402 (-1113 |#4|)) (-1113 |#4|)) 73) (((-402 |#4|) |#4|) 221))) +(((-658 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) (-807) (-753) (-333) (-902 |#3| |#2| |#1|)) (T -658)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-658 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-658 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) +(-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 84)) (-1874 (((-537) $) 30)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1586 (($ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3832 (($) NIL T CONST)) (-3981 (($ $) NIL)) (-1516 (((-3 (-537) "failed") $) 73) (((-3 (-391 (-537)) "failed") $) 26) (((-3 (-363) "failed") $) 70)) (-3958 (((-537) $) 75) (((-391 (-537)) $) 67) (((-363) $) 68)) (-3563 (($ $ $) 96)) (-3490 (((-3 $ "failed") $) 87)) (-3539 (($ $ $) 95)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2300 (((-874)) 77) (((-874) (-874)) 76)) (-3797 (((-111) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL)) (-4231 (((-537) $) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2055 (($ $) NIL)) (-2840 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3580 (((-537) (-537)) 81) (((-537)) 82)) (-2444 (($ $ $) NIL) (($) NIL (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-3618 (((-537) (-537)) 79) (((-537)) 80)) (-3889 (($ $ $) NIL) (($) NIL (-12 (-3679 (|has| $ (-6 -4283))) (-3679 (|has| $ (-6 -4291)))))) (-4020 (((-537) $) 16)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 91)) (-3964 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL)) (-3830 (($ $) NIL)) (-2851 (($ (-537) (-537)) NIL) (($ (-537) (-537) (-874)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) 92)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3283 (((-537) $) 22)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 94)) (-3025 (((-874)) NIL) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-1398 (((-874) (-537)) NIL (|has| $ (-6 -4291)))) (-3996 (((-363) $) NIL) (((-210) $) NIL) (((-845 (-363)) $) NIL)) (-2341 (((-816) $) 52) (($ (-537)) 63) (($ $) NIL) (($ (-391 (-537))) 66) (($ (-537)) 63) (($ (-391 (-537))) 66) (($ (-363)) 60) (((-363) $) 50) (($ (-661)) 55)) (-3654 (((-731)) 103)) (-4008 (($ (-537) (-537) (-874)) 44)) (-3903 (($ $) NIL)) (-3272 (((-874)) NIL) (((-874) (-874)) NIL (|has| $ (-6 -4291)))) (-1605 (((-874)) 35) (((-874) (-874)) 78)) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) 32 T CONST)) (-2943 (($) 17 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 83)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 101)) (-2340 (($ $ $) 65)) (-2329 (($ $) 99) (($ $ $) 100)) (-2318 (($ $ $) 98)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ $ (-391 (-537))) 90)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 97) (($ $ $) 88) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-659) (-13 (-388) (-371) (-347) (-989 (-363)) (-989 (-391 (-537))) (-141) (-10 -8 (-15 -2300 ((-874) (-874))) (-15 -2300 ((-874))) (-15 -1605 ((-874) (-874))) (-15 -1605 ((-874))) (-15 -3618 ((-537) (-537))) (-15 -3618 ((-537))) (-15 -3580 ((-537) (-537))) (-15 -3580 ((-537))) (-15 -2341 ((-363) $)) (-15 -2341 ($ (-661))) (-15 -4020 ((-537) $)) (-15 -3283 ((-537) $)) (-15 -4008 ($ (-537) (-537) (-874)))))) (T -659)) +((-1605 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-2300 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-3618 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-3580 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-659)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-661)) (-5 *1 (-659)))) (-4008 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-5 *1 (-659))))) +(-13 (-388) (-371) (-347) (-989 (-363)) (-989 (-391 (-537))) (-141) (-10 -8 (-15 -2300 ((-874) (-874))) (-15 -2300 ((-874))) (-15 -1605 ((-874) (-874))) (-15 -1605 ((-874))) (-15 -3618 ((-537) (-537))) (-15 -3618 ((-537))) (-15 -3580 ((-537) (-537))) (-15 -3580 ((-537))) (-15 -2341 ((-363) $)) (-15 -2341 ($ (-661))) (-15 -4020 ((-537) $)) (-15 -3283 ((-537) $)) (-15 -4008 ($ (-537) (-537) (-874))))) +((-3204 (((-649 |#1|) (-649 |#1|) |#1| |#1|) 65)) (-3630 (((-649 |#1|) (-649 |#1|) |#1|) 48)) (-4014 (((-649 |#1|) (-649 |#1|) |#1|) 66)) (-4080 (((-649 |#1|) (-649 |#1|)) 49)) (-2272 (((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|) 64))) +(((-660 |#1|) (-10 -7 (-15 -4080 ((-649 |#1|) (-649 |#1|))) (-15 -3630 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -4014 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -3204 ((-649 |#1|) (-649 |#1|) |#1| |#1|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) (-291)) (T -660)) +((-2272 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-660 *3)) (-4 *3 (-291)))) (-3204 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) (-3630 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) +(-10 -7 (-15 -4080 ((-649 |#1|) (-649 |#1|))) (-15 -3630 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -4014 ((-649 |#1|) (-649 |#1|) |#1|)) (-15 -3204 ((-649 |#1|) (-649 |#1|) |#1| |#1|)) (-15 -2272 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) 27)) (-3958 (((-537) $) 25)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($ $) NIL) (($) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) NIL)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) NIL)) (-2444 (($ $ $) NIL)) (-3770 (((-874) (-874)) 10) (((-874)) 9)) (-3889 (($ $ $) NIL)) (-1454 (($ $) NIL)) (-3845 (($ $) NIL)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) NIL)) (-2528 (((-1064) $) NIL) (($ $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL) (($ $ (-731)) NIL)) (-3089 (($ $) NIL)) (-2494 (($ $) NIL)) (-3996 (((-210) $) NIL) (((-363) $) NIL) (((-845 (-537)) $) NIL) (((-513) $) NIL) (((-537) $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) 24) (($ $) NIL) (($ (-537)) 24) (((-300 $) (-300 (-537))) 18)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) NIL)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL) (($ $ (-731)) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) +(((-661) (-13 (-371) (-522) (-10 -8 (-15 -3770 ((-874) (-874))) (-15 -3770 ((-874))) (-15 -2341 ((-300 $) (-300 (-537))))))) (T -661)) +((-3770 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661)))) (-3770 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-300 (-537))) (-5 *2 (-300 (-661))) (-5 *1 (-661))))) +(-13 (-371) (-522) (-10 -8 (-15 -3770 ((-874) (-874))) (-15 -3770 ((-874))) (-15 -2341 ((-300 $) (-300 (-537)))))) +((-3929 (((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)) 19)) (-1358 (((-1 |#4| |#2| |#3|) (-1117)) 12))) +(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1358 ((-1 |#4| |#2| |#3|) (-1117))) (-15 -3929 ((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)))) (-580 (-513)) (-1154) (-1154) (-1154)) (T -662)) +((-3929 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *3 *5 *6 *7)) (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) (-4 *7 (-1154)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *4 *5 *6 *7)) (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) (-4 *7 (-1154))))) +(-10 -7 (-15 -1358 ((-1 |#4| |#2| |#3|) (-1117))) (-15 -3929 ((-1 |#4| |#2| |#3|) |#1| (-1117) (-1117)))) +((-2330 (((-111) $ $) NIL)) (-3219 (((-1205) $ (-731)) 14)) (-2299 (((-731) $) 12)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 25)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 24))) +(((-663 |#1|) (-13 (-130) (-579 |#1|) (-10 -8 (-15 -2341 ($ |#1|)))) (-1045)) (T -663)) +((-2341 (*1 *1 *2) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1045))))) +(-13 (-130) (-579 |#1|) (-10 -8 (-15 -2341 ($ |#1|)))) +((-3786 (((-1 (-210) (-210) (-210)) |#1| (-1117) (-1117)) 34) (((-1 (-210) (-210)) |#1| (-1117)) 39))) +(((-664 |#1|) (-10 -7 (-15 -3786 ((-1 (-210) (-210)) |#1| (-1117))) (-15 -3786 ((-1 (-210) (-210) (-210)) |#1| (-1117) (-1117)))) (-580 (-513))) (T -664)) +((-3786 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210) (-210))) (-5 *1 (-664 *3)) (-4 *3 (-580 (-513))))) (-3786 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210))) (-5 *1 (-664 *3)) (-4 *3 (-580 (-513)))))) +(-10 -7 (-15 -3786 ((-1 (-210) (-210)) |#1| (-1117))) (-15 -3786 ((-1 (-210) (-210) (-210)) |#1| (-1117) (-1117)))) +((-2066 (((-1117) |#1| (-1117) (-606 (-1117))) 9) (((-1117) |#1| (-1117) (-1117) (-1117)) 12) (((-1117) |#1| (-1117) (-1117)) 11) (((-1117) |#1| (-1117)) 10))) +(((-665 |#1|) (-10 -7 (-15 -2066 ((-1117) |#1| (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-606 (-1117))))) (-580 (-513))) (T -665)) +((-2066 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) (-2066 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) (-2066 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) (-2066 (*1 *2 *3 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513)))))) +(-10 -7 (-15 -2066 ((-1117) |#1| (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-1117) (-1117))) (-15 -2066 ((-1117) |#1| (-1117) (-606 (-1117))))) +((-1996 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-666 |#1| |#2|) (-10 -7 (-15 -1996 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1154) (-1154)) (T -666)) +((-1996 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-666 *3 *4)) (-4 *3 (-1154)) (-4 *4 (-1154))))) +(-10 -7 (-15 -1996 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-1606 (((-1 |#3| |#2|) (-1117)) 11)) (-3929 (((-1 |#3| |#2|) |#1| (-1117)) 21))) +(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1606 ((-1 |#3| |#2|) (-1117))) (-15 -3929 ((-1 |#3| |#2|) |#1| (-1117)))) (-580 (-513)) (-1154) (-1154)) (T -667)) +((-3929 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *3 *5 *6)) (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *4 *5 *6)) (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154))))) +(-10 -7 (-15 -1606 ((-1 |#3| |#2|) (-1117))) (-15 -3929 ((-1 |#3| |#2|) |#1| (-1117)))) +((-2653 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#4|)) (-606 |#3|) (-606 |#4|) (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#4|)))) (-606 (-731)) (-1200 (-606 (-1113 |#3|))) |#3|) 62)) (-3239 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#3|)) (-606 |#3|) (-606 |#4|) (-606 (-731)) |#3|) 75)) (-1729 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 |#3|) (-606 (-731)) (-606 (-1113 |#4|)) (-1200 (-606 (-1113 |#3|))) |#3|) 34))) +(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1729 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 |#3|) (-606 (-731)) (-606 (-1113 |#4|)) (-1200 (-606 (-1113 |#3|))) |#3|)) (-15 -3239 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#3|)) (-606 |#3|) (-606 |#4|) (-606 (-731)) |#3|)) (-15 -2653 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#4|)) (-606 |#3|) (-606 |#4|) (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#4|)))) (-606 (-731)) (-1200 (-606 (-1113 |#3|))) |#3|))) (-753) (-807) (-291) (-902 |#3| |#1| |#2|)) (T -668)) +((-2653 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-606 (-1113 *13))) (-5 *3 (-1113 *13)) (-5 *4 (-606 *12)) (-5 *5 (-606 *10)) (-5 *6 (-606 *13)) (-5 *7 (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *13))))) (-5 *8 (-606 (-731))) (-5 *9 (-1200 (-606 (-1113 *10)))) (-4 *12 (-807)) (-4 *10 (-291)) (-4 *13 (-902 *10 *11 *12)) (-4 *11 (-753)) (-5 *1 (-668 *11 *12 *10 *13)))) (-3239 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-606 *11)) (-5 *5 (-606 (-1113 *9))) (-5 *6 (-606 *9)) (-5 *7 (-606 *12)) (-5 *8 (-606 (-731))) (-4 *11 (-807)) (-4 *9 (-291)) (-4 *12 (-902 *9 *10 *11)) (-4 *10 (-753)) (-5 *2 (-606 (-1113 *12))) (-5 *1 (-668 *10 *11 *9 *12)) (-5 *3 (-1113 *12)))) (-1729 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-606 (-1113 *11))) (-5 *3 (-1113 *11)) (-5 *4 (-606 *10)) (-5 *5 (-606 *8)) (-5 *6 (-606 (-731))) (-5 *7 (-1200 (-606 (-1113 *8)))) (-4 *10 (-807)) (-4 *8 (-291)) (-4 *11 (-902 *8 *9 *10)) (-4 *9 (-753)) (-5 *1 (-668 *9 *10 *8 *11))))) +(-10 -7 (-15 -1729 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 |#3|) (-606 (-731)) (-606 (-1113 |#4|)) (-1200 (-606 (-1113 |#3|))) |#3|)) (-15 -3239 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#3|)) (-606 |#3|) (-606 |#4|) (-606 (-731)) |#3|)) (-15 -2653 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-606 |#2|) (-606 (-1113 |#4|)) (-606 |#3|) (-606 |#4|) (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#4|)))) (-606 (-731)) (-1200 (-606 (-1113 |#3|))) |#3|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 39)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-3733 (($ |#1| (-731)) 37)) (-1883 (((-731) $) 41)) (-3912 ((|#1| $) 40)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 (((-731) $) 42)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 36 (|has| |#1| (-163)))) (-3500 ((|#1| $ (-731)) 38)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-669 |#1|) (-134) (-998)) (T -669)) +((-2872 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998))))) +(-13 (-998) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2872 ((-731) $)) (-15 -1883 ((-731) $)) (-15 -3912 (|t#1| $)) (-15 -3940 ($ $)) (-15 -3500 (|t#1| $ (-731))) (-15 -3733 ($ |t#1| (-731))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1612 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-670 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1612 (|#6| (-1 |#4| |#1|) |#3|))) (-529) (-1176 |#1|) (-1176 (-391 |#2|)) (-529) (-1176 |#4|) (-1176 (-391 |#5|))) (T -670)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-529)) (-4 *7 (-529)) (-4 *6 (-1176 *5)) (-4 *2 (-1176 (-391 *8))) (-5 *1 (-670 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1176 (-391 *6))) (-4 *8 (-1176 *7))))) +(-10 -7 (-15 -1612 (|#6| (-1 |#4| |#1|) |#3|))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1655 (((-1100) (-816)) 31)) (-2356 (((-1205) (-1100)) 28)) (-2297 (((-1100) (-816)) 24)) (-2531 (((-1100) (-816)) 25)) (-2341 (((-816) $) NIL) (((-1100) (-816)) 23)) (-2244 (((-111) $ $) NIL))) +(((-671) (-13 (-1045) (-10 -7 (-15 -2341 ((-1100) (-816))) (-15 -2297 ((-1100) (-816))) (-15 -2531 ((-1100) (-816))) (-15 -1655 ((-1100) (-816))) (-15 -2356 ((-1205) (-1100)))))) (T -671)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-671))))) +(-13 (-1045) (-10 -7 (-15 -2341 ((-1100) (-816))) (-15 -2297 ((-1100) (-816))) (-15 -2531 ((-1100) (-816))) (-15 -1655 ((-1100) (-816))) (-15 -2356 ((-1205) (-1100))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3195 (($ |#1| |#2|) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 ((|#2| $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2048 (((-3 $ "failed") $ $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) ((|#1| $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-672 |#1| |#2| |#3| |#4| |#5|) (-13 (-347) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -672)) +((-2084 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-672 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3195 (*1 *1 *2 *3) (-12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-347) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)))) +((-2330 (((-111) $ $) 78)) (-1656 (((-111) $) 30)) (-3847 (((-1200 |#1|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#1|)) NIL)) (-3588 (((-1113 $) $ (-1027)) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) NIL (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-3151 (((-731)) 47 (|has| |#1| (-352)))) (-1505 (($ $ (-731)) NIL)) (-3719 (($ $ (-731)) NIL)) (-1350 ((|#2| |#2|) 44)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1027) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $ $) NIL (|has| |#1| (-163)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 34)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3195 (($ |#2|) 42)) (-3490 (((-3 $ "failed") $) 86)) (-1618 (($) 51 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-2657 (($ $ $) NIL)) (-2971 (($ $ $) NIL (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-2430 (((-911 $)) 80)) (-3240 (($ $ |#1| (-731) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ $) NIL (|has| |#1| (-529)))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) NIL) (($ (-1113 $) (-1027)) NIL)) (-3172 (($ $ (-731)) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 77) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2084 ((|#2|) 45)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-1113 |#1|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-3183 ((|#2| $) 41)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) 28)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-2899 (($ $) 79 (|has| |#1| (-333)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#1|) NIL) (($ $ (-606 (-1027)) (-606 |#1|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) NIL (|has| |#1| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 87 (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2872 (((-731) $) 32) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-3264 (((-911 $)) 36)) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#1| (-529)))) (-2341 (((-816) $) 61) (($ (-537)) NIL) (($ |#1|) 58) (($ (-1027)) NIL) (($ |#2|) 68) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) 63) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 20 T CONST)) (-3684 (((-1200 |#1|) $) 75)) (-4235 (($ (-1200 |#1|)) 50)) (-2943 (($) 8 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1339 (((-1200 |#1|) $) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 69)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) 72) (($ $ $) NIL)) (-2318 (($ $ $) 33)) (** (($ $ (-874)) NIL) (($ $ (-731)) 81)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 57) (($ $ $) 74) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-673 |#1| |#2|) (-13 (-1176 |#1|) (-10 -8 (-15 -1350 (|#2| |#2|)) (-15 -2084 (|#2|)) (-15 -3195 ($ |#2|)) (-15 -3183 (|#2| $)) (-15 -2341 ($ |#2|)) (-15 -3684 ((-1200 |#1|) $)) (-15 -4235 ($ (-1200 |#1|))) (-15 -1339 ((-1200 |#1|) $)) (-15 -2430 ((-911 $))) (-15 -3264 ((-911 $))) (IF (|has| |#1| (-333)) (-15 -2899 ($ $)) |%noBranch|) (IF (|has| |#1| (-352)) (-6 (-352)) |%noBranch|))) (-998) (-1176 |#1|)) (T -673)) +((-1350 (*1 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) (-2084 (*1 *2) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) (-3195 (*1 *1 *2) (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) (-3183 (*1 *2 *1) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) (-3684 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-1339 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-2430 (*1 *2) (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-3264 (*1 *2) (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *4 (-1176 *3)))) (-2899 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *2 (-998)) (-5 *1 (-673 *2 *3)) (-4 *3 (-1176 *2))))) +(-13 (-1176 |#1|) (-10 -8 (-15 -1350 (|#2| |#2|)) (-15 -2084 (|#2|)) (-15 -3195 ($ |#2|)) (-15 -3183 (|#2| $)) (-15 -2341 ($ |#2|)) (-15 -3684 ((-1200 |#1|) $)) (-15 -4235 ($ (-1200 |#1|))) (-15 -1339 ((-1200 |#1|) $)) (-15 -2430 ((-911 $))) (-15 -3264 ((-911 $))) (IF (|has| |#1| (-333)) (-15 -2899 ($ $)) |%noBranch|) (IF (|has| |#1| (-352)) (-6 (-352)) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2009 ((|#1| $) 13)) (-2528 (((-1064) $) NIL)) (-3283 ((|#2| $) 12)) (-2350 (($ |#1| |#2|) 16)) (-2341 (((-816) $) NIL) (($ (-2 (|:| -2009 |#1|) (|:| -3283 |#2|))) 15) (((-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) $) 14)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 11))) +(((-674 |#1| |#2| |#3|) (-13 (-807) (-10 -8 (-15 -3283 (|#2| $)) (-15 -2009 (|#1| $)) (-15 -2341 ($ (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)))) (-15 -2341 ((-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) $)) (-15 -2350 ($ |#1| |#2|)))) (-807) (-1045) (-1 (-111) (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)))) (T -674)) +((-3283 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-674 *3 *2 *4)) (-4 *3 (-807)) (-14 *4 (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *2)) (-2 (|:| -2009 *3) (|:| -3283 *2)))))) (-2009 (*1 *2 *1) (-12 (-4 *2 (-807)) (-5 *1 (-674 *2 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) (-2 (|:| -2009 *2) (|:| -3283 *3)))))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) (-4 *3 (-807)) (-4 *4 (-1045)) (-5 *1 (-674 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-1045)) (-14 *5 (-1 (-111) *2 *2)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3 *4)) (-4 *2 (-807)) (-4 *3 (-1045)) (-14 *4 (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) (-2 (|:| -2009 *2) (|:| -3283 *3))))))) +(-13 (-807) (-10 -8 (-15 -3283 (|#2| $)) (-15 -2009 (|#1| $)) (-15 -2341 ($ (-2 (|:| -2009 |#1|) (|:| -3283 |#2|)))) (-15 -2341 ((-2 (|:| -2009 |#1|) (|:| -3283 |#2|)) $)) (-15 -2350 ($ |#1| |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 59)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 89) (((-3 (-113) "failed") $) 95)) (-3958 ((|#1| $) NIL) (((-113) $) 39)) (-3490 (((-3 $ "failed") $) 90)) (-4177 ((|#2| (-113) |#2|) 82)) (-2836 (((-111) $) NIL)) (-2650 (($ |#1| (-345 (-113))) 14)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3414 (($ $ (-1 |#2| |#2|)) 58)) (-3146 (($ $ (-1 |#2| |#2|)) 44)) (-1922 ((|#2| $ |#2|) 33)) (-1668 ((|#1| |#1|) 105 (|has| |#1| (-163)))) (-2341 (((-816) $) 66) (($ (-537)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 37)) (-4273 (($ $) 99 (|has| |#1| (-163))) (($ $ $) 103 (|has| |#1| (-163)))) (-2928 (($) 21 T CONST)) (-2943 (($) 9 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) 48) (($ $ $) NIL)) (-2318 (($ $ $) 73)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ (-113) (-537)) NIL) (($ $ (-537)) 57)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-163))) (($ $ |#1|) 97 (|has| |#1| (-163))))) +(((-675 |#1| |#2|) (-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#2| |#2|))) (-15 -3414 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#2| (-113) |#2|)) (-15 -2650 ($ |#1| (-345 (-113)))))) (-998) (-609 |#1|)) (T -675)) +((-4273 (*1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) (-4 *3 (-609 *2)))) (-4273 (*1 *1 *1 *1) (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) (-4 *3 (-609 *2)))) (-1668 (*1 *2 *2) (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) (-4 *3 (-609 *2)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-675 *4 *5)) (-4 *5 (-609 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)) (-4 *4 (-609 *3)))) (-4177 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-998)) (-5 *1 (-675 *4 *2)) (-4 *2 (-609 *4)))) (-2650 (*1 *1 *2 *3) (-12 (-5 *3 (-345 (-113))) (-4 *2 (-998)) (-5 *1 (-675 *2 *4)) (-4 *4 (-609 *2))))) +(-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#2| |#2|))) (-15 -3414 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#2| (-113) |#2|)) (-15 -2650 ($ |#1| (-345 (-113)))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 33)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ |#1| |#2|) 25)) (-3490 (((-3 $ "failed") $) 48)) (-2836 (((-111) $) 35)) (-2084 ((|#2| $) 12)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 49)) (-2528 (((-1064) $) NIL)) (-2048 (((-3 $ "failed") $ $) 47)) (-2341 (((-816) $) 24) (($ (-537)) 19) ((|#1| $) 13)) (-3654 (((-731)) 28)) (-2928 (($) 16 T CONST)) (-2943 (($) 30 T CONST)) (-2244 (((-111) $ $) 38)) (-2329 (($ $) 43) (($ $ $) 37)) (-2318 (($ $ $) 40)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 21) (($ $ $) 20))) +(((-676 |#1| |#2| |#3| |#4| |#5|) (-13 (-998) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)))) (-163) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -676)) +((-3490 (*1 *1 *1) (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2084 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3195 (*1 *1 *2 *3) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2048 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-998) (-10 -8 (-15 -2084 (|#2| $)) (-15 -2341 (|#1| $)) (-15 -3195 ($ |#1| |#2|)) (-15 -2048 ((-3 $ "failed") $ $)) (-15 -3490 ((-3 $ "failed") $)) (-15 -3865 ($ $)))) +((* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-677 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-678 |#2|) (-163)) (T -677)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-678 |#1|) (-134) (-163)) (T -678)) +NIL +(-13 (-110 |t#1| |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3879 (($ |#1|) 17) (($ $ |#1|) 20)) (-3190 (($ |#1|) 18) (($ $ |#1|) 21)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2836 (((-111) $) NIL)) (-3063 (($ |#1| |#1| |#1| |#1|) 8)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 16)) (-2528 (((-1064) $) NIL)) (-4116 ((|#1| $ |#1|) 24) (((-793 |#1|) $ (-793 |#1|)) 32)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-2341 (((-816) $) 39)) (-2943 (($) 9 T CONST)) (-2244 (((-111) $ $) 44)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ $ $) 14))) +(((-679 |#1|) (-13 (-456) (-10 -8 (-15 -3063 ($ |#1| |#1| |#1| |#1|)) (-15 -3879 ($ |#1|)) (-15 -3190 ($ |#1|)) (-15 -3490 ($)) (-15 -3879 ($ $ |#1|)) (-15 -3190 ($ $ |#1|)) (-15 -3490 ($ $)) (-15 -4116 (|#1| $ |#1|)) (-15 -4116 ((-793 |#1|) $ (-793 |#1|))))) (-347)) (T -679)) +((-3063 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3879 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3190 (*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3490 (*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-4116 (*1 *2 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) (-4116 (*1 *2 *1 *2) (-12 (-5 *2 (-793 *3)) (-4 *3 (-347)) (-5 *1 (-679 *3))))) +(-13 (-456) (-10 -8 (-15 -3063 ($ |#1| |#1| |#1| |#1|)) (-15 -3879 ($ |#1|)) (-15 -3190 ($ |#1|)) (-15 -3490 ($)) (-15 -3879 ($ $ |#1|)) (-15 -3190 ($ $ |#1|)) (-15 -3490 ($ $)) (-15 -4116 (|#1| $ |#1|)) (-15 -4116 ((-793 |#1|) $ (-793 |#1|))))) +((-2541 (($ $ (-874)) 12)) (-3060 (($ $ (-874)) 13)) (** (($ $ (-874)) 10))) +(((-680 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) (-681)) (T -680)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-2541 (($ $ (-874)) 15)) (-3060 (($ $ (-874)) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13)) (* (($ $ $) 16))) +(((-681) (-134)) (T -681)) +((* (*1 *1 *1 *1) (-4 *1 (-681))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874))))) +(-13 (-1045) (-10 -8 (-15 * ($ $ $)) (-15 -2541 ($ $ (-874))) (-15 -3060 ($ $ (-874))) (-15 ** ($ $ (-874))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2541 (($ $ (-874)) NIL) (($ $ (-731)) 17)) (-2836 (((-111) $) 10)) (-3060 (($ $ (-874)) NIL) (($ $ (-731)) 18)) (** (($ $ (-874)) NIL) (($ $ (-731)) 15))) +(((-682 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-731))) (-15 -3060 (|#1| |#1| (-731))) (-15 -2541 (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) (-683)) (T -682)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-731))) (-15 -3060 (|#1| |#1| (-731))) (-15 -2541 (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 ** (|#1| |#1| (-874))) (-15 -3060 (|#1| |#1| (-874))) (-15 -2541 (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-3800 (((-3 $ "failed") $) 17)) (-2541 (($ $ (-874)) 15) (($ $ (-731)) 22)) (-3490 (((-3 $ "failed") $) 19)) (-2836 (((-111) $) 23)) (-3820 (((-3 $ "failed") $) 18)) (-3060 (($ $ (-874)) 14) (($ $ (-731)) 21)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2943 (($) 24 T CONST)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13) (($ $ (-731)) 20)) (* (($ $ $) 16))) +(((-683) (-134)) (T -683)) +((-2943 (*1 *1) (-4 *1 (-683))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-683)) (-5 *2 (-111)))) (-2541 (*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) (-3490 (*1 *1 *1) (|partial| -4 *1 (-683))) (-3820 (*1 *1 *1) (|partial| -4 *1 (-683))) (-3800 (*1 *1 *1) (|partial| -4 *1 (-683)))) +(-13 (-681) (-10 -8 (-15 (-2943) ($) -2787) (-15 -2836 ((-111) $)) (-15 -2541 ($ $ (-731))) (-15 -3060 ($ $ (-731))) (-15 ** ($ $ (-731))) (-15 -3490 ((-3 $ "failed") $)) (-15 -3820 ((-3 $ "failed") $)) (-15 -3800 ((-3 $ "failed") $)))) +(((-100) . T) ((-579 (-816)) . T) ((-681) . T) ((-1045) . T)) +((-3151 (((-731)) 34)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 22)) (-3195 (($ |#3|) NIL) (((-3 $ "failed") (-391 |#3|)) 44)) (-3490 (((-3 $ "failed") $) 64)) (-1618 (($) 38)) (-2055 ((|#2| $) 20)) (-1524 (($) 17)) (-3456 (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-1630 (((-649 |#2|) (-1200 $) (-1 |#2| |#2|)) 59)) (-3996 (((-1200 |#2|) $) NIL) (($ (-1200 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2736 ((|#3| $) 32)) (-2122 (((-1200 $)) 29))) +(((-684 |#1| |#2| |#3|) (-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1618 (|#1|)) (-15 -3151 ((-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -1630 ((-649 |#2|) (-1200 |#1|) (-1 |#2| |#2|))) (-15 -3195 ((-3 |#1| "failed") (-391 |#3|))) (-15 -3996 (|#1| |#3|)) (-15 -3195 (|#1| |#3|)) (-15 -1524 (|#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 (|#3| |#1|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -2122 ((-1200 |#1|))) (-15 -2736 (|#3| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) (-685 |#2| |#3|) (-163) (-1176 |#2|)) (T -684)) +((-3151 (*1 *2) (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-731)) (-5 *1 (-684 *3 *4 *5)) (-4 *3 (-685 *4 *5))))) +(-10 -8 (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -1618 (|#1|)) (-15 -3151 ((-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -1630 ((-649 |#2|) (-1200 |#1|) (-1 |#2| |#2|))) (-15 -3195 ((-3 |#1| "failed") (-391 |#3|))) (-15 -3996 (|#1| |#3|)) (-15 -3195 (|#1| |#3|)) (-15 -1524 (|#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3996 (|#3| |#1|)) (-15 -3996 (|#1| (-1200 |#2|))) (-15 -3996 ((-1200 |#2|) |#1|)) (-15 -2122 ((-1200 |#1|))) (-15 -2736 (|#3| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -3490 ((-3 |#1| "failed") |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 91 (|has| |#1| (-347)))) (-3377 (($ $) 92 (|has| |#1| (-347)))) (-4017 (((-111) $) 94 (|has| |#1| (-347)))) (-3623 (((-649 |#1|) (-1200 $)) 44) (((-649 |#1|)) 59)) (-1428 ((|#1| $) 50)) (-1387 (((-1127 (-874) (-731)) (-537)) 144 (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 111 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 112 (|has| |#1| (-347)))) (-4099 (((-111) $ $) 102 (|has| |#1| (-347)))) (-3151 (((-731)) 85 (|has| |#1| (-352)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 166 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 164 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 163)) (-3958 (((-537) $) 167 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 165 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 162)) (-3447 (($ (-1200 |#1|) (-1200 $)) 46) (($ (-1200 |#1|)) 62)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-333)))) (-3563 (($ $ $) 106 (|has| |#1| (-347)))) (-2664 (((-649 |#1|) $ (-1200 $)) 51) (((-649 |#1|) $) 57)) (-2053 (((-649 (-537)) (-649 $)) 161 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 160 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 159) (((-649 |#1|) (-649 $)) 158)) (-3195 (($ |#2|) 155) (((-3 $ "failed") (-391 |#2|)) 152 (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-874)) 52)) (-1618 (($) 88 (|has| |#1| (-352)))) (-3539 (($ $ $) 105 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 100 (|has| |#1| (-347)))) (-4145 (($) 146 (|has| |#1| (-333)))) (-2974 (((-111) $) 147 (|has| |#1| (-333)))) (-2642 (($ $ (-731)) 138 (|has| |#1| (-333))) (($ $) 137 (|has| |#1| (-333)))) (-2639 (((-111) $) 113 (|has| |#1| (-347)))) (-4231 (((-874) $) 149 (|has| |#1| (-333))) (((-793 (-874)) $) 135 (|has| |#1| (-333)))) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 49)) (-2824 (((-3 $ "failed") $) 139 (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 109 (|has| |#1| (-347)))) (-3199 ((|#2| $) 42 (|has| |#1| (-347)))) (-2334 (((-874) $) 87 (|has| |#1| (-352)))) (-3183 ((|#2| $) 153)) (-2183 (($ (-606 $)) 98 (|has| |#1| (-347))) (($ $ $) 97 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 114 (|has| |#1| (-347)))) (-3956 (($) 140 (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) 86 (|has| |#1| (-352)))) (-2528 (((-1064) $) 10)) (-1524 (($) 157)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 99 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 96 (|has| |#1| (-347))) (($ $ $) 95 (|has| |#1| (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) 143 (|has| |#1| (-333)))) (-3622 (((-402 $) $) 110 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 107 (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ $) 90 (|has| |#1| (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 101 (|has| |#1| (-347)))) (-1930 (((-731) $) 103 (|has| |#1| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 104 (|has| |#1| (-347)))) (-2067 ((|#1| (-1200 $)) 45) ((|#1|) 58)) (-3030 (((-731) $) 148 (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) 136 (|has| |#1| (-333)))) (-3456 (($ $) 134 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) 132 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) 130 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117))) 129 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1117) (-731)) 128 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-731))) 127 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1 |#1| |#1|) (-731)) 120 (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-347)))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-347)))) (-2529 ((|#2|) 156)) (-3553 (($) 145 (|has| |#1| (-333)))) (-1484 (((-1200 |#1|) $ (-1200 $)) 48) (((-649 |#1|) (-1200 $) (-1200 $)) 47) (((-1200 |#1|) $) 64) (((-649 |#1|) (-1200 $)) 63)) (-3996 (((-1200 |#1|) $) 61) (($ (-1200 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 142 (|has| |#1| (-333)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-347))) (($ (-391 (-537))) 84 (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (($ $) 141 (|has| |#1| (-333))) (((-3 $ "failed") $) 41 (|has| |#1| (-139)))) (-2736 ((|#2| $) 43)) (-3654 (((-731)) 28)) (-2122 (((-1200 $)) 65)) (-3276 (((-111) $ $) 93 (|has| |#1| (-347)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 133 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) 131 (-1533 (-3319 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) 126 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117))) 125 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1117) (-731)) 124 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-731))) 123 (-3319 (|has| |#1| (-853 (-1117))) (|has| |#1| (-347)))) (($ $ (-1 |#1| |#1|) (-731)) 122 (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-347)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 118 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 115 (|has| |#1| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-391 (-537)) $) 117 (|has| |#1| (-347))) (($ $ (-391 (-537))) 116 (|has| |#1| (-347))))) +(((-685 |#1| |#2|) (-134) (-163) (-1176 |t#1|)) (T -685)) +((-1524 (*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-685 *2 *3)) (-4 *3 (-1176 *2)))) (-2529 (*1 *2) (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) (-3195 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) (-3996 (*1 *1 *2) (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) (-3195 (*1 *1 *2) (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-347)) (-4 *3 (-163)) (-4 *1 (-685 *3 *4)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-1200 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) (-4 *1 (-685 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1176 *5)) (-5 *2 (-649 *5))))) +(-13 (-393 |t#1| |t#2|) (-163) (-580 |t#2|) (-395 |t#1|) (-361 |t#1|) (-10 -8 (-15 -1524 ($)) (-15 -2529 (|t#2|)) (-15 -3195 ($ |t#2|)) (-15 -3996 ($ |t#2|)) (-15 -3183 (|t#2| $)) (IF (|has| |t#1| (-352)) (-6 (-352)) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-6 (-347)) (-6 (-216 |t#1|)) (-15 -3195 ((-3 $ "failed") (-391 |t#2|))) (-15 -1630 ((-649 |t#1|) (-1200 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-37 |#1|) . T) ((-37 $) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-100) . T) ((-110 #0# #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-333)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 |#2|) . T) ((-216 |#1|) |has| |#1| (-347)) ((-218) -1533 (|has| |#1| (-333)) (-12 (|has| |#1| (-218)) (|has| |#1| (-347)))) ((-228) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-274) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-291) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-347) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-386) |has| |#1| (-333)) ((-352) -1533 (|has| |#1| (-352)) (|has| |#1| (-333))) ((-333) |has| |#1| (-333)) ((-354 |#1| |#2|) . T) ((-393 |#1| |#2|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-529) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-609 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-678 |#1|) . T) ((-678 $) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117)))) ((-873) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) -1533 (|has| |#1| (-333)) (|has| |#1| (-347))) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-333)) ((-1158) -1533 (|has| |#1| (-333)) (|has| |#1| (-347)))) +((-3832 (($) 11)) (-3490 (((-3 $ "failed") $) 13)) (-2836 (((-111) $) 10)) (** (($ $ (-874)) NIL) (($ $ (-731)) 18))) +(((-686 |#1|) (-10 -8 (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 ** (|#1| |#1| (-874)))) (-687)) (T -686)) +NIL +(-10 -8 (-15 -3490 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-731))) (-15 -2836 ((-111) |#1|)) (-15 -3832 (|#1|)) (-15 ** (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-3832 (($) 18 T CONST)) (-3490 (((-3 $ "failed") $) 15)) (-2836 (((-111) $) 17)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2943 (($) 19 T CONST)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13) (($ $ (-731)) 16)) (* (($ $ $) 14))) +(((-687) (-134)) (T -687)) +((-2943 (*1 *1) (-4 *1 (-687))) (-3832 (*1 *1) (-4 *1 (-687))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-731)))) (-3490 (*1 *1 *1) (|partial| -4 *1 (-687)))) +(-13 (-1057) (-10 -8 (-15 (-2943) ($) -2787) (-15 -3832 ($) -2787) (-15 -2836 ((-111) $)) (-15 ** ($ $ (-731))) (-15 -3490 ((-3 $ "failed") $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1057) . T) ((-1045) . T)) +((-3405 (((-2 (|:| -2559 (-402 |#2|)) (|:| |special| (-402 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3763 (((-2 (|:| -2559 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2128 ((|#2| (-391 |#2|) (-1 |#2| |#2|)) 13)) (-4035 (((-2 (|:| |poly| |#2|) (|:| -2559 (-391 |#2|)) (|:| |special| (-391 |#2|))) (-391 |#2|) (-1 |#2| |#2|)) 47))) +(((-688 |#1| |#2|) (-10 -7 (-15 -3763 ((-2 (|:| -2559 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3405 ((-2 (|:| -2559 (-402 |#2|)) (|:| |special| (-402 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2128 (|#2| (-391 |#2|) (-1 |#2| |#2|))) (-15 -4035 ((-2 (|:| |poly| |#2|) (|:| -2559 (-391 |#2|)) (|:| |special| (-391 |#2|))) (-391 |#2|) (-1 |#2| |#2|)))) (-347) (-1176 |#1|)) (T -688)) +((-4035 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2559 (-391 *6)) (|:| |special| (-391 *6)))) (-5 *1 (-688 *5 *6)) (-5 *3 (-391 *6)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-391 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1176 *5)) (-5 *1 (-688 *5 *2)) (-4 *5 (-347)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -2559 (-402 *3)) (|:| |special| (-402 *3)))) (-5 *1 (-688 *5 *3)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -2559 *3) (|:| |special| *3))) (-5 *1 (-688 *5 *3))))) +(-10 -7 (-15 -3763 ((-2 (|:| -2559 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3405 ((-2 (|:| -2559 (-402 |#2|)) (|:| |special| (-402 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2128 (|#2| (-391 |#2|) (-1 |#2| |#2|))) (-15 -4035 ((-2 (|:| |poly| |#2|) (|:| -2559 (-391 |#2|)) (|:| |special| (-391 |#2|))) (-391 |#2|) (-1 |#2| |#2|)))) +((-2192 ((|#7| (-606 |#5|) |#6|) NIL)) (-1612 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-689 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2192 (|#7| (-606 |#5|) |#6|))) (-807) (-753) (-753) (-998) (-998) (-902 |#4| |#2| |#1|) (-902 |#5| |#3| |#1|)) (T -689)) +((-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *9)) (-4 *9 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *8 (-998)) (-4 *2 (-902 *9 *7 *5)) (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) (-4 *4 (-902 *8 *6 *5)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-998)) (-4 *9 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) (-4 *2 (-902 *9 *7 *5)) (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) (-4 *4 (-902 *8 *6 *5))))) +(-10 -7 (-15 -1612 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2192 (|#7| (-606 |#5|) |#6|))) +((-1612 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1612 (|#7| (-1 |#2| |#1|) |#6|))) (-807) (-807) (-753) (-753) (-998) (-902 |#5| |#3| |#1|) (-902 |#5| |#4| |#2|)) (T -690)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-807)) (-4 *6 (-807)) (-4 *7 (-753)) (-4 *9 (-998)) (-4 *2 (-902 *9 *8 *6)) (-5 *1 (-690 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-753)) (-4 *4 (-902 *9 *7 *5))))) +(-10 -7 (-15 -1612 (|#7| (-1 |#2| |#1|) |#6|))) +((-3622 (((-402 |#4|) |#4|) 41))) +(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) (-753) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117))))) (-291) (-902 (-905 |#3|) |#1| |#2|)) (T -691)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-902 (-905 *6) *4 *5))))) +(-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-818 |#1|)) $) NIL)) (-3588 (((-1113 $) $ (-818 |#1|)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-818 |#1|))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-818 |#1|) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-818 |#1|) $) NIL)) (-4086 (($ $ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-509 (-818 |#1|)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-818 |#1|) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#2|) (-818 |#1|)) NIL) (($ (-1113 $) (-818 |#1|)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-509 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-818 |#1|)) NIL)) (-1883 (((-509 (-818 |#1|)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-509 (-818 |#1|)) (-509 (-818 |#1|))) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-1310 (((-3 (-818 |#1|) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-818 |#1|)) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-818 |#1|) |#2|) NIL) (($ $ (-606 (-818 |#1|)) (-606 |#2|)) NIL) (($ $ (-818 |#1|) $) NIL) (($ $ (-606 (-818 |#1|)) (-606 $)) NIL)) (-2067 (($ $ (-818 |#1|)) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2872 (((-509 (-818 |#1|)) $) NIL) (((-731) $ (-818 |#1|)) NIL) (((-606 (-731)) $ (-606 (-818 |#1|))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-818 |#1|) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-818 |#1|) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-818 |#1|)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-818 |#1|)) NIL) (($ $) NIL (|has| |#2| (-529))) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537))))))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-509 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-818 |#1|)) NIL) (($ $ (-606 (-818 |#1|))) NIL) (($ $ (-818 |#1|) (-731)) NIL) (($ $ (-606 (-818 |#1|)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-692 |#1| |#2|) (-902 |#2| (-509 (-818 |#1|)) (-818 |#1|)) (-606 (-1117)) (-998)) (T -692)) +NIL +(-902 |#2| (-509 (-818 |#1|)) (-818 |#1|)) +((-1676 (((-2 (|:| -2169 (-905 |#3|)) (|:| -3406 (-905 |#3|))) |#4|) 14)) (-2210 ((|#4| |#4| |#2|) 33)) (-3626 ((|#4| (-391 (-905 |#3|)) |#2|) 64)) (-2891 ((|#4| (-1113 (-905 |#3|)) |#2|) 77)) (-2420 ((|#4| (-1113 |#4|) |#2|) 51)) (-2412 ((|#4| |#4| |#2|) 54)) (-3622 (((-402 |#4|) |#4|) 40))) +(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1676 ((-2 (|:| -2169 (-905 |#3|)) (|:| -3406 (-905 |#3|))) |#4|)) (-15 -2412 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1113 |#4|) |#2|)) (-15 -2210 (|#4| |#4| |#2|)) (-15 -2891 (|#4| (-1113 (-905 |#3|)) |#2|)) (-15 -3626 (|#4| (-391 (-905 |#3|)) |#2|)) (-15 -3622 ((-402 |#4|) |#4|))) (-753) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)))) (-529) (-902 (-391 (-905 |#3|)) |#1| |#2|)) (T -693)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-902 (-391 (-905 *6)) *4 *5)))) (-3626 (*1 *2 *3 *4) (-12 (-4 *6 (-529)) (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) (-5 *3 (-391 (-905 *6))) (-4 *5 (-753)) (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 (-905 *6))) (-4 *6 (-529)) (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) (-4 *5 (-753)) (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))))) (-2210 (*1 *2 *2 *3) (-12 (-4 *4 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) (-4 *5 (-753)) (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)))) (-2412 (*1 *2 *2 *3) (-12 (-4 *4 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) (-5 *2 (-2 (|:| -2169 (-905 *6)) (|:| -3406 (-905 *6)))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-902 (-391 (-905 *6)) *4 *5))))) +(-10 -7 (-15 -1676 ((-2 (|:| -2169 (-905 |#3|)) (|:| -3406 (-905 |#3|))) |#4|)) (-15 -2412 (|#4| |#4| |#2|)) (-15 -2420 (|#4| (-1113 |#4|) |#2|)) (-15 -2210 (|#4| |#4| |#2|)) (-15 -2891 (|#4| (-1113 (-905 |#3|)) |#2|)) (-15 -3626 (|#4| (-391 (-905 |#3|)) |#2|)) (-15 -3622 ((-402 |#4|) |#4|))) +((-3622 (((-402 |#4|) |#4|) 52))) +(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) (-753) (-807) (-13 (-291) (-141)) (-902 (-391 |#3|) |#1| |#2|)) (T -694)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-13 (-291) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-902 (-391 *6) *4 *5))))) +(-10 -7 (-15 -3622 ((-402 |#4|) |#4|))) +((-1612 (((-696 |#2| |#3|) (-1 |#2| |#1|) (-696 |#1| |#3|)) 18))) +(((-695 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-696 |#2| |#3|) (-1 |#2| |#1|) (-696 |#1| |#3|)))) (-998) (-998) (-687)) (T -695)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-696 *5 *7)) (-4 *5 (-998)) (-4 *6 (-998)) (-4 *7 (-687)) (-5 *2 (-696 *6 *7)) (-5 *1 (-695 *5 *6 *7))))) +(-10 -7 (-15 -1612 ((-696 |#2| |#3|) (-1 |#2| |#1|) (-696 |#1| |#3|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 28)) (-1525 (((-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))) $) 29)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731)) 20 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3958 ((|#2| $) NIL) ((|#1| $) NIL)) (-3940 (($ $) 79 (|has| |#2| (-807)))) (-3490 (((-3 $ "failed") $) 65)) (-1618 (($) 35 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 55)) (-1645 (((-606 $) $) 39)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| |#2|) 16)) (-1612 (($ (-1 |#1| |#1|) $) 54)) (-2334 (((-874) $) 32 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-3901 ((|#2| $) 78 (|has| |#2| (-807)))) (-3912 ((|#1| $) 77 (|has| |#2| (-807)))) (-1654 (((-1100) $) NIL)) (-2009 (($ (-874)) 27 (-12 (|has| |#2| (-352)) (|has| |#1| (-352))))) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 76) (($ (-537)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|)))) 11)) (-3459 (((-606 |#1|) $) 41)) (-3500 ((|#1| $ |#2|) 88)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2928 (($) 12 T CONST)) (-2943 (($) 33 T CONST)) (-2244 (((-111) $ $) 80)) (-2329 (($ $) 47) (($ $ $) NIL)) (-2318 (($ $ $) 26)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-696 |#1| |#2|) (-13 (-998) (-989 |#2|) (-989 |#1|) (-10 -8 (-15 -3733 ($ |#1| |#2|)) (-15 -3500 (|#1| $ |#2|)) (-15 -2341 ($ (-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))))) (-15 -1525 ((-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1538 ((-111) $)) (-15 -3459 ((-606 |#1|) $)) (-15 -1645 ((-606 $) $)) (-15 -2668 ((-731) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-807)) (PROGN (-15 -3901 (|#2| $)) (-15 -3912 (|#1| $)) (-15 -3940 ($ $))) |%noBranch|))) (-998) (-687)) (T -696)) +((-3733 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3)) (-4 *2 (-998)) (-4 *3 (-687)))) (-3500 (*1 *2 *1 *3) (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-687)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) (-4 *3 (-998)) (-4 *4 (-687)) (-5 *1 (-696 *3 *4)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-696 *3 *4)) (-4 *4 (-687)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-606 (-696 *3 *4))) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) (-3901 (*1 *2 *1) (-12 (-4 *2 (-687)) (-4 *2 (-807)) (-5 *1 (-696 *3 *2)) (-4 *3 (-998)))) (-3912 (*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) (-4 *3 (-687)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) (-4 *2 (-998)) (-4 *3 (-687))))) +(-13 (-998) (-989 |#2|) (-989 |#1|) (-10 -8 (-15 -3733 ($ |#1| |#2|)) (-15 -3500 (|#1| $ |#2|)) (-15 -2341 ($ (-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))))) (-15 -1525 ((-606 (-2 (|:| -3449 |#1|) (|:| -2367 |#2|))) $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (-15 -1538 ((-111) $)) (-15 -3459 ((-606 |#1|) $)) (-15 -1645 ((-606 $) $)) (-15 -2668 ((-731) $)) (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-807)) (PROGN (-15 -3901 (|#2| $)) (-15 -3912 (|#1| $)) (-15 -3940 ($ $))) |%noBranch|))) +((-2330 (((-111) $ $) 19)) (-4221 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2969 (($ $ $) 72)) (-3495 (((-111) $ $) 73)) (-2506 (((-111) $ (-731)) 8)) (-1272 (($ (-606 |#1|)) 68) (($) 67)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 62)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 64)) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22)) (-3891 (($ $ $) 69)) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40) (($ |#1| $ (-731)) 63)) (-2528 (((-1064) $) 21)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 61)) (-2867 (($ $ |#1|) 71) (($ $ $) 70)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18)) (-3575 (($ (-606 |#1|)) 66) (($) 65)) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-697 |#1|) (-134) (-1045)) (T -697)) +NIL +(-13 (-655 |t#1|) (-1043 |t#1|)) +(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-655 |#1|) . T) ((-1043 |#1|) . T) ((-1045) . T) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-4221 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2969 (($ $ $) 79)) (-3495 (((-111) $ $) 83)) (-2506 (((-111) $ (-731)) NIL)) (-1272 (($ (-606 |#1|)) 24) (($) 16)) (-3435 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-1376 (($ $) 71)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) 61 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4300))) (($ |#1| $ (-537)) 62) (($ (-1 (-111) |#1|) $ (-537)) 65)) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (($ |#1| $ (-537)) 67) (($ (-1 (-111) |#1|) $ (-537)) 68)) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 32 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 82)) (-2418 (($) 14) (($ |#1|) 26) (($ (-606 |#1|)) 21)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) 38)) (-3122 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 75)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 77)) (-2783 ((|#1| $) 55)) (-3499 (($ |#1| $) 56) (($ |#1| $ (-731)) 72)) (-2528 (((-1064) $) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1599 ((|#1| $) 54)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 50)) (-3425 (($) 13)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 48)) (-2867 (($ $ |#1|) NIL) (($ $ $) 78)) (-1341 (($) 15) (($ (-606 |#1|)) 23)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) 60 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 66)) (-3996 (((-513) $) 36 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 20)) (-2341 (((-816) $) 44)) (-3575 (($ (-606 |#1|)) 25) (($) 17)) (-2753 (($ (-606 |#1|)) 22)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 81)) (-2258 (((-731) $) 59 (|has| $ (-6 -4300))))) +(((-698 |#1|) (-13 (-697 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2418 ($)) (-15 -2418 ($ |#1|)) (-15 -2418 ($ (-606 |#1|))) (-15 -3703 ((-606 |#1|) $)) (-15 -2355 ($ |#1| $ (-537))) (-15 -2355 ($ (-1 (-111) |#1|) $ (-537))) (-15 -3026 ($ |#1| $ (-537))) (-15 -3026 ($ (-1 (-111) |#1|) $ (-537))))) (-1045)) (T -698)) +((-2418 (*1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-2418 (*1 *1 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-698 *3)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1045)))) (-2355 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-2355 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) (-5 *1 (-698 *4)))) (-3026 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) (-3026 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) (-5 *1 (-698 *4))))) +(-13 (-697 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -2418 ($)) (-15 -2418 ($ |#1|)) (-15 -2418 ($ (-606 |#1|))) (-15 -3703 ((-606 |#1|) $)) (-15 -2355 ($ |#1| $ (-537))) (-15 -2355 ($ (-1 (-111) |#1|) $ (-537))) (-15 -3026 ($ |#1| $ (-537))) (-15 -3026 ($ (-1 (-111) |#1|) $ (-537))))) +((-2527 (((-1205) (-1100)) 8))) +(((-699) (-10 -7 (-15 -2527 ((-1205) (-1100))))) (T -699)) +((-2527 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-699))))) +(-10 -7 (-15 -2527 ((-1205) (-1100)))) +((-3023 (((-606 |#1|) (-606 |#1|) (-606 |#1|)) 10))) +(((-700 |#1|) (-10 -7 (-15 -3023 ((-606 |#1|) (-606 |#1|) (-606 |#1|)))) (-807)) (T -700)) +((-3023 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-700 *3))))) +(-10 -7 (-15 -3023 ((-606 |#1|) (-606 |#1|) (-606 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#2|) $) 134)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 127 (|has| |#1| (-529)))) (-3377 (($ $) 126 (|has| |#1| (-529)))) (-4017 (((-111) $) 124 (|has| |#1| (-529)))) (-1403 (($ $) 83 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 66 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $) 65 (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 82 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 67 (|has| |#1| (-37 (-391 (-537)))))) (-1429 (($ $) 81 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 68 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3940 (($ $) 118)) (-3490 (((-3 $ "failed") $) 32)) (-1706 (((-905 |#1|) $ (-731)) 96) (((-905 |#1|) $ (-731) (-731)) 95)) (-2362 (((-111) $) 135)) (-3338 (($) 93 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $ |#2|) 98) (((-731) $ |#2| (-731)) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 64 (|has| |#1| (-37 (-391 (-537)))))) (-1538 (((-111) $) 116)) (-3733 (($ $ (-606 |#2|) (-606 (-509 |#2|))) 133) (($ $ |#2| (-509 |#2|)) 132) (($ |#1| (-509 |#2|)) 117) (($ $ |#2| (-731)) 100) (($ $ (-606 |#2|) (-606 (-731))) 99)) (-1612 (($ (-1 |#1| |#1|) $) 115)) (-2180 (($ $) 90 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 113)) (-3912 ((|#1| $) 112)) (-1654 (((-1100) $) 9)) (-3092 (($ $ |#2|) 94 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) 10)) (-1540 (($ $ (-731)) 101)) (-3515 (((-3 $ "failed") $ $) 128 (|has| |#1| (-529)))) (-4185 (($ $) 91 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (($ $ |#2| $) 109) (($ $ (-606 |#2|) (-606 $)) 108) (($ $ (-606 (-278 $))) 107) (($ $ (-278 $)) 106) (($ $ $ $) 105) (($ $ (-606 $) (-606 $)) 104)) (-3456 (($ $ |#2|) 40) (($ $ (-606 |#2|)) 39) (($ $ |#2| (-731)) 38) (($ $ (-606 |#2|) (-606 (-731))) 37)) (-2872 (((-509 |#2|) $) 114)) (-1441 (($ $) 80 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 69 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 79 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 70 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 78 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 71 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 136)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 131 (|has| |#1| (-163))) (($ $) 129 (|has| |#1| (-529))) (($ (-391 (-537))) 121 (|has| |#1| (-37 (-391 (-537)))))) (-3500 ((|#1| $ (-509 |#2|)) 119) (($ $ |#2| (-731)) 103) (($ $ (-606 |#2|) (-606 (-731))) 102)) (-2644 (((-3 $ "failed") $) 130 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-1475 (($ $) 89 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 77 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 125 (|has| |#1| (-529)))) (-1453 (($ $) 88 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 76 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 87 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 75 (|has| |#1| (-37 (-391 (-537)))))) (-4141 (($ $) 86 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 74 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 85 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 73 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 84 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 72 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#2|) 36) (($ $ (-606 |#2|)) 35) (($ $ |#2| (-731)) 34) (($ $ (-606 |#2|) (-606 (-731))) 33)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 120 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ $) 92 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 63 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 123 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 122 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-701 |#1| |#2|) (-134) (-998) (-807)) (T -701)) +((-3500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) (-4 *2 (-807)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-701 *3 *4)) (-4 *3 (-998)) (-4 *4 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) (-4 *2 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) (-4 *3 (-807)) (-5 *2 (-731)))) (-4231 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-731)) (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) (-4 *3 (-807)))) (-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)) (-5 *2 (-905 *4)))) (-1706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) (-4 *5 (-807)) (-5 *2 (-905 *4)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807)) (-4 *3 (-37 (-391 (-537))))))) +(-13 (-853 |t#2|) (-926 |t#1| (-509 |t#2|) |t#2|) (-495 |t#2| $) (-293 $) (-10 -8 (-15 -3500 ($ $ |t#2| (-731))) (-15 -3500 ($ $ (-606 |t#2|) (-606 (-731)))) (-15 -1540 ($ $ (-731))) (-15 -3733 ($ $ |t#2| (-731))) (-15 -3733 ($ $ (-606 |t#2|) (-606 (-731)))) (-15 -4231 ((-731) $ |t#2|)) (-15 -4231 ((-731) $ |t#2| (-731))) (-15 -1706 ((-905 |t#1|) $ (-731))) (-15 -1706 ((-905 |t#1|) $ (-731) (-731))) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ |t#2|)) (-6 (-954)) (-6 (-1139))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-509 |#2|)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-274) |has| |#1| (-529)) ((-293 $) . T) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-495 |#2| $) . T) ((-495 $ $) . T) ((-529) |has| |#1| (-529)) ((-609 #1#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-853 |#2|) . T) ((-926 |#1| #0# |#2|) . T) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537))))) +((-3622 (((-402 (-1113 |#4|)) (-1113 |#4|)) 30) (((-402 |#4|) |#4|) 26))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) (-807) (-753) (-13 (-291) (-141)) (-902 |#3| |#2| |#1|)) (T -702)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-702 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) (-5 *2 (-402 *3)) (-5 *1 (-702 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) +(-10 -7 (-15 -3622 ((-402 |#4|) |#4|)) (-15 -3622 ((-402 (-1113 |#4|)) (-1113 |#4|)))) +((-1663 (((-402 |#4|) |#4| |#2|) 120)) (-2292 (((-402 |#4|) |#4|) NIL)) (-2414 (((-402 (-1113 |#4|)) (-1113 |#4|)) 111) (((-402 |#4|) |#4|) 41)) (-1551 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 |#4|)) (|:| -3283 (-537)))))) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|))) 69)) (-2908 (((-1113 |#3|) (-1113 |#3|) (-537)) 139)) (-2647 (((-606 (-731)) (-1113 |#4|) (-606 |#2|) (-731)) 61)) (-3183 (((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-1113 |#3|) (-1113 |#3|) |#4| (-606 |#2|) (-606 (-731)) (-606 |#3|)) 65)) (-3681 (((-2 (|:| |upol| (-1113 |#3|)) (|:| |Lval| (-606 |#3|)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) (|:| |ctpol| |#3|)) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|))) 26)) (-1940 (((-2 (|:| -2990 (-1113 |#4|)) (|:| |polval| (-1113 |#3|))) (-1113 |#4|) (-1113 |#3|) (-537)) 57)) (-3938 (((-537) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) 136)) (-1781 ((|#4| (-537) (-402 |#4|)) 58)) (-3065 (((-111) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) NIL))) +(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-402 |#4|) |#4|)) (-15 -2414 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2292 ((-402 |#4|) |#4|)) (-15 -3938 ((-537) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -1663 ((-402 |#4|) |#4| |#2|)) (-15 -1940 ((-2 (|:| -2990 (-1113 |#4|)) (|:| |polval| (-1113 |#3|))) (-1113 |#4|) (-1113 |#3|) (-537))) (-15 -1551 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 |#4|)) (|:| -3283 (-537)))))) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -3681 ((-2 (|:| |upol| (-1113 |#3|)) (|:| |Lval| (-606 |#3|)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) (|:| |ctpol| |#3|)) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -1781 (|#4| (-537) (-402 |#4|))) (-15 -3065 ((-111) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -3183 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-1113 |#3|) (-1113 |#3|) |#4| (-606 |#2|) (-606 (-731)) (-606 |#3|))) (-15 -2647 ((-606 (-731)) (-1113 |#4|) (-606 |#2|) (-731))) (-15 -2908 ((-1113 |#3|) (-1113 |#3|) (-537)))) (-753) (-807) (-291) (-902 |#3| |#1| |#2|)) (T -703)) +((-2908 (*1 *2 *2 *3) (-12 (-5 *2 (-1113 *6)) (-5 *3 (-537)) (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-2647 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-4 *7 (-807)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-4 *8 (-291)) (-5 *2 (-606 (-731))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *5 (-731)))) (-3183 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1113 *11)) (-5 *6 (-606 *10)) (-5 *7 (-606 (-731))) (-5 *8 (-606 *11)) (-4 *10 (-807)) (-4 *11 (-291)) (-4 *9 (-753)) (-4 *5 (-902 *11 *9 *10)) (-5 *2 (-606 (-1113 *5))) (-5 *1 (-703 *9 *10 *11 *5)) (-5 *3 (-1113 *5)))) (-3065 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-537)) (-5 *4 (-402 *2)) (-4 *2 (-902 *7 *5 *6)) (-5 *1 (-703 *5 *6 *7 *2)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-291)))) (-3681 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) (-4 *7 (-807)) (-4 *8 (-291)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-5 *2 (-2 (|:| |upol| (-1113 *8)) (|:| |Lval| (-606 *8)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 *8)) (|:| -3283 (-537))))) (|:| |ctpol| *8))) (-5 *1 (-703 *6 *7 *8 *9)))) (-1551 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) (-4 *7 (-807)) (-4 *8 (-291)) (-4 *6 (-753)) (-4 *9 (-902 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 *9)) (|:| -3283 (-537))))))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9)))) (-1940 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-537)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-291)) (-4 *9 (-902 *8 *6 *7)) (-5 *2 (-2 (|:| -2990 (-1113 *9)) (|:| |polval| (-1113 *8)))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9)) (-5 *4 (-1113 *8)))) (-1663 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-703 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-2292 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5))))) +(-10 -7 (-15 -2414 ((-402 |#4|) |#4|)) (-15 -2414 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2292 ((-402 |#4|) |#4|)) (-15 -3938 ((-537) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -1663 ((-402 |#4|) |#4| |#2|)) (-15 -1940 ((-2 (|:| -2990 (-1113 |#4|)) (|:| |polval| (-1113 |#3|))) (-1113 |#4|) (-1113 |#3|) (-537))) (-15 -1551 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-606 (-2 (|:| -3622 (-1113 |#4|)) (|:| -3283 (-537)))))) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -3681 ((-2 (|:| |upol| (-1113 |#3|)) (|:| |Lval| (-606 |#3|)) (|:| |Lfact| (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537))))) (|:| |ctpol| |#3|)) (-1113 |#4|) (-606 |#2|) (-606 (-606 |#3|)))) (-15 -1781 (|#4| (-537) (-402 |#4|))) (-15 -3065 ((-111) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))) (-606 (-2 (|:| -3622 (-1113 |#3|)) (|:| -3283 (-537)))))) (-15 -3183 ((-3 (-606 (-1113 |#4|)) "failed") (-1113 |#4|) (-1113 |#3|) (-1113 |#3|) |#4| (-606 |#2|) (-606 (-731)) (-606 |#3|))) (-15 -2647 ((-606 (-731)) (-1113 |#4|) (-606 |#2|) (-731))) (-15 -2908 ((-1113 |#3|) (-1113 |#3|) (-537)))) +((-1891 (($ $ (-874)) 12))) +(((-704 |#1| |#2|) (-10 -8 (-15 -1891 (|#1| |#1| (-874)))) (-705 |#2|) (-163)) (T -704)) +NIL +(-10 -8 (-15 -1891 (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2541 (($ $ (-874)) 28)) (-1891 (($ $ (-874)) 33)) (-3060 (($ $ (-874)) 29)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1674 (($ $ $) 25)) (-2341 (((-816) $) 11)) (-3727 (($ $ $ $) 26)) (-3212 (($ $ $) 24)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-705 |#1|) (-134) (-163)) (T -705)) +((-1891 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-705 *3)) (-4 *3 (-163))))) +(-13 (-722) (-678 |t#1|) (-10 -8 (-15 -1891 ($ $ (-874))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-681) . T) ((-722) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-3523 (((-986) (-649 (-210)) (-537) (-111) (-537)) 25)) (-2956 (((-986) (-649 (-210)) (-537) (-111) (-537)) 24))) +(((-706) (-10 -7 (-15 -2956 ((-986) (-649 (-210)) (-537) (-111) (-537))) (-15 -3523 ((-986) (-649 (-210)) (-537) (-111) (-537))))) (T -706)) +((-3523 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-706)))) (-2956 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-706))))) +(-10 -7 (-15 -2956 ((-986) (-649 (-210)) (-537) (-111) (-537))) (-15 -3523 ((-986) (-649 (-210)) (-537) (-111) (-537)))) +((-1938 (((-986) (-537) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))) 43)) (-3052 (((-986) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN)))) 39)) (-3574 (((-986) (-210) (-210) (-210) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 32))) +(((-707) (-10 -7 (-15 -3574 ((-986) (-210) (-210) (-210) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3052 ((-986) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN))))) (-15 -1938 ((-986) (-537) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN))))))) (T -707)) +((-1938 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))) (-5 *2 (-986)) (-5 *1 (-707)))) (-3052 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN)))) (-5 *2 (-986)) (-5 *1 (-707)))) (-3574 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-707))))) +(-10 -7 (-15 -3574 ((-986) (-210) (-210) (-210) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3052 ((-986) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN))))) (-15 -1938 ((-986) (-537) (-537) (-537) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))))) +((-4278 (((-986) (-537) (-537) (-649 (-210)) (-537)) 34)) (-1732 (((-986) (-537) (-537) (-649 (-210)) (-537)) 33)) (-3186 (((-986) (-537) (-649 (-210)) (-537)) 32)) (-1472 (((-986) (-537) (-649 (-210)) (-537)) 31)) (-3455 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 30)) (-3238 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 29)) (-1832 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537)) 28)) (-2595 (((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537)) 27)) (-2049 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 24)) (-3965 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537)) 23)) (-3306 (((-986) (-537) (-649 (-210)) (-537)) 22)) (-1916 (((-986) (-537) (-649 (-210)) (-537)) 21))) +(((-708) (-10 -7 (-15 -1916 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3306 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3965 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2049 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2595 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1832 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3238 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3455 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1472 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3186 ((-986) (-537) (-649 (-210)) (-537))) (-15 -1732 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -4278 ((-986) (-537) (-537) (-649 (-210)) (-537))))) (T -708)) +((-4278 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1732 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3186 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1472 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3455 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3238 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1832 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-2595 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-2049 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3965 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-3306 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708)))) (-1916 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-708))))) +(-10 -7 (-15 -1916 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3306 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3965 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2049 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2595 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1832 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3238 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3455 ((-986) (-537) (-537) (-1100) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1472 ((-986) (-537) (-649 (-210)) (-537))) (-15 -3186 ((-986) (-537) (-649 (-210)) (-537))) (-15 -1732 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -4278 ((-986) (-537) (-537) (-649 (-210)) (-537)))) +((-1807 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3103 (((-986) (-649 (-210)) (-649 (-210)) (-537) (-537)) 51)) (-3501 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1736 (((-986) (-210) (-210) (-537) (-537) (-537) (-537)) 46)) (-1416 (((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 45)) (-1789 (((-986) (-210) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 44)) (-1482 (((-986) (-210) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 43)) (-2813 (((-986) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) 42)) (-3061 (((-986) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 38)) (-2725 (((-986) (-210) (-210) (-537) (-649 (-210)) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 37)) (-3602 (((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 33)) (-2669 (((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) 32))) +(((-709) (-10 -7 (-15 -2669 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3602 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2725 ((-986) (-210) (-210) (-537) (-649 (-210)) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3061 ((-986) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2813 ((-986) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1482 ((-986) (-210) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1789 ((-986) (-210) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1416 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1736 ((-986) (-210) (-210) (-537) (-537) (-537) (-537))) (-15 -3501 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN))))) (-15 -3103 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-537))) (-15 -1807 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN))))))) (T -709)) +((-1807 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-3103 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-709)))) (-3501 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-1736 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-709)))) (-1416 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-1789 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-1482 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-2813 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-3061 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-2725 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-709)))) (-3602 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-709)))) (-2669 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) (-5 *1 (-709))))) +(-10 -7 (-15 -2669 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3602 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2725 ((-986) (-210) (-210) (-537) (-649 (-210)) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -3061 ((-986) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393))))) (-15 -2813 ((-986) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1482 ((-986) (-210) (-210) (-210) (-210) (-537) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1789 ((-986) (-210) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1416 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G))))) (-15 -1736 ((-986) (-210) (-210) (-537) (-537) (-537) (-537))) (-15 -3501 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN))))) (-15 -3103 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-537))) (-15 -1807 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-210) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))))) +((-2919 (((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-3109 (((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))) (-372) (-372)) 69) (((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3355 (((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG)))) 57)) (-2779 (((-986) (-649 (-210)) (-649 (-210)) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) 50)) (-3948 (((-986) (-210) (-537) (-537) (-1100) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) 49)) (-4019 (((-986) (-210) (-537) (-537) (-210) (-1100) (-210) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2542 (((-986) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) 42)) (-3208 (((-986) (-210) (-537) (-537) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-710) (-10 -7 (-15 -3208 ((-986) (-210) (-537) (-537) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2542 ((-986) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -4019 ((-986) (-210) (-537) (-537) (-210) (-1100) (-210) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -3948 ((-986) (-210) (-537) (-537) (-1100) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -3355 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))) (-372) (-372))) (-15 -2919 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -710)) +((-2919 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-3109 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-372)) (-5 *2 (-986)) (-5 *1 (-710)))) (-3109 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-986)) (-5 *1 (-710)))) (-3355 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-2779 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *2 (-986)) (-5 *1 (-710)))) (-3948 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-4019 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-2542 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710)))) (-3208 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) +(-10 -7 (-15 -3208 ((-986) (-210) (-537) (-537) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2542 ((-986) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -4019 ((-986) (-210) (-537) (-537) (-210) (-1100) (-210) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -3948 ((-986) (-210) (-537) (-537) (-1100) (-537) (-210) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-986) (-649 (-210)) (-649 (-210)) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN))))) (-15 -3355 ((-986) (-210) (-210) (-537) (-210) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))))) (-15 -3109 ((-986) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL))) (-372) (-372))) (-15 -2919 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))))) +((-1506 (((-986) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-636 (-210)) (-537)) 45)) (-2097 (((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-1100) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY)))) 41)) (-2410 (((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 23))) +(((-711) (-10 -7 (-15 -2410 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2097 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-1100) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY))))) (-15 -1506 ((-986) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-636 (-210)) (-537))))) (T -711)) +((-1506 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-636 (-210))) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-711)))) (-2097 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-986)) (-5 *1 (-711)))) (-2410 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-711))))) +(-10 -7 (-15 -2410 ((-986) (-537) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2097 ((-986) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-1100) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY))))) (-15 -1506 ((-986) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-636 (-210)) (-537)))) +((-3363 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-649 (-210)) (-210) (-210) (-537)) 35)) (-2519 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-210) (-210) (-537)) 34)) (-1346 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-649 (-210)) (-210) (-210) (-537)) 33)) (-2019 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 29)) (-2719 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 28)) (-4210 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537)) 27)) (-4152 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537)) 24)) (-4040 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537)) 23)) (-2670 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537)) 22)) (-1678 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)) 21))) +(((-712) (-10 -7 (-15 -1678 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -2670 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -4040 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4152 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4210 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2719 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2019 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1346 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2519 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-210) (-210) (-537))) (-15 -3363 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-649 (-210)) (-210) (-210) (-537))))) (T -712)) +((-3363 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-712)))) (-2519 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-712)))) (-1346 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-712)))) (-2019 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-2719 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-4210 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-712)))) (-4152 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-4040 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-2670 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712)))) (-1678 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-712))))) +(-10 -7 (-15 -1678 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -2670 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -4040 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4152 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -4210 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2719 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2019 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1346 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-649 (-210)) (-210) (-210) (-537))) (-15 -2519 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-210) (-210) (-537))) (-15 -3363 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-649 (-210)) (-210) (-210) (-537)))) +((-2249 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)) 45)) (-3057 (((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-537)) 44)) (-1271 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)) 43)) (-3841 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 42)) (-2437 (((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537)) 41)) (-4240 (((-986) (-1100) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537)) 40)) (-3497 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537) (-537) (-537) (-210) (-649 (-210)) (-537)) 39)) (-3924 (((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537))) 38)) (-2923 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-537)) 35)) (-3368 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537)) 34)) (-1944 (((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537)) 33)) (-4138 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 32)) (-2577 (((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537)) 31)) (-1430 (((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-537)) 30)) (-2037 (((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-537) (-537) (-537)) 29)) (-2325 (((-986) (-537) (-537) (-537) (-210) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-537)) (-537) (-537) (-537)) 28)) (-1349 (((-986) (-537) (-649 (-210)) (-210) (-537)) 24)) (-1571 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 21))) +(((-713) (-10 -7 (-15 -1571 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1349 ((-986) (-537) (-649 (-210)) (-210) (-537))) (-15 -2325 ((-986) (-537) (-537) (-537) (-210) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-537)) (-537) (-537) (-537))) (-15 -2037 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1430 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-537))) (-15 -2577 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537))) (-15 -4138 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1944 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537))) (-15 -3368 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537))) (-15 -2923 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3924 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)))) (-15 -3497 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537) (-537) (-537) (-210) (-649 (-210)) (-537))) (-15 -4240 ((-986) (-1100) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -2437 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3841 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1271 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -3057 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2249 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))))) (T -713)) +((-2249 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-3057 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1271 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-3841 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-2437 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-4240 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713)))) (-3497 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-713)))) (-3924 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713)))) (-2923 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-3368 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1944 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-4138 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713)))) (-2577 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1430 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-2037 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-2325 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1349 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) (-5 *2 (-986)) (-5 *1 (-713)))) (-1571 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-713))))) +(-10 -7 (-15 -1571 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1349 ((-986) (-537) (-649 (-210)) (-210) (-537))) (-15 -2325 ((-986) (-537) (-537) (-537) (-210) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-537)) (-537) (-537) (-537))) (-15 -2037 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1430 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537) (-537) (-537))) (-15 -2577 ((-986) (-537) (-210) (-210) (-649 (-210)) (-537) (-537) (-210) (-537))) (-15 -4138 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1944 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537))) (-15 -3368 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537))) (-15 -2923 ((-986) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3924 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)))) (-15 -3497 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537) (-537) (-537) (-210) (-649 (-210)) (-537))) (-15 -4240 ((-986) (-1100) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -2437 ((-986) (-1100) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3841 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1271 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537))) (-15 -3057 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2249 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537) (-649 (-210)) (-649 (-210)) (-537) (-537) (-537)))) +((-3888 (((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-537) (-649 (-210)) (-537)) 63)) (-2558 (((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-111) (-210) (-537) (-210) (-210) (-111) (-210) (-210) (-210) (-210) (-111) (-537) (-537) (-537) (-537) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2888 (((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-111) (-111) (-537) (-537) (-649 (-210)) (-649 (-537)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS)))) 58)) (-2812 (((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-537) (-537) (-649 (-210)) (-537)) 51)) (-1828 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3692 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2)))) 46)) (-4219 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1370 (((-986) (-537) (-210) (-210) (-537) (-210) (-111) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) 38))) +(((-714) (-10 -7 (-15 -1370 ((-986) (-537) (-210) (-210) (-537) (-210) (-111) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -4219 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1))))) (-15 -3692 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2))))) (-15 -1828 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1))))) (-15 -2812 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-537) (-537) (-649 (-210)) (-537))) (-15 -2888 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-111) (-111) (-537) (-537) (-649 (-210)) (-649 (-537)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS))))) (-15 -2558 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-111) (-210) (-537) (-210) (-210) (-111) (-210) (-210) (-210) (-210) (-111) (-537) (-537) (-537) (-537) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -3888 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-537) (-649 (-210)) (-537))))) (T -714)) +((-3888 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714)))) (-2558 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *6 (-210)) (-5 *7 (-649 (-537))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-714)))) (-2888 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-649 (-210))) (-5 *6 (-111)) (-5 *7 (-649 (-537))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714)))) (-2812 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-714)))) (-1828 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-986)) (-5 *1 (-714)))) (-3692 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-986)) (-5 *1 (-714)))) (-4219 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-986)) (-5 *1 (-714)))) (-1370 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714))))) +(-10 -7 (-15 -1370 ((-986) (-537) (-210) (-210) (-537) (-210) (-111) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -4219 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1))))) (-15 -3692 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2))))) (-15 -1828 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1))))) (-15 -2812 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-537) (-537) (-649 (-210)) (-537))) (-15 -2888 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-210) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-111) (-111) (-111) (-537) (-537) (-649 (-210)) (-649 (-537)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS))))) (-15 -2558 ((-986) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-537) (-111) (-210) (-537) (-210) (-210) (-111) (-210) (-210) (-210) (-210) (-111) (-537) (-537) (-537) (-537) (-537) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-537) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN))))) (-15 -3888 ((-986) (-537) (-537) (-537) (-210) (-649 (-210)) (-537) (-649 (-210)) (-537)))) +((-1896 (((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)) 47)) (-4135 (((-986) (-1100) (-1100) (-537) (-537) (-649 (-160 (-210))) (-537) (-649 (-160 (-210))) (-537) (-537) (-649 (-160 (-210))) (-537)) 46)) (-2925 (((-986) (-537) (-537) (-537) (-649 (-160 (-210))) (-537)) 45)) (-3045 (((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 40)) (-2423 (((-986) (-1100) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)) (-537)) 39)) (-2679 (((-986) (-537) (-537) (-537) (-649 (-210)) (-537)) 36)) (-1742 (((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537)) 35)) (-1601 (((-986) (-537) (-537) (-537) (-537) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-210) (-210) (-537)) 34)) (-4163 (((-986) (-537) (-537) (-537) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-111) (-210) (-111) (-649 (-537)) (-649 (-210)) (-537)) 33)) (-3047 (((-986) (-537) (-537) (-537) (-537) (-210) (-111) (-111) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-537)) 32))) +(((-715) (-10 -7 (-15 -3047 ((-986) (-537) (-537) (-537) (-537) (-210) (-111) (-111) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-537))) (-15 -4163 ((-986) (-537) (-537) (-537) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-111) (-210) (-111) (-649 (-537)) (-649 (-210)) (-537))) (-15 -1601 ((-986) (-537) (-537) (-537) (-537) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-210) (-210) (-537))) (-15 -1742 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537))) (-15 -2679 ((-986) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -2423 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)) (-537))) (-15 -3045 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2925 ((-986) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4135 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-160 (-210))) (-537) (-649 (-160 (-210))) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -1896 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537))))) (T -715)) +((-1896 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-715)))) (-4135 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-715)))) (-2925 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-715)))) (-3045 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-715)))) (-2423 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-715)))) (-2679 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-715)))) (-1742 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-715)))) (-1601 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-606 (-111))) (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *7 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-715)))) (-4163 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-649 (-537))) (-5 *5 (-111)) (-5 *7 (-649 (-210))) (-5 *3 (-537)) (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-715)))) (-3047 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-606 (-111))) (-5 *7 (-649 (-210))) (-5 *8 (-649 (-537))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *5 (-111)) (-5 *2 (-986)) (-5 *1 (-715))))) +(-10 -7 (-15 -3047 ((-986) (-537) (-537) (-537) (-537) (-210) (-111) (-111) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-537))) (-15 -4163 ((-986) (-537) (-537) (-537) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-649 (-537)) (-111) (-210) (-111) (-649 (-537)) (-649 (-210)) (-537))) (-15 -1601 ((-986) (-537) (-537) (-537) (-537) (-606 (-111)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-210) (-210) (-537))) (-15 -1742 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537))) (-15 -2679 ((-986) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -2423 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)) (-537))) (-15 -3045 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2925 ((-986) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4135 ((-986) (-1100) (-1100) (-537) (-537) (-649 (-160 (-210))) (-537) (-649 (-160 (-210))) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -1896 ((-986) (-1100) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)))) +((-3931 (((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)) 65)) (-4105 (((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537)) 60)) (-3627 (((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))) (-372)) 56) (((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) 55)) (-3605 (((-986) (-537) (-537) (-537) (-210) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537)) 37)) (-1817 (((-986) (-537) (-537) (-210) (-210) (-537) (-537) (-649 (-210)) (-537)) 33)) (-2043 (((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537) (-537)) 30)) (-1749 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 29)) (-3955 (((-986) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 28)) (-4241 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 27)) (-3935 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537)) 26)) (-3374 (((-986) (-537) (-537) (-649 (-210)) (-537)) 25)) (-3872 (((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 24)) (-1440 (((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537)) 23)) (-3469 (((-986) (-649 (-210)) (-537) (-537) (-537) (-537)) 22)) (-3210 (((-986) (-537) (-537) (-649 (-210)) (-537)) 21))) +(((-716) (-10 -7 (-15 -3210 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3469 ((-986) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -1440 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3872 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3374 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3935 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -4241 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3955 ((-986) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1749 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2043 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1817 ((-986) (-537) (-537) (-210) (-210) (-537) (-537) (-649 (-210)) (-537))) (-15 -3605 ((-986) (-537) (-537) (-537) (-210) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))) (-372))) (-15 -4105 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3931 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537))))) (T -716)) +((-3931 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-716)))) (-4105 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3627 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-372)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-3627 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-3605 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-1817 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716)))) (-2043 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-716)))) (-1749 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3955 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-4241 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3935 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3374 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3872 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-1440 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716)))) (-3469 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-716)))) (-3210 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-716))))) +(-10 -7 (-15 -3210 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3469 ((-986) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -1440 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3872 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3374 ((-986) (-537) (-537) (-649 (-210)) (-537))) (-15 -3935 ((-986) (-537) (-537) (-537) (-537) (-649 (-210)) (-537))) (-15 -4241 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3955 ((-986) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1749 ((-986) (-537) (-537) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -2043 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537) (-537))) (-15 -1817 ((-986) (-537) (-537) (-210) (-210) (-537) (-537) (-649 (-210)) (-537))) (-15 -3605 ((-986) (-537) (-537) (-537) (-210) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))))) (-15 -3627 ((-986) (-537) (-537) (-210) (-537) (-537) (-537) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE))) (-372))) (-15 -4105 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3931 ((-986) (-537) (-537) (-537) (-537) (-537) (-111) (-537) (-111) (-537) (-649 (-160 (-210))) (-649 (-160 (-210))) (-537)))) +((-3419 (((-986) (-537) (-537) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))) 61)) (-1669 (((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537)) 57)) (-4061 (((-986) (-537) (-649 (-210)) (-111) (-210) (-537) (-537) (-537) (-537) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3524 (((-986) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537)) 37)) (-1816 (((-986) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-537)) 36)) (-2732 (((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537)) 33)) (-1602 (((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210))) 32)) (-3058 (((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537)) 28)) (-1432 (((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537)) 27)) (-4149 (((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537)) 26)) (-3846 (((-986) (-537) (-649 (-160 (-210))) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-537)) 22))) +(((-717) (-10 -7 (-15 -3846 ((-986) (-537) (-649 (-160 (-210))) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4149 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -1432 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -3058 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537))) (-15 -1602 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)))) (-15 -2732 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1816 ((-986) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3524 ((-986) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -4061 ((-986) (-537) (-649 (-210)) (-111) (-210) (-537) (-537) (-537) (-537) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE))))) (-15 -1669 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -3419 ((-986) (-537) (-537) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD))))))) (T -717)) +((-3419 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-717)))) (-1669 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-4061 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *6 (-210)) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-986)) (-5 *1 (-717)))) (-3524 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-1816 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-717)))) (-2732 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-717)))) (-1602 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-3058 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-717)))) (-1432 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-717)))) (-4149 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-717)))) (-3846 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) (-5 *1 (-717))))) +(-10 -7 (-15 -3846 ((-986) (-537) (-649 (-160 (-210))) (-537) (-537) (-537) (-537) (-649 (-160 (-210))) (-537))) (-15 -4149 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -1432 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-537))) (-15 -3058 ((-986) (-649 (-210)) (-537) (-649 (-210)) (-537) (-537) (-537))) (-15 -1602 ((-986) (-537) (-649 (-210)) (-537) (-649 (-537)) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)))) (-15 -2732 ((-986) (-537) (-537) (-649 (-210)) (-649 (-210)) (-649 (-210)) (-537))) (-15 -1816 ((-986) (-537) (-537) (-537) (-210) (-537) (-649 (-210)) (-649 (-210)) (-537))) (-15 -3524 ((-986) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-537)) (-649 (-210)) (-649 (-537)) (-649 (-537)) (-649 (-210)) (-649 (-210)) (-649 (-537)) (-537))) (-15 -4061 ((-986) (-537) (-649 (-210)) (-111) (-210) (-537) (-537) (-537) (-537) (-210) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE))))) (-15 -1669 ((-986) (-537) (-649 (-210)) (-537) (-649 (-210)) (-649 (-537)) (-537) (-649 (-210)) (-537) (-537) (-537) (-537))) (-15 -3419 ((-986) (-537) (-537) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-649 (-210)) (-537) (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))))) +((-1932 (((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-537) (-649 (-210))) 29)) (-1467 (((-986) (-1100) (-537) (-537) (-649 (-210))) 28)) (-1563 (((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-210))) 27)) (-2922 (((-986) (-537) (-537) (-537) (-649 (-210))) 21))) +(((-718) (-10 -7 (-15 -2922 ((-986) (-537) (-537) (-537) (-649 (-210)))) (-15 -1563 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-210)))) (-15 -1467 ((-986) (-1100) (-537) (-537) (-649 (-210)))) (-15 -1932 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-537) (-649 (-210)))))) (T -718)) +((-1932 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-718)))) (-1467 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-718)))) (-1563 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-718)))) (-2922 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) (-5 *1 (-718))))) +(-10 -7 (-15 -2922 ((-986) (-537) (-537) (-537) (-649 (-210)))) (-15 -1563 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-649 (-537)) (-537) (-649 (-210)))) (-15 -1467 ((-986) (-1100) (-537) (-537) (-649 (-210)))) (-15 -1932 ((-986) (-1100) (-537) (-537) (-649 (-210)) (-537) (-537) (-649 (-210))))) +((-2951 (((-986) (-210) (-210) (-210) (-210) (-537)) 62)) (-2161 (((-986) (-210) (-210) (-210) (-537)) 61)) (-2386 (((-986) (-210) (-210) (-210) (-537)) 60)) (-2512 (((-986) (-210) (-210) (-537)) 59)) (-3292 (((-986) (-210) (-537)) 58)) (-1665 (((-986) (-210) (-537)) 57)) (-2266 (((-986) (-210) (-537)) 56)) (-1643 (((-986) (-210) (-537)) 55)) (-2105 (((-986) (-210) (-537)) 54)) (-3970 (((-986) (-210) (-537)) 53)) (-2129 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 52)) (-1957 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 51)) (-4148 (((-986) (-210) (-537)) 50)) (-3534 (((-986) (-210) (-537)) 49)) (-3003 (((-986) (-210) (-537)) 48)) (-1450 (((-986) (-210) (-537)) 47)) (-3951 (((-986) (-537) (-210) (-160 (-210)) (-537) (-1100) (-537)) 46)) (-4168 (((-986) (-1100) (-160 (-210)) (-1100) (-537)) 45)) (-4155 (((-986) (-1100) (-160 (-210)) (-1100) (-537)) 44)) (-2475 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 43)) (-3428 (((-986) (-210) (-160 (-210)) (-537) (-1100) (-537)) 42)) (-1927 (((-986) (-210) (-537)) 39)) (-3967 (((-986) (-210) (-537)) 38)) (-2810 (((-986) (-210) (-537)) 37)) (-1491 (((-986) (-210) (-537)) 36)) (-2363 (((-986) (-210) (-537)) 35)) (-2124 (((-986) (-210) (-537)) 34)) (-3498 (((-986) (-210) (-537)) 33)) (-3713 (((-986) (-210) (-537)) 32)) (-3179 (((-986) (-210) (-537)) 31)) (-1337 (((-986) (-210) (-537)) 30)) (-2123 (((-986) (-210) (-210) (-210) (-537)) 29)) (-4191 (((-986) (-210) (-537)) 28)) (-3123 (((-986) (-210) (-537)) 27)) (-1975 (((-986) (-210) (-537)) 26)) (-2107 (((-986) (-210) (-537)) 25)) (-3535 (((-986) (-210) (-537)) 24)) (-4208 (((-986) (-160 (-210)) (-537)) 21))) +(((-719) (-10 -7 (-15 -4208 ((-986) (-160 (-210)) (-537))) (-15 -3535 ((-986) (-210) (-537))) (-15 -2107 ((-986) (-210) (-537))) (-15 -1975 ((-986) (-210) (-537))) (-15 -3123 ((-986) (-210) (-537))) (-15 -4191 ((-986) (-210) (-537))) (-15 -2123 ((-986) (-210) (-210) (-210) (-537))) (-15 -1337 ((-986) (-210) (-537))) (-15 -3179 ((-986) (-210) (-537))) (-15 -3713 ((-986) (-210) (-537))) (-15 -3498 ((-986) (-210) (-537))) (-15 -2124 ((-986) (-210) (-537))) (-15 -2363 ((-986) (-210) (-537))) (-15 -1491 ((-986) (-210) (-537))) (-15 -2810 ((-986) (-210) (-537))) (-15 -3967 ((-986) (-210) (-537))) (-15 -1927 ((-986) (-210) (-537))) (-15 -3428 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2475 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -4155 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -4168 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -3951 ((-986) (-537) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -1450 ((-986) (-210) (-537))) (-15 -3003 ((-986) (-210) (-537))) (-15 -3534 ((-986) (-210) (-537))) (-15 -4148 ((-986) (-210) (-537))) (-15 -1957 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2129 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -3970 ((-986) (-210) (-537))) (-15 -2105 ((-986) (-210) (-537))) (-15 -1643 ((-986) (-210) (-537))) (-15 -2266 ((-986) (-210) (-537))) (-15 -1665 ((-986) (-210) (-537))) (-15 -3292 ((-986) (-210) (-537))) (-15 -2512 ((-986) (-210) (-210) (-537))) (-15 -2386 ((-986) (-210) (-210) (-210) (-537))) (-15 -2161 ((-986) (-210) (-210) (-210) (-537))) (-15 -2951 ((-986) (-210) (-210) (-210) (-210) (-537))))) (T -719)) +((-2951 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2161 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2386 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2512 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2129 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1957 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1450 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3951 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-537)) (-5 *5 (-160 (-210))) (-5 *6 (-1100)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4168 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4155 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2475 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3428 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1491 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2123 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4191 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-160 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(-10 -7 (-15 -4208 ((-986) (-160 (-210)) (-537))) (-15 -3535 ((-986) (-210) (-537))) (-15 -2107 ((-986) (-210) (-537))) (-15 -1975 ((-986) (-210) (-537))) (-15 -3123 ((-986) (-210) (-537))) (-15 -4191 ((-986) (-210) (-537))) (-15 -2123 ((-986) (-210) (-210) (-210) (-537))) (-15 -1337 ((-986) (-210) (-537))) (-15 -3179 ((-986) (-210) (-537))) (-15 -3713 ((-986) (-210) (-537))) (-15 -3498 ((-986) (-210) (-537))) (-15 -2124 ((-986) (-210) (-537))) (-15 -2363 ((-986) (-210) (-537))) (-15 -1491 ((-986) (-210) (-537))) (-15 -2810 ((-986) (-210) (-537))) (-15 -3967 ((-986) (-210) (-537))) (-15 -1927 ((-986) (-210) (-537))) (-15 -3428 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2475 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -4155 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -4168 ((-986) (-1100) (-160 (-210)) (-1100) (-537))) (-15 -3951 ((-986) (-537) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -1450 ((-986) (-210) (-537))) (-15 -3003 ((-986) (-210) (-537))) (-15 -3534 ((-986) (-210) (-537))) (-15 -4148 ((-986) (-210) (-537))) (-15 -1957 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -2129 ((-986) (-210) (-160 (-210)) (-537) (-1100) (-537))) (-15 -3970 ((-986) (-210) (-537))) (-15 -2105 ((-986) (-210) (-537))) (-15 -1643 ((-986) (-210) (-537))) (-15 -2266 ((-986) (-210) (-537))) (-15 -1665 ((-986) (-210) (-537))) (-15 -3292 ((-986) (-210) (-537))) (-15 -2512 ((-986) (-210) (-210) (-537))) (-15 -2386 ((-986) (-210) (-210) (-210) (-537))) (-15 -2161 ((-986) (-210) (-210) (-210) (-537))) (-15 -2951 ((-986) (-210) (-210) (-210) (-210) (-537)))) +((-3209 (((-1205)) 18)) (-2136 (((-1100)) 22)) (-1726 (((-1100)) 21)) (-2208 (((-1049) (-1117) (-649 (-537))) 37) (((-1049) (-1117) (-649 (-210))) 32)) (-2057 (((-111)) 16)) (-3325 (((-1100) (-1100)) 25))) +(((-720) (-10 -7 (-15 -1726 ((-1100))) (-15 -2136 ((-1100))) (-15 -3325 ((-1100) (-1100))) (-15 -2208 ((-1049) (-1117) (-649 (-210)))) (-15 -2208 ((-1049) (-1117) (-649 (-537)))) (-15 -2057 ((-111))) (-15 -3209 ((-1205))))) (T -720)) +((-3209 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-720)))) (-2057 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-720)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-537))) (-5 *2 (-1049)) (-5 *1 (-720)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-210))) (-5 *2 (-1049)) (-5 *1 (-720)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720)))) (-2136 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720)))) (-1726 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) +(-10 -7 (-15 -1726 ((-1100))) (-15 -2136 ((-1100))) (-15 -3325 ((-1100) (-1100))) (-15 -2208 ((-1049) (-1117) (-649 (-210)))) (-15 -2208 ((-1049) (-1117) (-649 (-537)))) (-15 -2057 ((-111))) (-15 -3209 ((-1205)))) +((-1674 (($ $ $) 10)) (-3727 (($ $ $ $) 9)) (-3212 (($ $ $) 12))) +(((-721 |#1|) (-10 -8 (-15 -3212 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1| |#1| |#1|))) (-722)) (T -721)) +NIL +(-10 -8 (-15 -3212 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3727 (|#1| |#1| |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-2541 (($ $ (-874)) 28)) (-3060 (($ $ (-874)) 29)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1674 (($ $ $) 25)) (-2341 (((-816) $) 11)) (-3727 (($ $ $ $) 26)) (-3212 (($ $ $) 24)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27))) +(((-722) (-134)) (T -722)) +((-3727 (*1 *1 *1 *1 *1) (-4 *1 (-722))) (-1674 (*1 *1 *1 *1) (-4 *1 (-722))) (-3212 (*1 *1 *1 *1) (-4 *1 (-722)))) +(-13 (-21) (-681) (-10 -8 (-15 -3727 ($ $ $ $)) (-15 -1674 ($ $ $)) (-15 -3212 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-681) . T) ((-1045) . T)) +((-2341 (((-816) $) NIL) (($ (-537)) 10))) +(((-723 |#1|) (-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-724)) (T -723)) +NIL +(-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3800 (((-3 $ "failed") $) 40)) (-2541 (($ $ (-874)) 28) (($ $ (-731)) 35)) (-3490 (((-3 $ "failed") $) 38)) (-2836 (((-111) $) 34)) (-3820 (((-3 $ "failed") $) 39)) (-3060 (($ $ (-874)) 29) (($ $ (-731)) 36)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1674 (($ $ $) 25)) (-2341 (((-816) $) 11) (($ (-537)) 31)) (-3654 (((-731)) 32)) (-3727 (($ $ $ $) 26)) (-3212 (($ $ $) 24)) (-2928 (($) 18 T CONST)) (-2943 (($) 33 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 30) (($ $ (-731)) 37)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 27))) +(((-724) (-134)) (T -724)) +((-3654 (*1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-724))))) +(-13 (-722) (-683) (-10 -8 (-15 -3654 ((-731))) (-15 -2341 ($ (-537))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-681) . T) ((-683) . T) ((-722) . T) ((-1045) . T)) +((-1717 (((-606 (-2 (|:| |outval| (-160 |#1|)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 |#1|)))))) (-649 (-160 (-391 (-537)))) |#1|) 33)) (-3837 (((-606 (-160 |#1|)) (-649 (-160 (-391 (-537)))) |#1|) 23)) (-2736 (((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))) (-1117)) 20) (((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537))))) 19))) +(((-725 |#1|) (-10 -7 (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))))) (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))) (-1117))) (-15 -3837 ((-606 (-160 |#1|)) (-649 (-160 (-391 (-537)))) |#1|)) (-15 -1717 ((-606 (-2 (|:| |outval| (-160 |#1|)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 |#1|)))))) (-649 (-160 (-391 (-537)))) |#1|))) (-13 (-347) (-805))) (T -725)) +((-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-606 (-2 (|:| |outval| (-160 *4)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 *4))))))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-606 (-160 *4))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *4 (-1117)) (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *5)) (-4 *5 (-13 (-347) (-805))))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805)))))) +(-10 -7 (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))))) (-15 -2736 ((-905 (-160 (-391 (-537)))) (-649 (-160 (-391 (-537)))) (-1117))) (-15 -3837 ((-606 (-160 |#1|)) (-649 (-160 (-391 (-537)))) |#1|)) (-15 -1717 ((-606 (-2 (|:| |outval| (-160 |#1|)) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 (-160 |#1|)))))) (-649 (-160 (-391 (-537)))) |#1|))) +((-4225 (((-164 (-537)) |#1|) 25))) +(((-726 |#1|) (-10 -7 (-15 -4225 ((-164 (-537)) |#1|))) (-388)) (T -726)) +((-4225 (*1 *2 *3) (-12 (-5 *2 (-164 (-537))) (-5 *1 (-726 *3)) (-4 *3 (-388))))) +(-10 -7 (-15 -4225 ((-164 (-537)) |#1|))) +((-3555 ((|#1| |#1| |#1|) 24)) (-3592 ((|#1| |#1| |#1|) 23)) (-1690 ((|#1| |#1| |#1|) 32)) (-3193 ((|#1| |#1| |#1|) 28)) (-2733 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3978 (((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|) 22))) +(((-727 |#1| |#2|) (-10 -7 (-15 -3978 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -1690 (|#1| |#1| |#1|))) (-669 |#2|) (-347)) (T -727)) +((-1690 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3193 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-2733 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3555 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) (-3978 (*1 *2 *3 *3) (-12 (-4 *4 (-347)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-727 *3 *4)) (-4 *3 (-669 *4))))) +(-10 -7 (-15 -3978 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -1690 (|#1| |#1| |#1|))) +((-3337 (((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))) (-537)) 59)) (-3778 (((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537))))) 57)) (-2067 (((-537)) 71))) +(((-728 |#1| |#2|) (-10 -7 (-15 -2067 ((-537))) (-15 -3778 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))))) (-15 -3337 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))) (-537)))) (-1176 (-537)) (-393 (-537) |#1|)) (T -728)) +((-3337 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-728 *4 *5)) (-4 *5 (-393 *3 *4)))) (-3778 (*1 *2) (-12 (-4 *3 (-1176 (-537))) (-5 *2 (-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537))))) (-5 *1 (-728 *3 *4)) (-4 *4 (-393 (-537) *3)))) (-2067 (*1 *2) (-12 (-4 *3 (-1176 *2)) (-5 *2 (-537)) (-5 *1 (-728 *3 *4)) (-4 *4 (-393 *2 *3))))) +(-10 -7 (-15 -2067 ((-537))) (-15 -3778 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))))) (-15 -3337 ((-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) (|:| |basisInv| (-649 (-537)))) (-537)))) +((-2330 (((-111) $ $) NIL)) (-3958 (((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) $) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20) (($ (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 13) (($ (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) 18)) (-2244 (((-111) $ $) NIL))) +(((-729) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) $))))) (T -729)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-729)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-729)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-729)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) (-5 *1 (-729)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) (-5 *1 (-729))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |nia| (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| |mdnia| (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) $)))) +((-3874 (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))) 18) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117))) 17)) (-1895 (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))) 20) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117))) 19))) +(((-730 |#1|) (-10 -7 (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))))) (-529)) (T -730)) +((-1895 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) (-3874 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5))))) +(-10 -7 (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -3874 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-905 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2169 (($ $ $) 6)) (-3418 (((-3 $ "failed") $ $) 9)) (-3879 (($ $ (-537)) 7)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($ $) NIL)) (-3539 (($ $ $) NIL)) (-2836 (((-111) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2211 (($ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ $ $) NIL))) +(((-731) (-13 (-753) (-687) (-10 -8 (-15 -3539 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -2211 ($ $ $)) (-15 -3998 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3515 ((-3 $ "failed") $ $)) (-15 -3879 ($ $ (-537))) (-15 -1618 ($ $)) (-6 (-4302 "*"))))) (T -731)) +((-3539 (*1 *1 *1 *1) (-5 *1 (-731))) (-3563 (*1 *1 *1 *1) (-5 *1 (-731))) (-2211 (*1 *1 *1 *1) (-5 *1 (-731))) (-3998 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3413 (-731)) (|:| -1672 (-731)))) (-5 *1 (-731)))) (-3515 (*1 *1 *1 *1) (|partial| -5 *1 (-731))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-731)))) (-1618 (*1 *1 *1) (-5 *1 (-731)))) +(-13 (-753) (-687) (-10 -8 (-15 -3539 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -2211 ($ $ $)) (-15 -3998 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3515 ((-3 $ "failed") $ $)) (-15 -3879 ($ $ (-537))) (-15 -1618 ($ $)) (-6 (-4302 "*")))) +((-1895 (((-3 |#2| "failed") |#2| |#2| (-113) (-1117)) 35))) +(((-732 |#1| |#2|) (-10 -7 (-15 -1895 ((-3 |#2| "failed") |#2| |#2| (-113) (-1117)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912))) (T -732)) +((-1895 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-732 *5 *2)) (-4 *2 (-13 (-29 *5) (-1139) (-912)))))) +(-10 -7 (-15 -1895 ((-3 |#2| "failed") |#2| |#2| (-113) (-1117)))) +((-2341 (((-734) |#1|) 8))) +(((-733 |#1|) (-10 -7 (-15 -2341 ((-734) |#1|))) (-1154)) (T -733)) +((-2341 (*1 *2 *3) (-12 (-5 *2 (-734)) (-5 *1 (-733 *3)) (-4 *3 (-1154))))) +(-10 -7 (-15 -2341 ((-734) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 7)) (-2244 (((-111) $ $) 9))) +(((-734) (-1045)) (T -734)) +NIL +(-1045) +((-2055 ((|#2| |#4|) 35))) +(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 (|#2| |#4|))) (-435) (-1176 |#1|) (-685 |#1| |#2|) (-1176 |#3|)) (T -735)) +((-2055 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-685 *4 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-735 *4 *2 *5 *3)) (-4 *3 (-1176 *5))))) +(-10 -7 (-15 -2055 (|#2| |#4|))) +((-3490 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2110 (((-1205) (-1100) (-1100) |#4| |#5|) 33)) (-1526 ((|#4| |#4| |#5|) 73)) (-2477 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|) 77)) (-3856 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 16))) +(((-736 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3490 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1526 (|#4| |#4| |#5|)) (-15 -2477 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -2110 ((-1205) (-1100) (-1100) |#4| |#5|)) (-15 -3856 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -736)) +((-3856 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2110 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1100)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *4 (-1012 *6 *7 *8)) (-5 *2 (-1205)) (-5 *1 (-736 *6 *7 *8 *4 *5)) (-4 *5 (-1018 *6 *7 *8 *4)))) (-2477 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1526 (*1 *2 *2 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *2 (-1012 *4 *5 *6)) (-5 *1 (-736 *4 *5 *6 *2 *3)) (-4 *3 (-1018 *4 *5 *6 *2)))) (-3490 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(-10 -7 (-15 -3490 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1526 (|#4| |#4| |#5|)) (-15 -2477 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -2110 ((-1205) (-1100) (-1100) |#4| |#5|)) (-15 -3856 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|))) +((-1516 (((-3 (-1113 (-1113 |#1|)) "failed") |#4|) 43)) (-3850 (((-606 |#4|) |#4|) 15)) (-1791 ((|#4| |#4|) 11))) +(((-737 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3850 ((-606 |#4|) |#4|)) (-15 -1516 ((-3 (-1113 (-1113 |#1|)) "failed") |#4|)) (-15 -1791 (|#4| |#4|))) (-333) (-313 |#1|) (-1176 |#2|) (-1176 |#3|) (-874)) (T -737)) +((-1791 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-313 *3)) (-4 *5 (-1176 *4)) (-5 *1 (-737 *3 *4 *5 *2 *6)) (-4 *2 (-1176 *5)) (-14 *6 (-874)))) (-1516 (*1 *2 *3) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-737 *4 *5 *6 *3 *7)) (-4 *3 (-1176 *6)) (-14 *7 (-874)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) (-5 *2 (-606 *3)) (-5 *1 (-737 *4 *5 *6 *3 *7)) (-4 *3 (-1176 *6)) (-14 *7 (-874))))) +(-10 -7 (-15 -3850 ((-606 |#4|) |#4|)) (-15 -1516 ((-3 (-1113 (-1113 |#1|)) "failed") |#4|)) (-15 -1791 (|#4| |#4|))) +((-2384 (((-2 (|:| |deter| (-606 (-1113 |#5|))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-606 |#1|)) (|:| |nlead| (-606 |#5|))) (-1113 |#5|) (-606 |#1|) (-606 |#5|)) 54)) (-2278 (((-606 (-731)) |#1|) 13))) +(((-738 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2384 ((-2 (|:| |deter| (-606 (-1113 |#5|))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-606 |#1|)) (|:| |nlead| (-606 |#5|))) (-1113 |#5|) (-606 |#1|) (-606 |#5|))) (-15 -2278 ((-606 (-731)) |#1|))) (-1176 |#4|) (-753) (-807) (-291) (-902 |#4| |#2| |#3|)) (T -738)) +((-2278 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-606 (-731))) (-5 *1 (-738 *3 *4 *5 *6 *7)) (-4 *3 (-1176 *6)) (-4 *7 (-902 *6 *4 *5)))) (-2384 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1176 *9)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-291)) (-4 *10 (-902 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-606 (-1113 *10))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *10))))) (|:| |nfacts| (-606 *6)) (|:| |nlead| (-606 *10)))) (-5 *1 (-738 *6 *7 *8 *9 *10)) (-5 *3 (-1113 *10)) (-5 *4 (-606 *6)) (-5 *5 (-606 *10))))) +(-10 -7 (-15 -2384 ((-2 (|:| |deter| (-606 (-1113 |#5|))) (|:| |dterm| (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-606 |#1|)) (|:| |nlead| (-606 |#5|))) (-1113 |#5|) (-606 |#1|) (-606 |#5|))) (-15 -2278 ((-606 (-731)) |#1|))) +((-1238 (((-606 (-2 (|:| |outval| |#1|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#1|))))) (-649 (-391 (-537))) |#1|) 31)) (-3177 (((-606 |#1|) (-649 (-391 (-537))) |#1|) 21)) (-2736 (((-905 (-391 (-537))) (-649 (-391 (-537))) (-1117)) 18) (((-905 (-391 (-537))) (-649 (-391 (-537)))) 17))) +(((-739 |#1|) (-10 -7 (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))))) (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))) (-1117))) (-15 -3177 ((-606 |#1|) (-649 (-391 (-537))) |#1|)) (-15 -1238 ((-606 (-2 (|:| |outval| |#1|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#1|))))) (-649 (-391 (-537))) |#1|))) (-13 (-347) (-805))) (T -739)) +((-1238 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-606 (-2 (|:| |outval| *4) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 *4)))))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805))))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *4 (-1117)) (-5 *2 (-905 (-391 (-537)))) (-5 *1 (-739 *5)) (-4 *5 (-13 (-347) (-805))))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-905 (-391 (-537)))) (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805)))))) +(-10 -7 (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))))) (-15 -2736 ((-905 (-391 (-537))) (-649 (-391 (-537))) (-1117))) (-15 -3177 ((-606 |#1|) (-649 (-391 (-537))) |#1|)) (-15 -1238 ((-606 (-2 (|:| |outval| |#1|) (|:| |outmult| (-537)) (|:| |outvect| (-606 (-649 |#1|))))) (-649 (-391 (-537))) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 34)) (-3757 (((-606 |#2|) $) NIL)) (-3588 (((-1113 $) $ |#2|) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 |#2|)) NIL)) (-4199 (($ $) 28)) (-4062 (((-111) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) 93 (|has| |#1| (-529)))) (-4088 (((-606 $) $ $) 106 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-905 (-391 (-537)))) NIL (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))))) (((-3 $ "failed") (-905 (-537))) NIL (-1533 (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537)))))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117)))))) (((-3 $ "failed") (-905 |#1|)) NIL (-1533 (-12 (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537))))) (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-522)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-945 (-537))))))) (((-3 (-1069 |#1| |#2|) "failed") $) 18)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) ((|#2| $) NIL) (($ (-905 (-391 (-537)))) NIL (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))))) (($ (-905 (-537))) NIL (-1533 (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537)))))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117)))))) (($ (-905 |#1|)) NIL (-1533 (-12 (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537))))) (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-522)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-945 (-537))))))) (((-1069 |#1| |#2|) $) NIL)) (-4086 (($ $ $ |#2|) NIL (|has| |#1| (-163))) (($ $ $) 104 (|has| |#1| (-529)))) (-3940 (($ $) NIL) (($ $ |#2|) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-1369 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2835 (((-111) $) NIL)) (-3293 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 70)) (-4013 (($ $) 119 (|has| |#1| (-435)))) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ |#2|) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-2721 (($ $) NIL (|has| |#1| (-529)))) (-1309 (($ $) NIL (|has| |#1| (-529)))) (-3882 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3472 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3240 (($ $ |#1| (-509 |#2|) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3201 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-2276 (($ $ $ $ $) 90 (|has| |#1| (-529)))) (-1464 ((|#2| $) 19)) (-3746 (($ (-1113 |#1|) |#2|) NIL) (($ (-1113 $) |#2|) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 |#2|)) NIL) (($ $ |#2| (-731)) 36) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-3491 (($ $ $) 60)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#2|) NIL)) (-2903 (((-111) $) NIL)) (-1883 (((-509 |#2|) $) NIL) (((-731) $ |#2|) NIL) (((-606 (-731)) $ (-606 |#2|)) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-2910 (((-731) $) 20)) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 |#2|) (-509 |#2|)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1310 (((-3 |#2| "failed") $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-435)))) (-3895 (($ $) NIL (|has| |#1| (-435)))) (-1250 (((-606 $) $) NIL)) (-2959 (($ $) 37)) (-2500 (($ $) NIL (|has| |#1| (-435)))) (-3081 (((-606 $) $) 41)) (-2270 (($ $) 39)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $) 82)) (-2897 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 67) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |#2|) NIL)) (-1296 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $) NIL) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |#2|) NIL)) (-1852 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-4047 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1654 (((-1100) $) NIL)) (-1842 (($ $ $) 108 (|has| |#1| (-529)))) (-1806 (((-606 $) $) 30)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-731))) "failed") $) NIL)) (-3812 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-3787 (($ $ $) NIL)) (-3956 (($ $) 21)) (-1981 (((-111) $ $) NIL)) (-2524 (((-111) $ $) NIL) (((-111) $ (-606 $)) NIL)) (-2021 (($ $ $) NIL)) (-2876 (($ $) 23)) (-2528 (((-1064) $) NIL)) (-2707 (((-2 (|:| -2211 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-529)))) (-2767 (((-2 (|:| -2211 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-529)))) (-3876 (((-111) $) 52)) (-3890 ((|#1| $) 55)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 ((|#1| |#1| $) 116 (|has| |#1| (-435))) (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-2141 (((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-2287 (($ $ |#1|) 112 (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-3848 (($ $ |#1|) 111 (|has| |#1| (-529))) (($ $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-606 |#2|) (-606 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-606 |#2|) (-606 $)) NIL)) (-2067 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-3456 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2872 (((-509 |#2|) $) NIL) (((-731) $ |#2|) 43) (((-606 (-731)) $ (-606 |#2|)) NIL)) (-1757 (($ $) NIL)) (-2944 (($ $) 33)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513))))) (($ (-905 (-391 (-537)))) NIL (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117))))) (($ (-905 (-537))) NIL (-1533 (-12 (|has| |#1| (-37 (-537))) (|has| |#2| (-580 (-1117))) (-3679 (|has| |#1| (-37 (-391 (-537)))))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#2| (-580 (-1117)))))) (($ (-905 |#1|)) NIL (|has| |#2| (-580 (-1117)))) (((-1100) $) NIL (-12 (|has| |#1| (-989 (-537))) (|has| |#2| (-580 (-1117))))) (((-905 |#1|) $) NIL (|has| |#2| (-580 (-1117))))) (-1835 ((|#1| $) 115 (|has| |#1| (-435))) (($ $ |#2|) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-905 |#1|) $) NIL (|has| |#2| (-580 (-1117)))) (((-1069 |#1| |#2|) $) 15) (($ (-1069 |#1| |#2|)) 16) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 |#2|)) NIL) (($ $ |#2| (-731)) 44) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 13 T CONST)) (-2633 (((-3 (-111) "failed") $ $) NIL)) (-2943 (($) 35 T CONST)) (-3031 (($ $ $ $ (-731)) 88 (|has| |#1| (-529)))) (-2593 (($ $ $ (-731)) 87 (|has| |#1| (-529)))) (-4230 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 54)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 64)) (-2318 (($ $ $) 74)) (** (($ $ (-874)) NIL) (($ $ (-731)) 61)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 59) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-740 |#1| |#2|) (-13 (-1012 |#1| (-509 |#2|) |#2|) (-579 (-1069 |#1| |#2|)) (-989 (-1069 |#1| |#2|))) (-998) (-807)) (T -740)) +NIL +(-13 (-1012 |#1| (-509 |#2|) |#2|) (-579 (-1069 |#1| |#2|)) (-989 (-1069 |#1| |#2|))) +((-1612 (((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)) 13))) +(((-741 |#1| |#2|) (-10 -7 (-15 -1612 ((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)))) (-998) (-998)) (T -741)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-742 *6)) (-5 *1 (-741 *5 *6))))) +(-10 -7 (-15 -1612 ((-742 |#2|) (-1 |#2| |#1|) (-742 |#1|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 12)) (-3847 (((-1200 |#1|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#1|)) NIL)) (-3588 (((-1113 $) $ (-1027)) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3944 (((-606 $) $ $) 39 (|has| |#1| (-529)))) (-1841 (($ $ $) 35 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1505 (($ $ (-731)) NIL)) (-3719 (($ $ (-731)) NIL)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL) (((-3 (-1113 |#1|) "failed") $) 10)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1027) $) NIL) (((-1113 |#1|) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $ $) 43 (|has| |#1| (-163)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-2657 (($ $ $) NIL)) (-2971 (($ $ $) 71 (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) 70 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-731) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ $) NIL (|has| |#1| (-529)))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) NIL) (($ (-1113 $) (-1027)) NIL)) (-3172 (($ $ (-731)) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3491 (($ $ $) 20)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-1113 |#1|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3669 (-731))) $ $) 26)) (-3391 (($ $ $) 29)) (-2002 (($ $ $) 32)) (-2897 (((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 31)) (-1654 (((-1100) $) NIL)) (-1842 (($ $ $) 41 (|has| |#1| (-529)))) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2707 (((-2 (|:| -2211 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-529)))) (-2767 (((-2 (|:| -2211 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-529)))) (-1448 (((-2 (|:| -4086 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-529)))) (-3532 (((-2 (|:| -4086 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-529)))) (-3876 (((-111) $) 13)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-3148 (($ $ (-731) |#1| $) 19)) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-2141 (((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-529)))) (-1958 (((-2 (|:| -4086 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-529)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#1|) NIL) (($ $ (-606 (-1027)) (-606 |#1|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) NIL (|has| |#1| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2872 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#1| (-529)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-1027)) NIL) (((-1113 |#1|) $) 7) (($ (-1113 |#1|)) 8) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 21 T CONST)) (-2943 (($) 24 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) 28) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-742 |#1|) (-13 (-1176 |#1|) (-579 (-1113 |#1|)) (-989 (-1113 |#1|)) (-10 -8 (-15 -3148 ($ $ (-731) |#1| $)) (-15 -3491 ($ $ $)) (-15 -2069 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3669 (-731))) $ $)) (-15 -3391 ($ $ $)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2002 ($ $ $)) (IF (|has| |#1| (-529)) (PROGN (-15 -3944 ((-606 $) $ $)) (-15 -1842 ($ $ $)) (-15 -2141 ((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2767 ((-2 (|:| -2211 $) (|:| |coef1| $)) $ $)) (-15 -2707 ((-2 (|:| -2211 $) (|:| |coef2| $)) $ $)) (-15 -1958 ((-2 (|:| -4086 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3532 ((-2 (|:| -4086 |#1|) (|:| |coef1| $)) $ $)) (-15 -1448 ((-2 (|:| -4086 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-998)) (T -742)) +((-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-731)) (-5 *1 (-742 *3)) (-4 *3 (-998)))) (-3491 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-742 *3)) (|:| |polden| *3) (|:| -3669 (-731)))) (-5 *1 (-742 *3)) (-4 *3 (-998)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) (-2897 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3449 *3) (|:| |gap| (-731)) (|:| -3413 (-742 *3)) (|:| -1672 (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-998)))) (-2002 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-606 (-742 *3))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-1842 (*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-529)) (-4 *2 (-998)))) (-2141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-2767 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-2707 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-1958 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-3532 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) (-1448 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef2| (-742 *3)))) (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) +(-13 (-1176 |#1|) (-579 (-1113 |#1|)) (-989 (-1113 |#1|)) (-10 -8 (-15 -3148 ($ $ (-731) |#1| $)) (-15 -3491 ($ $ $)) (-15 -2069 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3669 (-731))) $ $)) (-15 -3391 ($ $ $)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2002 ($ $ $)) (IF (|has| |#1| (-529)) (PROGN (-15 -3944 ((-606 $) $ $)) (-15 -1842 ($ $ $)) (-15 -2141 ((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2767 ((-2 (|:| -2211 $) (|:| |coef1| $)) $ $)) (-15 -2707 ((-2 (|:| -2211 $) (|:| |coef2| $)) $ $)) (-15 -1958 ((-2 (|:| -4086 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3532 ((-2 (|:| -4086 |#1|) (|:| |coef1| $)) $ $)) (-15 -1448 ((-2 (|:| -4086 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1768 ((|#1| (-731) |#1|) 32 (|has| |#1| (-37 (-391 (-537)))))) (-1443 ((|#1| (-731) |#1|) 22)) (-4042 ((|#1| (-731) |#1|) 34 (|has| |#1| (-37 (-391 (-537))))))) +(((-743 |#1|) (-10 -7 (-15 -1443 (|#1| (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -4042 (|#1| (-731) |#1|)) (-15 -1768 (|#1| (-731) |#1|))) |%noBranch|)) (-163)) (T -743)) +((-1768 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-163)))) (-4042 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-163)))) (-1443 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-163))))) +(-10 -7 (-15 -1443 (|#1| (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -4042 (|#1| (-731) |#1|)) (-15 -1768 (|#1| (-731) |#1|))) |%noBranch|)) +((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) +(((-744 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -744)) +NIL +(-13 (-1018 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1018 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) +((-2620 (((-3 (-363) "failed") (-300 |#1|) (-874)) 62 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-363) "failed") (-300 |#1|)) 54 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-363) "failed") (-391 (-905 |#1|)) (-874)) 41 (|has| |#1| (-529))) (((-3 (-363) "failed") (-391 (-905 |#1|))) 40 (|has| |#1| (-529))) (((-3 (-363) "failed") (-905 |#1|) (-874)) 31 (|has| |#1| (-998))) (((-3 (-363) "failed") (-905 |#1|)) 30 (|has| |#1| (-998)))) (-1871 (((-363) (-300 |#1|) (-874)) 99 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-363) (-300 |#1|)) 94 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-363) (-391 (-905 |#1|)) (-874)) 91 (|has| |#1| (-529))) (((-363) (-391 (-905 |#1|))) 90 (|has| |#1| (-529))) (((-363) (-905 |#1|) (-874)) 86 (|has| |#1| (-998))) (((-363) (-905 |#1|)) 85 (|has| |#1| (-998))) (((-363) |#1| (-874)) 76) (((-363) |#1|) 22)) (-2498 (((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)) (-874)) 71 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-300 (-160 |#1|))) 70 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-300 |#1|) (-874)) 63 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-300 |#1|)) 61 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))) (-874)) 46 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|)))) 45 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)) (-874)) 39 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-391 (-905 |#1|))) 38 (|has| |#1| (-529))) (((-3 (-160 (-363)) "failed") (-905 |#1|) (-874)) 28 (|has| |#1| (-998))) (((-3 (-160 (-363)) "failed") (-905 |#1|)) 26 (|has| |#1| (-998))) (((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)) (-874)) 18 (|has| |#1| (-163))) (((-3 (-160 (-363)) "failed") (-905 (-160 |#1|))) 15 (|has| |#1| (-163)))) (-3913 (((-160 (-363)) (-300 (-160 |#1|)) (-874)) 102 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-300 (-160 |#1|))) 101 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-300 |#1|) (-874)) 100 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-300 |#1|)) 98 (-12 (|has| |#1| (-529)) (|has| |#1| (-807)))) (((-160 (-363)) (-391 (-905 (-160 |#1|))) (-874)) 93 (|has| |#1| (-529))) (((-160 (-363)) (-391 (-905 (-160 |#1|)))) 92 (|has| |#1| (-529))) (((-160 (-363)) (-391 (-905 |#1|)) (-874)) 89 (|has| |#1| (-529))) (((-160 (-363)) (-391 (-905 |#1|))) 88 (|has| |#1| (-529))) (((-160 (-363)) (-905 |#1|) (-874)) 84 (|has| |#1| (-998))) (((-160 (-363)) (-905 |#1|)) 83 (|has| |#1| (-998))) (((-160 (-363)) (-905 (-160 |#1|)) (-874)) 78 (|has| |#1| (-163))) (((-160 (-363)) (-905 (-160 |#1|))) 77 (|has| |#1| (-163))) (((-160 (-363)) (-160 |#1|) (-874)) 80 (|has| |#1| (-163))) (((-160 (-363)) (-160 |#1|)) 79 (|has| |#1| (-163))) (((-160 (-363)) |#1| (-874)) 27) (((-160 (-363)) |#1|) 25))) +(((-745 |#1|) (-10 -7 (-15 -1871 ((-363) |#1|)) (-15 -1871 ((-363) |#1| (-874))) (-15 -3913 ((-160 (-363)) |#1|)) (-15 -3913 ((-160 (-363)) |#1| (-874))) (IF (|has| |#1| (-163)) (PROGN (-15 -3913 ((-160 (-363)) (-160 |#1|))) (-15 -3913 ((-160 (-363)) (-160 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -1871 ((-363) (-905 |#1|))) (-15 -1871 ((-363) (-905 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 |#1|))) (-15 -3913 ((-160 (-363)) (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -1871 ((-363) (-391 (-905 |#1|)))) (-15 -1871 ((-363) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -1871 ((-363) (-300 |#1|))) (-15 -1871 ((-363) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 |#1|))) (-15 -3913 ((-160 (-363)) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-905 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)))) (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-300 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|)) (-580 (-363))) (T -745)) +((-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-160 *5)) (-5 *4 (-874)) (-4 *5 (-163)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-160 *4)) (-4 *4 (-163)) (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) (-4 *3 (-580 (-363))))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) (-4 *3 (-580 (-363))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-363)) (-5 *1 (-745 *3)) (-4 *3 (-580 *2)))) (-1871 (*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-745 *3)) (-4 *3 (-580 *2))))) +(-10 -7 (-15 -1871 ((-363) |#1|)) (-15 -1871 ((-363) |#1| (-874))) (-15 -3913 ((-160 (-363)) |#1|)) (-15 -3913 ((-160 (-363)) |#1| (-874))) (IF (|has| |#1| (-163)) (PROGN (-15 -3913 ((-160 (-363)) (-160 |#1|))) (-15 -3913 ((-160 (-363)) (-160 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -1871 ((-363) (-905 |#1|))) (-15 -1871 ((-363) (-905 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-905 |#1|))) (-15 -3913 ((-160 (-363)) (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -1871 ((-363) (-391 (-905 |#1|)))) (-15 -1871 ((-363) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)))) (-15 -3913 ((-160 (-363)) (-391 (-905 |#1|)) (-874))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))))) (-15 -3913 ((-160 (-363)) (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -1871 ((-363) (-300 |#1|))) (-15 -1871 ((-363) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 |#1|))) (-15 -3913 ((-160 (-363)) (-300 |#1|) (-874))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)))) (-15 -3913 ((-160 (-363)) (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 (-160 |#1|)) (-874)))) |%noBranch|) (IF (|has| |#1| (-998)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-905 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-905 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-905 |#1|) (-874)))) |%noBranch|) (IF (|has| |#1| (-529)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)))) (-15 -2620 ((-3 (-363) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 |#1|)) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-391 (-905 (-160 |#1|))) (-874))) (IF (|has| |#1| (-807)) (PROGN (-15 -2620 ((-3 (-363) "failed") (-300 |#1|))) (-15 -2620 ((-3 (-363) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 |#1|) (-874))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)))) (-15 -2498 ((-3 (-160 (-363)) "failed") (-300 (-160 |#1|)) (-874)))) |%noBranch|)) |%noBranch|)) +((-3463 (((-874) (-1100)) 66)) (-3133 (((-3 (-363) "failed") (-1100)) 33)) (-2574 (((-363) (-1100)) 31)) (-1251 (((-874) (-1100)) 54)) (-3658 (((-1100) (-874)) 56)) (-1779 (((-1100) (-874)) 53))) +(((-746) (-10 -7 (-15 -1779 ((-1100) (-874))) (-15 -1251 ((-874) (-1100))) (-15 -3658 ((-1100) (-874))) (-15 -3463 ((-874) (-1100))) (-15 -2574 ((-363) (-1100))) (-15 -3133 ((-3 (-363) "failed") (-1100))))) (T -746)) +((-3133 (*1 *2 *3) (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746)))) (-1251 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746))))) +(-10 -7 (-15 -1779 ((-1100) (-874))) (-15 -1251 ((-874) (-1100))) (-15 -3658 ((-1100) (-874))) (-15 -3463 ((-874) (-1100))) (-15 -2574 ((-363) (-1100))) (-15 -3133 ((-3 (-363) "failed") (-1100)))) +((-2330 (((-111) $ $) 7)) (-2817 (((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 15) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986)) 13)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 16) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-747) (-134)) (T -747)) +((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-747)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986)))))) (-2817 (*1 *2 *3 *2) (-12 (-4 *1 (-747)) (-5 *2 (-986)) (-5 *3 (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) (-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-747)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986)))))) (-2817 (*1 *2 *3 *2) (-12 (-4 *1 (-747)) (-5 *2 (-986)) (-5 *3 (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) +(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2817 ((-986) (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) (|:| |extra| (-986))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2817 ((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) (-986))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-1493 (((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363))) 44) (((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 43)) (-1284 (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 50)) (-1489 (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 41)) (-2505 (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363))) 52) (((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))) 51))) +(((-748) (-10 -7 (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1489 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1284 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))))) (T -748)) +((-1284 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-1493 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-537)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-1493 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-537)) (-5 *6 (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-1489 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-2505 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748)))) (-2505 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) (-5 *1 (-748))))) +(-10 -7 (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -2505 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1489 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)))) (-15 -1493 ((-1205) (-1200 (-363)) (-537) (-363) (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363))) (-363) (-1200 (-363)) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)) (-1200 (-363)))) (-15 -1284 ((-1205) (-1200 (-363)) (-537) (-363) (-363) (-537) (-1 (-1205) (-1200 (-363)) (-1200 (-363)) (-363))))) +((-3164 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 53)) (-3585 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 31)) (-1914 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 52)) (-3366 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 29)) (-3825 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 51)) (-1473 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)) 19)) (-3304 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537)) 32)) (-3988 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537)) 30)) (-1904 (((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537)) 28))) +(((-749) (-10 -7 (-15 -1904 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3988 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3304 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -1473 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3366 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3585 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3825 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -1914 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3164 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))))) (T -749)) +((-3164 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-1914 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3825 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3585 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3366 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-1473 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3304 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-3988 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537)))) (-1904 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) (|:| |success| (-111)))) (-5 *1 (-749)) (-5 *5 (-537))))) +(-10 -7 (-15 -1904 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3988 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -3304 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537) (-537))) (-15 -1473 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3366 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3585 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3825 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -1914 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537))) (-15 -3164 ((-2 (|:| -3619 (-363)) (|:| -3927 (-363)) (|:| |totalpts| (-537)) (|:| |success| (-111))) (-1 (-363) (-363)) (-363) (-363) (-363) (-363) (-537) (-537)))) +((-3911 (((-1149 |#1|) |#1| (-210) (-537)) 46))) +(((-750 |#1|) (-10 -7 (-15 -3911 ((-1149 |#1|) |#1| (-210) (-537)))) (-927)) (T -750)) +((-3911 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-210)) (-5 *5 (-537)) (-5 *2 (-1149 *3)) (-5 *1 (-750 *3)) (-4 *3 (-927))))) +(-10 -7 (-15 -3911 ((-1149 |#1|) |#1| (-210) (-537)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3418 (((-3 $ "failed") $ $) 26)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2329 (($ $ $) 28) (($ $) 27)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25) (($ (-537) $) 29))) +(((-751) (-134)) (T -751)) +NIL +(-13 (-755) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-807) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25))) +(((-752) (-134)) (T -752)) +NIL +(-13 (-754) (-23)) +(((-23) . T) ((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-754) . T) ((-807) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-2169 (($ $ $) 27)) (-3418 (((-3 $ "failed") $ $) 26)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25))) +(((-753) (-134)) (T -753)) +((-2169 (*1 *1 *1 *1) (-4 *1 (-753)))) +(-13 (-755) (-10 -8 (-15 -2169 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-807) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21))) +(((-754) (-134)) (T -754)) +NIL +(-13 (-807) (-25)) +(((-25) . T) ((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3418 (((-3 $ "failed") $ $) 26)) (-3832 (($) 23 T CONST)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2318 (($ $ $) 20)) (* (($ (-874) $) 21) (($ (-731) $) 25))) +(((-755) (-134)) (T -755)) +NIL +(-13 (-752) (-129)) +(((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-752) . T) ((-754) . T) ((-807) . T) ((-1045) . T)) +((-1656 (((-111) $) 41)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 42)) (-2484 (((-3 (-391 (-537)) "failed") $) 78)) (-1797 (((-111) $) 72)) (-2616 (((-391 (-537)) $) 76)) (-2055 ((|#2| $) 26)) (-1612 (($ (-1 |#2| |#2|) $) 23)) (-3865 (($ $) 61)) (-3996 (((-513) $) 67)) (-1978 (($ $) 21)) (-2341 (((-816) $) 56) (($ (-537)) 39) (($ |#2|) 37) (($ (-391 (-537))) NIL)) (-3654 (((-731)) 10)) (-2209 ((|#2| $) 71)) (-2244 (((-111) $ $) 29)) (-2263 (((-111) $ $) 69)) (-2329 (($ $) 31) (($ $ $) NIL)) (-2318 (($ $ $) 30)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-756 |#1| |#2|) (-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-757 |#2|) (-163)) (T -756)) +((-3654 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-756 *3 *4)) (-4 *3 (-757 *4))))) +(-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3151 (((-731)) 51 (|has| |#1| (-352)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 92 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 90 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 88)) (-3958 (((-537) $) 93 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 91 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 87)) (-3490 (((-3 $ "failed") $) 32)) (-3645 ((|#1| $) 77)) (-2484 (((-3 (-391 (-537)) "failed") $) 64 (|has| |#1| (-522)))) (-1797 (((-111) $) 66 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 65 (|has| |#1| (-522)))) (-1618 (($) 54 (|has| |#1| (-352)))) (-2836 (((-111) $) 30)) (-2683 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2055 ((|#1| $) 69)) (-2444 (($ $ $) 60 (|has| |#1| (-807)))) (-3889 (($ $ $) 59 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 79)) (-2334 (((-874) $) 53 (|has| |#1| (-352)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 63 (|has| |#1| (-347)))) (-2009 (($ (-874)) 52 (|has| |#1| (-352)))) (-3454 ((|#1| $) 74)) (-3971 ((|#1| $) 75)) (-4054 ((|#1| $) 76)) (-1821 ((|#1| $) 70)) (-2168 ((|#1| $) 71)) (-2963 ((|#1| $) 72)) (-2134 ((|#1| $) 73)) (-2528 (((-1064) $) 10)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 85 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 83 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 82 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 81 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 80 (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) 86 (|has| |#1| (-270 |#1| |#1|)))) (-3996 (((-513) $) 61 (|has| |#1| (-580 (-513))))) (-1978 (($ $) 78)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ (-391 (-537))) 89 (|has| |#1| (-989 (-391 (-537)))))) (-2644 (((-3 $ "failed") $) 62 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2209 ((|#1| $) 67 (|has| |#1| (-1007)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 57 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 56 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 58 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 55 (|has| |#1| (-807)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-757 |#1|) (-134) (-163)) (T -757)) +((-1978 (*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2683 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-3865 (*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-347))))) +(-13 (-37 |t#1|) (-395 |t#1|) (-322 |t#1|) (-10 -8 (-15 -1978 ($ $)) (-15 -3645 (|t#1| $)) (-15 -4054 (|t#1| $)) (-15 -3971 (|t#1| $)) (-15 -3454 (|t#1| $)) (-15 -2134 (|t#1| $)) (-15 -2963 (|t#1| $)) (-15 -2168 (|t#1| $)) (-15 -1821 (|t#1| $)) (-15 -2055 (|t#1| $)) (-15 -2683 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-352)) (-6 (-352)) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -2209 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-347)) (-15 -3865 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-352) |has| |#1| (-352)) ((-322 |#1|) . T) ((-395 |#1|) . T) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) . T) ((-687) . T) ((-807) |has| |#1| (-807)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1612 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-758 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) (-757 |#2|) (-163) (-757 |#4|) (-163)) (T -758)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-757 *6)) (-5 *1 (-758 *4 *5 *2 *6)) (-4 *4 (-757 *5))))) +(-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-951 |#1|) "failed") $) 35) (((-3 (-537) "failed") $) NIL (-1533 (|has| (-951 |#1|) (-989 (-537))) (|has| |#1| (-989 (-537))))) (((-3 (-391 (-537)) "failed") $) NIL (-1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3958 ((|#1| $) NIL) (((-951 |#1|) $) 33) (((-537) $) NIL (-1533 (|has| (-951 |#1|) (-989 (-537))) (|has| |#1| (-989 (-537))))) (((-391 (-537)) $) NIL (-1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3490 (((-3 $ "failed") $) NIL)) (-3645 ((|#1| $) 16)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-522)))) (-1797 (((-111) $) NIL (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| |#1| (-522)))) (-1618 (($) NIL (|has| |#1| (-352)))) (-2836 (((-111) $) NIL)) (-2683 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-951 |#1|) (-951 |#1|)) 29)) (-2055 ((|#1| $) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-3454 ((|#1| $) 22)) (-3971 ((|#1| $) 20)) (-4054 ((|#1| $) 18)) (-1821 ((|#1| $) 26)) (-2168 ((|#1| $) 25)) (-2963 ((|#1| $) 24)) (-2134 ((|#1| $) 23)) (-2528 (((-1064) $) NIL)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-1978 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-951 |#1|)) 30) (($ (-391 (-537))) NIL (-1533 (|has| (-951 |#1|) (-989 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2209 ((|#1| $) NIL (|has| |#1| (-1007)))) (-2928 (($) 8 T CONST)) (-2943 (($) 12 T CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-759 |#1|) (-13 (-757 |#1|) (-395 (-951 |#1|)) (-10 -8 (-15 -2683 ($ (-951 |#1|) (-951 |#1|))))) (-163)) (T -759)) +((-2683 (*1 *1 *2 *2) (-12 (-5 *2 (-951 *3)) (-4 *3 (-163)) (-5 *1 (-759 *3))))) +(-13 (-757 |#1|) (-395 (-951 |#1|)) (-10 -8 (-15 -2683 ($ (-951 |#1|) (-951 |#1|))))) +((-2330 (((-111) $ $) 7)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-1723 (((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 13)) (-2244 (((-111) $ $) 6))) +(((-760) (-134)) (T -760)) +((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-760)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-1723 (*1 *2 *3) (-12 (-4 *1 (-760)) (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-986))))) +(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -1723 ((-986) (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-1925 (((-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#3| |#2| (-1117)) 19))) +(((-761 |#1| |#2| |#3|) (-10 -7 (-15 -1925 ((-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#3| |#2| (-1117)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912)) (-617 |#2|)) (T -761)) +((-1925 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1117)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-4 *4 (-13 (-29 *6) (-1139) (-912))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) (-5 *1 (-761 *6 *4 *3)) (-4 *3 (-617 *4))))) +(-10 -7 (-15 -1925 ((-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#3| |#2| (-1117)))) +((-1895 (((-3 |#2| "failed") |#2| (-113) (-278 |#2|) (-606 |#2|)) 28) (((-3 |#2| "failed") (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") |#2| (-113) (-1117)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") (-278 |#2|) (-113) (-1117)) 18) (((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 |#2|) (-606 (-113)) (-1117)) 24) (((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 (-278 |#2|)) (-606 (-113)) (-1117)) 26) (((-3 (-606 (-1200 |#2|)) "failed") (-649 |#2|) (-1117)) 37) (((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-649 |#2|) (-1200 |#2|) (-1117)) 35))) +(((-762 |#1| |#2|) (-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-649 |#2|) (-1200 |#2|) (-1117))) (-15 -1895 ((-3 (-606 (-1200 |#2|)) "failed") (-649 |#2|) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 (-278 |#2|)) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 |#2|) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") (-278 |#2|) (-113) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") |#2| (-113) (-1117))) (-15 -1895 ((-3 |#2| "failed") (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -1895 ((-3 |#2| "failed") |#2| (-113) (-278 |#2|) (-606 |#2|)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912))) (T -762)) +((-1895 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-278 *2)) (-5 *5 (-606 *2)) (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-762 *6 *2)))) (-1895 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-113)) (-5 *5 (-606 *2)) (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-5 *1 (-762 *6 *2)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1117)) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2122 (-606 *3))) *3 "failed")) (-5 *1 (-762 *6 *3)) (-4 *3 (-13 (-29 *6) (-1139) (-912))))) (-1895 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2122 (-606 *7))) *7 "failed")) (-5 *1 (-762 *6 *7)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) (-5 *1 (-762 *6 *7)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) (-5 *1 (-762 *6 *7)))) (-1895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 *6)) (-5 *4 (-1117)) (-4 *6 (-13 (-29 *5) (-1139) (-912))) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-1200 *6))) (-5 *1 (-762 *5 *6)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 *7)) (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) (-5 *1 (-762 *6 *7)) (-5 *4 (-1200 *7))))) +(-10 -7 (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-649 |#2|) (-1200 |#2|) (-1117))) (-15 -1895 ((-3 (-606 (-1200 |#2|)) "failed") (-649 |#2|) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 (-278 |#2|)) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#2|)) (|:| -2122 (-606 (-1200 |#2|)))) "failed") (-606 |#2|) (-606 (-113)) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") (-278 |#2|) (-113) (-1117))) (-15 -1895 ((-3 (-2 (|:| |particular| |#2|) (|:| -2122 (-606 |#2|))) |#2| "failed") |#2| (-113) (-1117))) (-15 -1895 ((-3 |#2| "failed") (-278 |#2|) (-113) (-278 |#2|) (-606 |#2|))) (-15 -1895 ((-3 |#2| "failed") |#2| (-113) (-278 |#2|) (-606 |#2|)))) +((-3506 (($) 9)) (-3821 (((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 31)) (-1688 (((-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $) 28)) (-3499 (($ (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) 25)) (-3507 (($ (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) 23)) (-2206 (((-1205)) 12))) +(((-763) (-10 -8 (-15 -3506 ($)) (-15 -2206 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3507 ($ (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -3821 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))))) (T -763)) +((-3821 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))) (-5 *1 (-763)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))) (-5 *1 (-763)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-5 *1 (-763)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-5 *1 (-763)))) (-2206 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-763)))) (-3506 (*1 *1) (-5 *1 (-763)))) +(-10 -8 (-15 -3506 ($)) (-15 -2206 ((-1205))) (-15 -1688 ((-606 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) $)) (-15 -3507 ($ (-606 (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363)))))))) (-15 -3499 ($ (-2 (|:| -2926 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (|:| -2140 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))))))) (-15 -3821 ((-3 (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) (|:| |expense| (-363)) (|:| |accuracy| (-363)) (|:| |intermediateResults| (-363))) "failed") (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) +((-3129 ((|#2| |#2| (-1117)) 16)) (-1596 ((|#2| |#2| (-1117)) 51)) (-1303 (((-1 |#2| |#2|) (-1117)) 11))) +(((-764 |#1| |#2|) (-10 -7 (-15 -3129 (|#2| |#2| (-1117))) (-15 -1596 (|#2| |#2| (-1117))) (-15 -1303 ((-1 |#2| |#2|) (-1117)))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141)) (-13 (-29 |#1|) (-1139) (-912))) (T -764)) +((-1303 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-1 *5 *5)) (-5 *1 (-764 *4 *5)) (-4 *5 (-13 (-29 *4) (-1139) (-912))))) (-1596 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912))))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912)))))) +(-10 -7 (-15 -3129 (|#2| |#2| (-1117))) (-15 -1596 (|#2| |#2| (-1117))) (-15 -1303 ((-1 |#2| |#2|) (-1117)))) +((-1895 (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363) (-363)) 116) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363)) 117) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-606 (-363)) (-363)) 119) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-363)) 120) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-363)) 121) (((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363))) 122) (((-986) (-768) (-1010)) 108) (((-986) (-768)) 109)) (-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768) (-1010)) 75) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768)) 77))) +(((-765) (-10 -7 (-15 -1895 ((-986) (-768))) (-15 -1895 ((-986) (-768) (-1010))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363) (-363))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768) (-1010))))) (T -765)) +((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-765)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-765)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-986)) (-5 *1 (-765))))) +(-10 -7 (-15 -1895 ((-986) (-768))) (-15 -1895 ((-986) (-768) (-1010))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363))) (-15 -1895 ((-986) (-1200 (-300 (-363))) (-363) (-363) (-606 (-363)) (-300 (-363)) (-606 (-363)) (-363) (-363))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-768) (-1010)))) +((-3102 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2122 (-606 |#4|))) (-614 |#4|) |#4|) 35))) +(((-766 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2122 (-606 |#4|))) (-614 |#4|) |#4|))) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|)) (T -766)) +((-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-614 *4)) (-4 *4 (-326 *5 *6 *7)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-766 *5 *6 *7 *4))))) +(-10 -7 (-15 -3102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2122 (-606 |#4|))) (-614 |#4|) |#4|))) +((-1478 (((-2 (|:| -4113 |#3|) (|:| |rh| (-606 (-391 |#2|)))) |#4| (-606 (-391 |#2|))) 52)) (-1770 (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4| |#2|) 60) (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4|) 59) (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3| |#2|) 20) (((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3|) 21)) (-1689 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3636 ((|#2| |#3| (-606 (-391 |#2|))) 93) (((-3 |#2| "failed") |#3| (-391 |#2|)) 90))) +(((-767 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3636 ((-3 |#2| "failed") |#3| (-391 |#2|))) (-15 -3636 (|#2| |#3| (-606 (-391 |#2|)))) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3| |#2|)) (-15 -1689 (|#2| |#3| |#1|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4| |#2|)) (-15 -1689 (|#2| |#4| |#1|)) (-15 -1478 ((-2 (|:| -4113 |#3|) (|:| |rh| (-606 (-391 |#2|)))) |#4| (-606 (-391 |#2|))))) (-13 (-347) (-141) (-989 (-391 (-537)))) (-1176 |#1|) (-617 |#2|) (-617 (-391 |#2|))) (T -767)) +((-1478 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-2 (|:| -4113 *7) (|:| |rh| (-606 (-391 *6))))) (-5 *1 (-767 *5 *6 *7 *3)) (-5 *4 (-606 (-391 *6))) (-4 *7 (-617 *6)) (-4 *3 (-617 (-391 *6))))) (-1689 (*1 *2 *3 *4) (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *5 *3)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-617 *2)) (-4 *3 (-617 (-391 *2))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) (-5 *1 (-767 *5 *4 *6 *3)) (-4 *6 (-617 *4)) (-4 *3 (-617 (-391 *4))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) (-5 *1 (-767 *4 *5 *6 *3)) (-4 *6 (-617 *5)) (-4 *3 (-617 (-391 *5))))) (-1689 (*1 *2 *3 *4) (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *3 *5)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *5 (-617 (-391 *2))))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) (-5 *1 (-767 *5 *4 *3 *6)) (-4 *3 (-617 *4)) (-4 *6 (-617 (-391 *4))))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) (-5 *1 (-767 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-617 (-391 *5))))) (-3636 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-391 *2))) (-4 *2 (-1176 *5)) (-5 *1 (-767 *5 *2 *3 *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *6 (-617 (-391 *2))))) (-3636 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-391 *2)) (-4 *2 (-1176 *5)) (-5 *1 (-767 *5 *2 *3 *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *6 (-617 *4))))) +(-10 -7 (-15 -3636 ((-3 |#2| "failed") |#3| (-391 |#2|))) (-15 -3636 (|#2| |#3| (-606 (-391 |#2|)))) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#3| |#2|)) (-15 -1689 (|#2| |#3| |#1|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4|)) (-15 -1770 ((-606 (-2 (|:| -2184 |#2|) (|:| -3056 |#2|))) |#4| |#2|)) (-15 -1689 (|#2| |#4| |#1|)) (-15 -1478 ((-2 (|:| -4113 |#3|) (|:| |rh| (-606 (-391 |#2|)))) |#4| (-606 (-391 |#2|))))) +((-2330 (((-111) $ $) NIL)) (-3958 (((-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) $) 13)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 15) (($ (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) 12)) (-2244 (((-111) $ $) NIL))) +(((-768) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) $))))) (T -768)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-768)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-768)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *1 (-768))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) (|:| |relerr| (-210))) $)))) +((-1377 (((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 |#3|))) |#3| (-1 (-606 |#2|) |#2| (-1113 |#2|)) (-1 (-402 |#2|) |#2|)) 118)) (-2785 (((-606 (-2 (|:| |poly| |#2|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|)) 46)) (-2511 (((-606 (-2 (|:| |deg| (-731)) (|:| -4113 |#2|))) |#3|) 95)) (-3581 ((|#2| |#3|) 37)) (-3867 (((-606 (-2 (|:| -2787 |#1|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|)) 82)) (-2332 ((|#3| |#3| (-391 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-769 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3581 (|#2| |#3|)) (-15 -2511 ((-606 (-2 (|:| |deg| (-731)) (|:| -4113 |#2|))) |#3|)) (-15 -3867 ((-606 (-2 (|:| -2787 |#1|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 |#3|))) |#3| (-1 (-606 |#2|) |#2| (-1113 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2332 (|#3| |#3| |#2|)) (-15 -2332 (|#3| |#3| (-391 |#2|)))) (-13 (-347) (-141) (-989 (-391 (-537)))) (-1176 |#1|) (-617 |#2|) (-617 (-391 |#2|))) (T -769)) +((-2332 (*1 *2 *2 *3) (-12 (-5 *3 (-391 *5)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *1 (-769 *4 *5 *2 *6)) (-4 *2 (-617 *5)) (-4 *6 (-617 *3)))) (-2332 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-1176 *4)) (-5 *1 (-769 *4 *3 *2 *5)) (-4 *2 (-617 *3)) (-4 *5 (-617 (-391 *3))))) (-1377 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-606 *7) *7 (-1113 *7))) (-5 *5 (-1 (-402 *7) *7)) (-4 *7 (-1176 *6)) (-4 *6 (-13 (-347) (-141) (-989 (-391 (-537))))) (-5 *2 (-606 (-2 (|:| |frac| (-391 *7)) (|:| -4113 *3)))) (-5 *1 (-769 *6 *7 *3 *8)) (-4 *3 (-617 *7)) (-4 *8 (-617 (-391 *7))))) (-2785 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 *3)))) (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) (-4 *7 (-617 (-391 *6))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2787 *5) (|:| -4113 *3)))) (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) (-4 *7 (-617 (-391 *6))))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -4113 *5)))) (-5 *1 (-769 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-617 (-391 *5))))) (-3581 (*1 *2 *3) (-12 (-4 *2 (-1176 *4)) (-5 *1 (-769 *4 *2 *3 *5)) (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) (-4 *5 (-617 (-391 *2)))))) +(-10 -7 (-15 -3581 (|#2| |#3|)) (-15 -2511 ((-606 (-2 (|:| |deg| (-731)) (|:| -4113 |#2|))) |#3|)) (-15 -3867 ((-606 (-2 (|:| -2787 |#1|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 |#3|))) |#3| (-1 (-606 |#1|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 |#3|))) |#3| (-1 (-606 |#2|) |#2| (-1113 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2332 (|#3| |#3| |#2|)) (-15 -2332 (|#3| |#3| (-391 |#2|)))) +((-2625 (((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-615 |#2| (-391 |#2|)) (-606 (-391 |#2|))) 121) (((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-615 |#2| (-391 |#2|)) (-391 |#2|)) 120) (((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-614 (-391 |#2|)) (-606 (-391 |#2|))) 115) (((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-614 (-391 |#2|)) (-391 |#2|)) 113)) (-1692 ((|#2| (-615 |#2| (-391 |#2|))) 80) ((|#2| (-614 (-391 |#2|))) 83))) +(((-770 |#1| |#2|) (-10 -7 (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-614 (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-614 (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-615 |#2| (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-615 |#2| (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -1692 (|#2| (-614 (-391 |#2|)))) (-15 -1692 (|#2| (-615 |#2| (-391 |#2|))))) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -770)) +((-1692 (*1 *2 *3) (-12 (-5 *3 (-615 *2 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-770 *4 *2)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-614 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-770 *4 *2)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-770 *5 *6)))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6))))) (-2625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-770 *5 *6))))) +(-10 -7 (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-614 (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-614 (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -2625 ((-2 (|:| |particular| (-3 (-391 |#2|) "failed")) (|:| -2122 (-606 (-391 |#2|)))) (-615 |#2| (-391 |#2|)) (-391 |#2|))) (-15 -2625 ((-2 (|:| -2122 (-606 (-391 |#2|))) (|:| -2756 (-649 |#1|))) (-615 |#2| (-391 |#2|)) (-606 (-391 |#2|)))) (-15 -1692 (|#2| (-614 (-391 |#2|)))) (-15 -1692 (|#2| (-615 |#2| (-391 |#2|))))) +((-4192 (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) |#5| |#4|) 48))) +(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4192 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) |#5| |#4|))) (-347) (-617 |#1|) (-1176 |#1|) (-685 |#1| |#3|) (-617 |#4|)) (T -771)) +((-4192 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *7 (-1176 *5)) (-4 *4 (-685 *5 *7)) (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) (-5 *1 (-771 *5 *6 *7 *4 *3)) (-4 *6 (-617 *5)) (-4 *3 (-617 *4))))) +(-10 -7 (-15 -4192 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) |#5| |#4|))) +((-1377 (((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)) 47)) (-1625 (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|))) 138 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-402 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-614 (-391 |#2|))) 140 (|has| |#1| (-27))) (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|)) 38) (((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 39) (((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|)) 36) (((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 37)) (-2785 (((-606 (-2 (|:| |poly| |#2|) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|)) 83))) +(((-772 |#1| |#2|) (-10 -7 (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)))) |%noBranch|)) (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))) (-1176 |#1|)) (T -772)) +((-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-615 *5 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-614 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) (-2785 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 (-615 *6 (-391 *6)))))) (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6))))) (-1377 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-5 *2 (-606 (-2 (|:| |frac| (-391 *6)) (|:| -4113 (-615 *6 (-391 *6)))))) (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6))))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-615 *7 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) (-5 *5 (-1 (-402 *7) *7)) (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) (-1625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-614 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) (-5 *5 (-1 (-402 *7) *7)) (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6))))) +(-10 -7 (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|) (-1 (-402 |#2|) |#2|))) (-15 -1377 ((-606 (-2 (|:| |frac| (-391 |#2|)) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -2785 ((-606 (-2 (|:| |poly| |#2|) (|:| -4113 (-615 |#2| (-391 |#2|))))) (-615 |#2| (-391 |#2|)) (-1 (-606 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-614 (-391 |#2|)) (-1 (-402 |#2|) |#2|))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)))) (-15 -1625 ((-606 (-391 |#2|)) (-615 |#2| (-391 |#2|)) (-1 (-402 |#2|) |#2|)))) |%noBranch|)) +((-4103 (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) (-649 |#2|) (-1200 |#1|)) 85) (((-2 (|:| A (-649 |#1|)) (|:| |eqs| (-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)) (|:| -4113 |#2|) (|:| |rh| |#1|))))) (-649 |#1|) (-1200 |#1|)) 15)) (-3874 (((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#2|) (-1200 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2122 (-606 |#1|))) |#2| |#1|)) 92)) (-1895 (((-3 (-2 (|:| |particular| (-1200 |#1|)) (|:| -2122 (-649 |#1|))) "failed") (-649 |#1|) (-1200 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed") |#2| |#1|)) 43))) +(((-773 |#1| |#2|) (-10 -7 (-15 -4103 ((-2 (|:| A (-649 |#1|)) (|:| |eqs| (-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)) (|:| -4113 |#2|) (|:| |rh| |#1|))))) (-649 |#1|) (-1200 |#1|))) (-15 -4103 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) (-649 |#2|) (-1200 |#1|))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#1|)) (|:| -2122 (-649 |#1|))) "failed") (-649 |#1|) (-1200 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed") |#2| |#1|))) (-15 -3874 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#2|) (-1200 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2122 (-606 |#1|))) |#2| |#1|)))) (-347) (-617 |#1|)) (T -773)) +((-3874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2122 (-606 *6))) *7 *6)) (-4 *6 (-347)) (-4 *7 (-617 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1200 *6) "failed")) (|:| -2122 (-606 (-1200 *6))))) (-5 *1 (-773 *6 *7)) (-5 *4 (-1200 *6)))) (-1895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2122 (-606 *6))) "failed") *7 *6)) (-4 *6 (-347)) (-4 *7 (-617 *6)) (-5 *2 (-2 (|:| |particular| (-1200 *6)) (|:| -2122 (-649 *6)))) (-5 *1 (-773 *6 *7)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *6)))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-4 *6 (-617 *5)) (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *5)))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-5 *2 (-2 (|:| A (-649 *5)) (|:| |eqs| (-606 (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5)) (|:| -4113 *6) (|:| |rh| *5)))))) (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *6 (-617 *5))))) +(-10 -7 (-15 -4103 ((-2 (|:| A (-649 |#1|)) (|:| |eqs| (-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)) (|:| -4113 |#2|) (|:| |rh| |#1|))))) (-649 |#1|) (-1200 |#1|))) (-15 -4103 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#1|))) (-649 |#2|) (-1200 |#1|))) (-15 -1895 ((-3 (-2 (|:| |particular| (-1200 |#1|)) (|:| -2122 (-649 |#1|))) "failed") (-649 |#1|) (-1200 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2122 (-606 |#1|))) "failed") |#2| |#1|))) (-15 -3874 ((-2 (|:| |particular| (-3 (-1200 |#1|) "failed")) (|:| -2122 (-606 (-1200 |#1|)))) (-649 |#2|) (-1200 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2122 (-606 |#1|))) |#2| |#1|)))) +((-3064 (((-649 |#1|) (-606 |#1|) (-731)) 13) (((-649 |#1|) (-606 |#1|)) 14)) (-2935 (((-3 (-1200 |#1|) "failed") |#2| |#1| (-606 |#1|)) 34)) (-1431 (((-3 |#1| "failed") |#2| |#1| (-606 |#1|) (-1 |#1| |#1|)) 42))) +(((-774 |#1| |#2|) (-10 -7 (-15 -3064 ((-649 |#1|) (-606 |#1|))) (-15 -3064 ((-649 |#1|) (-606 |#1|) (-731))) (-15 -2935 ((-3 (-1200 |#1|) "failed") |#2| |#1| (-606 |#1|))) (-15 -1431 ((-3 |#1| "failed") |#2| |#1| (-606 |#1|) (-1 |#1| |#1|)))) (-347) (-617 |#1|)) (T -774)) +((-1431 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-606 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-347)) (-5 *1 (-774 *2 *3)) (-4 *3 (-617 *2)))) (-2935 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-1200 *4)) (-5 *1 (-774 *4 *3)) (-4 *3 (-617 *4)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-347)) (-5 *2 (-649 *5)) (-5 *1 (-774 *5 *6)) (-4 *6 (-617 *5)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-649 *4)) (-5 *1 (-774 *4 *5)) (-4 *5 (-617 *4))))) +(-10 -7 (-15 -3064 ((-649 |#1|) (-606 |#1|))) (-15 -3064 ((-649 |#1|) (-606 |#1|) (-731))) (-15 -2935 ((-3 (-1200 |#1|) "failed") |#2| |#1| (-606 |#1|))) (-15 -1431 ((-3 |#1| "failed") |#2| |#1| (-606 |#1|) (-1 |#1| |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-1656 (((-111) $) NIL (|has| |#2| (-129)))) (-3492 (($ (-874)) NIL (|has| |#2| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#2| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#2| (-352)))) (-2537 (((-537) $) NIL (|has| |#2| (-805)))) (-2476 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) ((|#2| $) NIL (|has| |#2| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#2| (-998)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#2| (-998))) (((-649 |#2|) (-649 $)) NIL (|has| |#2| (-998)))) (-3490 (((-3 $ "failed") $) NIL (|has| |#2| (-687)))) (-1618 (($) NIL (|has| |#2| (-352)))) (-4091 ((|#2| $ (-537) |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ (-537)) NIL)) (-3797 (((-111) $) NIL (|has| |#2| (-805)))) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#2| (-687)))) (-2840 (((-111) $) NIL (|has| |#2| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#2| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#2| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#2| (-352)))) (-2528 (((-1064) $) NIL (|has| |#2| (-1045)))) (-3188 ((|#2| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) |#2|) NIL) ((|#2| $ (-537)) NIL)) (-3416 ((|#2| $ $) NIL (|has| |#2| (-998)))) (-3668 (($ (-1200 |#2|)) NIL)) (-1839 (((-131)) NIL (|has| |#2| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#2|) $) NIL) (($ (-537)) NIL (-1533 (-12 (|has| |#2| (-989 (-537))) (|has| |#2| (-1045))) (|has| |#2| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#2| (-989 (-391 (-537)))) (|has| |#2| (-1045)))) (($ |#2|) NIL (|has| |#2| (-1045))) (((-816) $) NIL (|has| |#2| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#2| (-998)))) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#2| (-805)))) (-2928 (($) NIL (|has| |#2| (-129)) CONST)) (-2943 (($) NIL (|has| |#2| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#2| (-218)) (|has| |#2| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#2| (-853 (-1117))) (|has| |#2| (-998)))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#2| (-998))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2244 (((-111) $ $) NIL (|has| |#2| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2263 (((-111) $ $) 11 (-1533 (|has| |#2| (-753)) (|has| |#2| (-805))))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $ $) NIL (|has| |#2| (-998))) (($ $) NIL (|has| |#2| (-998)))) (-2318 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-731)) NIL (|has| |#2| (-687))) (($ $ (-874)) NIL (|has| |#2| (-687)))) (* (($ (-537) $) NIL (|has| |#2| (-998))) (($ $ $) NIL (|has| |#2| (-687))) (($ $ |#2|) NIL (|has| |#2| (-687))) (($ |#2| $) NIL (|has| |#2| (-687))) (($ (-731) $) NIL (|has| |#2| (-129))) (($ (-874) $) NIL (|has| |#2| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-775 |#1| |#2| |#3|) (-223 |#1| |#2|) (-731) (-753) (-1 (-111) (-1200 |#2|) (-1200 |#2|))) (T -775)) +NIL +(-223 |#1| |#2|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2766 (((-606 (-731)) $) NIL) (((-606 (-731)) $ (-1117)) NIL)) (-3073 (((-731) $) NIL) (((-731) $ (-1117)) NIL)) (-3757 (((-606 (-778 (-1117))) $) NIL)) (-3588 (((-1113 $) $ (-778 (-1117))) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-778 (-1117)))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1696 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-778 (-1117)) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL) (((-3 (-1069 |#1| (-1117)) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-778 (-1117)) $) NIL) (((-1117) $) NIL) (((-1069 |#1| (-1117)) $) NIL)) (-4086 (($ $ $ (-778 (-1117))) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-778 (-1117))) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 (-778 (-1117))) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-778 (-1117)) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-778 (-1117)) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ (-1117)) NIL) (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) (-778 (-1117))) NIL) (($ (-1113 $) (-778 (-1117))) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-778 (-1117))) NIL)) (-1883 (((-509 (-778 (-1117))) $) NIL) (((-731) $ (-778 (-1117))) NIL) (((-606 (-731)) $ (-606 (-778 (-1117)))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 (-778 (-1117))) (-509 (-778 (-1117)))) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2441 (((-1 $ (-731)) (-1117)) NIL) (((-1 $ (-731)) $) NIL (|has| |#1| (-218)))) (-1310 (((-3 (-778 (-1117)) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1299 (((-778 (-1117)) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2518 (((-111) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-778 (-1117))) (|:| -3283 (-731))) "failed") $) NIL)) (-3744 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-778 (-1117)) |#1|) NIL) (($ $ (-606 (-778 (-1117))) (-606 |#1|)) NIL) (($ $ (-778 (-1117)) $) NIL) (($ $ (-606 (-778 (-1117))) (-606 $)) NIL) (($ $ (-1117) $) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 $)) NIL (|has| |#1| (-218))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-218)))) (-2067 (($ $ (-778 (-1117))) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-778 (-1117))) NIL) (($ $ (-606 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4170 (((-606 (-1117)) $) NIL)) (-2872 (((-509 (-778 (-1117))) $) NIL) (((-731) $ (-778 (-1117))) NIL) (((-606 (-731)) $ (-606 (-778 (-1117)))) NIL) (((-731) $ (-1117)) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-778 (-1117)) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-778 (-1117)) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-778 (-1117)) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-778 (-1117))) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-778 (-1117))) NIL) (($ (-1117)) NIL) (($ (-1069 |#1| (-1117))) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-778 (-1117))) NIL) (($ $ (-606 (-778 (-1117)))) NIL) (($ $ (-778 (-1117)) (-731)) NIL) (($ $ (-606 (-778 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-776 |#1|) (-13 (-237 |#1| (-1117) (-778 (-1117)) (-509 (-778 (-1117)))) (-989 (-1069 |#1| (-1117)))) (-998)) (T -776)) +NIL +(-13 (-237 |#1| (-1117) (-778 (-1117)) (-509 (-778 (-1117)))) (-989 (-1069 |#1| (-1117)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-347)))) (-3377 (($ $) NIL (|has| |#2| (-347)))) (-4017 (((-111) $) NIL (|has| |#2| (-347)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#2| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-347)))) (-4099 (((-111) $ $) NIL (|has| |#2| (-347)))) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL (|has| |#2| (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#2| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#2| (-347)))) (-2639 (((-111) $) NIL (|has| |#2| (-347)))) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-2183 (($ (-606 $)) NIL (|has| |#2| (-347))) (($ $ $) NIL (|has| |#2| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 20 (|has| |#2| (-347)))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-347))) (($ $ $) NIL (|has| |#2| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#2| (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-1930 (((-731) $) NIL (|has| |#2| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-3456 (($ $ (-731)) NIL) (($ $) 13)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-391 (-537))) NIL (|has| |#2| (-347))) (($ $) NIL (|has| |#2| (-347)))) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL (|has| |#2| (-347)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) 15 (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL) (($ $ (-537)) 18 (|has| |#2| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-391 (-537)) $) NIL (|has| |#2| (-347))) (($ $ (-391 (-537))) NIL (|has| |#2| (-347))))) +(((-777 |#1| |#2| |#3|) (-13 (-110 $ $) (-218) (-10 -8 (IF (|has| |#2| (-347)) (-6 (-347)) |%noBranch|) (-15 -2341 ($ |#2|)) (-15 -2341 (|#2| $)))) (-1045) (-853 |#1|) |#1|) (T -777)) +((-2341 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-14 *4 *3) (-5 *1 (-777 *3 *2 *4)) (-4 *2 (-853 *3)))) (-2341 (*1 *2 *1) (-12 (-4 *2 (-853 *3)) (-5 *1 (-777 *3 *2 *4)) (-4 *3 (-1045)) (-14 *4 *3)))) +(-13 (-110 $ $) (-218) (-10 -8 (IF (|has| |#2| (-347)) (-6 (-347)) |%noBranch|) (-15 -2341 ($ |#2|)) (-15 -2341 (|#2| $)))) +((-2330 (((-111) $ $) NIL)) (-3073 (((-731) $) NIL)) (-1890 ((|#1| $) 10)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4231 (((-731) $) 11)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2441 (($ |#1| (-731)) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3456 (($ $) NIL) (($ $ (-731)) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL))) +(((-778 |#1|) (-250 |#1|) (-807)) (T -778)) +NIL +(-250 |#1|) +((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) 29)) (-3151 (((-731) $) NIL)) (-3832 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-3200 (($ $) 31)) (-3490 (((-3 $ "failed") $) NIL)) (-1308 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2836 (((-111) $) NIL)) (-4125 ((|#1| $ (-537)) NIL)) (-1628 (((-731) $ (-537)) NIL)) (-2177 (($ $) 36)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2896 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2680 (((-111) $ $) 34)) (-3845 (((-731) $) 25)) (-1654 (((-1100) $) NIL)) (-4041 (($ $ $) NIL)) (-2532 (($ $ $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 ((|#1| $) 30)) (-3415 (((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $) NIL)) (-3527 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-2943 (($) 15 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 35)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ |#1| (-731)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-779 |#1|) (-13 (-803) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -3188 (|#1| $)) (-15 -3200 ($ $)) (-15 -2177 ($ $)) (-15 -2680 ((-111) $ $)) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -2896 ((-3 $ "failed") $ |#1|)) (-15 -3139 ((-3 $ "failed") $ |#1|)) (-15 -3527 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -3845 ((-731) $)) (-15 -2163 ((-606 |#1|) $)))) (-807)) (T -779)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3188 (*1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-2532 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-4041 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2896 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3139 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-2896 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3139 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3527 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-779 *3)) (|:| |rm| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-1308 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-779 *3)) (|:| |mm| (-779 *3)) (|:| |rm| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-779 *4)) (-4 *4 (-807)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-779 *2)) (-4 *2 (-807)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-779 *3)) (-4 *3 (-807))))) +(-13 (-803) (-989 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-731))) (-15 -3188 (|#1| $)) (-15 -3200 ($ $)) (-15 -2177 ($ $)) (-15 -2680 ((-111) $ $)) (-15 -2532 ($ $ $)) (-15 -4041 ($ $ $)) (-15 -2896 ((-3 $ "failed") $ $)) (-15 -3139 ((-3 $ "failed") $ $)) (-15 -2896 ((-3 $ "failed") $ |#1|)) (-15 -3139 ((-3 $ "failed") $ |#1|)) (-15 -3527 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1308 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3151 ((-731) $)) (-15 -1628 ((-731) $ (-537))) (-15 -4125 (|#1| $ (-537))) (-15 -3415 ((-606 (-2 (|:| |gen| |#1|) (|:| -4185 (-731)))) $)) (-15 -3845 ((-731) $)) (-15 -2163 ((-606 |#1|) $)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-2537 (((-537) $) 51)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-3797 (((-111) $) 49)) (-2836 (((-111) $) 30)) (-2840 (((-111) $) 50)) (-2444 (($ $ $) 48)) (-3889 (($ $ $) 47)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 52)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 45)) (-2271 (((-111) $ $) 44)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 46)) (-2263 (((-111) $ $) 43)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-780) (-134)) (T -780)) +NIL +(-13 (-529) (-805)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-3043 (($ (-1064)) 7)) (-3972 (((-111) $ (-1100) (-1064)) 15)) (-3067 (((-782) $) 12)) (-2094 (((-782) $) 11)) (-4083 (((-1205) $) 9)) (-3225 (((-111) $ (-1064)) 16))) +(((-781) (-10 -8 (-15 -3043 ($ (-1064))) (-15 -4083 ((-1205) $)) (-15 -2094 ((-782) $)) (-15 -3067 ((-782) $)) (-15 -3972 ((-111) $ (-1100) (-1064))) (-15 -3225 ((-111) $ (-1064))))) (T -781)) +((-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-111)) (-5 *1 (-781)))) (-3972 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-1064)) (-5 *2 (-111)) (-5 *1 (-781)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-781)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-781))))) +(-10 -8 (-15 -3043 ($ (-1064))) (-15 -4083 ((-1205) $)) (-15 -2094 ((-782) $)) (-15 -3067 ((-782) $)) (-15 -3972 ((-111) $ (-1100) (-1064))) (-15 -3225 ((-111) $ (-1064)))) +((-3386 (((-1205) $ (-783)) 12)) (-1243 (((-1205) $ (-1117)) 32)) (-3327 (((-1205) $ (-1100) (-1100)) 34)) (-3150 (((-1205) $ (-1100)) 33)) (-2976 (((-1205) $) 19)) (-2957 (((-1205) $ (-537)) 28)) (-1725 (((-1205) $ (-210)) 30)) (-1718 (((-1205) $) 18)) (-3526 (((-1205) $) 26)) (-4037 (((-1205) $) 25)) (-1945 (((-1205) $) 23)) (-2046 (((-1205) $) 24)) (-2204 (((-1205) $) 22)) (-2837 (((-1205) $) 21)) (-2929 (((-1205) $) 20)) (-2924 (((-1205) $) 16)) (-3392 (((-1205) $) 17)) (-3152 (((-1205) $) 15)) (-4169 (((-1205) $) 14)) (-1263 (((-1205) $) 13)) (-2717 (($ (-1100) (-783)) 9)) (-3482 (($ (-1100) (-1100) (-783)) 8)) (-3710 (((-1117) $) 51)) (-2761 (((-1117) $) 55)) (-2038 (((-2 (|:| |cd| (-1100)) (|:| -3923 (-1100))) $) 54)) (-2064 (((-1100) $) 52)) (-2303 (((-1205) $) 41)) (-3489 (((-537) $) 49)) (-1463 (((-210) $) 50)) (-1986 (((-1205) $) 40)) (-2643 (((-1205) $) 48)) (-3336 (((-1205) $) 47)) (-4253 (((-1205) $) 45)) (-1776 (((-1205) $) 46)) (-3379 (((-1205) $) 44)) (-4021 (((-1205) $) 43)) (-1476 (((-1205) $) 42)) (-3180 (((-1205) $) 38)) (-3407 (((-1205) $) 39)) (-2914 (((-1205) $) 37)) (-3346 (((-1205) $) 36)) (-1312 (((-1205) $) 35)) (-2428 (((-1205) $) 11))) +(((-782) (-10 -8 (-15 -3482 ($ (-1100) (-1100) (-783))) (-15 -2717 ($ (-1100) (-783))) (-15 -2428 ((-1205) $)) (-15 -3386 ((-1205) $ (-783))) (-15 -1263 ((-1205) $)) (-15 -4169 ((-1205) $)) (-15 -3152 ((-1205) $)) (-15 -2924 ((-1205) $)) (-15 -3392 ((-1205) $)) (-15 -1718 ((-1205) $)) (-15 -2976 ((-1205) $)) (-15 -2929 ((-1205) $)) (-15 -2837 ((-1205) $)) (-15 -2204 ((-1205) $)) (-15 -1945 ((-1205) $)) (-15 -2046 ((-1205) $)) (-15 -4037 ((-1205) $)) (-15 -3526 ((-1205) $)) (-15 -2957 ((-1205) $ (-537))) (-15 -1725 ((-1205) $ (-210))) (-15 -1243 ((-1205) $ (-1117))) (-15 -3150 ((-1205) $ (-1100))) (-15 -3327 ((-1205) $ (-1100) (-1100))) (-15 -1312 ((-1205) $)) (-15 -3346 ((-1205) $)) (-15 -2914 ((-1205) $)) (-15 -3180 ((-1205) $)) (-15 -3407 ((-1205) $)) (-15 -1986 ((-1205) $)) (-15 -2303 ((-1205) $)) (-15 -1476 ((-1205) $)) (-15 -4021 ((-1205) $)) (-15 -3379 ((-1205) $)) (-15 -4253 ((-1205) $)) (-15 -1776 ((-1205) $)) (-15 -3336 ((-1205) $)) (-15 -2643 ((-1205) $)) (-15 -3489 ((-537) $)) (-15 -1463 ((-210) $)) (-15 -3710 ((-1117) $)) (-15 -2064 ((-1100) $)) (-15 -2038 ((-2 (|:| |cd| (-1100)) (|:| -3923 (-1100))) $)) (-15 -2761 ((-1117) $)))) (T -782)) +((-2761 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1100)) (|:| -3923 (-1100)))) (-5 *1 (-782)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-782)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-782)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-782)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3327 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-3150 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-1243 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-1725 (*1 *2 *1 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-2957 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-3386 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1205)) (-5 *1 (-782)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782)))) (-2717 (*1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782)))) (-3482 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782))))) +(-10 -8 (-15 -3482 ($ (-1100) (-1100) (-783))) (-15 -2717 ($ (-1100) (-783))) (-15 -2428 ((-1205) $)) (-15 -3386 ((-1205) $ (-783))) (-15 -1263 ((-1205) $)) (-15 -4169 ((-1205) $)) (-15 -3152 ((-1205) $)) (-15 -2924 ((-1205) $)) (-15 -3392 ((-1205) $)) (-15 -1718 ((-1205) $)) (-15 -2976 ((-1205) $)) (-15 -2929 ((-1205) $)) (-15 -2837 ((-1205) $)) (-15 -2204 ((-1205) $)) (-15 -1945 ((-1205) $)) (-15 -2046 ((-1205) $)) (-15 -4037 ((-1205) $)) (-15 -3526 ((-1205) $)) (-15 -2957 ((-1205) $ (-537))) (-15 -1725 ((-1205) $ (-210))) (-15 -1243 ((-1205) $ (-1117))) (-15 -3150 ((-1205) $ (-1100))) (-15 -3327 ((-1205) $ (-1100) (-1100))) (-15 -1312 ((-1205) $)) (-15 -3346 ((-1205) $)) (-15 -2914 ((-1205) $)) (-15 -3180 ((-1205) $)) (-15 -3407 ((-1205) $)) (-15 -1986 ((-1205) $)) (-15 -2303 ((-1205) $)) (-15 -1476 ((-1205) $)) (-15 -4021 ((-1205) $)) (-15 -3379 ((-1205) $)) (-15 -4253 ((-1205) $)) (-15 -1776 ((-1205) $)) (-15 -3336 ((-1205) $)) (-15 -2643 ((-1205) $)) (-15 -3489 ((-537) $)) (-15 -1463 ((-210) $)) (-15 -3710 ((-1117) $)) (-15 -2064 ((-1100) $)) (-15 -2038 ((-2 (|:| |cd| (-1100)) (|:| -3923 (-1100))) $)) (-15 -2761 ((-1117) $))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 12)) (-2452 (($) 15)) (-3711 (($) 13)) (-2391 (($) 16)) (-1700 (($) 14)) (-2244 (((-111) $ $) 8))) +(((-783) (-13 (-1045) (-10 -8 (-15 -3711 ($)) (-15 -2452 ($)) (-15 -2391 ($)) (-15 -1700 ($))))) (T -783)) +((-3711 (*1 *1) (-5 *1 (-783))) (-2452 (*1 *1) (-5 *1 (-783))) (-2391 (*1 *1) (-5 *1 (-783))) (-1700 (*1 *1) (-5 *1 (-783)))) +(-13 (-1045) (-10 -8 (-15 -3711 ($)) (-15 -2452 ($)) (-15 -2391 ($)) (-15 -1700 ($)))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 21) (($ (-1117)) 17)) (-1592 (((-111) $) 10)) (-3818 (((-111) $) 9)) (-3339 (((-111) $) 11)) (-4026 (((-111) $) 8)) (-2244 (((-111) $ $) 19))) +(((-784) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -4026 ((-111) $)) (-15 -3818 ((-111) $)) (-15 -1592 ((-111) $)) (-15 -3339 ((-111) $))))) (T -784)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-784)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -4026 ((-111) $)) (-15 -3818 ((-111) $)) (-15 -1592 ((-111) $)) (-15 -3339 ((-111) $)))) +((-2330 (((-111) $ $) NIL)) (-2200 (($ (-784) (-606 (-1117))) 24)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4126 (((-784) $) 25)) (-2579 (((-606 (-1117)) $) 26)) (-2341 (((-816) $) 23)) (-2244 (((-111) $ $) NIL))) +(((-785) (-13 (-1045) (-10 -8 (-15 -4126 ((-784) $)) (-15 -2579 ((-606 (-1117)) $)) (-15 -2200 ($ (-784) (-606 (-1117))))))) (T -785)) +((-4126 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-785)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-785)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-606 (-1117))) (-5 *1 (-785))))) +(-13 (-1045) (-10 -8 (-15 -4126 ((-784) $)) (-15 -2579 ((-606 (-1117)) $)) (-15 -2200 ($ (-784) (-606 (-1117)))))) +((-1379 (((-1205) (-782) (-300 |#1|) (-111)) 23) (((-1205) (-782) (-300 |#1|)) 79) (((-1100) (-300 |#1|) (-111)) 78) (((-1100) (-300 |#1|)) 77))) +(((-786 |#1|) (-10 -7 (-15 -1379 ((-1100) (-300 |#1|))) (-15 -1379 ((-1100) (-300 |#1|) (-111))) (-15 -1379 ((-1205) (-782) (-300 |#1|))) (-15 -1379 ((-1205) (-782) (-300 |#1|) (-111)))) (-13 (-788) (-807) (-998))) (T -786)) +((-1379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782)) (-5 *4 (-300 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) (-5 *1 (-786 *6)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-300 *5)) (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) (-5 *1 (-786 *5)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *3 (-300 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1100)) (-5 *1 (-786 *5)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-300 *4)) (-4 *4 (-13 (-788) (-807) (-998))) (-5 *2 (-1100)) (-5 *1 (-786 *4))))) +(-10 -7 (-15 -1379 ((-1100) (-300 |#1|))) (-15 -1379 ((-1100) (-300 |#1|) (-111))) (-15 -1379 ((-1205) (-782) (-300 |#1|))) (-15 -1379 ((-1205) (-782) (-300 |#1|) (-111)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1984 ((|#1| $) 10)) (-4157 (($ |#1|) 9)) (-2836 (((-111) $) NIL)) (-3733 (($ |#2| (-731)) NIL)) (-1883 (((-731) $) NIL)) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3456 (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-2872 (((-731) $) NIL)) (-2341 (((-816) $) 17) (($ (-537)) NIL) (($ |#2|) NIL (|has| |#2| (-163)))) (-3500 ((|#2| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $) NIL (|has| |#1| (-218)))) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-787 |#1| |#2|) (-13 (-669 |#2|) (-10 -8 (IF (|has| |#1| (-218)) (-6 (-218)) |%noBranch|) (-15 -4157 ($ |#1|)) (-15 -1984 (|#1| $)))) (-669 |#2|) (-998)) (T -787)) +((-4157 (*1 *1 *2) (-12 (-4 *3 (-998)) (-5 *1 (-787 *2 *3)) (-4 *2 (-669 *3)))) (-1984 (*1 *2 *1) (-12 (-4 *2 (-669 *3)) (-5 *1 (-787 *2 *3)) (-4 *3 (-998))))) +(-13 (-669 |#2|) (-10 -8 (IF (|has| |#1| (-218)) (-6 (-218)) |%noBranch|) (-15 -4157 ($ |#1|)) (-15 -1984 (|#1| $)))) +((-1379 (((-1205) (-782) $ (-111)) 9) (((-1205) (-782) $) 8) (((-1100) $ (-111)) 7) (((-1100) $) 6))) +(((-788) (-134)) (T -788)) +((-1379 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *4 (-111)) (-5 *2 (-1205)))) (-1379 (*1 *2 *3 *1) (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *2 (-1205)))) (-1379 (*1 *2 *1 *3) (-12 (-4 *1 (-788)) (-5 *3 (-111)) (-5 *2 (-1100)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-788)) (-5 *2 (-1100))))) +(-13 (-10 -8 (-15 -1379 ((-1100) $)) (-15 -1379 ((-1100) $ (-111))) (-15 -1379 ((-1205) (-782) $)) (-15 -1379 ((-1205) (-782) $ (-111))))) +((-2786 (((-296) (-1100) (-1100)) 12)) (-2246 (((-111) (-1100) (-1100)) 34)) (-4101 (((-111) (-1100)) 33)) (-4244 (((-51) (-1100)) 25)) (-2828 (((-51) (-1100)) 23)) (-1240 (((-51) (-782)) 17)) (-2665 (((-606 (-1100)) (-1100)) 28)) (-1666 (((-606 (-1100))) 27))) +(((-789) (-10 -7 (-15 -1240 ((-51) (-782))) (-15 -2828 ((-51) (-1100))) (-15 -4244 ((-51) (-1100))) (-15 -1666 ((-606 (-1100)))) (-15 -2665 ((-606 (-1100)) (-1100))) (-15 -4101 ((-111) (-1100))) (-15 -2246 ((-111) (-1100) (-1100))) (-15 -2786 ((-296) (-1100) (-1100))))) (T -789)) +((-2786 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-789)))) (-2246 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789)))) (-2665 (*1 *2 *3) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789)) (-5 *3 (-1100)))) (-1666 (*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789)))) (-1240 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-51)) (-5 *1 (-789))))) +(-10 -7 (-15 -1240 ((-51) (-782))) (-15 -2828 ((-51) (-1100))) (-15 -4244 ((-51) (-1100))) (-15 -1666 ((-606 (-1100)))) (-15 -2665 ((-606 (-1100)) (-1100))) (-15 -4101 ((-111) (-1100))) (-15 -2246 ((-111) (-1100) (-1100))) (-15 -2786 ((-296) (-1100) (-1100)))) +((-2330 (((-111) $ $) 19)) (-4221 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2969 (($ $ $) 72)) (-3495 (((-111) $ $) 73)) (-2506 (((-111) $ (-731)) 8)) (-1272 (($ (-606 |#1|)) 68) (($) 67)) (-3435 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-1376 (($ $) 62)) (-3221 (($ $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ |#1| $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 64)) (-1642 (((-111) $ (-731)) 9)) (-2444 ((|#1| $) 78)) (-1646 (($ $ $) 81)) (-1470 (($ $ $) 80)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3889 ((|#1| $) 79)) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22)) (-3891 (($ $ $) 69)) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40) (($ |#1| $ (-731)) 63)) (-2528 (((-1064) $) 21)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1864 (((-606 (-2 (|:| -2140 |#1|) (|:| -2539 (-731)))) $) 61)) (-2867 (($ $ |#1|) 71) (($ $ $) 70)) (-1341 (($) 49) (($ (-606 |#1|)) 48)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 50)) (-2341 (((-816) $) 18)) (-3575 (($ (-606 |#1|)) 66) (($) 65)) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20)) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-790 |#1|) (-134) (-807)) (T -790)) +((-2444 (*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-807))))) +(-13 (-697 |t#1|) (-921 |t#1|) (-10 -8 (-15 -2444 (|t#1| $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-220 |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-655 |#1|) . T) ((-697 |#1|) . T) ((-921 |#1|) . T) ((-1043 |#1|) . T) ((-1045) . T) ((-1154) . T)) +((-3637 (((-1205) (-1064) (-1064)) 47)) (-1942 (((-1205) (-781) (-51)) 44)) (-1793 (((-51) (-781)) 16))) +(((-791) (-10 -7 (-15 -1793 ((-51) (-781))) (-15 -1942 ((-1205) (-781) (-51))) (-15 -3637 ((-1205) (-1064) (-1064))))) (T -791)) +((-3637 (*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1205)) (-5 *1 (-791)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-51)) (-5 *2 (-1205)) (-5 *1 (-791)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-51)) (-5 *1 (-791))))) +(-10 -7 (-15 -1793 ((-51) (-781))) (-15 -1942 ((-1205) (-781) (-51))) (-15 -3637 ((-1205) (-1064) (-1064)))) +((-1612 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|) (-793 |#2|)) 12) (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 13))) +(((-792 |#1| |#2|) (-10 -7 (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|))) (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|) (-793 |#2|)))) (-1045) (-1045)) (T -792)) +((-1612 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-793 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-792 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) +(-10 -7 (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|))) (-15 -1612 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|) (-793 |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL (|has| |#1| (-21)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2537 (((-537) $) NIL (|has| |#1| (-805)))) (-3832 (($) NIL (|has| |#1| (-21)) CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 15)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 9)) (-3490 (((-3 $ "failed") $) 40 (|has| |#1| (-805)))) (-2484 (((-3 (-391 (-537)) "failed") $) 49 (|has| |#1| (-522)))) (-1797 (((-111) $) 43 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 46 (|has| |#1| (-522)))) (-3797 (((-111) $) NIL (|has| |#1| (-805)))) (-2836 (((-111) $) NIL (|has| |#1| (-805)))) (-2840 (((-111) $) NIL (|has| |#1| (-805)))) (-2444 (($ $ $) NIL (|has| |#1| (-805)))) (-3889 (($ $ $) NIL (|has| |#1| (-805)))) (-1654 (((-1100) $) NIL)) (-3349 (($) 13)) (-3973 (((-111) $) 12)) (-2528 (((-1064) $) NIL)) (-3344 (((-111) $) 11)) (-2341 (((-816) $) 18) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 8) (($ (-537)) NIL (-1533 (|has| |#1| (-805)) (|has| |#1| (-989 (-537)))))) (-3654 (((-731)) 34 (|has| |#1| (-805)))) (-2209 (($ $) NIL (|has| |#1| (-805)))) (-2928 (($) 22 (|has| |#1| (-21)) CONST)) (-2943 (($) 31 (|has| |#1| (-805)) CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2263 (((-111) $ $) 42 (|has| |#1| (-805)))) (-2329 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2318 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-874)) NIL (|has| |#1| (-805))) (($ $ (-731)) NIL (|has| |#1| (-805)))) (* (($ $ $) 37 (|has| |#1| (-805))) (($ (-537) $) 25 (|has| |#1| (-21))) (($ (-731) $) NIL (|has| |#1| (-21))) (($ (-874) $) NIL (|has| |#1| (-21))))) +(((-793 |#1|) (-13 (-1045) (-395 |#1|) (-10 -8 (-15 -3349 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) (-1045)) (T -793)) +((-3349 (*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1045)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045))))) +(-13 (-1045) (-395 |#1|) (-10 -8 (-15 -3349 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-113) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-113) $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-4177 ((|#1| (-113) |#1|) NIL)) (-2836 (((-111) $) NIL)) (-2650 (($ |#1| (-345 (-113))) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3414 (($ $ (-1 |#1| |#1|)) NIL)) (-3146 (($ $ (-1 |#1| |#1|)) NIL)) (-1922 ((|#1| $ |#1|) NIL)) (-1668 ((|#1| |#1|) NIL (|has| |#1| (-163)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-4273 (($ $) NIL (|has| |#1| (-163))) (($ $ $) NIL (|has| |#1| (-163)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ (-113) (-537)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-794 |#1|) (-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#1| |#1|))) (-15 -3414 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#1| (-113) |#1|)) (-15 -2650 ($ |#1| (-345 (-113)))))) (-998)) (T -794)) +((-4273 (*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) (-4273 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) (-1668 (*1 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-5 *1 (-794 *4)) (-4 *4 (-998)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-794 *3)) (-4 *3 (-998)))) (-4177 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-794 *2)) (-4 *2 (-998)))) (-2650 (*1 *1 *2 *3) (-12 (-5 *3 (-345 (-113))) (-5 *1 (-794 *2)) (-4 *2 (-998))))) +(-13 (-998) (-989 |#1|) (-989 (-113)) (-270 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |#1| (-163)) (PROGN (-6 (-37 |#1|)) (-15 -4273 ($ $)) (-15 -4273 ($ $ $)) (-15 -1668 (|#1| |#1|))) |%noBranch|) (-15 -3146 ($ $ (-1 |#1| |#1|))) (-15 -3414 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-537))) (-15 ** ($ $ (-537))) (-15 -4177 (|#1| (-113) |#1|)) (-15 -2650 ($ |#1| (-345 (-113)))))) +((-3620 (((-200 (-483)) (-1100)) 9))) +(((-795) (-10 -7 (-15 -3620 ((-200 (-483)) (-1100))))) (T -795)) +((-3620 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-200 (-483))) (-5 *1 (-795))))) +(-10 -7 (-15 -3620 ((-200 (-483)) (-1100)))) +((-2330 (((-111) $ $) 7)) (-4118 (((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 14) (((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 13)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 16) (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 15)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-796) (-134)) (T -796)) +((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-4118 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *2 (-986)))) (-4118 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *2 (-986))))) +(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -4118 ((-986) (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -4118 ((-986) (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2371 (((-986) (-606 (-300 (-363))) (-606 (-363))) 147) (((-986) (-300 (-363)) (-606 (-363))) 145) (((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-800 (-363)))) 144) (((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-300 (-363))) (-606 (-800 (-363)))) 143) (((-986) (-798)) 117) (((-986) (-798) (-1010)) 116)) (-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798) (-1010)) 82) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798)) 84)) (-2419 (((-986) (-606 (-300 (-363))) (-606 (-363))) 148) (((-986) (-798)) 133))) +(((-797) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798) (-1010))) (-15 -2371 ((-986) (-798) (-1010))) (-15 -2371 ((-986) (-798))) (-15 -2419 ((-986) (-798))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-300 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)))) (-15 -2371 ((-986) (-606 (-300 (-363))) (-606 (-363)))) (-15 -2419 ((-986) (-606 (-300 (-363))) (-606 (-363)))))) (T -797)) +((-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) (-5 *5 (-606 (-800 (-363)))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-606 (-363))) (-5 *5 (-606 (-800 (-363)))) (-5 *6 (-606 (-300 (-363)))) (-5 *3 (-300 (-363))) (-5 *2 (-986)) (-5 *1 (-797)))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-797)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-798)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-797)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-797))))) +(-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-798) (-1010))) (-15 -2371 ((-986) (-798) (-1010))) (-15 -2371 ((-986) (-798))) (-15 -2419 ((-986) (-798))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-300 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)) (-606 (-800 (-363))) (-606 (-800 (-363))))) (-15 -2371 ((-986) (-300 (-363)) (-606 (-363)))) (-15 -2371 ((-986) (-606 (-300 (-363))) (-606 (-363)))) (-15 -2419 ((-986) (-606 (-300 (-363))) (-606 (-363))))) +((-2330 (((-111) $ $) NIL)) (-3958 (((-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) $) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20) (($ (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) 14) (($ (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) 18)) (-2244 (((-111) $ $) NIL))) +(((-798) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -2341 ($ (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2341 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) $))))) (T -798)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-798)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (-5 *1 (-798)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) (-5 *1 (-798)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) (-5 *1 (-798)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))))) (-5 *1 (-798))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210))))))) (-15 -2341 ($ (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) (-15 -2341 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-3 (|:| |noa| (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210)))))) $)))) +((-1612 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|) (-800 |#2|) (-800 |#2|)) 13) (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14))) +(((-799 |#1| |#2|) (-10 -7 (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))) (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|) (-800 |#2|) (-800 |#2|)))) (-1045) (-1045)) (T -799)) +((-1612 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-800 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-799 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6))))) +(-10 -7 (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))) (-15 -1612 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|) (-800 |#2|) (-800 |#2|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL (|has| |#1| (-21)))) (-2946 (((-1064) $) 24)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2537 (((-537) $) NIL (|has| |#1| (-805)))) (-3832 (($) NIL (|has| |#1| (-21)) CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 16)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 9)) (-3490 (((-3 $ "failed") $) 47 (|has| |#1| (-805)))) (-2484 (((-3 (-391 (-537)) "failed") $) 54 (|has| |#1| (-522)))) (-1797 (((-111) $) 49 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 52 (|has| |#1| (-522)))) (-3797 (((-111) $) NIL (|has| |#1| (-805)))) (-1548 (($) 13)) (-2836 (((-111) $) NIL (|has| |#1| (-805)))) (-2840 (((-111) $) NIL (|has| |#1| (-805)))) (-1557 (($) 14)) (-2444 (($ $ $) NIL (|has| |#1| (-805)))) (-3889 (($ $ $) NIL (|has| |#1| (-805)))) (-1654 (((-1100) $) NIL)) (-3973 (((-111) $) 12)) (-2528 (((-1064) $) NIL)) (-3344 (((-111) $) 11)) (-2341 (((-816) $) 22) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 8) (($ (-537)) NIL (-1533 (|has| |#1| (-805)) (|has| |#1| (-989 (-537)))))) (-3654 (((-731)) 41 (|has| |#1| (-805)))) (-2209 (($ $) NIL (|has| |#1| (-805)))) (-2928 (($) 29 (|has| |#1| (-21)) CONST)) (-2943 (($) 38 (|has| |#1| (-805)) CONST)) (-2293 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2244 (((-111) $ $) 27)) (-2282 (((-111) $ $) NIL (|has| |#1| (-805)))) (-2263 (((-111) $ $) 48 (|has| |#1| (-805)))) (-2329 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2318 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-874)) NIL (|has| |#1| (-805))) (($ $ (-731)) NIL (|has| |#1| (-805)))) (* (($ $ $) 44 (|has| |#1| (-805))) (($ (-537) $) 32 (|has| |#1| (-21))) (($ (-731) $) NIL (|has| |#1| (-21))) (($ (-874) $) NIL (|has| |#1| (-21))))) +(((-800 |#1|) (-13 (-1045) (-395 |#1|) (-10 -8 (-15 -1548 ($)) (-15 -1557 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (-15 -2946 ((-1064) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) (-1045)) (T -800)) +((-1548 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045)))) (-1557 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-800 *3)) (-4 *3 (-1045)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) (-2484 (*1 *2 *1) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045))))) +(-13 (-1045) (-395 |#1|) (-10 -8 (-15 -1548 ($)) (-15 -1557 ($)) (-15 -3344 ((-111) $)) (-15 -3973 ((-111) $)) (-15 -2946 ((-1064) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) +((-2330 (((-111) $ $) 7)) (-3151 (((-731)) 20)) (-1618 (($) 23)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-2334 (((-874) $) 22)) (-1654 (((-1100) $) 9)) (-2009 (($ (-874)) 21)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +(((-801) (-134)) (T -801)) +NIL +(-13 (-807) (-352)) +(((-100) . T) ((-579 (-816)) . T) ((-352) . T) ((-807) . T) ((-1045) . T)) +((-3792 (((-111) (-1200 |#2|) (-1200 |#2|)) 17)) (-3546 (((-111) (-1200 |#2|) (-1200 |#2|)) 18)) (-3244 (((-111) (-1200 |#2|) (-1200 |#2|)) 14))) +(((-802 |#1| |#2|) (-10 -7 (-15 -3244 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3792 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3546 ((-111) (-1200 |#2|) (-1200 |#2|)))) (-731) (-752)) (T -802)) +((-3546 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) (-5 *1 (-802 *4 *5)) (-14 *4 (-731)))) (-3792 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) (-5 *1 (-802 *4 *5)) (-14 *4 (-731)))) (-3244 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) +(-10 -7 (-15 -3244 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3792 ((-111) (-1200 |#2|) (-1200 |#2|))) (-15 -3546 ((-111) (-1200 |#2|) (-1200 |#2|)))) +((-2330 (((-111) $ $) 7)) (-3832 (($) 23 T CONST)) (-3490 (((-3 $ "failed") $) 26)) (-2836 (((-111) $) 24)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2943 (($) 22 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (** (($ $ (-874)) 21) (($ $ (-731)) 25)) (* (($ $ $) 20))) +(((-803) (-134)) (T -803)) +NIL +(-13 (-814) (-687)) +(((-100) . T) ((-579 (-816)) . T) ((-687) . T) ((-814) . T) ((-807) . T) ((-1057) . T) ((-1045) . T)) +((-2537 (((-537) $) 17)) (-3797 (((-111) $) 10)) (-2840 (((-111) $) 11)) (-2209 (($ $) 19))) +(((-804 |#1|) (-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2537 ((-537) |#1|)) (-15 -2840 ((-111) |#1|)) (-15 -3797 ((-111) |#1|))) (-805)) (T -804)) +NIL +(-10 -8 (-15 -2209 (|#1| |#1|)) (-15 -2537 ((-537) |#1|)) (-15 -2840 ((-111) |#1|)) (-15 -3797 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 24)) (-3418 (((-3 $ "failed") $ $) 26)) (-2537 (((-537) $) 33)) (-3832 (($) 23 T CONST)) (-3490 (((-3 $ "failed") $) 38)) (-3797 (((-111) $) 35)) (-2836 (((-111) $) 40)) (-2840 (((-111) $) 34)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 43)) (-3654 (((-731)) 42)) (-2209 (($ $) 32)) (-2928 (($) 22 T CONST)) (-2943 (($) 41 T CONST)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (-2329 (($ $ $) 28) (($ $) 27)) (-2318 (($ $ $) 20)) (** (($ $ (-731)) 39) (($ $ (-874)) 36)) (* (($ (-874) $) 21) (($ (-731) $) 25) (($ (-537) $) 29) (($ $ $) 37))) +(((-805) (-134)) (T -805)) +((-3797 (*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-537)))) (-2209 (*1 *1 *1) (-4 *1 (-805)))) +(-13 (-751) (-998) (-687) (-10 -8 (-15 -3797 ((-111) $)) (-15 -2840 ((-111) $)) (-15 -2537 ((-537) $)) (-15 -2209 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-807) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2444 (($ $ $) 10)) (-3889 (($ $ $) 9)) (-2293 (((-111) $ $) 13)) (-2271 (((-111) $ $) 11)) (-2282 (((-111) $ $) 14))) +(((-806 |#1|) (-10 -8 (-15 -2444 (|#1| |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2282 ((-111) |#1| |#1|)) (-15 -2293 ((-111) |#1| |#1|)) (-15 -2271 ((-111) |#1| |#1|))) (-807)) (T -806)) +NIL +(-10 -8 (-15 -2444 (|#1| |#1| |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2282 ((-111) |#1| |#1|)) (-15 -2293 ((-111) |#1| |#1|)) (-15 -2271 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18))) +(((-807) (-134)) (T -807)) +((-2263 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-2271 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-2293 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-2282 (*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) (-3889 (*1 *1 *1 *1) (-4 *1 (-807))) (-2444 (*1 *1 *1 *1) (-4 *1 (-807)))) +(-13 (-1045) (-10 -8 (-15 -2263 ((-111) $ $)) (-15 -2271 ((-111) $ $)) (-15 -2293 ((-111) $ $)) (-15 -2282 ((-111) $ $)) (-15 -3889 ($ $ $)) (-15 -2444 ($ $ $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-4279 (($ $ $) 45)) (-2262 (($ $ $) 44)) (-2623 (($ $ $) 42)) (-1704 (($ $ $) 51)) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 46)) (-2058 (((-3 $ "failed") $ $) 49)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1351 (($ $) 35)) (-3555 (($ $ $) 39)) (-3592 (($ $ $) 38)) (-1690 (($ $ $) 47)) (-3193 (($ $ $) 53)) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 41)) (-2733 (((-3 $ "failed") $ $) 48)) (-3515 (((-3 $ "failed") $ |#2|) 28)) (-1835 ((|#2| $) 32)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ |#2|) 12)) (-3459 (((-606 |#2|) $) 18)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-808 |#1| |#2|) (-10 -8 (-15 -1690 (|#1| |#1| |#1|)) (-15 -2704 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -2058 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4279 (|#1| |#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2623 (|#1| |#1| |#1|)) (-15 -2610 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2341 ((-816) |#1|))) (-809 |#2|) (-998)) (T -808)) +NIL +(-10 -8 (-15 -1690 (|#1| |#1| |#1|)) (-15 -2704 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -2058 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4279 (|#1| |#1| |#1|)) (-15 -2262 (|#1| |#1| |#1|)) (-15 -2623 (|#1| |#1| |#1|)) (-15 -2610 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1524 |#1|)) |#1| |#1|)) (-15 -3193 (|#1| |#1| |#1|)) (-15 -2733 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3555 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -1351 (|#1| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3459 ((-606 |#2|) |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-4279 (($ $ $) 43 (|has| |#1| (-347)))) (-2262 (($ $ $) 44 (|has| |#1| (-347)))) (-2623 (($ $ $) 46 (|has| |#1| (-347)))) (-1704 (($ $ $) 41 (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 40 (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) 42 (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 45 (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) 72 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 70 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 67)) (-3958 (((-537) $) 73 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 71 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 66)) (-3940 (($ $) 62)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 53 (|has| |#1| (-435)))) (-2836 (((-111) $) 30)) (-3733 (($ |#1| (-731)) 60)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 56 (|has| |#1| (-529)))) (-1883 (((-731) $) 64)) (-3555 (($ $ $) 50 (|has| |#1| (-347)))) (-3592 (($ $ $) 51 (|has| |#1| (-347)))) (-1690 (($ $ $) 39 (|has| |#1| (-347)))) (-3193 (($ $ $) 48 (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 47 (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) 49 (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 52 (|has| |#1| (-347)))) (-3912 ((|#1| $) 63)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-529)))) (-2872 (((-731) $) 65)) (-1835 ((|#1| $) 54 (|has| |#1| (-435)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 69 (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) 68)) (-3459 (((-606 |#1|) $) 59)) (-3500 ((|#1| $ (-731)) 61)) (-3654 (((-731)) 28)) (-3127 ((|#1| $ |#1| |#1|) 58)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-809 |#1|) (-134) (-998)) (T -809)) +((-2872 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3733 (*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-606 *3)))) (-3127 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-3412 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-3558 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) (-3978 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-3592 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3555 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2733 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3193 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2610 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) (-4 *1 (-809 *3)))) (-2623 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) (-2262 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-4279 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2058 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-1704 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-2704 (*1 *2 *1 *1) (-12 (-4 *3 (-347)) (-4 *3 (-998)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) (-4 *1 (-809 *3)))) (-1690 (*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(-13 (-998) (-110 |t#1| |t#1|) (-395 |t#1|) (-10 -8 (-15 -2872 ((-731) $)) (-15 -1883 ((-731) $)) (-15 -3912 (|t#1| $)) (-15 -3940 ($ $)) (-15 -3500 (|t#1| $ (-731))) (-15 -3733 ($ |t#1| (-731))) (-15 -3459 ((-606 |t#1|) $)) (-15 -3127 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-15 -3515 ((-3 $ "failed") $ |t#1|)) (-15 -3412 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3558 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-15 -1835 (|t#1| $)) (-15 -1351 ($ $))) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-15 -3978 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3592 ($ $ $)) (-15 -3555 ($ $ $)) (-15 -2733 ((-3 $ "failed") $ $)) (-15 -3193 ($ $ $)) (-15 -2610 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $)) (-15 -2623 ($ $ $)) (-15 -2996 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2262 ($ $ $)) (-15 -4279 ($ $ $)) (-15 -2058 ((-3 $ "failed") $ $)) (-15 -1704 ($ $ $)) (-15 -2704 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $)) (-15 -1690 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-395 |#1|) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2326 ((|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|)) 20)) (-2996 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 43 (|has| |#1| (-347)))) (-3558 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 40 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 39 (|has| |#1| (-529)))) (-3978 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)) 42 (|has| |#1| (-347)))) (-3127 ((|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|)) 31))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2326 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -3127 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-529)) (PROGN (-15 -3412 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -3558 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3978 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2996 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) (-998) (-809 |#1|)) (T -810)) +((-2996 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3978 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3558 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) (-4 *3 (-809 *5)))) (-3127 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-998)) (-5 *1 (-810 *2 *3)) (-4 *3 (-809 *2)))) (-2326 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-998)) (-5 *1 (-810 *5 *2)) (-4 *2 (-809 *5))))) +(-10 -7 (-15 -2326 (|#2| |#2| |#2| (-97 |#1|) (-1 |#1| |#1|))) (-15 -3127 (|#1| |#2| |#1| |#1| (-97 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-529)) (PROGN (-15 -3412 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -3558 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3978 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|))) (-15 -2996 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2| (-97 |#1|)))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#1| (-347)))) (-2262 (($ $ $) NIL (|has| |#1| (-347)))) (-2623 (($ $ $) NIL (|has| |#1| (-347)))) (-1704 (($ $ $) NIL (|has| |#1| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 32 (|has| |#1| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-3819 (((-816) $ (-816)) NIL)) (-2836 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) NIL)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 28 (|has| |#1| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 26 (|has| |#1| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#1| (-347)))) (-3592 (($ $ $) NIL (|has| |#1| (-347)))) (-1690 (($ $ $) NIL (|has| |#1| (-347)))) (-3193 (($ $ $) NIL (|has| |#1| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 30 (|has| |#1| (-347)))) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-2872 (((-731) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-989 (-391 (-537))))) (($ |#1|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#1| $ |#1| |#1|) 15)) (-2928 (($) NIL T CONST)) (-2943 (($) 20 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 19) (($ $ (-731)) 22)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-811 |#1| |#2| |#3|) (-13 (-809 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))))) (-998) (-97 |#1|) (-1 |#1| |#1|)) (T -811)) +((-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-811 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-97 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-809 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-4279 (($ $ $) NIL (|has| |#2| (-347)))) (-2262 (($ $ $) NIL (|has| |#2| (-347)))) (-2623 (($ $ $) NIL (|has| |#2| (-347)))) (-1704 (($ $ $) NIL (|has| |#2| (-347)))) (-2704 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-2058 (((-3 $ "failed") $ $) NIL (|has| |#2| (-347)))) (-2996 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#2| (-435)))) (-2836 (((-111) $) NIL)) (-3733 (($ |#2| (-731)) 16)) (-3558 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-529)))) (-3412 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-529)))) (-1883 (((-731) $) NIL)) (-3555 (($ $ $) NIL (|has| |#2| (-347)))) (-3592 (($ $ $) NIL (|has| |#2| (-347)))) (-1690 (($ $ $) NIL (|has| |#2| (-347)))) (-3193 (($ $ $) NIL (|has| |#2| (-347)))) (-2610 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-2733 (((-3 $ "failed") $ $) NIL (|has| |#2| (-347)))) (-3978 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529)))) (-2872 (((-731) $) NIL)) (-1835 ((|#2| $) NIL (|has| |#2| (-435)))) (-2341 (((-816) $) 23) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) NIL) (($ (-1196 |#1|)) 18)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-731)) NIL)) (-3654 (((-731)) NIL)) (-3127 ((|#2| $ |#2| |#2|) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) 13 T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-812 |#1| |#2| |#3| |#4|) (-13 (-809 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))))) (-1117) (-998) (-97 |#2|) (-1 |#2| |#2|)) (T -812)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-812 *3 *4 *5 *6)) (-4 *4 (-998)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-809 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))))) +((-3621 ((|#1| (-731) |#1|) 35 (|has| |#1| (-37 (-391 (-537)))))) (-3312 ((|#1| (-731) (-731) |#1|) 27) ((|#1| (-731) |#1|) 20)) (-3851 ((|#1| (-731) |#1|) 31)) (-4136 ((|#1| (-731) |#1|) 29)) (-2463 ((|#1| (-731) |#1|) 28))) +(((-813 |#1|) (-10 -7 (-15 -2463 (|#1| (-731) |#1|)) (-15 -4136 (|#1| (-731) |#1|)) (-15 -3851 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3621 (|#1| (-731) |#1|)) |%noBranch|)) (-163)) (T -813)) +((-3621 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-163)))) (-3312 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-3312 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-3851 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-4136 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) (-2463 (*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163))))) +(-10 -7 (-15 -2463 (|#1| (-731) |#1|)) (-15 -4136 (|#1| (-731) |#1|)) (-15 -3851 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) |#1|)) (-15 -3312 (|#1| (-731) (-731) |#1|)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3621 (|#1| (-731) |#1|)) |%noBranch|)) +((-2330 (((-111) $ $) 7)) (-2444 (($ $ $) 13)) (-3889 (($ $ $) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2293 (((-111) $ $) 16)) (-2271 (((-111) $ $) 17)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 15)) (-2263 (((-111) $ $) 18)) (** (($ $ (-874)) 21)) (* (($ $ $) 20))) +(((-814) (-134)) (T -814)) +NIL +(-13 (-807) (-1057)) +(((-100) . T) ((-579 (-816)) . T) ((-807) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3619 (((-537) $) 12)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 18) (($ (-537)) 11)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 8)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 9))) +(((-815) (-13 (-807) (-10 -8 (-15 -2341 ($ (-537))) (-15 -3619 ((-537) $))))) (T -815)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-815)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-815))))) +(-13 (-807) (-10 -8 (-15 -2341 ($ (-537))) (-15 -3619 ((-537) $)))) +((-2330 (((-111) $ $) NIL) (($ $ $) 77)) (-3383 (($ $ $) 115)) (-1786 (((-537) $) 30) (((-537)) 35)) (-4028 (($ (-537)) 44)) (-2229 (($ $ $) 45) (($ (-606 $)) 76)) (-3549 (($ $ (-606 $)) 74)) (-2295 (((-537) $) 33)) (-3729 (($ $ $) 63)) (-4236 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3949 (((-537) $) 32)) (-1737 (($ $ $) 62)) (-3035 (($ $) 105)) (-2317 (($ $ $) 119)) (-1764 (($ (-606 $)) 52)) (-3858 (($ $ (-606 $)) 69)) (-3228 (($ (-537) (-537)) 46)) (-1858 (($ $) 116) (($ $ $) 117)) (-3278 (($ $ (-537)) 40) (($ $) 43)) (-3563 (($ $ $) 89)) (-1458 (($ $ $) 122)) (-3649 (($ $) 106)) (-3539 (($ $ $) 90)) (-1277 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1302 (((-1205) $) 8)) (-2909 (($ $) 109) (($ $ (-731)) 112)) (-2447 (($ $ $) 65)) (-3838 (($ $ $) 64)) (-2273 (($ $ (-606 $)) 100)) (-4031 (($ $ $) 104)) (-4206 (($ (-606 $)) 50)) (-3886 (($ $) 60) (($ (-606 $)) 61)) (-4114 (($ $ $) 113)) (-4110 (($ $) 107)) (-1581 (($ $ $) 118)) (-3819 (($ (-537)) 20) (($ (-1117)) 22) (($ (-1100)) 29) (($ (-210)) 24)) (-2681 (($ $ $) 93)) (-3679 (($ $) 94)) (-3930 (((-1205) (-1100)) 14)) (-2196 (($ (-1100)) 13)) (-3299 (($ (-606 (-606 $))) 49)) (-3267 (($ $ (-537)) 39) (($ $) 42)) (-1654 (((-1100) $) NIL)) (-2999 (($ $ $) 121)) (-3129 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1442 (((-111) $) 98)) (-1336 (($ $ (-606 $)) 102) (($ $ $ $) 103)) (-2833 (($ (-537)) 36)) (-2545 (((-537) $) 31) (((-537)) 34)) (-2383 (($ $ $) 37) (($ (-606 $)) 75)) (-2528 (((-1064) $) NIL)) (-3515 (($ $ $) 91)) (-3425 (($) 12)) (-1922 (($ $ (-606 $)) 99)) (-3416 (($ $) 108) (($ $ (-731)) 111)) (-3527 (($ $ $) 88)) (-3456 (($ $ (-731)) 127)) (-4158 (($ (-606 $)) 51)) (-2341 (((-816) $) 18)) (-2184 (($ $ (-537)) 38) (($ $) 41)) (-1511 (($ $) 58) (($ (-606 $)) 59)) (-3575 (($ $) 56) (($ (-606 $)) 57)) (-1822 (($ $) 114)) (-3090 (($ (-606 $)) 55)) (-2360 (($ $ $) 97)) (-2893 (($ $ $) 120)) (-3319 (($ $ $) 92)) (-3401 (($ $ $) 95) (($ $) 96)) (-2293 (($ $ $) 81)) (-2271 (($ $ $) 79)) (-2244 (((-111) $ $) 15) (($ $ $) 16)) (-2282 (($ $ $) 80)) (-2263 (($ $ $) 78)) (-2340 (($ $ $) 86)) (-2329 (($ $ $) 83) (($ $) 84)) (-2318 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-816) (-13 (-1045) (-10 -8 (-15 -1302 ((-1205) $)) (-15 -2196 ($ (-1100))) (-15 -3930 ((-1205) (-1100))) (-15 -3819 ($ (-537))) (-15 -3819 ($ (-1117))) (-15 -3819 ($ (-1100))) (-15 -3819 ($ (-210))) (-15 -3425 ($)) (-15 -1786 ((-537) $)) (-15 -2545 ((-537) $)) (-15 -1786 ((-537))) (-15 -2545 ((-537))) (-15 -3949 ((-537) $)) (-15 -2295 ((-537) $)) (-15 -2833 ($ (-537))) (-15 -4028 ($ (-537))) (-15 -3228 ($ (-537) (-537))) (-15 -3267 ($ $ (-537))) (-15 -3278 ($ $ (-537))) (-15 -2184 ($ $ (-537))) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -2184 ($ $)) (-15 -2383 ($ $ $)) (-15 -2229 ($ $ $)) (-15 -2383 ($ (-606 $))) (-15 -2229 ($ (-606 $))) (-15 -2273 ($ $ (-606 $))) (-15 -1336 ($ $ (-606 $))) (-15 -1336 ($ $ $ $)) (-15 -4031 ($ $ $)) (-15 -1442 ((-111) $)) (-15 -1922 ($ $ (-606 $))) (-15 -3035 ($ $)) (-15 -2999 ($ $ $)) (-15 -1822 ($ $)) (-15 -3299 ($ (-606 (-606 $)))) (-15 -3383 ($ $ $)) (-15 -1858 ($ $)) (-15 -1858 ($ $ $)) (-15 -1581 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -3456 ($ $ (-731))) (-15 -2360 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -3729 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3858 ($ $ (-606 $))) (-15 -3549 ($ $ (-606 $))) (-15 -3649 ($ $)) (-15 -3416 ($ $)) (-15 -3416 ($ $ (-731))) (-15 -2909 ($ $)) (-15 -2909 ($ $ (-731))) (-15 -4110 ($ $)) (-15 -4114 ($ $ $)) (-15 -4236 ($ $)) (-15 -4236 ($ $ $)) (-15 -4236 ($ $ $ $)) (-15 -1277 ($ $)) (-15 -1277 ($ $ $)) (-15 -1277 ($ $ $ $)) (-15 -3129 ($ $)) (-15 -3129 ($ $ $)) (-15 -3129 ($ $ $ $)) (-15 -3575 ($ $)) (-15 -3575 ($ (-606 $))) (-15 -1511 ($ $)) (-15 -1511 ($ (-606 $))) (-15 -3886 ($ $)) (-15 -3886 ($ (-606 $))) (-15 -4206 ($ (-606 $))) (-15 -4158 ($ (-606 $))) (-15 -1764 ($ (-606 $))) (-15 -3090 ($ (-606 $))) (-15 -2244 ($ $ $)) (-15 -2330 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2293 ($ $ $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2329 ($ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3515 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -3679 ($ $)) (-15 -3401 ($ $ $)) (-15 -3401 ($ $))))) (T -816)) +((-1302 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-816)))) (-2196 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-816)))) (-3425 (*1 *1) (-5 *1 (-816))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-1786 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2545 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3228 (*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3278 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) (-3267 (*1 *1 *1) (-5 *1 (-816))) (-3278 (*1 *1 *1) (-5 *1 (-816))) (-2184 (*1 *1 *1) (-5 *1 (-816))) (-2383 (*1 *1 *1 *1) (-5 *1 (-816))) (-2229 (*1 *1 *1 *1) (-5 *1 (-816))) (-2383 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1336 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-4031 (*1 *1 *1 *1) (-5 *1 (-816))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3035 (*1 *1 *1) (-5 *1 (-816))) (-2999 (*1 *1 *1 *1) (-5 *1 (-816))) (-1822 (*1 *1 *1) (-5 *1 (-816))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-816)))) (-3383 (*1 *1 *1 *1) (-5 *1 (-816))) (-1858 (*1 *1 *1) (-5 *1 (-816))) (-1858 (*1 *1 *1 *1) (-5 *1 (-816))) (-1581 (*1 *1 *1 *1) (-5 *1 (-816))) (-2317 (*1 *1 *1 *1) (-5 *1 (-816))) (-2893 (*1 *1 *1 *1) (-5 *1 (-816))) (-1458 (*1 *1 *1 *1) (-5 *1 (-816))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) (-2360 (*1 *1 *1 *1) (-5 *1 (-816))) (-1737 (*1 *1 *1 *1) (-5 *1 (-816))) (-3729 (*1 *1 *1 *1) (-5 *1 (-816))) (-3838 (*1 *1 *1 *1) (-5 *1 (-816))) (-2447 (*1 *1 *1 *1) (-5 *1 (-816))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3649 (*1 *1 *1) (-5 *1 (-816))) (-3416 (*1 *1 *1) (-5 *1 (-816))) (-3416 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) (-2909 (*1 *1 *1) (-5 *1 (-816))) (-2909 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) (-4110 (*1 *1 *1) (-5 *1 (-816))) (-4114 (*1 *1 *1 *1) (-5 *1 (-816))) (-4236 (*1 *1 *1) (-5 *1 (-816))) (-4236 (*1 *1 *1 *1) (-5 *1 (-816))) (-4236 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-1277 (*1 *1 *1) (-5 *1 (-816))) (-1277 (*1 *1 *1 *1) (-5 *1 (-816))) (-1277 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-3129 (*1 *1 *1) (-5 *1 (-816))) (-3129 (*1 *1 *1 *1) (-5 *1 (-816))) (-3129 (*1 *1 *1 *1 *1) (-5 *1 (-816))) (-3575 (*1 *1 *1) (-5 *1 (-816))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1511 (*1 *1 *1) (-5 *1 (-816))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3886 (*1 *1 *1) (-5 *1 (-816))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-4206 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-4158 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) (-2244 (*1 *1 *1 *1) (-5 *1 (-816))) (-2330 (*1 *1 *1 *1) (-5 *1 (-816))) (-2263 (*1 *1 *1 *1) (-5 *1 (-816))) (-2271 (*1 *1 *1 *1) (-5 *1 (-816))) (-2282 (*1 *1 *1 *1) (-5 *1 (-816))) (-2293 (*1 *1 *1 *1) (-5 *1 (-816))) (-2318 (*1 *1 *1 *1) (-5 *1 (-816))) (-2329 (*1 *1 *1 *1) (-5 *1 (-816))) (-2329 (*1 *1 *1) (-5 *1 (-816))) (* (*1 *1 *1 *1) (-5 *1 (-816))) (-2340 (*1 *1 *1 *1) (-5 *1 (-816))) (** (*1 *1 *1 *1) (-5 *1 (-816))) (-3527 (*1 *1 *1 *1) (-5 *1 (-816))) (-3563 (*1 *1 *1 *1) (-5 *1 (-816))) (-3539 (*1 *1 *1 *1) (-5 *1 (-816))) (-3515 (*1 *1 *1 *1) (-5 *1 (-816))) (-3319 (*1 *1 *1 *1) (-5 *1 (-816))) (-2681 (*1 *1 *1 *1) (-5 *1 (-816))) (-3679 (*1 *1 *1) (-5 *1 (-816))) (-3401 (*1 *1 *1 *1) (-5 *1 (-816))) (-3401 (*1 *1 *1) (-5 *1 (-816)))) +(-13 (-1045) (-10 -8 (-15 -1302 ((-1205) $)) (-15 -2196 ($ (-1100))) (-15 -3930 ((-1205) (-1100))) (-15 -3819 ($ (-537))) (-15 -3819 ($ (-1117))) (-15 -3819 ($ (-1100))) (-15 -3819 ($ (-210))) (-15 -3425 ($)) (-15 -1786 ((-537) $)) (-15 -2545 ((-537) $)) (-15 -1786 ((-537))) (-15 -2545 ((-537))) (-15 -3949 ((-537) $)) (-15 -2295 ((-537) $)) (-15 -2833 ($ (-537))) (-15 -4028 ($ (-537))) (-15 -3228 ($ (-537) (-537))) (-15 -3267 ($ $ (-537))) (-15 -3278 ($ $ (-537))) (-15 -2184 ($ $ (-537))) (-15 -3267 ($ $)) (-15 -3278 ($ $)) (-15 -2184 ($ $)) (-15 -2383 ($ $ $)) (-15 -2229 ($ $ $)) (-15 -2383 ($ (-606 $))) (-15 -2229 ($ (-606 $))) (-15 -2273 ($ $ (-606 $))) (-15 -1336 ($ $ (-606 $))) (-15 -1336 ($ $ $ $)) (-15 -4031 ($ $ $)) (-15 -1442 ((-111) $)) (-15 -1922 ($ $ (-606 $))) (-15 -3035 ($ $)) (-15 -2999 ($ $ $)) (-15 -1822 ($ $)) (-15 -3299 ($ (-606 (-606 $)))) (-15 -3383 ($ $ $)) (-15 -1858 ($ $)) (-15 -1858 ($ $ $)) (-15 -1581 ($ $ $)) (-15 -2317 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -3456 ($ $ (-731))) (-15 -2360 ($ $ $)) (-15 -1737 ($ $ $)) (-15 -3729 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3858 ($ $ (-606 $))) (-15 -3549 ($ $ (-606 $))) (-15 -3649 ($ $)) (-15 -3416 ($ $)) (-15 -3416 ($ $ (-731))) (-15 -2909 ($ $)) (-15 -2909 ($ $ (-731))) (-15 -4110 ($ $)) (-15 -4114 ($ $ $)) (-15 -4236 ($ $)) (-15 -4236 ($ $ $)) (-15 -4236 ($ $ $ $)) (-15 -1277 ($ $)) (-15 -1277 ($ $ $)) (-15 -1277 ($ $ $ $)) (-15 -3129 ($ $)) (-15 -3129 ($ $ $)) (-15 -3129 ($ $ $ $)) (-15 -3575 ($ $)) (-15 -3575 ($ (-606 $))) (-15 -1511 ($ $)) (-15 -1511 ($ (-606 $))) (-15 -3886 ($ $)) (-15 -3886 ($ (-606 $))) (-15 -4206 ($ (-606 $))) (-15 -4158 ($ (-606 $))) (-15 -1764 ($ (-606 $))) (-15 -3090 ($ (-606 $))) (-15 -2244 ($ $ $)) (-15 -2330 ($ $ $)) (-15 -2263 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2293 ($ $ $)) (-15 -2318 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2329 ($ $)) (-15 * ($ $ $)) (-15 -2340 ($ $ $)) (-15 ** ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3539 ($ $ $)) (-15 -3515 ($ $ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -3679 ($ $)) (-15 -3401 ($ $ $)) (-15 -3401 ($ $)))) +((-3024 (((-1205) (-606 (-51))) 24)) (-3569 (((-1205) (-1100) (-816)) 14) (((-1205) (-816)) 9) (((-1205) (-1100)) 11))) +(((-817) (-10 -7 (-15 -3569 ((-1205) (-1100))) (-15 -3569 ((-1205) (-816))) (-15 -3569 ((-1205) (-1100) (-816))) (-15 -3024 ((-1205) (-606 (-51)))))) (T -817)) +((-3024 (*1 *2 *3) (-12 (-5 *3 (-606 (-51))) (-5 *2 (-1205)) (-5 *1 (-817)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-817))))) +(-10 -7 (-15 -3569 ((-1205) (-1100))) (-15 -3569 ((-1205) (-816))) (-15 -3569 ((-1205) (-1100) (-816))) (-15 -3024 ((-1205) (-606 (-51))))) +((-2330 (((-111) $ $) NIL)) (-1890 (((-3 $ "failed") (-1117)) 33)) (-3151 (((-731)) 31)) (-1618 (($) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2334 (((-874) $) 29)) (-1654 (((-1100) $) 39)) (-2009 (($ (-874)) 28)) (-2528 (((-1064) $) NIL)) (-3996 (((-1117) $) 13) (((-513) $) 19) (((-845 (-363)) $) 26) (((-845 (-537)) $) 22)) (-2341 (((-816) $) 16)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 36)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 35))) +(((-818 |#1|) (-13 (-801) (-580 (-1117)) (-580 (-513)) (-580 (-845 (-363))) (-580 (-845 (-537))) (-10 -8 (-15 -1890 ((-3 $ "failed") (-1117))))) (-606 (-1117))) (T -818)) +((-1890 (*1 *1 *2) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-818 *3)) (-14 *3 (-606 *2))))) +(-13 (-801) (-580 (-1117)) (-580 (-513)) (-580 (-845 (-363))) (-580 (-845 (-537))) (-10 -8 (-15 -1890 ((-3 $ "failed") (-1117))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (((-905 |#1|) $) NIL) (($ (-905 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-163)))) (-3654 (((-731)) NIL)) (-4216 (((-1205) (-731)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-819 |#1| |#2| |#3| |#4|) (-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 ((-905 |#1|) $)) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4216 ((-1205) (-731))))) (-998) (-606 (-1117)) (-606 (-731)) (-731)) (T -819)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-819 *3 *4 *5 *6)) (-4 *3 (-998)) (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-819 *3 *4 *5 *6)) (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) (-2340 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2 *3 *4 *5)) (-4 *2 (-347)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-731))) (-14 *5 (-731)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-819 *4 *5 *6 *7)) (-4 *4 (-998)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 *3)) (-14 *7 *3)))) +(-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 ((-905 |#1|) $)) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4216 ((-1205) (-731))))) +((-2052 (((-3 (-164 |#3|) "failed") (-731) (-731) |#2| |#2|) 31)) (-1881 (((-3 (-391 |#3|) "failed") (-731) (-731) |#2| |#2|) 24))) +(((-820 |#1| |#2| |#3|) (-10 -7 (-15 -1881 ((-3 (-391 |#3|) "failed") (-731) (-731) |#2| |#2|)) (-15 -2052 ((-3 (-164 |#3|) "failed") (-731) (-731) |#2| |#2|))) (-347) (-1191 |#1|) (-1176 |#1|)) (T -820)) +((-2052 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-164 *6)) (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5)))) (-1881 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-391 *6)) (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5))))) +(-10 -7 (-15 -1881 ((-3 (-391 |#3|) "failed") (-731) (-731) |#2| |#2|)) (-15 -2052 ((-3 (-164 |#3|) "failed") (-731) (-731) |#2| |#2|))) +((-1881 (((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|)) 28) (((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) 26))) +(((-821 |#1| |#2| |#3|) (-10 -7 (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|)))) (-347) (-1117) |#1|) (T -821)) +((-1881 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) (-5 *1 (-821 *5 *6 *7)))) (-1881 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) (-5 *1 (-821 *5 *6 *7))))) +(-10 -7 (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (-15 -1881 ((-3 (-391 (-1173 |#2| |#1|)) "failed") (-731) (-731) (-1192 |#1| |#2| |#3|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $ (-537)) 60)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1858 (($ (-1113 (-537)) (-537)) 59)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3533 (($ $) 62)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-4231 (((-731) $) 67)) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2084 (((-537)) 64)) (-2089 (((-537) $) 63)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1540 (($ $ (-537)) 66)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3025 (((-1098 (-537)) $) 68)) (-1577 (($ $) 65)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-4150 (((-537) $ (-537)) 61)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-822 |#1|) (-134) (-537)) (T -822)) +((-3025 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-1098 (-537))))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-731)))) (-1540 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-1577 (*1 *1 *1) (-4 *1 (-822 *2))) (-2084 (*1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-3533 (*1 *1 *1) (-4 *1 (-822 *2))) (-4150 (*1 *2 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-3633 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) (-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *3 (-537)) (-4 *1 (-822 *4))))) +(-13 (-291) (-141) (-10 -8 (-15 -3025 ((-1098 (-537)) $)) (-15 -4231 ((-731) $)) (-15 -1540 ($ $ (-537))) (-15 -1577 ($ $)) (-15 -2084 ((-537))) (-15 -2089 ((-537) $)) (-15 -3533 ($ $)) (-15 -4150 ((-537) $ (-537))) (-15 -3633 ($ $ (-537))) (-15 -1858 ($ (-1113 (-537)) (-537))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-291) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ (-537)) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-1858 (($ (-1113 (-537)) (-537)) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4231 (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2084 (((-537)) NIL)) (-2089 (((-537) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1540 (($ $ (-537)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3025 (((-1098 (-537)) $) NIL)) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-4150 (((-537) $ (-537)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) +(((-823 |#1|) (-822 |#1|) (-537)) (T -823)) +NIL +(-822 |#1|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-823 |#1|) $) NIL (|has| (-823 |#1|) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-823 |#1|) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-823 |#1|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| (-823 |#1|) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-823 |#1|) (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| (-823 |#1|) (-989 (-537))))) (-3958 (((-823 |#1|) $) NIL) (((-1117) $) NIL (|has| (-823 |#1|) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-823 |#1|) (-989 (-537)))) (((-537) $) NIL (|has| (-823 |#1|) (-989 (-537))))) (-4000 (($ $) NIL) (($ (-537) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-823 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-823 |#1|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-823 |#1|))) (|:| |vec| (-1200 (-823 |#1|)))) (-649 $) (-1200 $)) NIL) (((-649 (-823 |#1|)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-823 |#1|) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| (-823 |#1|) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-823 |#1|) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-823 |#1|) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-823 |#1|) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| (-823 |#1|) (-1093)))) (-2840 (((-111) $) NIL (|has| (-823 |#1|) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-823 |#1|) (-807)))) (-3889 (($ $ $) NIL (|has| (-823 |#1|) (-807)))) (-1612 (($ (-1 (-823 |#1|) (-823 |#1|)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-823 |#1|) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-823 |#1|) (-291)))) (-3830 (((-823 |#1|) $) NIL (|has| (-823 |#1|) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-823 |#1|) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-823 |#1|)) (-606 (-823 |#1|))) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-823 |#1|) (-823 |#1|)) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-278 (-823 |#1|))) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-606 (-278 (-823 |#1|)))) NIL (|has| (-823 |#1|) (-293 (-823 |#1|)))) (($ $ (-606 (-1117)) (-606 (-823 |#1|))) NIL (|has| (-823 |#1|) (-495 (-1117) (-823 |#1|)))) (($ $ (-1117) (-823 |#1|)) NIL (|has| (-823 |#1|) (-495 (-1117) (-823 |#1|))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-823 |#1|)) NIL (|has| (-823 |#1|) (-270 (-823 |#1|) (-823 |#1|))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| (-823 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-823 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1 (-823 |#1|) (-823 |#1|)) (-731)) NIL) (($ $ (-1 (-823 |#1|) (-823 |#1|))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-823 |#1|) $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| (-823 |#1|) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-823 |#1|) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-823 |#1|) (-580 (-513)))) (((-363) $) NIL (|has| (-823 |#1|) (-973))) (((-210) $) NIL (|has| (-823 |#1|) (-973)))) (-4225 (((-164 (-391 (-537))) $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-823 |#1|) (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL) (($ (-823 |#1|)) NIL) (($ (-1117)) NIL (|has| (-823 |#1|) (-989 (-1117))))) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-823 |#1|) (-862))) (|has| (-823 |#1|) (-139))))) (-3654 (((-731)) NIL)) (-3903 (((-823 |#1|) $) NIL (|has| (-823 |#1|) (-522)))) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ (-537)) NIL)) (-2209 (($ $) NIL (|has| (-823 |#1|) (-780)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $) NIL (|has| (-823 |#1|) (-218))) (($ $ (-731)) NIL (|has| (-823 |#1|) (-218))) (($ $ (-1117)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-823 |#1|) (-853 (-1117)))) (($ $ (-1 (-823 |#1|) (-823 |#1|)) (-731)) NIL) (($ $ (-1 (-823 |#1|) (-823 |#1|))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-823 |#1|) (-807)))) (-2340 (($ $ $) NIL) (($ (-823 |#1|) (-823 |#1|)) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-823 |#1|) $) NIL) (($ $ (-823 |#1|)) NIL))) +(((-824 |#1|) (-13 (-945 (-823 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) (-537)) (T -824)) +((-4150 (*1 *2 *1 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-824 *4)) (-14 *4 *3) (-5 *3 (-537)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-824 *3)) (-14 *3 (-537)))) (-4000 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-14 *2 (-537)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-824 *3)) (-14 *3 *2)))) +(-13 (-945 (-823 |#1|)) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 ((|#2| $) NIL (|has| |#2| (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| |#2| (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (|has| |#2| (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537))))) (-3958 ((|#2| $) NIL) (((-1117) $) NIL (|has| |#2| (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-537)))) (((-537) $) NIL (|has| |#2| (-989 (-537))))) (-4000 (($ $) 31) (($ (-537) $) 32)) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 53)) (-1618 (($) NIL (|has| |#2| (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) NIL (|has| |#2| (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| |#2| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| |#2| (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 ((|#2| $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#2| (-1093)))) (-2840 (((-111) $) NIL (|has| |#2| (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 49)) (-3956 (($) NIL (|has| |#2| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| |#2| (-291)))) (-3830 ((|#2| $) NIL (|has| |#2| (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 |#2|) (-606 |#2|)) NIL (|has| |#2| (-293 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-293 |#2|))) (($ $ (-278 |#2|)) NIL (|has| |#2| (-293 |#2|))) (($ $ (-606 (-278 |#2|))) NIL (|has| |#2| (-293 |#2|))) (($ $ (-606 (-1117)) (-606 |#2|)) NIL (|has| |#2| (-495 (-1117) |#2|))) (($ $ (-1117) |#2|) NIL (|has| |#2| (-495 (-1117) |#2|)))) (-1930 (((-731) $) NIL)) (-1922 (($ $ |#2|) NIL (|has| |#2| (-270 |#2| |#2|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) NIL (|has| |#2| (-218))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2395 (($ $) NIL)) (-3315 ((|#2| $) NIL)) (-3996 (((-845 (-537)) $) NIL (|has| |#2| (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| |#2| (-580 (-845 (-363))))) (((-513) $) NIL (|has| |#2| (-580 (-513)))) (((-363) $) NIL (|has| |#2| (-973))) (((-210) $) NIL (|has| |#2| (-973)))) (-4225 (((-164 (-391 (-537))) $) 68)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2341 (((-816) $) 87) (($ (-537)) 19) (($ $) NIL) (($ (-391 (-537))) 24) (($ |#2|) 18) (($ (-1117)) NIL (|has| |#2| (-989 (-1117))))) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-3903 ((|#2| $) NIL (|has| |#2| (-522)))) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ (-537)) 60)) (-2209 (($ $) NIL (|has| |#2| (-780)))) (-2928 (($) 14 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $) NIL (|has| |#2| (-218))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) 35)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2329 (($ $) 39) (($ $ $) 41)) (-2318 (($ $ $) 37)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) 50)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 42) (($ $ $) 44) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-825 |#1| |#2|) (-13 (-945 |#2|) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) (-537) (-822 |#1|)) (T -825)) +((-4150 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-391 (-537))) (-5 *1 (-825 *4 *5)) (-5 *3 (-537)) (-4 *5 (-822 *4)))) (-4225 (*1 *2 *1) (-12 (-14 *3 (-537)) (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-822 *3)))) (-4000 (*1 *1 *1) (-12 (-14 *2 (-537)) (-5 *1 (-825 *2 *3)) (-4 *3 (-822 *2)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-14 *3 *2) (-5 *1 (-825 *3 *4)) (-4 *4 (-822 *3))))) +(-13 (-945 |#2|) (-10 -8 (-15 -4150 ((-391 (-537)) $ (-537))) (-15 -4225 ((-164 (-391 (-537))) $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)))) +((-2330 (((-111) $ $) NIL (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) (-1647 ((|#2| $) 12)) (-2039 (($ |#1| |#2|) 9)) (-1654 (((-1100) $) NIL (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) (-2528 (((-1064) $) NIL (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#1| $) 11)) (-2350 (($ |#1| |#2|) 10)) (-2341 (((-816) $) 18 (-1533 (-12 (|has| |#1| (-579 (-816))) (|has| |#2| (-579 (-816)))) (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045)))))) (-2244 (((-111) $ $) 22 (-12 (|has| |#1| (-1045)) (|has| |#2| (-1045)))))) +(((-826 |#1| |#2|) (-13 (-1154) (-10 -8 (IF (|has| |#1| (-579 (-816))) (IF (|has| |#2| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1045)) (IF (|has| |#2| (-1045)) (-6 (-1045)) |%noBranch|) |%noBranch|) (-15 -2039 ($ |#1| |#2|)) (-15 -2350 ($ |#1| |#2|)) (-15 -3188 (|#1| $)) (-15 -1647 (|#2| $)))) (-1154) (-1154)) (T -826)) +((-2039 (*1 *1 *2 *3) (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154)))) (-3188 (*1 *2 *1) (-12 (-4 *2 (-1154)) (-5 *1 (-826 *2 *3)) (-4 *3 (-1154)))) (-1647 (*1 *2 *1) (-12 (-4 *2 (-1154)) (-5 *1 (-826 *3 *2)) (-4 *3 (-1154))))) +(-13 (-1154) (-10 -8 (IF (|has| |#1| (-579 (-816))) (IF (|has| |#2| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1045)) (IF (|has| |#2| (-1045)) (-6 (-1045)) |%noBranch|) |%noBranch|) (-15 -2039 ($ |#1| |#2|)) (-15 -2350 ($ |#1| |#2|)) (-15 -3188 (|#1| $)) (-15 -1647 (|#2| $)))) +((-2330 (((-111) $ $) NIL)) (-1950 (((-537) $) 15)) (-1471 (($ (-149)) 11)) (-2844 (($ (-149)) 12)) (-1654 (((-1100) $) NIL)) (-1826 (((-149) $) 13)) (-2528 (((-1064) $) NIL)) (-1532 (($ (-149)) 9)) (-2938 (($ (-149)) 8)) (-2341 (((-816) $) 23) (($ (-149)) 16)) (-1792 (($ (-149)) 10)) (-2244 (((-111) $ $) NIL))) +(((-827) (-13 (-1045) (-10 -8 (-15 -2938 ($ (-149))) (-15 -1532 ($ (-149))) (-15 -1792 ($ (-149))) (-15 -1471 ($ (-149))) (-15 -2844 ($ (-149))) (-15 -1826 ((-149) $)) (-15 -1950 ((-537) $)) (-15 -2341 ($ (-149)))))) (T -827)) +((-2938 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1471 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-827)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) +(-13 (-1045) (-10 -8 (-15 -2938 ($ (-149))) (-15 -1532 ($ (-149))) (-15 -1792 ($ (-149))) (-15 -1471 ($ (-149))) (-15 -2844 ($ (-149))) (-15 -1826 ((-149) $)) (-15 -1950 ((-537) $)) (-15 -2341 ($ (-149))))) +((-2341 (((-300 (-537)) (-391 (-905 (-47)))) 23) (((-300 (-537)) (-905 (-47))) 18))) +(((-828) (-10 -7 (-15 -2341 ((-300 (-537)) (-905 (-47)))) (-15 -2341 ((-300 (-537)) (-391 (-905 (-47))))))) (T -828)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 (-47)))) (-5 *2 (-300 (-537))) (-5 *1 (-828)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-905 (-47))) (-5 *2 (-300 (-537))) (-5 *1 (-828))))) +(-10 -7 (-15 -2341 ((-300 (-537)) (-905 (-47)))) (-15 -2341 ((-300 (-537)) (-391 (-905 (-47)))))) +((-1612 (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)) 14))) +(((-829 |#1| |#2|) (-10 -7 (-15 -1612 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)))) (-1154) (-1154)) (T -829)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6))))) +(-10 -7 (-15 -1612 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)))) +((-1943 (($ |#1| |#1|) 8)) (-2636 ((|#1| $ (-731)) 10))) +(((-830 |#1|) (-10 -8 (-15 -1943 ($ |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) (-1154)) (T -830)) +((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-830 *2)) (-4 *2 (-1154)))) (-1943 (*1 *1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1154))))) +(-10 -8 (-15 -1943 ($ |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) +((-1612 (((-832 |#2|) (-1 |#2| |#1|) (-832 |#1|)) 14))) +(((-831 |#1| |#2|) (-10 -7 (-15 -1612 ((-832 |#2|) (-1 |#2| |#1|) (-832 |#1|)))) (-1154) (-1154)) (T -831)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-832 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-832 *6)) (-5 *1 (-831 *5 *6))))) +(-10 -7 (-15 -1612 ((-832 |#2|) (-1 |#2| |#1|) (-832 |#1|)))) +((-1943 (($ |#1| |#1| |#1|) 8)) (-2636 ((|#1| $ (-731)) 10))) +(((-832 |#1|) (-10 -8 (-15 -1943 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) (-1154)) (T -832)) +((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-832 *2)) (-4 *2 (-1154)))) (-1943 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1154))))) +(-10 -8 (-15 -1943 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) +((-3716 (((-606 (-1122)) (-1100)) 9))) +(((-833) (-10 -7 (-15 -3716 ((-606 (-1122)) (-1100))))) (T -833)) +((-3716 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-833))))) +(-10 -7 (-15 -3716 ((-606 (-1122)) (-1100)))) +((-1612 (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)) 14))) +(((-834 |#1| |#2|) (-10 -7 (-15 -1612 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) (-1154) (-1154)) (T -834)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6))))) +(-10 -7 (-15 -1612 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) +((-3698 (($ |#1| |#1| |#1|) 8)) (-2636 ((|#1| $ (-731)) 10))) +(((-835 |#1|) (-10 -8 (-15 -3698 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) (-1154)) (T -835)) +((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-835 *2)) (-4 *2 (-1154)))) (-3698 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1154))))) +(-10 -8 (-15 -3698 ($ |#1| |#1| |#1|)) (-15 -2636 (|#1| $ (-731)))) +((-3256 (((-1098 (-606 (-537))) (-606 (-537)) (-1098 (-606 (-537)))) 32)) (-1580 (((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537))) 28)) (-4094 (((-1098 (-606 (-537))) (-606 (-537))) 41) (((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537))) 40)) (-2638 (((-1098 (-606 (-537))) (-537)) 42)) (-2188 (((-1098 (-606 (-537))) (-537) (-537)) 22) (((-1098 (-606 (-537))) (-537)) 16) (((-1098 (-606 (-537))) (-537) (-537) (-537)) 12)) (-1977 (((-1098 (-606 (-537))) (-1098 (-606 (-537)))) 26)) (-1978 (((-606 (-537)) (-606 (-537))) 25))) +(((-836) (-10 -7 (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537))) (-15 -1978 ((-606 (-537)) (-606 (-537)))) (-15 -1977 ((-1098 (-606 (-537))) (-1098 (-606 (-537))))) (-15 -1580 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -3256 ((-1098 (-606 (-537))) (-606 (-537)) (-1098 (-606 (-537))))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)))) (-15 -2638 ((-1098 (-606 (-537))) (-537))))) (T -836)) +((-2638 (*1 *2 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) (-4094 (*1 *2 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-606 (-537))))) (-4094 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-606 (-537))))) (-3256 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *3 (-606 (-537))) (-5 *1 (-836)))) (-1580 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-606 (-537))))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-836)))) (-2188 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) (-2188 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537))))) +(-10 -7 (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537))) (-15 -2188 ((-1098 (-606 (-537))) (-537) (-537))) (-15 -1978 ((-606 (-537)) (-606 (-537)))) (-15 -1977 ((-1098 (-606 (-537))) (-1098 (-606 (-537))))) (-15 -1580 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -3256 ((-1098 (-606 (-537))) (-606 (-537)) (-1098 (-606 (-537))))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)) (-606 (-537)))) (-15 -4094 ((-1098 (-606 (-537))) (-606 (-537)))) (-15 -2638 ((-1098 (-606 (-537))) (-537)))) +((-3996 (((-845 (-363)) $) 9 (|has| |#1| (-580 (-845 (-363))))) (((-845 (-537)) $) 8 (|has| |#1| (-580 (-845 (-537))))))) +(((-837 |#1|) (-134) (-1154)) (T -837)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-580 (-845 (-537)))) (-6 (-580 (-845 (-537)))) |%noBranch|) (IF (|has| |t#1| (-580 (-845 (-363)))) (-6 (-580 (-845 (-363)))) |%noBranch|))) +(((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537))))) +((-2330 (((-111) $ $) NIL)) (-3157 (($) 14)) (-3519 (($ (-842 |#1| |#2|) (-842 |#1| |#3|)) 27)) (-3774 (((-842 |#1| |#3|) $) 16)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3644 (((-111) $) 22)) (-4053 (($) 19)) (-2341 (((-816) $) 30)) (-2533 (((-842 |#1| |#2|) $) 15)) (-2244 (((-111) $ $) 25))) +(((-838 |#1| |#2| |#3|) (-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -3519 ($ (-842 |#1| |#2|) (-842 |#1| |#3|))) (-15 -2533 ((-842 |#1| |#2|) $)) (-15 -3774 ((-842 |#1| |#3|) $)))) (-1045) (-1045) (-627 |#2|)) (T -838)) +((-3644 (*1 *2 *1) (-12 (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1045)) (-4 *5 (-627 *4)))) (-4053 (*1 *1) (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) (-4 *4 (-627 *3)))) (-3157 (*1 *1) (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) (-4 *4 (-627 *3)))) (-3519 (*1 *1 *2 *3) (-12 (-5 *2 (-842 *4 *5)) (-5 *3 (-842 *4 *6)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-627 *5)) (-5 *1 (-838 *4 *5 *6)))) (-2533 (*1 *2 *1) (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *4)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1045)) (-4 *5 (-627 *4)))) (-3774 (*1 *2 *1) (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *5)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1045)) (-4 *5 (-627 *4))))) +(-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -3519 ($ (-842 |#1| |#2|) (-842 |#1| |#3|))) (-15 -2533 ((-842 |#1| |#2|) $)) (-15 -3774 ((-842 |#1| |#3|) $)))) +((-2330 (((-111) $ $) 7)) (-4196 (((-842 |#1| $) $ (-845 |#1|) (-842 |#1| $)) 13)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-839 |#1|) (-134) (-1045)) (T -839)) +((-4196 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-842 *4 *1)) (-5 *3 (-845 *4)) (-4 *1 (-839 *4)) (-4 *4 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -4196 ((-842 |t#1| $) $ (-845 |t#1|) (-842 |t#1| $))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-3215 (((-111) (-606 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2321 (((-842 |#1| |#2|) |#2| |#3|) 43 (-12 (-3679 (|has| |#2| (-989 (-1117)))) (-3679 (|has| |#2| (-998))))) (((-606 (-278 (-905 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-998)) (-3679 (|has| |#2| (-989 (-1117)))))) (((-606 (-278 |#2|)) |#2| |#3|) 35 (|has| |#2| (-989 (-1117)))) (((-838 |#1| |#2| (-606 |#2|)) (-606 |#2|) |#3|) 21))) +(((-840 |#1| |#2| |#3|) (-10 -7 (-15 -3215 ((-111) |#2| |#3|)) (-15 -3215 ((-111) (-606 |#2|) |#3|)) (-15 -2321 ((-838 |#1| |#2| (-606 |#2|)) (-606 |#2|) |#3|)) (IF (|has| |#2| (-989 (-1117))) (-15 -2321 ((-606 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-998)) (-15 -2321 ((-606 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2321 ((-842 |#1| |#2|) |#2| |#3|))))) (-1045) (-839 |#1|) (-580 (-845 |#1|))) (T -840)) +((-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-842 *5 *3)) (-5 *1 (-840 *5 *3 *4)) (-3679 (-4 *3 (-989 (-1117)))) (-3679 (-4 *3 (-998))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 (-905 *3)))) (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-998)) (-3679 (-4 *3 (-989 (-1117)))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 *3))) (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-989 (-1117))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) (-2321 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-4 *6 (-839 *5)) (-5 *2 (-838 *5 *6 (-606 *6))) (-5 *1 (-840 *5 *6 *4)) (-5 *3 (-606 *6)) (-4 *4 (-580 (-845 *5))))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-4 *6 (-839 *5)) (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-840 *5 *6 *4)) (-4 *4 (-580 (-845 *5))))) (-3215 (*1 *2 *3 *4) (-12 (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5)))))) +(-10 -7 (-15 -3215 ((-111) |#2| |#3|)) (-15 -3215 ((-111) (-606 |#2|) |#3|)) (-15 -2321 ((-838 |#1| |#2| (-606 |#2|)) (-606 |#2|) |#3|)) (IF (|has| |#2| (-989 (-1117))) (-15 -2321 ((-606 (-278 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-998)) (-15 -2321 ((-606 (-278 (-905 |#2|))) |#2| |#3|)) (-15 -2321 ((-842 |#1| |#2|) |#2| |#3|))))) +((-1612 (((-842 |#1| |#3|) (-1 |#3| |#2|) (-842 |#1| |#2|)) 22))) +(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-842 |#1| |#3|) (-1 |#3| |#2|) (-842 |#1| |#2|)))) (-1045) (-1045) (-1045)) (T -841)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-842 *5 *6)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-842 *5 *7)) (-5 *1 (-841 *5 *6 *7))))) +(-10 -7 (-15 -1612 ((-842 |#1| |#3|) (-1 |#3| |#2|) (-842 |#1| |#2|)))) +((-2330 (((-111) $ $) NIL)) (-4221 (($ $ $) 39)) (-2237 (((-3 (-111) "failed") $ (-845 |#1|)) 36)) (-3157 (($) 12)) (-1654 (((-1100) $) NIL)) (-3070 (($ (-845 |#1|) |#2| $) 20)) (-2528 (((-1064) $) NIL)) (-4132 (((-3 |#2| "failed") (-845 |#1|) $) 50)) (-3644 (((-111) $) 15)) (-4053 (($) 13)) (-3690 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))) $) 25)) (-2350 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|)))) 23)) (-2341 (((-816) $) 44)) (-2936 (($ (-845 |#1|) |#2| $ |#2|) 48)) (-1653 (($ (-845 |#1|) |#2| $) 47)) (-2244 (((-111) $ $) 41))) +(((-842 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -4221 ($ $ $)) (-15 -4132 ((-3 |#2| "failed") (-845 |#1|) $)) (-15 -1653 ($ (-845 |#1|) |#2| $)) (-15 -3070 ($ (-845 |#1|) |#2| $)) (-15 -2936 ($ (-845 |#1|) |#2| $ |#2|)) (-15 -3690 ((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))))) (-15 -2237 ((-3 (-111) "failed") $ (-845 |#1|))))) (-1045) (-1045)) (T -842)) +((-3644 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-4053 (*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3157 (*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-4221 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-4132 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-4 *2 (-1045)) (-5 *1 (-842 *4 *2)))) (-1653 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1045)))) (-3070 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1045)))) (-2936 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1045)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) (-4 *4 (-1045)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)))) (-2237 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -3644 ((-111) $)) (-15 -4053 ($)) (-15 -3157 ($)) (-15 -4221 ($ $ $)) (-15 -4132 ((-3 |#2| "failed") (-845 |#1|) $)) (-15 -1653 ($ (-845 |#1|) |#2| $)) (-15 -3070 ($ (-845 |#1|) |#2| $)) (-15 -2936 ($ (-845 |#1|) |#2| $ |#2|)) (-15 -3690 ((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))) $)) (-15 -2350 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 |#2|))))) (-15 -2237 ((-3 (-111) "failed") $ (-845 |#1|))))) +((-2738 (((-845 |#1|) (-845 |#1|) (-606 (-1117)) (-1 (-111) (-606 |#2|))) 32) (((-845 |#1|) (-845 |#1|) (-606 (-1 (-111) |#2|))) 43) (((-845 |#1|) (-845 |#1|) (-1 (-111) |#2|)) 35)) (-2237 (((-111) (-606 |#2|) (-845 |#1|)) 40) (((-111) |#2| (-845 |#1|)) 36)) (-1434 (((-1 (-111) |#2|) (-845 |#1|)) 16)) (-3842 (((-606 |#2|) (-845 |#1|)) 24)) (-2773 (((-845 |#1|) (-845 |#1|) |#2|) 20))) +(((-843 |#1| |#2|) (-10 -7 (-15 -2738 ((-845 |#1|) (-845 |#1|) (-1 (-111) |#2|))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1 (-111) |#2|)))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1117)) (-1 (-111) (-606 |#2|)))) (-15 -1434 ((-1 (-111) |#2|) (-845 |#1|))) (-15 -2237 ((-111) |#2| (-845 |#1|))) (-15 -2237 ((-111) (-606 |#2|) (-845 |#1|))) (-15 -2773 ((-845 |#1|) (-845 |#1|) |#2|)) (-15 -3842 ((-606 |#2|) (-845 |#1|)))) (-1045) (-1154)) (T -843)) +((-3842 (*1 *2 *3) (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-606 *5)) (-5 *1 (-843 *4 *5)) (-4 *5 (-1154)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-843 *4 *3)) (-4 *3 (-1154)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *2 (-111)) (-5 *1 (-843 *5 *6)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-843 *5 *3)) (-4 *3 (-1154)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-843 *4 *5)) (-4 *5 (-1154)))) (-2738 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-845 *5)) (-5 *3 (-606 (-1117))) (-5 *4 (-1 (-111) (-606 *6))) (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *1 (-843 *5 *6)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-845 *4)) (-5 *3 (-606 (-1 (-111) *5))) (-4 *4 (-1045)) (-4 *5 (-1154)) (-5 *1 (-843 *4 *5)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-845 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1045)) (-4 *5 (-1154)) (-5 *1 (-843 *4 *5))))) +(-10 -7 (-15 -2738 ((-845 |#1|) (-845 |#1|) (-1 (-111) |#2|))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1 (-111) |#2|)))) (-15 -2738 ((-845 |#1|) (-845 |#1|) (-606 (-1117)) (-1 (-111) (-606 |#2|)))) (-15 -1434 ((-1 (-111) |#2|) (-845 |#1|))) (-15 -2237 ((-111) |#2| (-845 |#1|))) (-15 -2237 ((-111) (-606 |#2|) (-845 |#1|))) (-15 -2773 ((-845 |#1|) (-845 |#1|) |#2|)) (-15 -3842 ((-606 |#2|) (-845 |#1|)))) +((-1612 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 19))) +(((-844 |#1| |#2|) (-10 -7 (-15 -1612 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)))) (-1045) (-1045)) (T -844)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) +(-10 -7 (-15 -1612 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)))) +((-2330 (((-111) $ $) NIL)) (-1983 (($ $ (-606 (-51))) 64)) (-3757 (((-606 $) $) 118)) (-2520 (((-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51))) $) 24)) (-3128 (((-111) $) 30)) (-2397 (($ $ (-606 (-1117)) (-51)) 25)) (-1868 (($ $ (-606 (-51))) 63)) (-1516 (((-3 |#1| "failed") $) 61) (((-3 (-1117) "failed") $) 140)) (-3958 ((|#1| $) 58) (((-1117) $) NIL)) (-2376 (($ $) 108)) (-1469 (((-111) $) 47)) (-1418 (((-606 (-51)) $) 45)) (-2242 (($ (-1117) (-111) (-111) (-111)) 65)) (-4194 (((-3 (-606 $) "failed") (-606 $)) 72)) (-1721 (((-111) $) 50)) (-2855 (((-111) $) 49)) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) 36)) (-2496 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1570 (((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $) 83)) (-2566 (((-3 (-606 $) "failed") $) 33)) (-1697 (((-3 (-606 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 $))) "failed") $) 95)) (-2777 (((-3 (-606 $) "failed") $) 37)) (-2983 (((-3 (-2 (|:| |val| $) (|:| -3283 (-731))) "failed") $) 40)) (-1745 (((-111) $) 29)) (-2528 (((-1064) $) NIL)) (-2142 (((-111) $) 21)) (-2113 (((-111) $) 46)) (-2892 (((-606 (-51)) $) 111)) (-3790 (((-111) $) 48)) (-1922 (($ (-113) (-606 $)) 92)) (-3731 (((-731) $) 28)) (-2494 (($ $) 62)) (-3996 (($ (-606 $)) 59)) (-2162 (((-111) $) 26)) (-2341 (((-816) $) 53) (($ |#1|) 18) (($ (-1117)) 66)) (-2773 (($ $ (-51)) 110)) (-2928 (($) 91 T CONST)) (-2943 (($) 73 T CONST)) (-2244 (((-111) $ $) 79)) (-2340 (($ $ $) 100)) (-2318 (($ $ $) 104)) (** (($ $ (-731)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-845 |#1|) (-13 (-1045) (-989 |#1|) (-989 (-1117)) (-10 -8 (-15 0 ($) -2787) (-15 1 ($) -2787) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -1697 ((-3 (-606 $) "failed") $ (-113))) (-15 -1697 ((-3 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 $))) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |val| $) (|:| -3283 (-731))) "failed") $)) (-15 -2496 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2777 ((-3 (-606 $) "failed") $)) (-15 -1570 ((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $)) (-15 -1922 ($ (-113) (-606 $))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ $)) (-15 -2340 ($ $ $)) (-15 -3731 ((-731) $)) (-15 -3996 ($ (-606 $))) (-15 -2494 ($ $)) (-15 -1745 ((-111) $)) (-15 -1469 ((-111) $)) (-15 -3128 ((-111) $)) (-15 -2162 ((-111) $)) (-15 -3790 ((-111) $)) (-15 -2855 ((-111) $)) (-15 -1721 ((-111) $)) (-15 -2113 ((-111) $)) (-15 -1418 ((-606 (-51)) $)) (-15 -1868 ($ $ (-606 (-51)))) (-15 -1983 ($ $ (-606 (-51)))) (-15 -2242 ($ (-1117) (-111) (-111) (-111))) (-15 -2397 ($ $ (-606 (-1117)) (-51))) (-15 -2520 ((-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51))) $)) (-15 -2142 ((-111) $)) (-15 -2376 ($ $)) (-15 -2773 ($ $ (-51))) (-15 -2892 ((-606 (-51)) $)) (-15 -3757 ((-606 $) $)) (-15 -4194 ((-3 (-606 $) "failed") (-606 $))))) (-1045)) (T -845)) +((-2928 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2943 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2566 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3898 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1697 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-845 *4))) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-1697 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 (-845 *3))))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2983 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-731)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2496 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-845 *3)) (|:| |den| (-845 *3)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2777 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1570 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-845 *3)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 (-845 *4))) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-2318 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2340 (*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2494 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1868 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2242 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-111)) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-2397 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-51)) (-5 *1 (-845 *4)) (-4 *4 (-1045)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51)))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) (-4194 (*1 *2 *2) (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(-13 (-1045) (-989 |#1|) (-989 (-1117)) (-10 -8 (-15 (-2928) ($) -2787) (-15 (-2943) ($) -2787) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -1697 ((-3 (-606 $) "failed") $ (-113))) (-15 -1697 ((-3 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 $))) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |val| $) (|:| -3283 (-731))) "failed") $)) (-15 -2496 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2777 ((-3 (-606 $) "failed") $)) (-15 -1570 ((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $)) (-15 -1922 ($ (-113) (-606 $))) (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731))) (-15 ** ($ $ $)) (-15 -2340 ($ $ $)) (-15 -3731 ((-731) $)) (-15 -3996 ($ (-606 $))) (-15 -2494 ($ $)) (-15 -1745 ((-111) $)) (-15 -1469 ((-111) $)) (-15 -3128 ((-111) $)) (-15 -2162 ((-111) $)) (-15 -3790 ((-111) $)) (-15 -2855 ((-111) $)) (-15 -1721 ((-111) $)) (-15 -2113 ((-111) $)) (-15 -1418 ((-606 (-51)) $)) (-15 -1868 ($ $ (-606 (-51)))) (-15 -1983 ($ $ (-606 (-51)))) (-15 -2242 ($ (-1117) (-111) (-111) (-111))) (-15 -2397 ($ $ (-606 (-1117)) (-51))) (-15 -2520 ((-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51))) $)) (-15 -2142 ((-111) $)) (-15 -2376 ($ $)) (-15 -2773 ($ $ (-51))) (-15 -2892 ((-606 (-51)) $)) (-15 -3757 ((-606 $) $)) (-15 -4194 ((-3 (-606 $) "failed") (-606 $))))) +((-2330 (((-111) $ $) NIL)) (-2163 (((-606 |#1|) $) 16)) (-2615 (((-111) $) 38)) (-1516 (((-3 (-633 |#1|) "failed") $) 43)) (-3958 (((-633 |#1|) $) 41)) (-3200 (($ $) 18)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-3845 (((-731) $) 46)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-633 |#1|) $) 17)) (-2341 (((-816) $) 37) (($ (-633 |#1|)) 21) (((-779 |#1|) $) 27) (($ |#1|) 20)) (-2943 (($) 8 T CONST)) (-1820 (((-606 (-633 |#1|)) $) 23)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 11)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 49))) +(((-846 |#1|) (-13 (-807) (-989 (-633 |#1|)) (-10 -8 (-15 1 ($) -2787) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ($ |#1|)) (-15 -3188 ((-633 |#1|) $)) (-15 -3845 ((-731) $)) (-15 -1820 ((-606 (-633 |#1|)) $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -2163 ((-606 |#1|) $)))) (-807)) (T -846)) +((-2943 (*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-2341 (*1 *1 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-606 (-633 *3))) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-3200 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807))))) +(-13 (-807) (-989 (-633 |#1|)) (-10 -8 (-15 (-2943) ($) -2787) (-15 -2341 ((-779 |#1|) $)) (-15 -2341 ($ |#1|)) (-15 -3188 ((-633 |#1|) $)) (-15 -3845 ((-731) $)) (-15 -1820 ((-606 (-633 |#1|)) $)) (-15 -3200 ($ $)) (-15 -2615 ((-111) $)) (-15 -2163 ((-606 |#1|) $)))) +((-3353 ((|#1| |#1| |#1|) 19))) +(((-847 |#1| |#2|) (-10 -7 (-15 -3353 (|#1| |#1| |#1|))) (-1176 |#2|) (-998)) (T -847)) +((-3353 (*1 *2 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-847 *2 *3)) (-4 *2 (-1176 *3))))) +(-10 -7 (-15 -3353 (|#1| |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1372 (((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 14)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2158 (((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 13)) (-2244 (((-111) $ $) 6))) +(((-848) (-134)) (T -848)) +((-1372 (*1 *2 *3 *4) (-12 (-4 *1 (-848)) (-5 *3 (-1010)) (-5 *4 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) (-2158 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *3 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *2 (-986))))) +(-13 (-1045) (-10 -7 (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| |explanations| (-1100))) (-1010) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))) (-15 -2158 ((-986) (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-3439 ((|#1| |#1| (-731)) 24)) (-4079 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4035 (((-3 (-2 (|:| -3267 |#1|) (|:| -3278 |#1|)) "failed") |#1| (-731) (-731)) 27) (((-606 |#1|) |#1|) 29))) +(((-849 |#1| |#2|) (-10 -7 (-15 -4035 ((-606 |#1|) |#1|)) (-15 -4035 ((-3 (-2 (|:| -3267 |#1|) (|:| -3278 |#1|)) "failed") |#1| (-731) (-731))) (-15 -4079 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3439 (|#1| |#1| (-731)))) (-1176 |#2|) (-347)) (T -849)) +((-3439 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-5 *1 (-849 *2 *4)) (-4 *2 (-1176 *4)))) (-4079 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-347)) (-5 *1 (-849 *2 *3)) (-4 *2 (-1176 *3)))) (-4035 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-731)) (-4 *5 (-347)) (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-849 *3 *5)) (-4 *3 (-1176 *5)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-849 *3 *4)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -4035 ((-606 |#1|) |#1|)) (-15 -4035 ((-3 (-2 (|:| -3267 |#1|) (|:| -3278 |#1|)) "failed") |#1| (-731) (-731))) (-15 -4079 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3439 (|#1| |#1| (-731)))) +((-1895 (((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100)) 96) (((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100) (-210)) 91) (((-986) (-851) (-1010)) 83) (((-986) (-851)) 84)) (-1372 (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851) (-1010)) 59) (((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851)) 61))) +(((-850) (-10 -7 (-15 -1895 ((-986) (-851))) (-15 -1895 ((-986) (-851) (-1010))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100) (-210))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851) (-1010))))) (T -850)) +((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1010)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-850)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100))))) (-5 *1 (-850)))) (-1895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) (-5 *2 (-986)) (-5 *1 (-850)))) (-1895 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) (-5 *8 (-210)) (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) (-5 *2 (-986)) (-5 *1 (-850)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-851)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-850)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-986)) (-5 *1 (-850))))) +(-10 -7 (-15 -1895 ((-986) (-851))) (-15 -1895 ((-986) (-851) (-1010))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100) (-210))) (-15 -1895 ((-986) (-363) (-363) (-363) (-363) (-731) (-731) (-606 (-300 (-363))) (-606 (-606 (-300 (-363)))) (-1100))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851))) (-15 -1372 ((-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) (|:| |explanations| (-606 (-1100)))) (-851) (-1010)))) +((-2330 (((-111) $ $) NIL)) (-3958 (((-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))) $) 19)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 21) (($ (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) 18)) (-2244 (((-111) $ $) NIL))) +(((-851) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))) $))))) (T -851)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-851)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *1 (-851)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210)))) (-5 *1 (-851))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))))) (-15 -2341 ((-816) $)) (-15 -3958 ((-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| (-606 (-2 (|:| |start| (-210)) (|:| |finish| (-210)) (|:| |grid| (-731)) (|:| |boundaryType| (-537)) (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) (|:| |tol| (-210))) $)))) +((-3456 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) 10) (($ $ |#2| (-731)) 12) (($ $ (-606 |#2|) (-606 (-731))) 15)) (-4230 (($ $ |#2|) 16) (($ $ (-606 |#2|)) 18) (($ $ |#2| (-731)) 19) (($ $ (-606 |#2|) (-606 (-731))) 21))) +(((-852 |#1| |#2|) (-10 -8 (-15 -4230 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -4230 (|#1| |#1| |#2| (-731))) (-15 -4230 (|#1| |#1| (-606 |#2|))) (-15 -4230 (|#1| |#1| |#2|)) (-15 -3456 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#2| (-731))) (-15 -3456 (|#1| |#1| (-606 |#2|))) (-15 -3456 (|#1| |#1| |#2|))) (-853 |#2|) (-1045)) (T -852)) +NIL +(-10 -8 (-15 -4230 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -4230 (|#1| |#1| |#2| (-731))) (-15 -4230 (|#1| |#1| (-606 |#2|))) (-15 -4230 (|#1| |#1| |#2|)) (-15 -3456 (|#1| |#1| (-606 |#2|) (-606 (-731)))) (-15 -3456 (|#1| |#1| |#2| (-731))) (-15 -3456 (|#1| |#1| (-606 |#2|))) (-15 -3456 (|#1| |#1| |#2|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3456 (($ $ |#1|) 40) (($ $ (-606 |#1|)) 39) (($ $ |#1| (-731)) 38) (($ $ (-606 |#1|) (-606 (-731))) 37)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#1|) 36) (($ $ (-606 |#1|)) 35) (($ $ |#1| (-731)) 34) (($ $ (-606 |#1|) (-606 (-731))) 33)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-853 |#1|) (-134) (-1045)) (T -853)) +((-3456 (*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) (-4 *4 (-1045)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) (-4230 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) (-4 *4 (-1045))))) +(-13 (-998) (-10 -8 (-15 -3456 ($ $ |t#1|)) (-15 -3456 ($ $ (-606 |t#1|))) (-15 -3456 ($ $ |t#1| (-731))) (-15 -3456 ($ $ (-606 |t#1|) (-606 (-731)))) (-15 -4230 ($ $ |t#1|)) (-15 -4230 ($ $ (-606 |t#1|))) (-15 -4230 ($ $ |t#1| (-731))) (-15 -4230 ($ $ (-606 |t#1|) (-606 (-731)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 26)) (-2506 (((-111) $ (-731)) NIL)) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-3271 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2980 (($ $ $) NIL (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) (($ $ "left" $) NIL (|has| $ (-6 -4301))) (($ $ "right" $) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3278 (($ $) 25)) (-1861 (($ |#1|) 12) (($ $ $) 17)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3267 (($ $) 23)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) 20)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1140 |#1|) $) 9) (((-816) $) 29 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 21 (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-854 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -1861 ($ |#1|)) (-15 -1861 ($ $ $)) (-15 -2341 ((-1140 |#1|) $)))) (-1045)) (T -854)) +((-1861 (*1 *1 *2) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045)))) (-1861 (*1 *1 *1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1140 *3)) (-5 *1 (-854 *3)) (-4 *3 (-1045))))) +(-13 (-118 |#1|) (-10 -8 (-15 -1861 ($ |#1|)) (-15 -1861 ($ $ $)) (-15 -2341 ((-1140 |#1|) $)))) +((-2849 ((|#2| (-1084 |#1| |#2|)) 40))) +(((-855 |#1| |#2|) (-10 -7 (-15 -2849 (|#2| (-1084 |#1| |#2|)))) (-874) (-13 (-998) (-10 -7 (-6 (-4302 "*"))))) (T -855)) +((-2849 (*1 *2 *3) (-12 (-5 *3 (-1084 *4 *2)) (-14 *4 (-874)) (-4 *2 (-13 (-998) (-10 -7 (-6 (-4302 "*"))))) (-5 *1 (-855 *4 *2))))) +(-10 -7 (-15 -2849 (|#2| (-1084 |#1| |#2|)))) +((-2330 (((-111) $ $) 7)) (-3832 (($) 18 T CONST)) (-3490 (((-3 $ "failed") $) 15)) (-3745 (((-1047 |#1|) $ |#1|) 32)) (-2836 (((-111) $) 17)) (-2444 (($ $ $) 30 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-3889 (($ $ $) 29 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 24)) (-2528 (((-1064) $) 10)) (-4116 ((|#1| $ |#1|) 34)) (-1922 ((|#1| $ |#1|) 33)) (-3409 (($ (-606 (-606 |#1|))) 35)) (-1497 (($ (-606 |#1|)) 36)) (-1978 (($ $ $) 21)) (-1674 (($ $ $) 20)) (-2341 (((-816) $) 11)) (-2943 (($) 19 T CONST)) (-2293 (((-111) $ $) 27 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-2271 (((-111) $ $) 26 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 28 (-1533 (|has| |#1| (-807)) (|has| |#1| (-352))))) (-2263 (((-111) $ $) 31)) (-2340 (($ $ $) 23)) (** (($ $ (-874)) 13) (($ $ (-731)) 16) (($ $ (-537)) 22)) (* (($ $ $) 14))) +(((-856 |#1|) (-134) (-1045)) (T -856)) +((-1497 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-856 *3)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-4 *1 (-856 *3)))) (-4116 (*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) (-1922 (*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) (-3745 (*1 *2 *1 *3) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-1047 *3)))) (-2263 (*1 *2 *1 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-111))))) +(-13 (-456) (-10 -8 (-15 -1497 ($ (-606 |t#1|))) (-15 -3409 ($ (-606 (-606 |t#1|)))) (-15 -4116 (|t#1| $ |t#1|)) (-15 -1922 (|t#1| $ |t#1|)) (-15 -3745 ((-1047 |t#1|) $ |t#1|)) (-15 -2263 ((-111) $ $)) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-352)) (-6 (-807)) |%noBranch|))) +(((-100) . T) ((-579 (-816)) . T) ((-456) . T) ((-687) . T) ((-807) -1533 (|has| |#1| (-807)) (|has| |#1| (-352))) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-2646 (((-606 (-606 (-731))) $) 108)) (-2379 (((-606 (-731)) (-858 |#1|) $) 130)) (-4212 (((-606 (-731)) (-858 |#1|) $) 131)) (-3885 (((-606 (-858 |#1|)) $) 98)) (-1618 (((-858 |#1|) $ (-537)) 103) (((-858 |#1|) $) 104)) (-2103 (($ (-606 (-858 |#1|))) 110)) (-4231 (((-731) $) 105)) (-2684 (((-1047 (-1047 |#1|)) $) 128)) (-3745 (((-1047 |#1|) $ |#1|) 121) (((-1047 (-1047 |#1|)) $ (-1047 |#1|)) 139) (((-1047 (-606 |#1|)) $ (-606 |#1|)) 142)) (-2150 (((-1047 |#1|) $) 101)) (-3122 (((-111) (-858 |#1|) $) 92)) (-1654 (((-1100) $) NIL)) (-3785 (((-1205) $) 95) (((-1205) $ (-537) (-537)) 143)) (-2528 (((-1064) $) NIL)) (-2269 (((-606 (-858 |#1|)) $) 96)) (-1922 (((-858 |#1|) $ (-731)) 99)) (-2872 (((-731) $) 106)) (-2341 (((-816) $) 119) (((-606 (-858 |#1|)) $) 23) (($ (-606 (-858 |#1|))) 109)) (-1605 (((-606 |#1|) $) 107)) (-2244 (((-111) $ $) 136)) (-2282 (((-111) $ $) 134)) (-2263 (((-111) $ $) 133))) +(((-857 |#1|) (-13 (-1045) (-10 -8 (-15 -2341 ((-606 (-858 |#1|)) $)) (-15 -2269 ((-606 (-858 |#1|)) $)) (-15 -1922 ((-858 |#1|) $ (-731))) (-15 -1618 ((-858 |#1|) $ (-537))) (-15 -1618 ((-858 |#1|) $)) (-15 -4231 ((-731) $)) (-15 -2872 ((-731) $)) (-15 -1605 ((-606 |#1|) $)) (-15 -3885 ((-606 (-858 |#1|)) $)) (-15 -2646 ((-606 (-606 (-731))) $)) (-15 -2341 ($ (-606 (-858 |#1|)))) (-15 -2103 ($ (-606 (-858 |#1|)))) (-15 -3745 ((-1047 |#1|) $ |#1|)) (-15 -2684 ((-1047 (-1047 |#1|)) $)) (-15 -3745 ((-1047 (-1047 |#1|)) $ (-1047 |#1|))) (-15 -3745 ((-1047 (-606 |#1|)) $ (-606 |#1|))) (-15 -3122 ((-111) (-858 |#1|) $)) (-15 -2379 ((-606 (-731)) (-858 |#1|) $)) (-15 -4212 ((-606 (-731)) (-858 |#1|) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2263 ((-111) $ $)) (-15 -2282 ((-111) $ $)) (-15 -3785 ((-1205) $)) (-15 -3785 ((-1205) $ (-537) (-537))))) (-1045)) (T -857)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) (-4 *4 (-1045)))) (-1618 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) (-4 *4 (-1045)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-858 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-731)))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3)))) (-3745 (*1 *2 *1 *3) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1047 (-1047 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3745 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-1047 *4))) (-5 *1 (-857 *4)) (-5 *3 (-1047 *4)))) (-3745 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-606 *4))) (-5 *1 (-857 *4)) (-5 *3 (-606 *4)))) (-3122 (*1 *2 *3 *1) (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-857 *4)))) (-2379 (*1 *2 *3 *1) (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) (-5 *1 (-857 *4)))) (-4212 (*1 *2 *3 *1) (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) (-5 *1 (-857 *4)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2263 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-2282 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) (-3785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-857 *4)) (-4 *4 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -2341 ((-606 (-858 |#1|)) $)) (-15 -2269 ((-606 (-858 |#1|)) $)) (-15 -1922 ((-858 |#1|) $ (-731))) (-15 -1618 ((-858 |#1|) $ (-537))) (-15 -1618 ((-858 |#1|) $)) (-15 -4231 ((-731) $)) (-15 -2872 ((-731) $)) (-15 -1605 ((-606 |#1|) $)) (-15 -3885 ((-606 (-858 |#1|)) $)) (-15 -2646 ((-606 (-606 (-731))) $)) (-15 -2341 ($ (-606 (-858 |#1|)))) (-15 -2103 ($ (-606 (-858 |#1|)))) (-15 -3745 ((-1047 |#1|) $ |#1|)) (-15 -2684 ((-1047 (-1047 |#1|)) $)) (-15 -3745 ((-1047 (-1047 |#1|)) $ (-1047 |#1|))) (-15 -3745 ((-1047 (-606 |#1|)) $ (-606 |#1|))) (-15 -3122 ((-111) (-858 |#1|) $)) (-15 -2379 ((-606 (-731)) (-858 |#1|) $)) (-15 -4212 ((-606 (-731)) (-858 |#1|) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2263 ((-111) $ $)) (-15 -2282 ((-111) $ $)) (-15 -3785 ((-1205) $)) (-15 -3785 ((-1205) $ (-537) (-537))))) +((-2330 (((-111) $ $) NIL)) (-1566 (((-606 $) (-606 $)) 77)) (-2537 (((-537) $) 60)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-4231 (((-731) $) 58)) (-3745 (((-1047 |#1|) $ |#1|) 49)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) 63)) (-1385 (((-731) $) 61)) (-2150 (((-1047 |#1|) $) 42)) (-2444 (($ $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-3889 (($ $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2885 (((-2 (|:| |preimage| (-606 |#1|)) (|:| |image| (-606 |#1|))) $) 37)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 93)) (-2528 (((-1064) $) NIL)) (-1347 (((-1047 |#1|) $) 100 (|has| |#1| (-352)))) (-2977 (((-111) $) 59)) (-4116 ((|#1| $ |#1|) 47)) (-1922 ((|#1| $ |#1|) 94)) (-2872 (((-731) $) 44)) (-3409 (($ (-606 (-606 |#1|))) 85)) (-2640 (((-924) $) 53)) (-1497 (($ (-606 |#1|)) 21)) (-1978 (($ $ $) NIL)) (-1674 (($ $ $) NIL)) (-3892 (($ (-606 (-606 |#1|))) 39)) (-3167 (($ (-606 (-606 |#1|))) 88)) (-1589 (($ (-606 |#1|)) 96)) (-2341 (((-816) $) 84) (($ (-606 (-606 |#1|))) 66) (($ (-606 |#1|)) 67)) (-2943 (($) 16 T CONST)) (-2293 (((-111) $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2244 (((-111) $ $) 45)) (-2282 (((-111) $ $) NIL (-1533 (|has| |#1| (-352)) (|has| |#1| (-807))))) (-2263 (((-111) $ $) 65)) (-2340 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ $ $) 22))) +(((-858 |#1|) (-13 (-856 |#1|) (-10 -8 (-15 -2885 ((-2 (|:| |preimage| (-606 |#1|)) (|:| |image| (-606 |#1|))) $)) (-15 -3892 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 |#1|))) (-15 -3167 ($ (-606 (-606 |#1|)))) (-15 -2872 ((-731) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2640 ((-924) $)) (-15 -4231 ((-731) $)) (-15 -1385 ((-731) $)) (-15 -2537 ((-537) $)) (-15 -2977 ((-111) $)) (-15 -2353 ((-111) $)) (-15 -1566 ((-606 $) (-606 $))) (IF (|has| |#1| (-352)) (-15 -1347 ((-1047 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -1589 ($ (-606 |#1|))) (IF (|has| |#1| (-352)) (-15 -1589 ($ (-606 |#1|))) |%noBranch|)))) (-1045)) (T -858)) +((-2885 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-606 *3)) (|:| |image| (-606 *3)))) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-3892 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-924)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-352)) (-4 *3 (-1045)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) +(-13 (-856 |#1|) (-10 -8 (-15 -2885 ((-2 (|:| |preimage| (-606 |#1|)) (|:| |image| (-606 |#1|))) $)) (-15 -3892 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 (-606 |#1|)))) (-15 -2341 ($ (-606 |#1|))) (-15 -3167 ($ (-606 (-606 |#1|)))) (-15 -2872 ((-731) $)) (-15 -2150 ((-1047 |#1|) $)) (-15 -2640 ((-924) $)) (-15 -4231 ((-731) $)) (-15 -1385 ((-731) $)) (-15 -2537 ((-537) $)) (-15 -2977 ((-111) $)) (-15 -2353 ((-111) $)) (-15 -1566 ((-606 $) (-606 $))) (IF (|has| |#1| (-352)) (-15 -1347 ((-1047 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -1589 ($ (-606 |#1|))) (IF (|has| |#1| (-352)) (-15 -1589 ($ (-606 |#1|))) |%noBranch|)))) +((-2212 (((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|)) 128)) (-1541 ((|#1|) 77)) (-2628 (((-402 (-1113 |#4|)) (-1113 |#4|)) 137)) (-2988 (((-402 (-1113 |#4|)) (-606 |#3|) (-1113 |#4|)) 69)) (-2274 (((-402 (-1113 |#4|)) (-1113 |#4|)) 147)) (-1380 (((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|) |#3|) 92))) +(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|))) (-15 -2274 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2628 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -1541 (|#1|)) (-15 -1380 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|) |#3|)) (-15 -2988 ((-402 (-1113 |#4|)) (-606 |#3|) (-1113 |#4|)))) (-862) (-753) (-807) (-902 |#1| |#2| |#3|)) (T -859)) +((-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *7)) (-4 *7 (-807)) (-4 *5 (-862)) (-4 *6 (-753)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-402 (-1113 *8))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-1113 *8)))) (-1380 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) (-4 *7 (-902 *5 *6 *4)) (-4 *5 (-862)) (-4 *6 (-753)) (-4 *4 (-807)) (-5 *1 (-859 *5 *6 *4 *7)))) (-1541 (*1 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) (-5 *1 (-859 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) (-2212 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-859 *4 *5 *6 *7))))) +(-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|))) (-15 -2274 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -2628 ((-402 (-1113 |#4|)) (-1113 |#4|))) (-15 -1541 (|#1|)) (-15 -1380 ((-3 (-606 (-1113 |#4|)) "failed") (-606 (-1113 |#4|)) (-1113 |#4|) |#3|)) (-15 -2988 ((-402 (-1113 |#4|)) (-606 |#3|) (-1113 |#4|)))) +((-2212 (((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|)) 36)) (-1541 ((|#1|) 54)) (-2628 (((-402 (-1113 |#2|)) (-1113 |#2|)) 102)) (-2988 (((-402 (-1113 |#2|)) (-1113 |#2|)) 90)) (-2274 (((-402 (-1113 |#2|)) (-1113 |#2|)) 113))) +(((-860 |#1| |#2|) (-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|))) (-15 -2274 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -2628 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -1541 (|#1|)) (-15 -2988 ((-402 (-1113 |#2|)) (-1113 |#2|)))) (-862) (-1176 |#1|)) (T -860)) +((-2988 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5)))) (-1541 (*1 *2) (-12 (-4 *2 (-862)) (-5 *1 (-860 *2 *3)) (-4 *3 (-1176 *2)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5)))) (-2212 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-862)) (-5 *1 (-860 *4 *5))))) +(-10 -7 (-15 -2212 ((-3 (-606 (-1113 |#2|)) "failed") (-606 (-1113 |#2|)) (-1113 |#2|))) (-15 -2274 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -2628 ((-402 (-1113 |#2|)) (-1113 |#2|))) (-15 -1541 (|#1|)) (-15 -2988 ((-402 (-1113 |#2|)) (-1113 |#2|)))) +((-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 41)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 18)) (-2644 (((-3 $ "failed") $) 35))) +(((-861 |#1|) (-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) (-862)) (T -861)) +NIL +(-10 -8 (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 58)) (-1395 (($ $) 49)) (-2414 (((-402 $) $) 50)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 55)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2639 (((-111) $) 51)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1319 (((-402 (-1113 $)) (-1113 $)) 56)) (-3370 (((-402 (-1113 $)) (-1113 $)) 57)) (-3622 (((-402 $) $) 48)) (-3515 (((-3 $ "failed") $ $) 40)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 54 (|has| $ (-139)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-2644 (((-3 $ "failed") $) 53 (|has| $ (-139)))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-862) (-134)) (T -862)) +((-2298 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-862)))) (-1649 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1)))) (-3370 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1)))) (-1319 (*1 *2 *3) (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1)))) (-2022 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-606 (-1113 *1))) (-5 *3 (-1113 *1)) (-4 *1 (-862)))) (-2466 (*1 *2 *3) (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-139)) (-4 *1 (-862)) (-5 *2 (-1200 *1)))) (-2644 (*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-862))))) +(-13 (-1158) (-10 -8 (-15 -1649 ((-402 (-1113 $)) (-1113 $))) (-15 -3370 ((-402 (-1113 $)) (-1113 $))) (-15 -1319 ((-402 (-1113 $)) (-1113 $))) (-15 -2298 ((-1113 $) (-1113 $) (-1113 $))) (-15 -2022 ((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $))) (IF (|has| $ (-139)) (PROGN (-15 -2466 ((-3 (-1200 $) "failed") (-649 $))) (-15 -2644 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-1276 (((-111) $) NIL)) (-2860 (((-731)) NIL)) (-1428 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3151 (((-731)) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 $ "failed") $) NIL)) (-3958 (($ $) NIL)) (-3447 (($ (-1200 $)) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-4145 (($) NIL)) (-2974 (((-111) $) NIL)) (-2642 (($ $) NIL) (($ $ (-731)) NIL)) (-2639 (((-111) $) NIL)) (-4231 (((-793 (-874)) $) NIL) (((-874) $) NIL)) (-2836 (((-111) $) NIL)) (-3522 (($) NIL (|has| $ (-352)))) (-3870 (((-111) $) NIL (|has| $ (-352)))) (-2055 (($ $ (-874)) NIL (|has| $ (-352))) (($ $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-3199 (((-1113 $) $ (-874)) NIL (|has| $ (-352))) (((-1113 $) $) NIL)) (-2334 (((-874) $) NIL)) (-1671 (((-1113 $) $) NIL (|has| $ (-352)))) (-2728 (((-3 (-1113 $) "failed") $ $) NIL (|has| $ (-352))) (((-1113 $) $) NIL (|has| $ (-352)))) (-2841 (($ $ (-1113 $)) NIL (|has| $ (-352)))) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL T CONST)) (-2009 (($ (-874)) NIL)) (-2933 (((-111) $) NIL)) (-2528 (((-1064) $) NIL)) (-1524 (($) NIL (|has| $ (-352)))) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL)) (-3622 (((-402 $) $) NIL)) (-2685 (((-874)) NIL) (((-793 (-874))) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3030 (((-3 (-731) "failed") $ $) NIL) (((-731) $) NIL)) (-1839 (((-131)) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-2872 (((-874) $) NIL) (((-793 (-874)) $) NIL)) (-2529 (((-1113 $)) NIL)) (-3553 (($) NIL)) (-3254 (($) NIL (|has| $ (-352)))) (-1484 (((-649 $) (-1200 $)) NIL) (((-1200 $) $) NIL)) (-3996 (((-537) $) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3654 (((-731)) NIL)) (-2122 (((-1200 $) (-874)) NIL) (((-1200 $)) NIL)) (-3276 (((-111) $ $) NIL)) (-3042 (((-111) $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-1791 (($ $ (-731)) NIL (|has| $ (-352))) (($ $) NIL (|has| $ (-352)))) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-863 |#1|) (-13 (-333) (-313 $) (-580 (-537))) (-874)) (T -863)) +NIL +(-13 (-333) (-313 $) (-580 (-537))) +((-2861 (((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#5|)) "failed") (-320 |#2| |#3| |#4| |#5|)) 79)) (-3942 (((-111) (-320 |#2| |#3| |#4| |#5|)) 17)) (-4231 (((-3 (-731) "failed") (-320 |#2| |#3| |#4| |#5|)) 15))) +(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 |#2| |#3| |#4| |#5|))) (-15 -3942 ((-111) (-320 |#2| |#3| |#4| |#5|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#5|)) "failed") (-320 |#2| |#3| |#4| |#5|)))) (-13 (-807) (-529) (-989 (-537))) (-414 |#1|) (-1176 |#2|) (-1176 (-391 |#3|)) (-326 |#2| |#3| |#4|)) (T -864)) +((-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *8))) (-5 *1 (-864 *4 *5 *6 *7 *8)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-111)) (-5 *1 (-864 *4 *5 *6 *7 *8)))) (-4231 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-731)) (-5 *1 (-864 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 |#2| |#3| |#4| |#5|))) (-15 -3942 ((-111) (-320 |#2| |#3| |#4| |#5|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#5|)) "failed") (-320 |#2| |#3| |#4| |#5|)))) +((-2861 (((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#3|)) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)) 56)) (-3942 (((-111) (-320 (-391 (-537)) |#1| |#2| |#3|)) 16)) (-4231 (((-3 (-731) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)) 14))) +(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -3942 ((-111) (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#3|)) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)))) (-1176 (-391 (-537))) (-1176 (-391 |#1|)) (-326 (-391 (-537)) |#1| |#2|)) (T -865)) +((-2861 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *6))) (-5 *1 (-865 *4 *5 *6)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-865 *4 *5 *6)))) (-4231 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-731)) (-5 *1 (-865 *4 *5 *6))))) +(-10 -7 (-15 -4231 ((-3 (-731) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -3942 ((-111) (-320 (-391 (-537)) |#1| |#2| |#3|))) (-15 -2861 ((-3 (-2 (|:| -4231 (-731)) (|:| -2066 |#3|)) "failed") (-320 (-391 (-537)) |#1| |#2| |#3|)))) +((-3906 ((|#2| |#2|) 26)) (-3652 (((-537) (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))))) 15)) (-2481 (((-874) (-537)) 35)) (-3905 (((-537) |#2|) 42)) (-3662 (((-537) |#2|) 21) (((-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))) |#1|) 20))) +(((-866 |#1| |#2|) (-10 -7 (-15 -2481 ((-874) (-537))) (-15 -3662 ((-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))) |#1|)) (-15 -3662 ((-537) |#2|)) (-15 -3652 ((-537) (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))))) (-15 -3905 ((-537) |#2|)) (-15 -3906 (|#2| |#2|))) (-1176 (-391 (-537))) (-1176 (-391 |#1|))) (T -866)) +((-3906 (*1 *2 *2) (-12 (-4 *3 (-1176 (-391 (-537)))) (-5 *1 (-866 *3 *2)) (-4 *2 (-1176 (-391 *3))))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) (-4 *3 (-1176 (-391 *4))))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))))) (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1176 (-391 *4))))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) (-4 *3 (-1176 (-391 *4))))) (-3662 (*1 *2 *3) (-12 (-4 *3 (-1176 (-391 (-537)))) (-5 *2 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))) (-5 *1 (-866 *3 *4)) (-4 *4 (-1176 (-391 *3))))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-537)) (-4 *4 (-1176 (-391 *3))) (-5 *2 (-874)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1176 (-391 *4)))))) +(-10 -7 (-15 -2481 ((-874) (-537))) (-15 -3662 ((-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))) |#1|)) (-15 -3662 ((-537) |#2|)) (-15 -3652 ((-537) (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))))) (-15 -3905 ((-537) |#2|)) (-15 -3906 (|#2| |#2|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 ((|#1| $) 81)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3563 (($ $ $) NIL)) (-3490 (((-3 $ "failed") $) 75)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-1973 (($ |#1| (-402 |#1|)) 73)) (-3976 (((-1113 |#1|) |#1| |#1|) 41)) (-1959 (($ $) 49)) (-2836 (((-111) $) NIL)) (-2230 (((-537) $) 78)) (-2149 (($ $ (-537)) 80)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-4022 ((|#1| $) 77)) (-3485 (((-402 |#1|) $) 76)) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) 74)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3556 (($ $) 39)) (-2341 (((-816) $) 99) (($ (-537)) 54) (($ $) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 31) (((-391 |#1|) $) 59) (($ (-391 (-402 |#1|))) 67)) (-3654 (((-731)) 52)) (-3276 (((-111) $ $) NIL)) (-2928 (($) 23 T CONST)) (-2943 (($) 12 T CONST)) (-2244 (((-111) $ $) 68)) (-2340 (($ $ $) NIL)) (-2329 (($ $) 88) (($ $ $) NIL)) (-2318 (($ $ $) 38)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 90) (($ $ $) 37) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-867 |#1|) (-13 (-347) (-37 |#1|) (-10 -8 (-15 -2341 ((-391 |#1|) $)) (-15 -2341 ($ (-391 (-402 |#1|)))) (-15 -3556 ($ $)) (-15 -3485 ((-402 |#1|) $)) (-15 -4022 (|#1| $)) (-15 -2149 ($ $ (-537))) (-15 -2230 ((-537) $)) (-15 -3976 ((-1113 |#1|) |#1| |#1|)) (-15 -1959 ($ $)) (-15 -1973 ($ |#1| (-402 |#1|))) (-15 -1874 (|#1| $)))) (-291)) (T -867)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-391 (-402 *3))) (-4 *3 (-291)) (-5 *1 (-867 *3)))) (-3556 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-4022 (*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-3976 (*1 *2 *3 *3) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) (-1959 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) (-1973 (*1 *1 *2 *3) (-12 (-5 *3 (-402 *2)) (-4 *2 (-291)) (-5 *1 (-867 *2)))) (-1874 (*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) +(-13 (-347) (-37 |#1|) (-10 -8 (-15 -2341 ((-391 |#1|) $)) (-15 -2341 ($ (-391 (-402 |#1|)))) (-15 -3556 ($ $)) (-15 -3485 ((-402 |#1|) $)) (-15 -4022 (|#1| $)) (-15 -2149 ($ $ (-537))) (-15 -2230 ((-537) $)) (-15 -3976 ((-1113 |#1|) |#1| |#1|)) (-15 -1959 ($ $)) (-15 -1973 ($ |#1| (-402 |#1|))) (-15 -1874 (|#1| $)))) +((-1973 (((-51) (-905 |#1|) (-402 (-905 |#1|)) (-1117)) 17) (((-51) (-391 (-905 |#1|)) (-1117)) 18))) +(((-868 |#1|) (-10 -7 (-15 -1973 ((-51) (-391 (-905 |#1|)) (-1117))) (-15 -1973 ((-51) (-905 |#1|) (-402 (-905 |#1|)) (-1117)))) (-13 (-291) (-141))) (T -868)) +((-1973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-402 (-905 *6))) (-5 *5 (-1117)) (-5 *3 (-905 *6)) (-4 *6 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *6)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *5))))) +(-10 -7 (-15 -1973 ((-51) (-391 (-905 |#1|)) (-1117))) (-15 -1973 ((-51) (-905 |#1|) (-402 (-905 |#1|)) (-1117)))) +((-3995 ((|#4| (-606 |#4|)) 121) (((-1113 |#4|) (-1113 |#4|) (-1113 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2211 (((-1113 |#4|) (-606 (-1113 |#4|))) 114) (((-1113 |#4|) (-1113 |#4|) (-1113 |#4|)) 50) ((|#4| (-606 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-869 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2211 (|#4| |#4| |#4|)) (-15 -2211 (|#4| (-606 |#4|))) (-15 -2211 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -2211 ((-1113 |#4|) (-606 (-1113 |#4|)))) (-15 -3995 (|#4| |#4| |#4|)) (-15 -3995 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -3995 (|#4| (-606 |#4|)))) (-753) (-807) (-291) (-902 |#3| |#1| |#2|)) (T -869)) +((-3995 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)))) (-3995 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) (-3995 (*1 *2 *2 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-606 (-1113 *7))) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-1113 *7)) (-5 *1 (-869 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) (-2211 (*1 *2 *2 *2) (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)))) (-2211 (*1 *2 *2 *2) (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4))))) +(-10 -7 (-15 -2211 (|#4| |#4| |#4|)) (-15 -2211 (|#4| (-606 |#4|))) (-15 -2211 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -2211 ((-1113 |#4|) (-606 (-1113 |#4|)))) (-15 -3995 (|#4| |#4| |#4|)) (-15 -3995 ((-1113 |#4|) (-1113 |#4|) (-1113 |#4|))) (-15 -3995 (|#4| (-606 |#4|)))) +((-3950 (((-857 (-537)) (-924)) 23) (((-857 (-537)) (-606 (-537))) 20)) (-4154 (((-857 (-537)) (-606 (-537))) 48) (((-857 (-537)) (-874)) 49)) (-1969 (((-857 (-537))) 24)) (-1330 (((-857 (-537))) 38) (((-857 (-537)) (-606 (-537))) 37)) (-2146 (((-857 (-537))) 36) (((-857 (-537)) (-606 (-537))) 35)) (-2118 (((-857 (-537))) 34) (((-857 (-537)) (-606 (-537))) 33)) (-2358 (((-857 (-537))) 32) (((-857 (-537)) (-606 (-537))) 31)) (-2782 (((-857 (-537))) 30) (((-857 (-537)) (-606 (-537))) 29)) (-3788 (((-857 (-537))) 40) (((-857 (-537)) (-606 (-537))) 39)) (-3607 (((-857 (-537)) (-606 (-537))) 52) (((-857 (-537)) (-874)) 53)) (-2552 (((-857 (-537)) (-606 (-537))) 50) (((-857 (-537)) (-874)) 51)) (-2845 (((-857 (-537)) (-606 (-537))) 46) (((-857 (-537)) (-874)) 47)) (-3612 (((-857 (-537)) (-606 (-874))) 43))) +(((-870) (-10 -7 (-15 -4154 ((-857 (-537)) (-874))) (-15 -4154 ((-857 (-537)) (-606 (-537)))) (-15 -2845 ((-857 (-537)) (-874))) (-15 -2845 ((-857 (-537)) (-606 (-537)))) (-15 -3612 ((-857 (-537)) (-606 (-874)))) (-15 -2552 ((-857 (-537)) (-874))) (-15 -2552 ((-857 (-537)) (-606 (-537)))) (-15 -3607 ((-857 (-537)) (-874))) (-15 -3607 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)))) (-15 -2358 ((-857 (-537)) (-606 (-537)))) (-15 -2358 ((-857 (-537)))) (-15 -2118 ((-857 (-537)) (-606 (-537)))) (-15 -2118 ((-857 (-537)))) (-15 -2146 ((-857 (-537)) (-606 (-537)))) (-15 -2146 ((-857 (-537)))) (-15 -1330 ((-857 (-537)) (-606 (-537)))) (-15 -1330 ((-857 (-537)))) (-15 -3788 ((-857 (-537)) (-606 (-537)))) (-15 -3788 ((-857 (-537)))) (-15 -1969 ((-857 (-537)))) (-15 -3950 ((-857 (-537)) (-606 (-537)))) (-15 -3950 ((-857 (-537)) (-924))))) (T -870)) +((-3950 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-1969 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3788 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-1330 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2146 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2118 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2358 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2782 (*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-606 (-874))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(-10 -7 (-15 -4154 ((-857 (-537)) (-874))) (-15 -4154 ((-857 (-537)) (-606 (-537)))) (-15 -2845 ((-857 (-537)) (-874))) (-15 -2845 ((-857 (-537)) (-606 (-537)))) (-15 -3612 ((-857 (-537)) (-606 (-874)))) (-15 -2552 ((-857 (-537)) (-874))) (-15 -2552 ((-857 (-537)) (-606 (-537)))) (-15 -3607 ((-857 (-537)) (-874))) (-15 -3607 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)) (-606 (-537)))) (-15 -2782 ((-857 (-537)))) (-15 -2358 ((-857 (-537)) (-606 (-537)))) (-15 -2358 ((-857 (-537)))) (-15 -2118 ((-857 (-537)) (-606 (-537)))) (-15 -2118 ((-857 (-537)))) (-15 -2146 ((-857 (-537)) (-606 (-537)))) (-15 -2146 ((-857 (-537)))) (-15 -1330 ((-857 (-537)) (-606 (-537)))) (-15 -1330 ((-857 (-537)))) (-15 -3788 ((-857 (-537)) (-606 (-537)))) (-15 -3788 ((-857 (-537)))) (-15 -1969 ((-857 (-537)))) (-15 -3950 ((-857 (-537)) (-606 (-537)))) (-15 -3950 ((-857 (-537)) (-924)))) +((-2406 (((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))) 12)) (-4162 (((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))) 11))) +(((-871 |#1|) (-10 -7 (-15 -4162 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -2406 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))))) (-435)) (T -871)) +((-2406 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) (-5 *1 (-871 *4)))) (-4162 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) (-5 *1 (-871 *4))))) +(-10 -7 (-15 -4162 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -2406 ((-606 (-905 |#1|)) (-606 (-905 |#1|)) (-606 (-1117))))) +((-2341 (((-300 |#1|) (-460)) 16))) +(((-872 |#1|) (-10 -7 (-15 -2341 ((-300 |#1|) (-460)))) (-13 (-807) (-529))) (T -872)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-300 *4)) (-5 *1 (-872 *4)) (-4 *4 (-13 (-807) (-529)))))) +(-10 -7 (-15 -2341 ((-300 |#1|) (-460)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-873) (-134)) (T -873)) +((-4121 (*1 *2 *3) (-12 (-4 *1 (-873)) (-5 *2 (-2 (|:| -3449 (-606 *1)) (|:| -1524 *1))) (-5 *3 (-606 *1)))) (-4245 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-873))))) +(-13 (-435) (-10 -8 (-15 -4121 ((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $))) (-15 -4245 ((-3 (-606 $) "failed") (-606 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2211 (($ $ $) NIL)) (-2341 (((-816) $) NIL)) (-2943 (($) NIL T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ $ $) NIL))) +(((-874) (-13 (-754) (-687) (-10 -8 (-15 -2211 ($ $ $)) (-6 (-4302 "*"))))) (T -874)) +((-2211 (*1 *1 *1 *1) (-5 *1 (-874)))) +(-13 (-754) (-687) (-10 -8 (-15 -2211 ($ $ $)) (-6 (-4302 "*")))) +((-2823 ((|#2| (-606 |#1|) (-606 |#1|)) 24))) +(((-875 |#1| |#2|) (-10 -7 (-15 -2823 (|#2| (-606 |#1|) (-606 |#1|)))) (-347) (-1176 |#1|)) (T -875)) +((-2823 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-4 *2 (-1176 *4)) (-5 *1 (-875 *4 *2))))) +(-10 -7 (-15 -2823 (|#2| (-606 |#1|) (-606 |#1|)))) +((-3568 (((-1113 |#2|) (-606 |#2|) (-606 |#2|)) 17) (((-1173 |#1| |#2|) (-1173 |#1| |#2|) (-606 |#2|) (-606 |#2|)) 13))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3568 ((-1173 |#1| |#2|) (-1173 |#1| |#2|) (-606 |#2|) (-606 |#2|))) (-15 -3568 ((-1113 |#2|) (-606 |#2|) (-606 |#2|)))) (-1117) (-347)) (T -876)) +((-3568 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *5)) (-4 *5 (-347)) (-5 *2 (-1113 *5)) (-5 *1 (-876 *4 *5)) (-14 *4 (-1117)))) (-3568 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4 *5)) (-5 *3 (-606 *5)) (-14 *4 (-1117)) (-4 *5 (-347)) (-5 *1 (-876 *4 *5))))) +(-10 -7 (-15 -3568 ((-1173 |#1| |#2|) (-1173 |#1| |#2|) (-606 |#2|) (-606 |#2|))) (-15 -3568 ((-1113 |#2|) (-606 |#2|) (-606 |#2|)))) +((-3429 (((-537) (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100)) 139)) (-3554 ((|#4| |#4|) 155)) (-1934 (((-606 (-391 (-905 |#1|))) (-606 (-1117))) 118)) (-2742 (((-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-606 (-606 |#4|)) (-731) (-731) (-537)) 75)) (-2865 (((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-606 |#4|)) 59)) (-3181 (((-649 |#4|) (-649 |#4|) (-606 |#4|)) 55)) (-4044 (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100)) 151)) (-2862 (((-537) (-649 |#4|) (-874) (-1100)) 132) (((-537) (-649 |#4|) (-606 (-1117)) (-874) (-1100)) 131) (((-537) (-649 |#4|) (-606 |#4|) (-874) (-1100)) 130) (((-537) (-649 |#4|) (-1100)) 127) (((-537) (-649 |#4|) (-606 (-1117)) (-1100)) 126) (((-537) (-649 |#4|) (-606 |#4|) (-1100)) 125) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-874)) 124) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)) (-874)) 123) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|) (-874)) 122) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|)) 120) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117))) 119) (((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|)) 115)) (-1504 ((|#4| (-905 |#1|)) 68)) (-2790 (((-111) (-606 |#4|) (-606 (-606 |#4|))) 152)) (-1332 (((-606 (-606 (-537))) (-537) (-537)) 129)) (-3504 (((-606 (-606 |#4|)) (-606 (-606 |#4|))) 88)) (-3994 (((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|))))) 86)) (-2975 (((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|))))) 85)) (-4213 (((-111) (-606 (-905 |#1|))) 17) (((-111) (-606 |#4|)) 13)) (-2739 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-606 |#4|)) (|:| |n0| (-606 |#4|))) (-606 |#4|) (-606 |#4|)) 71)) (-2873 (((-606 |#4|) |#4|) 49)) (-2934 (((-606 (-391 (-905 |#1|))) (-606 |#4|)) 114) (((-649 (-391 (-905 |#1|))) (-649 |#4|)) 56) (((-391 (-905 |#1|)) |#4|) 111)) (-1701 (((-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))))) (|:| |rgsz| (-537))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-731) (-1100) (-537)) 93)) (-4265 (((-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))) (-649 |#4|) (-731)) 84)) (-2582 (((-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-649 |#4|) (-731)) 101)) (-3624 (((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| -2756 (-649 (-391 (-905 |#1|)))) (|:| |vec| (-606 (-391 (-905 |#1|)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) 48))) +(((-877 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-874))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-874) (-1100))) (-15 -3429 ((-537) (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -4044 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -1701 ((-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))))) (|:| |rgsz| (-537))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-731) (-1100) (-537))) (-15 -2934 ((-391 (-905 |#1|)) |#4|)) (-15 -2934 ((-649 (-391 (-905 |#1|))) (-649 |#4|))) (-15 -2934 ((-606 (-391 (-905 |#1|))) (-606 |#4|))) (-15 -1934 ((-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1504 (|#4| (-905 |#1|))) (-15 -2739 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-606 |#4|)) (|:| |n0| (-606 |#4|))) (-606 |#4|) (-606 |#4|))) (-15 -4265 ((-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))) (-649 |#4|) (-731))) (-15 -2865 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-606 |#4|))) (-15 -3624 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| -2756 (-649 (-391 (-905 |#1|)))) (|:| |vec| (-606 (-391 (-905 |#1|)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (-15 -2873 ((-606 |#4|) |#4|)) (-15 -2975 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3994 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3504 ((-606 (-606 |#4|)) (-606 (-606 |#4|)))) (-15 -1332 ((-606 (-606 (-537))) (-537) (-537))) (-15 -2790 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2582 ((-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-649 |#4|) (-731))) (-15 -3181 ((-649 |#4|) (-649 |#4|) (-606 |#4|))) (-15 -2742 ((-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-606 (-606 |#4|)) (-731) (-731) (-537))) (-15 -3554 (|#4| |#4|)) (-15 -4213 ((-111) (-606 |#4|))) (-15 -4213 ((-111) (-606 (-905 |#1|))))) (-13 (-291) (-141)) (-13 (-807) (-580 (-1117))) (-753) (-902 |#1| |#3| |#2|)) (T -877)) +((-4213 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *4 *5 *6 *7)))) (-3554 (*1 *2 *2) (-12 (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *2)) (-4 *2 (-902 *3 *5 *4)))) (-2742 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-5 *4 (-649 *12)) (-5 *5 (-606 (-391 (-905 *9)))) (-5 *6 (-606 (-606 *12))) (-5 *7 (-731)) (-5 *8 (-537)) (-4 *9 (-13 (-291) (-141))) (-4 *12 (-902 *9 *11 *10)) (-4 *10 (-13 (-807) (-580 (-1117)))) (-4 *11 (-753)) (-5 *2 (-2 (|:| |eqzro| (-606 *12)) (|:| |neqzro| (-606 *12)) (|:| |wcond| (-606 (-905 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *9)))) (|:| -2122 (-606 (-1200 (-391 (-905 *9))))))))) (-5 *1 (-877 *9 *10 *11 *12)))) (-3181 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7)))) (-2582 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-731)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (-5 *1 (-877 *5 *6 *7 *8)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *5 *6 *7 *8)))) (-1332 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-606 (-537)))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *6 *5)))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-606 (-606 *6))) (-4 *6 (-902 *3 *5 *4)) (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *6)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 *7))))) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) (-5 *1 (-877 *4 *5 *6 *7)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 *7))))) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) (-5 *1 (-877 *4 *5 *6 *7)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 *3)) (-5 *1 (-877 *4 *5 *6 *3)) (-4 *3 (-902 *4 *6 *5)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2756 (-649 (-391 (-905 *4)))) (|:| |vec| (-606 (-391 (-905 *4)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-2865 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) (-5 *3 (-606 *7)) (-4 *4 (-13 (-291) (-141))) (-4 *7 (-902 *4 *6 *5)) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7)))) (-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 *8))))) (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-731)))) (-2739 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-4 *7 (-902 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-606 *7)) (|:| |n0| (-606 *7)))) (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-291) (-141))) (-4 *2 (-902 *4 *6 *5)) (-5 *1 (-877 *4 *5 *6 *2)) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-649 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-391 (-905 *4))) (-5 *1 (-877 *4 *5 *6 *3)) (-4 *3 (-902 *4 *6 *5)))) (-1701 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-649 *11)) (-5 *4 (-606 (-391 (-905 *8)))) (-5 *5 (-731)) (-5 *6 (-1100)) (-4 *8 (-13 (-291) (-141))) (-4 *11 (-902 *8 *10 *9)) (-4 *9 (-13 (-807) (-580 (-1117)))) (-4 *10 (-753)) (-5 *2 (-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 *11)) (|:| |neqzro| (-606 *11)) (|:| |wcond| (-606 (-905 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *8)))) (|:| -2122 (-606 (-1200 (-391 (-905 *8)))))))))) (|:| |rgsz| (-537)))) (-5 *1 (-877 *8 *9 *10 *11)) (-5 *7 (-537)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) (|:| |wcond| (-606 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5)))) (-3429 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *4 (-1100)) (-4 *5 (-13 (-291) (-141))) (-4 *8 (-902 *5 *7 *6)) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-874)) (-5 *5 (-1100)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *7 *8 *9 *10)))) (-2862 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 *10)) (-5 *5 (-874)) (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *7 *8 *9 *10)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-1100)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-1100)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 *9)) (-5 *5 (-1100)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-874)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) (|:| |wcond| (-606 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) (-5 *1 (-877 *6 *7 *8 *9)))) (-2862 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *5 (-874)) (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) (|:| |wcond| (-606 (-905 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) (-5 *1 (-877 *6 *7 *8 *9)) (-5 *4 (-606 *9)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) (|:| |wcond| (-606 (-905 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) (-5 *1 (-877 *4 *5 *6 *7)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-606 (-1117))) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *1 (-877 *5 *6 *7 *8)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-606 (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) (|:| |wcond| (-606 (-905 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) +(-10 -7 (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 |#4|) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-606 (-1117)) (-874))) (-15 -2862 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-649 |#4|) (-874))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 |#4|) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-606 (-1117)) (-874) (-1100))) (-15 -2862 ((-537) (-649 |#4|) (-874) (-1100))) (-15 -3429 ((-537) (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -4044 ((-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|))))))))) (-1100))) (-15 -1701 ((-2 (|:| |rgl| (-606 (-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))))) (|:| |rgsz| (-537))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-731) (-1100) (-537))) (-15 -2934 ((-391 (-905 |#1|)) |#4|)) (-15 -2934 ((-649 (-391 (-905 |#1|))) (-649 |#4|))) (-15 -2934 ((-606 (-391 (-905 |#1|))) (-606 |#4|))) (-15 -1934 ((-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1504 (|#4| (-905 |#1|))) (-15 -2739 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-606 |#4|)) (|:| |n0| (-606 |#4|))) (-606 |#4|) (-606 |#4|))) (-15 -4265 ((-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))) (-649 |#4|) (-731))) (-15 -2865 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-606 |#4|))) (-15 -3624 ((-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))) (-2 (|:| -2756 (-649 (-391 (-905 |#1|)))) (|:| |vec| (-606 (-391 (-905 |#1|)))) (|:| -3705 (-731)) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (-15 -2873 ((-606 |#4|) |#4|)) (-15 -2975 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3994 ((-731) (-606 (-2 (|:| -3705 (-731)) (|:| |eqns| (-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))))) (|:| |fgb| (-606 |#4|)))))) (-15 -3504 ((-606 (-606 |#4|)) (-606 (-606 |#4|)))) (-15 -1332 ((-606 (-606 (-537))) (-537) (-537))) (-15 -2790 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2582 ((-606 (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) (-649 |#4|) (-731))) (-15 -3181 ((-649 |#4|) (-649 |#4|) (-606 |#4|))) (-15 -2742 ((-2 (|:| |eqzro| (-606 |#4|)) (|:| |neqzro| (-606 |#4|)) (|:| |wcond| (-606 (-905 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1200 (-391 (-905 |#1|)))) (|:| -2122 (-606 (-1200 (-391 (-905 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537)))) (-649 |#4|) (-606 (-391 (-905 |#1|))) (-606 (-606 |#4|)) (-731) (-731) (-537))) (-15 -3554 (|#4| |#4|)) (-15 -4213 ((-111) (-606 |#4|))) (-15 -4213 ((-111) (-606 (-905 |#1|))))) +((-1714 (((-880) |#1| (-1117)) 17) (((-880) |#1| (-1117) (-1040 (-210))) 21)) (-1254 (((-880) |#1| |#1| (-1117) (-1040 (-210))) 19) (((-880) |#1| (-1117) (-1040 (-210))) 15))) +(((-878 |#1|) (-10 -7 (-15 -1254 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1254 ((-880) |#1| |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117)))) (-580 (-513))) (T -878)) +((-1714 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) (-1714 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) (-1254 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) (-1254 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) (-5 *1 (-878 *3)) (-4 *3 (-580 (-513)))))) +(-10 -7 (-15 -1254 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1254 ((-880) |#1| |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117) (-1040 (-210)))) (-15 -1714 ((-880) |#1| (-1117)))) +((-4052 (($ $ (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 70)) (-4070 (((-1040 (-210)) $) 40)) (-4059 (((-1040 (-210)) $) 39)) (-4050 (((-1040 (-210)) $) 38)) (-1474 (((-606 (-606 (-210))) $) 43)) (-3857 (((-1040 (-210)) $) 41)) (-3939 (((-537) (-537)) 32)) (-1756 (((-537) (-537)) 28)) (-3094 (((-537) (-537)) 30)) (-2171 (((-111) (-111)) 35)) (-3080 (((-537)) 31)) (-3878 (($ $ (-1040 (-210))) 73) (($ $) 74)) (-3402 (($ (-1 (-896 (-210)) (-210)) (-1040 (-210))) 78) (($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 79)) (-1254 (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210))) 81) (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 82) (($ $ (-1040 (-210))) 76)) (-3887 (((-537)) 36)) (-4188 (((-537)) 27)) (-3369 (((-537)) 29)) (-1477 (((-606 (-606 (-896 (-210)))) $) 95)) (-1554 (((-111) (-111)) 37)) (-2341 (((-816) $) 94)) (-3916 (((-111)) 34))) +(((-879) (-13 (-927) (-10 -8 (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -1474 ((-606 (-606 (-210))) $)) (-15 -4188 ((-537))) (-15 -1756 ((-537) (-537))) (-15 -3369 ((-537))) (-15 -3094 ((-537) (-537))) (-15 -3080 ((-537))) (-15 -3939 ((-537) (-537))) (-15 -3916 ((-111))) (-15 -2171 ((-111) (-111))) (-15 -3887 ((-537))) (-15 -1554 ((-111) (-111)))))) (T -879)) +((-3402 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-3402 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-1254 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-1254 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-879)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-4052 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-3878 (*1 *1 *1) (-5 *1 (-879))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-879)))) (-4188 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3369 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3080 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-3916 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879)))) (-3887 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) +(-13 (-927) (-10 -8 (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -1474 ((-606 (-606 (-210))) $)) (-15 -4188 ((-537))) (-15 -1756 ((-537) (-537))) (-15 -3369 ((-537))) (-15 -3094 ((-537) (-537))) (-15 -3080 ((-537))) (-15 -3939 ((-537) (-537))) (-15 -3916 ((-111))) (-15 -2171 ((-111) (-111))) (-15 -3887 ((-537))) (-15 -1554 ((-111) (-111))))) +((-4052 (($ $ (-1040 (-210))) 70) (($ $ (-1040 (-210)) (-1040 (-210))) 71)) (-4059 (((-1040 (-210)) $) 44)) (-4050 (((-1040 (-210)) $) 43)) (-3857 (((-1040 (-210)) $) 45)) (-3685 (((-537) (-537)) 37)) (-2962 (((-537) (-537)) 33)) (-3175 (((-537) (-537)) 35)) (-2431 (((-111) (-111)) 39)) (-1709 (((-537)) 36)) (-3878 (($ $ (-1040 (-210))) 74) (($ $) 75)) (-3402 (($ (-1 (-896 (-210)) (-210)) (-1040 (-210))) 84) (($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 85)) (-1714 (($ (-1 (-210) (-210)) (-1040 (-210))) 92) (($ (-1 (-210) (-210))) 95)) (-1254 (($ (-1 (-210) (-210)) (-1040 (-210))) 79) (($ (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210))) 80) (($ (-606 (-1 (-210) (-210))) (-1040 (-210))) 87) (($ (-606 (-1 (-210) (-210))) (-1040 (-210)) (-1040 (-210))) 88) (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210))) 81) (($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210))) 82) (($ $ (-1040 (-210))) 76)) (-1264 (((-111) $) 40)) (-3989 (((-537)) 41)) (-2634 (((-537)) 32)) (-1513 (((-537)) 34)) (-1477 (((-606 (-606 (-896 (-210)))) $) 23)) (-4220 (((-111) (-111)) 42)) (-2341 (((-816) $) 106)) (-3756 (((-111)) 38))) +(((-880) (-13 (-908) (-10 -8 (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -1264 ((-111) $)) (-15 -4052 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -2634 ((-537))) (-15 -2962 ((-537) (-537))) (-15 -1513 ((-537))) (-15 -3175 ((-537) (-537))) (-15 -1709 ((-537))) (-15 -3685 ((-537) (-537))) (-15 -3756 ((-111))) (-15 -2431 ((-111) (-111))) (-15 -3989 ((-537))) (-15 -4220 ((-111) (-111)))))) (T -880)) +((-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *3) (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-3402 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-3402 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1714 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) (-5 *1 (-880)))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-880)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-880)))) (-4052 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-4052 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-3878 (*1 *1 *1) (-5 *1 (-880))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) (-2634 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-2962 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-1513 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-1709 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-3756 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880)))) (-3989 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) +(-13 (-908) (-10 -8 (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)))) (-15 -1254 ($ (-606 (-1 (-210) (-210))) (-1040 (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1254 ($ (-1 (-210) (-210)) (-1 (-210) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)))) (-15 -3402 ($ (-1 (-896 (-210)) (-210)) (-1040 (-210)) (-1040 (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)) (-1040 (-210)))) (-15 -1714 ($ (-1 (-210) (-210)))) (-15 -1254 ($ $ (-1040 (-210)))) (-15 -1264 ((-111) $)) (-15 -4052 ($ $ (-1040 (-210)))) (-15 -4052 ($ $ (-1040 (-210)) (-1040 (-210)))) (-15 -3878 ($ $ (-1040 (-210)))) (-15 -3878 ($ $)) (-15 -3857 ((-1040 (-210)) $)) (-15 -2634 ((-537))) (-15 -2962 ((-537) (-537))) (-15 -1513 ((-537))) (-15 -3175 ((-537) (-537))) (-15 -1709 ((-537))) (-15 -3685 ((-537) (-537))) (-15 -3756 ((-111))) (-15 -2431 ((-111) (-111))) (-15 -3989 ((-537))) (-15 -4220 ((-111) (-111))))) +((-1634 (((-606 (-1040 (-210))) (-606 (-606 (-896 (-210))))) 24))) +(((-881) (-10 -7 (-15 -1634 ((-606 (-1040 (-210))) (-606 (-606 (-896 (-210)))))))) (T -881)) +((-1634 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-606 (-1040 (-210)))) (-5 *1 (-881))))) +(-10 -7 (-15 -1634 ((-606 (-1040 (-210))) (-606 (-606 (-896 (-210))))))) +((-1849 ((|#2| |#2|) 26)) (-2678 ((|#2| |#2|) 27)) (-2787 ((|#2| |#2|) 25)) (-3945 ((|#2| |#2| (-1100)) 24))) +(((-882 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2| (-1100))) (-15 -2787 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -2678 (|#2| |#2|))) (-807) (-414 |#1|)) (T -882)) +((-2678 (*1 *2 *2) (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) (-2787 (*1 *2 *2) (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-807)) (-5 *1 (-882 *4 *2)) (-4 *2 (-414 *4))))) +(-10 -7 (-15 -3945 (|#2| |#2| (-1100))) (-15 -2787 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -2678 (|#2| |#2|))) +((-1849 (((-300 (-537)) (-1117)) 16)) (-2678 (((-300 (-537)) (-1117)) 14)) (-2787 (((-300 (-537)) (-1117)) 12)) (-3945 (((-300 (-537)) (-1117) (-1100)) 19))) +(((-883) (-10 -7 (-15 -3945 ((-300 (-537)) (-1117) (-1100))) (-15 -2787 ((-300 (-537)) (-1117))) (-15 -1849 ((-300 (-537)) (-1117))) (-15 -2678 ((-300 (-537)) (-1117))))) (T -883)) +((-2678 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1100)) (-5 *2 (-300 (-537))) (-5 *1 (-883))))) +(-10 -7 (-15 -3945 ((-300 (-537)) (-1117) (-1100))) (-15 -2787 ((-300 (-537)) (-1117))) (-15 -1849 ((-300 (-537)) (-1117))) (-15 -2678 ((-300 (-537)) (-1117)))) +((-4196 (((-842 |#1| |#3|) |#2| (-845 |#1|) (-842 |#1| |#3|)) 25)) (-2821 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) +(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2821 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4196 ((-842 |#1| |#3|) |#2| (-845 |#1|) (-842 |#1| |#3|)))) (-1045) (-839 |#1|) (-13 (-1045) (-989 |#2|))) (T -884)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-13 (-1045) (-989 *3))) (-4 *3 (-839 *5)) (-5 *1 (-884 *5 *3 *6)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1045) (-989 *5))) (-4 *5 (-839 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-884 *4 *5 *6))))) +(-10 -7 (-15 -2821 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4196 ((-842 |#1| |#3|) |#2| (-845 |#1|) (-842 |#1| |#3|)))) +((-4196 (((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)) 30))) +(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-1045) (-13 (-529) (-807) (-839 |#1|)) (-13 (-414 |#2|) (-580 (-845 |#1|)) (-839 |#1|) (-989 (-578 $)))) (T -885)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-13 (-414 *6) (-580 *4) (-839 *5) (-989 (-578 $)))) (-5 *4 (-845 *5)) (-4 *6 (-13 (-529) (-807) (-839 *5))) (-5 *1 (-885 *5 *6 *3))))) +(-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) +((-4196 (((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|)) 13))) +(((-886 |#1|) (-10 -7 (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|)))) (-522)) (T -886)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 (-537) *3)) (-5 *4 (-845 (-537))) (-4 *3 (-522)) (-5 *1 (-886 *3))))) +(-10 -7 (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|)))) +((-4196 (((-842 |#1| |#2|) (-578 |#2|) (-845 |#1|) (-842 |#1| |#2|)) 54))) +(((-887 |#1| |#2|) (-10 -7 (-15 -4196 ((-842 |#1| |#2|) (-578 |#2|) (-845 |#1|) (-842 |#1| |#2|)))) (-1045) (-13 (-807) (-989 (-578 $)) (-580 (-845 |#1|)) (-839 |#1|))) (T -887)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *6)) (-5 *3 (-578 *6)) (-4 *5 (-1045)) (-4 *6 (-13 (-807) (-989 (-578 $)) (-580 *4) (-839 *5))) (-5 *4 (-845 *5)) (-5 *1 (-887 *5 *6))))) +(-10 -7 (-15 -4196 ((-842 |#1| |#2|) (-578 |#2|) (-845 |#1|) (-842 |#1| |#2|)))) +((-4196 (((-838 |#1| |#2| |#3|) |#3| (-845 |#1|) (-838 |#1| |#2| |#3|)) 15))) +(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-838 |#1| |#2| |#3|) |#3| (-845 |#1|) (-838 |#1| |#2| |#3|)))) (-1045) (-839 |#1|) (-627 |#2|)) (T -888)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-838 *5 *6 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-4 *6 (-839 *5)) (-4 *3 (-627 *6)) (-5 *1 (-888 *5 *6 *3))))) +(-10 -7 (-15 -4196 ((-838 |#1| |#2| |#3|) |#3| (-845 |#1|) (-838 |#1| |#2| |#3|)))) +((-4196 (((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|)) 17 (|has| |#3| (-839 |#1|))) (((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|) (-1 (-842 |#1| |#5|) |#3| (-845 |#1|) (-842 |#1| |#5|))) 16))) +(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|) (-1 (-842 |#1| |#5|) |#3| (-845 |#1|) (-842 |#1| |#5|)))) (IF (|has| |#3| (-839 |#1|)) (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|))) |%noBranch|)) (-1045) (-753) (-807) (-13 (-998) (-807) (-839 |#1|)) (-13 (-902 |#4| |#2| |#3|) (-580 (-845 |#1|)))) (T -889)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-13 (-902 *8 *6 *7) (-580 *4))) (-5 *4 (-845 *5)) (-4 *7 (-839 *5)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-13 (-998) (-807) (-839 *5))) (-5 *1 (-889 *5 *6 *7 *8 *3)))) (-4196 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-842 *6 *3) *8 (-845 *6) (-842 *6 *3))) (-4 *8 (-807)) (-5 *2 (-842 *6 *3)) (-5 *4 (-845 *6)) (-4 *6 (-1045)) (-4 *3 (-13 (-902 *9 *7 *8) (-580 *4))) (-4 *7 (-753)) (-4 *9 (-13 (-998) (-807) (-839 *6))) (-5 *1 (-889 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|) (-1 (-842 |#1| |#5|) |#3| (-845 |#1|) (-842 |#1| |#5|)))) (IF (|has| |#3| (-839 |#1|)) (-15 -4196 ((-842 |#1| |#5|) |#5| (-845 |#1|) (-842 |#1| |#5|))) |%noBranch|)) +((-2738 ((|#2| |#2| (-606 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) +(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -2738 (|#2| |#2| (-1 (-111) |#3|))) (-15 -2738 (|#2| |#2| (-606 (-1 (-111) |#3|))))) (-807) (-414 |#1|) (-1154)) (T -890)) +((-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) (-4 *4 (-807)) (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1154)) (-4 *4 (-807)) (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4))))) +(-10 -7 (-15 -2738 (|#2| |#2| (-1 (-111) |#3|))) (-15 -2738 (|#2| |#2| (-606 (-1 (-111) |#3|))))) +((-2738 (((-300 (-537)) (-1117) (-606 (-1 (-111) |#1|))) 18) (((-300 (-537)) (-1117) (-1 (-111) |#1|)) 15))) +(((-891 |#1|) (-10 -7 (-15 -2738 ((-300 (-537)) (-1117) (-1 (-111) |#1|))) (-15 -2738 ((-300 (-537)) (-1117) (-606 (-1 (-111) |#1|))))) (-1154)) (T -891)) +((-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) (-5 *2 (-300 (-537))) (-5 *1 (-891 *5)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1154)) (-5 *2 (-300 (-537))) (-5 *1 (-891 *5))))) +(-10 -7 (-15 -2738 ((-300 (-537)) (-1117) (-1 (-111) |#1|))) (-15 -2738 ((-300 (-537)) (-1117) (-606 (-1 (-111) |#1|))))) +((-4196 (((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)) 25))) +(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-1045) (-13 (-529) (-839 |#1|) (-580 (-845 |#1|))) (-945 |#2|)) (T -892)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-945 *6)) (-4 *6 (-13 (-529) (-839 *5) (-580 *4))) (-5 *4 (-845 *5)) (-5 *1 (-892 *5 *6 *3))))) +(-10 -7 (-15 -4196 ((-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) +((-4196 (((-842 |#1| (-1117)) (-1117) (-845 |#1|) (-842 |#1| (-1117))) 17))) +(((-893 |#1|) (-10 -7 (-15 -4196 ((-842 |#1| (-1117)) (-1117) (-845 |#1|) (-842 |#1| (-1117))))) (-1045)) (T -893)) +((-4196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-842 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-5 *1 (-893 *5))))) +(-10 -7 (-15 -4196 ((-842 |#1| (-1117)) (-1117) (-845 |#1|) (-842 |#1| (-1117))))) +((-4055 (((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) 33)) (-4196 (((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-1 |#3| (-606 |#3|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))) 32))) +(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-1 |#3| (-606 |#3|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-15 -4055 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))))) (-1045) (-13 (-998) (-807)) (-13 (-998) (-580 (-845 |#1|)) (-989 |#2|))) (T -894)) +((-4055 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-845 *6))) (-5 *5 (-1 (-842 *6 *8) *8 (-845 *6) (-842 *6 *8))) (-4 *6 (-1045)) (-4 *8 (-13 (-998) (-580 (-845 *6)) (-989 *7))) (-5 *2 (-842 *6 *8)) (-4 *7 (-13 (-998) (-807))) (-5 *1 (-894 *6 *7 *8)))) (-4196 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-606 (-845 *7))) (-5 *5 (-1 *9 (-606 *9))) (-5 *6 (-1 (-842 *7 *9) *9 (-845 *7) (-842 *7 *9))) (-4 *7 (-1045)) (-4 *9 (-13 (-998) (-580 (-845 *7)) (-989 *8))) (-5 *2 (-842 *7 *9)) (-5 *3 (-606 *9)) (-4 *8 (-13 (-998) (-807))) (-5 *1 (-894 *7 *8 *9))))) +(-10 -7 (-15 -4196 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-1 |#3| (-606 |#3|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|)))) (-15 -4055 ((-842 |#1| |#3|) (-606 |#3|) (-606 (-845 |#1|)) (-842 |#1| |#3|) (-1 (-842 |#1| |#3|) |#3| (-845 |#1|) (-842 |#1| |#3|))))) +((-3784 (((-1113 (-391 (-537))) (-537)) 63)) (-2127 (((-1113 (-537)) (-537)) 66)) (-3116 (((-1113 (-537)) (-537)) 60)) (-1746 (((-537) (-1113 (-537))) 55)) (-4012 (((-1113 (-391 (-537))) (-537)) 49)) (-1443 (((-1113 (-537)) (-537)) 38)) (-4136 (((-1113 (-537)) (-537)) 68)) (-2463 (((-1113 (-537)) (-537)) 67)) (-2930 (((-1113 (-391 (-537))) (-537)) 51))) +(((-895) (-10 -7 (-15 -2930 ((-1113 (-391 (-537))) (-537))) (-15 -2463 ((-1113 (-537)) (-537))) (-15 -4136 ((-1113 (-537)) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -4012 ((-1113 (-391 (-537))) (-537))) (-15 -1746 ((-537) (-1113 (-537)))) (-15 -3116 ((-1113 (-537)) (-537))) (-15 -2127 ((-1113 (-537)) (-537))) (-15 -3784 ((-1113 (-391 (-537))) (-537))))) (T -895)) +((-3784 (*1 *2 *3) (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537)))) (-2127 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-3116 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-537)) (-5 *1 (-895)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537)))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-4136 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) (-2930 (*1 *2 *3) (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) +(-10 -7 (-15 -2930 ((-1113 (-391 (-537))) (-537))) (-15 -2463 ((-1113 (-537)) (-537))) (-15 -4136 ((-1113 (-537)) (-537))) (-15 -1443 ((-1113 (-537)) (-537))) (-15 -4012 ((-1113 (-391 (-537))) (-537))) (-15 -1746 ((-537) (-1113 (-537)))) (-15 -3116 ((-1113 (-537)) (-537))) (-15 -2127 ((-1113 (-537)) (-537))) (-15 -3784 ((-1113 (-391 (-537))) (-537)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731)) NIL (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 11 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-2385 (($ (-606 |#1|)) 13)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) NIL (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) 8)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 10 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2259 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-2489 (((-111) $ (-731)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1540 (($ $ (-606 |#1|)) 26)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 20) (($ $ (-1167 (-537))) NIL)) (-3416 ((|#1| $ $) NIL (|has| |#1| (-998)))) (-1839 (((-874) $) 16)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2218 (($ $ $) 24)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513)))) (($ (-606 |#1|)) 17)) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2318 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-537) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-687))) (($ $ |#1|) NIL (|has| |#1| (-687)))) (-2258 (((-731) $) 14 (|has| $ (-6 -4300))))) +(((-896 |#1|) (-933 |#1|) (-998)) (T -896)) +NIL +(-933 |#1|) +((-3352 (((-463 |#1| |#2|) (-905 |#2|)) 20)) (-2215 (((-232 |#1| |#2|) (-905 |#2|)) 33)) (-2850 (((-905 |#2|) (-463 |#1| |#2|)) 25)) (-3277 (((-232 |#1| |#2|) (-463 |#1| |#2|)) 55)) (-2006 (((-905 |#2|) (-232 |#1| |#2|)) 30)) (-1679 (((-463 |#1| |#2|) (-232 |#1| |#2|)) 46))) +(((-897 |#1| |#2|) (-10 -7 (-15 -1679 ((-463 |#1| |#2|) (-232 |#1| |#2|))) (-15 -3277 ((-232 |#1| |#2|) (-463 |#1| |#2|))) (-15 -3352 ((-463 |#1| |#2|) (-905 |#2|))) (-15 -2850 ((-905 |#2|) (-463 |#1| |#2|))) (-15 -2006 ((-905 |#2|) (-232 |#1| |#2|))) (-15 -2215 ((-232 |#1| |#2|) (-905 |#2|)))) (-606 (-1117)) (-998)) (T -897)) +((-2215 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-232 *4 *5)) (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117))))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-463 *4 *5)) (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-232 *4 *5)) (-5 *1 (-897 *4 *5)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) (-5 *2 (-463 *4 *5)) (-5 *1 (-897 *4 *5))))) +(-10 -7 (-15 -1679 ((-463 |#1| |#2|) (-232 |#1| |#2|))) (-15 -3277 ((-232 |#1| |#2|) (-463 |#1| |#2|))) (-15 -3352 ((-463 |#1| |#2|) (-905 |#2|))) (-15 -2850 ((-905 |#2|) (-463 |#1| |#2|))) (-15 -2006 ((-905 |#2|) (-232 |#1| |#2|))) (-15 -2215 ((-232 |#1| |#2|) (-905 |#2|)))) +((-2621 (((-606 |#2|) |#2| |#2|) 10)) (-1785 (((-731) (-606 |#1|)) 37 (|has| |#1| (-805)))) (-1629 (((-606 |#2|) |#2|) 11)) (-2771 (((-731) (-606 |#1|) (-537) (-537)) 39 (|has| |#1| (-805)))) (-2635 ((|#1| |#2|) 32 (|has| |#1| (-805))))) +(((-898 |#1| |#2|) (-10 -7 (-15 -2621 ((-606 |#2|) |#2| |#2|)) (-15 -1629 ((-606 |#2|) |#2|)) (IF (|has| |#1| (-805)) (PROGN (-15 -2635 (|#1| |#2|)) (-15 -1785 ((-731) (-606 |#1|))) (-15 -2771 ((-731) (-606 |#1|) (-537) (-537)))) |%noBranch|)) (-347) (-1176 |#1|)) (T -898)) +((-2771 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-537)) (-4 *5 (-805)) (-4 *5 (-347)) (-5 *2 (-731)) (-5 *1 (-898 *5 *6)) (-4 *6 (-1176 *5)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-805)) (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1176 *4)))) (-2635 (*1 *2 *3) (-12 (-4 *2 (-347)) (-4 *2 (-805)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1176 *2)))) (-1629 (*1 *2 *3) (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1176 *4)))) (-2621 (*1 *2 *3 *3) (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -2621 ((-606 |#2|) |#2| |#2|)) (-15 -1629 ((-606 |#2|) |#2|)) (IF (|has| |#1| (-805)) (PROGN (-15 -2635 (|#1| |#2|)) (-15 -1785 ((-731) (-606 |#1|))) (-15 -2771 ((-731) (-606 |#1|) (-537) (-537)))) |%noBranch|)) +((-1612 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) +(((-899 |#1| |#2|) (-10 -7 (-15 -1612 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-998) (-998)) (T -899)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-905 *6)) (-5 *1 (-899 *5 *6))))) +(-10 -7 (-15 -1612 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) +((-3588 (((-1173 |#1| (-905 |#2|)) (-905 |#2|) (-1196 |#1|)) 18))) +(((-900 |#1| |#2|) (-10 -7 (-15 -3588 ((-1173 |#1| (-905 |#2|)) (-905 |#2|) (-1196 |#1|)))) (-1117) (-998)) (T -900)) +((-3588 (*1 *2 *3 *4) (-12 (-5 *4 (-1196 *5)) (-14 *5 (-1117)) (-4 *6 (-998)) (-5 *2 (-1173 *5 (-905 *6))) (-5 *1 (-900 *5 *6)) (-5 *3 (-905 *6))))) +(-10 -7 (-15 -3588 ((-1173 |#1| (-905 |#2|)) (-905 |#2|) (-1196 |#1|)))) +((-1394 (((-731) $) 71) (((-731) $ (-606 |#4|)) 74)) (-1395 (($ $) 173)) (-2414 (((-402 $) $) 165)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 116)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL) (((-537) $) NIL) ((|#4| $) 59)) (-4086 (($ $ $ |#4|) 76)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 106) (((-649 |#2|) (-649 $)) 99)) (-1351 (($ $) 180) (($ $ |#4|) 183)) (-3926 (((-606 $) $) 63)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 199) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 192)) (-1645 (((-606 $) $) 28)) (-3733 (($ |#2| |#3|) NIL) (($ $ |#4| (-731)) NIL) (($ $ (-606 |#4|) (-606 (-731))) 57)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#4|) 162)) (-3898 (((-3 (-606 $) "failed") $) 42)) (-2566 (((-3 (-606 $) "failed") $) 31)) (-2983 (((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-731))) "failed") $) 47)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 109)) (-1319 (((-402 (-1113 $)) (-1113 $)) 122)) (-3370 (((-402 (-1113 $)) (-1113 $)) 120)) (-3622 (((-402 $) $) 140)) (-4116 (($ $ (-606 (-278 $))) 21) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-606 |#4|) (-606 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-606 |#4|) (-606 $)) NIL)) (-2067 (($ $ |#4|) 78)) (-3996 (((-845 (-363)) $) 213) (((-845 (-537)) $) 206) (((-513) $) 221)) (-1835 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 154)) (-3500 ((|#2| $ |#3|) NIL) (($ $ |#4| (-731)) 52) (($ $ (-606 |#4|) (-606 (-731))) 55)) (-2644 (((-3 $ "failed") $) 156)) (-2263 (((-111) $ $) 186))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -1351 (|#1| |#1| |#4|)) (-15 -1835 (|#1| |#1| |#4|)) (-15 -2067 (|#1| |#1| |#4|)) (-15 -4086 (|#1| |#1| |#1| |#4|)) (-15 -3926 ((-606 |#1|) |#1|)) (-15 -1394 ((-731) |#1| (-606 |#4|))) (-15 -1394 ((-731) |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-731))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3733 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3733 (|#1| |#1| |#4| (-731))) (-15 -3932 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1645 ((-606 |#1|) |#1|)) (-15 -3500 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3500 (|#1| |#1| |#4| (-731))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -3733 (|#1| |#2| |#3|)) (-15 -3500 (|#2| |#1| |#3|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1351 (|#1| |#1|))) (-902 |#2| |#3| |#4|) (-998) (-753) (-807)) (T -901)) +NIL +(-10 -8 (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2644 ((-3 |#1| "failed") |#1|)) (-15 -2263 ((-111) |#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -2466 ((-3 (-1200 |#1|) "failed") (-649 |#1|))) (-15 -1351 (|#1| |#1| |#4|)) (-15 -1835 (|#1| |#1| |#4|)) (-15 -2067 (|#1| |#1| |#4|)) (-15 -4086 (|#1| |#1| |#1| |#4|)) (-15 -3926 ((-606 |#1|) |#1|)) (-15 -1394 ((-731) |#1| (-606 |#4|))) (-15 -1394 ((-731) |#1|)) (-15 -2983 ((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-731))) "failed") |#1|)) (-15 -3898 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -2566 ((-3 (-606 |#1|) "failed") |#1|)) (-15 -3733 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3733 (|#1| |#1| |#4| (-731))) (-15 -3932 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1645 ((-606 |#1|) |#1|)) (-15 -3500 (|#1| |#1| (-606 |#4|) (-606 (-731)))) (-15 -3500 (|#1| |#1| |#4| (-731))) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#4| |#1|)) (-15 -4116 (|#1| |#1| (-606 |#4|) (-606 |#2|))) (-15 -4116 (|#1| |#1| |#4| |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -3733 (|#1| |#2| |#3|)) (-15 -3500 (|#2| |#1| |#3|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1351 (|#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#3|) $) 108)) (-3588 (((-1113 $) $ |#3|) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 |#3|)) 109)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) 134)) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) ((|#3| $) 133)) (-4086 (($ $ $ |#3|) 106 (|has| |#1| (-163)))) (-3940 (($ $) 152)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-3490 (((-3 $ "failed") $) 32)) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ |#3|) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-3240 (($ $ |#1| |#2| $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| |#3| (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| |#3| (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-3746 (($ (-1113 |#1|) |#3|) 115) (($ (-1113 $) |#3|) 114)) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| |#2|) 151) (($ $ |#3| (-731)) 117) (($ $ (-606 |#3|) (-606 (-731))) 116)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 118)) (-1883 ((|#2| $) 168) (((-731) $ |#3|) 120) (((-606 (-731)) $ (-606 |#3|)) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 |#2| |#2|) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-1310 (((-3 |#3| "failed") $) 121)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-1654 (((-1100) $) 9)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) 111)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-606 |#3|) (-606 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-606 |#3|) (-606 $)) 136)) (-2067 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-3456 (($ $ |#3|) 40) (($ $ (-606 |#3|)) 39) (($ $ |#3| (-731)) 38) (($ $ (-606 |#3|) (-606 (-731))) 37)) (-2872 ((|#2| $) 148) (((-731) $ |#3|) 128) (((-606 (-731)) $ (-606 |#3|)) 127)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| |#3| (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| |#3| (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| |#3| (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ |#3|) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-529))) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537))))))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ |#2|) 153) (($ $ |#3| (-731)) 126) (($ $ (-606 |#3|) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ |#3|) 36) (($ $ (-606 |#3|)) 35) (($ $ |#3| (-731)) 34) (($ $ (-606 |#3|) (-606 (-731))) 33)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-902 |#1| |#2| |#3|) (-134) (-998) (-753) (-807)) (T -902)) +((-1351 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-2872 (*1 *2 *1 *3) (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-731)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *2 (-807)))) (-3500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) (-1645 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-3588 (*1 *2 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-1113 *1)) (-4 *1 (-902 *4 *5 *3)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-1113 *3)))) (-1310 (*1 *2 *1) (|partial| -12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-1883 (*1 *2 *1 *3) (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-731)))) (-1883 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) (-3932 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-902 *4 *5 *3)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *2 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *4)) (-4 *4 (-998)) (-4 *1 (-902 *4 *5 *3)) (-4 *5 (-753)) (-4 *3 (-807)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)))) (-2566 (*1 *2 *1) (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-3898 (*1 *2 *1) (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-2983 (*1 *2 *1) (|partial| -12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-731)))))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-731)))) (-1394 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *5)))) (-3926 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) (-4086 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-163)))) (-2067 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-163)))) (-1835 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-435)))) (-1351 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *3 (-435)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-2414 (*1 *2 *1) (-12 (-4 *3 (-435)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-402 *1)) (-4 *1 (-902 *3 *4 *5))))) +(-13 (-853 |t#3|) (-310 |t#1| |t#2|) (-293 $) (-495 |t#3| |t#1|) (-495 |t#3| $) (-989 |t#3|) (-361 |t#1|) (-10 -8 (-15 -2872 ((-731) $ |t#3|)) (-15 -2872 ((-606 (-731)) $ (-606 |t#3|))) (-15 -3500 ($ $ |t#3| (-731))) (-15 -3500 ($ $ (-606 |t#3|) (-606 (-731)))) (-15 -1645 ((-606 $) $)) (-15 -3588 ((-1113 $) $ |t#3|)) (-15 -3588 ((-1113 |t#1|) $)) (-15 -1310 ((-3 |t#3| "failed") $)) (-15 -1883 ((-731) $ |t#3|)) (-15 -1883 ((-606 (-731)) $ (-606 |t#3|))) (-15 -3932 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |t#3|)) (-15 -3733 ($ $ |t#3| (-731))) (-15 -3733 ($ $ (-606 |t#3|) (-606 (-731)))) (-15 -3746 ($ (-1113 |t#1|) |t#3|)) (-15 -3746 ($ (-1113 $) |t#3|)) (-15 -2566 ((-3 (-606 $) "failed") $)) (-15 -3898 ((-3 (-606 $) "failed") $)) (-15 -2983 ((-3 (-2 (|:| |var| |t#3|) (|:| -3283 (-731))) "failed") $)) (-15 -1394 ((-731) $)) (-15 -1394 ((-731) $ (-606 |t#3|))) (-15 -3757 ((-606 |t#3|) $)) (-15 -3926 ((-606 $) $)) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (IF (|has| |t#3| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-580 (-845 (-537)))) (IF (|has| |t#3| (-580 (-845 (-537)))) (-6 (-580 (-845 (-537)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-580 (-845 (-363)))) (IF (|has| |t#3| (-580 (-845 (-363)))) (-6 (-580 (-845 (-363)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-839 (-537))) (IF (|has| |t#3| (-839 (-537))) (-6 (-839 (-537))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-839 (-363))) (IF (|has| |t#3| (-839 (-363))) (-6 (-839 (-363))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -4086 ($ $ $ |t#3|)) (-15 -2067 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-6 (-435)) (-15 -1835 ($ $ |t#3|)) (-15 -1351 ($ $)) (-15 -1351 ($ $ |t#3|)) (-15 -2414 ((-402 $) $)) (-15 -1395 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4298)) (-6 -4298) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-293 $) . T) ((-310 |#1| |#2|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435))) ((-495 |#3| |#1|) . T) ((-495 |#3| $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 |#3|) . T) ((-839 (-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) ((-862) |has| |#1| (-862)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-989 |#3|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) |has| |#1| (-862))) +((-3757 (((-606 |#2|) |#5|) 36)) (-3588 (((-1113 |#5|) |#5| |#2| (-1113 |#5|)) 23) (((-391 (-1113 |#5|)) |#5| |#2|) 16)) (-3746 ((|#5| (-391 (-1113 |#5|)) |#2|) 30)) (-1310 (((-3 |#2| "failed") |#5|) 65)) (-3898 (((-3 (-606 |#5|) "failed") |#5|) 59)) (-1570 (((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-537))) "failed") |#5|) 47)) (-2566 (((-3 (-606 |#5|) "failed") |#5|) 61)) (-2983 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-537))) "failed") |#5|) 51))) +(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3757 ((-606 |#2|) |#5|)) (-15 -1310 ((-3 |#2| "failed") |#5|)) (-15 -3588 ((-391 (-1113 |#5|)) |#5| |#2|)) (-15 -3746 (|#5| (-391 (-1113 |#5|)) |#2|)) (-15 -3588 ((-1113 |#5|) |#5| |#2| (-1113 |#5|))) (-15 -2566 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -3898 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -2983 ((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-537))) "failed") |#5|)) (-15 -1570 ((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-537))) "failed") |#5|))) (-753) (-807) (-998) (-902 |#3| |#1| |#2|) (-13 (-347) (-10 -8 (-15 -2341 ($ |#4|)) (-15 -3301 (|#4| $)) (-15 -3315 (|#4| $))))) (T -903)) +((-1570 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3283 (-537)))) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-2983 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-537)))) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-3898 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-2566 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-3588 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) (-4 *7 (-902 *6 *5 *4)) (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) (-5 *1 (-903 *5 *4 *6 *7 *3)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-1113 *2))) (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) (-4 *2 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) (-5 *1 (-903 *5 *4 *6 *7 *2)) (-4 *7 (-902 *6 *5 *4)))) (-3588 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-391 (-1113 *3))) (-5 *1 (-903 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) (-1310 (*1 *2 *3) (|partial| -12 (-4 *4 (-753)) (-4 *5 (-998)) (-4 *6 (-902 *5 *4 *2)) (-4 *2 (-807)) (-5 *1 (-903 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *6)) (-15 -3301 (*6 $)) (-15 -3315 (*6 $))))))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *5)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-347) (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $)))))))) +(-10 -7 (-15 -3757 ((-606 |#2|) |#5|)) (-15 -1310 ((-3 |#2| "failed") |#5|)) (-15 -3588 ((-391 (-1113 |#5|)) |#5| |#2|)) (-15 -3746 (|#5| (-391 (-1113 |#5|)) |#2|)) (-15 -3588 ((-1113 |#5|) |#5| |#2| (-1113 |#5|))) (-15 -2566 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -3898 ((-3 (-606 |#5|) "failed") |#5|)) (-15 -2983 ((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-537))) "failed") |#5|)) (-15 -1570 ((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-537))) "failed") |#5|))) +((-1612 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-904 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-753) (-807) (-998) (-902 |#3| |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731)))))) (T -904)) +((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-807)) (-4 *8 (-998)) (-4 *6 (-753)) (-4 *2 (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731)))))) (-5 *1 (-904 *6 *7 *8 *5 *2)) (-4 *5 (-902 *8 *6 *7))))) +(-10 -7 (-15 -1612 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1117)) $) 16)) (-3588 (((-1113 $) $ (-1117)) 21) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1117))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 8) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1117) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1117) $) NIL)) (-4086 (($ $ $ (-1117)) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1117)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 (-1117)) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1117) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1117) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) (-1117)) NIL) (($ (-1113 $) (-1117)) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1117)) NIL)) (-1883 (((-509 (-1117)) $) NIL) (((-731) $ (-1117)) NIL) (((-606 (-731)) $ (-606 (-1117))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 (-1117)) (-509 (-1117))) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1310 (((-3 (-1117) "failed") $) 19)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1117)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $ (-1117)) 29 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1117) |#1|) NIL) (($ $ (-606 (-1117)) (-606 |#1|)) NIL) (($ $ (-1117) $) NIL) (($ $ (-606 (-1117)) (-606 $)) NIL)) (-2067 (($ $ (-1117)) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2872 (((-509 (-1117)) $) NIL) (((-731) $ (-1117)) NIL) (((-606 (-731)) $ (-606 (-1117))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1117) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1117) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1117) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1117)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 25) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-1117)) 27) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-905 |#1|) (-13 (-902 |#1| (-509 (-1117)) (-1117)) (-10 -8 (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1117))) |%noBranch|))) (-998)) (T -905)) +((-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998))))) +(-13 (-902 |#1| (-509 (-1117)) (-1117)) (-10 -8 (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1117))) |%noBranch|))) +((-2407 (((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#3| (-731)) 38)) (-3354 (((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) (-391 (-537)) (-731)) 34)) (-3290 (((-2 (|:| -3283 (-731)) (|:| -3449 |#4|) (|:| |radicand| (-606 |#4|))) |#4| (-731)) 54)) (-2380 (((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#5| (-731)) 64 (|has| |#3| (-435))))) +(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2407 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#3| (-731))) (-15 -3354 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) (-391 (-537)) (-731))) (IF (|has| |#3| (-435)) (-15 -2380 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#5| (-731))) |%noBranch|) (-15 -3290 ((-2 (|:| -3283 (-731)) (|:| -3449 |#4|) (|:| |radicand| (-606 |#4|))) |#4| (-731)))) (-753) (-807) (-529) (-902 |#3| |#1| |#2|) (-13 (-347) (-10 -8 (-15 -3301 (|#4| $)) (-15 -3315 (|#4| $)) (-15 -2341 ($ |#4|))))) (T -906)) +((-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) (-4 *3 (-902 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| (-606 *3)))) (-5 *1 (-906 *5 *6 *7 *3 *8)) (-5 *4 (-731)) (-4 *8 (-13 (-347) (-10 -8 (-15 -3301 (*3 $)) (-15 -3315 (*3 $)) (-15 -2341 ($ *3))))))) (-2380 (*1 *2 *3 *4) (-12 (-4 *7 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) (-4 *8 (-902 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *3))) (-5 *1 (-906 *5 *6 *7 *8 *3)) (-5 *4 (-731)) (-4 *3 (-13 (-347) (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8))))))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-537))) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) (-4 *8 (-902 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *9) (|:| |radicand| *9))) (-5 *1 (-906 *5 *6 *7 *8 *9)) (-5 *4 (-731)) (-4 *9 (-13 (-347) (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8))))))) (-2407 (*1 *2 *3 *4) (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-529)) (-4 *7 (-902 *3 *5 *6)) (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *8) (|:| |radicand| *8))) (-5 *1 (-906 *5 *6 *3 *7 *8)) (-5 *4 (-731)) (-4 *8 (-13 (-347) (-10 -8 (-15 -3301 (*7 $)) (-15 -3315 (*7 $)) (-15 -2341 ($ *7)))))))) +(-10 -7 (-15 -2407 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#3| (-731))) (-15 -3354 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) (-391 (-537)) (-731))) (IF (|has| |#3| (-435)) (-15 -2380 ((-2 (|:| -3283 (-731)) (|:| -3449 |#5|) (|:| |radicand| |#5|)) |#5| (-731))) |%noBranch|) (-15 -3290 ((-2 (|:| -3283 (-731)) (|:| -3449 |#4|) (|:| |radicand| (-606 |#4|))) |#4| (-731)))) +((-2330 (((-111) $ $) NIL)) (-3709 (($ (-1064)) 8)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 14) (((-1064) $) 11)) (-2244 (((-111) $ $) 10))) +(((-907) (-13 (-1045) (-579 (-1064)) (-10 -8 (-15 -3709 ($ (-1064)))))) (T -907)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-907))))) +(-13 (-1045) (-579 (-1064)) (-10 -8 (-15 -3709 ($ (-1064))))) +((-4059 (((-1040 (-210)) $) 8)) (-4050 (((-1040 (-210)) $) 9)) (-1477 (((-606 (-606 (-896 (-210)))) $) 10)) (-2341 (((-816) $) 6))) +(((-908) (-134)) (T -908)) +((-1477 (*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-606 (-606 (-896 (-210))))))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210))))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210)))))) +(-13 (-579 (-816)) (-10 -8 (-15 -1477 ((-606 (-606 (-896 (-210)))) $)) (-15 -4050 ((-1040 (-210)) $)) (-15 -4059 ((-1040 (-210)) $)))) +(((-579 (-816)) . T)) +((-3020 (((-3 (-649 |#1|) "failed") |#2| (-874)) 15))) +(((-909 |#1| |#2|) (-10 -7 (-15 -3020 ((-3 (-649 |#1|) "failed") |#2| (-874)))) (-529) (-617 |#1|)) (T -909)) +((-3020 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-874)) (-4 *5 (-529)) (-5 *2 (-649 *5)) (-5 *1 (-909 *5 *3)) (-4 *3 (-617 *5))))) +(-10 -7 (-15 -3020 ((-3 (-649 |#1|) "failed") |#2| (-874)))) +((-2547 (((-911 |#2|) (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|) 16)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|) 18)) (-1612 (((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)) 13))) +(((-910 |#1| |#2|) (-10 -7 (-15 -2547 ((-911 |#2|) (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -1612 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) (-1154) (-1154)) (T -910)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-910 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-911 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-911 *5)) (-5 *1 (-910 *6 *5))))) +(-10 -7 (-15 -2547 ((-911 |#2|) (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-911 |#1|) |#2|)) (-15 -1612 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) 16 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 15 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 13)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) |#1|) 12)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) 10 (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) 17 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) 11)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) 14) (($ $ (-1167 (-537))) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) NIL)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2258 (((-731) $) 8 (|has| $ (-6 -4300))))) +(((-911 |#1|) (-19 |#1|) (-1154)) (T -911)) NIL (-19 |#1|) -((-2974 (($ $ (-1023 $)) 7) (($ $ (-1102)) 6))) -(((-902) (-133)) (T -902)) -((-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-902)))) (-2974 (*1 *1 *1 *2) (-12 (-4 *1 (-902)) (-5 *2 (-1102))))) -(-13 (-10 -8 (-15 -2974 ($ $ (-1102))) (-15 -2974 ($ $ (-1023 $))))) -((-1806 (((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)) (-1102)) 25) (((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102))) 26) (((-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 |#1|))) (-895 |#1|) (-1102) (-895 |#1|) (-1102)) 43))) -(((-903 |#1|) (-10 -7 (-15 -1806 ((-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 |#1|))) (-895 |#1|) (-1102) (-895 |#1|) (-1102))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)) (-1102)))) (-13 (-344) (-140))) (T -903)) -((-1806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-5 *5 (-1102)) (-4 *6 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *6))) (|:| |prim| (-1098 *6)))) (-5 *1 (-903 *6)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *5))) (|:| |prim| (-1098 *5)))) (-5 *1 (-903 *5)))) (-1806 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1102)) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 *5)))) (-5 *1 (-903 *5))))) -(-10 -7 (-15 -1806 ((-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 |#1|))) (-895 |#1|) (-1102) (-895 |#1|) (-1102))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)) (-1102)))) -((-3307 (((-598 |#1|) |#1| |#1|) 42)) (-2534 (((-110) |#1|) 39)) (-3888 ((|#1| |#1|) 65)) (-2115 ((|#1| |#1|) 64))) -(((-904 |#1|) (-10 -7 (-15 -2534 ((-110) |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3307 ((-598 |#1|) |#1| |#1|))) (-516)) (T -904)) -((-3307 (*1 *2 *3 *3) (-12 (-5 *2 (-598 *3)) (-5 *1 (-904 *3)) (-4 *3 (-516)))) (-3888 (*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516)))) (-2115 (*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516)))) (-2534 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-516))))) -(-10 -7 (-15 -2534 ((-110) |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3307 ((-598 |#1|) |#1| |#1|))) -((-4094 (((-1189) (-806)) 9))) -(((-905) (-10 -7 (-15 -4094 ((-1189) (-806))))) (T -905)) -((-4094 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-905))))) -(-10 -7 (-15 -4094 ((-1189) (-806)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 61 (|has| |#1| (-523)))) (-3258 (($ $) 62 (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 28)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) 24)) (-3622 (((-3 $ "failed") $) 35)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-2490 (($ $ |#1| |#2| $) 48)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 16)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-3005 ((|#2| $) 19)) (-2736 (($ (-1 |#2| |#2|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2462 (($ $) 23)) (-2475 ((|#1| $) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 40)) (-2448 ((|#1| $) NIL)) (-1816 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-128)) (|has| |#1| (-523))))) (-3609 (((-3 $ "failed") $ $) 74 (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-523)))) (-2012 ((|#2| $) 17)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) 39) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 34) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ |#2|) 31)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 15)) (-2911 (($ $ $ (-721)) 57 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 67 (|has| |#1| (-523)))) (-3035 (($) 22 T CONST)) (-3050 (($) 12 T CONST)) (-2148 (((-110) $ $) 66)) (-2263 (($ $ |#1|) 75 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 54) (($ $ (-721)) 52)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-906 |#1| |#2|) (-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| |#2| (-128)) (-15 -1816 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) (-986) (-742)) (T -906)) -((-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-906 *3 *2)) (-4 *2 (-128)) (-4 *3 (-523)) (-4 *3 (-986)) (-4 *2 (-742))))) -(-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| |#2| (-128)) (-15 -1816 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))))) (-3818 (($ $ $) 63 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))) (-2128 (((-3 $ "failed") $ $) 50 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))))) (-3006 (((-721)) 34 (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-1770 ((|#2| $) 21)) (-1654 ((|#1| $) 20)) (-4082 (($) NIL (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) CONST)) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))) (-1381 (($) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3481 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))) (-4103 (($ $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-1241 (($ $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-1244 (($ |#1| |#2|) 19)) (-2211 (((-864) $) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 37 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-1889 (($ (-864)) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2529 (((-1049) $) NIL)) (-4164 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-3214 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2265 (((-806) $) 14)) (-3035 (($) 40 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) CONST)) (-3050 (($) 24 (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))) CONST)) (-2207 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2184 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2148 (((-110) $ $) 18)) (-2195 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2174 (((-110) $ $) 66 (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2263 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2250 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2237 (($ $ $) 43 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))))) (** (($ $ (-531)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-721)) 31 (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))))) (($ $ (-864)) NIL (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))) (* (($ (-531) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-721) $) 46 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))) (($ (-864) $) NIL (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))) (($ $ $) 27 (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))))))) -(((-907 |#1| |#2|) (-13 (-1030) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-677)) (IF (|has| |#2| (-677)) (-6 (-677)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-743)) (IF (|has| |#2| (-743)) (-6 (-743)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-797)) (IF (|has| |#2| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (-15 -1244 ($ |#1| |#2|)) (-15 -1654 (|#1| $)) (-15 -1770 (|#2| $)))) (-1030) (-1030)) (T -907)) -((-1244 (*1 *1 *2 *3) (-12 (-5 *1 (-907 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1654 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1030)))) (-1770 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-907 *3 *2)) (-4 *3 (-1030))))) -(-13 (-1030) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-677)) (IF (|has| |#2| (-677)) (-6 (-677)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-743)) (IF (|has| |#2| (-743)) (-6 (-743)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-797)) (IF (|has| |#2| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (-15 -1244 ($ |#1| |#2|)) (-15 -1654 (|#1| $)) (-15 -1770 (|#2| $)))) -((-3482 (((-1034) $) 12)) (-1219 (($ (-1102) (-1034)) 13)) (-3955 (((-1102) $) 10)) (-2265 (((-806) $) 22))) -(((-908) (-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3482 ((-1034) $)) (-15 -1219 ($ (-1102) (-1034)))))) (T -908)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-908)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-908)))) (-1219 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-908))))) -(-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3482 ((-1034) $)) (-15 -1219 ($ (-1102) (-1034))))) -((-2695 (((-1032 (-1102)) $) 19)) (-3257 (((-110) $) 26)) (-3524 (((-1102) $) 27)) (-3706 (((-110) $) 24)) (-2160 ((|#1| $) 25)) (-3914 (((-816 $ $) $) 34)) (-1456 (((-110) $) 33)) (-2726 (($ $ $) 12)) (-4045 (($ $) 29)) (-3077 (((-110) $) 28)) (-3745 (($ $) 10)) (-3843 (((-816 $ $) $) 36)) (-2409 (((-110) $) 35)) (-3051 (($ $ $) 13)) (-2749 (((-816 $ $) $) 38)) (-3274 (((-110) $) 37)) (-3076 (($ $ $) 14)) (-2265 (($ |#1|) 7) (($ (-1102)) 9) (((-806) $) 40 (|has| |#1| (-572 (-806))))) (-3744 (((-816 $ $) $) 32)) (-2958 (((-110) $) 30)) (-3427 (($ $ $) 11))) -(((-909 |#1|) (-13 (-910) (-10 -8 (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-1102))) (-15 -2695 ((-1032 (-1102)) $)) (-15 -3706 ((-110) $)) (-15 -2160 (|#1| $)) (-15 -3257 ((-110) $)) (-15 -3524 ((-1102) $)) (-15 -3077 ((-110) $)) (-15 -4045 ($ $)) (-15 -2958 ((-110) $)) (-15 -3744 ((-816 $ $) $)) (-15 -1456 ((-110) $)) (-15 -3914 ((-816 $ $) $)) (-15 -2409 ((-110) $)) (-15 -3843 ((-816 $ $) $)) (-15 -3274 ((-110) $)) (-15 -2749 ((-816 $ $) $)))) (-910)) (T -909)) -((-2265 (*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1032 (-1102))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2160 (*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3274 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(-13 (-910) (-10 -8 (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-1102))) (-15 -2695 ((-1032 (-1102)) $)) (-15 -3706 ((-110) $)) (-15 -2160 (|#1| $)) (-15 -3257 ((-110) $)) (-15 -3524 ((-1102) $)) (-15 -3077 ((-110) $)) (-15 -4045 ($ $)) (-15 -2958 ((-110) $)) (-15 -3744 ((-816 $ $) $)) (-15 -1456 ((-110) $)) (-15 -3914 ((-816 $ $) $)) (-15 -2409 ((-110) $)) (-15 -3843 ((-816 $ $) $)) (-15 -3274 ((-110) $)) (-15 -2749 ((-816 $ $) $)))) -((-2726 (($ $ $) 8)) (-3745 (($ $) 6)) (-3051 (($ $ $) 9)) (-3076 (($ $ $) 10)) (-3427 (($ $ $) 7))) -(((-910) (-133)) (T -910)) -((-3076 (*1 *1 *1 *1) (-4 *1 (-910))) (-3051 (*1 *1 *1 *1) (-4 *1 (-910))) (-2726 (*1 *1 *1 *1) (-4 *1 (-910))) (-3427 (*1 *1 *1 *1) (-4 *1 (-910))) (-3745 (*1 *1 *1) (-4 *1 (-910)))) -(-13 (-10 -8 (-15 -3745 ($ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3051 ($ $ $)) (-15 -3076 ($ $ $)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-3611 (($ $ $) 43)) (-3508 (($ $ $) 44)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1241 ((|#1| $) 45)) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-911 |#1|) (-133) (-797)) (T -911)) -((-1241 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))) (-3611 (*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797))))) -(-13 (-104 |t#1|) (-10 -8 (-6 -4273) (-15 -1241 (|t#1| $)) (-15 -3508 ($ $ $)) (-15 -3611 ($ $ $)))) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-3857 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|) 85)) (-3720 ((|#2| |#2| |#2|) 83)) (-3216 (((-2 (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|) 87)) (-3856 (((-2 (|:| |coef1| |#2|) (|:| -2109 |#2|)) |#2| |#2|) 89)) (-3908 (((-2 (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|) 107 (|has| |#1| (-432)))) (-1506 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 46)) (-2666 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 64)) (-2196 (((-2 (|:| |coef1| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 66)) (-2436 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1997 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 71)) (-1977 (((-2 (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|) 97)) (-2111 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 74)) (-1552 (((-598 (-721)) |#2| |#2|) 82)) (-1931 ((|#1| |#2| |#2|) 42)) (-3597 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|) 105 (|has| |#1| (-432)))) (-2248 ((|#1| |#2| |#2|) 103 (|has| |#1| (-432)))) (-2893 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 44)) (-2644 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 63)) (-3115 ((|#1| |#2| |#2|) 61)) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|) 35)) (-3278 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3453 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2255 ((|#2| |#2| |#2|) 75)) (-1945 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 69)) (-1754 ((|#2| |#2| |#2| (-721)) 67)) (-2109 ((|#2| |#2| |#2|) 111 (|has| |#1| (-432)))) (-3609 (((-1184 |#2|) (-1184 |#2|) |#1|) 21)) (-2100 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|) 39)) (-3222 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|) 95)) (-3176 ((|#1| |#2|) 92)) (-3896 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 73)) (-3771 ((|#2| |#2| |#2| (-721)) 72)) (-1822 (((-598 |#2|) |#2| |#2|) 80)) (-4241 ((|#2| |#2| |#1| |#1| (-721)) 50)) (-3197 ((|#1| |#1| |#1| (-721)) 49)) (* (((-1184 |#2|) |#1| (-1184 |#2|)) 16))) -(((-912 |#1| |#2|) (-10 -7 (-15 -3115 (|#1| |#2| |#2|)) (-15 -2644 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2196 ((-2 (|:| |coef1| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1754 (|#2| |#2| |#2| (-721))) (-15 -1945 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -1997 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -3771 (|#2| |#2| |#2| (-721))) (-15 -3896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2111 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2255 (|#2| |#2| |#2|)) (-15 -3453 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2436 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3720 (|#2| |#2| |#2|)) (-15 -3857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3216 ((-2 (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3856 ((-2 (|:| |coef1| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3176 (|#1| |#2|)) (-15 -3222 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1977 ((-2 (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1822 ((-598 |#2|) |#2| |#2|)) (-15 -1552 ((-598 (-721)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -2248 (|#1| |#2| |#2|)) (-15 -3597 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -3908 ((-2 (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -2109 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1184 |#2|) |#1| (-1184 |#2|))) (-15 -3609 ((-1184 |#2|) (-1184 |#2|) |#1|)) (-15 -1647 ((-2 (|:| -2005 |#1|) (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -2100 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -3197 (|#1| |#1| |#1| (-721))) (-15 -4241 (|#2| |#2| |#1| |#1| (-721))) (-15 -3278 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1931 (|#1| |#2| |#2|)) (-15 -2893 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1506 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|))) (-523) (-1160 |#1|)) (T -912)) -((-1506 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2893 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1931 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) (-3278 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-4241 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-3197 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *2 (-523)) (-5 *1 (-912 *2 *4)) (-4 *4 (-1160 *2)))) (-2100 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1647 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2005 *4) (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523)) (-5 *1 (-912 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523)) (-5 *1 (-912 *3 *4)))) (-2109 (*1 *2 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-3908 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2248 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3597 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2248 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2248 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-4 *2 (-432)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) (-1552 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-721))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1822 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1977 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3176 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3222 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3176 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3176 (*1 *2 *3) (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2109 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2109 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3857 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2109 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3720 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-2436 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3453 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2255 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-2111 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-3896 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-3771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2)) (-4 *2 (-1160 *4)))) (-1997 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-1945 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-1754 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2)) (-4 *2 (-1160 *4)))) (-2196 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2666 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2644 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3115 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2))))) -(-10 -7 (-15 -3115 (|#1| |#2| |#2|)) (-15 -2644 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2196 ((-2 (|:| |coef1| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1754 (|#2| |#2| |#2| (-721))) (-15 -1945 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -1997 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -3771 (|#2| |#2| |#2| (-721))) (-15 -3896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2111 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2255 (|#2| |#2| |#2|)) (-15 -3453 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2436 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3720 (|#2| |#2| |#2|)) (-15 -3857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3216 ((-2 (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3856 ((-2 (|:| |coef1| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3176 (|#1| |#2|)) (-15 -3222 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1977 ((-2 (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1822 ((-598 |#2|) |#2| |#2|)) (-15 -1552 ((-598 (-721)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -2248 (|#1| |#2| |#2|)) (-15 -3597 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -3908 ((-2 (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -2109 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1184 |#2|) |#1| (-1184 |#2|))) (-15 -3609 ((-1184 |#2|) (-1184 |#2|) |#1|)) (-15 -1647 ((-2 (|:| -2005 |#1|) (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -2100 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -3197 (|#1| |#1| |#1| (-721))) (-15 -4241 (|#2| |#2| |#1| |#1| (-721))) (-15 -3278 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1931 (|#1| |#2| |#2|)) (-15 -2893 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1506 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) 27)) (-4082 (($) NIL T CONST)) (-3977 (((-598 (-598 (-531))) (-598 (-531))) 29)) (-4095 (((-531) $) 45)) (-2641 (($ (-598 (-531))) 17)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3318 (((-598 (-531)) $) 12)) (-4164 (($ $) 32)) (-2265 (((-806) $) 43) (((-598 (-531)) $) 10)) (-3035 (($) 7 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 19)) (-2237 (($ $ $) 21)) (* (($ (-864) $) NIL) (($ (-721) $) 25))) -(((-913) (-13 (-745) (-573 (-598 (-531))) (-10 -8 (-15 -2641 ($ (-598 (-531)))) (-15 -3977 ((-598 (-598 (-531))) (-598 (-531)))) (-15 -4095 ((-531) $)) (-15 -4164 ($ $)) (-15 -2265 ((-598 (-531)) $))))) (T -913)) -((-2641 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913)))) (-3977 (*1 *2 *3) (-12 (-5 *2 (-598 (-598 (-531)))) (-5 *1 (-913)) (-5 *3 (-598 (-531))))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-913)))) (-4164 (*1 *1 *1) (-5 *1 (-913))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913))))) -(-13 (-745) (-573 (-598 (-531))) (-10 -8 (-15 -2641 ($ (-598 (-531)))) (-15 -3977 ((-598 (-598 (-531))) (-598 (-531)))) (-15 -4095 ((-531) $)) (-15 -4164 ($ $)) (-15 -2265 ((-598 (-531)) $)))) -((-2263 (($ $ |#2|) 30)) (-2250 (($ $) 22) (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-388 (-531)) $) 26) (($ $ (-388 (-531))) 28))) -(((-914 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2263 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-915 |#2| |#3| |#4|) (-986) (-742) (-797)) (T -914)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2263 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#3|) $) 72)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3201 (((-110) $) 71)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-598 |#3|) (-598 |#2|)) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-2012 ((|#2| $) 62)) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-915 |#1| |#2| |#3|) (-133) (-986) (-742) (-797)) (T -915)) -((-2475 (*1 *2 *1) (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *3 (-742)) (-4 *4 (-797)) (-4 *2 (-986)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *4 (-797)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-915 *3 *2 *4)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *2 (-742)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-915 *4 *3 *2)) (-4 *4 (-986)) (-4 *3 (-742)) (-4 *2 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 *5)) (-4 *1 (-915 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-742)) (-4 *6 (-797)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742)) (-4 *5 (-797)) (-5 *2 (-598 *5)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742)) (-4 *5 (-797)) (-5 *2 (-110)))) (-3437 (*1 *1 *1) (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *4 (-797))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2669 ($ $ |t#3| |t#2|)) (-15 -2669 ($ $ (-598 |t#3|) (-598 |t#2|))) (-15 -2462 ($ $)) (-15 -2475 (|t#1| $)) (-15 -2012 (|t#2| $)) (-15 -2695 ((-598 |t#3|) $)) (-15 -3201 ((-110) $)) (-15 -3437 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2671 (((-1025 (-208)) $) 8)) (-2659 (((-1025 (-208)) $) 9)) (-2647 (((-1025 (-208)) $) 10)) (-2126 (((-598 (-598 (-886 (-208)))) $) 11)) (-2265 (((-806) $) 6))) -(((-916) (-133)) (T -916)) -((-2126 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-598 (-598 (-886 (-208))))))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208)))))) -(-13 (-572 (-806)) (-10 -8 (-15 -2126 ((-598 (-598 (-886 (-208)))) $)) (-15 -2647 ((-1025 (-208)) $)) (-15 -2659 ((-1025 (-208)) $)) (-15 -2671 ((-1025 (-208)) $)))) -(((-572 (-806)) . T)) -((-2695 (((-598 |#4|) $) 23)) (-1625 (((-110) $) 48)) (-1983 (((-110) $) 47)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#4|) 36)) (-3145 (((-110) $) 49)) (-2405 (((-110) $ $) 55)) (-1657 (((-110) $ $) 58)) (-3178 (((-110) $) 53)) (-2339 (((-598 |#5|) (-598 |#5|) $) 90)) (-3360 (((-598 |#5|) (-598 |#5|) $) 87)) (-4124 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3951 (((-598 |#4|) $) 27)) (-4081 (((-110) |#4| $) 30)) (-3065 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3382 (($ $ |#4|) 33)) (-2021 (($ $ |#4|) 32)) (-3593 (($ $ |#4|) 34)) (-2148 (((-110) $ $) 40))) -(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1983 ((-110) |#1|)) (-15 -2339 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -3360 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -4124 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3065 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3145 ((-110) |#1|)) (-15 -1657 ((-110) |#1| |#1|)) (-15 -2405 ((-110) |#1| |#1|)) (-15 -3178 ((-110) |#1|)) (-15 -1625 ((-110) |#1|)) (-15 -1332 ((-2 (|:| |under| |#1|) (|:| -2943 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -3593 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4081 ((-110) |#4| |#1|)) (-15 -3951 ((-598 |#4|) |#1|)) (-15 -2695 ((-598 |#4|) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-918 |#2| |#3| |#4| |#5|) (-986) (-743) (-797) (-1000 |#2| |#3| |#4|)) (T -917)) -NIL -(-10 -8 (-15 -1983 ((-110) |#1|)) (-15 -2339 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -3360 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -4124 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3065 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3145 ((-110) |#1|)) (-15 -1657 ((-110) |#1| |#1|)) (-15 -2405 ((-110) |#1| |#1|)) (-15 -3178 ((-110) |#1|)) (-15 -1625 ((-110) |#1|)) (-15 -1332 ((-2 (|:| |under| |#1|) (|:| -2943 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -3593 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4081 ((-110) |#4| |#1|)) (-15 -3951 ((-598 |#4|) |#1|)) (-15 -2695 ((-598 |#4|) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273)))) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273)))) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2529 (((-1049) $) 10)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273))))) -(((-918 |#1| |#2| |#3| |#4|) (-133) (-986) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -918)) -((-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *1 (-918 *3 *4 *5 *6)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *1 (-918 *3 *4 *5 *6)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-1000 *3 *4 *2)) (-4 *2 (-797)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) (-4081 (*1 *2 *3 *1) (-12 (-4 *1 (-918 *4 *5 *3 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110)))) (-2021 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))) (-3593 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))) (-3382 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))) (-1332 (*1 *2 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2943 *1) (|:| |upper| *1))) (-4 *1 (-918 *4 *5 *3 *6)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-2405 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-1657 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3065 (*1 *2 *3 *1) (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3360 (*1 *2 *2 *1) (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)))) (-2339 (*1 *2 *2 *1) (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110))))) -(-13 (-1030) (-144 |t#4|) (-572 (-598 |t#4|)) (-10 -8 (-6 -4273) (-15 -3154 ((-3 $ "failed") (-598 |t#4|))) (-15 -2523 ($ (-598 |t#4|))) (-15 -4075 (|t#3| $)) (-15 -2695 ((-598 |t#3|) $)) (-15 -3951 ((-598 |t#3|) $)) (-15 -4081 ((-110) |t#3| $)) (-15 -2021 ($ $ |t#3|)) (-15 -3593 ($ $ |t#3|)) (-15 -3382 ($ $ |t#3|)) (-15 -1332 ((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |t#3|)) (-15 -1625 ((-110) $)) (IF (|has| |t#1| (-523)) (PROGN (-15 -3178 ((-110) $)) (-15 -2405 ((-110) $ $)) (-15 -1657 ((-110) $ $)) (-15 -3145 ((-110) $)) (-15 -3065 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4124 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3360 ((-598 |t#4|) (-598 |t#4|) $)) (-15 -2339 ((-598 |t#4|) (-598 |t#4|) $)) (-15 -1983 ((-110) $))) |%noBranch|))) -(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-1030) . T) ((-1138) . T)) -((-1453 (((-598 |#4|) |#4| |#4|) 118)) (-3244 (((-598 |#4|) (-598 |#4|) (-110)) 107 (|has| |#1| (-432))) (((-598 |#4|) (-598 |#4|)) 108 (|has| |#1| (-432)))) (-1416 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 35)) (-3910 (((-110) |#4|) 34)) (-1748 (((-598 |#4|) |#4|) 103 (|has| |#1| (-432)))) (-1391 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-1 (-110) |#4|) (-598 |#4|)) 20)) (-3787 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|)) 22)) (-1254 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|)) 23)) (-2925 (((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|)) 73)) (-1305 (((-598 |#4|) (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1365 (((-598 |#4|) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2088 (((-598 |#4|) (-598 |#4|)) 110)) (-2599 (((-598 |#4|) (-598 |#4|) (-598 |#4|) (-110)) 48) (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 50)) (-2976 ((|#4| |#4| (-598 |#4|)) 49)) (-2540 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 114 (|has| |#1| (-432)))) (-3385 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 117 (|has| |#1| (-432)))) (-3320 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 116 (|has| |#1| (-432)))) (-1826 (((-598 |#4|) (-598 |#4|) (-598 |#4|) (-1 (-598 |#4|) (-598 |#4|))) 87) (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 89) (((-598 |#4|) (-598 |#4|) |#4|) 121) (((-598 |#4|) |#4| |#4|) 119) (((-598 |#4|) (-598 |#4|)) 88)) (-3595 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3335 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 41)) (-4097 (((-110) (-598 |#4|)) 62)) (-1714 (((-110) (-598 |#4|) (-598 (-598 |#4|))) 53)) (-1775 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 29)) (-3283 (((-110) |#4|) 28)) (-4125 (((-598 |#4|) (-598 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-4065 (((-598 |#4|) (-598 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3587 (((-598 |#4|) (-598 |#4|)) 66)) (-1735 (((-598 |#4|) (-598 |#4|)) 79)) (-2103 (((-110) (-598 |#4|) (-598 |#4|)) 51)) (-3661 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 39)) (-4061 (((-110) |#4|) 36))) -(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1826 ((-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) |#4| |#4|)) (-15 -2088 ((-598 |#4|) (-598 |#4|))) (-15 -1453 ((-598 |#4|) |#4| |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-1 (-598 |#4|) (-598 |#4|)))) (-15 -2103 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1714 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -4097 ((-110) (-598 |#4|))) (-15 -1391 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-1 (-110) |#4|) (-598 |#4|))) (-15 -3787 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -1254 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -3335 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3910 ((-110) |#4|)) (-15 -1416 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3283 ((-110) |#4|)) (-15 -1775 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -4061 ((-110) |#4|)) (-15 -3661 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2976 (|#4| |#4| (-598 |#4|))) (-15 -3587 ((-598 |#4|) (-598 |#4|))) (-15 -2925 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|))) (-15 -1735 ((-598 |#4|) (-598 |#4|))) (-15 -1305 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1365 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1748 ((-598 |#4|) |#4|)) (-15 -3244 ((-598 |#4|) (-598 |#4|))) (-15 -3244 ((-598 |#4|) (-598 |#4|) (-110))) (-15 -2540 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3320 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3385 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -4065 ((-598 |#4|) (-598 |#4|))) (-15 -4125 ((-598 |#4|) (-598 |#4|))) (-15 -3595 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) |%noBranch|)) (-523) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -919)) -((-3595 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3320 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2540 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3244 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1365 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-919 *5 *6 *7 *8)))) (-1305 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-598 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *1 (-919 *6 *7 *8 *9)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2925 (*1 *2 *3) (|partial| -12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1573 (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2976 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *2)))) (-2599 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))) (-2599 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1775 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3910 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-1254 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *5 *6 *7 *8)))) (-2103 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1826 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-598 *7) (-598 *7))) (-5 *2 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1826 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-1826 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *3)))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-1826 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))) -(-10 -7 (-15 -1826 ((-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) |#4| |#4|)) (-15 -2088 ((-598 |#4|) (-598 |#4|))) (-15 -1453 ((-598 |#4|) |#4| |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-1 (-598 |#4|) (-598 |#4|)))) (-15 -2103 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1714 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -4097 ((-110) (-598 |#4|))) (-15 -1391 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-1 (-110) |#4|) (-598 |#4|))) (-15 -3787 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -1254 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -3335 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3910 ((-110) |#4|)) (-15 -1416 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3283 ((-110) |#4|)) (-15 -1775 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -4061 ((-110) |#4|)) (-15 -3661 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2976 (|#4| |#4| (-598 |#4|))) (-15 -3587 ((-598 |#4|) (-598 |#4|))) (-15 -2925 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|))) (-15 -1735 ((-598 |#4|) (-598 |#4|))) (-15 -1305 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1365 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1748 ((-598 |#4|) |#4|)) (-15 -3244 ((-598 |#4|) (-598 |#4|))) (-15 -3244 ((-598 |#4|) (-598 |#4|) (-110))) (-15 -2540 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3320 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3385 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -4065 ((-598 |#4|) (-598 |#4|))) (-15 -4125 ((-598 |#4|) (-598 |#4|))) (-15 -3595 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) |%noBranch|)) -((-2854 (((-2 (|:| R (-639 |#1|)) (|:| A (-639 |#1|)) (|:| |Ainv| (-639 |#1|))) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-2359 (((-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)) 36)) (-2772 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16))) -(((-920 |#1|) (-10 -7 (-15 -2854 ((-2 (|:| R (-639 |#1|)) (|:| A (-639 |#1|)) (|:| |Ainv| (-639 |#1|))) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2772 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2359 ((-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)))) (-344)) (T -920)) -((-2359 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-598 (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5))))) (-5 *1 (-920 *5)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)))) (-2772 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-639 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-920 *5)))) (-2854 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| R (-639 *6)) (|:| A (-639 *6)) (|:| |Ainv| (-639 *6)))) (-5 *1 (-920 *6)) (-5 *3 (-639 *6))))) -(-10 -7 (-15 -2854 ((-2 (|:| R (-639 |#1|)) (|:| A (-639 |#1|)) (|:| |Ainv| (-639 |#1|))) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2772 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2359 ((-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)))) -((-2956 (((-399 |#4|) |#4|) 48))) -(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-399 |#4|) |#4|))) (-797) (-743) (-432) (-892 |#3| |#2| |#1|)) (T -921)) -((-2956 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-432)) (-5 *2 (-399 *3)) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4))))) -(-10 -7 (-15 -2956 ((-399 |#4|) |#4|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4222 (($ (-721)) 112 (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-4042 (($ (-598 |#1|)) 118)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) 105 (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1408 ((|#1| $) 102 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-3332 (((-110) $ (-721)) 10)) (-2428 ((|#1| $) 103 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-1846 (($ $ (-598 |#1|)) 115)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-3225 ((|#1| $ $) 106 (|has| |#1| (-986)))) (-2190 (((-864) $) 117)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2261 (($ $ $) 104)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507)))) (($ (-598 |#1|)) 116)) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2250 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2237 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-531) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-677))) (($ $ |#1|) 107 (|has| |#1| (-677)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-922 |#1|) (-133) (-986)) (T -922)) -((-4042 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-986)) (-5 *2 (-864)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3)))) (-2261 (*1 *1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-986)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-922 *3)) (-4 *3 (-986))))) -(-13 (-1182 |t#1|) (-10 -8 (-15 -4042 ($ (-598 |t#1|))) (-15 -2190 ((-864) $)) (-15 -3318 ($ (-598 |t#1|))) (-15 -2261 ($ $ $)) (-15 -1846 ($ $ (-598 |t#1|))))) -(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-19 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T) ((-1182 |#1|) . T)) -((-3261 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 17))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3261 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-986) (-986)) (T -923)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-886 *6)) (-5 *1 (-923 *5 *6))))) -(-10 -7 (-15 -3261 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) -((-2786 ((|#1| (-886 |#1|)) 13)) (-2954 ((|#1| (-886 |#1|)) 12)) (-3153 ((|#1| (-886 |#1|)) 11)) (-3877 ((|#1| (-886 |#1|)) 15)) (-2059 ((|#1| (-886 |#1|)) 21)) (-2251 ((|#1| (-886 |#1|)) 14)) (-2307 ((|#1| (-886 |#1|)) 16)) (-2697 ((|#1| (-886 |#1|)) 20)) (-2677 ((|#1| (-886 |#1|)) 19))) -(((-924 |#1|) (-10 -7 (-15 -3153 (|#1| (-886 |#1|))) (-15 -2954 (|#1| (-886 |#1|))) (-15 -2786 (|#1| (-886 |#1|))) (-15 -2251 (|#1| (-886 |#1|))) (-15 -3877 (|#1| (-886 |#1|))) (-15 -2307 (|#1| (-886 |#1|))) (-15 -2677 (|#1| (-886 |#1|))) (-15 -2697 (|#1| (-886 |#1|))) (-15 -2059 (|#1| (-886 |#1|)))) (-986)) (T -924)) -((-2059 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(-10 -7 (-15 -3153 (|#1| (-886 |#1|))) (-15 -2954 (|#1| (-886 |#1|))) (-15 -2786 (|#1| (-886 |#1|))) (-15 -2251 (|#1| (-886 |#1|))) (-15 -3877 (|#1| (-886 |#1|))) (-15 -2307 (|#1| (-886 |#1|))) (-15 -2677 (|#1| (-886 |#1|))) (-15 -2697 (|#1| (-886 |#1|))) (-15 -2059 (|#1| (-886 |#1|)))) -((-3511 (((-3 |#1| "failed") |#1|) 18)) (-1752 (((-3 |#1| "failed") |#1|) 6)) (-3712 (((-3 |#1| "failed") |#1|) 16)) (-1704 (((-3 |#1| "failed") |#1|) 4)) (-3605 (((-3 |#1| "failed") |#1|) 20)) (-3343 (((-3 |#1| "failed") |#1|) 8)) (-1631 (((-3 |#1| "failed") |#1| (-721)) 1)) (-2121 (((-3 |#1| "failed") |#1|) 3)) (-2340 (((-3 |#1| "failed") |#1|) 2)) (-4063 (((-3 |#1| "failed") |#1|) 21)) (-2504 (((-3 |#1| "failed") |#1|) 9)) (-4202 (((-3 |#1| "failed") |#1|) 19)) (-1227 (((-3 |#1| "failed") |#1|) 7)) (-4068 (((-3 |#1| "failed") |#1|) 17)) (-1492 (((-3 |#1| "failed") |#1|) 5)) (-2366 (((-3 |#1| "failed") |#1|) 24)) (-1742 (((-3 |#1| "failed") |#1|) 12)) (-1467 (((-3 |#1| "failed") |#1|) 22)) (-2679 (((-3 |#1| "failed") |#1|) 10)) (-3446 (((-3 |#1| "failed") |#1|) 26)) (-3965 (((-3 |#1| "failed") |#1|) 14)) (-1497 (((-3 |#1| "failed") |#1|) 27)) (-3531 (((-3 |#1| "failed") |#1|) 15)) (-4183 (((-3 |#1| "failed") |#1|) 25)) (-1823 (((-3 |#1| "failed") |#1|) 13)) (-2002 (((-3 |#1| "failed") |#1|) 23)) (-4154 (((-3 |#1| "failed") |#1|) 11))) -(((-925 |#1|) (-133) (-1124)) (T -925)) -((-1497 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4183 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2366 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2002 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1467 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4063 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3605 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4202 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3511 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4068 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3712 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3531 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3965 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1823 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1742 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4154 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2679 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2504 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3343 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1227 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1752 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1492 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1704 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2121 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2340 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1631 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-721)) (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(-13 (-10 -7 (-15 -1631 ((-3 |t#1| "failed") |t#1| (-721))) (-15 -2340 ((-3 |t#1| "failed") |t#1|)) (-15 -2121 ((-3 |t#1| "failed") |t#1|)) (-15 -1704 ((-3 |t#1| "failed") |t#1|)) (-15 -1492 ((-3 |t#1| "failed") |t#1|)) (-15 -1752 ((-3 |t#1| "failed") |t#1|)) (-15 -1227 ((-3 |t#1| "failed") |t#1|)) (-15 -3343 ((-3 |t#1| "failed") |t#1|)) (-15 -2504 ((-3 |t#1| "failed") |t#1|)) (-15 -2679 ((-3 |t#1| "failed") |t#1|)) (-15 -4154 ((-3 |t#1| "failed") |t#1|)) (-15 -1742 ((-3 |t#1| "failed") |t#1|)) (-15 -1823 ((-3 |t#1| "failed") |t#1|)) (-15 -3965 ((-3 |t#1| "failed") |t#1|)) (-15 -3531 ((-3 |t#1| "failed") |t#1|)) (-15 -3712 ((-3 |t#1| "failed") |t#1|)) (-15 -4068 ((-3 |t#1| "failed") |t#1|)) (-15 -3511 ((-3 |t#1| "failed") |t#1|)) (-15 -4202 ((-3 |t#1| "failed") |t#1|)) (-15 -3605 ((-3 |t#1| "failed") |t#1|)) (-15 -4063 ((-3 |t#1| "failed") |t#1|)) (-15 -1467 ((-3 |t#1| "failed") |t#1|)) (-15 -2002 ((-3 |t#1| "failed") |t#1|)) (-15 -2366 ((-3 |t#1| "failed") |t#1|)) (-15 -4183 ((-3 |t#1| "failed") |t#1|)) (-15 -3446 ((-3 |t#1| "failed") |t#1|)) (-15 -1497 ((-3 |t#1| "failed") |t#1|)))) -((-3199 ((|#4| |#4| (-598 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1863 ((|#4| |#4| (-598 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3261 ((|#4| (-1 |#4| (-895 |#1|)) |#4|) 30))) -(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#4| |#4| |#3|)) (-15 -1863 (|#4| |#4| (-598 |#3|))) (-15 -3199 (|#4| |#4| |#3|)) (-15 -3199 (|#4| |#4| (-598 |#3|))) (-15 -3261 (|#4| (-1 |#4| (-895 |#1|)) |#4|))) (-986) (-743) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102))))) (-892 (-895 |#1|) |#2| |#3|)) (T -926)) -((-3261 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-895 *4))) (-4 *4 (-986)) (-4 *2 (-892 (-895 *4) *5 *6)) (-4 *5 (-743)) (-4 *6 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-5 *1 (-926 *4 *5 *6 *2)))) (-3199 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *2 (-892 (-895 *4) *5 *6)))) (-3199 (*1 *2 *2 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *2 (-892 (-895 *4) *5 *6)))) (-1863 (*1 *2 *2 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3))))) -(-10 -7 (-15 -1863 (|#4| |#4| |#3|)) (-15 -1863 (|#4| |#4| (-598 |#3|))) (-15 -3199 (|#4| |#4| |#3|)) (-15 -3199 (|#4| |#4| (-598 |#3|))) (-15 -3261 (|#4| (-1 |#4| (-895 |#1|)) |#4|))) -((-4225 ((|#2| |#3|) 35)) (-2720 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|) 73)) (-2670 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) 89))) -(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|)) (-15 -4225 (|#2| |#3|))) (-330) (-1160 |#1|) (-1160 |#2|) (-675 |#2| |#3|)) (T -927)) -((-4225 (*1 *2 *3) (-12 (-4 *3 (-1160 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-927 *4 *2 *3 *5)) (-4 *4 (-330)) (-4 *5 (-675 *2 *3)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-927 *4 *3 *5 *6)) (-4 *6 (-675 *3 *5)))) (-2670 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-639 *4)))) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-675 *4 *5))))) -(-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|)) (-15 -4225 (|#2| |#3|))) -((-4041 (((-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))) (-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531))))) 69))) -(((-928 |#1| |#2|) (-10 -7 (-15 -4041 ((-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))) (-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531))))))) (-598 (-1102)) (-721)) (T -928)) -((-4041 (*1 *2 *2) (-12 (-5 *2 (-929 (-388 (-531)) (-808 *3) (-223 *4 (-721)) (-230 *3 (-388 (-531))))) (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-928 *3 *4))))) -(-10 -7 (-15 -4041 ((-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))) (-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531))))))) -((-2247 (((-110) $ $) NIL)) (-2182 (((-3 (-110) "failed") $) 69)) (-4013 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-4111 (($ $ (-3 (-110) "failed")) 70)) (-1517 (($ (-598 |#4|) |#4|) 25)) (-1521 (((-1085) $) NIL)) (-1495 (($ $) 67)) (-2529 (((-1049) $) NIL)) (-1589 (((-110) $) 68)) (-3781 (($) 30)) (-2457 ((|#4| $) 72)) (-2729 (((-598 |#4|) $) 71)) (-2265 (((-806) $) 66)) (-2148 (((-110) $ $) NIL))) -(((-929 |#1| |#2| |#3| |#4|) (-13 (-1030) (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1517 ($ (-598 |#4|) |#4|)) (-15 -2182 ((-3 (-110) "failed") $)) (-15 -4111 ($ $ (-3 (-110) "failed"))) (-15 -1589 ((-110) $)) (-15 -2729 ((-598 |#4|) $)) (-15 -2457 (|#4| $)) (-15 -1495 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -4013 ($ $)) |%noBranch|) |%noBranch|))) (-432) (-797) (-743) (-892 |#1| |#3| |#2|)) (T -929)) -((-3781 (*1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))) (-1517 (*1 *1 *2 *3) (-12 (-5 *2 (-598 *3)) (-4 *3 (-892 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-797)) (-4 *6 (-743)) (-5 *1 (-929 *4 *5 *6 *3)))) (-2182 (*1 *2 *1) (|partial| -12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-110)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-1589 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-110)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-2729 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-598 *6)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-2457 (*1 *2 *1) (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-929 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)))) (-1495 (*1 *1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))) (-4013 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3))))) -(-13 (-1030) (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1517 ($ (-598 |#4|) |#4|)) (-15 -2182 ((-3 (-110) "failed") $)) (-15 -4111 ($ $ (-3 (-110) "failed"))) (-15 -1589 ((-110) $)) (-15 -2729 ((-598 |#4|) $)) (-15 -2457 (|#4| $)) (-15 -1495 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -4013 ($ $)) |%noBranch|) |%noBranch|))) -((-1242 (((-110) |#5| |#5|) 38)) (-1724 (((-110) |#5| |#5|) 52)) (-2946 (((-110) |#5| (-598 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-4249 (((-110) (-598 |#4|) (-598 |#4|)) 58)) (-3386 (((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 63)) (-1837 (((-1189)) 33)) (-1564 (((-1189) (-1085) (-1085) (-1085)) 29)) (-1907 (((-598 |#5|) (-598 |#5|)) 81)) (-3783 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) 79)) (-1750 (((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110)) 101)) (-2094 (((-110) |#5| |#5|) 47)) (-2897 (((-3 (-110) "failed") |#5| |#5|) 71)) (-1396 (((-110) (-598 |#4|) (-598 |#4|)) 57)) (-2285 (((-110) (-598 |#4|) (-598 |#4|)) 59)) (-1744 (((-110) (-598 |#4|) (-598 |#4|)) 60)) (-1799 (((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-3852 (((-598 |#5|) (-598 |#5|)) 43))) -(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -930)) -((-1799 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9)))) (-5 *1 (-930 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9)) (-4 *4 (-1005 *6 *7 *8 *9)))) (-1750 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9))))) (-5 *1 (-930 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7)))) (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-930 *5 *6 *7 *8 *3)))) (-2946 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2897 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2285 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1396 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1724 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2094 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) (-1242 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1837 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-930 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-1564 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)))) -((-3524 (((-1102) $) 15)) (-3482 (((-1085) $) 16)) (-1623 (($ (-1102) (-1085)) 14)) (-2265 (((-806) $) 13))) -(((-931) (-13 (-572 (-806)) (-10 -8 (-15 -1623 ($ (-1102) (-1085))) (-15 -3524 ((-1102) $)) (-15 -3482 ((-1085) $))))) (T -931)) -((-1623 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-931)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-931)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-931))))) -(-13 (-572 (-806)) (-10 -8 (-15 -1623 ($ (-1102) (-1085))) (-15 -3524 ((-1102) $)) (-15 -3482 ((-1085) $)))) -((-3261 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|))) (-523) (-523) (-934 |#1|) (-934 |#2|)) (T -932)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-4 *2 (-934 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-934 *5))))) -(-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|))) -((-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-1102) "failed") $) 65) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) 95)) (-2523 ((|#2| $) NIL) (((-1102) $) 60) (((-388 (-531)) $) NIL) (((-531) $) 92)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 112) (((-639 |#2|) (-639 $)) 28)) (-1381 (($) 98)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 75) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 84)) (-3027 (($ $) 10)) (-2342 (((-3 $ "failed") $) 20)) (-3261 (($ (-1 |#2| |#2|) $) 22)) (-3788 (($) 16)) (-2322 (($ $) 54)) (-3352 (($ $) NIL) (($ $ (-721)) NIL) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2842 (($ $) 12)) (-3318 (((-835 (-531)) $) 70) (((-835 (-360)) $) 79) (((-507) $) 40) (((-360) $) 44) (((-208) $) 47)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 90) (($ |#2|) NIL) (($ (-1102)) 57)) (-2284 (((-721)) 31)) (-2174 (((-110) $ $) 50))) -(((-933 |#1| |#2|) (-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -1381 (|#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -3027 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|))) (-934 |#2|) (-523)) (T -933)) -((-2284 (*1 *2) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-933 *3 *4)) (-4 *3 (-934 *4))))) -(-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -1381 (|#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -3027 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 ((|#1| $) 136 (|has| |#1| (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 127 (|has| |#1| (-852)))) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 130 (|has| |#1| (-852)))) (-2760 (((-110) $ $) 57)) (-3459 (((-531) $) 117 (|has| |#1| (-770)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 175) (((-3 (-1102) "failed") $) 125 (|has| |#1| (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) 109 (|has| |#1| (-977 (-531)))) (((-3 (-531) "failed") $) 107 (|has| |#1| (-977 (-531))))) (-2523 ((|#1| $) 174) (((-1102) $) 124 (|has| |#1| (-977 (-1102)))) (((-388 (-531)) $) 108 (|has| |#1| (-977 (-531)))) (((-531) $) 106 (|has| |#1| (-977 (-531))))) (-3650 (($ $ $) 53)) (-3073 (((-639 (-531)) (-639 $)) 149 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 148 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 147) (((-639 |#1|) (-639 $)) 146)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) 134 (|has| |#1| (-516)))) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-1599 (((-110) $) 119 (|has| |#1| (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 143 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 142 (|has| |#1| (-829 (-360))))) (-3481 (((-110) $) 30)) (-3027 (($ $) 138)) (-1840 ((|#1| $) 140)) (-2342 (((-3 $ "failed") $) 105 (|has| |#1| (-1078)))) (-2985 (((-110) $) 118 (|has| |#1| (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-4103 (($ $ $) 115 (|has| |#1| (-797)))) (-1241 (($ $ $) 114 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 166)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3788 (($) 104 (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2322 (($ $) 135 (|has| |#1| (-289)))) (-2943 ((|#1| $) 132 (|has| |#1| (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 129 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 128 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 172 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 170 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 169 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 168 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 167 (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) 56)) (-1785 (($ $ |#1|) 173 (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-3352 (($ $) 165 (|has| |#1| (-216))) (($ $ (-721)) 163 (|has| |#1| (-216))) (($ $ (-1102)) 161 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 160 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 159 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 158 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2842 (($ $) 137)) (-1853 ((|#1| $) 139)) (-3318 (((-835 (-531)) $) 145 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 144 (|has| |#1| (-573 (-835 (-360))))) (((-507) $) 122 (|has| |#1| (-573 (-507)))) (((-360) $) 121 (|has| |#1| (-962))) (((-208) $) 120 (|has| |#1| (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 131 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ |#1|) 178) (($ (-1102)) 126 (|has| |#1| (-977 (-1102))))) (-2750 (((-3 $ "failed") $) 123 (-1435 (|has| |#1| (-138)) (-3427 (|has| $ (-138)) (|has| |#1| (-852)))))) (-2284 (((-721)) 28)) (-3831 ((|#1| $) 133 (|has| |#1| (-516)))) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 116 (|has| |#1| (-770)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 164 (|has| |#1| (-216))) (($ $ (-721)) 162 (|has| |#1| (-216))) (($ $ (-1102)) 157 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 156 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 155 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 154 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2207 (((-110) $ $) 112 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 111 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 113 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 110 (|has| |#1| (-797)))) (-2263 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-934 |#1|) (-133) (-523)) (T -934)) -((-2263 (*1 *1 *2 *2) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-3027 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) (-2322 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) (-1381 (*1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-516)) (-4 *2 (-523)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516))))) -(-13 (-344) (-37 |t#1|) (-977 |t#1|) (-319 |t#1|) (-214 |t#1|) (-358 |t#1|) (-827 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2263 ($ |t#1| |t#1|)) (-15 -1840 (|t#1| $)) (-15 -1853 (|t#1| $)) (-15 -3027 ($ $)) (-15 -2842 ($ $)) (IF (|has| |t#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |t#1| (-977 (-531))) (PROGN (-6 (-977 (-531))) (-6 (-977 (-388 (-531))))) |%noBranch|) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-770)) (-6 (-770)) |%noBranch|) (IF (|has| |t#1| (-962)) (-6 (-962)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-977 (-1102))) (-6 (-977 (-1102))) |%noBranch|) (IF (|has| |t#1| (-289)) (PROGN (-15 -1317 (|t#1| $)) (-15 -2322 ($ $))) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -1381 ($)) (-15 -3831 (|t#1| $)) (-15 -2943 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 (-208)) |has| |#1| (-962)) ((-573 (-360)) |has| |#1| (-962)) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) . T) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) . T) ((-289) . T) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-432) . T) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-677) . T) ((-741) |has| |#1| (-770)) ((-742) |has| |#1| (-770)) ((-744) |has| |#1| (-770)) ((-745) |has| |#1| (-770)) ((-770) |has| |#1| (-770)) ((-795) |has| |#1| (-770)) ((-797) -1435 (|has| |#1| (-797)) (|has| |#1| (-770))) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-852) |has| |#1| (-852)) ((-863) . T) ((-962) |has| |#1| (-962)) ((-977 (-388 (-531))) |has| |#1| (-977 (-531))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 (-1102)) |has| |#1| (-977 (-1102))) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-1078)) ((-1138) . T) ((-1142) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1432 (($ (-1069 |#1| |#2|)) 11)) (-2200 (((-1069 |#1| |#2|) $) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#2| $ (-223 |#1| |#2|)) 16)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL))) -(((-935 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1432 ($ (-1069 |#1| |#2|))) (-15 -2200 ((-1069 |#1| |#2|) $)) (-15 -1785 (|#2| $ (-223 |#1| |#2|))))) (-864) (-344)) (T -935)) -((-1432 (*1 *1 *2) (-12 (-5 *2 (-1069 *3 *4)) (-14 *3 (-864)) (-4 *4 (-344)) (-5 *1 (-935 *3 *4)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1069 *3 *4)) (-5 *1 (-935 *3 *4)) (-14 *3 (-864)) (-4 *4 (-344)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-864)) (-4 *2 (-344)) (-5 *1 (-935 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -1432 ($ (-1069 |#1| |#2|))) (-15 -2200 ((-1069 |#1| |#2|) $)) (-15 -1785 (|#2| $ (-223 |#1| |#2|))))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2978 (($ $) 46)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2428 (((-721) $) 45)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2572 ((|#1| $) 44)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-3969 ((|#1| |#1| $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2329 ((|#1| $) 47)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-3052 ((|#1| $) 43)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-936 |#1|) (-133) (-1138)) (T -936)) -((-3969 (*1 *2 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-2978 (*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138))))) -(-13 (-104 |t#1|) (-10 -8 (-6 -4273) (-15 -3969 (|t#1| |t#1| $)) (-15 -2329 (|t#1| $)) (-15 -2978 ($ $)) (-15 -2428 ((-721) $)) (-15 -2572 (|t#1| $)) (-15 -3052 (|t#1| $)))) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-3019 (((-110) $) 42)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 43)) (-1609 (((-3 (-388 (-531)) "failed") $) 78)) (-3004 (((-110) $) 72)) (-2727 (((-388 (-531)) $) 76)) (-3481 (((-110) $) 41)) (-1899 ((|#2| $) 22)) (-3261 (($ (-1 |#2| |#2|) $) 19)) (-2422 (($ $) 61)) (-3352 (($ $) NIL) (($ $ (-721)) NIL) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3318 (((-507) $) 67)) (-4164 (($ $) 17)) (-2265 (((-806) $) 56) (($ (-531)) 38) (($ |#2|) 36) (($ (-388 (-531))) NIL)) (-2284 (((-721)) 10)) (-1620 ((|#2| $) 71)) (-2148 (((-110) $ $) 25)) (-2174 (((-110) $ $) 69)) (-2250 (($ $) 29) (($ $ $) 28)) (-2237 (($ $ $) 26)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL))) -(((-937 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 -2422 (|#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -3481 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-938 |#2|) (-162)) (T -937)) -((-2284 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-937 *3 *4)) (-4 *3 (-938 *4))))) -(-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 -2422 (|#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -3481 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 116 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 114 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 113)) (-2523 (((-531) $) 117 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 115 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 112)) (-3073 (((-639 (-531)) (-639 $)) 87 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 86 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 85) (((-639 |#1|) (-639 $)) 84)) (-3622 (((-3 $ "failed") $) 32)) (-2577 ((|#1| $) 77)) (-1609 (((-3 (-388 (-531)) "failed") $) 73 (|has| |#1| (-516)))) (-3004 (((-110) $) 75 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 74 (|has| |#1| (-516)))) (-1486 (($ |#1| |#1| |#1| |#1|) 78)) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 79)) (-4103 (($ $ $) 66 (|has| |#1| (-797)))) (-1241 (($ $ $) 65 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 88)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 70 (|has| |#1| (-344)))) (-1614 ((|#1| $) 80)) (-2600 ((|#1| $) 81)) (-2774 ((|#1| $) 82)) (-2529 (((-1049) $) 10)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 94 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 92 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 91 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 90 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 89 (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) 95 (|has| |#1| (-268 |#1| |#1|)))) (-3352 (($ $) 111 (|has| |#1| (-216))) (($ $ (-721)) 109 (|has| |#1| (-216))) (($ $ (-1102)) 107 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 106 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 105 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 104 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3318 (((-507) $) 71 (|has| |#1| (-573 (-507))))) (-4164 (($ $) 83)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ (-388 (-531))) 60 (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (((-3 $ "failed") $) 72 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-1620 ((|#1| $) 76 (|has| |#1| (-995)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 110 (|has| |#1| (-216))) (($ $ (-721)) 108 (|has| |#1| (-216))) (($ $ (-1102)) 103 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 102 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 101 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 100 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2207 (((-110) $ $) 63 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 62 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 64 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 61 (|has| |#1| (-797)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 69 (|has| |#1| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-388 (-531))) 68 (|has| |#1| (-344))) (($ (-388 (-531)) $) 67 (|has| |#1| (-344))))) -(((-938 |#1|) (-133) (-162)) (T -938)) -((-4164 (*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1486 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531)))))) -(-13 (-37 |t#1|) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-358 |t#1|) (-10 -8 (-15 -4164 ($ $)) (-15 -2774 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -1614 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -1486 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2577 (|t#1| $)) (IF (|has| |t#1| (-272)) (-6 (-272)) |%noBranch|) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -1620 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-344)) ((-37 |#1|) . T) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-344)) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) |has| |#1| (-344)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1435 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-601 #0#) |has| |#1| (-344)) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-344)) ((-668 |#1|) . T) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) |has| |#1| (-344)) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3261 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) (-938 |#2|) (-162) (-938 |#4|) (-162)) (T -939)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-938 *6)) (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5))))) -(-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2577 ((|#1| $) 12)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-516)))) (-3004 (((-110) $) NIL (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| |#1| (-516)))) (-1486 (($ |#1| |#1| |#1| |#1|) 16)) (-3481 (((-110) $) NIL)) (-1899 ((|#1| $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1614 ((|#1| $) 15)) (-2600 ((|#1| $) 14)) (-2774 ((|#1| $) 13)) (-2529 (((-1049) $) NIL)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3352 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-4164 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-1620 ((|#1| $) NIL (|has| |#1| (-995)))) (-3035 (($) 8 T CONST)) (-3050 (($) 10 T CONST)) (-4020 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-344))))) -(((-940 |#1|) (-938 |#1|) (-162)) (T -940)) -NIL -(-938 |#1|) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2978 (($ $) 20)) (-1848 (($ (-598 |#1|)) 29)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2428 (((-721) $) 22)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 24)) (-3944 (($ |#1| $) 15)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2572 ((|#1| $) 23)) (-4192 ((|#1| $) 19)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-3969 ((|#1| |#1| $) 14)) (-1589 (((-110) $) 17)) (-3781 (($) NIL)) (-2329 ((|#1| $) 18)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) NIL)) (-3052 ((|#1| $) 26)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-941 |#1|) (-13 (-936 |#1|) (-10 -8 (-15 -1848 ($ (-598 |#1|))))) (-1030)) (T -941)) -((-1848 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-941 *3))))) -(-13 (-936 |#1|) (-10 -8 (-15 -1848 ($ (-598 |#1|))))) -((-2563 (($ $) 12)) (-2249 (($ $ (-531)) 13))) -(((-942 |#1|) (-10 -8 (-15 -2563 (|#1| |#1|)) (-15 -2249 (|#1| |#1| (-531)))) (-943)) (T -942)) -NIL -(-10 -8 (-15 -2563 (|#1| |#1|)) (-15 -2249 (|#1| |#1| (-531)))) -((-2563 (($ $) 6)) (-2249 (($ $ (-531)) 7)) (** (($ $ (-388 (-531))) 8))) -(((-943) (-133)) (T -943)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-388 (-531))))) (-2249 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-531)))) (-2563 (*1 *1 *1) (-4 *1 (-943)))) -(-13 (-10 -8 (-15 -2563 ($ $)) (-15 -2249 ($ $ (-531))) (-15 ** ($ $ (-388 (-531)))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1461 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3258 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2921 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1849 (((-639 (-388 |#2|)) (-1184 $)) NIL) (((-639 (-388 |#2|))) NIL)) (-1354 (((-388 |#2|) $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-388 |#2|) (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2956 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2760 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3006 (((-721)) NIL (|has| (-388 |#2|) (-349)))) (-1860 (((-110)) NIL)) (-1730 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-388 (-531)) $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-388 |#2|) $) NIL)) (-2767 (($ (-1184 (-388 |#2|)) (-1184 $)) NIL) (($ (-1184 (-388 |#2|))) 70) (($ (-1184 |#2|) |#2|) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3650 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1982 (((-639 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-388 |#2|))) (|:| |vec| (-1184 (-388 |#2|)))) (-639 $) (-1184 $)) NIL) (((-639 (-388 |#2|)) (-639 $)) NIL)) (-2492 (((-1184 $) (-1184 $)) NIL)) (-1760 (($ |#3|) 65) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2709 (((-598 (-598 |#1|))) NIL (|has| |#1| (-349)))) (-3428 (((-110) |#1| |#1|) NIL)) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| (-388 |#2|) (-349)))) (-2903 (((-110)) NIL)) (-2809 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-3630 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| (-388 |#2|) (-344)))) (-2226 (($ $) NIL)) (-1806 (($) NIL (|has| (-388 |#2|) (-330)))) (-1971 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3493 (($ $ (-721)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-2534 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-3617 (((-864) $) NIL (|has| (-388 |#2|) (-330))) (((-783 (-864)) $) NIL (|has| (-388 |#2|) (-330)))) (-3481 (((-110) $) NIL)) (-2262 (((-721)) NIL)) (-1272 (((-1184 $) (-1184 $)) NIL)) (-1899 (((-388 |#2|) $) NIL)) (-4083 (((-598 (-895 |#1|)) (-1102)) NIL (|has| |#1| (-344)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1233 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-2211 (((-864) $) NIL (|has| (-388 |#2|) (-349)))) (-1749 ((|#3| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1521 (((-1085) $) NIL)) (-1789 (((-639 (-388 |#2|))) 52)) (-1953 (((-639 (-388 |#2|))) 51)) (-2422 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1729 (($ (-1184 |#2|) |#2|) 71)) (-3519 (((-639 (-388 |#2|))) 50)) (-3970 (((-639 (-388 |#2|))) 49)) (-3594 (((-2 (|:| |num| (-639 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3883 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 77)) (-2505 (((-1184 $)) 46)) (-2670 (((-1184 $)) 45)) (-3824 (((-110) $) NIL)) (-3570 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3788 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| (-388 |#2|) (-349)))) (-3667 (((-3 |#2| "failed")) 63)) (-2529 (((-1049) $) NIL)) (-2509 (((-721)) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| (-388 |#2|) (-344)))) (-2109 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-388 |#2|) (-330)))) (-2552 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-4100 (((-721) $) NIL (|has| (-388 |#2|) (-344)))) (-1785 ((|#1| $ |#1| |#1|) NIL)) (-3751 (((-3 |#2| "failed")) 62)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3176 (((-388 |#2|) (-1184 $)) NIL) (((-388 |#2|)) 42)) (-2350 (((-721) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-721) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3352 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3381 (((-639 (-388 |#2|)) (-1184 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-3608 ((|#3|) 53)) (-2498 (($) NIL (|has| (-388 |#2|) (-330)))) (-3348 (((-1184 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) (-1184 $) (-1184 $)) NIL) (((-1184 (-388 |#2|)) $) 72) (((-639 (-388 |#2|)) (-1184 $)) NIL)) (-3318 (((-1184 (-388 |#2|)) $) NIL) (($ (-1184 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-388 |#2|) (-330)))) (-3568 (((-1184 $) (-1184 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| (-388 |#2|) (-977 (-388 (-531)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2750 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-3369 ((|#3| $) NIL)) (-2284 (((-721)) NIL)) (-1966 (((-110)) 60)) (-2935 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-3523 (((-1184 $)) 121)) (-2587 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1689 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1855 (((-110)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-531)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-531))) NIL (|has| (-388 |#2|) (-344))))) -(((-944 |#1| |#2| |#3| |#4| |#5|) (-323 |#1| |#2| |#3|) (-1142) (-1160 |#1|) (-1160 (-388 |#2|)) (-388 |#2|) (-721)) (T -944)) -NIL -(-323 |#1| |#2| |#3|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1981 (((-598 (-531)) $) 54)) (-2320 (($ (-598 (-531))) 62)) (-1317 (((-531) $) 40 (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) 49) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) 47 (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) 49 (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1311 (((-598 (-531)) $) 60)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) 37)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) 42)) (-2984 (((-1083 (-531)) $) 59)) (-2638 (($ (-598 (-531)) (-598 (-531))) 63)) (-2943 (((-531) $) 53 (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) 11 (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) 39)) (-1914 (((-598 (-531)) $) 61)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) 77) (($ (-531)) 43) (($ $) NIL) (($ (-388 (-531))) 20) (($ (-531)) 43) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) 18)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) 9)) (-3831 (((-531) $) 51 (|has| (-531) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) 10 T CONST)) (-3050 (($) 12 T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) 14)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) 33 (|has| (-531) (-797)))) (-2263 (($ $ $) 29) (($ (-531) (-531)) 31)) (-2250 (($ $) 15) (($ $ $) 23)) (-2237 (($ $ $) 21)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 25) (($ $ $) 27) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) 25) (($ $ (-531)) NIL))) -(((-945 |#1|) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1981 ((-598 (-531)) $)) (-15 -2984 ((-1083 (-531)) $)) (-15 -1311 ((-598 (-531)) $)) (-15 -1914 ((-598 (-531)) $)) (-15 -2320 ($ (-598 (-531)))) (-15 -2638 ($ (-598 (-531)) (-598 (-531)))))) (-531)) (T -945)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2638 (*1 *1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1981 ((-598 (-531)) $)) (-15 -2984 ((-1083 (-531)) $)) (-15 -1311 ((-598 (-531)) $)) (-15 -1914 ((-598 (-531)) $)) (-15 -2320 ($ (-598 (-531)))) (-15 -2638 ($ (-598 (-531)) (-598 (-531)))))) -((-3889 (((-51) (-388 (-531)) (-531)) 9))) -(((-946) (-10 -7 (-15 -3889 ((-51) (-388 (-531)) (-531))))) (T -946)) -((-3889 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-531))) (-5 *4 (-531)) (-5 *2 (-51)) (-5 *1 (-946))))) -(-10 -7 (-15 -3889 ((-51) (-388 (-531)) (-531)))) -((-3006 (((-531)) 13)) (-3991 (((-531)) 16)) (-3295 (((-1189) (-531)) 15)) (-3954 (((-531) (-531)) 17) (((-531)) 12))) -(((-947) (-10 -7 (-15 -3954 ((-531))) (-15 -3006 ((-531))) (-15 -3954 ((-531) (-531))) (-15 -3295 ((-1189) (-531))) (-15 -3991 ((-531))))) (T -947)) -((-3991 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-947)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) (-3006 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) (-3954 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947))))) -(-10 -7 (-15 -3954 ((-531))) (-15 -3006 ((-531))) (-15 -3954 ((-531) (-531))) (-15 -3295 ((-1189) (-531))) (-15 -3991 ((-531)))) -((-4184 (((-399 |#1|) |#1|) 41)) (-2552 (((-399 |#1|) |#1|) 40))) -(((-948 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|))) (-1160 (-388 (-531)))) (T -948)) -((-4184 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3)) (-4 *3 (-1160 (-388 (-531)))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3)) (-4 *3 (-1160 (-388 (-531))))))) -(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|))) -((-1609 (((-3 (-388 (-531)) "failed") |#1|) 15)) (-3004 (((-110) |#1|) 14)) (-2727 (((-388 (-531)) |#1|) 10))) -(((-949 |#1|) (-10 -7 (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|))) (-977 (-388 (-531)))) (T -949)) -((-1609 (*1 *2 *3) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) (-4 *3 (-977 *2)))) (-3004 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-949 *3)) (-4 *3 (-977 (-388 (-531)))))) (-2727 (*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) (-4 *3 (-977 *2))))) -(-10 -7 (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|))) -((-2454 ((|#2| $ "value" |#2|) 12)) (-1785 ((|#2| $ "value") 10)) (-2910 (((-110) $ $) 18))) -(((-950 |#1| |#2|) (-10 -8 (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -1785 (|#2| |#1| "value"))) (-951 |#2|) (-1138)) (T -950)) -NIL -(-10 -8 (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -1785 (|#2| |#1| "value"))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-951 |#1|) (-133) (-1138)) (T -951)) -((-3495 (*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3)))) (-1555 (*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-951 *2)) (-4 *2 (-1138)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))) (-2357 (*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-531)))) (-2910 (*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-1478 (*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *1)) (|has| *1 (-6 -4274)) (-4 *1 (-951 *3)) (-4 *3 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) (-4 *2 (-1138)))) (-2039 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) (-4 *2 (-1138))))) -(-13 (-468 |t#1|) (-10 -8 (-15 -3495 ((-598 $) $)) (-15 -1555 ((-598 $) $)) (-15 -2672 ((-110) $)) (-15 -3482 (|t#1| $)) (-15 -1785 (|t#1| $ "value")) (-15 -2930 ((-110) $)) (-15 -2132 ((-598 |t#1|) $)) (-15 -2357 ((-531) $ $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2910 ((-110) $ $)) (-15 -1478 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2713 ($ $ (-598 $))) (-15 -2454 (|t#1| $ "value" |t#1|)) (-15 -2039 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-2563 (($ $) 9) (($ $ (-864)) 43) (($ (-388 (-531))) 13) (($ (-531)) 15)) (-2738 (((-3 $ "failed") (-1098 $) (-864) (-806)) 23) (((-3 $ "failed") (-1098 $) (-864)) 28)) (-2249 (($ $ (-531)) 49)) (-2284 (((-721)) 17)) (-2054 (((-598 $) (-1098 $)) NIL) (((-598 $) (-1098 (-388 (-531)))) 54) (((-598 $) (-1098 (-531))) 59) (((-598 $) (-895 $)) 63) (((-598 $) (-895 (-388 (-531)))) 67) (((-598 $) (-895 (-531))) 71)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ $ (-388 (-531))) 47))) -(((-952 |#1|) (-10 -8 (-15 -2563 (|#1| (-531))) (-15 -2563 (|#1| (-388 (-531)))) (-15 -2563 (|#1| |#1| (-864))) (-15 -2054 ((-598 |#1|) (-895 (-531)))) (-15 -2054 ((-598 |#1|) (-895 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-895 |#1|))) (-15 -2054 ((-598 |#1|) (-1098 (-531)))) (-15 -2054 ((-598 |#1|) (-1098 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-1098 |#1|))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864) (-806))) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2249 (|#1| |#1| (-531))) (-15 -2563 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864)))) (-953)) (T -952)) -((-2284 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-952 *3)) (-4 *3 (-953))))) -(-10 -8 (-15 -2563 (|#1| (-531))) (-15 -2563 (|#1| (-388 (-531)))) (-15 -2563 (|#1| |#1| (-864))) (-15 -2054 ((-598 |#1|) (-895 (-531)))) (-15 -2054 ((-598 |#1|) (-895 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-895 |#1|))) (-15 -2054 ((-598 |#1|) (-1098 (-531)))) (-15 -2054 ((-598 |#1|) (-1098 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-1098 |#1|))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864) (-806))) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2249 (|#1| |#1| (-531))) (-15 -2563 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 87)) (-3258 (($ $) 88)) (-2921 (((-110) $) 90)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 107)) (-2956 (((-399 $) $) 108)) (-2563 (($ $) 71) (($ $ (-864)) 57) (($ (-388 (-531))) 56) (($ (-531)) 55)) (-2760 (((-110) $ $) 98)) (-3459 (((-531) $) 124)) (-4082 (($) 17 T CONST)) (-2738 (((-3 $ "failed") (-1098 $) (-864) (-806)) 65) (((-3 $ "failed") (-1098 $) (-864)) 64)) (-3154 (((-3 (-531) "failed") $) 83 (|has| (-388 (-531)) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 81 (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-3 (-388 (-531)) "failed") $) 79)) (-2523 (((-531) $) 84 (|has| (-388 (-531)) (-977 (-531)))) (((-388 (-531)) $) 82 (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-388 (-531)) $) 78)) (-3401 (($ $ (-806)) 54)) (-4230 (($ $ (-806)) 53)) (-3650 (($ $ $) 102)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 101)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 96)) (-2534 (((-110) $) 109)) (-1599 (((-110) $) 122)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 70)) (-2985 (((-110) $) 123)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 105)) (-4103 (($ $ $) 121)) (-1241 (($ $ $) 120)) (-1722 (((-3 (-1098 $) "failed") $) 66)) (-2334 (((-3 (-806) "failed") $) 68)) (-1808 (((-3 (-1098 $) "failed") $) 67)) (-2078 (($ (-598 $)) 94) (($ $ $) 93)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 110)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 95)) (-2109 (($ (-598 $)) 92) (($ $ $) 91)) (-2552 (((-399 $) $) 106)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 103)) (-3609 (((-3 $ "failed") $ $) 86)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 97)) (-4100 (((-721) $) 99)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 100)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 114) (($ $) 85) (($ (-388 (-531))) 80) (($ (-531)) 77) (($ (-388 (-531))) 74)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 89)) (-4148 (((-388 (-531)) $ $) 52)) (-2054 (((-598 $) (-1098 $)) 63) (((-598 $) (-1098 (-388 (-531)))) 62) (((-598 $) (-1098 (-531))) 61) (((-598 $) (-895 $)) 60) (((-598 $) (-895 (-388 (-531)))) 59) (((-598 $) (-895 (-531))) 58)) (-1620 (($ $) 125)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 118)) (-2184 (((-110) $ $) 117)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 119)) (-2174 (((-110) $ $) 116)) (-2263 (($ $ $) 115)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 111) (($ $ (-388 (-531))) 69)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ (-388 (-531)) $) 113) (($ $ (-388 (-531))) 112) (($ (-531) $) 76) (($ $ (-531)) 75) (($ (-388 (-531)) $) 73) (($ $ (-388 (-531))) 72))) -(((-953) (-133)) (T -953)) -((-2563 (*1 *1 *1) (-4 *1 (-953))) (-2334 (*1 *2 *1) (|partial| -12 (-4 *1 (-953)) (-5 *2 (-806)))) (-1808 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953)))) (-1722 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953)))) (-2738 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-5 *4 (-806)) (-4 *1 (-953)))) (-2738 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1098 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2563 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-864)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-953)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-953)))) (-3401 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806)))) (-4148 (*1 *2 *1 *1) (-12 (-4 *1 (-953)) (-5 *2 (-388 (-531)))))) -(-13 (-140) (-795) (-162) (-344) (-392 (-388 (-531))) (-37 (-531)) (-37 (-388 (-531))) (-943) (-10 -8 (-15 -2334 ((-3 (-806) "failed") $)) (-15 -1808 ((-3 (-1098 $) "failed") $)) (-15 -1722 ((-3 (-1098 $) "failed") $)) (-15 -2738 ((-3 $ "failed") (-1098 $) (-864) (-806))) (-15 -2738 ((-3 $ "failed") (-1098 $) (-864))) (-15 -2054 ((-598 $) (-1098 $))) (-15 -2054 ((-598 $) (-1098 (-388 (-531))))) (-15 -2054 ((-598 $) (-1098 (-531)))) (-15 -2054 ((-598 $) (-895 $))) (-15 -2054 ((-598 $) (-895 (-388 (-531))))) (-15 -2054 ((-598 $) (-895 (-531)))) (-15 -2563 ($ $ (-864))) (-15 -2563 ($ $)) (-15 -2563 ($ (-388 (-531)))) (-15 -2563 ($ (-531))) (-15 -3401 ($ $ (-806))) (-15 -4230 ($ $ (-806))) (-15 -4148 ((-388 (-531)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 #1=(-531)) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-392 (-388 (-531))) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 #1#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 #1#) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-863) . T) ((-943) . T) ((-977 (-388 (-531))) . T) ((-977 (-531)) |has| (-388 (-531)) (-977 (-531))) ((-992 #0#) . T) ((-992 #1#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-1313 (((-2 (|:| |ans| |#2|) (|:| -3157 |#2|) (|:| |sol?| (-110))) (-531) |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-954 |#1| |#2|) (-10 -7 (-15 -1313 ((-2 (|:| |ans| |#2|) (|:| -3157 |#2|) (|:| |sol?| (-110))) (-531) |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-27) (-411 |#1|))) (T -954)) -((-1313 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1102)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-598 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1124) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3))) (-5 *3 (-531)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110)))) (-5 *1 (-954 *8 *4))))) -(-10 -7 (-15 -1313 ((-2 (|:| |ans| |#2|) (|:| -3157 |#2|) (|:| |sol?| (-110))) (-531) |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3160 (((-3 (-598 |#2|) "failed") (-531) |#2| |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-955 |#1| |#2|) (-10 -7 (-15 -3160 ((-3 (-598 |#2|) "failed") (-531) |#2| |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-27) (-411 |#1|))) (T -955)) -((-3160 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1102)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-598 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1124) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3))) (-5 *3 (-531)) (-5 *2 (-598 *4)) (-5 *1 (-955 *8 *4))))) -(-10 -7 (-15 -3160 ((-3 (-598 |#2|) "failed") (-531) |#2| |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3108 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-531)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-531) (-1 |#2| |#2|)) 30)) (-2497 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 58)) (-3749 (((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|)) 63))) -(((-956 |#1| |#2|) (-10 -7 (-15 -2497 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3749 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -3108 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-531)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-531) (-1 |#2| |#2|)))) (-13 (-344) (-140) (-977 (-531))) (-1160 |#1|)) (T -956)) -((-3108 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1160 *6)) (-4 *6 (-13 (-344) (-140) (-977 *4))) (-5 *4 (-531)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-956 *6 *3)))) (-3749 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-956 *4 *5)) (-5 *3 (-388 *5)))) (-2497 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -4073 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-388 *6))))) -(-10 -7 (-15 -2497 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3749 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -3108 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-531)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-531) (-1 |#2| |#2|)))) -((-2637 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 22)) (-2114 (((-3 (-598 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 33))) -(((-957 |#1| |#2|) (-10 -7 (-15 -2637 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2114 ((-3 (-598 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) (-13 (-344) (-140) (-977 (-531))) (-1160 |#1|)) (T -957)) -((-2114 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-388 *5))) (-5 *1 (-957 *4 *5)) (-5 *3 (-388 *5)))) (-2637 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4073 *6))) (-5 *1 (-957 *5 *6)) (-5 *3 (-388 *6))))) -(-10 -7 (-15 -2637 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2114 ((-3 (-598 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) -((-3190 (((-1 |#1|) (-598 (-2 (|:| -3482 |#1|) (|:| -3449 (-531))))) 37)) (-2014 (((-1 |#1|) (-1032 |#1|)) 45)) (-1565 (((-1 |#1|) (-1184 |#1|) (-1184 (-531)) (-531)) 34))) -(((-958 |#1|) (-10 -7 (-15 -2014 ((-1 |#1|) (-1032 |#1|))) (-15 -3190 ((-1 |#1|) (-598 (-2 (|:| -3482 |#1|) (|:| -3449 (-531)))))) (-15 -1565 ((-1 |#1|) (-1184 |#1|) (-1184 (-531)) (-531)))) (-1030)) (T -958)) -((-1565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *6)) (-5 *4 (-1184 (-531))) (-5 *5 (-531)) (-4 *6 (-1030)) (-5 *2 (-1 *6)) (-5 *1 (-958 *6)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -3482 *4) (|:| -3449 (-531))))) (-4 *4 (-1030)) (-5 *2 (-1 *4)) (-5 *1 (-958 *4)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1032 *4)) (-4 *4 (-1030)) (-5 *2 (-1 *4)) (-5 *1 (-958 *4))))) -(-10 -7 (-15 -2014 ((-1 |#1|) (-1032 |#1|))) (-15 -3190 ((-1 |#1|) (-598 (-2 (|:| -3482 |#1|) (|:| -3449 (-531)))))) (-15 -1565 ((-1 |#1|) (-1184 |#1|) (-1184 (-531)) (-531)))) -((-3617 (((-721) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-13 (-349) (-344))) (T -959)) -((-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-4 *4 (-1160 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) (-4 *9 (-13 (-349) (-344))) (-5 *2 (-721)) (-5 *1 (-959 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2522 (((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 31) (((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 28)) (-2085 (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 33) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531))) 29) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 32) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|) 27)) (-2553 (((-598 (-388 (-531))) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) 19)) (-1357 (((-388 (-531)) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 16))) -(((-960 |#1|) (-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -1357 ((-388 (-531)) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2553 ((-598 (-388 (-531))) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))))) (-1160 (-531))) (T -960)) -((-2553 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *2 (-598 (-388 (-531)))) (-5 *1 (-960 *4)) (-4 *4 (-1160 (-531))))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *2 (-388 (-531))) (-5 *1 (-960 *4)) (-4 *4 (-1160 (-531))))) (-2522 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) (-2522 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *4 (-388 (-531))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) (-2085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-531))) (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-388 (-531))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531)))))) -(-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -1357 ((-388 (-531)) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2553 ((-598 (-388 (-531))) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))))) -((-2522 (((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 35) (((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 32)) (-2085 (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 30) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531))) 26) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 28) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|) 24))) -(((-961 |#1|) (-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-1160 (-388 (-531)))) (T -961)) -((-2522 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))))) (-2522 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *4 (-388 (-531))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *4)))) (-2085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-531))) (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *5)) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-531))) (-5 *2 (-598 (-2 (|:| -3144 *4) (|:| -3157 *4)))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *4)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))) (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531))))))) -(-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) -((-3318 (((-208) $) 6) (((-360) $) 9))) -(((-962) (-133)) (T -962)) -NIL -(-13 (-573 (-208)) (-573 (-360))) -(((-573 (-208)) . T) ((-573 (-360)) . T)) -((-1871 (((-598 (-360)) (-895 (-531)) (-360)) 28) (((-598 (-360)) (-895 (-388 (-531))) (-360)) 27)) (-1489 (((-598 (-598 (-360))) (-598 (-895 (-531))) (-598 (-1102)) (-360)) 37))) -(((-963) (-10 -7 (-15 -1871 ((-598 (-360)) (-895 (-388 (-531))) (-360))) (-15 -1871 ((-598 (-360)) (-895 (-531)) (-360))) (-15 -1489 ((-598 (-598 (-360))) (-598 (-895 (-531))) (-598 (-1102)) (-360))))) (T -963)) -((-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 (-360)))) (-5 *1 (-963)) (-5 *5 (-360)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 (-360))) (-5 *1 (-963)) (-5 *4 (-360)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 (-360))) (-5 *1 (-963)) (-5 *4 (-360))))) -(-10 -7 (-15 -1871 ((-598 (-360)) (-895 (-388 (-531))) (-360))) (-15 -1871 ((-598 (-360)) (-895 (-531)) (-360))) (-15 -1489 ((-598 (-598 (-360))) (-598 (-895 (-531))) (-598 (-1102)) (-360)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 70)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL) (($ $ (-864)) NIL) (($ (-388 (-531))) NIL) (($ (-531)) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) 65)) (-4082 (($) NIL T CONST)) (-2738 (((-3 $ "failed") (-1098 $) (-864) (-806)) NIL) (((-3 $ "failed") (-1098 $) (-864)) 50)) (-3154 (((-3 (-388 (-531)) "failed") $) NIL (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-531) "failed") $) NIL (-1435 (|has| (-388 (-531)) (-977 (-531))) (|has| |#1| (-977 (-531)))))) (-2523 (((-388 (-531)) $) 15 (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-388 (-531)) $) 15) ((|#1| $) 108) (((-531) $) NIL (-1435 (|has| (-388 (-531)) (-977 (-531))) (|has| |#1| (-977 (-531)))))) (-3401 (($ $ (-806)) 42)) (-4230 (($ $ (-806)) 43)) (-3650 (($ $ $) NIL)) (-2613 (((-388 (-531)) $ $) 19)) (-3622 (((-3 $ "failed") $) 83)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) 61)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-2985 (((-110) $) 64)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1722 (((-3 (-1098 $) "failed") $) 78)) (-2334 (((-3 (-806) "failed") $) 77)) (-1808 (((-3 (-1098 $) "failed") $) 75)) (-4195 (((-3 (-996 $ (-1098 $)) "failed") $) 73)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 84)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2265 (((-806) $) 82) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ $) 58) (($ (-388 (-531))) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 110)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ $) 25)) (-2054 (((-598 $) (-1098 $)) 56) (((-598 $) (-1098 (-388 (-531)))) NIL) (((-598 $) (-1098 (-531))) NIL) (((-598 $) (-895 $)) NIL) (((-598 $) (-895 (-388 (-531)))) NIL) (((-598 $) (-895 (-531))) NIL)) (-3122 (($ (-996 $ (-1098 $)) (-806)) 41)) (-1620 (($ $) 20)) (-3035 (($) 29 T CONST)) (-3050 (($) 35 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 71)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 22)) (-2263 (($ $ $) 33)) (-2250 (($ $) 34) (($ $ $) 69)) (-2237 (($ $ $) 103)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ $ (-388 (-531))) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 91) (($ $ $) 96) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ (-531) $) 91) (($ $ (-531)) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-964 |#1|) (-13 (-953) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -3122 ($ (-996 $ (-1098 $)) (-806))) (-15 -4195 ((-3 (-996 $ (-1098 $)) "failed") $)) (-15 -2613 ((-388 (-531)) $ $)))) (-13 (-795) (-344) (-962))) (T -964)) -((-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-996 (-964 *4) (-1098 (-964 *4)))) (-5 *3 (-806)) (-5 *1 (-964 *4)) (-4 *4 (-13 (-795) (-344) (-962))))) (-4195 (*1 *2 *1) (|partial| -12 (-5 *2 (-996 (-964 *3) (-1098 (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-795) (-344) (-962))))) (-2613 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-795) (-344) (-962)))))) -(-13 (-953) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -3122 ($ (-996 $ (-1098 $)) (-806))) (-15 -4195 ((-3 (-996 $ (-1098 $)) "failed") $)) (-15 -2613 ((-388 (-531)) $ $)))) -((-2291 (((-2 (|:| -2723 |#2|) (|:| -4155 (-598 |#1|))) |#2| (-598 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-965 |#1| |#2|) (-10 -7 (-15 -2291 (|#2| |#2| |#1|)) (-15 -2291 ((-2 (|:| -2723 |#2|) (|:| -4155 (-598 |#1|))) |#2| (-598 |#1|)))) (-344) (-609 |#1|)) (T -965)) -((-2291 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2723 *3) (|:| -4155 (-598 *5)))) (-5 *1 (-965 *5 *3)) (-5 *4 (-598 *5)) (-4 *3 (-609 *5)))) (-2291 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-965 *3 *2)) (-4 *2 (-609 *3))))) -(-10 -7 (-15 -2291 (|#2| |#2| |#1|)) (-15 -2291 ((-2 (|:| -2723 |#2|) (|:| -4155 (-598 |#1|))) |#2| (-598 |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3359 ((|#1| $ |#1|) 14)) (-2454 ((|#1| $ |#1|) 12)) (-1683 (($ |#1|) 10)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1785 ((|#1| $) 11)) (-3686 ((|#1| $) 13)) (-2265 (((-806) $) 21 (|has| |#1| (-1030)))) (-2148 (((-110) $ $) 9))) -(((-966 |#1|) (-13 (-1138) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1785 (|#1| $)) (-15 -2454 (|#1| $ |#1|)) (-15 -3686 (|#1| $)) (-15 -3359 (|#1| $ |#1|)) (-15 -2148 ((-110) $ $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) (-1138)) (T -966)) -((-1683 (*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-3686 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-3359 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-2148 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-966 *3)) (-4 *3 (-1138))))) -(-13 (-1138) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1785 (|#1| $)) (-15 -2454 (|#1| $ |#1|)) (-15 -3686 (|#1| $)) (-15 -3359 (|#1| $ |#1|)) (-15 -2148 ((-110) $ $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) 105) (((-598 $) (-598 |#4|) (-110)) 106) (((-598 $) (-598 |#4|) (-110) (-110)) 104) (((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110)) 107)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 99)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 54)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) 26 (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 39)) (-3785 ((|#4| |#4| $) 57)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2950 (((-110) |#4| $) NIL)) (-1428 (((-110) |#4| $) NIL)) (-2213 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1988 (((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110)) 119)) (-2227 (((-598 |#4|) $) 16 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 33)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 17 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) NIL)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 97)) (-2309 (((-3 |#4| "failed") $) 37)) (-2918 (((-598 $) |#4| $) 80)) (-1568 (((-3 (-110) (-598 $)) |#4| $) NIL)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-1301 (((-598 $) |#4| $) 102) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 103) (((-598 $) |#4| (-598 $)) NIL)) (-1434 (((-598 $) (-598 |#4|) (-110) (-110) (-110)) 114)) (-2106 (($ |#4| $) 70) (($ (-598 |#4|) $) 71) (((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-1979 (((-598 |#4|) $) NIL)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 35)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) 48)) (-1846 (($ $ |#4|) NIL) (((-598 $) |#4| $) 82) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 77)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 13)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 12)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 20)) (-3382 (($ $ |#3|) 42)) (-2021 (($ $ |#3|) 44)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 31) (((-598 |#4|) $) 40)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-3777 (((-598 $) |#4| $) 79) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-3695 (((-110) |#4| $) NIL)) (-1697 (((-110) |#3| $) 53)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-967 |#1| |#2| |#3| |#4|) (-13 (-1005 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110))))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -967)) -((-2106 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) (-4 *3 (-1000 *5 *6 *7)))) (-2855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-2855 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-1434 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-1988 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-598 *8)) (|:| |towers| (-598 (-967 *5 *6 *7 *8))))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-598 *8))))) -(-13 (-1005 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110))))) -((-3198 (((-598 (-639 |#1|)) (-598 (-639 |#1|))) 58) (((-639 |#1|) (-639 |#1|)) 57) (((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-598 (-639 |#1|))) 56) (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 53)) (-3499 (((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864)) 52) (((-639 |#1|) (-639 |#1|) (-864)) 51)) (-1903 (((-598 (-639 (-531))) (-598 (-598 (-531)))) 68) (((-598 (-639 (-531))) (-598 (-848 (-531))) (-531)) 67) (((-639 (-531)) (-598 (-531))) 64) (((-639 (-531)) (-848 (-531)) (-531)) 63)) (-3479 (((-639 (-895 |#1|)) (-721)) 81)) (-3674 (((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864)) 37 (|has| |#1| (-6 (-4275 "*")))) (((-639 |#1|) (-639 |#1|) (-864)) 35 (|has| |#1| (-6 (-4275 "*")))))) -(((-968 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-639 |#1|) (-639 |#1|) (-864))) |%noBranch|) (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) |%noBranch|) (-15 -3479 ((-639 (-895 |#1|)) (-721))) (-15 -3499 ((-639 |#1|) (-639 |#1|) (-864))) (-15 -3499 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) (-15 -3198 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3198 ((-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1903 ((-639 (-531)) (-848 (-531)) (-531))) (-15 -1903 ((-639 (-531)) (-598 (-531)))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-848 (-531))) (-531))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-598 (-531)))))) (-986)) (T -968)) -((-1903 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-531)))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-968 *4)) (-4 *4 (-986)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-848 (-531)))) (-5 *4 (-531)) (-5 *2 (-598 (-639 *4))) (-5 *1 (-968 *5)) (-4 *5 (-986)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-968 *4)) (-4 *4 (-986)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-531))) (-5 *4 (-531)) (-5 *2 (-639 *4)) (-5 *1 (-968 *5)) (-4 *5 (-986)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3198 (*1 *2 *2 *2) (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3198 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3499 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) (-4 *4 (-986)) (-5 *1 (-968 *4)))) (-3499 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (-4 *4 (-986)) (-5 *1 (-968 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-639 (-895 *4))) (-5 *1 (-968 *4)) (-4 *4 (-986)))) (-3674 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) (|has| *4 (-6 (-4275 "*"))) (-4 *4 (-986)) (-5 *1 (-968 *4)))) (-3674 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (|has| *4 (-6 (-4275 "*"))) (-4 *4 (-986)) (-5 *1 (-968 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-639 |#1|) (-639 |#1|) (-864))) |%noBranch|) (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) |%noBranch|) (-15 -3479 ((-639 (-895 |#1|)) (-721))) (-15 -3499 ((-639 |#1|) (-639 |#1|) (-864))) (-15 -3499 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) (-15 -3198 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3198 ((-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1903 ((-639 (-531)) (-848 (-531)) (-531))) (-15 -1903 ((-639 (-531)) (-598 (-531)))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-848 (-531))) (-531))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-598 (-531)))))) -((-1692 (((-639 |#1|) (-598 (-639 |#1|)) (-1184 |#1|)) 50 (|has| |#1| (-289)))) (-2040 (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 (-1184 |#1|))) 76 (|has| |#1| (-344))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 |#1|)) 79 (|has| |#1| (-344)))) (-1475 (((-1184 |#1|) (-598 (-1184 |#1|)) (-531)) 93 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-3713 (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-864)) 85 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110)) 83 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|))) 82 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110) (-531) (-531)) 81 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-3979 (((-110) (-598 (-639 |#1|))) 71 (|has| |#1| (-344))) (((-110) (-598 (-639 |#1|)) (-531)) 73 (|has| |#1| (-344)))) (-3882 (((-1184 (-1184 |#1|)) (-598 (-639 |#1|)) (-1184 |#1|)) 48 (|has| |#1| (-289)))) (-3450 (((-639 |#1|) (-598 (-639 |#1|)) (-639 |#1|)) 34)) (-3915 (((-639 |#1|) (-1184 (-1184 |#1|))) 31)) (-1768 (((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-531)) 65 (|has| |#1| (-344))) (((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|))) 64 (|has| |#1| (-344))) (((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-110) (-531)) 69 (|has| |#1| (-344))))) -(((-969 |#1|) (-10 -7 (-15 -3915 ((-639 |#1|) (-1184 (-1184 |#1|)))) (-15 -3450 ((-639 |#1|) (-598 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -3882 ((-1184 (-1184 |#1|)) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -1692 ((-639 |#1|) (-598 (-639 |#1|)) (-1184 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-110) (-531))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 (-1184 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110) (-531) (-531))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-864))) (-15 -1475 ((-1184 |#1|) (-598 (-1184 |#1|)) (-531)))) |%noBranch|) |%noBranch|)) (-986)) (T -969)) -((-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1184 *5))) (-5 *4 (-531)) (-5 *2 (-1184 *5)) (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-986)) (-5 *2 (-598 (-598 (-639 *4)))) (-5 *1 (-969 *4)) (-5 *3 (-598 (-639 *4))))) (-3713 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-531)) (-4 *6 (-344)) (-4 *6 (-349)) (-4 *6 (-986)) (-5 *2 (-598 (-598 (-639 *6)))) (-5 *1 (-969 *6)) (-5 *3 (-598 (-639 *6))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1184 (-1184 *5))) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) (-4 *4 (-986)) (-5 *2 (-110)) (-5 *1 (-969 *4)))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-110)) (-5 *1 (-969 *5)))) (-1768 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-5 *2 (-639 *5)) (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-986)))) (-1768 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-5 *1 (-969 *4)) (-4 *4 (-344)) (-4 *4 (-986)))) (-1768 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-598 (-639 *6))) (-5 *4 (-110)) (-5 *5 (-531)) (-5 *2 (-639 *6)) (-5 *1 (-969 *6)) (-4 *6 (-344)) (-4 *6 (-986)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-1184 *5)) (-4 *5 (-289)) (-4 *5 (-986)) (-5 *2 (-639 *5)) (-5 *1 (-969 *5)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-4 *5 (-289)) (-4 *5 (-986)) (-5 *2 (-1184 (-1184 *5))) (-5 *1 (-969 *5)) (-5 *4 (-1184 *5)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-986)) (-5 *1 (-969 *4)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1184 (-1184 *4))) (-4 *4 (-986)) (-5 *2 (-639 *4)) (-5 *1 (-969 *4))))) -(-10 -7 (-15 -3915 ((-639 |#1|) (-1184 (-1184 |#1|)))) (-15 -3450 ((-639 |#1|) (-598 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -3882 ((-1184 (-1184 |#1|)) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -1692 ((-639 |#1|) (-598 (-639 |#1|)) (-1184 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-110) (-531))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 (-1184 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110) (-531) (-531))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-864))) (-15 -1475 ((-1184 |#1|) (-598 (-1184 |#1|)) (-531)))) |%noBranch|) |%noBranch|)) -((-2257 ((|#1| (-864) |#1|) 9))) -(((-970 |#1|) (-10 -7 (-15 -2257 (|#1| (-864) |#1|))) (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $))))) (T -970)) -((-2257 (*1 *2 *3 *2) (-12 (-5 *3 (-864)) (-5 *1 (-970 *2)) (-4 *2 (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)))))))) -(-10 -7 (-15 -2257 (|#1| (-864) |#1|))) -((-1304 (((-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531))))))) (-639 (-388 (-895 (-531))))) 59)) (-2303 (((-598 (-639 (-297 (-531)))) (-297 (-531)) (-639 (-388 (-895 (-531))))) 48)) (-4129 (((-598 (-297 (-531))) (-639 (-388 (-895 (-531))))) 41)) (-3020 (((-598 (-639 (-297 (-531)))) (-639 (-388 (-895 (-531))))) 68)) (-3758 (((-639 (-297 (-531))) (-639 (-297 (-531)))) 34)) (-1978 (((-598 (-639 (-297 (-531)))) (-598 (-639 (-297 (-531))))) 62)) (-4187 (((-3 (-639 (-297 (-531))) "failed") (-639 (-388 (-895 (-531))))) 66))) -(((-971) (-10 -7 (-15 -1304 ((-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531))))))) (-639 (-388 (-895 (-531)))))) (-15 -2303 ((-598 (-639 (-297 (-531)))) (-297 (-531)) (-639 (-388 (-895 (-531)))))) (-15 -4129 ((-598 (-297 (-531))) (-639 (-388 (-895 (-531)))))) (-15 -4187 ((-3 (-639 (-297 (-531))) "failed") (-639 (-388 (-895 (-531)))))) (-15 -3758 ((-639 (-297 (-531))) (-639 (-297 (-531))))) (-15 -1978 ((-598 (-639 (-297 (-531)))) (-598 (-639 (-297 (-531)))))) (-15 -3020 ((-598 (-639 (-297 (-531)))) (-639 (-388 (-895 (-531)))))))) (T -971)) -((-3020 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971)))) (-4187 (*1 *2 *3) (|partial| -12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-297 (-531)))) (-5 *1 (-971)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)) (-5 *3 (-297 (-531))))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531)))))))) (-5 *1 (-971))))) -(-10 -7 (-15 -1304 ((-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531))))))) (-639 (-388 (-895 (-531)))))) (-15 -2303 ((-598 (-639 (-297 (-531)))) (-297 (-531)) (-639 (-388 (-895 (-531)))))) (-15 -4129 ((-598 (-297 (-531))) (-639 (-388 (-895 (-531)))))) (-15 -4187 ((-3 (-639 (-297 (-531))) "failed") (-639 (-388 (-895 (-531)))))) (-15 -3758 ((-639 (-297 (-531))) (-639 (-297 (-531))))) (-15 -1978 ((-598 (-639 (-297 (-531)))) (-598 (-639 (-297 (-531)))))) (-15 -3020 ((-598 (-639 (-297 (-531)))) (-639 (-388 (-895 (-531))))))) -((-2646 ((|#1| |#1| (-864)) 9))) -(((-972 |#1|) (-10 -7 (-15 -2646 (|#1| |#1| (-864)))) (-13 (-1030) (-10 -8 (-15 * ($ $ $))))) (T -972)) -((-2646 (*1 *2 *2 *3) (-12 (-5 *3 (-864)) (-5 *1 (-972 *2)) (-4 *2 (-13 (-1030) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2646 (|#1| |#1| (-864)))) -((-2265 ((|#1| (-293)) 11) (((-1189) |#1|) 9))) -(((-973 |#1|) (-10 -7 (-15 -2265 ((-1189) |#1|)) (-15 -2265 (|#1| (-293)))) (-1138)) (T -973)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-973 *2)) (-4 *2 (-1138)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-973 *3)) (-4 *3 (-1138))))) -(-10 -7 (-15 -2265 ((-1189) |#1|)) (-15 -2265 (|#1| (-293)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ |#4|) 25)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1749 ((|#4| $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 46) (($ (-531)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2284 (((-721)) 43)) (-3035 (($) 21 T CONST)) (-3050 (($) 23 T CONST)) (-2148 (((-110) $ $) 40)) (-2250 (($ $) 31) (($ $ $) NIL)) (-2237 (($ $ $) 29)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-974 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -1760 ($ |#4|)) (-15 -2265 ($ |#4|)) (-15 -1749 (|#4| $)))) (-344) (-743) (-797) (-892 |#1| |#2| |#3|) (-598 |#4|)) (T -974)) -((-1760 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5)) (-14 *6 (-598 *2)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5)) (-14 *6 (-598 *2)))) (-1749 (*1 *2 *1) (-12 (-4 *2 (-892 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-14 *6 (-598 *2))))) -(-13 (-162) (-37 |#1|) (-10 -8 (-15 -1760 ($ |#4|)) (-15 -2265 ($ |#4|)) (-15 -1749 (|#4| $)))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-3137 (((-1189) $ (-1102) (-1102)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2565 (((-110) (-110)) 39)) (-2260 (((-110) (-110)) 38)) (-2454 (((-51) $ (-1102) (-51)) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 (-51) "failed") (-1102) $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-3 (-51) "failed") (-1102) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-51) $ (-1102) (-51)) NIL (|has| $ (-6 -4274)))) (-2627 (((-51) $ (-1102)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-2327 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-3345 (((-598 (-1102)) $) 34)) (-1727 (((-110) (-1102) $) NIL)) (-3540 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-3765 (((-598 (-1102)) $) NIL)) (-3059 (((-110) (-1102) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-3046 (((-51) $) NIL (|has| (-1102) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) "failed") (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL)) (-3742 (($ $ (-51)) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-51)) (-598 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-598 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-3163 (((-598 (-51)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-51) $ (-1102)) 35) (((-51) $ (-1102) (-51)) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-721) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030)))) (((-721) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2265 (((-806) $) 37 (-1435 (|has| (-51) (-572 (-806))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-975) (-13 (-1115 (-1102) (-51)) (-10 -7 (-15 -2565 ((-110) (-110))) (-15 -2260 ((-110) (-110))) (-6 -4273)))) (T -975)) -((-2565 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975))))) -(-13 (-1115 (-1102) (-51)) (-10 -7 (-15 -2565 ((-110) (-110))) (-15 -2260 ((-110) (-110))) (-6 -4273))) -((-2523 ((|#2| $) 10))) -(((-976 |#1| |#2|) (-10 -8 (-15 -2523 (|#2| |#1|))) (-977 |#2|) (-1138)) (T -976)) -NIL -(-10 -8 (-15 -2523 (|#2| |#1|))) -((-3154 (((-3 |#1| "failed") $) 7)) (-2523 ((|#1| $) 8)) (-2265 (($ |#1|) 6))) -(((-977 |#1|) (-133) (-1138)) (T -977)) -((-2523 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) (-3154 (*1 *2 *1) (|partial| -12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) (-2265 (*1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138))))) -(-13 (-10 -8 (-15 -2265 ($ |t#1|)) (-15 -3154 ((-3 |t#1| "failed") $)) (-15 -2523 (|t#1| $)))) -((-2560 (((-598 (-598 (-276 (-388 (-895 |#2|))))) (-598 (-895 |#2|)) (-598 (-1102))) 38))) -(((-978 |#1| |#2|) (-10 -7 (-15 -2560 ((-598 (-598 (-276 (-388 (-895 |#2|))))) (-598 (-895 |#2|)) (-598 (-1102))))) (-523) (-13 (-523) (-977 |#1|))) (T -978)) -((-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-4 *6 (-13 (-523) (-977 *5))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *6)))))) (-5 *1 (-978 *5 *6))))) -(-10 -7 (-15 -2560 ((-598 (-598 (-276 (-388 (-895 |#2|))))) (-598 (-895 |#2|)) (-598 (-1102))))) -((-2866 (((-360)) 15)) (-2014 (((-1 (-360)) (-360) (-360)) 20)) (-4073 (((-1 (-360)) (-721)) 43)) (-1572 (((-360)) 34)) (-4216 (((-1 (-360)) (-360) (-360)) 35)) (-1542 (((-360)) 26)) (-3155 (((-1 (-360)) (-360)) 27)) (-1839 (((-360) (-721)) 38)) (-2471 (((-1 (-360)) (-721)) 39)) (-1327 (((-1 (-360)) (-721) (-721)) 42)) (-1312 (((-1 (-360)) (-721) (-721)) 40))) -(((-979) (-10 -7 (-15 -2866 ((-360))) (-15 -1572 ((-360))) (-15 -1542 ((-360))) (-15 -1839 ((-360) (-721))) (-15 -2014 ((-1 (-360)) (-360) (-360))) (-15 -4216 ((-1 (-360)) (-360) (-360))) (-15 -3155 ((-1 (-360)) (-360))) (-15 -2471 ((-1 (-360)) (-721))) (-15 -1312 ((-1 (-360)) (-721) (-721))) (-15 -1327 ((-1 (-360)) (-721) (-721))) (-15 -4073 ((-1 (-360)) (-721))))) (T -979)) -((-4073 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-1327 (*1 *2 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-1312 (*1 *2 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-3155 (*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) (-4216 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) (-2014 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-360)) (-5 *1 (-979)))) (-1542 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))) (-1572 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))) (-2866 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979))))) -(-10 -7 (-15 -2866 ((-360))) (-15 -1572 ((-360))) (-15 -1542 ((-360))) (-15 -1839 ((-360) (-721))) (-15 -2014 ((-1 (-360)) (-360) (-360))) (-15 -4216 ((-1 (-360)) (-360) (-360))) (-15 -3155 ((-1 (-360)) (-360))) (-15 -2471 ((-1 (-360)) (-721))) (-15 -1312 ((-1 (-360)) (-721) (-721))) (-15 -1327 ((-1 (-360)) (-721) (-721))) (-15 -4073 ((-1 (-360)) (-721)))) -((-2552 (((-399 |#1|) |#1|) 33))) -(((-980 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|))) (-1160 (-388 (-895 (-531))))) (T -980)) -((-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1160 (-388 (-895 (-531)))))))) -(-10 -7 (-15 -2552 ((-399 |#1|) |#1|))) -((-1583 (((-388 (-399 (-895 |#1|))) (-388 (-895 |#1|))) 14))) -(((-981 |#1|) (-10 -7 (-15 -1583 ((-388 (-399 (-895 |#1|))) (-388 (-895 |#1|))))) (-289)) (T -981)) -((-1583 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-399 (-895 *4)))) (-5 *1 (-981 *4))))) -(-10 -7 (-15 -1583 ((-388 (-399 (-895 |#1|))) (-388 (-895 |#1|))))) -((-2695 (((-598 (-1102)) (-388 (-895 |#1|))) 17)) (-2516 (((-388 (-1098 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102)) 24)) (-2682 (((-388 (-895 |#1|)) (-388 (-1098 (-388 (-895 |#1|)))) (-1102)) 26)) (-3471 (((-3 (-1102) "failed") (-388 (-895 |#1|))) 20)) (-4115 (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-276 (-388 (-895 |#1|))))) 32) (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|)))) 33) (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-1102)) (-598 (-388 (-895 |#1|)))) 28) (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))) 29)) (-2265 (((-388 (-895 |#1|)) |#1|) 11))) -(((-982 |#1|) (-10 -7 (-15 -2695 ((-598 (-1102)) (-388 (-895 |#1|)))) (-15 -3471 ((-3 (-1102) "failed") (-388 (-895 |#1|)))) (-15 -2516 ((-388 (-1098 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -2682 ((-388 (-895 |#1|)) (-388 (-1098 (-388 (-895 |#1|)))) (-1102))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-1102)) (-598 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -2265 ((-388 (-895 |#1|)) |#1|))) (-523)) (T -982)) -((-2265 (*1 *2 *3) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-982 *3)) (-4 *3 (-523)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) (-5 *2 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *1 (-982 *4)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *3 (-276 (-388 (-895 *4)))) (-5 *2 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *1 (-982 *4)))) (-4115 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-598 (-1102))) (-5 *4 (-598 (-388 (-895 *5)))) (-5 *2 (-388 (-895 *5))) (-4 *5 (-523)) (-5 *1 (-982 *5)))) (-4115 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) (-4 *4 (-523)) (-5 *1 (-982 *4)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1098 (-388 (-895 *5))))) (-5 *4 (-1102)) (-5 *2 (-388 (-895 *5))) (-5 *1 (-982 *5)) (-4 *5 (-523)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-523)) (-5 *2 (-388 (-1098 (-388 (-895 *5))))) (-5 *1 (-982 *5)) (-5 *3 (-388 (-895 *5))))) (-3471 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-1102)) (-5 *1 (-982 *4)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-1102))) (-5 *1 (-982 *4))))) -(-10 -7 (-15 -2695 ((-598 (-1102)) (-388 (-895 |#1|)))) (-15 -3471 ((-3 (-1102) "failed") (-388 (-895 |#1|)))) (-15 -2516 ((-388 (-1098 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -2682 ((-388 (-895 |#1|)) (-388 (-1098 (-388 (-895 |#1|)))) (-1102))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-1102)) (-598 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -2265 ((-388 (-895 |#1|)) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 (-730 |#1| (-808 |#2|)))))) (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-2855 (((-598 $) (-598 (-730 |#1| (-808 |#2|)))) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110)) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110) (-110)) NIL)) (-2695 (((-598 (-808 |#2|)) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-3911 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-3240 (((-598 (-2 (|:| |val| (-730 |#1| (-808 |#2|))) (|:| -2410 $))) (-730 |#1| (-808 |#2|)) $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ (-808 |#2|)) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 (-730 |#1| (-808 |#2|)) "failed") $ (-808 |#2|)) NIL)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) NIL (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))) $ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-2339 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-2523 (($ (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-3062 (((-3 $ "failed") $) NIL)) (-3785 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030))))) (-2283 (($ (-730 |#1| (-808 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-730 |#1| (-808 |#2|))) (|:| |den| |#1|)) (-730 |#1| (-808 |#2|)) $) NIL (|has| |#1| (-523)))) (-2125 (((-110) (-730 |#1| (-808 |#2|)) $ (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-2551 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-1760 (((-730 |#1| (-808 |#2|)) (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $ (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (((-730 |#1| (-808 |#2|)) (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $ (-730 |#1| (-808 |#2|))) NIL (|has| $ (-6 -4273))) (((-730 |#1| (-808 |#2|)) (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-4160 (((-2 (|:| -2259 (-598 (-730 |#1| (-808 |#2|)))) (|:| -1833 (-598 (-730 |#1| (-808 |#2|))))) $) NIL)) (-2950 (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-1428 (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-2213 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-2227 (((-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1426 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-4075 (((-808 |#2|) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-730 |#1| (-808 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030))))) (-2680 (($ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $) NIL)) (-3951 (((-598 (-808 |#2|)) $) NIL)) (-4081 (((-110) (-808 |#2|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2068 (((-3 (-730 |#1| (-808 |#2|)) (-598 $)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2255 (((-598 (-2 (|:| |val| (-730 |#1| (-808 |#2|))) (|:| -2410 $))) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2309 (((-3 (-730 |#1| (-808 |#2|)) "failed") $) NIL)) (-2918 (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL)) (-1568 (((-3 (-110) (-598 $)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-1301 (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-598 $)) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) (-598 $)) NIL)) (-2106 (($ (-730 |#1| (-808 |#2|)) $) NIL) (($ (-598 (-730 |#1| (-808 |#2|))) $) NIL)) (-1979 (((-598 (-730 |#1| (-808 |#2|))) $) NIL)) (-2009 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-1279 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| (-730 |#1| (-808 |#2|))) (|:| |den| |#1|)) (-730 |#1| (-808 |#2|)) $) NIL (|has| |#1| (-523)))) (-2421 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-3044 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 (-730 |#1| (-808 |#2|)) "failed") $) NIL)) (-4190 (((-3 (-730 |#1| (-808 |#2|)) "failed") (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL)) (-3032 (((-3 $ "failed") $ (-730 |#1| (-808 |#2|))) NIL)) (-1846 (($ $ (-730 |#1| (-808 |#2|))) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) (-598 $)) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-598 $)) NIL)) (-2294 (((-110) (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|)))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ $ (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ $ (-276 (-730 |#1| (-808 |#2|)))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ $ (-598 (-276 (-730 |#1| (-808 |#2|))))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-2012 (((-721) $) NIL)) (-2539 (((-721) (-730 |#1| (-808 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (((-721) (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-730 |#1| (-808 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-3382 (($ $ (-808 |#2|)) NIL)) (-2021 (($ $ (-808 |#2|)) NIL)) (-2862 (($ $) NIL)) (-3593 (($ $ (-808 |#2|)) NIL)) (-2265 (((-806) $) NIL) (((-598 (-730 |#1| (-808 |#2|))) $) NIL)) (-3873 (((-721) $) NIL (|has| (-808 |#2|) (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 (-730 |#1| (-808 |#2|))))) "failed") (-598 (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 (-730 |#1| (-808 |#2|))))) "failed") (-598 (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-1363 (((-110) $ (-1 (-110) (-730 |#1| (-808 |#2|)) (-598 (-730 |#1| (-808 |#2|))))) NIL)) (-3777 (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) (-598 $)) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-598 $)) NIL)) (-2060 (((-110) (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 (-808 |#2|)) $) NIL)) (-3695 (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-1697 (((-110) (-808 |#2|) $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-983 |#1| |#2|) (-13 (-1005 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) (-10 -8 (-15 -2855 ((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110) (-110))))) (-432) (-598 (-1102))) (T -983)) -((-2855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-983 *5 *6))))) -(-13 (-1005 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) (-10 -8 (-15 -2855 ((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110) (-110))))) -((-2014 (((-1 (-531)) (-1025 (-531))) 33)) (-3580 (((-531) (-531) (-531) (-531) (-531)) 30)) (-2364 (((-1 (-531)) |RationalNumber|) NIL)) (-2345 (((-1 (-531)) |RationalNumber|) NIL)) (-2589 (((-1 (-531)) (-531) |RationalNumber|) NIL))) -(((-984) (-10 -7 (-15 -2014 ((-1 (-531)) (-1025 (-531)))) (-15 -2589 ((-1 (-531)) (-531) |RationalNumber|)) (-15 -2364 ((-1 (-531)) |RationalNumber|)) (-15 -2345 ((-1 (-531)) |RationalNumber|)) (-15 -3580 ((-531) (-531) (-531) (-531) (-531))))) (T -984)) -((-3580 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-984)))) (-2345 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)))) (-2364 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)) (-5 *3 (-531)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1025 (-531))) (-5 *2 (-1 (-531))) (-5 *1 (-984))))) -(-10 -7 (-15 -2014 ((-1 (-531)) (-1025 (-531)))) (-15 -2589 ((-1 (-531)) (-531) |RationalNumber|)) (-15 -2364 ((-1 (-531)) |RationalNumber|)) (-15 -2345 ((-1 (-531)) |RationalNumber|)) (-15 -3580 ((-531) (-531) (-531) (-531) (-531)))) -((-2265 (((-806) $) NIL) (($ (-531)) 10))) -(((-985 |#1|) (-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-986)) (T -985)) -NIL -(-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-986) (-133)) (T -986)) -((-2284 (*1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-986))))) -(-13 (-993) (-677) (-601 $) (-10 -8 (-15 -2284 ((-721))) (-15 -2265 ($ (-531))) (-6 -4270))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3476 (((-388 (-895 |#2|)) (-598 |#2|) (-598 |#2|) (-721) (-721)) 46))) -(((-987 |#1| |#2|) (-10 -7 (-15 -3476 ((-388 (-895 |#2|)) (-598 |#2|) (-598 |#2|) (-721) (-721)))) (-1102) (-344)) (T -987)) -((-3476 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-721)) (-4 *6 (-344)) (-5 *2 (-388 (-895 *6))) (-5 *1 (-987 *5 *6)) (-14 *5 (-1102))))) -(-10 -7 (-15 -3476 ((-388 (-895 |#2|)) (-598 |#2|) (-598 |#2|) (-721) (-721)))) -((-2719 (((-110) $) 29)) (-1878 (((-110) $) 16)) (-1548 (((-721) $) 13)) (-1557 (((-721) $) 14)) (-1439 (((-110) $) 26)) (-2116 (((-110) $) 31))) -(((-988 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1557 ((-721) |#1|)) (-15 -1548 ((-721) |#1|)) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|))) (-989 |#2| |#3| |#4| |#5| |#6|) (-721) (-721) (-986) (-221 |#3| |#4|) (-221 |#2| |#4|)) (T -988)) -NIL -(-10 -8 (-15 -1557 ((-721) |#1|)) (-15 -1548 ((-721) |#1|)) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2719 (((-110) $) 51)) (-2128 (((-3 $ "failed") $ $) 19)) (-1878 (((-110) $) 53)) (-4058 (((-110) $ (-721)) 61)) (-4082 (($) 17 T CONST)) (-2800 (($ $) 34 (|has| |#3| (-289)))) (-4011 ((|#4| $ (-531)) 39)) (-2277 (((-721) $) 33 (|has| |#3| (-523)))) (-2627 ((|#3| $ (-531) (-531)) 41)) (-2227 (((-598 |#3|) $) 68 (|has| $ (-6 -4273)))) (-4091 (((-721) $) 32 (|has| |#3| (-523)))) (-3001 (((-598 |#5|) $) 31 (|has| |#3| (-523)))) (-1548 (((-721) $) 45)) (-1557 (((-721) $) 44)) (-3280 (((-110) $ (-721)) 60)) (-1271 (((-531) $) 49)) (-1665 (((-531) $) 47)) (-2445 (((-598 |#3|) $) 69 (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 48)) (-2394 (((-531) $) 46)) (-2200 (($ (-598 (-598 |#3|))) 54)) (-2680 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3924 (((-598 (-598 |#3|)) $) 43)) (-3332 (((-110) $ (-721)) 59)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-523)))) (-2294 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#3|) (-598 |#3|)) 75 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) 73 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 (-276 |#3|))) 72 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) 55)) (-1589 (((-110) $) 58)) (-3781 (($) 57)) (-1785 ((|#3| $ (-531) (-531)) 42) ((|#3| $ (-531) (-531) |#3|) 40)) (-1439 (((-110) $) 52)) (-2539 (((-721) |#3| $) 70 (-12 (|has| |#3| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4273)))) (-2480 (($ $) 56)) (-3431 ((|#5| $ (-531)) 38)) (-2265 (((-806) $) 11)) (-2060 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4273)))) (-2116 (((-110) $) 50)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#3|) 35 (|has| |#3| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2167 (((-721) $) 62 (|has| $ (-6 -4273))))) -(((-989 |#1| |#2| |#3| |#4| |#5|) (-133) (-721) (-721) (-986) (-221 |t#2| |t#3|) (-221 |t#1| |t#3|)) (T -989)) -((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *5))) (-4 *5 (-986)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-598 (-598 *5))))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986)))) (-2627 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986)))) (-1785 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *2 (-986)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *2 *7)) (-4 *6 (-986)) (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *7 *2)) (-4 *6 (-986)) (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-523)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) (-2800 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-721)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-721)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-598 *7))))) -(-13 (-109 |t#3| |t#3|) (-468 |t#3|) (-10 -8 (-6 -4273) (IF (|has| |t#3| (-162)) (-6 (-668 |t#3|)) |%noBranch|) (-15 -2200 ($ (-598 (-598 |t#3|)))) (-15 -1878 ((-110) $)) (-15 -1439 ((-110) $)) (-15 -2719 ((-110) $)) (-15 -2116 ((-110) $)) (-15 -1271 ((-531) $)) (-15 -2527 ((-531) $)) (-15 -1665 ((-531) $)) (-15 -2394 ((-531) $)) (-15 -1548 ((-721) $)) (-15 -1557 ((-721) $)) (-15 -3924 ((-598 (-598 |t#3|)) $)) (-15 -1785 (|t#3| $ (-531) (-531))) (-15 -2627 (|t#3| $ (-531) (-531))) (-15 -1785 (|t#3| $ (-531) (-531) |t#3|)) (-15 -4011 (|t#4| $ (-531))) (-15 -3431 (|t#5| $ (-531))) (-15 -3261 ($ (-1 |t#3| |t#3|) $)) (-15 -3261 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-523)) (-15 -3609 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-344)) (-15 -2263 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-289)) (-15 -2800 ($ $)) |%noBranch|) (IF (|has| |t#3| (-523)) (PROGN (-15 -2277 ((-721) $)) (-15 -4091 ((-721) $)) (-15 -3001 ((-598 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-99) . T) ((-109 |#3| |#3|) . T) ((-128) . T) ((-572 (-806)) . T) ((-291 |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))) ((-468 |#3|) . T) ((-492 |#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))) ((-601 |#3|) . T) ((-668 |#3|) |has| |#3| (-162)) ((-992 |#3|) . T) ((-1030) . T) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2719 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 43 (|has| |#3| (-289)))) (-4011 (((-223 |#2| |#3|) $ (-531)) 32)) (-2172 (($ (-639 |#3|)) 41)) (-2277 (((-721) $) 45 (|has| |#3| (-523)))) (-2627 ((|#3| $ (-531) (-531)) NIL)) (-2227 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-4091 (((-721) $) 47 (|has| |#3| (-523)))) (-3001 (((-598 (-223 |#1| |#3|)) $) 51 (|has| |#3| (-523)))) (-1548 (((-721) $) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#3|))) 27)) (-2680 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3924 (((-598 (-598 |#3|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-523)))) (-2294 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#3|) (-598 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#3| $ (-531) (-531)) NIL) ((|#3| $ (-531) (-531) |#3|) NIL)) (-2190 (((-130)) 54 (|has| |#3| (-344)))) (-1439 (((-110) $) NIL)) (-2539 (((-721) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030)))) (((-721) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 63 (|has| |#3| (-573 (-507))))) (-3431 (((-223 |#1| |#3|) $ (-531)) 36)) (-2265 (((-806) $) 16) (((-639 |#3|) $) 38)) (-2060 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-3035 (($) 13 T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-990 |#1| |#2| |#3|) (-13 (-989 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-572 (-639 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1191 |#3|)) |%noBranch|) (IF (|has| |#3| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (-15 -2172 ($ (-639 |#3|))) (-15 -2265 ((-639 |#3|) $)))) (-721) (-721) (-986)) (T -990)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-639 *5)) (-5 *1 (-990 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)) (-4 *5 (-986)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-639 *5)) (-4 *5 (-986)) (-5 *1 (-990 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721))))) -(-13 (-989 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-572 (-639 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1191 |#3|)) |%noBranch|) (IF (|has| |#3| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (-15 -2172 ($ (-639 |#3|))) (-15 -2265 ((-639 |#3|) $)))) -((-1760 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3261 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-991 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3261 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1760 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-721) (-721) (-986) (-221 |#2| |#3|) (-221 |#1| |#3|) (-989 |#1| |#2| |#3| |#4| |#5|) (-986) (-221 |#2| |#7|) (-221 |#1| |#7|) (-989 |#1| |#2| |#7| |#8| |#9|)) (T -991)) -((-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-986)) (-4 *2 (-986)) (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *12 (-989 *5 *6 *2 *10 *11)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-986)) (-4 *10 (-986)) (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *2 (-989 *5 *6 *10 *11 *12)) (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) (-4 *12 (-221 *5 *10))))) -(-10 -7 (-15 -3261 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1760 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ |#1|) 23))) -(((-992 |#1|) (-133) (-993)) (T -992)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-993))))) +((-1509 (($ $ (-1038 $)) 7) (($ $ (-1117)) 6))) +(((-912) (-134)) (T -912)) +((-1509 (*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-912)))) (-1509 (*1 *1 *1 *2) (-12 (-4 *1 (-912)) (-5 *2 (-1117))))) +(-13 (-10 -8 (-15 -1509 ($ $ (-1117))) (-15 -1509 ($ $ (-1038 $))))) +((-4145 (((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)) (-1117)) 25) (((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117))) 26) (((-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 |#1|))) (-905 |#1|) (-1117) (-905 |#1|) (-1117)) 43))) +(((-913 |#1|) (-10 -7 (-15 -4145 ((-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 |#1|))) (-905 |#1|) (-1117) (-905 |#1|) (-1117))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)) (-1117)))) (-13 (-347) (-141))) (T -913)) +((-4145 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-5 *5 (-1117)) (-4 *6 (-13 (-347) (-141))) (-5 *2 (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *6))) (|:| |prim| (-1113 *6)))) (-5 *1 (-913 *6)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-347) (-141))) (-5 *2 (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *5))) (|:| |prim| (-1113 *5)))) (-5 *1 (-913 *5)))) (-4145 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-905 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-347) (-141))) (-5 *2 (-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 *5)))) (-5 *1 (-913 *5))))) +(-10 -7 (-15 -4145 ((-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) (|:| |prim| (-1113 |#1|))) (-905 |#1|) (-1117) (-905 |#1|) (-1117))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)))) (-15 -4145 ((-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 |#1|))) (|:| |prim| (-1113 |#1|))) (-606 (-905 |#1|)) (-606 (-1117)) (-1117)))) +((-2587 (((-606 |#1|) |#1| |#1|) 42)) (-2639 (((-111) |#1|) 39)) (-1528 ((|#1| |#1|) 65)) (-1739 ((|#1| |#1|) 64))) +(((-914 |#1|) (-10 -7 (-15 -2639 ((-111) |#1|)) (-15 -1739 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -2587 ((-606 |#1|) |#1| |#1|))) (-522)) (T -914)) +((-2587 (*1 *2 *3 *3) (-12 (-5 *2 (-606 *3)) (-5 *1 (-914 *3)) (-4 *3 (-522)))) (-1528 (*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522)))) (-1739 (*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522)))) (-2639 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-914 *3)) (-4 *3 (-522))))) +(-10 -7 (-15 -2639 ((-111) |#1|)) (-15 -1739 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -2587 ((-606 |#1|) |#1| |#1|))) +((-1302 (((-1205) (-816)) 9))) +(((-915) (-10 -7 (-15 -1302 ((-1205) (-816))))) (T -915)) +((-1302 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-915))))) +(-10 -7 (-15 -1302 ((-1205) (-816)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 61 (|has| |#1| (-529)))) (-3377 (($ $) 62 (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 28)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) 24)) (-3490 (((-3 $ "failed") $) 35)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-3240 (($ $ |#1| |#2| $) 48)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 16)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| |#2|) NIL)) (-1883 ((|#2| $) 19)) (-2199 (($ (-1 |#2| |#2|) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3901 (($ $) 23)) (-3912 ((|#1| $) 21)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 40)) (-3890 ((|#1| $) NIL)) (-3148 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-529))))) (-3515 (((-3 $ "failed") $ $) 74 (|has| |#1| (-529))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-529)))) (-2872 ((|#2| $) 17)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) 39) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 34) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ |#2|) 31)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 15)) (-1345 (($ $ $ (-731)) 57 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 67 (|has| |#1| (-529)))) (-2928 (($) 22 T CONST)) (-2943 (($) 12 T CONST)) (-2244 (((-111) $ $) 66)) (-2340 (($ $ |#1|) 75 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) 54) (($ $ (-731)) 52)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-916 |#1| |#2|) (-13 (-310 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| |#2| (-129)) (-15 -3148 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) (-998) (-752)) (T -916)) +((-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-916 *3 *2)) (-4 *2 (-129)) (-4 *3 (-529)) (-4 *3 (-998)) (-4 *2 (-752))))) +(-13 (-310 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| |#2| (-129)) (-15 -3148 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))))) (-2169 (($ $ $) 63 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))))) (-3418 (((-3 $ "failed") $ $) 50 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))))) (-3151 (((-731)) 34 (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-2101 ((|#2| $) 21)) (-3796 ((|#1| $) 20)) (-3832 (($) NIL (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) CONST)) (-3490 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))))) (-1618 (($) NIL (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-2836 (((-111) $) NIL (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))))) (-2444 (($ $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-3889 (($ $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2135 (($ |#1| |#2|) 19)) (-2334 (((-874) $) NIL (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 37 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-2009 (($ (-874)) NIL (-12 (|has| |#1| (-352)) (|has| |#2| (-352))))) (-2528 (((-1064) $) NIL)) (-1978 (($ $ $) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-1674 (($ $ $) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-2341 (((-816) $) 14)) (-2928 (($) 40 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))) CONST)) (-2943 (($) 24 (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))) CONST)) (-2293 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2271 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2244 (((-111) $ $) 18)) (-2282 (((-111) $ $) NIL (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2263 (((-111) $ $) 66 (-1533 (-12 (|has| |#1| (-753)) (|has| |#2| (-753))) (-12 (|has| |#1| (-807)) (|has| |#2| (-807)))))) (-2340 (($ $ $) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456))))) (-2329 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2318 (($ $ $) 43 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753)))))) (** (($ $ (-537)) NIL (-12 (|has| |#1| (-456)) (|has| |#2| (-456)))) (($ $ (-731)) 31 (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687))))) (($ $ (-874)) NIL (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687)))))) (* (($ (-537) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-731) $) 46 (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753))))) (($ (-874) $) NIL (-1533 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-753)) (|has| |#2| (-753))))) (($ $ $) 27 (-1533 (-12 (|has| |#1| (-456)) (|has| |#2| (-456))) (-12 (|has| |#1| (-687)) (|has| |#2| (-687))))))) +(((-917 |#1| |#2|) (-13 (-1045) (-10 -8 (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-687)) (IF (|has| |#2| (-687)) (-6 (-687)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-456)) (IF (|has| |#2| (-456)) (-6 (-456)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-753)) (IF (|has| |#2| (-753)) (-6 (-753)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-807)) (IF (|has| |#2| (-807)) (-6 (-807)) |%noBranch|) |%noBranch|) (-15 -2135 ($ |#1| |#2|)) (-15 -3796 (|#1| $)) (-15 -2101 (|#2| $)))) (-1045) (-1045)) (T -917)) +((-2135 (*1 *1 *2 *3) (-12 (-5 *1 (-917 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1045)))) (-2101 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-917 *3 *2)) (-4 *3 (-1045))))) +(-13 (-1045) (-10 -8 (IF (|has| |#1| (-352)) (IF (|has| |#2| (-352)) (-6 (-352)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-687)) (IF (|has| |#2| (-687)) (-6 (-687)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-456)) (IF (|has| |#2| (-456)) (-6 (-456)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-753)) (IF (|has| |#2| (-753)) (-6 (-753)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-807)) (IF (|has| |#2| (-807)) (-6 (-807)) |%noBranch|) |%noBranch|) (-15 -2135 ($ |#1| |#2|)) (-15 -3796 (|#1| $)) (-15 -2101 (|#2| $)))) +((-3619 (((-1049) $) 12)) (-1507 (($ (-1117) (-1049)) 13)) (-3923 (((-1117) $) 10)) (-2341 (((-816) $) 22))) +(((-918) (-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3619 ((-1049) $)) (-15 -1507 ($ (-1117) (-1049)))))) (T -918)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-918)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-918)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-918))))) +(-13 (-579 (-816)) (-10 -8 (-15 -3923 ((-1117) $)) (-15 -3619 ((-1049) $)) (-15 -1507 ($ (-1117) (-1049))))) +((-3757 (((-1047 (-1117)) $) 19)) (-3263 (((-111) $) 26)) (-1890 (((-1117) $) 27)) (-2866 (((-111) $) 24)) (-4180 ((|#1| $) 25)) (-1565 (((-826 $ $) $) 34)) (-2556 (((-111) $) 33)) (-2681 (($ $ $) 12)) (-2831 (($ $) 29)) (-2966 (((-111) $) 28)) (-3679 (($ $) 10)) (-2492 (((-826 $ $) $) 36)) (-4211 (((-111) $) 35)) (-1408 (($ $ $) 13)) (-2575 (((-826 $ $) $) 38)) (-2535 (((-111) $) 37)) (-4058 (($ $ $) 14)) (-2341 (($ |#1|) 7) (($ (-1117)) 9) (((-816) $) 40 (|has| |#1| (-579 (-816))))) (-3205 (((-826 $ $) $) 32)) (-2572 (((-111) $) 30)) (-3319 (($ $ $) 11))) +(((-919 |#1|) (-13 (-920) (-10 -8 (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-1117))) (-15 -3757 ((-1047 (-1117)) $)) (-15 -2866 ((-111) $)) (-15 -4180 (|#1| $)) (-15 -3263 ((-111) $)) (-15 -1890 ((-1117) $)) (-15 -2966 ((-111) $)) (-15 -2831 ($ $)) (-15 -2572 ((-111) $)) (-15 -3205 ((-826 $ $) $)) (-15 -2556 ((-111) $)) (-15 -1565 ((-826 $ $) $)) (-15 -4211 ((-111) $)) (-15 -2492 ((-826 $ $) $)) (-15 -2535 ((-111) $)) (-15 -2575 ((-826 $ $) $)))) (-920)) (T -919)) +((-2341 (*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1047 (-1117))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-4180 (*1 *2 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2831 (*1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(-13 (-920) (-10 -8 (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (-15 -2341 ($ |#1|)) (-15 -2341 ($ (-1117))) (-15 -3757 ((-1047 (-1117)) $)) (-15 -2866 ((-111) $)) (-15 -4180 (|#1| $)) (-15 -3263 ((-111) $)) (-15 -1890 ((-1117) $)) (-15 -2966 ((-111) $)) (-15 -2831 ($ $)) (-15 -2572 ((-111) $)) (-15 -3205 ((-826 $ $) $)) (-15 -2556 ((-111) $)) (-15 -1565 ((-826 $ $) $)) (-15 -4211 ((-111) $)) (-15 -2492 ((-826 $ $) $)) (-15 -2535 ((-111) $)) (-15 -2575 ((-826 $ $) $)))) +((-2681 (($ $ $) 8)) (-3679 (($ $) 6)) (-1408 (($ $ $) 9)) (-4058 (($ $ $) 10)) (-3319 (($ $ $) 7))) +(((-920) (-134)) (T -920)) +((-4058 (*1 *1 *1 *1) (-4 *1 (-920))) (-1408 (*1 *1 *1 *1) (-4 *1 (-920))) (-2681 (*1 *1 *1 *1) (-4 *1 (-920))) (-3319 (*1 *1 *1 *1) (-4 *1 (-920))) (-3679 (*1 *1 *1) (-4 *1 (-920)))) +(-13 (-10 -8 (-15 -3679 ($ $)) (-15 -3319 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -1408 ($ $ $)) (-15 -4058 ($ $ $)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-1646 (($ $ $) 43)) (-1470 (($ $ $) 44)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3889 ((|#1| $) 45)) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-921 |#1|) (-134) (-807)) (T -921)) +((-3889 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) (-1646 (*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807))))) +(-13 (-105 |t#1|) (-10 -8 (-6 -4300) (-15 -3889 (|t#1| $)) (-15 -1470 ($ $ $)) (-15 -1646 ($ $ $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-1488 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|) 85)) (-1841 ((|#2| |#2| |#2|) 83)) (-3673 (((-2 (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|) 87)) (-1392 (((-2 (|:| |coef1| |#2|) (|:| -2211 |#2|)) |#2| |#2|) 89)) (-1998 (((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 107 (|has| |#1| (-435)))) (-4076 (((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 46)) (-3473 (((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 64)) (-1287 (((-2 (|:| |coef1| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 66)) (-4214 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1445 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 71)) (-2252 (((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|) 97)) (-2474 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 74)) (-2251 (((-606 (-731)) |#2| |#2|) 82)) (-2061 ((|#1| |#2| |#2|) 42)) (-3646 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 105 (|has| |#1| (-435)))) (-2495 ((|#1| |#2| |#2|) 103 (|has| |#1| (-435)))) (-3245 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 44)) (-2349 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|) 63)) (-4086 ((|#1| |#2| |#2|) 61)) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|) 35)) (-1307 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3134 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1842 ((|#2| |#2| |#2|) 75)) (-1500 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 69)) (-3072 ((|#2| |#2| |#2| (-731)) 67)) (-2211 ((|#2| |#2| |#2|) 111 (|has| |#1| (-435)))) (-3515 (((-1200 |#2|) (-1200 |#2|) |#1|) 21)) (-3998 (((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|) 39)) (-3071 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|) 95)) (-2067 ((|#1| |#2|) 92)) (-2949 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731)) 73)) (-3672 ((|#2| |#2| |#2| (-731)) 72)) (-1258 (((-606 |#2|) |#2| |#2|) 80)) (-2797 ((|#2| |#2| |#1| |#1| (-731)) 50)) (-3095 ((|#1| |#1| |#1| (-731)) 49)) (* (((-1200 |#2|) |#1| (-1200 |#2|)) 16))) +(((-922 |#1| |#2|) (-10 -7 (-15 -4086 (|#1| |#2| |#2|)) (-15 -2349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -1287 ((-2 (|:| |coef1| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3072 (|#2| |#2| |#2| (-731))) (-15 -1500 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1445 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -3672 (|#2| |#2| |#2| (-731))) (-15 -2949 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -2474 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1842 (|#2| |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4214 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1488 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -3673 ((-2 (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -1392 ((-2 (|:| |coef1| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -2067 (|#1| |#2|)) (-15 -3071 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -2252 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -1258 ((-606 |#2|) |#2| |#2|)) (-15 -2251 ((-606 (-731)) |#2| |#2|)) (IF (|has| |#1| (-435)) (PROGN (-15 -2495 (|#1| |#2| |#2|)) (-15 -3646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -1998 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2211 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1200 |#2|) |#1| (-1200 |#2|))) (-15 -3515 ((-1200 |#2|) (-1200 |#2|) |#1|)) (-15 -3293 ((-2 (|:| -3449 |#1|) (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3998 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3095 (|#1| |#1| |#1| (-731))) (-15 -2797 (|#2| |#2| |#1| |#1| (-731))) (-15 -1307 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2061 (|#1| |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -4076 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|))) (-529) (-1176 |#1|)) (T -922)) +((-4076 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2061 (*1 *2 *3 *3) (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) (-1307 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-2797 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-3095 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *2 (-529)) (-5 *1 (-922 *2 *4)) (-4 *4 (-1176 *2)))) (-3998 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3293 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3449 *4) (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3515 (*1 *2 *2 *3) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) (-5 *1 (-922 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) (-5 *1 (-922 *3 *4)))) (-2211 (*1 *2 *2 *2) (-12 (-4 *3 (-435)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-1998 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3646 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2495 (*1 *2 *3 *3) (-12 (-4 *2 (-529)) (-4 *2 (-435)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) (-2251 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-731))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1258 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2067 (*1 *2 *3) (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2211 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3673 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2211 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1488 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2211 *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1841 (*1 *2 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-4214 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3134 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-1842 (*1 *2 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) (-2474 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-2949 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-3672 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) (-4 *2 (-1176 *4)))) (-1445 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-1500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5)))) (-3072 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) (-4 *2 (-1176 *4)))) (-1287 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-3473 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-2349 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) (-4086 (*1 *2 *3 *3) (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2))))) +(-10 -7 (-15 -4086 (|#1| |#2| |#2|)) (-15 -2349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3473 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -1287 ((-2 (|:| |coef1| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -3072 (|#2| |#2| |#2| (-731))) (-15 -1500 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1445 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -3672 (|#2| |#2| |#2| (-731))) (-15 -2949 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -2474 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-731))) (-15 -1842 (|#2| |#2| |#2|)) (-15 -3134 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4214 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1841 (|#2| |#2| |#2|)) (-15 -1488 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -3673 ((-2 (|:| |coef2| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -1392 ((-2 (|:| |coef1| |#2|) (|:| -2211 |#2|)) |#2| |#2|)) (-15 -2067 (|#1| |#2|)) (-15 -3071 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -2252 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2|)) (-15 -1258 ((-606 |#2|) |#2| |#2|)) (-15 -2251 ((-606 (-731)) |#2| |#2|)) (IF (|has| |#1| (-435)) (PROGN (-15 -2495 (|#1| |#2| |#2|)) (-15 -3646 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -1998 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2211 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1200 |#2|) |#1| (-1200 |#2|))) (-15 -3515 ((-1200 |#2|) (-1200 |#2|) |#1|)) (-15 -3293 ((-2 (|:| -3449 |#1|) (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3998 ((-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) |#2| |#2|)) (-15 -3095 (|#1| |#1| |#1| (-731))) (-15 -2797 (|#2| |#2| |#1| |#1| (-731))) (-15 -1307 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2061 (|#1| |#2| |#2|)) (-15 -3245 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|)) (-15 -4076 ((-2 (|:| |coef2| |#2|) (|:| -4086 |#1|)) |#2| |#2|))) +((-2330 (((-111) $ $) NIL)) (-1796 (((-1153) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-923) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $))))) (T -923)) +((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-923)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-923))))) +(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)) (-15 -1796 ((-1153) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) 27)) (-3832 (($) NIL T CONST)) (-1459 (((-606 (-606 (-537))) (-606 (-537))) 29)) (-2588 (((-537) $) 45)) (-3211 (($ (-606 (-537))) 17)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3996 (((-606 (-537)) $) 12)) (-1978 (($ $) 32)) (-2341 (((-816) $) 43) (((-606 (-537)) $) 10)) (-2928 (($) 7 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 19)) (-2318 (($ $ $) 21)) (* (($ (-874) $) NIL) (($ (-731) $) 25))) +(((-924) (-13 (-755) (-580 (-606 (-537))) (-10 -8 (-15 -3211 ($ (-606 (-537)))) (-15 -1459 ((-606 (-606 (-537))) (-606 (-537)))) (-15 -2588 ((-537) $)) (-15 -1978 ($ $)) (-15 -2341 ((-606 (-537)) $))))) (T -924)) +((-3211 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924)))) (-1459 (*1 *2 *3) (-12 (-5 *2 (-606 (-606 (-537)))) (-5 *1 (-924)) (-5 *3 (-606 (-537))))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-924)))) (-1978 (*1 *1 *1) (-5 *1 (-924))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924))))) +(-13 (-755) (-580 (-606 (-537))) (-10 -8 (-15 -3211 ($ (-606 (-537)))) (-15 -1459 ((-606 (-606 (-537))) (-606 (-537)))) (-15 -2588 ((-537) $)) (-15 -1978 ($ $)) (-15 -2341 ((-606 (-537)) $)))) +((-2340 (($ $ |#2|) 30)) (-2329 (($ $) 22) (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-391 (-537)) $) 26) (($ $ (-391 (-537))) 28))) +(((-925 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2340 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) (-926 |#2| |#3| |#4|) (-998) (-752) (-807)) (T -925)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-391 (-537)))) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 -2340 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 * (|#1| (-874) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#3|) $) 72)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2362 (((-111) $) 71)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-606 |#3|) (-606 |#2|)) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-2872 ((|#2| $) 62)) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-926 |#1| |#2| |#3|) (-134) (-998) (-752) (-807)) (T -926)) +((-3912 (*1 *2 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *3 (-752)) (-4 *4 (-807)) (-4 *2 (-998)))) (-3901 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *4 (-807)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *2 *4)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *2 (-752)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-926 *4 *3 *2)) (-4 *4 (-998)) (-4 *3 (-752)) (-4 *2 (-807)))) (-3733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 *5)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-752)) (-4 *6 (-807)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) (-4 *5 (-807)) (-5 *2 (-606 *5)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) (-4 *4 (-807))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3733 ($ $ |t#3| |t#2|)) (-15 -3733 ($ $ (-606 |t#3|) (-606 |t#2|))) (-15 -3901 ($ $)) (-15 -3912 (|t#1| $)) (-15 -2872 (|t#2| $)) (-15 -3757 ((-606 |t#3|) $)) (-15 -2362 ((-111) $)) (-15 -1577 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-274) |has| |#1| (-529)) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-4070 (((-1040 (-210)) $) 8)) (-4059 (((-1040 (-210)) $) 9)) (-4050 (((-1040 (-210)) $) 10)) (-1477 (((-606 (-606 (-896 (-210)))) $) 11)) (-2341 (((-816) $) 6))) +(((-927) (-134)) (T -927)) +((-1477 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-606 (-606 (-896 (-210))))))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210))))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210))))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) +(-13 (-579 (-816)) (-10 -8 (-15 -1477 ((-606 (-606 (-896 (-210)))) $)) (-15 -4050 ((-1040 (-210)) $)) (-15 -4059 ((-1040 (-210)) $)) (-15 -4070 ((-1040 (-210)) $)))) +(((-579 (-816)) . T)) +((-3757 (((-606 |#4|) $) 23)) (-1409 (((-111) $) 48)) (-2734 (((-111) $) 47)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#4|) 36)) (-2121 (((-111) $) 49)) (-2159 (((-111) $ $) 55)) (-2819 (((-111) $ $) 58)) (-4002 (((-111) $) 53)) (-3801 (((-606 |#5|) (-606 |#5|) $) 90)) (-3118 (((-606 |#5|) (-606 |#5|) $) 87)) (-1672 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2901 (((-606 |#4|) $) 27)) (-3726 (((-111) |#4| $) 30)) (-3875 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-1713 (($ $ |#4|) 33)) (-2488 (($ $ |#4|) 32)) (-1449 (($ $ |#4|) 34)) (-2244 (((-111) $ $) 40))) +(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2734 ((-111) |#1|)) (-15 -3801 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -3118 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -1672 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3875 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2121 ((-111) |#1|)) (-15 -2819 ((-111) |#1| |#1|)) (-15 -2159 ((-111) |#1| |#1|)) (-15 -4002 ((-111) |#1|)) (-15 -1409 ((-111) |#1|)) (-15 -1566 ((-2 (|:| |under| |#1|) (|:| -3830 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -1449 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -3726 ((-111) |#4| |#1|)) (-15 -2901 ((-606 |#4|) |#1|)) (-15 -3757 ((-606 |#4|) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-929 |#2| |#3| |#4| |#5|) (-998) (-753) (-807) (-1012 |#2| |#3| |#4|)) (T -928)) +NIL +(-10 -8 (-15 -2734 ((-111) |#1|)) (-15 -3801 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -3118 ((-606 |#5|) (-606 |#5|) |#1|)) (-15 -1672 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3875 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2121 ((-111) |#1|)) (-15 -2819 ((-111) |#1| |#1|)) (-15 -2159 ((-111) |#1| |#1|)) (-15 -4002 ((-111) |#1|)) (-15 -1409 ((-111) |#1|)) (-15 -1566 ((-2 (|:| |under| |#1|) (|:| -3830 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -1449 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -3726 ((-111) |#4| |#1|)) (-15 -2901 ((-606 |#4|) |#1|)) (-15 -3757 ((-606 |#4|) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300)))) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300)))) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2528 (((-1064) $) 10)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) +(((-929 |#1| |#2| |#3| |#4|) (-134) (-998) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -929)) +((-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *1 (-929 *3 *4 *5 *6)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *1 (-929 *3 *4 *5 *6)))) (-1464 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-1012 *3 *4 *2)) (-4 *2 (-807)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) (-3726 (*1 *2 *3 *1) (-12 (-4 *1 (-929 *4 *5 *3 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111)))) (-2488 (*1 *1 *1 *2) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2)))) (-1449 (*1 *1 *1 *2) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2)))) (-1713 (*1 *1 *1 *2) (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2)))) (-1566 (*1 *2 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3830 *1) (|:| |upper| *1))) (-4 *1 (-929 *4 *5 *3 *6)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-2159 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-2819 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111)))) (-3875 (*1 *2 *3 *1) (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1672 (*1 *2 *3 *1) (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3118 (*1 *2 *2 *1) (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)))) (-3801 (*1 *2 *2 *1) (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-5 *2 (-111))))) +(-13 (-1045) (-145 |t#4|) (-579 (-606 |t#4|)) (-10 -8 (-6 -4300) (-15 -1516 ((-3 $ "failed") (-606 |t#4|))) (-15 -3958 ($ (-606 |t#4|))) (-15 -1464 (|t#3| $)) (-15 -3757 ((-606 |t#3|) $)) (-15 -2901 ((-606 |t#3|) $)) (-15 -3726 ((-111) |t#3| $)) (-15 -2488 ($ $ |t#3|)) (-15 -1449 ($ $ |t#3|)) (-15 -1713 ($ $ |t#3|)) (-15 -1566 ((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |t#3|)) (-15 -1409 ((-111) $)) (IF (|has| |t#1| (-529)) (PROGN (-15 -4002 ((-111) $)) (-15 -2159 ((-111) $ $)) (-15 -2819 ((-111) $ $)) (-15 -2121 ((-111) $)) (-15 -3875 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1672 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3118 ((-606 |t#4|) (-606 |t#4|) $)) (-15 -3801 ((-606 |t#4|) (-606 |t#4|) $)) (-15 -2734 ((-111) $))) |%noBranch|))) +(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-1045) . T) ((-1154) . T)) +((-2304 (((-606 |#4|) |#4| |#4|) 118)) (-3538 (((-606 |#4|) (-606 |#4|) (-111)) 107 (|has| |#1| (-435))) (((-606 |#4|) (-606 |#4|)) 108 (|has| |#1| (-435)))) (-3638 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 35)) (-4063 (((-111) |#4|) 34)) (-3799 (((-606 |#4|) |#4|) 103 (|has| |#1| (-435)))) (-2984 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-1 (-111) |#4|) (-606 |#4|)) 20)) (-2772 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|)) 22)) (-4073 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|)) 23)) (-3135 (((-3 (-2 (|:| |bas| (-459 |#1| |#2| |#3| |#4|)) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|)) 73)) (-4077 (((-606 |#4|) (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2854 (((-606 |#4|) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-4172 (((-606 |#4|) (-606 |#4|)) 110)) (-2080 (((-606 |#4|) (-606 |#4|) (-606 |#4|) (-111)) 48) (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 50)) (-3451 ((|#4| |#4| (-606 |#4|)) 49)) (-2154 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 114 (|has| |#1| (-435)))) (-3689 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 117 (|has| |#1| (-435)))) (-1556 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 116 (|has| |#1| (-435)))) (-2750 (((-606 |#4|) (-606 |#4|) (-606 |#4|) (-1 (-606 |#4|) (-606 |#4|))) 87) (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 89) (((-606 |#4|) (-606 |#4|) |#4|) 121) (((-606 |#4|) |#4| |#4|) 119) (((-606 |#4|) (-606 |#4|)) 88)) (-3421 (((-606 |#4|) (-606 |#4|) (-606 |#4|)) 100 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-2716 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 41)) (-2737 (((-111) (-606 |#4|)) 62)) (-4131 (((-111) (-606 |#4|) (-606 (-606 |#4|))) 53)) (-1412 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 29)) (-1952 (((-111) |#4|) 28)) (-1774 (((-606 |#4|) (-606 |#4|)) 98 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-1893 (((-606 |#4|) (-606 |#4|)) 99 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-2003 (((-606 |#4|) (-606 |#4|)) 66)) (-3436 (((-606 |#4|) (-606 |#4|)) 79)) (-3048 (((-111) (-606 |#4|) (-606 |#4|)) 51)) (-2351 (((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|)) 39)) (-2698 (((-111) |#4|) 36))) +(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2750 ((-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) |#4| |#4|)) (-15 -4172 ((-606 |#4|) (-606 |#4|))) (-15 -2304 ((-606 |#4|) |#4| |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-1 (-606 |#4|) (-606 |#4|)))) (-15 -3048 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -4131 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2737 ((-111) (-606 |#4|))) (-15 -2984 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-1 (-111) |#4|) (-606 |#4|))) (-15 -2772 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -4073 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -2716 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -4063 ((-111) |#4|)) (-15 -3638 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -1952 ((-111) |#4|)) (-15 -1412 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2698 ((-111) |#4|)) (-15 -2351 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3451 (|#4| |#4| (-606 |#4|))) (-15 -2003 ((-606 |#4|) (-606 |#4|))) (-15 -3135 ((-3 (-2 (|:| |bas| (-459 |#1| |#2| |#3| |#4|)) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|))) (-15 -3436 ((-606 |#4|) (-606 |#4|))) (-15 -4077 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-435)) (PROGN (-15 -3799 ((-606 |#4|) |#4|)) (-15 -3538 ((-606 |#4|) (-606 |#4|))) (-15 -3538 ((-606 |#4|) (-606 |#4|) (-111))) (-15 -2154 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -1556 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -3689 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (PROGN (-15 -1893 ((-606 |#4|) (-606 |#4|))) (-15 -1774 ((-606 |#4|) (-606 |#4|))) (-15 -3421 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) |%noBranch|)) (-529) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -930)) +((-3421 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-1893 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3689 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-1556 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2154 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3538 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3799 (*1 *2 *3) (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-2854 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-930 *5 *6 *7 *8)))) (-4077 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-606 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *1 (-930 *6 *7 *8 *9)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3135 (*1 *2 *3) (|partial| -12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-459 *4 *5 *6 *7)) (|:| -2992 (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-3451 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *2)))) (-2080 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-1412 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-1952 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-3638 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-4063 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-2716 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *7)))) (-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3048 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2750 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-606 *7) (-606 *7))) (-5 *2 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2750 (*1 *2 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2750 (*1 *2 *2 *3) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *3)))) (-2304 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-4172 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2750 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) +(-10 -7 (-15 -2750 ((-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) |#4| |#4|)) (-15 -4172 ((-606 |#4|) (-606 |#4|))) (-15 -2304 ((-606 |#4|) |#4| |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) |#4|)) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2750 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-1 (-606 |#4|) (-606 |#4|)))) (-15 -3048 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -4131 ((-111) (-606 |#4|) (-606 (-606 |#4|)))) (-15 -2737 ((-111) (-606 |#4|))) (-15 -2984 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-1 (-111) |#4|) (-606 |#4|))) (-15 -2772 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -4073 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 (-1 (-111) |#4|)) (-606 |#4|))) (-15 -2716 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -4063 ((-111) |#4|)) (-15 -3638 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -1952 ((-111) |#4|)) (-15 -1412 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2698 ((-111) |#4|)) (-15 -2351 ((-2 (|:| |goodPols| (-606 |#4|)) (|:| |badPols| (-606 |#4|))) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -2080 ((-606 |#4|) (-606 |#4|) (-606 |#4|) (-111))) (-15 -3451 (|#4| |#4| (-606 |#4|))) (-15 -2003 ((-606 |#4|) (-606 |#4|))) (-15 -3135 ((-3 (-2 (|:| |bas| (-459 |#1| |#2| |#3| |#4|)) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|))) (-15 -3436 ((-606 |#4|) (-606 |#4|))) (-15 -4077 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-606 |#4|) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-435)) (PROGN (-15 -3799 ((-606 |#4|) |#4|)) (-15 -3538 ((-606 |#4|) (-606 |#4|))) (-15 -3538 ((-606 |#4|) (-606 |#4|) (-111))) (-15 -2154 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -1556 ((-606 |#4|) (-606 |#4|) (-606 |#4|))) (-15 -3689 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (PROGN (-15 -1893 ((-606 |#4|) (-606 |#4|))) (-15 -1774 ((-606 |#4|) (-606 |#4|))) (-15 -3421 ((-606 |#4|) (-606 |#4|) (-606 |#4|)))) |%noBranch|) |%noBranch|)) +((-1575 (((-2 (|:| R (-649 |#1|)) (|:| A (-649 |#1|)) (|:| |Ainv| (-649 |#1|))) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 19)) (-2526 (((-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)) 36)) (-4008 (((-649 |#1|) (-649 |#1|) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|)) 16))) +(((-931 |#1|) (-10 -7 (-15 -1575 ((-2 (|:| R (-649 |#1|)) (|:| A (-649 |#1|)) (|:| |Ainv| (-649 |#1|))) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -4008 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -2526 ((-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)))) (-347)) (T -931)) +((-2526 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-5 *2 (-606 (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5))))) (-5 *1 (-931 *5)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)))) (-4008 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-649 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) (-5 *1 (-931 *5)))) (-1575 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-347)) (-5 *2 (-2 (|:| R (-649 *6)) (|:| A (-649 *6)) (|:| |Ainv| (-649 *6)))) (-5 *1 (-931 *6)) (-5 *3 (-649 *6))))) +(-10 -7 (-15 -1575 ((-2 (|:| R (-649 |#1|)) (|:| A (-649 |#1|)) (|:| |Ainv| (-649 |#1|))) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -4008 ((-649 |#1|) (-649 |#1|) (-649 |#1|) (-97 |#1|) (-1 |#1| |#1|))) (-15 -2526 ((-606 (-2 (|:| C (-649 |#1|)) (|:| |g| (-1200 |#1|)))) (-649 |#1|) (-1200 |#1|)))) +((-2414 (((-402 |#4|) |#4|) 48))) +(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-402 |#4|) |#4|))) (-807) (-753) (-435) (-902 |#3| |#2| |#1|)) (T -932)) +((-2414 (*1 *2 *3) (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-435)) (-5 *2 (-402 *3)) (-5 *1 (-932 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) +(-10 -7 (-15 -2414 ((-402 |#4|) |#4|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2591 (($ (-731)) 112 (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-2385 (($ (-606 |#1|)) 118)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) 105 (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2259 ((|#1| $) 102 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-2489 (((-111) $ (-731)) 10)) (-3845 ((|#1| $) 103 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-1540 (($ $ (-606 |#1|)) 115)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-3416 ((|#1| $ $) 106 (|has| |#1| (-998)))) (-1839 (((-874) $) 117)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2218 (($ $ $) 104)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513)))) (($ (-606 |#1|)) 116)) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2329 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2318 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-537) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-687))) (($ $ |#1|) 107 (|has| |#1| (-687)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-933 |#1|) (-134) (-998)) (T -933)) +((-2385 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-998)) (-5 *2 (-874)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-998)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-933 *3)) (-4 *3 (-998))))) +(-13 (-1198 |t#1|) (-10 -8 (-15 -2385 ($ (-606 |t#1|))) (-15 -1839 ((-874) $)) (-15 -3996 ($ (-606 |t#1|))) (-15 -2218 ($ $ $)) (-15 -1540 ($ $ (-606 |t#1|))))) +(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-19 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T) ((-1198 |#1|) . T)) +((-1612 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 17))) +(((-934 |#1| |#2|) (-10 -7 (-15 -1612 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-998) (-998)) (T -934)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-896 *6)) (-5 *1 (-934 *5 *6))))) +(-10 -7 (-15 -1612 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) +((-1840 ((|#1| (-896 |#1|)) 13)) (-2328 ((|#1| (-896 |#1|)) 12)) (-3342 ((|#1| (-896 |#1|)) 11)) (-1460 ((|#1| (-896 |#1|)) 15)) (-1950 ((|#1| (-896 |#1|)) 21)) (-2666 ((|#1| (-896 |#1|)) 14)) (-3059 ((|#1| (-896 |#1|)) 16)) (-1826 ((|#1| (-896 |#1|)) 20)) (-3053 ((|#1| (-896 |#1|)) 19))) +(((-935 |#1|) (-10 -7 (-15 -3342 (|#1| (-896 |#1|))) (-15 -2328 (|#1| (-896 |#1|))) (-15 -1840 (|#1| (-896 |#1|))) (-15 -2666 (|#1| (-896 |#1|))) (-15 -1460 (|#1| (-896 |#1|))) (-15 -3059 (|#1| (-896 |#1|))) (-15 -3053 (|#1| (-896 |#1|))) (-15 -1826 (|#1| (-896 |#1|))) (-15 -1950 (|#1| (-896 |#1|)))) (-998)) (T -935)) +((-1950 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(-10 -7 (-15 -3342 (|#1| (-896 |#1|))) (-15 -2328 (|#1| (-896 |#1|))) (-15 -1840 (|#1| (-896 |#1|))) (-15 -2666 (|#1| (-896 |#1|))) (-15 -1460 (|#1| (-896 |#1|))) (-15 -3059 (|#1| (-896 |#1|))) (-15 -3053 (|#1| (-896 |#1|))) (-15 -1826 (|#1| (-896 |#1|))) (-15 -1950 (|#1| (-896 |#1|)))) +((-3303 (((-3 |#1| "failed") |#1|) 18)) (-2838 (((-3 |#1| "failed") |#1|) 6)) (-2268 (((-3 |#1| "failed") |#1|) 16)) (-2515 (((-3 |#1| "failed") |#1|) 4)) (-2223 (((-3 |#1| "failed") |#1|) 20)) (-2213 (((-3 |#1| "failed") |#1|) 8)) (-1252 (((-3 |#1| "failed") |#1| (-731)) 1)) (-2197 (((-3 |#1| "failed") |#1|) 3)) (-3909 (((-3 |#1| "failed") |#1|) 2)) (-2775 (((-3 |#1| "failed") |#1|) 21)) (-1693 (((-3 |#1| "failed") |#1|) 9)) (-1348 (((-3 |#1| "failed") |#1|) 19)) (-1257 (((-3 |#1| "failed") |#1|) 7)) (-2075 (((-3 |#1| "failed") |#1|) 17)) (-2709 (((-3 |#1| "failed") |#1|) 5)) (-2054 (((-3 |#1| "failed") |#1|) 24)) (-1801 (((-3 |#1| "failed") |#1|) 12)) (-4069 (((-3 |#1| "failed") |#1|) 22)) (-3217 (((-3 |#1| "failed") |#1|) 10)) (-2815 (((-3 |#1| "failed") |#1|) 26)) (-2754 (((-3 |#1| "failed") |#1|) 14)) (-2000 (((-3 |#1| "failed") |#1|) 27)) (-3387 (((-3 |#1| "failed") |#1|) 15)) (-3074 (((-3 |#1| "failed") |#1|) 25)) (-4195 (((-3 |#1| "failed") |#1|) 13)) (-3653 (((-3 |#1| "failed") |#1|) 23)) (-2378 (((-3 |#1| "failed") |#1|) 11))) +(((-936 |#1|) (-134) (-1139)) (T -936)) +((-2000 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2815 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3074 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2054 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3653 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-4069 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2775 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2223 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1348 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2075 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2268 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3387 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2754 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-4195 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1801 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2378 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3217 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1693 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2213 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1257 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2838 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2709 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2515 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-2197 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-3909 (*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139)))) (-1252 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-731)) (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(-13 (-10 -7 (-15 -1252 ((-3 |t#1| "failed") |t#1| (-731))) (-15 -3909 ((-3 |t#1| "failed") |t#1|)) (-15 -2197 ((-3 |t#1| "failed") |t#1|)) (-15 -2515 ((-3 |t#1| "failed") |t#1|)) (-15 -2709 ((-3 |t#1| "failed") |t#1|)) (-15 -2838 ((-3 |t#1| "failed") |t#1|)) (-15 -1257 ((-3 |t#1| "failed") |t#1|)) (-15 -2213 ((-3 |t#1| "failed") |t#1|)) (-15 -1693 ((-3 |t#1| "failed") |t#1|)) (-15 -3217 ((-3 |t#1| "failed") |t#1|)) (-15 -2378 ((-3 |t#1| "failed") |t#1|)) (-15 -1801 ((-3 |t#1| "failed") |t#1|)) (-15 -4195 ((-3 |t#1| "failed") |t#1|)) (-15 -2754 ((-3 |t#1| "failed") |t#1|)) (-15 -3387 ((-3 |t#1| "failed") |t#1|)) (-15 -2268 ((-3 |t#1| "failed") |t#1|)) (-15 -2075 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -1348 ((-3 |t#1| "failed") |t#1|)) (-15 -2223 ((-3 |t#1| "failed") |t#1|)) (-15 -2775 ((-3 |t#1| "failed") |t#1|)) (-15 -4069 ((-3 |t#1| "failed") |t#1|)) (-15 -3653 ((-3 |t#1| "failed") |t#1|)) (-15 -2054 ((-3 |t#1| "failed") |t#1|)) (-15 -3074 ((-3 |t#1| "failed") |t#1|)) (-15 -2815 ((-3 |t#1| "failed") |t#1|)) (-15 -2000 ((-3 |t#1| "failed") |t#1|)))) +((-2210 ((|#4| |#4| (-606 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2412 ((|#4| |#4| (-606 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1612 ((|#4| (-1 |#4| (-905 |#1|)) |#4|) 30))) +(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2412 (|#4| |#4| |#3|)) (-15 -2412 (|#4| |#4| (-606 |#3|))) (-15 -2210 (|#4| |#4| |#3|)) (-15 -2210 (|#4| |#4| (-606 |#3|))) (-15 -1612 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) (-998) (-753) (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117))))) (-902 (-905 |#1|) |#2| |#3|)) (T -937)) +((-1612 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-998)) (-4 *2 (-902 (-905 *4) *5 *6)) (-4 *5 (-753)) (-4 *6 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-5 *1 (-937 *4 *5 *6 *2)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) (-4 *2 (-902 (-905 *4) *5 *6)))) (-2210 (*1 *2 *2 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3)))) (-2412 (*1 *2 *2 *3) (-12 (-5 *3 (-606 *6)) (-4 *6 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) (-4 *2 (-902 (-905 *4) *5 *6)))) (-2412 (*1 *2 *2 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)) (-15 -1890 ((-3 $ "failed") (-1117)))))) (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3))))) +(-10 -7 (-15 -2412 (|#4| |#4| |#3|)) (-15 -2412 (|#4| |#4| (-606 |#3|))) (-15 -2210 (|#4| |#4| |#3|)) (-15 -2210 (|#4| |#4| (-606 |#3|))) (-15 -1612 (|#4| (-1 |#4| (-905 |#1|)) |#4|))) +((-1788 ((|#2| |#3|) 35)) (-3337 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|) 73)) (-3778 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) 89))) +(((-938 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|)) (-15 -1788 (|#2| |#3|))) (-333) (-1176 |#1|) (-1176 |#2|) (-685 |#2| |#3|)) (T -938)) +((-1788 (*1 *2 *3) (-12 (-4 *3 (-1176 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-938 *4 *2 *3 *5)) (-4 *4 (-333)) (-4 *5 (-685 *2 *3)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-938 *4 *3 *5 *6)) (-4 *6 (-685 *3 *5)))) (-3778 (*1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-649 *4)))) (-5 *1 (-938 *3 *4 *5 *6)) (-4 *6 (-685 *4 *5))))) +(-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|)) (-15 -1788 (|#2| |#3|))) +((-3824 (((-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537)))) (-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537))))) 69))) +(((-939 |#1| |#2|) (-10 -7 (-15 -3824 ((-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537)))) (-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537))))))) (-606 (-1117)) (-731)) (T -939)) +((-3824 (*1 *2 *2) (-12 (-5 *2 (-940 (-391 (-537)) (-818 *3) (-225 *4 (-731)) (-232 *3 (-391 (-537))))) (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-939 *3 *4))))) +(-10 -7 (-15 -3824 ((-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537)))) (-940 (-391 (-537)) (-818 |#1|) (-225 |#2| (-731)) (-232 |#1| (-391 (-537))))))) +((-2330 (((-111) $ $) NIL)) (-3610 (((-3 (-111) "failed") $) 69)) (-3176 (($ $) 36 (-12 (|has| |#1| (-141)) (|has| |#1| (-291))))) (-1578 (($ $ (-3 (-111) "failed")) 70)) (-3460 (($ (-606 |#4|) |#4|) 25)) (-1654 (((-1100) $) NIL)) (-1808 (($ $) 67)) (-2528 (((-1064) $) NIL)) (-2193 (((-111) $) 68)) (-3425 (($) 30)) (-3310 ((|#4| $) 72)) (-2780 (((-606 |#4|) $) 71)) (-2341 (((-816) $) 66)) (-2244 (((-111) $ $) NIL))) +(((-940 |#1| |#2| |#3| |#4|) (-13 (-1045) (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3460 ($ (-606 |#4|) |#4|)) (-15 -3610 ((-3 (-111) "failed") $)) (-15 -1578 ($ $ (-3 (-111) "failed"))) (-15 -2193 ((-111) $)) (-15 -2780 ((-606 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -1808 ($ $)) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (-15 -3176 ($ $)) |%noBranch|) |%noBranch|))) (-435) (-807) (-753) (-902 |#1| |#3| |#2|)) (T -940)) +((-3425 (*1 *1) (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) (-3460 (*1 *1 *2 *3) (-12 (-5 *2 (-606 *3)) (-4 *3 (-902 *4 *6 *5)) (-4 *4 (-435)) (-4 *5 (-807)) (-4 *6 (-753)) (-5 *1 (-940 *4 *5 *6 *3)))) (-3610 (*1 *2 *1) (|partial| -12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-111)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-1578 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-2193 (*1 *2 *1) (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-111)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-606 *6)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) (-3310 (*1 *2 *1) (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-940 *3 *4 *5 *2)) (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)))) (-1808 (*1 *1 *1) (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) (-3176 (*1 *1 *1) (-12 (-4 *2 (-141)) (-4 *2 (-291)) (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3))))) +(-13 (-1045) (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -3460 ($ (-606 |#4|) |#4|)) (-15 -3610 ((-3 (-111) "failed") $)) (-15 -1578 ($ $ (-3 (-111) "failed"))) (-15 -2193 ((-111) $)) (-15 -2780 ((-606 |#4|) $)) (-15 -3310 (|#4| $)) (-15 -1808 ($ $)) (IF (|has| |#1| (-291)) (IF (|has| |#1| (-141)) (-15 -3176 ($ $)) |%noBranch|) |%noBranch|))) +((-3078 (((-111) |#5| |#5|) 38)) (-3798 (((-111) |#5| |#5|) 52)) (-2843 (((-111) |#5| (-606 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-2296 (((-111) (-606 |#4|) (-606 |#4|)) 58)) (-3803 (((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 63)) (-1982 (((-1205)) 33)) (-1261 (((-1205) (-1100) (-1100) (-1100)) 29)) (-3509 (((-606 |#5|) (-606 |#5|)) 81)) (-2457 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) 79)) (-3921 (((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111)) 101)) (-3433 (((-111) |#5| |#5|) 47)) (-2513 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2314 (((-111) (-606 |#4|) (-606 |#4|)) 57)) (-3730 (((-111) (-606 |#4|) (-606 |#4|)) 59)) (-1981 (((-111) (-606 |#4|) (-606 |#4|)) 60)) (-1761 (((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-2207 (((-606 |#5|) (-606 |#5|)) 43))) +(((-941 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -941)) +((-1761 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) (-5 *1 (-941 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) (-4 *4 (-1018 *6 *7 *8 *9)))) (-3921 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) (-5 *1 (-941 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-941 *5 *6 *7 *8 *3)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2513 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2296 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3798 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-3433 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1982 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-941 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1261 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-1890 (((-1117) $) 15)) (-3619 (((-1100) $) 16)) (-3056 (($ (-1117) (-1100)) 14)) (-2341 (((-816) $) 13))) +(((-942) (-13 (-579 (-816)) (-10 -8 (-15 -3056 ($ (-1117) (-1100))) (-15 -1890 ((-1117) $)) (-15 -3619 ((-1100) $))))) (T -942)) +((-3056 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-942)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-942)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-942))))) +(-13 (-579 (-816)) (-10 -8 (-15 -3056 ($ (-1117) (-1100))) (-15 -1890 ((-1117) $)) (-15 -3619 ((-1100) $)))) +((-1612 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) (-529) (-529) (-945 |#1|) (-945 |#2|)) (T -943)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-529)) (-4 *6 (-529)) (-4 *2 (-945 *6)) (-5 *1 (-943 *5 *6 *4 *2)) (-4 *4 (-945 *5))))) +(-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) +((-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-1117) "failed") $) 65) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) 95)) (-3958 ((|#2| $) NIL) (((-1117) $) 60) (((-391 (-537)) $) NIL) (((-537) $) 92)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 112) (((-649 |#2|) (-649 $)) 28)) (-1618 (($) 98)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 75) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 84)) (-2868 (($ $) 10)) (-2824 (((-3 $ "failed") $) 20)) (-1612 (($ (-1 |#2| |#2|) $) 22)) (-3956 (($) 16)) (-1790 (($ $) 54)) (-3456 (($ $) NIL) (($ $ (-731)) NIL) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2395 (($ $) 12)) (-3996 (((-845 (-537)) $) 70) (((-845 (-363)) $) 79) (((-513) $) 40) (((-363) $) 44) (((-210) $) 47)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 90) (($ |#2|) NIL) (($ (-1117)) 57)) (-3654 (((-731)) 31)) (-2263 (((-111) $ $) 50))) +(((-944 |#1| |#2|) (-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -1618 (|#1|)) (-15 -1790 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) (-945 |#2|) (-529)) (T -944)) +((-3654 (*1 *2) (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-944 *3 *4)) (-4 *3 (-945 *4))))) +(-10 -8 (-15 -2263 ((-111) |#1| |#1|)) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -2341 (|#1| (-1117))) (-15 -1618 (|#1|)) (-15 -1790 (|#1| |#1|)) (-15 -2395 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -4196 ((-842 (-537) |#1|) |#1| (-845 (-537)) (-842 (-537) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -2053 ((-649 |#2|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 ((|#1| $) 136 (|has| |#1| (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 127 (|has| |#1| (-862)))) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 130 (|has| |#1| (-862)))) (-4099 (((-111) $ $) 57)) (-2537 (((-537) $) 117 (|has| |#1| (-780)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 175) (((-3 (-1117) "failed") $) 125 (|has| |#1| (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) 109 (|has| |#1| (-989 (-537)))) (((-3 (-537) "failed") $) 107 (|has| |#1| (-989 (-537))))) (-3958 ((|#1| $) 174) (((-1117) $) 124 (|has| |#1| (-989 (-1117)))) (((-391 (-537)) $) 108 (|has| |#1| (-989 (-537)))) (((-537) $) 106 (|has| |#1| (-989 (-537))))) (-3563 (($ $ $) 53)) (-2053 (((-649 (-537)) (-649 $)) 149 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 148 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 147) (((-649 |#1|) (-649 $)) 146)) (-3490 (((-3 $ "failed") $) 32)) (-1618 (($) 134 (|has| |#1| (-522)))) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-3797 (((-111) $) 119 (|has| |#1| (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 143 (|has| |#1| (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 142 (|has| |#1| (-839 (-363))))) (-2836 (((-111) $) 30)) (-2868 (($ $) 138)) (-3301 ((|#1| $) 140)) (-2824 (((-3 $ "failed") $) 105 (|has| |#1| (-1093)))) (-2840 (((-111) $) 118 (|has| |#1| (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2444 (($ $ $) 115 (|has| |#1| (-807)))) (-3889 (($ $ $) 114 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 166)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-3956 (($) 104 (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1790 (($ $) 135 (|has| |#1| (-291)))) (-3830 ((|#1| $) 132 (|has| |#1| (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 129 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 128 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 172 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 170 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 169 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 168 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 167 (|has| |#1| (-495 (-1117) |#1|)))) (-1930 (((-731) $) 56)) (-1922 (($ $ |#1|) 173 (|has| |#1| (-270 |#1| |#1|)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3456 (($ $) 165 (|has| |#1| (-218))) (($ $ (-731)) 163 (|has| |#1| (-218))) (($ $ (-1117)) 161 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 160 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 159 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 158 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2395 (($ $) 137)) (-3315 ((|#1| $) 139)) (-3996 (((-845 (-537)) $) 145 (|has| |#1| (-580 (-845 (-537))))) (((-845 (-363)) $) 144 (|has| |#1| (-580 (-845 (-363))))) (((-513) $) 122 (|has| |#1| (-580 (-513)))) (((-363) $) 121 (|has| |#1| (-973))) (((-210) $) 120 (|has| |#1| (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 131 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ |#1|) 178) (($ (-1117)) 126 (|has| |#1| (-989 (-1117))))) (-2644 (((-3 $ "failed") $) 123 (-1533 (|has| |#1| (-139)) (-3319 (|has| $ (-139)) (|has| |#1| (-862)))))) (-3654 (((-731)) 28)) (-3903 ((|#1| $) 133 (|has| |#1| (-522)))) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 116 (|has| |#1| (-780)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 164 (|has| |#1| (-218))) (($ $ (-731)) 162 (|has| |#1| (-218))) (($ $ (-1117)) 157 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 156 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 155 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 154 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2293 (((-111) $ $) 112 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 111 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 113 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 110 (|has| |#1| (-807)))) (-2340 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-945 |#1|) (-134) (-529)) (T -945)) +((-2340 (*1 *1 *2 *2) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-2868 (*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-2395 (*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) (-1618 (*1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-522)) (-4 *2 (-529)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522)))) (-3830 (*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522))))) +(-13 (-347) (-37 |t#1|) (-989 |t#1|) (-322 |t#1|) (-216 |t#1|) (-361 |t#1|) (-837 |t#1|) (-384 |t#1|) (-10 -8 (-15 -2340 ($ |t#1| |t#1|)) (-15 -3301 (|t#1| $)) (-15 -3315 (|t#1| $)) (-15 -2868 ($ $)) (-15 -2395 ($ $)) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-989 (-537))) (PROGN (-6 (-989 (-537))) (-6 (-989 (-391 (-537))))) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |t#1| (-973)) (-6 (-973)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-989 (-1117))) (-6 (-989 (-1117))) |%noBranch|) (IF (|has| |t#1| (-291)) (PROGN (-15 -1874 (|t#1| $)) (-15 -1790 ($ $))) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1618 ($)) (-15 -3903 (|t#1| $)) (-15 -3830 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-580 (-210)) |has| |#1| (-973)) ((-580 (-363)) |has| |#1| (-973)) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-580 (-845 (-363))) |has| |#1| (-580 (-845 (-363)))) ((-580 (-845 (-537))) |has| |#1| (-580 (-845 (-537)))) ((-216 |#1|) . T) ((-218) |has| |#1| (-218)) ((-228) . T) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-274) . T) ((-291) . T) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-347) . T) ((-322 |#1|) . T) ((-361 |#1|) . T) ((-384 |#1|) . T) ((-435) . T) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) . T) ((-678 |#1|) . T) ((-678 $) . T) ((-687) . T) ((-751) |has| |#1| (-780)) ((-752) |has| |#1| (-780)) ((-754) |has| |#1| (-780)) ((-755) |has| |#1| (-780)) ((-780) |has| |#1| (-780)) ((-805) |has| |#1| (-780)) ((-807) -1533 (|has| |#1| (-807)) (|has| |#1| (-780))) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-839 (-363)) |has| |#1| (-839 (-363))) ((-839 (-537)) |has| |#1| (-839 (-537))) ((-837 |#1|) . T) ((-862) |has| |#1| (-862)) ((-873) . T) ((-973) |has| |#1| (-973)) ((-989 (-391 (-537))) |has| |#1| (-989 (-537))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 (-1117)) |has| |#1| (-989 (-1117))) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-1093)) ((-1154) . T) ((-1158) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-2599 (($ (-1084 |#1| |#2|)) 11)) (-3299 (((-1084 |#1| |#2|) $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#2| $ (-225 |#1| |#2|)) 16)) (-2341 (((-816) $) NIL)) (-2928 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL))) +(((-946 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2599 ($ (-1084 |#1| |#2|))) (-15 -3299 ((-1084 |#1| |#2|) $)) (-15 -1922 (|#2| $ (-225 |#1| |#2|))))) (-874) (-347)) (T -946)) +((-2599 (*1 *1 *2) (-12 (-5 *2 (-1084 *3 *4)) (-14 *3 (-874)) (-4 *4 (-347)) (-5 *1 (-946 *3 *4)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-1084 *3 *4)) (-5 *1 (-946 *3 *4)) (-14 *3 (-874)) (-4 *4 (-347)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-874)) (-4 *2 (-347)) (-5 *1 (-946 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2599 ($ (-1084 |#1| |#2|))) (-15 -3299 ((-1084 |#1| |#2|) $)) (-15 -1922 (|#2| $ (-225 |#1| |#2|))))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-3641 (($ $) 46)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3845 (((-731) $) 45)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1424 ((|#1| $) 44)) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2051 ((|#1| |#1| $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-4198 ((|#1| $) 47)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-4247 ((|#1| $) 43)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-947 |#1|) (-134) (-1154)) (T -947)) +((-2051 (*1 *2 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-3641 (*1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-947 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) +(-13 (-105 |t#1|) (-10 -8 (-6 -4300) (-15 -2051 (|t#1| |t#1| $)) (-15 -4198 (|t#1| $)) (-15 -3641 ($ $)) (-15 -3845 ((-731) $)) (-15 -1424 (|t#1| $)) (-15 -4247 (|t#1| $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-1656 (((-111) $) 42)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#2| $) 43)) (-2484 (((-3 (-391 (-537)) "failed") $) 78)) (-1797 (((-111) $) 72)) (-2616 (((-391 (-537)) $) 76)) (-2836 (((-111) $) 41)) (-2055 ((|#2| $) 22)) (-1612 (($ (-1 |#2| |#2|) $) 19)) (-3865 (($ $) 61)) (-3456 (($ $) NIL) (($ $ (-731)) NIL) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3996 (((-513) $) 67)) (-1978 (($ $) 17)) (-2341 (((-816) $) 56) (($ (-537)) 38) (($ |#2|) 36) (($ (-391 (-537))) NIL)) (-3654 (((-731)) 10)) (-2209 ((|#2| $) 71)) (-2244 (((-111) $ $) 25)) (-2263 (((-111) $ $) 69)) (-2329 (($ $) 29) (($ $ $) 28)) (-2318 (($ $ $) 26)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL))) +(((-948 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 -3865 (|#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2836 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-949 |#2|) (-163)) (T -948)) +((-3654 (*1 *2) (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-948 *3 *4)) (-4 *3 (-949 *4))))) +(-10 -8 (-15 -2341 (|#1| (-391 (-537)))) (-15 -2263 ((-111) |#1| |#1|)) (-15 * (|#1| (-391 (-537)) |#1|)) (-15 * (|#1| |#1| (-391 (-537)))) (-15 -3865 (|#1| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2209 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1612 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -2341 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2836 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 * (|#1| (-731) |#1|)) (-15 -1656 ((-111) |#1|)) (-15 * (|#1| (-874) |#1|)) (-15 -2318 (|#1| |#1| |#1|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1516 (((-3 (-537) "failed") $) 116 (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 114 (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) 113)) (-3958 (((-537) $) 117 (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) 115 (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) 112)) (-2053 (((-649 (-537)) (-649 $)) 87 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 86 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 85) (((-649 |#1|) (-649 $)) 84)) (-3490 (((-3 $ "failed") $) 32)) (-3645 ((|#1| $) 77)) (-2484 (((-3 (-391 (-537)) "failed") $) 73 (|has| |#1| (-522)))) (-1797 (((-111) $) 75 (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) 74 (|has| |#1| (-522)))) (-3345 (($ |#1| |#1| |#1| |#1|) 78)) (-2836 (((-111) $) 30)) (-2055 ((|#1| $) 79)) (-2444 (($ $ $) 66 (|has| |#1| (-807)))) (-3889 (($ $ $) 65 (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) 88)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 70 (|has| |#1| (-347)))) (-1821 ((|#1| $) 80)) (-2168 ((|#1| $) 81)) (-2963 ((|#1| $) 82)) (-2528 (((-1064) $) 10)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 94 (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) 92 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) 91 (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) 90 (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) 89 (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) 95 (|has| |#1| (-270 |#1| |#1|)))) (-3456 (($ $) 111 (|has| |#1| (-218))) (($ $ (-731)) 109 (|has| |#1| (-218))) (($ $ (-1117)) 107 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 106 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 105 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 104 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3996 (((-513) $) 71 (|has| |#1| (-580 (-513))))) (-1978 (($ $) 83)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 35) (($ (-391 (-537))) 60 (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (((-3 $ "failed") $) 72 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2209 ((|#1| $) 76 (|has| |#1| (-1007)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $) 110 (|has| |#1| (-218))) (($ $ (-731)) 108 (|has| |#1| (-218))) (($ $ (-1117)) 103 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 102 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 101 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 100 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2293 (((-111) $ $) 63 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 62 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 64 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 61 (|has| |#1| (-807)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 69 (|has| |#1| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-391 (-537))) 68 (|has| |#1| (-347))) (($ (-391 (-537)) $) 67 (|has| |#1| (-347))))) +(((-949 |#1|) (-134) (-163)) (T -949)) +((-1978 (*1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-3345 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537))))) (-2484 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-391 (-537)))))) +(-13 (-37 |t#1|) (-395 |t#1|) (-216 |t#1|) (-322 |t#1|) (-361 |t#1|) (-10 -8 (-15 -1978 ($ $)) (-15 -2963 (|t#1| $)) (-15 -2168 (|t#1| $)) (-15 -1821 (|t#1| $)) (-15 -2055 (|t#1| $)) (-15 -3345 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (IF (|has| |t#1| (-274)) (-6 (-274)) |%noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-228)) |%noBranch|) (IF (|has| |t#1| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-139)) |%noBranch|) (IF (|has| |t#1| (-1007)) (-15 -2209 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -1797 ((-111) $)) (-15 -2616 ((-391 (-537)) $)) (-15 -2484 ((-3 (-391 (-537)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-347)) ((-37 |#1|) . T) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-347)) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-347)) (|has| |#1| (-274))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-216 |#1|) . T) ((-218) |has| |#1| (-218)) ((-228) |has| |#1| (-347)) ((-270 |#1| $) |has| |#1| (-270 |#1| |#1|)) ((-274) -1533 (|has| |#1| (-347)) (|has| |#1| (-274))) ((-293 |#1|) |has| |#1| (-293 |#1|)) ((-322 |#1|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-495 (-1117) |#1|) |has| |#1| (-495 (-1117) |#1|)) ((-495 |#1| |#1|) |has| |#1| (-293 |#1|)) ((-609 #0#) |has| |#1| (-347)) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-347)) ((-678 |#1|) . T) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-1004 #0#) |has| |#1| (-347)) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-347)) (|has| |#1| (-274))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1612 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-950 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) (-949 |#2|) (-163) (-949 |#4|) (-163)) (T -950)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) (-4 *2 (-949 *6)) (-5 *1 (-950 *4 *5 *2 *6)) (-4 *4 (-949 *5))))) +(-10 -7 (-15 -1612 (|#3| (-1 |#4| |#2|) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3645 ((|#1| $) 12)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-522)))) (-1797 (((-111) $) NIL (|has| |#1| (-522)))) (-2616 (((-391 (-537)) $) NIL (|has| |#1| (-522)))) (-3345 (($ |#1| |#1| |#1| |#1|) 16)) (-2836 (((-111) $) NIL)) (-2055 ((|#1| $) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-1821 ((|#1| $) 15)) (-2168 ((|#1| $) 14)) (-2963 ((|#1| $) 13)) (-2528 (((-1064) $) NIL)) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-293 |#1|))) (($ $ (-278 |#1|)) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-278 |#1|))) NIL (|has| |#1| (-293 |#1|))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-495 (-1117) |#1|))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-495 (-1117) |#1|)))) (-1922 (($ $ |#1|) NIL (|has| |#1| (-270 |#1| |#1|)))) (-3456 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-1978 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2209 ((|#1| $) NIL (|has| |#1| (-1007)))) (-2928 (($) 8 T CONST)) (-2943 (($) 10 T CONST)) (-4230 (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-347))))) +(((-951 |#1|) (-949 |#1|) (-163)) (T -951)) +NIL +(-949 |#1|) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3641 (($ $) 20)) (-3505 (($ (-606 |#1|)) 29)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-3845 (((-731) $) 22)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 24)) (-3499 (($ |#1| $) 15)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1424 ((|#1| $) 23)) (-1599 ((|#1| $) 19)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2051 ((|#1| |#1| $) 14)) (-2193 (((-111) $) 17)) (-3425 (($) NIL)) (-4198 ((|#1| $) 18)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) NIL)) (-4247 ((|#1| $) 26)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-952 |#1|) (-13 (-947 |#1|) (-10 -8 (-15 -3505 ($ (-606 |#1|))))) (-1045)) (T -952)) +((-3505 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-952 *3))))) +(-13 (-947 |#1|) (-10 -8 (-15 -3505 ($ (-606 |#1|))))) +((-3633 (($ $) 12)) (-2590 (($ $ (-537)) 13))) +(((-953 |#1|) (-10 -8 (-15 -3633 (|#1| |#1|)) (-15 -2590 (|#1| |#1| (-537)))) (-954)) (T -953)) +NIL +(-10 -8 (-15 -3633 (|#1| |#1|)) (-15 -2590 (|#1| |#1| (-537)))) +((-3633 (($ $) 6)) (-2590 (($ $ (-537)) 7)) (** (($ $ (-391 (-537))) 8))) +(((-954) (-134)) (T -954)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-391 (-537))))) (-2590 (*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-537)))) (-3633 (*1 *1 *1) (-4 *1 (-954)))) +(-13 (-10 -8 (-15 -3633 ($ $)) (-15 -2590 ($ $ (-537))) (-15 ** ($ $ (-391 (-537)))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1783 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| (-391 |#2|) (-347)))) (-3377 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-4017 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-3623 (((-649 (-391 |#2|)) (-1200 $)) NIL) (((-649 (-391 |#2|))) NIL)) (-1428 (((-391 |#2|) $) NIL)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| (-391 |#2|) (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2414 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-4099 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3151 (((-731)) NIL (|has| (-391 |#2|) (-352)))) (-2205 (((-111)) NIL)) (-3038 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-3 (-391 |#2|) "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| (-391 |#2|) (-989 (-537)))) (((-391 (-537)) $) NIL (|has| (-391 |#2|) (-989 (-391 (-537))))) (((-391 |#2|) $) NIL)) (-3447 (($ (-1200 (-391 |#2|)) (-1200 $)) NIL) (($ (-1200 (-391 |#2|))) 70) (($ (-1200 |#2|) |#2|) NIL)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-391 |#2|) (-333)))) (-3563 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2664 (((-649 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-391 |#2|) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-391 |#2|))) (|:| |vec| (-1200 (-391 |#2|)))) (-649 $) (-1200 $)) NIL) (((-649 (-391 |#2|)) (-649 $)) NIL)) (-4203 (((-1200 $) (-1200 $)) NIL)) (-3195 (($ |#3|) 65) (((-3 $ "failed") (-391 |#3|)) NIL (|has| (-391 |#2|) (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3544 (((-606 (-606 |#1|))) NIL (|has| |#1| (-352)))) (-1949 (((-111) |#1| |#1|) NIL)) (-3705 (((-874)) NIL)) (-1618 (($) NIL (|has| (-391 |#2|) (-352)))) (-1853 (((-111)) NIL)) (-1999 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-3539 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| (-391 |#2|) (-347)))) (-1351 (($ $) NIL)) (-4145 (($) NIL (|has| (-391 |#2|) (-333)))) (-2974 (((-111) $) NIL (|has| (-391 |#2|) (-333)))) (-2642 (($ $ (-731)) NIL (|has| (-391 |#2|) (-333))) (($ $) NIL (|has| (-391 |#2|) (-333)))) (-2639 (((-111) $) NIL (|has| (-391 |#2|) (-347)))) (-4231 (((-874) $) NIL (|has| (-391 |#2|) (-333))) (((-793 (-874)) $) NIL (|has| (-391 |#2|) (-333)))) (-2836 (((-111) $) NIL)) (-4147 (((-731)) NIL)) (-4205 (((-1200 $) (-1200 $)) NIL)) (-2055 (((-391 |#2|) $) NIL)) (-3941 (((-606 (-905 |#1|)) (-1117)) NIL (|has| |#1| (-347)))) (-2824 (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3199 ((|#3| $) NIL (|has| (-391 |#2|) (-347)))) (-2334 (((-874) $) NIL (|has| (-391 |#2|) (-352)))) (-3183 ((|#3| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-1654 (((-1100) $) NIL)) (-3184 (((-649 (-391 |#2|))) 52)) (-3993 (((-649 (-391 |#2|))) 51)) (-3865 (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2921 (($ (-1200 |#2|) |#2|) 71)) (-1734 (((-649 (-391 |#2|))) 50)) (-2125 (((-649 (-391 |#2|))) 49)) (-3307 (((-2 (|:| |num| (-649 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3984 (((-2 (|:| |num| (-1200 |#2|)) (|:| |den| |#2|)) $) 77)) (-1782 (((-1200 $)) 46)) (-3778 (((-1200 $)) 45)) (-1600 (((-111) $) NIL)) (-3766 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3956 (($) NIL (|has| (-391 |#2|) (-333)) CONST)) (-2009 (($ (-874)) NIL (|has| (-391 |#2|) (-352)))) (-1787 (((-3 |#2| "failed")) 63)) (-2528 (((-1064) $) NIL)) (-2091 (((-731)) NIL)) (-1524 (($) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| (-391 |#2|) (-347)))) (-2211 (($ (-606 $)) NIL (|has| (-391 |#2|) (-347))) (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| (-391 |#2|) (-333)))) (-3622 (((-402 $) $) NIL (|has| (-391 |#2|) (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-391 |#2|) (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| (-391 |#2|) (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| (-391 |#2|) (-347)))) (-1930 (((-731) $) NIL (|has| (-391 |#2|) (-347)))) (-1922 ((|#1| $ |#1| |#1|) NIL)) (-2322 (((-3 |#2| "failed")) 62)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| (-391 |#2|) (-347)))) (-2067 (((-391 |#2|) (-1200 $)) NIL) (((-391 |#2|)) 42)) (-3030 (((-731) $) NIL (|has| (-391 |#2|) (-333))) (((-3 (-731) "failed") $ $) NIL (|has| (-391 |#2|) (-333)))) (-3456 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-1630 (((-649 (-391 |#2|)) (-1200 $) (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347)))) (-2529 ((|#3|) 53)) (-3553 (($) NIL (|has| (-391 |#2|) (-333)))) (-1484 (((-1200 (-391 |#2|)) $ (-1200 $)) NIL) (((-649 (-391 |#2|)) (-1200 $) (-1200 $)) NIL) (((-1200 (-391 |#2|)) $) 72) (((-649 (-391 |#2|)) (-1200 $)) NIL)) (-3996 (((-1200 (-391 |#2|)) $) NIL) (($ (-1200 (-391 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| (-391 |#2|) (-333)))) (-3559 (((-1200 $) (-1200 $)) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 |#2|)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| (-391 |#2|) (-989 (-391 (-537)))) (|has| (-391 |#2|) (-347)))) (($ $) NIL (|has| (-391 |#2|) (-347)))) (-2644 (($ $) NIL (|has| (-391 |#2|) (-333))) (((-3 $ "failed") $) NIL (|has| (-391 |#2|) (-139)))) (-2736 ((|#3| $) NIL)) (-3654 (((-731)) NIL)) (-3735 (((-111)) 60)) (-3281 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-2122 (((-1200 $)) 121)) (-3276 (((-111) $ $) NIL (|has| (-391 |#2|) (-347)))) (-3450 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2743 (((-111)) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1 (-391 |#2|) (-391 |#2|)) (-731)) NIL (|has| (-391 |#2|) (-347))) (($ $ (-1 (-391 |#2|) (-391 |#2|))) NIL (|has| (-391 |#2|) (-347))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| (-391 |#2|) (-347)) (|has| (-391 |#2|) (-853 (-1117))))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333)))) (($ $) NIL (-1533 (-12 (|has| (-391 |#2|) (-218)) (|has| (-391 |#2|) (-347))) (|has| (-391 |#2|) (-333))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ $) NIL (|has| (-391 |#2|) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| (-391 |#2|) (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 |#2|)) NIL) (($ (-391 |#2|) $) NIL) (($ (-391 (-537)) $) NIL (|has| (-391 |#2|) (-347))) (($ $ (-391 (-537))) NIL (|has| (-391 |#2|) (-347))))) +(((-955 |#1| |#2| |#3| |#4| |#5|) (-326 |#1| |#2| |#3|) (-1158) (-1176 |#1|) (-1176 (-391 |#2|)) (-391 |#2|) (-731)) (T -955)) +NIL +(-326 |#1| |#2| |#3|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2589 (((-606 (-537)) $) 54)) (-2710 (($ (-606 (-537))) 62)) (-1874 (((-537) $) 40 (|has| (-537) (-291)))) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL (|has| (-537) (-780)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) 49) (((-3 (-1117) "failed") $) NIL (|has| (-537) (-989 (-1117)))) (((-3 (-391 (-537)) "failed") $) 47 (|has| (-537) (-989 (-537)))) (((-3 (-537) "failed") $) 49 (|has| (-537) (-989 (-537))))) (-3958 (((-537) $) NIL) (((-1117) $) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) NIL (|has| (-537) (-989 (-537)))) (((-537) $) NIL (|has| (-537) (-989 (-537))))) (-3563 (($ $ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| (-537) (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1618 (($) NIL (|has| (-537) (-522)))) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2549 (((-606 (-537)) $) 60)) (-3797 (((-111) $) NIL (|has| (-537) (-780)))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (|has| (-537) (-839 (-537)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (|has| (-537) (-839 (-363))))) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL)) (-3301 (((-537) $) 37)) (-2824 (((-3 $ "failed") $) NIL (|has| (-537) (-1093)))) (-2840 (((-111) $) NIL (|has| (-537) (-780)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-537) (-807)))) (-1612 (($ (-1 (-537) (-537)) $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL)) (-3956 (($) NIL (|has| (-537) (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1790 (($ $) NIL (|has| (-537) (-291))) (((-391 (-537)) $) 42)) (-4025 (((-1098 (-537)) $) 59)) (-2889 (($ (-606 (-537)) (-606 (-537))) 63)) (-3830 (((-537) $) 53 (|has| (-537) (-522)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| (-537) (-862)))) (-3622 (((-402 $) $) NIL)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-4116 (($ $ (-606 (-537)) (-606 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-537) (-537)) NIL (|has| (-537) (-293 (-537)))) (($ $ (-278 (-537))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-278 (-537)))) NIL (|has| (-537) (-293 (-537)))) (($ $ (-606 (-1117)) (-606 (-537))) NIL (|has| (-537) (-495 (-1117) (-537)))) (($ $ (-1117) (-537)) NIL (|has| (-537) (-495 (-1117) (-537))))) (-1930 (((-731) $) NIL)) (-1922 (($ $ (-537)) NIL (|has| (-537) (-270 (-537) (-537))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $) 11 (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2395 (($ $) NIL)) (-3315 (((-537) $) 39)) (-2912 (((-606 (-537)) $) 61)) (-3996 (((-845 (-537)) $) NIL (|has| (-537) (-580 (-845 (-537))))) (((-845 (-363)) $) NIL (|has| (-537) (-580 (-845 (-363))))) (((-513) $) NIL (|has| (-537) (-580 (-513)))) (((-363) $) NIL (|has| (-537) (-973))) (((-210) $) NIL (|has| (-537) (-973)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-537) (-862))))) (-2341 (((-816) $) 77) (($ (-537)) 43) (($ $) NIL) (($ (-391 (-537))) 20) (($ (-537)) 43) (($ (-1117)) NIL (|has| (-537) (-989 (-1117)))) (((-391 (-537)) $) 18)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-537) (-862))) (|has| (-537) (-139))))) (-3654 (((-731)) 9)) (-3903 (((-537) $) 51 (|has| (-537) (-522)))) (-3276 (((-111) $ $) NIL)) (-2209 (($ $) NIL (|has| (-537) (-780)))) (-2928 (($) 10 T CONST)) (-2943 (($) 12 T CONST)) (-4230 (($ $) NIL (|has| (-537) (-218))) (($ $ (-731)) NIL (|has| (-537) (-218))) (($ $ (-1117)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| (-537) (-853 (-1117)))) (($ $ (-1 (-537) (-537)) (-731)) NIL) (($ $ (-1 (-537) (-537))) NIL)) (-2293 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2244 (((-111) $ $) 14)) (-2282 (((-111) $ $) NIL (|has| (-537) (-807)))) (-2263 (((-111) $ $) 33 (|has| (-537) (-807)))) (-2340 (($ $ $) 29) (($ (-537) (-537)) 31)) (-2329 (($ $) 15) (($ $ $) 23)) (-2318 (($ $ $) 21)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 25) (($ $ $) 27) (($ $ (-391 (-537))) NIL) (($ (-391 (-537)) $) NIL) (($ (-537) $) 25) (($ $ (-537)) NIL))) +(((-956 |#1|) (-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2589 ((-606 (-537)) $)) (-15 -4025 ((-1098 (-537)) $)) (-15 -2549 ((-606 (-537)) $)) (-15 -2912 ((-606 (-537)) $)) (-15 -2710 ($ (-606 (-537)))) (-15 -2889 ($ (-606 (-537)) (-606 (-537)))))) (-537)) (T -956)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2549 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2710 (*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) (-2889 (*1 *1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) +(-13 (-945 (-537)) (-10 -8 (-15 -2341 ((-391 (-537)) $)) (-15 -1790 ((-391 (-537)) $)) (-15 -2589 ((-606 (-537)) $)) (-15 -4025 ((-1098 (-537)) $)) (-15 -2549 ((-606 (-537)) $)) (-15 -2912 ((-606 (-537)) $)) (-15 -2710 ($ (-606 (-537)))) (-15 -2889 ($ (-606 (-537)) (-606 (-537)))))) +((-3395 (((-51) (-391 (-537)) (-537)) 9))) +(((-957) (-10 -7 (-15 -3395 ((-51) (-391 (-537)) (-537))))) (T -957)) +((-3395 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-537))) (-5 *4 (-537)) (-5 *2 (-51)) (-5 *1 (-957))))) +(-10 -7 (-15 -3395 ((-51) (-391 (-537)) (-537)))) +((-3151 (((-537)) 13)) (-2571 (((-537)) 16)) (-3702 (((-1205) (-537)) 15)) (-3255 (((-537) (-537)) 17) (((-537)) 12))) +(((-958) (-10 -7 (-15 -3255 ((-537))) (-15 -3151 ((-537))) (-15 -3255 ((-537) (-537))) (-15 -3702 ((-1205) (-537))) (-15 -2571 ((-537))))) (T -958)) +((-2571 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-958)))) (-3255 (*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) (-3151 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) (-3255 (*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958))))) +(-10 -7 (-15 -3255 ((-537))) (-15 -3151 ((-537))) (-15 -3255 ((-537) (-537))) (-15 -3702 ((-1205) (-537))) (-15 -2571 ((-537)))) +((-3159 (((-402 |#1|) |#1|) 41)) (-3622 (((-402 |#1|) |#1|) 40))) +(((-959 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|))) (-1176 (-391 (-537)))) (T -959)) +((-3159 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) (-4 *3 (-1176 (-391 (-537)))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) (-4 *3 (-1176 (-391 (-537))))))) +(-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|))) +((-2484 (((-3 (-391 (-537)) "failed") |#1|) 15)) (-1797 (((-111) |#1|) 14)) (-2616 (((-391 (-537)) |#1|) 10))) +(((-960 |#1|) (-10 -7 (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|))) (-989 (-391 (-537)))) (T -960)) +((-2484 (*1 *2 *3) (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) (-4 *3 (-989 *2)))) (-1797 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-960 *3)) (-4 *3 (-989 (-391 (-537)))))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) (-4 *3 (-989 *2))))) +(-10 -7 (-15 -2616 ((-391 (-537)) |#1|)) (-15 -1797 ((-111) |#1|)) (-15 -2484 ((-3 (-391 (-537)) "failed") |#1|))) +((-2476 ((|#2| $ "value" |#2|) 12)) (-1922 ((|#2| $ "value") 10)) (-4261 (((-111) $ $) 18))) +(((-961 |#1| |#2|) (-10 -8 (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -1922 (|#2| |#1| "value"))) (-962 |#2|) (-1154)) (T -961)) +NIL +(-10 -8 (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -4261 ((-111) |#1| |#1|)) (-15 -1922 (|#2| |#1| "value"))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) 7 T CONST)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-962 |#1|) (-134) (-1154)) (T -962)) +((-2804 (*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3)))) (-2570 (*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-962 *2)) (-4 *2 (-1154)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3)))) (-2364 (*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-537)))) (-4261 (*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-3868 (*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *1)) (|has| *1 (-6 -4301)) (-4 *1 (-962 *3)) (-4 *3 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) (-4 *2 (-1154)))) (-3650 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) (-4 *2 (-1154))))) +(-13 (-471 |t#1|) (-10 -8 (-15 -2804 ((-606 $) $)) (-15 -2570 ((-606 $) $)) (-15 -3862 ((-111) $)) (-15 -3619 (|t#1| $)) (-15 -1922 (|t#1| $ "value")) (-15 -3335 ((-111) $)) (-15 -3583 ((-606 |t#1|) $)) (-15 -2364 ((-537) $ $)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -4261 ((-111) $ $)) (-15 -3868 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3999 ($ $ (-606 $))) (-15 -2476 (|t#1| $ "value" |t#1|)) (-15 -3650 (|t#1| $ |t#1|))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-3633 (($ $) 9) (($ $ (-874)) 43) (($ (-391 (-537))) 13) (($ (-537)) 15)) (-4190 (((-3 $ "failed") (-1113 $) (-874) (-816)) 23) (((-3 $ "failed") (-1113 $) (-874)) 28)) (-2590 (($ $ (-537)) 49)) (-3654 (((-731)) 17)) (-2607 (((-606 $) (-1113 $)) NIL) (((-606 $) (-1113 (-391 (-537)))) 54) (((-606 $) (-1113 (-537))) 59) (((-606 $) (-905 $)) 63) (((-606 $) (-905 (-391 (-537)))) 67) (((-606 $) (-905 (-537))) 71)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ $ (-391 (-537))) 47))) +(((-963 |#1|) (-10 -8 (-15 -3633 (|#1| (-537))) (-15 -3633 (|#1| (-391 (-537)))) (-15 -3633 (|#1| |#1| (-874))) (-15 -2607 ((-606 |#1|) (-905 (-537)))) (-15 -2607 ((-606 |#1|) (-905 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-905 |#1|))) (-15 -2607 ((-606 |#1|) (-1113 (-537)))) (-15 -2607 ((-606 |#1|) (-1113 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-1113 |#1|))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874) (-816))) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -2590 (|#1| |#1| (-537))) (-15 -3633 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) (-964)) (T -963)) +((-3654 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(-10 -8 (-15 -3633 (|#1| (-537))) (-15 -3633 (|#1| (-391 (-537)))) (-15 -3633 (|#1| |#1| (-874))) (-15 -2607 ((-606 |#1|) (-905 (-537)))) (-15 -2607 ((-606 |#1|) (-905 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-905 |#1|))) (-15 -2607 ((-606 |#1|) (-1113 (-537)))) (-15 -2607 ((-606 |#1|) (-1113 (-391 (-537))))) (-15 -2607 ((-606 |#1|) (-1113 |#1|))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874))) (-15 -4190 ((-3 |#1| "failed") (-1113 |#1|) (-874) (-816))) (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -2590 (|#1| |#1| (-537))) (-15 -3633 (|#1| |#1|)) (-15 ** (|#1| |#1| (-537))) (-15 -3654 ((-731))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 87)) (-3377 (($ $) 88)) (-4017 (((-111) $) 90)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 107)) (-2414 (((-402 $) $) 108)) (-3633 (($ $) 71) (($ $ (-874)) 57) (($ (-391 (-537))) 56) (($ (-537)) 55)) (-4099 (((-111) $ $) 98)) (-2537 (((-537) $) 124)) (-3832 (($) 17 T CONST)) (-4190 (((-3 $ "failed") (-1113 $) (-874) (-816)) 65) (((-3 $ "failed") (-1113 $) (-874)) 64)) (-1516 (((-3 (-537) "failed") $) 83 (|has| (-391 (-537)) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 81 (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-3 (-391 (-537)) "failed") $) 79)) (-3958 (((-537) $) 84 (|has| (-391 (-537)) (-989 (-537)))) (((-391 (-537)) $) 82 (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-391 (-537)) $) 78)) (-3218 (($ $ (-816)) 54)) (-4257 (($ $ (-816)) 53)) (-3563 (($ $ $) 102)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 101)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 96)) (-2639 (((-111) $) 109)) (-3797 (((-111) $) 122)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 70)) (-2840 (((-111) $) 123)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 105)) (-2444 (($ $ $) 121)) (-3889 (($ $ $) 120)) (-3695 (((-3 (-1113 $) "failed") $) 66)) (-1585 (((-3 (-816) "failed") $) 68)) (-1304 (((-3 (-1113 $) "failed") $) 67)) (-2183 (($ (-606 $)) 94) (($ $ $) 93)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 110)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 95)) (-2211 (($ (-606 $)) 92) (($ $ $) 91)) (-3622 (((-402 $) $) 106)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 103)) (-3515 (((-3 $ "failed") $ $) 86)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 97)) (-1930 (((-731) $) 99)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 100)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 114) (($ $) 85) (($ (-391 (-537))) 80) (($ (-537)) 77) (($ (-391 (-537))) 74)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 89)) (-4150 (((-391 (-537)) $ $) 52)) (-2607 (((-606 $) (-1113 $)) 63) (((-606 $) (-1113 (-391 (-537)))) 62) (((-606 $) (-1113 (-537))) 61) (((-606 $) (-905 $)) 60) (((-606 $) (-905 (-391 (-537)))) 59) (((-606 $) (-905 (-537))) 58)) (-2209 (($ $) 125)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 118)) (-2271 (((-111) $ $) 117)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 119)) (-2263 (((-111) $ $) 116)) (-2340 (($ $ $) 115)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 111) (($ $ (-391 (-537))) 69)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ (-391 (-537)) $) 113) (($ $ (-391 (-537))) 112) (($ (-537) $) 76) (($ $ (-537)) 75) (($ (-391 (-537)) $) 73) (($ $ (-391 (-537))) 72))) +(((-964) (-134)) (T -964)) +((-3633 (*1 *1 *1) (-4 *1 (-964))) (-1585 (*1 *2 *1) (|partial| -12 (-4 *1 (-964)) (-5 *2 (-816)))) (-1304 (*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964)))) (-3695 (*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964)))) (-4190 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-5 *4 (-816)) (-4 *1 (-964)))) (-4190 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1113 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) (-3633 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-874)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-964)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-964)))) (-3218 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816)))) (-4257 (*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816)))) (-4150 (*1 *2 *1 *1) (-12 (-4 *1 (-964)) (-5 *2 (-391 (-537)))))) +(-13 (-141) (-805) (-163) (-347) (-395 (-391 (-537))) (-37 (-537)) (-37 (-391 (-537))) (-954) (-10 -8 (-15 -1585 ((-3 (-816) "failed") $)) (-15 -1304 ((-3 (-1113 $) "failed") $)) (-15 -3695 ((-3 (-1113 $) "failed") $)) (-15 -4190 ((-3 $ "failed") (-1113 $) (-874) (-816))) (-15 -4190 ((-3 $ "failed") (-1113 $) (-874))) (-15 -2607 ((-606 $) (-1113 $))) (-15 -2607 ((-606 $) (-1113 (-391 (-537))))) (-15 -2607 ((-606 $) (-1113 (-537)))) (-15 -2607 ((-606 $) (-905 $))) (-15 -2607 ((-606 $) (-905 (-391 (-537))))) (-15 -2607 ((-606 $) (-905 (-537)))) (-15 -3633 ($ $ (-874))) (-15 -3633 ($ $)) (-15 -3633 ($ (-391 (-537)))) (-15 -3633 ($ (-537))) (-15 -3218 ($ $ (-816))) (-15 -4257 ($ $ (-816))) (-15 -4150 ((-391 (-537)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 #1=(-537)) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-395 (-391 (-537))) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 #1#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 #1#) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-873) . T) ((-954) . T) ((-989 (-391 (-537))) . T) ((-989 (-537)) |has| (-391 (-537)) (-989 (-537))) ((-1004 #0#) . T) ((-1004 #1#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-1274 (((-2 (|:| |ans| |#2|) (|:| -3278 |#2|) (|:| |sol?| (-111))) (-537) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-965 |#1| |#2|) (-10 -7 (-15 -1274 ((-2 (|:| |ans| |#2|) (|:| -3278 |#2|) (|:| |sol?| (-111))) (-537) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-27) (-414 |#1|))) (T -965)) +((-1274 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-606 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1139) (-27) (-414 *8))) (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) (-5 *3 (-537)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111)))) (-5 *1 (-965 *8 *4))))) +(-10 -7 (-15 -1274 ((-2 (|:| |ans| |#2|) (|:| -3278 |#2|) (|:| |sol?| (-111))) (-537) |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3914 (((-3 (-606 |#2|) "failed") (-537) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-966 |#1| |#2|) (-10 -7 (-15 -3914 ((-3 (-606 |#2|) "failed") (-537) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537))) (-13 (-1139) (-27) (-414 |#1|))) (T -966)) +((-3914 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1117)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-606 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1139) (-27) (-414 *8))) (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) (-5 *3 (-537)) (-5 *2 (-606 *4)) (-5 *1 (-966 *8 *4))))) +(-10 -7 (-15 -3914 ((-3 (-606 |#2|) "failed") (-537) |#2| |#2| |#2| (-1117) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-606 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-606 |#2|)) (-1 (-3 (-2 (|:| -3121 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2694 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-537)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-537) (-1 |#2| |#2|)) 30)) (-2799 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |c| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|)) 58)) (-3305 (((-2 (|:| |ans| (-391 |#2|)) (|:| |nosol| (-111))) (-391 |#2|) (-391 |#2|)) 63))) +(((-967 |#1| |#2|) (-10 -7 (-15 -2799 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |c| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-391 |#2|)) (|:| |nosol| (-111))) (-391 |#2|) (-391 |#2|))) (-15 -2694 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-537)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-537) (-1 |#2| |#2|)))) (-13 (-347) (-141) (-989 (-537))) (-1176 |#1|)) (T -967)) +((-2694 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1176 *6)) (-4 *6 (-13 (-347) (-141) (-989 *4))) (-5 *4 (-537)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-967 *6 *3)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| |ans| (-391 *5)) (|:| |nosol| (-111)))) (-5 *1 (-967 *4 *5)) (-5 *3 (-391 *5)))) (-2799 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |c| (-391 *6)) (|:| -4065 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-391 *6))))) +(-10 -7 (-15 -2799 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |c| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -3305 ((-2 (|:| |ans| (-391 |#2|)) (|:| |nosol| (-111))) (-391 |#2|) (-391 |#2|))) (-15 -2694 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -4113 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-537)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-537) (-1 |#2| |#2|)))) +((-2802 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |h| |#2|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|)) 22)) (-2726 (((-3 (-606 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)) 33))) +(((-968 |#1| |#2|) (-10 -7 (-15 -2802 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |h| |#2|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -2726 ((-3 (-606 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)))) (-13 (-347) (-141) (-989 (-537))) (-1176 |#1|)) (T -968)) +((-2726 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) (-5 *2 (-606 (-391 *5))) (-5 *1 (-968 *4 *5)) (-5 *3 (-391 *5)))) (-2802 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |h| *6) (|:| |c1| (-391 *6)) (|:| |c2| (-391 *6)) (|:| -4065 *6))) (-5 *1 (-968 *5 *6)) (-5 *3 (-391 *6))))) +(-10 -7 (-15 -2802 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-391 |#2|)) (|:| |h| |#2|) (|:| |c1| (-391 |#2|)) (|:| |c2| (-391 |#2|)) (|:| -4065 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|) (-1 |#2| |#2|))) (-15 -2726 ((-3 (-606 (-391 |#2|)) "failed") (-391 |#2|) (-391 |#2|) (-391 |#2|)))) +((-3728 (((-1 |#1|) (-606 (-2 (|:| -3619 |#1|) (|:| -3073 (-537))))) 37)) (-3097 (((-1 |#1|) (-1047 |#1|)) 45)) (-3873 (((-1 |#1|) (-1200 |#1|) (-1200 (-537)) (-537)) 34))) +(((-969 |#1|) (-10 -7 (-15 -3097 ((-1 |#1|) (-1047 |#1|))) (-15 -3728 ((-1 |#1|) (-606 (-2 (|:| -3619 |#1|) (|:| -3073 (-537)))))) (-15 -3873 ((-1 |#1|) (-1200 |#1|) (-1200 (-537)) (-537)))) (-1045)) (T -969)) +((-3873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1200 *6)) (-5 *4 (-1200 (-537))) (-5 *5 (-537)) (-4 *6 (-1045)) (-5 *2 (-1 *6)) (-5 *1 (-969 *6)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3619 *4) (|:| -3073 (-537))))) (-4 *4 (-1045)) (-5 *2 (-1 *4)) (-5 *1 (-969 *4)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-1047 *4)) (-4 *4 (-1045)) (-5 *2 (-1 *4)) (-5 *1 (-969 *4))))) +(-10 -7 (-15 -3097 ((-1 |#1|) (-1047 |#1|))) (-15 -3728 ((-1 |#1|) (-606 (-2 (|:| -3619 |#1|) (|:| -3073 (-537)))))) (-15 -3873 ((-1 |#1|) (-1200 |#1|) (-1200 (-537)) (-537)))) +((-4231 (((-731) (-320 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-347) (-1176 |#1|) (-1176 (-391 |#2|)) (-326 |#1| |#2| |#3|) (-13 (-352) (-347))) (T -970)) +((-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-347)) (-4 *7 (-1176 *6)) (-4 *4 (-1176 (-391 *7))) (-4 *8 (-326 *6 *7 *4)) (-4 *9 (-13 (-352) (-347))) (-5 *2 (-731)) (-5 *1 (-970 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4231 ((-731) (-320 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3878 (((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 31) (((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 28)) (-2073 (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 33) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537))) 29) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 32) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|) 27)) (-2781 (((-606 (-391 (-537))) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) 19)) (-3430 (((-391 (-537)) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 16))) +(((-971 |#1|) (-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -3430 ((-391 (-537)) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2781 ((-606 (-391 (-537))) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))))) (-1176 (-537))) (T -971)) +((-2781 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *2 (-606 (-391 (-537)))) (-5 *1 (-971 *4)) (-4 *4 (-1176 (-537))))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *2 (-391 (-537))) (-5 *1 (-971 *4)) (-4 *4 (-1176 (-537))))) (-3878 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) (-3878 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *4 (-391 (-537))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-391 (-537))) (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-391 (-537))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-2073 (*1 *2 *3) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537)))))) +(-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -3430 ((-391 (-537)) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2781 ((-606 (-391 (-537))) (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))))) +((-3878 (((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 35) (((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 32)) (-2073 (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537))) 30) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537))) 26) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) 28) (((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|) 24))) +(((-972 |#1|) (-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-1176 (-391 (-537)))) (T -972)) +((-3878 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))))) (-3878 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) (-5 *4 (-391 (-537))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *4)))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-391 (-537))) (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *5)) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-391 (-537))) (-5 *2 (-606 (-2 (|:| -3267 *4) (|:| -3278 *4)))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *4)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))) (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) (-2073 (*1 *2 *3) (-12 (-5 *2 (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537))))))) +(-10 -7 (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1|)) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-391 (-537)))) (-15 -2073 ((-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-391 (-537)))) (-15 -3878 ((-3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) "failed") |#1| (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))) (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) +((-3996 (((-210) $) 6) (((-363) $) 9))) +(((-973) (-134)) (T -973)) +NIL +(-13 (-580 (-210)) (-580 (-363))) +(((-580 (-210)) . T) ((-580 (-363)) . T)) +((-1895 (((-606 (-363)) (-905 (-537)) (-363)) 28) (((-606 (-363)) (-905 (-391 (-537))) (-363)) 27)) (-2465 (((-606 (-606 (-363))) (-606 (-905 (-537))) (-606 (-1117)) (-363)) 37))) +(((-974) (-10 -7 (-15 -1895 ((-606 (-363)) (-905 (-391 (-537))) (-363))) (-15 -1895 ((-606 (-363)) (-905 (-537)) (-363))) (-15 -2465 ((-606 (-606 (-363))) (-606 (-905 (-537))) (-606 (-1117)) (-363))))) (T -974)) +((-2465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 (-363)))) (-5 *1 (-974)) (-5 *5 (-363)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 (-363))) (-5 *1 (-974)) (-5 *4 (-363)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 (-363))) (-5 *1 (-974)) (-5 *4 (-363))))) +(-10 -7 (-15 -1895 ((-606 (-363)) (-905 (-391 (-537))) (-363))) (-15 -1895 ((-606 (-363)) (-905 (-537)) (-363))) (-15 -2465 ((-606 (-606 (-363))) (-606 (-905 (-537))) (-606 (-1117)) (-363)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 70)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-3633 (($ $) NIL) (($ $ (-874)) NIL) (($ (-391 (-537))) NIL) (($ (-537)) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) 65)) (-3832 (($) NIL T CONST)) (-4190 (((-3 $ "failed") (-1113 $) (-874) (-816)) NIL) (((-3 $ "failed") (-1113 $) (-874)) 50)) (-1516 (((-3 (-391 (-537)) "failed") $) NIL (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-537) "failed") $) NIL (-1533 (|has| (-391 (-537)) (-989 (-537))) (|has| |#1| (-989 (-537)))))) (-3958 (((-391 (-537)) $) 15 (|has| (-391 (-537)) (-989 (-391 (-537))))) (((-391 (-537)) $) 15) ((|#1| $) 108) (((-537) $) NIL (-1533 (|has| (-391 (-537)) (-989 (-537))) (|has| |#1| (-989 (-537)))))) (-3218 (($ $ (-816)) 42)) (-4257 (($ $ (-816)) 43)) (-3563 (($ $ $) NIL)) (-3962 (((-391 (-537)) $ $) 19)) (-3490 (((-3 $ "failed") $) 83)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-3797 (((-111) $) 61)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL)) (-2840 (((-111) $) 64)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-3695 (((-3 (-1113 $) "failed") $) 78)) (-1585 (((-3 (-816) "failed") $) 77)) (-1304 (((-3 (-1113 $) "failed") $) 75)) (-1812 (((-3 (-1008 $ (-1113 $)) "failed") $) 73)) (-2183 (($ (-606 $)) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 84)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ (-606 $)) NIL) (($ $ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-2341 (((-816) $) 82) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ $) 58) (($ (-391 (-537))) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ |#1|) 110)) (-3654 (((-731)) NIL)) (-3276 (((-111) $ $) NIL)) (-4150 (((-391 (-537)) $ $) 25)) (-2607 (((-606 $) (-1113 $)) 56) (((-606 $) (-1113 (-391 (-537)))) NIL) (((-606 $) (-1113 (-537))) NIL) (((-606 $) (-905 $)) NIL) (((-606 $) (-905 (-391 (-537)))) NIL) (((-606 $) (-905 (-537))) NIL)) (-1638 (($ (-1008 $ (-1113 $)) (-816)) 41)) (-2209 (($ $) 20)) (-2928 (($) 29 T CONST)) (-2943 (($) 35 T CONST)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 71)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 22)) (-2340 (($ $ $) 33)) (-2329 (($ $) 34) (($ $ $) 69)) (-2318 (($ $ $) 103)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL) (($ $ (-391 (-537))) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 91) (($ $ $) 96) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ (-537) $) 91) (($ $ (-537)) NIL) (($ (-391 (-537)) $) NIL) (($ $ (-391 (-537))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-975 |#1|) (-13 (-964) (-395 |#1|) (-37 |#1|) (-10 -8 (-15 -1638 ($ (-1008 $ (-1113 $)) (-816))) (-15 -1812 ((-3 (-1008 $ (-1113 $)) "failed") $)) (-15 -3962 ((-391 (-537)) $ $)))) (-13 (-805) (-347) (-973))) (T -975)) +((-1638 (*1 *1 *2 *3) (-12 (-5 *2 (-1008 (-975 *4) (-1113 (-975 *4)))) (-5 *3 (-816)) (-5 *1 (-975 *4)) (-4 *4 (-13 (-805) (-347) (-973))))) (-1812 (*1 *2 *1) (|partial| -12 (-5 *2 (-1008 (-975 *3) (-1113 (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-13 (-805) (-347) (-973))))) (-3962 (*1 *2 *1 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-975 *3)) (-4 *3 (-13 (-805) (-347) (-973)))))) +(-13 (-964) (-395 |#1|) (-37 |#1|) (-10 -8 (-15 -1638 ($ (-1008 $ (-1113 $)) (-816))) (-15 -1812 ((-3 (-1008 $ (-1113 $)) "failed") $)) (-15 -3962 ((-391 (-537)) $ $)))) +((-2982 (((-2 (|:| -4113 |#2|) (|:| -4157 (-606 |#1|))) |#2| (-606 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-976 |#1| |#2|) (-10 -7 (-15 -2982 (|#2| |#2| |#1|)) (-15 -2982 ((-2 (|:| -4113 |#2|) (|:| -4157 (-606 |#1|))) |#2| (-606 |#1|)))) (-347) (-617 |#1|)) (T -976)) +((-2982 (*1 *2 *3 *4) (-12 (-4 *5 (-347)) (-5 *2 (-2 (|:| -4113 *3) (|:| -4157 (-606 *5)))) (-5 *1 (-976 *5 *3)) (-5 *4 (-606 *5)) (-4 *3 (-617 *5)))) (-2982 (*1 *2 *2 *3) (-12 (-4 *3 (-347)) (-5 *1 (-976 *3 *2)) (-4 *2 (-617 *3))))) +(-10 -7 (-15 -2982 (|#2| |#2| |#1|)) (-15 -2982 ((-2 (|:| -4113 |#2|) (|:| -4157 (-606 |#1|))) |#2| (-606 |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3004 ((|#1| $ |#1|) 14)) (-2476 ((|#1| $ |#1|) 12)) (-1567 (($ |#1|) 10)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1922 ((|#1| $) 11)) (-2958 ((|#1| $) 13)) (-2341 (((-816) $) 21 (|has| |#1| (-1045)))) (-2244 (((-111) $ $) 9))) +(((-977 |#1|) (-13 (-1154) (-10 -8 (-15 -1567 ($ |#1|)) (-15 -1922 (|#1| $)) (-15 -2476 (|#1| $ |#1|)) (-15 -2958 (|#1| $)) (-15 -3004 (|#1| $ |#1|)) (-15 -2244 ((-111) $ $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) (-1154)) (T -977)) +((-1567 (*1 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-2958 (*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-3004 (*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-977 *3)) (-4 *3 (-1154))))) +(-13 (-1154) (-10 -8 (-15 -1567 ($ |#1|)) (-15 -1922 (|#1| $)) (-15 -2476 (|#1| $ |#1|)) (-15 -2958 (|#1| $)) (-15 -3004 (|#1| $ |#1|)) (-15 -2244 ((-111) $ $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) 105) (((-606 $) (-606 |#4|) (-111)) 106) (((-606 $) (-606 |#4|) (-111) (-111)) 104) (((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111)) 107)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 99)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 54)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) 26 (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 39)) (-2627 ((|#4| |#4| $) 57)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3165 (((-111) |#4| $) NIL)) (-3398 (((-111) |#4| $) NIL)) (-2479 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1819 (((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111)) 119)) (-3661 (((-606 |#4|) $) 16 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 33)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 17 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) NIL)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 97)) (-2375 (((-3 |#4| "failed") $) 37)) (-3826 (((-606 $) |#4| $) 80)) (-2806 (((-3 (-111) (-606 $)) |#4| $) NIL)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-3891 (((-606 $) |#4| $) 102) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 103) (((-606 $) |#4| (-606 $)) NIL)) (-2755 (((-606 $) (-606 |#4|) (-111) (-111) (-111)) 114)) (-3357 (($ |#4| $) 70) (($ (-606 |#4|) $) 71) (((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-2422 (((-606 |#4|) $) NIL)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 35)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) 48)) (-1540 (($ $ |#4|) NIL) (((-606 $) |#4| $) 82) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 77)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 13)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 12)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 20)) (-1713 (($ $ |#3|) 42)) (-2488 (($ $ |#3|) 44)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 31) (((-606 |#4|) $) 40)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-3014 (((-606 $) |#4| $) 79) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3161 (((-111) |#4| $) NIL)) (-3042 (((-111) |#3| $) 53)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-978 |#1| |#2| |#3| |#4|) (-13 (-1018 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -978)) +((-3357 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *3))) (-5 *1 (-978 *5 *6 *7 *3)) (-4 *3 (-1012 *5 *6 *7)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) (-3448 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) (-2755 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) (-1819 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-606 *8)) (|:| |towers| (-606 (-978 *5 *6 *7 *8))))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) +(-13 (-1018 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) +((-3226 (((-606 (-649 |#1|)) (-606 (-649 |#1|))) 58) (((-649 |#1|) (-649 |#1|)) 57) (((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-606 (-649 |#1|))) 56) (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 53)) (-2081 (((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874)) 52) (((-649 |#1|) (-649 |#1|) (-874)) 51)) (-1245 (((-606 (-649 (-537))) (-606 (-606 (-537)))) 68) (((-606 (-649 (-537))) (-606 (-858 (-537))) (-537)) 67) (((-649 (-537)) (-606 (-537))) 64) (((-649 (-537)) (-858 (-537)) (-537)) 63)) (-3917 (((-649 (-905 |#1|)) (-731)) 81)) (-1265 (((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874)) 37 (|has| |#1| (-6 (-4302 "*")))) (((-649 |#1|) (-649 |#1|) (-874)) 35 (|has| |#1| (-6 (-4302 "*")))))) +(((-979 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-649 |#1|) (-649 |#1|) (-874))) |%noBranch|) (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) |%noBranch|) (-15 -3917 ((-649 (-905 |#1|)) (-731))) (-15 -2081 ((-649 |#1|) (-649 |#1|) (-874))) (-15 -2081 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) (-15 -3226 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -3226 ((-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1245 ((-649 (-537)) (-858 (-537)) (-537))) (-15 -1245 ((-649 (-537)) (-606 (-537)))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-858 (-537))) (-537))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-606 (-537)))))) (-998)) (T -979)) +((-1245 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-537)))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-979 *4)) (-4 *4 (-998)))) (-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-858 (-537)))) (-5 *4 (-537)) (-5 *2 (-606 (-649 *4))) (-5 *1 (-979 *5)) (-4 *5 (-998)))) (-1245 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-979 *4)) (-4 *4 (-998)))) (-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-537))) (-5 *4 (-537)) (-5 *2 (-649 *4)) (-5 *1 (-979 *5)) (-4 *5 (-998)))) (-3226 (*1 *2 *2) (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-3226 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-3226 (*1 *2 *2 *2) (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-3226 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) (-4 *4 (-998)) (-5 *1 (-979 *4)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (-4 *4 (-998)) (-5 *1 (-979 *4)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-649 (-905 *4))) (-5 *1 (-979 *4)) (-4 *4 (-998)))) (-1265 (*1 *2 *2 *3) (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) (|has| *4 (-6 (-4302 "*"))) (-4 *4 (-998)) (-5 *1 (-979 *4)))) (-1265 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (|has| *4 (-6 (-4302 "*"))) (-4 *4 (-998)) (-5 *1 (-979 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-649 |#1|) (-649 |#1|) (-874))) |%noBranch|) (IF (|has| |#1| (-6 (-4302 "*"))) (-15 -1265 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) |%noBranch|) (-15 -3917 ((-649 (-905 |#1|)) (-731))) (-15 -2081 ((-649 |#1|) (-649 |#1|) (-874))) (-15 -2081 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-874))) (-15 -3226 ((-649 |#1|) (-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -3226 ((-649 |#1|) (-649 |#1|))) (-15 -3226 ((-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1245 ((-649 (-537)) (-858 (-537)) (-537))) (-15 -1245 ((-649 (-537)) (-606 (-537)))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-858 (-537))) (-537))) (-15 -1245 ((-606 (-649 (-537))) (-606 (-606 (-537)))))) +((-3742 (((-649 |#1|) (-606 (-649 |#1|)) (-1200 |#1|)) 50 (|has| |#1| (-291)))) (-3763 (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 (-1200 |#1|))) 76 (|has| |#1| (-347))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 |#1|)) 79 (|has| |#1| (-347)))) (-3531 (((-1200 |#1|) (-606 (-1200 |#1|)) (-537)) 93 (-12 (|has| |#1| (-347)) (|has| |#1| (-352))))) (-2359 (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-874)) 85 (-12 (|has| |#1| (-347)) (|has| |#1| (-352)))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111)) 83 (-12 (|has| |#1| (-347)) (|has| |#1| (-352)))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|))) 82 (-12 (|has| |#1| (-347)) (|has| |#1| (-352)))) (((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111) (-537) (-537)) 81 (-12 (|has| |#1| (-347)) (|has| |#1| (-352))))) (-1651 (((-111) (-606 (-649 |#1|))) 71 (|has| |#1| (-347))) (((-111) (-606 (-649 |#1|)) (-537)) 73 (|has| |#1| (-347)))) (-2072 (((-1200 (-1200 |#1|)) (-606 (-649 |#1|)) (-1200 |#1|)) 48 (|has| |#1| (-291)))) (-2832 (((-649 |#1|) (-606 (-649 |#1|)) (-649 |#1|)) 34)) (-3437 (((-649 |#1|) (-1200 (-1200 |#1|))) 31)) (-1933 (((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-537)) 65 (|has| |#1| (-347))) (((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|))) 64 (|has| |#1| (-347))) (((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-111) (-537)) 69 (|has| |#1| (-347))))) +(((-980 |#1|) (-10 -7 (-15 -3437 ((-649 |#1|) (-1200 (-1200 |#1|)))) (-15 -2832 ((-649 |#1|) (-606 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-291)) (PROGN (-15 -2072 ((-1200 (-1200 |#1|)) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3742 ((-649 |#1|) (-606 (-649 |#1|)) (-1200 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-111) (-537))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 (-1200 |#1|))))) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#1| (-347)) (PROGN (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111) (-537) (-537))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-874))) (-15 -3531 ((-1200 |#1|) (-606 (-1200 |#1|)) (-537)))) |%noBranch|) |%noBranch|)) (-998)) (T -980)) +((-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1200 *5))) (-5 *4 (-537)) (-5 *2 (-1200 *5)) (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-2359 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-347)) (-4 *4 (-352)) (-4 *4 (-998)) (-5 *2 (-606 (-606 (-649 *4)))) (-5 *1 (-980 *4)) (-5 *3 (-606 (-649 *4))))) (-2359 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-537)) (-4 *6 (-347)) (-4 *6 (-352)) (-4 *6 (-998)) (-5 *2 (-606 (-606 (-649 *6)))) (-5 *1 (-980 *6)) (-5 *3 (-606 (-649 *6))))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1200 (-1200 *5))) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-3763 (*1 *2 *3 *4) (-12 (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) (-5 *3 (-606 (-649 *5))))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) (-4 *4 (-998)) (-5 *2 (-111)) (-5 *1 (-980 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-4 *5 (-347)) (-4 *5 (-998)) (-5 *2 (-111)) (-5 *1 (-980 *5)))) (-1933 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-5 *2 (-649 *5)) (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-998)))) (-1933 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-5 *1 (-980 *4)) (-4 *4 (-347)) (-4 *4 (-998)))) (-1933 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-606 (-649 *6))) (-5 *4 (-111)) (-5 *5 (-537)) (-5 *2 (-649 *6)) (-5 *1 (-980 *6)) (-4 *6 (-347)) (-4 *6 (-998)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-1200 *5)) (-4 *5 (-291)) (-4 *5 (-998)) (-5 *2 (-649 *5)) (-5 *1 (-980 *5)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-649 *5))) (-4 *5 (-291)) (-4 *5 (-998)) (-5 *2 (-1200 (-1200 *5))) (-5 *1 (-980 *5)) (-5 *4 (-1200 *5)))) (-2832 (*1 *2 *3 *2) (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-998)) (-5 *1 (-980 *4)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-1200 (-1200 *4))) (-4 *4 (-998)) (-5 *2 (-649 *4)) (-5 *1 (-980 *4))))) +(-10 -7 (-15 -3437 ((-649 |#1|) (-1200 (-1200 |#1|)))) (-15 -2832 ((-649 |#1|) (-606 (-649 |#1|)) (-649 |#1|))) (IF (|has| |#1| (-291)) (PROGN (-15 -2072 ((-1200 (-1200 |#1|)) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3742 ((-649 |#1|) (-606 (-649 |#1|)) (-1200 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-111) (-537))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1933 ((-649 |#1|) (-606 (-649 |#1|)) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)) (-537))) (-15 -1651 ((-111) (-606 (-649 |#1|)))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 |#1|))) (-15 -3763 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-1200 (-1200 |#1|))))) |%noBranch|) (IF (|has| |#1| (-352)) (IF (|has| |#1| (-347)) (PROGN (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111) (-537) (-537))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-111))) (-15 -2359 ((-606 (-606 (-649 |#1|))) (-606 (-649 |#1|)) (-874))) (-15 -3531 ((-1200 |#1|) (-606 (-1200 |#1|)) (-537)))) |%noBranch|) |%noBranch|)) +((-3737 ((|#1| (-874) |#1|) 9))) +(((-981 |#1|) (-10 -7 (-15 -3737 (|#1| (-874) |#1|))) (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $))))) (T -981)) +((-3737 (*1 *2 *3 *2) (-12 (-5 *3 (-874)) (-5 *1 (-981 *2)) (-4 *2 (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)))))))) +(-10 -7 (-15 -3737 (|#1| (-874) |#1|))) +((-4005 (((-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537))))))) (-649 (-391 (-905 (-537))))) 59)) (-2770 (((-606 (-649 (-300 (-537)))) (-300 (-537)) (-649 (-391 (-905 (-537))))) 48)) (-2132 (((-606 (-300 (-537))) (-649 (-391 (-905 (-537))))) 41)) (-3508 (((-606 (-649 (-300 (-537)))) (-649 (-391 (-905 (-537))))) 68)) (-1837 (((-649 (-300 (-537))) (-649 (-300 (-537)))) 34)) (-2338 (((-606 (-649 (-300 (-537)))) (-606 (-649 (-300 (-537))))) 62)) (-2808 (((-3 (-649 (-300 (-537))) "failed") (-649 (-391 (-905 (-537))))) 66))) +(((-982) (-10 -7 (-15 -4005 ((-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537))))))) (-649 (-391 (-905 (-537)))))) (-15 -2770 ((-606 (-649 (-300 (-537)))) (-300 (-537)) (-649 (-391 (-905 (-537)))))) (-15 -2132 ((-606 (-300 (-537))) (-649 (-391 (-905 (-537)))))) (-15 -2808 ((-3 (-649 (-300 (-537))) "failed") (-649 (-391 (-905 (-537)))))) (-15 -1837 ((-649 (-300 (-537))) (-649 (-300 (-537))))) (-15 -2338 ((-606 (-649 (-300 (-537)))) (-606 (-649 (-300 (-537)))))) (-15 -3508 ((-606 (-649 (-300 (-537)))) (-649 (-391 (-905 (-537)))))))) (T -982)) +((-3508 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982)))) (-2808 (*1 *2 *3) (|partial| -12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-300 (-537)))) (-5 *1 (-982)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)) (-5 *3 (-300 (-537))))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537)))))))) (-5 *1 (-982))))) +(-10 -7 (-15 -4005 ((-606 (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) (|:| |radvect| (-606 (-649 (-300 (-537))))))) (-649 (-391 (-905 (-537)))))) (-15 -2770 ((-606 (-649 (-300 (-537)))) (-300 (-537)) (-649 (-391 (-905 (-537)))))) (-15 -2132 ((-606 (-300 (-537))) (-649 (-391 (-905 (-537)))))) (-15 -2808 ((-3 (-649 (-300 (-537))) "failed") (-649 (-391 (-905 (-537)))))) (-15 -1837 ((-649 (-300 (-537))) (-649 (-300 (-537))))) (-15 -2338 ((-606 (-649 (-300 (-537)))) (-606 (-649 (-300 (-537)))))) (-15 -3508 ((-606 (-649 (-300 (-537)))) (-649 (-391 (-905 (-537))))))) +((-2521 ((|#1| |#1| (-874)) 9))) +(((-983 |#1|) (-10 -7 (-15 -2521 (|#1| |#1| (-874)))) (-13 (-1045) (-10 -8 (-15 * ($ $ $))))) (T -983)) +((-2521 (*1 *2 *2 *3) (-12 (-5 *3 (-874)) (-5 *1 (-983 *2)) (-4 *2 (-13 (-1045) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2521 (|#1| |#1| (-874)))) +((-2341 ((|#1| (-296)) 11) (((-1205) |#1|) 9))) +(((-984 |#1|) (-10 -7 (-15 -2341 ((-1205) |#1|)) (-15 -2341 (|#1| (-296)))) (-1154)) (T -984)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-984 *2)) (-4 *2 (-1154)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-984 *3)) (-4 *3 (-1154))))) +(-10 -7 (-15 -2341 ((-1205) |#1|)) (-15 -2341 (|#1| (-296)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3195 (($ |#4|) 25)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-3183 ((|#4| $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 46) (($ (-537)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3654 (((-731)) 43)) (-2928 (($) 21 T CONST)) (-2943 (($) 23 T CONST)) (-2244 (((-111) $ $) 40)) (-2329 (($ $) 31) (($ $ $) NIL)) (-2318 (($ $ $) 29)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-985 |#1| |#2| |#3| |#4| |#5|) (-13 (-163) (-37 |#1|) (-10 -8 (-15 -3195 ($ |#4|)) (-15 -2341 ($ |#4|)) (-15 -3183 (|#4| $)))) (-347) (-753) (-807) (-902 |#1| |#2| |#3|) (-606 |#4|)) (T -985)) +((-3195 (*1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) (-14 *6 (-606 *2)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) (-14 *6 (-606 *2)))) (-3183 (*1 *2 *1) (-12 (-4 *2 (-902 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-14 *6 (-606 *2))))) +(-13 (-163) (-37 |#1|) (-10 -8 (-15 -3195 ($ |#4|)) (-15 -2341 ($ |#4|)) (-15 -3183 (|#4| $)))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-1279 (((-1205) $ (-1117) (-1117)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-1848 (((-111) (-111)) 39)) (-2119 (((-111) (-111)) 38)) (-2476 (((-51) $ (-1117) (-51)) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 (-51) "failed") (-1117) $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-3 (-51) "failed") (-1117) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4301)))) (-4030 (((-51) $ (-1117)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1117) $) NIL (|has| (-1117) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-2187 (((-1117) $) NIL (|has| (-1117) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-1688 (((-606 (-1117)) $) 34)) (-4011 (((-111) (-1117) $) NIL)) (-2783 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-1270 (((-606 (-1117)) $) NIL)) (-1641 (((-111) (-1117) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3188 (((-51) $) NIL (|has| (-1117) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) "failed") (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL)) (-3040 (($ $ (-51)) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-51)) (-606 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-278 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-606 (-278 (-51)))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-3010 (((-606 (-51)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-51) $ (-1117)) 35) (((-51) $ (-1117) (-51)) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-731) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045)))) (((-731) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2341 (((-816) $) 37 (-1533 (|has| (-51) (-579 (-816))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-986) (-13 (-1130 (-1117) (-51)) (-10 -7 (-15 -1848 ((-111) (-111))) (-15 -2119 ((-111) (-111))) (-6 -4300)))) (T -986)) +((-1848 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986)))) (-2119 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986))))) +(-13 (-1130 (-1117) (-51)) (-10 -7 (-15 -1848 ((-111) (-111))) (-15 -2119 ((-111) (-111))) (-6 -4300))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1705 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-987) (-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $))))) (T -987)) +((-1705 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-987))))) +(-13 (-1029) (-10 -8 (-15 -1705 ((-1122) $)))) +((-3958 ((|#2| $) 10))) +(((-988 |#1| |#2|) (-10 -8 (-15 -3958 (|#2| |#1|))) (-989 |#2|) (-1154)) (T -988)) +NIL +(-10 -8 (-15 -3958 (|#2| |#1|))) +((-1516 (((-3 |#1| "failed") $) 7)) (-3958 ((|#1| $) 8)) (-2341 (($ |#1|) 6))) +(((-989 |#1|) (-134) (-1154)) (T -989)) +((-3958 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) (-1516 (*1 *2 *1) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) (-2341 (*1 *1 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154))))) +(-13 (-10 -8 (-15 -2341 ($ |t#1|)) (-15 -1516 ((-3 |t#1| "failed") $)) (-15 -3958 (|t#1| $)))) +((-2682 (((-606 (-606 (-278 (-391 (-905 |#2|))))) (-606 (-905 |#2|)) (-606 (-1117))) 38))) +(((-990 |#1| |#2|) (-10 -7 (-15 -2682 ((-606 (-606 (-278 (-391 (-905 |#2|))))) (-606 (-905 |#2|)) (-606 (-1117))))) (-529) (-13 (-529) (-989 |#1|))) (T -990)) +((-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-4 *6 (-13 (-529) (-989 *5))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *6)))))) (-5 *1 (-990 *5 *6))))) +(-10 -7 (-15 -2682 ((-606 (-606 (-278 (-391 (-905 |#2|))))) (-606 (-905 |#2|)) (-606 (-1117))))) +((-3266 (((-363)) 15)) (-3097 (((-1 (-363)) (-363) (-363)) 20)) (-4065 (((-1 (-363)) (-731)) 43)) (-3158 (((-363)) 34)) (-2559 (((-1 (-363)) (-363) (-363)) 35)) (-3564 (((-363)) 26)) (-3431 (((-1 (-363)) (-363)) 27)) (-4007 (((-363) (-731)) 38)) (-2137 (((-1 (-363)) (-731)) 39)) (-1393 (((-1 (-363)) (-731) (-731)) 42)) (-2611 (((-1 (-363)) (-731) (-731)) 40))) +(((-991) (-10 -7 (-15 -3266 ((-363))) (-15 -3158 ((-363))) (-15 -3564 ((-363))) (-15 -4007 ((-363) (-731))) (-15 -3097 ((-1 (-363)) (-363) (-363))) (-15 -2559 ((-1 (-363)) (-363) (-363))) (-15 -3431 ((-1 (-363)) (-363))) (-15 -2137 ((-1 (-363)) (-731))) (-15 -2611 ((-1 (-363)) (-731) (-731))) (-15 -1393 ((-1 (-363)) (-731) (-731))) (-15 -4065 ((-1 (-363)) (-731))))) (T -991)) +((-4065 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-1393 (*1 *2 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-2611 (*1 *2 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) (-3431 (*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) (-2559 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) (-3097 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-363)) (-5 *1 (-991)))) (-3564 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991)))) (-3158 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991)))) (-3266 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) +(-10 -7 (-15 -3266 ((-363))) (-15 -3158 ((-363))) (-15 -3564 ((-363))) (-15 -4007 ((-363) (-731))) (-15 -3097 ((-1 (-363)) (-363) (-363))) (-15 -2559 ((-1 (-363)) (-363) (-363))) (-15 -3431 ((-1 (-363)) (-363))) (-15 -2137 ((-1 (-363)) (-731))) (-15 -2611 ((-1 (-363)) (-731) (-731))) (-15 -1393 ((-1 (-363)) (-731) (-731))) (-15 -4065 ((-1 (-363)) (-731)))) +((-3622 (((-402 |#1|) |#1|) 33))) +(((-992 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|))) (-1176 (-391 (-905 (-537))))) (T -992)) +((-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1176 (-391 (-905 (-537)))))))) +(-10 -7 (-15 -3622 ((-402 |#1|) |#1|))) +((-2691 (((-391 (-402 (-905 |#1|))) (-391 (-905 |#1|))) 14))) +(((-993 |#1|) (-10 -7 (-15 -2691 ((-391 (-402 (-905 |#1|))) (-391 (-905 |#1|))))) (-291)) (T -993)) +((-2691 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-291)) (-5 *2 (-391 (-402 (-905 *4)))) (-5 *1 (-993 *4))))) +(-10 -7 (-15 -2691 ((-391 (-402 (-905 |#1|))) (-391 (-905 |#1|))))) +((-3757 (((-606 (-1117)) (-391 (-905 |#1|))) 17)) (-3588 (((-391 (-1113 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117)) 24)) (-3746 (((-391 (-905 |#1|)) (-391 (-1113 (-391 (-905 |#1|)))) (-1117)) 26)) (-1310 (((-3 (-1117) "failed") (-391 (-905 |#1|))) 20)) (-4116 (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-278 (-391 (-905 |#1|))))) 32) (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|)))) 33) (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-1117)) (-606 (-391 (-905 |#1|)))) 28) (((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|))) 29)) (-2341 (((-391 (-905 |#1|)) |#1|) 11))) +(((-994 |#1|) (-10 -7 (-15 -3757 ((-606 (-1117)) (-391 (-905 |#1|)))) (-15 -1310 ((-3 (-1117) "failed") (-391 (-905 |#1|)))) (-15 -3588 ((-391 (-1113 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -3746 ((-391 (-905 |#1|)) (-391 (-1113 (-391 (-905 |#1|)))) (-1117))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-1117)) (-606 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -2341 ((-391 (-905 |#1|)) |#1|))) (-529)) (T -994)) +((-2341 (*1 *2 *3) (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-994 *3)) (-4 *3 (-529)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) (-5 *2 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *1 (-994 *4)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-278 (-391 (-905 *4)))) (-5 *2 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *1 (-994 *4)))) (-4116 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-606 (-1117))) (-5 *4 (-606 (-391 (-905 *5)))) (-5 *2 (-391 (-905 *5))) (-4 *5 (-529)) (-5 *1 (-994 *5)))) (-4116 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) (-4 *4 (-529)) (-5 *1 (-994 *4)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-1113 (-391 (-905 *5))))) (-5 *4 (-1117)) (-5 *2 (-391 (-905 *5))) (-5 *1 (-994 *5)) (-4 *5 (-529)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-529)) (-5 *2 (-391 (-1113 (-391 (-905 *5))))) (-5 *1 (-994 *5)) (-5 *3 (-391 (-905 *5))))) (-1310 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-1117)) (-5 *1 (-994 *4)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-1117))) (-5 *1 (-994 *4))))) +(-10 -7 (-15 -3757 ((-606 (-1117)) (-391 (-905 |#1|)))) (-15 -1310 ((-3 (-1117) "failed") (-391 (-905 |#1|)))) (-15 -3588 ((-391 (-1113 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -3746 ((-391 (-905 |#1|)) (-391 (-1113 (-391 (-905 |#1|)))) (-1117))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-1117)) (-606 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-278 (-391 (-905 |#1|))))) (-15 -4116 ((-391 (-905 |#1|)) (-391 (-905 |#1|)) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -2341 ((-391 (-905 |#1|)) |#1|))) +((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 (-740 |#1| (-818 |#2|)))))) (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-3448 (((-606 $) (-606 (-740 |#1| (-818 |#2|)))) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111)) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111) (-111)) NIL)) (-3757 (((-606 (-818 |#2|)) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-4186 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-1395 (((-606 (-2 (|:| |val| (-740 |#1| (-818 |#2|))) (|:| -3852 $))) (-740 |#1| (-818 |#2|)) $) NIL)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ (-818 |#2|)) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 (-740 |#1| (-818 |#2|)) "failed") $ (-818 |#2|)) NIL)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) NIL (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))) $ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-3801 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-3958 (($ (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-3200 (((-3 $ "failed") $) NIL)) (-2627 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045))))) (-2355 (($ (-740 |#1| (-818 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-740 |#1| (-818 |#2|))) (|:| |den| |#1|)) (-740 |#1| (-818 |#2|)) $) NIL (|has| |#1| (-529)))) (-1369 (((-111) (-740 |#1| (-818 |#2|)) $ (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-3946 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-3195 (((-740 |#1| (-818 |#2|)) (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $ (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (((-740 |#1| (-818 |#2|)) (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $ (-740 |#1| (-818 |#2|))) NIL (|has| $ (-6 -4300))) (((-740 |#1| (-818 |#2|)) (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-2702 (((-2 (|:| -2337 (-606 (-740 |#1| (-818 |#2|)))) (|:| -3309 (-606 (-740 |#1| (-818 |#2|))))) $) NIL)) (-3165 (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-3398 (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-2479 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-3661 (((-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3201 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-1464 (((-818 |#2|) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-740 |#1| (-818 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045))))) (-4081 (($ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) $) NIL)) (-2901 (((-606 (-818 |#2|)) $) NIL)) (-3726 (((-111) (-818 |#2|) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3029 (((-3 (-740 |#1| (-818 |#2|)) (-606 $)) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-1842 (((-606 (-2 (|:| |val| (-740 |#1| (-818 |#2|))) (|:| -3852 $))) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-2375 (((-3 (-740 |#1| (-818 |#2|)) "failed") $) NIL)) (-3826 (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL)) (-2806 (((-3 (-111) (-606 $)) (-740 |#1| (-818 |#2|)) $) NIL)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-3891 (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-606 $)) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) (-606 $)) NIL)) (-3357 (($ (-740 |#1| (-818 |#2|)) $) NIL) (($ (-606 (-740 |#1| (-818 |#2|))) $) NIL)) (-2422 (((-606 (-740 |#1| (-818 |#2|))) $) NIL)) (-3812 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-3787 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| (-740 |#1| (-818 |#2|))) (|:| |den| |#1|)) (-740 |#1| (-818 |#2|)) $) NIL (|has| |#1| (-529)))) (-2524 (((-111) (-740 |#1| (-818 |#2|)) $) NIL) (((-111) $) NIL)) (-2021 (((-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 (-740 |#1| (-818 |#2|)) "failed") $) NIL)) (-1266 (((-3 (-740 |#1| (-818 |#2|)) "failed") (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL)) (-3389 (((-3 $ "failed") $ (-740 |#1| (-818 |#2|))) NIL)) (-1540 (($ $ (-740 |#1| (-818 |#2|))) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) (-606 $)) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-606 $)) NIL)) (-3206 (((-111) (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-740 |#1| (-818 |#2|))) (-606 (-740 |#1| (-818 |#2|)))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ $ (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ $ (-278 (-740 |#1| (-818 |#2|)))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (($ $ (-606 (-278 (-740 |#1| (-818 |#2|))))) NIL (-12 (|has| (-740 |#1| (-818 |#2|)) (-293 (-740 |#1| (-818 |#2|)))) (|has| (-740 |#1| (-818 |#2|)) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-2872 (((-731) $) NIL)) (-2539 (((-731) (-740 |#1| (-818 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-740 |#1| (-818 |#2|)) (-1045)))) (((-731) (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-740 |#1| (-818 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-740 |#1| (-818 |#2|)))) NIL)) (-1713 (($ $ (-818 |#2|)) NIL)) (-2488 (($ $ (-818 |#2|)) NIL)) (-2830 (($ $) NIL)) (-1449 (($ $ (-818 |#2|)) NIL)) (-2341 (((-816) $) NIL) (((-606 (-740 |#1| (-818 |#2|))) $) NIL)) (-3458 (((-731) $) NIL (|has| (-818 |#2|) (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 (-740 |#1| (-818 |#2|))))) "failed") (-606 (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 (-740 |#1| (-818 |#2|))))) "failed") (-606 (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|))) (-1 (-111) (-740 |#1| (-818 |#2|)) (-740 |#1| (-818 |#2|)))) NIL)) (-3893 (((-111) $ (-1 (-111) (-740 |#1| (-818 |#2|)) (-606 (-740 |#1| (-818 |#2|))))) NIL)) (-3014 (((-606 $) (-740 |#1| (-818 |#2|)) $) NIL) (((-606 $) (-740 |#1| (-818 |#2|)) (-606 $)) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) $) NIL) (((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-606 $)) NIL)) (-2030 (((-111) (-1 (-111) (-740 |#1| (-818 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 (-818 |#2|)) $) NIL)) (-3161 (((-111) (-740 |#1| (-818 |#2|)) $) NIL)) (-3042 (((-111) (-818 |#2|) $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-995 |#1| |#2|) (-13 (-1018 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) (-10 -8 (-15 -3448 ((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111) (-111))))) (-435) (-606 (-1117))) (T -995)) +((-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-995 *5 *6))))) +(-13 (-1018 |#1| (-509 (-818 |#2|)) (-818 |#2|) (-740 |#1| (-818 |#2|))) (-10 -8 (-15 -3448 ((-606 $) (-606 (-740 |#1| (-818 |#2|))) (-111) (-111))))) +((-3097 (((-1 (-537)) (-1040 (-537))) 33)) (-1584 (((-537) (-537) (-537) (-537) (-537)) 30)) (-1872 (((-1 (-537)) |RationalNumber|) NIL)) (-2995 (((-1 (-537)) |RationalNumber|) NIL)) (-2360 (((-1 (-537)) (-537) |RationalNumber|) NIL))) +(((-996) (-10 -7 (-15 -3097 ((-1 (-537)) (-1040 (-537)))) (-15 -2360 ((-1 (-537)) (-537) |RationalNumber|)) (-15 -1872 ((-1 (-537)) |RationalNumber|)) (-15 -2995 ((-1 (-537)) |RationalNumber|)) (-15 -1584 ((-537) (-537) (-537) (-537) (-537))))) (T -996)) +((-1584 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-996)))) (-2995 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)))) (-1872 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)))) (-2360 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)) (-5 *3 (-537)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-1040 (-537))) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) +(-10 -7 (-15 -3097 ((-1 (-537)) (-1040 (-537)))) (-15 -2360 ((-1 (-537)) (-537) |RationalNumber|)) (-15 -1872 ((-1 (-537)) |RationalNumber|)) (-15 -2995 ((-1 (-537)) |RationalNumber|)) (-15 -1584 ((-537) (-537) (-537) (-537) (-537)))) +((-2341 (((-816) $) NIL) (($ (-537)) 10))) +(((-997 |#1|) (-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-998)) (T -997)) +NIL +(-10 -8 (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-998) (-134)) (T -998)) +((-3654 (*1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-731)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-998))))) +(-13 (-1005) (-687) (-609 $) (-10 -8 (-15 -3654 ((-731))) (-15 -2341 ($ (-537))) (-6 -4297))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 $) . T) ((-687) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-3568 (((-391 (-905 |#2|)) (-606 |#2|) (-606 |#2|) (-731) (-731)) 46))) +(((-999 |#1| |#2|) (-10 -7 (-15 -3568 ((-391 (-905 |#2|)) (-606 |#2|) (-606 |#2|) (-731) (-731)))) (-1117) (-347)) (T -999)) +((-3568 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-731)) (-4 *6 (-347)) (-5 *2 (-391 (-905 *6))) (-5 *1 (-999 *5 *6)) (-14 *5 (-1117))))) +(-10 -7 (-15 -3568 ((-391 (-905 |#2|)) (-606 |#2|) (-606 |#2|) (-731) (-731)))) +((-3234 (((-111) $) 29)) (-3348 (((-111) $) 16)) (-2931 (((-731) $) 13)) (-2945 (((-731) $) 14)) (-3400 (((-111) $) 26)) (-1830 (((-111) $) 31))) +(((-1000 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2945 ((-731) |#1|)) (-15 -2931 ((-731) |#1|)) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|))) (-1001 |#2| |#3| |#4| |#5| |#6|) (-731) (-731) (-998) (-223 |#3| |#4|) (-223 |#2| |#4|)) (T -1000)) +NIL +(-10 -8 (-15 -2945 ((-731) |#1|)) (-15 -2931 ((-731) |#1|)) (-15 -1830 ((-111) |#1|)) (-15 -3234 ((-111) |#1|)) (-15 -3400 ((-111) |#1|)) (-15 -3348 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3234 (((-111) $) 51)) (-3418 (((-3 $ "failed") $ $) 19)) (-3348 (((-111) $) 53)) (-2506 (((-111) $ (-731)) 61)) (-3832 (($) 17 T CONST)) (-3630 (($ $) 34 (|has| |#3| (-291)))) (-2964 ((|#4| $ (-537)) 39)) (-3705 (((-731) $) 33 (|has| |#3| (-529)))) (-4030 ((|#3| $ (-537) (-537)) 41)) (-3661 (((-606 |#3|) $) 68 (|has| $ (-6 -4300)))) (-2342 (((-731) $) 32 (|has| |#3| (-529)))) (-2630 (((-606 |#5|) $) 31 (|has| |#3| (-529)))) (-2931 (((-731) $) 45)) (-2945 (((-731) $) 44)) (-1642 (((-111) $ (-731)) 60)) (-4111 (((-537) $) 49)) (-2454 (((-537) $) 47)) (-3703 (((-606 |#3|) $) 69 (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 48)) (-2485 (((-537) $) 46)) (-3299 (($ (-606 (-606 |#3|))) 54)) (-4081 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3156 (((-606 (-606 |#3|)) $) 43)) (-2489 (((-111) $ (-731)) 59)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-529)))) (-3206 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#3|) (-606 |#3|)) 75 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) 73 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 (-278 |#3|))) 72 (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) 55)) (-2193 (((-111) $) 58)) (-3425 (($) 57)) (-1922 ((|#3| $ (-537) (-537)) 42) ((|#3| $ (-537) (-537) |#3|) 40)) (-3400 (((-111) $) 52)) (-2539 (((-731) |#3| $) 70 (-12 (|has| |#3| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4300)))) (-2494 (($ $) 56)) (-2198 ((|#5| $ (-537)) 38)) (-2341 (((-816) $) 11)) (-2030 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4300)))) (-1830 (((-111) $) 50)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#3|) 35 (|has| |#3| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2258 (((-731) $) 62 (|has| $ (-6 -4300))))) +(((-1001 |#1| |#2| |#3| |#4| |#5|) (-134) (-731) (-731) (-998) (-223 |t#2| |t#3|) (-223 |t#1| |t#3|)) (T -1001)) +((-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) (-3299 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *5))) (-4 *5 (-998)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-606 (-606 *5))))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998)))) (-4030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998)))) (-1922 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *2 (-998)) (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *2 *7)) (-4 *6 (-998)) (-4 *7 (-223 *4 *6)) (-4 *2 (-223 *5 *6)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *7 *2)) (-4 *6 (-998)) (-4 *7 (-223 *5 *6)) (-4 *2 (-223 *4 *6)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) (-3515 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-529)))) (-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-347)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-1001 *2 *3 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *2 *4)) (-4 *4 (-291)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) (-5 *2 (-731)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) (-5 *2 (-731)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) (-5 *2 (-606 *7))))) +(-13 (-110 |t#3| |t#3|) (-471 |t#3|) (-10 -8 (-6 -4300) (IF (|has| |t#3| (-163)) (-6 (-678 |t#3|)) |%noBranch|) (-15 -3299 ($ (-606 (-606 |t#3|)))) (-15 -3348 ((-111) $)) (-15 -3400 ((-111) $)) (-15 -3234 ((-111) $)) (-15 -1830 ((-111) $)) (-15 -4111 ((-537) $)) (-15 -3126 ((-537) $)) (-15 -2454 ((-537) $)) (-15 -2485 ((-537) $)) (-15 -2931 ((-731) $)) (-15 -2945 ((-731) $)) (-15 -3156 ((-606 (-606 |t#3|)) $)) (-15 -1922 (|t#3| $ (-537) (-537))) (-15 -4030 (|t#3| $ (-537) (-537))) (-15 -1922 (|t#3| $ (-537) (-537) |t#3|)) (-15 -2964 (|t#4| $ (-537))) (-15 -2198 (|t#5| $ (-537))) (-15 -1612 ($ (-1 |t#3| |t#3|) $)) (-15 -1612 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-529)) (-15 -3515 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-347)) (-15 -2340 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-291)) (-15 -3630 ($ $)) |%noBranch|) (IF (|has| |t#3| (-529)) (PROGN (-15 -3705 ((-731) $)) (-15 -2342 ((-731) $)) (-15 -2630 ((-606 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-100) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-579 (-816)) . T) ((-293 |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))) ((-471 |#3|) . T) ((-495 |#3| |#3|) -12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))) ((-609 |#3|) . T) ((-678 |#3|) |has| |#3| (-163)) ((-1004 |#3|) . T) ((-1045) . T) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3234 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 43 (|has| |#3| (-291)))) (-2964 (((-225 |#2| |#3|) $ (-537)) 32)) (-3828 (($ (-649 |#3|)) 41)) (-3705 (((-731) $) 45 (|has| |#3| (-529)))) (-4030 ((|#3| $ (-537) (-537)) NIL)) (-3661 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-2342 (((-731) $) 47 (|has| |#3| (-529)))) (-2630 (((-606 (-225 |#1| |#3|)) $) 51 (|has| |#3| (-529)))) (-2931 (((-731) $) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#3|))) 27)) (-4081 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3156 (((-606 (-606 |#3|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-529)))) (-3206 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#3|) (-606 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 (-278 |#3|))) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#3| $ (-537) (-537)) NIL) ((|#3| $ (-537) (-537) |#3|) NIL)) (-1839 (((-131)) 54 (|has| |#3| (-347)))) (-3400 (((-111) $) NIL)) (-2539 (((-731) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045)))) (((-731) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 63 (|has| |#3| (-580 (-513))))) (-2198 (((-225 |#1| |#3|) $ (-537)) 36)) (-2341 (((-816) $) 16) (((-649 |#3|) $) 38)) (-2030 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2928 (($) 13 T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#3|) NIL (|has| |#3| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1002 |#1| |#2| |#3|) (-13 (-1001 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-579 (-649 |#3|)) (-10 -8 (IF (|has| |#3| (-347)) (-6 (-1207 |#3|)) |%noBranch|) (IF (|has| |#3| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (-15 -3828 ($ (-649 |#3|))) (-15 -2341 ((-649 |#3|) $)))) (-731) (-731) (-998)) (T -1002)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-649 *5)) (-5 *1 (-1002 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731)) (-4 *5 (-998)))) (-3828 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-998)) (-5 *1 (-1002 *3 *4 *5)) (-14 *3 (-731)) (-14 *4 (-731))))) +(-13 (-1001 |#1| |#2| |#3| (-225 |#2| |#3|) (-225 |#1| |#3|)) (-579 (-649 |#3|)) (-10 -8 (IF (|has| |#3| (-347)) (-6 (-1207 |#3|)) |%noBranch|) (IF (|has| |#3| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|) (-15 -3828 ($ (-649 |#3|))) (-15 -2341 ((-649 |#3|) $)))) +((-3195 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1612 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1003 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3195 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-731) (-731) (-998) (-223 |#2| |#3|) (-223 |#1| |#3|) (-1001 |#1| |#2| |#3| |#4| |#5|) (-998) (-223 |#2| |#7|) (-223 |#1| |#7|) (-1001 |#1| |#2| |#7| |#8| |#9|)) (T -1003)) +((-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-998)) (-4 *2 (-998)) (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) (-4 *9 (-223 *5 *7)) (-4 *10 (-223 *6 *2)) (-4 *11 (-223 *5 *2)) (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *12 (-1001 *5 *6 *2 *10 *11)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-998)) (-4 *10 (-998)) (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) (-4 *9 (-223 *5 *7)) (-4 *2 (-1001 *5 *6 *10 *11 *12)) (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *11 (-223 *6 *10)) (-4 *12 (-223 *5 *10))))) +(-10 -7 (-15 -1612 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3195 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ |#1|) 23))) +(((-1004 |#1|) (-134) (-1005)) (T -1004)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1005))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-993) (-133)) (T -993)) -NIL -(-13 (-21) (-1042)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1042) . T) ((-1030) . T)) -((-2796 (($ $) 16)) (-1694 (($ $) 22)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 49)) (-1899 (($ $) 24)) (-2322 (($ $) 11)) (-2943 (($ $) 38)) (-3318 (((-360) $) NIL) (((-208) $) NIL) (((-835 (-360)) $) 33)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 28) (($ (-531)) NIL) (($ (-388 (-531))) 28)) (-2284 (((-721)) 8)) (-3831 (($ $) 39))) -(((-994 |#1|) (-10 -8 (-15 -1694 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2943 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|))) (-995)) (T -994)) -((-2284 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-994 *3)) (-4 *3 (-995))))) -(-10 -8 (-15 -1694 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2943 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 (((-531) $) 86)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2796 (($ $) 84)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 94)) (-2760 (((-110) $ $) 57)) (-3459 (((-531) $) 111)) (-4082 (($) 17 T CONST)) (-1694 (($ $) 83)) (-3154 (((-3 (-531) "failed") $) 99) (((-3 (-388 (-531)) "failed") $) 96)) (-2523 (((-531) $) 98) (((-388 (-531)) $) 95)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-1599 (((-110) $) 109)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 90)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 93)) (-1899 (($ $) 89)) (-2985 (((-110) $) 110)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-4103 (($ $ $) 108)) (-1241 (($ $ $) 107)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2322 (($ $) 85)) (-2943 (($ $) 87)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-3318 (((-360) $) 102) (((-208) $) 101) (((-835 (-360)) $) 91)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ (-531)) 100) (($ (-388 (-531))) 97)) (-2284 (((-721)) 28)) (-3831 (($ $) 88)) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 112)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 105)) (-2184 (((-110) $ $) 104)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 106)) (-2174 (((-110) $ $) 103)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 92)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64))) -(((-995) (-133)) (T -995)) -((-1620 (*1 *1 *1) (-4 *1 (-995))) (-1899 (*1 *1 *1) (-4 *1 (-995))) (-3831 (*1 *1 *1) (-4 *1 (-995))) (-2943 (*1 *1 *1) (-4 *1 (-995))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-531)))) (-2322 (*1 *1 *1) (-4 *1 (-995))) (-2796 (*1 *1 *1) (-4 *1 (-995))) (-1694 (*1 *1 *1) (-4 *1 (-995)))) -(-13 (-344) (-795) (-962) (-977 (-531)) (-977 (-388 (-531))) (-943) (-573 (-835 (-360))) (-829 (-360)) (-140) (-10 -8 (-15 -1899 ($ $)) (-15 -3831 ($ $)) (-15 -2943 ($ $)) (-15 -1317 ((-531) $)) (-15 -2322 ($ $)) (-15 -2796 ($ $)) (-15 -1694 ($ $)) (-15 -1620 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-573 (-208)) . T) ((-573 (-360)) . T) ((-573 (-835 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-829 (-360)) . T) ((-863) . T) ((-943) . T) ((-962) . T) ((-977 (-388 (-531))) . T) ((-977 (-531)) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) |#2| $) 23)) (-3006 ((|#1| $) 10)) (-3459 (((-531) |#2| $) 88)) (-2738 (((-3 $ "failed") |#2| (-864)) 57)) (-3157 ((|#1| $) 28)) (-2613 ((|#1| |#2| $ |#1|) 37)) (-2522 (($ $) 25)) (-3622 (((-3 |#2| "failed") |#2| $) 87)) (-1599 (((-110) |#2| $) NIL)) (-2985 (((-110) |#2| $) NIL)) (-2718 (((-110) |#2| $) 24)) (-4092 ((|#1| $) 89)) (-3144 ((|#1| $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3608 ((|#2| $) 79)) (-2265 (((-806) $) 70)) (-4148 ((|#1| |#2| $ |#1|) 38)) (-2054 (((-598 $) |#2|) 59)) (-2148 (((-110) $ $) 74))) -(((-996 |#1| |#2|) (-13 (-1002 |#1| |#2|) (-10 -8 (-15 -3144 (|#1| $)) (-15 -3157 (|#1| $)) (-15 -3006 (|#1| $)) (-15 -4092 (|#1| $)) (-15 -2522 ($ $)) (-15 -2718 ((-110) |#2| $)) (-15 -2613 (|#1| |#2| $ |#1|)))) (-13 (-795) (-344)) (-1160 |#1|)) (T -996)) -((-2613 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-3144 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-3157 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-3006 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-4092 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-2522 (*1 *1 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-2718 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-795) (-344))) (-5 *2 (-110)) (-5 *1 (-996 *4 *3)) (-4 *3 (-1160 *4))))) -(-13 (-1002 |#1| |#2|) (-10 -8 (-15 -3144 (|#1| $)) (-15 -3157 (|#1| $)) (-15 -3006 (|#1| $)) (-15 -4092 (|#1| $)) (-15 -2522 ($ $)) (-15 -2718 ((-110) |#2| $)) (-15 -2613 (|#1| |#2| $ |#1|)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) NIL)) (-4082 (($) NIL T CONST)) (-2055 (($ (-1102)) 10) (($ (-531)) 7)) (-3154 (((-3 (-531) "failed") $) NIL)) (-2523 (((-531) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($) NIL) (($ $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) NIL)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3107 (($ $) NIL)) (-2428 (($ $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) NIL)) (-2529 (((-1049) $) NIL) (($ $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1651 (($ $) NIL)) (-2480 (($ $) NIL)) (-3318 (((-531) $) 16) (((-507) $) NIL) (((-835 (-531)) $) NIL) (((-360) $) NIL) (((-208) $) NIL) (($ (-1102)) 9)) (-2265 (((-806) $) 20) (($ (-531)) 6) (($ $) NIL) (($ (-531)) 6)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) NIL)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2250 (($ $) 19) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL))) -(((-997) (-13 (-516) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -3318 ($ (-1102))) (-15 -2055 ($ (-1102))) (-15 -2055 ($ (-531)))))) (T -997)) -((-3318 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-997))))) -(-13 (-516) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -3318 ($ (-1102))) (-15 -2055 ($ (-1102))) (-15 -2055 ($ (-531))))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-3137 (((-1189) $ (-1102) (-1102)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-1720 (($) 9)) (-2454 (((-51) $ (-1102) (-51)) NIL)) (-1394 (($ $) 30)) (-2203 (($ $) 28)) (-1236 (($ $) 27)) (-3814 (($ $) 29)) (-3227 (($ $) 32)) (-3726 (($ $) 33)) (-1442 (($ $) 26)) (-2740 (($ $) 31)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) 25 (|has| $ (-6 -4273)))) (-2714 (((-3 (-51) "failed") (-1102) $) 40)) (-4082 (($) NIL T CONST)) (-2512 (($) 7)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) 50 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-3 (-51) "failed") (-1102) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2548 (((-3 (-1085) "failed") $ (-1085) (-531)) 59)) (-2693 (((-51) $ (-1102) (-51)) NIL (|has| $ (-6 -4274)))) (-2627 (((-51) $ (-1102)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) 35 (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-2327 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-3345 (((-598 (-1102)) $) NIL)) (-1727 (((-110) (-1102) $) NIL)) (-3540 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) 43)) (-3765 (((-598 (-1102)) $) NIL)) (-3059 (((-110) (-1102) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2699 (((-360) $ (-1102)) 49)) (-3690 (((-598 (-1085)) $ (-1085)) 60)) (-3046 (((-51) $) NIL (|has| (-1102) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) "failed") (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL)) (-3742 (($ $ (-51)) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-51)) (-598 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-598 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-3163 (((-598 (-51)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-51) $ (-1102)) NIL) (((-51) $ (-1102) (-51)) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-3282 (($ $ (-1102)) 51)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-721) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030)))) (((-721) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) 37)) (-3536 (($ $ $) 38)) (-2265 (((-806) $) NIL (-1435 (|has| (-51) (-572 (-806))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-572 (-806)))))) (-2566 (($ $ (-1102) (-360)) 47)) (-2734 (($ $ (-1102) (-360)) 48)) (-2524 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-998) (-13 (-1115 (-1102) (-51)) (-10 -8 (-15 -3536 ($ $ $)) (-15 -2512 ($)) (-15 -1442 ($ $)) (-15 -1236 ($ $)) (-15 -2203 ($ $)) (-15 -3814 ($ $)) (-15 -2740 ($ $)) (-15 -1394 ($ $)) (-15 -3227 ($ $)) (-15 -3726 ($ $)) (-15 -2566 ($ $ (-1102) (-360))) (-15 -2734 ($ $ (-1102) (-360))) (-15 -2699 ((-360) $ (-1102))) (-15 -3690 ((-598 (-1085)) $ (-1085))) (-15 -3282 ($ $ (-1102))) (-15 -1720 ($)) (-15 -2548 ((-3 (-1085) "failed") $ (-1085) (-531))) (-6 -4273)))) (T -998)) -((-3536 (*1 *1 *1 *1) (-5 *1 (-998))) (-2512 (*1 *1) (-5 *1 (-998))) (-1442 (*1 *1 *1) (-5 *1 (-998))) (-1236 (*1 *1 *1) (-5 *1 (-998))) (-2203 (*1 *1 *1) (-5 *1 (-998))) (-3814 (*1 *1 *1) (-5 *1 (-998))) (-2740 (*1 *1 *1) (-5 *1 (-998))) (-1394 (*1 *1 *1) (-5 *1 (-998))) (-3227 (*1 *1 *1) (-5 *1 (-998))) (-3726 (*1 *1 *1) (-5 *1 (-998))) (-2566 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998)))) (-2734 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998)))) (-2699 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-360)) (-5 *1 (-998)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-998)) (-5 *3 (-1085)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-998)))) (-1720 (*1 *1) (-5 *1 (-998))) (-2548 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-998))))) -(-13 (-1115 (-1102) (-51)) (-10 -8 (-15 -3536 ($ $ $)) (-15 -2512 ($)) (-15 -1442 ($ $)) (-15 -1236 ($ $)) (-15 -2203 ($ $)) (-15 -3814 ($ $)) (-15 -2740 ($ $)) (-15 -1394 ($ $)) (-15 -3227 ($ $)) (-15 -3726 ($ $)) (-15 -2566 ($ $ (-1102) (-360))) (-15 -2734 ($ $ (-1102) (-360))) (-15 -2699 ((-360) $ (-1102))) (-15 -3690 ((-598 (-1085)) $ (-1085))) (-15 -3282 ($ $ (-1102))) (-15 -1720 ($)) (-15 -2548 ((-3 (-1085) "failed") $ (-1085) (-531))) (-6 -4273))) -((-2072 (($ $) 45)) (-1993 (((-110) $ $) 74)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-895 (-388 (-531)))) 227) (((-3 $ "failed") (-895 (-531))) 226) (((-3 $ "failed") (-895 |#2|)) 229)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL) (((-531) $) NIL) ((|#4| $) NIL) (($ (-895 (-388 (-531)))) 215) (($ (-895 (-531))) 211) (($ (-895 |#2|)) 231)) (-2500 (($ $) NIL) (($ $ |#4|) 43)) (-2125 (((-110) $ $) 112) (((-110) $ (-598 $)) 113)) (-4009 (((-110) $) 56)) (-1647 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 107)) (-4228 (($ $) 138)) (-3230 (($ $) 134)) (-3592 (($ $) 133)) (-2579 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1879 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1426 (((-110) $ $) 121) (((-110) $ (-598 $)) 122)) (-4075 ((|#4| $) 33)) (-4174 (($ $ $) 110)) (-1448 (((-110) $) 55)) (-3096 (((-721) $) 35)) (-2376 (($ $) 152)) (-3773 (($ $) 149)) (-1680 (((-598 $) $) 68)) (-3577 (($ $) 57)) (-1246 (($ $) 145)) (-3029 (((-598 $) $) 65)) (-3546 (($ $) 59)) (-2475 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $) 111)) (-1547 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 108) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |#4|) 109)) (-1716 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $) 104) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |#4|) 105)) (-2847 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3146 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3337 (((-598 $) $) 51)) (-2009 (((-110) $ $) 118) (((-110) $ (-598 $)) 119)) (-1279 (($ $ $) 103)) (-3788 (($ $) 37)) (-1744 (((-110) $ $) 72)) (-2421 (((-110) $ $) 114) (((-110) $ (-598 $)) 116)) (-3044 (($ $ $) 101)) (-3162 (($ $) 40)) (-2109 ((|#2| |#2| $) 142) (($ (-598 $)) NIL) (($ $ $) NIL)) (-2209 (($ $ |#2|) NIL) (($ $ $) 131)) (-2004 (($ $ |#2|) 126) (($ $ $) 129)) (-3637 (($ $) 48)) (-3451 (($ $) 52)) (-3318 (((-835 (-360)) $) NIL) (((-835 (-531)) $) NIL) (((-507) $) NIL) (($ (-895 (-388 (-531)))) 217) (($ (-895 (-531))) 213) (($ (-895 |#2|)) 228) (((-1085) $) 250) (((-895 |#2|) $) 162)) (-2265 (((-806) $) 30) (($ (-531)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-895 |#2|) $) 163) (($ (-388 (-531))) NIL) (($ $) NIL)) (-2316 (((-3 (-110) "failed") $ $) 71))) -(((-999 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 ((-895 |#2|) |#1|)) (-15 -3318 ((-895 |#2|) |#1|)) (-15 -3318 ((-1085) |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -2109 (|#2| |#2| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#2|)) (-15 -2004 (|#1| |#1| |#2|)) (-15 -3230 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3318 (|#1| (-895 |#2|))) (-15 -2523 (|#1| (-895 |#2|))) (-15 -3154 ((-3 |#1| "failed") (-895 |#2|))) (-15 -3318 (|#1| (-895 (-531)))) (-15 -2523 (|#1| (-895 (-531)))) (-15 -3154 ((-3 |#1| "failed") (-895 (-531)))) (-15 -3318 (|#1| (-895 (-388 (-531))))) (-15 -2523 (|#1| (-895 (-388 (-531))))) (-15 -3154 ((-3 |#1| "failed") (-895 (-388 (-531))))) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -4165 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3158 (-721))) |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -1647 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -2847 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -1879 (|#1| |#1| |#1| |#4|)) (-15 -2579 (|#1| |#1| |#1| |#4|)) (-15 -1879 (|#1| |#1| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| (-598 |#1|))) (-15 -1426 ((-110) |#1| |#1|)) (-15 -2009 ((-110) |#1| (-598 |#1|))) (-15 -2009 ((-110) |#1| |#1|)) (-15 -2421 ((-110) |#1| (-598 |#1|))) (-15 -2421 ((-110) |#1| |#1|)) (-15 -2125 ((-110) |#1| (-598 |#1|))) (-15 -2125 ((-110) |#1| |#1|)) (-15 -1993 ((-110) |#1| |#1|)) (-15 -1744 ((-110) |#1| |#1|)) (-15 -2316 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1680 ((-598 |#1|) |#1|)) (-15 -3029 ((-598 |#1|) |#1|)) (-15 -3546 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -4009 ((-110) |#1|)) (-15 -1448 ((-110) |#1|)) (-15 -2500 (|#1| |#1| |#4|)) (-15 -2475 (|#1| |#1| |#4|)) (-15 -3451 (|#1| |#1|)) (-15 -3337 ((-598 |#1|) |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3096 ((-721) |#1|)) (-15 -4075 (|#4| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -2475 (|#2| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-1000 |#2| |#3| |#4|) (-986) (-743) (-797)) (T -999)) -NIL -(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 ((-895 |#2|) |#1|)) (-15 -3318 ((-895 |#2|) |#1|)) (-15 -3318 ((-1085) |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -2109 (|#2| |#2| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#2|)) (-15 -2004 (|#1| |#1| |#2|)) (-15 -3230 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3318 (|#1| (-895 |#2|))) (-15 -2523 (|#1| (-895 |#2|))) (-15 -3154 ((-3 |#1| "failed") (-895 |#2|))) (-15 -3318 (|#1| (-895 (-531)))) (-15 -2523 (|#1| (-895 (-531)))) (-15 -3154 ((-3 |#1| "failed") (-895 (-531)))) (-15 -3318 (|#1| (-895 (-388 (-531))))) (-15 -2523 (|#1| (-895 (-388 (-531))))) (-15 -3154 ((-3 |#1| "failed") (-895 (-388 (-531))))) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -4165 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3158 (-721))) |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -1647 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -2847 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -1879 (|#1| |#1| |#1| |#4|)) (-15 -2579 (|#1| |#1| |#1| |#4|)) (-15 -1879 (|#1| |#1| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| (-598 |#1|))) (-15 -1426 ((-110) |#1| |#1|)) (-15 -2009 ((-110) |#1| (-598 |#1|))) (-15 -2009 ((-110) |#1| |#1|)) (-15 -2421 ((-110) |#1| (-598 |#1|))) (-15 -2421 ((-110) |#1| |#1|)) (-15 -2125 ((-110) |#1| (-598 |#1|))) (-15 -2125 ((-110) |#1| |#1|)) (-15 -1993 ((-110) |#1| |#1|)) (-15 -1744 ((-110) |#1| |#1|)) (-15 -2316 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1680 ((-598 |#1|) |#1|)) (-15 -3029 ((-598 |#1|) |#1|)) (-15 -3546 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -4009 ((-110) |#1|)) (-15 -1448 ((-110) |#1|)) (-15 -2500 (|#1| |#1| |#4|)) (-15 -2475 (|#1| |#1| |#4|)) (-15 -3451 (|#1| |#1|)) (-15 -3337 ((-598 |#1|) |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3096 ((-721) |#1|)) (-15 -4075 (|#4| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -2475 (|#2| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#3|) $) 108)) (-2516 (((-1098 $) $ |#3|) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 |#3|)) 109)) (-2072 (($ $) 269)) (-1993 (((-110) $ $) 255)) (-2128 (((-3 $ "failed") $ $) 19)) (-3720 (($ $ $) 214 (|has| |#1| (-523)))) (-1954 (((-598 $) $ $) 209 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-895 (-388 (-531)))) 229 (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))) (((-3 $ "failed") (-895 (-531))) 226 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102)))))) (((-3 $ "failed") (-895 |#1|)) 223 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531)))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-516))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-934 (-531)))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))))) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) ((|#3| $) 133) (($ (-895 (-388 (-531)))) 228 (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))) (($ (-895 (-531))) 225 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102)))))) (($ (-895 |#1|)) 222 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531)))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-516))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-934 (-531)))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))))) (-3115 (($ $ $ |#3|) 106 (|has| |#1| (-162))) (($ $ $) 210 (|has| |#1| (-523)))) (-2500 (($ $) 152) (($ $ |#3|) 264)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-2125 (((-110) $ $) 254) (((-110) $ (-598 $)) 253)) (-3622 (((-3 $ "failed") $) 32)) (-4009 (((-110) $) 262)) (-1647 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 234)) (-4228 (($ $) 203 (|has| |#1| (-432)))) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-3230 (($ $) 219 (|has| |#1| (-523)))) (-3592 (($ $) 220 (|has| |#1| (-523)))) (-2579 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1879 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2490 (($ $ |#1| |#2| $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| |#3| (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| |#3| (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-1426 (((-110) $ $) 248) (((-110) $ (-598 $)) 247)) (-2418 (($ $ $ $ $) 205 (|has| |#1| (-523)))) (-4075 ((|#3| $) 273)) (-2682 (($ (-1098 |#1|) |#3|) 115) (($ (-1098 $) |#3|) 114)) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| |#2|) 151) (($ $ |#3| (-721)) 117) (($ $ (-598 |#3|) (-598 (-721))) 116)) (-4174 (($ $ $) 233)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 118)) (-1448 (((-110) $) 263)) (-3005 ((|#2| $) 168) (((-721) $ |#3|) 120) (((-598 (-721)) $ (-598 |#3|)) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-3096 (((-721) $) 272)) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 |#2| |#2|) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-3471 (((-3 |#3| "failed") $) 121)) (-2376 (($ $) 200 (|has| |#1| (-432)))) (-3773 (($ $) 201 (|has| |#1| (-432)))) (-1680 (((-598 $) $) 258)) (-3577 (($ $) 261)) (-1246 (($ $) 202 (|has| |#1| (-432)))) (-3029 (((-598 $) $) 259)) (-3546 (($ $) 260)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146) (($ $ |#3|) 265)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $) 232)) (-1547 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 236) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 235)) (-1716 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $) 238) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |#3|) 237)) (-2847 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3146 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1521 (((-1085) $) 9)) (-2255 (($ $ $) 208 (|has| |#1| (-523)))) (-3337 (((-598 $) $) 267)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) 111)) (-2009 (((-110) $ $) 250) (((-110) $ (-598 $)) 249)) (-1279 (($ $ $) 230)) (-3788 (($ $) 271)) (-1744 (((-110) $ $) 256)) (-2421 (((-110) $ $) 252) (((-110) $ (-598 $)) 251)) (-3044 (($ $ $) 231)) (-3162 (($ $) 270)) (-2529 (((-1049) $) 10)) (-3002 (((-2 (|:| -2109 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-523)))) (-2362 (((-2 (|:| -2109 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-523)))) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 ((|#1| |#1| $) 204 (|has| |#1| (-432))) (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-3075 (((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-2209 (($ $ |#1|) 217 (|has| |#1| (-523))) (($ $ $) 215 (|has| |#1| (-523)))) (-2004 (($ $ |#1|) 218 (|has| |#1| (-523))) (($ $ $) 216 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-598 |#3|) (-598 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-598 |#3|) (-598 $)) 136)) (-3176 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3352 (($ $ |#3|) 40) (($ $ (-598 |#3|)) 39) (($ $ |#3| (-721)) 38) (($ $ (-598 |#3|) (-598 (-721))) 37)) (-2012 ((|#2| $) 148) (((-721) $ |#3|) 128) (((-598 (-721)) $ (-598 |#3|)) 127)) (-3637 (($ $) 268)) (-3451 (($ $) 266)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| |#3| (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| |#3| (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| |#3| (-573 (-507))) (|has| |#1| (-573 (-507))))) (($ (-895 (-388 (-531)))) 227 (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))) (($ (-895 (-531))) 224 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102)))))) (($ (-895 |#1|)) 221 (|has| |#3| (-573 (-1102)))) (((-1085) $) 199 (-12 (|has| |#1| (-977 (-531))) (|has| |#3| (-573 (-1102))))) (((-895 |#1|) $) 198 (|has| |#3| (-573 (-1102))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-895 |#1|) $) 197 (|has| |#3| (-573 (-1102)))) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531)))))) (($ $) 83 (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ |#2|) 153) (($ $ |#3| (-721)) 126) (($ $ (-598 |#3|) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-2316 (((-3 (-110) "failed") $ $) 257)) (-3050 (($) 29 T CONST)) (-3135 (($ $ $ $ (-721)) 206 (|has| |#1| (-523)))) (-1705 (($ $ $ (-721)) 207 (|has| |#1| (-523)))) (-4020 (($ $ |#3|) 36) (($ $ (-598 |#3|)) 35) (($ $ |#3| (-721)) 34) (($ $ (-598 |#3|) (-598 (-721))) 33)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1000 |#1| |#2| |#3|) (-133) (-986) (-743) (-797)) (T -1000)) -((-4075 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-721)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3637 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3337 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-3451 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2475 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-2500 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-3577 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3546 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3029 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-1680 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-2316 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-1744 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-1993 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2125 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-2421 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2421 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-2009 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-1426 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-1426 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-1879 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2579 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-1879 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-2847 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2847 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-3146 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-1716 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) (-1716 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1))) (-4 *1 (-1000 *4 *5 *3)))) (-1547 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) (-1547 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *4 *5 *3)))) (-1647 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-4165 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3158 (-721)))) (-4 *1 (-1000 *3 *4 *5)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-1279 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))) (-3154 (*1 *1 *2) (|partial| -1435 (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) (-2523 (*1 *1 *2) (-1435 (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) (-3318 (*1 *1 *2) (-1435 (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) (-3154 (*1 *1 *2) (|partial| -1435 (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))))) (-2523 (*1 *1 *2) (-1435 (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *5 (-573 (-1102))) (-4 *4 (-743)) (-4 *5 (-797)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2004 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2209 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2004 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2209 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-3720 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-3075 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1000 *3 *4 *5)))) (-2362 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1))) (-4 *1 (-1000 *3 *4 *5)))) (-3002 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2109 *1) (|:| |coef2| *1))) (-4 *1 (-1000 *3 *4 *5)))) (-3115 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-1954 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-2255 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-1705 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523)))) (-3135 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523)))) (-2418 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2109 (*1 *2 *2 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-1246 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432))))) -(-13 (-892 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4075 (|t#3| $)) (-15 -3096 ((-721) $)) (-15 -3788 ($ $)) (-15 -3162 ($ $)) (-15 -2072 ($ $)) (-15 -3637 ($ $)) (-15 -3337 ((-598 $) $)) (-15 -3451 ($ $)) (-15 -2475 ($ $ |t#3|)) (-15 -2500 ($ $ |t#3|)) (-15 -1448 ((-110) $)) (-15 -4009 ((-110) $)) (-15 -3577 ($ $)) (-15 -3546 ($ $)) (-15 -3029 ((-598 $) $)) (-15 -1680 ((-598 $) $)) (-15 -2316 ((-3 (-110) "failed") $ $)) (-15 -1744 ((-110) $ $)) (-15 -1993 ((-110) $ $)) (-15 -2125 ((-110) $ $)) (-15 -2125 ((-110) $ (-598 $))) (-15 -2421 ((-110) $ $)) (-15 -2421 ((-110) $ (-598 $))) (-15 -2009 ((-110) $ $)) (-15 -2009 ((-110) $ (-598 $))) (-15 -1426 ((-110) $ $)) (-15 -1426 ((-110) $ (-598 $))) (-15 -2579 ($ $ $)) (-15 -1879 ($ $ $)) (-15 -2579 ($ $ $ |t#3|)) (-15 -1879 ($ $ $ |t#3|)) (-15 -2847 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -2847 ($ $ $ |t#3|)) (-15 -3146 ($ $ $ |t#3|)) (-15 -1716 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $)) (-15 -1716 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |t#3|)) (-15 -1547 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -1547 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |t#3|)) (-15 -1647 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -4174 ($ $ $)) (-15 -4165 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $)) (-15 -3044 ($ $ $)) (-15 -1279 ($ $ $)) (IF (|has| |t#3| (-573 (-1102))) (PROGN (-6 (-572 (-895 |t#1|))) (-6 (-573 (-895 |t#1|))) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -3154 ((-3 $ "failed") (-895 (-388 (-531))))) (-15 -2523 ($ (-895 (-388 (-531))))) (-15 -3318 ($ (-895 (-388 (-531))))) (-15 -3154 ((-3 $ "failed") (-895 (-531)))) (-15 -2523 ($ (-895 (-531)))) (-15 -3318 ($ (-895 (-531)))) (IF (|has| |t#1| (-934 (-531))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 |t#1|))) (-15 -2523 ($ (-895 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-531))) (IF (|has| |t#1| (-37 (-388 (-531)))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 (-531)))) (-15 -2523 ($ (-895 (-531)))) (-15 -3318 ($ (-895 (-531)))) (IF (|has| |t#1| (-516)) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 |t#1|))) (-15 -2523 ($ (-895 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-531))) |%noBranch| (IF (|has| |t#1| (-37 (-388 (-531)))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 |t#1|))) (-15 -2523 ($ (-895 |t#1|)))))) (-15 -3318 ($ (-895 |t#1|))) (IF (|has| |t#1| (-977 (-531))) (-6 (-573 (-1085))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3592 ($ $)) (-15 -3230 ($ $)) (-15 -2004 ($ $ |t#1|)) (-15 -2209 ($ $ |t#1|)) (-15 -2004 ($ $ $)) (-15 -2209 ($ $ $)) (-15 -3720 ($ $ $)) (-15 -3075 ((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2362 ((-2 (|:| -2109 $) (|:| |coef1| $)) $ $)) (-15 -3002 ((-2 (|:| -2109 $) (|:| |coef2| $)) $ $)) (-15 -3115 ($ $ $)) (-15 -1954 ((-598 $) $ $)) (-15 -2255 ($ $ $)) (-15 -1705 ($ $ $ (-721))) (-15 -3135 ($ $ $ $ (-721))) (-15 -2418 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -2109 (|t#1| |t#1| $)) (-15 -4228 ($ $)) (-15 -1246 ($ $)) (-15 -3773 ($ $)) (-15 -2376 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-572 (-895 |#1|)) |has| |#3| (-573 (-1102))) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) ((-573 (-895 |#1|)) |has| |#3| (-573 (-1102))) ((-573 (-1085)) -12 (|has| |#1| (-977 (-531))) (|has| |#3| (-573 (-1102)))) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432))) ((-492 |#3| |#1|) . T) ((-492 |#3| $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 |#3|) . T) ((-829 (-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) ((-892 |#1| |#2| |#3|) . T) ((-852) |has| |#1| (-852)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-977 |#3|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) |has| |#1| (-852))) -((-3019 (((-110) |#3| $) 13)) (-2738 (((-3 $ "failed") |#3| (-864)) 23)) (-3622 (((-3 |#3| "failed") |#3| $) 38)) (-1599 (((-110) |#3| $) 16)) (-2985 (((-110) |#3| $) 14))) -(((-1001 |#1| |#2| |#3|) (-10 -8 (-15 -2738 ((-3 |#1| "failed") |#3| (-864))) (-15 -3622 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1599 ((-110) |#3| |#1|)) (-15 -2985 ((-110) |#3| |#1|)) (-15 -3019 ((-110) |#3| |#1|))) (-1002 |#2| |#3|) (-13 (-795) (-344)) (-1160 |#2|)) (T -1001)) -NIL -(-10 -8 (-15 -2738 ((-3 |#1| "failed") |#3| (-864))) (-15 -3622 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1599 ((-110) |#3| |#1|)) (-15 -2985 ((-110) |#3| |#1|)) (-15 -3019 ((-110) |#3| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) |#2| $) 21)) (-3459 (((-531) |#2| $) 22)) (-2738 (((-3 $ "failed") |#2| (-864)) 15)) (-2613 ((|#1| |#2| $ |#1|) 13)) (-3622 (((-3 |#2| "failed") |#2| $) 18)) (-1599 (((-110) |#2| $) 19)) (-2985 (((-110) |#2| $) 20)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3608 ((|#2| $) 17)) (-2265 (((-806) $) 11)) (-4148 ((|#1| |#2| $ |#1|) 14)) (-2054 (((-598 $) |#2|) 16)) (-2148 (((-110) $ $) 6))) -(((-1002 |#1| |#2|) (-133) (-13 (-795) (-344)) (-1160 |t#1|)) (T -1002)) -((-3459 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-531)))) (-3019 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-110)))) (-2985 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-110)))) (-1599 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-110)))) (-3622 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344))) (-4 *2 (-1160 *3)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344))) (-4 *2 (-1160 *3)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-598 *1)) (-4 *1 (-1002 *4 *3)))) (-2738 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-864)) (-4 *4 (-13 (-795) (-344))) (-4 *1 (-1002 *4 *2)) (-4 *2 (-1160 *4)))) (-4148 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344))) (-4 *3 (-1160 *2)))) (-2613 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344))) (-4 *3 (-1160 *2))))) -(-13 (-1030) (-10 -8 (-15 -3459 ((-531) |t#2| $)) (-15 -3019 ((-110) |t#2| $)) (-15 -2985 ((-110) |t#2| $)) (-15 -1599 ((-110) |t#2| $)) (-15 -3622 ((-3 |t#2| "failed") |t#2| $)) (-15 -3608 (|t#2| $)) (-15 -2054 ((-598 $) |t#2|)) (-15 -2738 ((-3 $ "failed") |t#2| (-864))) (-15 -4148 (|t#1| |t#2| $ |t#1|)) (-15 -2613 (|t#1| |t#2| $ |t#1|)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-3602 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721)) 96)) (-3565 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 56)) (-4180 (((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)) 87)) (-2884 (((-721) (-598 |#4|) (-598 |#5|)) 27)) (-2056 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 58) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110)) 60)) (-4044 (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110)) 79)) (-3318 (((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 82)) (-2970 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-110)) 55)) (-1501 (((-721) (-598 |#4|) (-598 |#5|)) 19))) -(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-110))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1003)) -((-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085)) (-5 *1 (-1003 *4 *5 *6 *7 *8)))) (-3602 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-598 *11)) (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11)))))) (-5 *6 (-721)) (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11)))) (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9)) (-4 *11 (-1005 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-5 *1 (-1003 *7 *8 *9 *10 *11)))) (-4044 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-4044 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-2056 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2056 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2056 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *7 *8 *9 *3 *4)) (-4 *4 (-1005 *7 *8 *9 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-110))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)))) -((-2950 (((-110) |#5| $) 21)) (-1428 (((-110) |#5| $) 24)) (-2213 (((-110) |#5| $) 16) (((-110) $) 45)) (-1301 (((-598 $) |#5| $) NIL) (((-598 $) (-598 |#5|) $) 77) (((-598 $) (-598 |#5|) (-598 $)) 75) (((-598 $) |#5| (-598 $)) 78)) (-1846 (($ $ |#5|) NIL) (((-598 $) |#5| $) NIL) (((-598 $) |#5| (-598 $)) 60) (((-598 $) (-598 |#5|) $) 62) (((-598 $) (-598 |#5|) (-598 $)) 64)) (-3777 (((-598 $) |#5| $) NIL) (((-598 $) |#5| (-598 $)) 54) (((-598 $) (-598 |#5|) $) 56) (((-598 $) (-598 |#5|) (-598 $)) 58)) (-3695 (((-110) |#5| $) 27))) -(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1846 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1846 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1846 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1846 ((-598 |#1|) |#5| |#1|)) (-15 -3777 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -3777 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -3777 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -3777 ((-598 |#1|) |#5| |#1|)) (-15 -1301 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1301 ((-598 |#1|) |#5| |#1|)) (-15 -1428 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#1|)) (-15 -3695 ((-110) |#5| |#1|)) (-15 -2950 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#5| |#1|)) (-15 -1846 (|#1| |#1| |#5|))) (-1005 |#2| |#3| |#4| |#5|) (-432) (-743) (-797) (-1000 |#2| |#3| |#4|)) (T -1004)) -NIL -(-10 -8 (-15 -1846 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1846 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1846 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1846 ((-598 |#1|) |#5| |#1|)) (-15 -3777 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -3777 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -3777 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -3777 ((-598 |#1|) |#5| |#1|)) (-15 -1301 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1301 ((-598 |#1|) |#5| |#1|)) (-15 -1428 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#1|)) (-15 -3695 ((-110) |#5| |#1|)) (-15 -2950 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#5| |#1|)) (-15 -1846 (|#1| |#1| |#5|))) -((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273))))) -(((-1005 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1005)) -((-2213 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2950 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-1428 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-1568 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 (-110) (-598 *1))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *1)))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2918 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2068 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 *3 (-598 *1))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2255 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1)))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1)))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-1301 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-1301 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *7)))) (-1301 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)))) (-1301 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) (-3777 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-3777 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)))) (-2106 (*1 *1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2106 (*1 *1 *2 *1) (-12 (-5 *2 (-598 *6)) (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)))) (-1846 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-1846 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) (-1846 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *7)))) (-1846 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *5 *6 *7 *8))))) -(-13 (-1132 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2213 ((-110) |t#4| $)) (-15 -2950 ((-110) |t#4| $)) (-15 -3695 ((-110) |t#4| $)) (-15 -2213 ((-110) $)) (-15 -1428 ((-110) |t#4| $)) (-15 -1568 ((-3 (-110) (-598 $)) |t#4| $)) (-15 -2648 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |t#4| $)) (-15 -2648 ((-110) |t#4| $)) (-15 -2918 ((-598 $) |t#4| $)) (-15 -2068 ((-3 |t#4| (-598 $)) |t#4| |t#4| $)) (-15 -2255 ((-598 (-2 (|:| |val| |t#4|) (|:| -2410 $))) |t#4| |t#4| $)) (-15 -3240 ((-598 (-2 (|:| |val| |t#4|) (|:| -2410 $))) |t#4| $)) (-15 -1301 ((-598 $) |t#4| $)) (-15 -1301 ((-598 $) (-598 |t#4|) $)) (-15 -1301 ((-598 $) (-598 |t#4|) (-598 $))) (-15 -1301 ((-598 $) |t#4| (-598 $))) (-15 -3777 ((-598 $) |t#4| $)) (-15 -3777 ((-598 $) |t#4| (-598 $))) (-15 -3777 ((-598 $) (-598 |t#4|) $)) (-15 -3777 ((-598 $) (-598 |t#4|) (-598 $))) (-15 -2106 ($ |t#4| $)) (-15 -2106 ($ (-598 |t#4|) $)) (-15 -1846 ((-598 $) |t#4| $)) (-15 -1846 ((-598 $) |t#4| (-598 $))) (-15 -1846 ((-598 $) (-598 |t#4|) $)) (-15 -1846 ((-598 $) (-598 |t#4|) (-598 $))) (-15 -2855 ((-598 $) (-598 |t#4|) (-110))))) -(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T)) -((-4126 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|) 81)) (-2118 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 113)) (-3659 (((-598 |#5|) |#4| |#5|) 70)) (-3624 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-4108 (((-1189)) 37)) (-2098 (((-1189)) 26)) (-2747 (((-1189) (-1085) (-1085) (-1085)) 33)) (-3260 (((-1189) (-1085) (-1085) (-1085)) 22)) (-2928 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|) 96)) (-4026 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110)) 107) (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3947 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 102))) -(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -2928 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3947 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2118 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -3624 ((-110) |#4| |#5|)) (-15 -3624 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3659 ((-598 |#5|) |#4| |#5|)) (-15 -4126 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1006)) -((-4126 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3659 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2118 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3947 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797)) (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9)))) (-5 *1 (-1006 *6 *7 *4 *8 *9)))) (-4026 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2928 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4108 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-2747 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2098 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-3260 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -2928 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3947 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2118 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -3624 ((-110) |#4| |#5|)) (-15 -3624 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3659 ((-598 |#5|) |#4| |#5|)) (-15 -4126 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|))) -((-2247 (((-110) $ $) NIL)) (-3955 (((-1102) $) 8)) (-1521 (((-1085) $) 16)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 13))) -(((-1007 |#1|) (-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $)))) (-1102)) (T -1007)) -((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1007 *3)) (-14 *3 *2)))) -(-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $)))) -((-2247 (((-110) $ $) NIL)) (-2583 (($ $ (-598 (-1102)) (-1 (-110) (-598 |#3|))) 33)) (-1867 (($ |#3| |#3|) 22) (($ |#3| |#3| (-598 (-1102))) 20)) (-1493 ((|#3| $) 13)) (-3154 (((-3 (-276 |#3|) "failed") $) 58)) (-2523 (((-276 |#3|) $) NIL)) (-2674 (((-598 (-1102)) $) 16)) (-2052 (((-835 |#1|) $) 11)) (-1484 ((|#3| $) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-864)) 39)) (-2265 (((-806) $) 86) (($ (-276 |#3|)) 21)) (-2148 (((-110) $ $) 36))) -(((-1008 |#1| |#2| |#3|) (-13 (-1030) (-268 |#3| |#3|) (-977 (-276 |#3|)) (-10 -8 (-15 -1867 ($ |#3| |#3|)) (-15 -1867 ($ |#3| |#3| (-598 (-1102)))) (-15 -2583 ($ $ (-598 (-1102)) (-1 (-110) (-598 |#3|)))) (-15 -2052 ((-835 |#1|) $)) (-15 -1484 (|#3| $)) (-15 -1493 (|#3| $)) (-15 -1785 (|#3| $ |#3| (-864))) (-15 -2674 ((-598 (-1102)) $)))) (-1030) (-13 (-986) (-829 |#1|) (-797) (-573 (-835 |#1|))) (-13 (-411 |#2|) (-829 |#1|) (-573 (-835 |#1|)))) (T -1008)) -((-1867 (*1 *1 *2 *2) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-5 *1 (-1008 *3 *4 *2)) (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))) (-1867 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1008 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) (-2583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1 (-110) (-598 *6))) (-4 *6 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1008 *4 *5 *6)))) (-2052 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 *2))) (-5 *2 (-835 *3)) (-5 *1 (-1008 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 *2))))) (-1484 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) (-5 *1 (-1008 *3 *4 *2)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))))) (-1493 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) (-5 *1 (-1008 *3 *4 *2)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))))) (-1785 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-864)) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1008 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) (-2674 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-5 *2 (-598 (-1102))) (-5 *1 (-1008 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))))) -(-13 (-1030) (-268 |#3| |#3|) (-977 (-276 |#3|)) (-10 -8 (-15 -1867 ($ |#3| |#3|)) (-15 -1867 ($ |#3| |#3| (-598 (-1102)))) (-15 -2583 ($ $ (-598 (-1102)) (-1 (-110) (-598 |#3|)))) (-15 -2052 ((-835 |#1|) $)) (-15 -1484 (|#3| $)) (-15 -1493 (|#3| $)) (-15 -1785 (|#3| $ |#3| (-864))) (-15 -2674 ((-598 (-1102)) $)))) -((-2247 (((-110) $ $) NIL)) (-2545 (($ (-598 (-1008 |#1| |#2| |#3|))) 13)) (-3800 (((-598 (-1008 |#1| |#2| |#3|)) $) 20)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-864)) 26)) (-2265 (((-806) $) 16)) (-2148 (((-110) $ $) 19))) -(((-1009 |#1| |#2| |#3|) (-13 (-1030) (-268 |#3| |#3|) (-10 -8 (-15 -2545 ($ (-598 (-1008 |#1| |#2| |#3|)))) (-15 -3800 ((-598 (-1008 |#1| |#2| |#3|)) $)) (-15 -1785 (|#3| $ |#3| (-864))))) (-1030) (-13 (-986) (-829 |#1|) (-797) (-573 (-835 |#1|))) (-13 (-411 |#2|) (-829 |#1|) (-573 (-835 |#1|)))) (T -1009)) -((-2545 (*1 *1 *2) (-12 (-5 *2 (-598 (-1008 *3 *4 *5))) (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) (-5 *1 (-1009 *3 *4 *5)))) (-3800 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-5 *2 (-598 (-1008 *3 *4 *5))) (-5 *1 (-1009 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))) (-1785 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-864)) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1009 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4))))))) -(-13 (-1030) (-268 |#3| |#3|) (-10 -8 (-15 -2545 ($ (-598 (-1008 |#1| |#2| |#3|)))) (-15 -3800 ((-598 (-1008 |#1| |#2| |#3|)) $)) (-15 -1785 (|#3| $ |#3| (-864))))) -((-2660 (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)) 75) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|))) 77) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110)) 76))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)))) (-13 (-289) (-140)) (-598 (-1102))) (T -1010)) -((-2660 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) (-5 *1 (-1010 *4 *5)) (-5 *3 (-598 (-895 *4))) (-14 *5 (-598 (-1102))))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102)))))) -(-10 -7 (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)))) -((-2552 (((-399 |#3|) |#3|) 18))) -(((-1011 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-399 |#3|) |#3|))) (-1160 (-388 (-531))) (-13 (-344) (-140) (-675 (-388 (-531)) |#1|)) (-1160 |#2|)) (T -1011)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-13 (-344) (-140) (-675 (-388 (-531)) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1160 *5))))) -(-10 -7 (-15 -2552 ((-399 |#3|) |#3|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 126)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-344)))) (-3258 (($ $) NIL (|has| |#1| (-344)))) (-2921 (((-110) $) NIL (|has| |#1| (-344)))) (-1849 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) 115)) (-1354 ((|#1| $) 119)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3006 (((-721)) 40 (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|) (-1184 $)) NIL) (($ (-1184 |#1|)) 43)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-1982 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 106) (((-639 |#1|) (-639 $)) 101)) (-1760 (($ |#2|) 61) (((-3 $ "failed") (-388 |#2|)) NIL (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2277 (((-864)) 77)) (-1381 (($) 44 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-1806 (($) NIL (|has| |#1| (-330)))) (-1971 (((-110) $) NIL (|has| |#1| (-330)))) (-3493 (($ $ (-721)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3617 (((-864) $) NIL (|has| |#1| (-330))) (((-783 (-864)) $) NIL (|has| |#1| (-330)))) (-3481 (((-110) $) NIL)) (-1899 ((|#1| $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1233 ((|#2| $) 84 (|has| |#1| (-344)))) (-2211 (((-864) $) 131 (|has| |#1| (-349)))) (-1749 ((|#2| $) 58)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-3788 (($) NIL (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) 125 (|has| |#1| (-349)))) (-2529 (((-1049) $) NIL)) (-1861 (($) 121)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-330)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3176 ((|#1| (-1184 $)) NIL) ((|#1|) 109)) (-2350 (((-721) $) NIL (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) NIL (|has| |#1| (-330)))) (-3352 (($ $) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1 |#1| |#1|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3608 ((|#2|) 73)) (-2498 (($) NIL (|has| |#1| (-330)))) (-3348 (((-1184 |#1|) $ (-1184 $)) 89) (((-639 |#1|) (-1184 $) (-1184 $)) NIL) (((-1184 |#1|) $) 71) (((-639 |#1|) (-1184 $)) 85)) (-3318 (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-330)))) (-2265 (((-806) $) 57) (($ (-531)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-344))) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3369 ((|#2| $) 82)) (-2284 (((-721)) 75)) (-3523 (((-1184 $)) 81)) (-2587 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3035 (($) 30 T CONST)) (-3050 (($) 19 T CONST)) (-4020 (($ $) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1 |#1| |#1|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-2148 (((-110) $ $) 63)) (-2263 (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) 67) (($ $ $) NIL)) (-2237 (($ $ $) 65)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-388 (-531)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-531))) NIL (|has| |#1| (-344))))) -(((-1012 |#1| |#2| |#3|) (-675 |#1| |#2|) (-162) (-1160 |#1|) |#2|) (T -1012)) -NIL -(-675 |#1| |#2|) -((-2552 (((-399 |#3|) |#3|) 19))) -(((-1013 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-399 |#3|) |#3|))) (-1160 (-388 (-895 (-531)))) (-13 (-344) (-140) (-675 (-388 (-895 (-531))) |#1|)) (-1160 |#2|)) (T -1013)) -((-2552 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 (-895 (-531))))) (-4 *5 (-13 (-344) (-140) (-675 (-388 (-895 (-531))) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1013 *4 *5 *3)) (-4 *3 (-1160 *5))))) -(-10 -7 (-15 -2552 ((-399 |#3|) |#3|))) -((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) 14)) (-1241 (($ $ $) 15)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3606 (($) 6)) (-3318 (((-1102) $) 18)) (-2265 (((-806) $) 12)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 13)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 8))) -(((-1014) (-13 (-797) (-10 -8 (-15 -3606 ($)) (-15 -3318 ((-1102) $))))) (T -1014)) -((-3606 (*1 *1) (-5 *1 (-1014))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1014))))) -(-13 (-797) (-10 -8 (-15 -3606 ($)) (-15 -3318 ((-1102) $)))) -((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (((-1107) $) 14)) (-2148 (((-110) $ $) 6))) -(((-1015) (-133)) (T -1015)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-1005) (-134)) (T -1005)) +NIL +(-13 (-21) (-1057)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-129) . T) ((-579 (-816)) . T) ((-1057) . T) ((-1045) . T)) +((-1586 (($ $) 16)) (-3981 (($ $) 22)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 49)) (-2055 (($ $) 24)) (-1790 (($ $) 11)) (-3830 (($ $) 38)) (-3996 (((-363) $) NIL) (((-210) $) NIL) (((-845 (-363)) $) 33)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL) (($ (-391 (-537))) 28) (($ (-537)) NIL) (($ (-391 (-537))) 28)) (-3654 (((-731)) 8)) (-3903 (($ $) 39))) +(((-1006 |#1|) (-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) (-1007)) (T -1006)) +((-3654 (*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1006 *3)) (-4 *3 (-1007))))) +(-10 -8 (-15 -3981 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -4196 ((-842 (-363) |#1|) |#1| (-845 (-363)) (-842 (-363) |#1|))) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 -3996 ((-210) |#1|)) (-15 -3996 ((-363) |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -3654 ((-731))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 (((-537) $) 86)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1586 (($ $) 84)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-3633 (($ $) 94)) (-4099 (((-111) $ $) 57)) (-2537 (((-537) $) 111)) (-3832 (($) 17 T CONST)) (-3981 (($ $) 83)) (-1516 (((-3 (-537) "failed") $) 99) (((-3 (-391 (-537)) "failed") $) 96)) (-3958 (((-537) $) 98) (((-391 (-537)) $) 95)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2639 (((-111) $) 68)) (-3797 (((-111) $) 109)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 90)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 93)) (-2055 (($ $) 89)) (-2840 (((-111) $) 110)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2444 (($ $ $) 108)) (-3889 (($ $ $) 107)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-1790 (($ $) 85)) (-3830 (($ $) 87)) (-3622 (((-402 $) $) 71)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3996 (((-363) $) 102) (((-210) $) 101) (((-845 (-363)) $) 91)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ (-537)) 100) (($ (-391 (-537))) 97)) (-3654 (((-731)) 28)) (-3903 (($ $) 88)) (-3276 (((-111) $ $) 37)) (-2209 (($ $) 112)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2293 (((-111) $ $) 105)) (-2271 (((-111) $ $) 104)) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 106)) (-2263 (((-111) $ $) 103)) (-2340 (($ $ $) 62)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66) (($ $ (-391 (-537))) 92)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64))) +(((-1007) (-134)) (T -1007)) +((-2209 (*1 *1 *1) (-4 *1 (-1007))) (-2055 (*1 *1 *1) (-4 *1 (-1007))) (-3903 (*1 *1 *1) (-4 *1 (-1007))) (-3830 (*1 *1 *1) (-4 *1 (-1007))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-537)))) (-1790 (*1 *1 *1) (-4 *1 (-1007))) (-1586 (*1 *1 *1) (-4 *1 (-1007))) (-3981 (*1 *1 *1) (-4 *1 (-1007)))) +(-13 (-347) (-805) (-973) (-989 (-537)) (-989 (-391 (-537))) (-954) (-580 (-845 (-363))) (-839 (-363)) (-141) (-10 -8 (-15 -2055 ($ $)) (-15 -3903 ($ $)) (-15 -3830 ($ $)) (-15 -1874 ((-537) $)) (-15 -1790 ($ $)) (-15 -1586 ($ $)) (-15 -3981 ($ $)) (-15 -2209 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-141) . T) ((-579 (-816)) . T) ((-163) . T) ((-580 (-210)) . T) ((-580 (-363)) . T) ((-580 (-845 (-363))) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 $) . T) ((-687) . T) ((-751) . T) ((-752) . T) ((-754) . T) ((-755) . T) ((-805) . T) ((-807) . T) ((-839 (-363)) . T) ((-873) . T) ((-954) . T) ((-973) . T) ((-989 (-391 (-537))) . T) ((-989 (-537)) . T) ((-1004 #0#) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) |#2| $) 23)) (-3151 ((|#1| $) 10)) (-2537 (((-537) |#2| $) 88)) (-4190 (((-3 $ "failed") |#2| (-874)) 57)) (-3278 ((|#1| $) 28)) (-3962 ((|#1| |#2| $ |#1|) 37)) (-3878 (($ $) 25)) (-3490 (((-3 |#2| "failed") |#2| $) 87)) (-3797 (((-111) |#2| $) NIL)) (-2840 (((-111) |#2| $) NIL)) (-3131 (((-111) |#2| $) 24)) (-2424 ((|#1| $) 89)) (-3267 ((|#1| $) 27)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2529 ((|#2| $) 79)) (-2341 (((-816) $) 70)) (-4150 ((|#1| |#2| $ |#1|) 38)) (-2607 (((-606 $) |#2|) 59)) (-2244 (((-111) $ $) 74))) +(((-1008 |#1| |#2|) (-13 (-1015 |#1| |#2|) (-10 -8 (-15 -3267 (|#1| $)) (-15 -3278 (|#1| $)) (-15 -3151 (|#1| $)) (-15 -2424 (|#1| $)) (-15 -3878 ($ $)) (-15 -3131 ((-111) |#2| $)) (-15 -3962 (|#1| |#2| $ |#1|)))) (-13 (-805) (-347)) (-1176 |#1|)) (T -1008)) +((-3962 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3267 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3278 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3151 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-2424 (*1 *2 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3878 (*1 *1 *1) (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) (-4 *3 (-1176 *2)))) (-3131 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-805) (-347))) (-5 *2 (-111)) (-5 *1 (-1008 *4 *3)) (-4 *3 (-1176 *4))))) +(-13 (-1015 |#1| |#2|) (-10 -8 (-15 -3267 (|#1| $)) (-15 -3278 (|#1| $)) (-15 -3151 (|#1| $)) (-15 -2424 (|#1| $)) (-15 -3878 ($ $)) (-15 -3131 ((-111) |#2| $)) (-15 -3962 (|#1| |#2| $ |#1|)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) NIL)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) NIL)) (-3832 (($) NIL T CONST)) (-2687 (($ (-1117)) 10) (($ (-537)) 7)) (-1516 (((-3 (-537) "failed") $) NIL)) (-3958 (((-537) $) NIL)) (-3563 (($ $ $) NIL)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-649 (-537)) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($) NIL) (($ $) NIL)) (-3539 (($ $ $) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) NIL)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) NIL)) (-2353 (((-111) $) NIL)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) NIL)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1454 (($ $) NIL)) (-3845 (($ $) NIL)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) NIL)) (-2528 (((-1064) $) NIL) (($ $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) NIL) (($ (-606 $)) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3089 (($ $) NIL)) (-2494 (($ $) NIL)) (-3996 (((-537) $) 16) (((-513) $) NIL) (((-845 (-537)) $) NIL) (((-363) $) NIL) (((-210) $) NIL) (($ (-1117)) 9)) (-2341 (((-816) $) 20) (($ (-537)) 6) (($ $) NIL) (($ (-537)) 6)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) NIL)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) NIL)) (-2209 (($ $) NIL)) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) NIL)) (-2329 (($ $) 19) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL))) +(((-1009) (-13 (-522) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3996 ($ (-1117))) (-15 -2687 ($ (-1117))) (-15 -2687 ($ (-537)))))) (T -1009)) +((-3996 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1009))))) +(-13 (-522) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3996 ($ (-1117))) (-15 -2687 ($ (-1117))) (-15 -2687 ($ (-537))))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-1279 (((-1205) $ (-1117) (-1117)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-3471 (($) 9)) (-2476 (((-51) $ (-1117) (-51)) NIL)) (-3269 (($ $) 30)) (-3640 (($ $) 28)) (-3861 (($ $) 27)) (-1902 (($ $) 29)) (-2467 (($ $) 32)) (-4156 (($ $) 33)) (-3741 (($ $) 26)) (-1333 (($ $) 31)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) 25 (|has| $ (-6 -4300)))) (-2859 (((-3 (-51) "failed") (-1117) $) 40)) (-3832 (($) NIL T CONST)) (-4238 (($) 7)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) 50 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-3 (-51) "failed") (-1117) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300)))) (-3595 (((-3 (-1100) "failed") $ (-1100) (-537)) 59)) (-4091 (((-51) $ (-1117) (-51)) NIL (|has| $ (-6 -4301)))) (-4030 (((-51) $ (-1117)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1117) $) NIL (|has| (-1117) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) 35 (|has| $ (-6 -4300))) (((-606 (-51)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-2187 (((-1117) $) NIL (|has| (-1117) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4301))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-1688 (((-606 (-1117)) $) NIL)) (-4011 (((-111) (-1117) $) NIL)) (-2783 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) 43)) (-1270 (((-606 (-1117)) $) NIL)) (-1641 (((-111) (-1117) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-2025 (((-363) $ (-1117)) 49)) (-3899 (((-606 (-1100)) $ (-1100)) 60)) (-3188 (((-51) $) NIL (|has| (-1117) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) "failed") (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL)) (-3040 (($ $ (-51)) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL (-12 (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-293 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (($ $ (-606 (-51)) (-606 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-278 (-51))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045)))) (($ $ (-606 (-278 (-51)))) NIL (-12 (|has| (-51) (-293 (-51))) (|has| (-51) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045))))) (-3010 (((-606 (-51)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-51) $ (-1117)) NIL) (((-51) $ (-1117) (-51)) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-1844 (($ $ (-1117)) 51)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045)))) (((-731) (-51) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-51) (-1045)))) (((-731) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) 37)) (-3434 (($ $ $) 38)) (-2341 (((-816) $) NIL (-1533 (|has| (-51) (-579 (-816))) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-579 (-816)))))) (-1955 (($ $ (-1117) (-363)) 47)) (-2130 (($ $ (-1117) (-363)) 48)) (-2753 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1117)) (|:| -2140 (-51)))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) (-51)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-51) (-1045)) (|has| (-2 (|:| -2926 (-1117)) (|:| -2140 (-51))) (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1010) (-13 (-1130 (-1117) (-51)) (-10 -8 (-15 -3434 ($ $ $)) (-15 -4238 ($)) (-15 -3741 ($ $)) (-15 -3861 ($ $)) (-15 -3640 ($ $)) (-15 -1902 ($ $)) (-15 -1333 ($ $)) (-15 -3269 ($ $)) (-15 -2467 ($ $)) (-15 -4156 ($ $)) (-15 -1955 ($ $ (-1117) (-363))) (-15 -2130 ($ $ (-1117) (-363))) (-15 -2025 ((-363) $ (-1117))) (-15 -3899 ((-606 (-1100)) $ (-1100))) (-15 -1844 ($ $ (-1117))) (-15 -3471 ($)) (-15 -3595 ((-3 (-1100) "failed") $ (-1100) (-537))) (-6 -4300)))) (T -1010)) +((-3434 (*1 *1 *1 *1) (-5 *1 (-1010))) (-4238 (*1 *1) (-5 *1 (-1010))) (-3741 (*1 *1 *1) (-5 *1 (-1010))) (-3861 (*1 *1 *1) (-5 *1 (-1010))) (-3640 (*1 *1 *1) (-5 *1 (-1010))) (-1902 (*1 *1 *1) (-5 *1 (-1010))) (-1333 (*1 *1 *1) (-5 *1 (-1010))) (-3269 (*1 *1 *1) (-5 *1 (-1010))) (-2467 (*1 *1 *1) (-5 *1 (-1010))) (-4156 (*1 *1 *1) (-5 *1 (-1010))) (-1955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010)))) (-2130 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-363)) (-5 *1 (-1010)))) (-3899 (*1 *2 *1 *3) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1010)) (-5 *3 (-1100)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1010)))) (-3471 (*1 *1) (-5 *1 (-1010))) (-3595 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-1010))))) +(-13 (-1130 (-1117) (-51)) (-10 -8 (-15 -3434 ($ $ $)) (-15 -4238 ($)) (-15 -3741 ($ $)) (-15 -3861 ($ $)) (-15 -3640 ($ $)) (-15 -1902 ($ $)) (-15 -1333 ($ $)) (-15 -3269 ($ $)) (-15 -2467 ($ $)) (-15 -4156 ($ $)) (-15 -1955 ($ $ (-1117) (-363))) (-15 -2130 ($ $ (-1117) (-363))) (-15 -2025 ((-363) $ (-1117))) (-15 -3899 ((-606 (-1100)) $ (-1100))) (-15 -1844 ($ $ (-1117))) (-15 -3471 ($)) (-15 -3595 ((-3 (-1100) "failed") $ (-1100) (-537))) (-6 -4300))) +((-4199 (($ $) 45)) (-4062 (((-111) $ $) 74)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-905 (-391 (-537)))) 227) (((-3 $ "failed") (-905 (-537))) 226) (((-3 $ "failed") (-905 |#2|)) 229)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL) (((-537) $) NIL) ((|#4| $) NIL) (($ (-905 (-391 (-537)))) 215) (($ (-905 (-537))) 211) (($ (-905 |#2|)) 231)) (-3940 (($ $) NIL) (($ $ |#4|) 43)) (-1369 (((-111) $ $) 112) (((-111) $ (-606 $)) 113)) (-2835 (((-111) $) 56)) (-3293 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 107)) (-4013 (($ $) 138)) (-2721 (($ $) 134)) (-1309 (($ $) 133)) (-3882 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3472 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3201 (((-111) $ $) 121) (((-111) $ (-606 $)) 122)) (-1464 ((|#4| $) 33)) (-3491 (($ $ $) 110)) (-2903 (((-111) $) 55)) (-2910 (((-731) $) 35)) (-1635 (($ $) 152)) (-3895 (($ $) 149)) (-1250 (((-606 $) $) 68)) (-2959 (($ $) 57)) (-2500 (($ $) 145)) (-3081 (((-606 $) $) 65)) (-2270 (($ $) 59)) (-3912 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $) 111)) (-2897 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 108) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |#4|) 109)) (-1296 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $) 104) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |#4|) 105)) (-1852 (($ $ $) 89) (($ $ $ |#4|) 95)) (-4047 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1806 (((-606 $) $) 51)) (-3812 (((-111) $ $) 118) (((-111) $ (-606 $)) 119)) (-3787 (($ $ $) 103)) (-3956 (($ $) 37)) (-1981 (((-111) $ $) 72)) (-2524 (((-111) $ $) 114) (((-111) $ (-606 $)) 116)) (-2021 (($ $ $) 101)) (-2876 (($ $) 40)) (-2211 ((|#2| |#2| $) 142) (($ (-606 $)) NIL) (($ $ $) NIL)) (-2287 (($ $ |#2|) NIL) (($ $ $) 131)) (-3848 (($ $ |#2|) 126) (($ $ $) 129)) (-1757 (($ $) 48)) (-2944 (($ $) 52)) (-3996 (((-845 (-363)) $) NIL) (((-845 (-537)) $) NIL) (((-513) $) NIL) (($ (-905 (-391 (-537)))) 217) (($ (-905 (-537))) 213) (($ (-905 |#2|)) 228) (((-1100) $) 250) (((-905 |#2|) $) 162)) (-2341 (((-816) $) 30) (($ (-537)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-905 |#2|) $) 163) (($ (-391 (-537))) NIL) (($ $) NIL)) (-2633 (((-3 (-111) "failed") $ $) 71))) +(((-1011 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2211 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 ((-905 |#2|) |#1|)) (-15 -3996 ((-905 |#2|) |#1|)) (-15 -3996 ((-1100) |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -2211 (|#2| |#2| |#1|)) (-15 -2287 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2287 (|#1| |#1| |#2|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -2721 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -3996 (|#1| (-905 |#2|))) (-15 -3958 (|#1| (-905 |#2|))) (-15 -1516 ((-3 |#1| "failed") (-905 |#2|))) (-15 -3996 (|#1| (-905 (-537)))) (-15 -3958 (|#1| (-905 (-537)))) (-15 -1516 ((-3 |#1| "failed") (-905 (-537)))) (-15 -3996 (|#1| (-905 (-391 (-537))))) (-15 -3958 (|#1| (-905 (-391 (-537))))) (-15 -1516 ((-3 |#1| "failed") (-905 (-391 (-537))))) (-15 -3787 (|#1| |#1| |#1|)) (-15 -2021 (|#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3669 (-731))) |#1| |#1|)) (-15 -3491 (|#1| |#1| |#1|)) (-15 -3293 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1| |#4|)) (-15 -1852 (|#1| |#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1| |#4|)) (-15 -3882 (|#1| |#1| |#1| |#4|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -3882 (|#1| |#1| |#1|)) (-15 -3201 ((-111) |#1| (-606 |#1|))) (-15 -3201 ((-111) |#1| |#1|)) (-15 -3812 ((-111) |#1| (-606 |#1|))) (-15 -3812 ((-111) |#1| |#1|)) (-15 -2524 ((-111) |#1| (-606 |#1|))) (-15 -2524 ((-111) |#1| |#1|)) (-15 -1369 ((-111) |#1| (-606 |#1|))) (-15 -1369 ((-111) |#1| |#1|)) (-15 -4062 ((-111) |#1| |#1|)) (-15 -1981 ((-111) |#1| |#1|)) (-15 -2633 ((-3 (-111) "failed") |#1| |#1|)) (-15 -1250 ((-606 |#1|) |#1|)) (-15 -3081 ((-606 |#1|) |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -2835 ((-111) |#1|)) (-15 -2903 ((-111) |#1|)) (-15 -3940 (|#1| |#1| |#4|)) (-15 -3912 (|#1| |#1| |#4|)) (-15 -2944 (|#1| |#1|)) (-15 -1806 ((-606 |#1|) |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -2910 ((-731) |#1|)) (-15 -1464 (|#4| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -3912 (|#2| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-1012 |#2| |#3| |#4|) (-998) (-753) (-807)) (T -1011)) +NIL +(-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2211 (|#1| |#1| |#1|)) (-15 -2211 (|#1| (-606 |#1|))) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 ((-905 |#2|) |#1|)) (-15 -3996 ((-905 |#2|) |#1|)) (-15 -3996 ((-1100) |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -2211 (|#2| |#2| |#1|)) (-15 -2287 (|#1| |#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2287 (|#1| |#1| |#2|)) (-15 -3848 (|#1| |#1| |#2|)) (-15 -2721 (|#1| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -3996 (|#1| (-905 |#2|))) (-15 -3958 (|#1| (-905 |#2|))) (-15 -1516 ((-3 |#1| "failed") (-905 |#2|))) (-15 -3996 (|#1| (-905 (-537)))) (-15 -3958 (|#1| (-905 (-537)))) (-15 -1516 ((-3 |#1| "failed") (-905 (-537)))) (-15 -3996 (|#1| (-905 (-391 (-537))))) (-15 -3958 (|#1| (-905 (-391 (-537))))) (-15 -1516 ((-3 |#1| "failed") (-905 (-391 (-537))))) (-15 -3787 (|#1| |#1| |#1|)) (-15 -2021 (|#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3669 (-731))) |#1| |#1|)) (-15 -3491 (|#1| |#1| |#1|)) (-15 -3293 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -2897 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1| |#4|)) (-15 -1296 ((-2 (|:| -3449 |#1|) (|:| |gap| (-731)) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1| |#4|)) (-15 -1852 (|#1| |#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -1852 (|#1| |#1| |#1|)) (-15 -3472 (|#1| |#1| |#1| |#4|)) (-15 -3882 (|#1| |#1| |#1| |#4|)) (-15 -3472 (|#1| |#1| |#1|)) (-15 -3882 (|#1| |#1| |#1|)) (-15 -3201 ((-111) |#1| (-606 |#1|))) (-15 -3201 ((-111) |#1| |#1|)) (-15 -3812 ((-111) |#1| (-606 |#1|))) (-15 -3812 ((-111) |#1| |#1|)) (-15 -2524 ((-111) |#1| (-606 |#1|))) (-15 -2524 ((-111) |#1| |#1|)) (-15 -1369 ((-111) |#1| (-606 |#1|))) (-15 -1369 ((-111) |#1| |#1|)) (-15 -4062 ((-111) |#1| |#1|)) (-15 -1981 ((-111) |#1| |#1|)) (-15 -2633 ((-3 (-111) "failed") |#1| |#1|)) (-15 -1250 ((-606 |#1|) |#1|)) (-15 -3081 ((-606 |#1|) |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -2835 ((-111) |#1|)) (-15 -2903 ((-111) |#1|)) (-15 -3940 (|#1| |#1| |#4|)) (-15 -3912 (|#1| |#1| |#4|)) (-15 -2944 (|#1| |#1|)) (-15 -1806 ((-606 |#1|) |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -3956 (|#1| |#1|)) (-15 -2910 ((-731) |#1|)) (-15 -1464 (|#4| |#1|)) (-15 -3996 ((-513) |#1|)) (-15 -3996 ((-845 (-537)) |#1|)) (-15 -3996 ((-845 (-363)) |#1|)) (-15 -3958 (|#4| |#1|)) (-15 -1516 ((-3 |#4| "failed") |#1|)) (-15 -2341 (|#1| |#4|)) (-15 -3912 (|#2| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 |#3|) $) 108)) (-3588 (((-1113 $) $ |#3|) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 |#3|)) 109)) (-4199 (($ $) 269)) (-4062 (((-111) $ $) 255)) (-3418 (((-3 $ "failed") $ $) 19)) (-1841 (($ $ $) 214 (|has| |#1| (-529)))) (-4088 (((-606 $) $ $) 209 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-905 (-391 (-537)))) 229 (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))) (((-3 $ "failed") (-905 (-537))) 226 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117)))))) (((-3 $ "failed") (-905 |#1|)) 223 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537)))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-522))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-945 (-537)))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))))) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) ((|#3| $) 133) (($ (-905 (-391 (-537)))) 228 (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))) (($ (-905 (-537))) 225 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117)))))) (($ (-905 |#1|)) 222 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (-3679 (|has| |#1| (-37 (-537)))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-522))) (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (-3679 (|has| |#1| (-945 (-537)))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))))) (-4086 (($ $ $ |#3|) 106 (|has| |#1| (-163))) (($ $ $) 210 (|has| |#1| (-529)))) (-3940 (($ $) 152) (($ $ |#3|) 264)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-1369 (((-111) $ $) 254) (((-111) $ (-606 $)) 253)) (-3490 (((-3 $ "failed") $) 32)) (-2835 (((-111) $) 262)) (-3293 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 234)) (-4013 (($ $) 203 (|has| |#1| (-435)))) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ |#3|) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-2721 (($ $) 219 (|has| |#1| (-529)))) (-1309 (($ $) 220 (|has| |#1| (-529)))) (-3882 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3472 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3240 (($ $ |#1| |#2| $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| |#3| (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| |#3| (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-3201 (((-111) $ $) 248) (((-111) $ (-606 $)) 247)) (-2276 (($ $ $ $ $) 205 (|has| |#1| (-529)))) (-1464 ((|#3| $) 273)) (-3746 (($ (-1113 |#1|) |#3|) 115) (($ (-1113 $) |#3|) 114)) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| |#2|) 151) (($ $ |#3| (-731)) 117) (($ $ (-606 |#3|) (-606 (-731))) 116)) (-3491 (($ $ $) 233)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 118)) (-2903 (((-111) $) 263)) (-1883 ((|#2| $) 168) (((-731) $ |#3|) 120) (((-606 (-731)) $ (-606 |#3|)) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-2910 (((-731) $) 272)) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 |#2| |#2|) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-1310 (((-3 |#3| "failed") $) 121)) (-1635 (($ $) 200 (|has| |#1| (-435)))) (-3895 (($ $) 201 (|has| |#1| (-435)))) (-1250 (((-606 $) $) 258)) (-2959 (($ $) 261)) (-2500 (($ $) 202 (|has| |#1| (-435)))) (-3081 (((-606 $) $) 259)) (-2270 (($ $) 260)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146) (($ $ |#3|) 265)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-2069 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $) 232)) (-2897 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $) 236) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |#3|) 235)) (-1296 (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $) 238) (((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |#3|) 237)) (-1852 (($ $ $) 242) (($ $ $ |#3|) 240)) (-4047 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1654 (((-1100) $) 9)) (-1842 (($ $ $) 208 (|has| |#1| (-529)))) (-1806 (((-606 $) $) 267)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-731))) "failed") $) 111)) (-3812 (((-111) $ $) 250) (((-111) $ (-606 $)) 249)) (-3787 (($ $ $) 230)) (-3956 (($ $) 271)) (-1981 (((-111) $ $) 256)) (-2524 (((-111) $ $) 252) (((-111) $ (-606 $)) 251)) (-2021 (($ $ $) 231)) (-2876 (($ $) 270)) (-2528 (((-1064) $) 10)) (-2707 (((-2 (|:| -2211 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-529)))) (-2767 (((-2 (|:| -2211 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-529)))) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 ((|#1| |#1| $) 204 (|has| |#1| (-435))) (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-2141 (((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-529)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-2287 (($ $ |#1|) 217 (|has| |#1| (-529))) (($ $ $) 215 (|has| |#1| (-529)))) (-3848 (($ $ |#1|) 218 (|has| |#1| (-529))) (($ $ $) 216 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-606 |#3|) (-606 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-606 |#3|) (-606 $)) 136)) (-2067 (($ $ |#3|) 105 (|has| |#1| (-163)))) (-3456 (($ $ |#3|) 40) (($ $ (-606 |#3|)) 39) (($ $ |#3| (-731)) 38) (($ $ (-606 |#3|) (-606 (-731))) 37)) (-2872 ((|#2| $) 148) (((-731) $ |#3|) 128) (((-606 (-731)) $ (-606 |#3|)) 127)) (-1757 (($ $) 268)) (-2944 (($ $) 266)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| |#3| (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| |#3| (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| |#3| (-580 (-513))) (|has| |#1| (-580 (-513))))) (($ (-905 (-391 (-537)))) 227 (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117))))) (($ (-905 (-537))) 224 (-1533 (-12 (-3679 (|has| |#1| (-37 (-391 (-537))))) (|has| |#1| (-37 (-537))) (|has| |#3| (-580 (-1117)))) (-12 (|has| |#1| (-37 (-391 (-537)))) (|has| |#3| (-580 (-1117)))))) (($ (-905 |#1|)) 221 (|has| |#3| (-580 (-1117)))) (((-1100) $) 199 (-12 (|has| |#1| (-989 (-537))) (|has| |#3| (-580 (-1117))))) (((-905 |#1|) $) 198 (|has| |#3| (-580 (-1117))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ |#3|) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-905 |#1|) $) 197 (|has| |#3| (-580 (-1117)))) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537)))))) (($ $) 83 (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ |#2|) 153) (($ $ |#3| (-731)) 126) (($ $ (-606 |#3|) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2633 (((-3 (-111) "failed") $ $) 257)) (-2943 (($) 29 T CONST)) (-3031 (($ $ $ $ (-731)) 206 (|has| |#1| (-529)))) (-2593 (($ $ $ (-731)) 207 (|has| |#1| (-529)))) (-4230 (($ $ |#3|) 36) (($ $ (-606 |#3|)) 35) (($ $ |#3| (-731)) 34) (($ $ (-606 |#3|) (-606 (-731))) 33)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1012 |#1| |#2| |#3|) (-134) (-998) (-753) (-807)) (T -1012)) +((-1464 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-731)))) (-3956 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1757 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1806 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3912 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-2835 (*1 *2 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-2959 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-2270 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3081 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-1250 (*1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-2633 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-4062 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1369 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-2524 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-2524 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-3812 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-3201 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) (-3882 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3472 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3882 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-3472 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-1852 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1852 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-4047 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *2 (-807)))) (-1296 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) (-1296 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) (-4 *1 (-1012 *4 *5 *3)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) (-2897 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *4 *5 *3)))) (-3293 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) (-3491 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-2069 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3669 (-731)))) (-4 *1 (-1012 *3 *4 *5)))) (-2021 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-3787 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)))) (-1516 (*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)))) (-1516 (*1 *1 *2) (|partial| -1533 (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3958 (*1 *1 *2) (-1533 (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3996 (*1 *1 *2) (-1533 (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) (-1516 (*1 *1 *2) (|partial| -1533 (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3958 (*1 *1 *2) (-1533 (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))) (-12 (-5 *2 (-905 *3)) (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) (-4 *5 (-807))))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *5 (-580 (-1117))) (-4 *4 (-753)) (-4 *5 (-807)))) (-1309 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2721 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-3848 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2287 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2287 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2141 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1012 *3 *4 *5)))) (-2767 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1))) (-4 *1 (-1012 *3 *4 *5)))) (-2707 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-2 (|:| -2211 *1) (|:| |coef2| *1))) (-4 *1 (-1012 *3 *4 *5)))) (-4086 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-4088 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5)))) (-1842 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2593 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529)))) (-3031 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529)))) (-2276 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-529)))) (-2211 (*1 *2 *2 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-4013 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-3895 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435)))) (-1635 (*1 *1 *1) (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-435))))) +(-13 (-902 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1464 (|t#3| $)) (-15 -2910 ((-731) $)) (-15 -3956 ($ $)) (-15 -2876 ($ $)) (-15 -4199 ($ $)) (-15 -1757 ($ $)) (-15 -1806 ((-606 $) $)) (-15 -2944 ($ $)) (-15 -3912 ($ $ |t#3|)) (-15 -3940 ($ $ |t#3|)) (-15 -2903 ((-111) $)) (-15 -2835 ((-111) $)) (-15 -2959 ($ $)) (-15 -2270 ($ $)) (-15 -3081 ((-606 $) $)) (-15 -1250 ((-606 $) $)) (-15 -2633 ((-3 (-111) "failed") $ $)) (-15 -1981 ((-111) $ $)) (-15 -4062 ((-111) $ $)) (-15 -1369 ((-111) $ $)) (-15 -1369 ((-111) $ (-606 $))) (-15 -2524 ((-111) $ $)) (-15 -2524 ((-111) $ (-606 $))) (-15 -3812 ((-111) $ $)) (-15 -3812 ((-111) $ (-606 $))) (-15 -3201 ((-111) $ $)) (-15 -3201 ((-111) $ (-606 $))) (-15 -3882 ($ $ $)) (-15 -3472 ($ $ $)) (-15 -3882 ($ $ $ |t#3|)) (-15 -3472 ($ $ $ |t#3|)) (-15 -1852 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -1852 ($ $ $ |t#3|)) (-15 -4047 ($ $ $ |t#3|)) (-15 -1296 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $)) (-15 -1296 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -1672 $)) $ $ |t#3|)) (-15 -2897 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2897 ((-2 (|:| -3449 $) (|:| |gap| (-731)) (|:| -3413 $) (|:| -1672 $)) $ $ |t#3|)) (-15 -3293 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -3491 ($ $ $)) (-15 -2069 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3669 (-731))) $ $)) (-15 -2021 ($ $ $)) (-15 -3787 ($ $ $)) (IF (|has| |t#3| (-580 (-1117))) (PROGN (-6 (-579 (-905 |t#1|))) (-6 (-580 (-905 |t#1|))) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -1516 ((-3 $ "failed") (-905 (-391 (-537))))) (-15 -3958 ($ (-905 (-391 (-537))))) (-15 -3996 ($ (-905 (-391 (-537))))) (-15 -1516 ((-3 $ "failed") (-905 (-537)))) (-15 -3958 ($ (-905 (-537)))) (-15 -3996 ($ (-905 (-537)))) (IF (|has| |t#1| (-945 (-537))) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 |t#1|))) (-15 -3958 ($ (-905 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-537))) (IF (|has| |t#1| (-37 (-391 (-537)))) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 (-537)))) (-15 -3958 ($ (-905 (-537)))) (-15 -3996 ($ (-905 (-537)))) (IF (|has| |t#1| (-522)) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 |t#1|))) (-15 -3958 ($ (-905 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-537))) |%noBranch| (IF (|has| |t#1| (-37 (-391 (-537)))) |%noBranch| (PROGN (-15 -1516 ((-3 $ "failed") (-905 |t#1|))) (-15 -3958 ($ (-905 |t#1|)))))) (-15 -3996 ($ (-905 |t#1|))) (IF (|has| |t#1| (-989 (-537))) (-6 (-580 (-1100))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-15 -1309 ($ $)) (-15 -2721 ($ $)) (-15 -3848 ($ $ |t#1|)) (-15 -2287 ($ $ |t#1|)) (-15 -3848 ($ $ $)) (-15 -2287 ($ $ $)) (-15 -1841 ($ $ $)) (-15 -2141 ((-2 (|:| -2211 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2767 ((-2 (|:| -2211 $) (|:| |coef1| $)) $ $)) (-15 -2707 ((-2 (|:| -2211 $) (|:| |coef2| $)) $ $)) (-15 -4086 ($ $ $)) (-15 -4088 ((-606 $) $ $)) (-15 -1842 ($ $ $)) (-15 -2593 ($ $ $ (-731))) (-15 -3031 ($ $ $ $ (-731))) (-15 -2276 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-435)) (PROGN (-15 -2211 (|t#1| |t#1| $)) (-15 -4013 ($ $)) (-15 -2500 ($ $)) (-15 -3895 ($ $)) (-15 -1635 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-579 (-905 |#1|)) |has| |#3| (-580 (-1117))) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| |#1| (-580 (-513))) (|has| |#3| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#3| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#3| (-580 (-845 (-537))))) ((-580 (-905 |#1|)) |has| |#3| (-580 (-1117))) ((-580 (-1100)) -12 (|has| |#1| (-989 (-537))) (|has| |#3| (-580 (-1117)))) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-293 $) . T) ((-310 |#1| |#2|) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435))) ((-495 |#3| |#1|) . T) ((-495 |#3| $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 |#3|) . T) ((-839 (-363)) -12 (|has| |#1| (-839 (-363))) (|has| |#3| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-839 (-537))) (|has| |#3| (-839 (-537)))) ((-902 |#1| |#2| |#3|) . T) ((-862) |has| |#1| (-862)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 |#1|) . T) ((-989 |#3|) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) |has| |#1| (-862))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-1901 (((-606 (-1122)) $) 13)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-3936 (((-1122) $) 15)) (-2244 (((-111) $ $) NIL))) +(((-1013) (-13 (-1029) (-10 -8 (-15 -1901 ((-606 (-1122)) $)) (-15 -3936 ((-1122) $))))) (T -1013)) +((-1901 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1013)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1013))))) +(-13 (-1029) (-10 -8 (-15 -1901 ((-606 (-1122)) $)) (-15 -3936 ((-1122) $)))) +((-1656 (((-111) |#3| $) 13)) (-4190 (((-3 $ "failed") |#3| (-874)) 23)) (-3490 (((-3 |#3| "failed") |#3| $) 38)) (-3797 (((-111) |#3| $) 16)) (-2840 (((-111) |#3| $) 14))) +(((-1014 |#1| |#2| |#3|) (-10 -8 (-15 -4190 ((-3 |#1| "failed") |#3| (-874))) (-15 -3490 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3797 ((-111) |#3| |#1|)) (-15 -2840 ((-111) |#3| |#1|)) (-15 -1656 ((-111) |#3| |#1|))) (-1015 |#2| |#3|) (-13 (-805) (-347)) (-1176 |#2|)) (T -1014)) +NIL +(-10 -8 (-15 -4190 ((-3 |#1| "failed") |#3| (-874))) (-15 -3490 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3797 ((-111) |#3| |#1|)) (-15 -2840 ((-111) |#3| |#1|)) (-15 -1656 ((-111) |#3| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) |#2| $) 21)) (-2537 (((-537) |#2| $) 22)) (-4190 (((-3 $ "failed") |#2| (-874)) 15)) (-3962 ((|#1| |#2| $ |#1|) 13)) (-3490 (((-3 |#2| "failed") |#2| $) 18)) (-3797 (((-111) |#2| $) 19)) (-2840 (((-111) |#2| $) 20)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2529 ((|#2| $) 17)) (-2341 (((-816) $) 11)) (-4150 ((|#1| |#2| $ |#1|) 14)) (-2607 (((-606 $) |#2|) 16)) (-2244 (((-111) $ $) 6))) +(((-1015 |#1| |#2|) (-134) (-13 (-805) (-347)) (-1176 |t#1|)) (T -1015)) +((-2537 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-537)))) (-1656 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-111)))) (-2840 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-111)))) (-3797 (*1 *2 *3 *1) (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-111)))) (-3490 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) (-4 *2 (-1176 *3)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) (-4 *2 (-1176 *3)))) (-2607 (*1 *2 *3) (-12 (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-606 *1)) (-4 *1 (-1015 *4 *3)))) (-4190 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-874)) (-4 *4 (-13 (-805) (-347))) (-4 *1 (-1015 *4 *2)) (-4 *2 (-1176 *4)))) (-4150 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) (-4 *3 (-1176 *2)))) (-3962 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) (-4 *3 (-1176 *2))))) +(-13 (-1045) (-10 -8 (-15 -2537 ((-537) |t#2| $)) (-15 -1656 ((-111) |t#2| $)) (-15 -2840 ((-111) |t#2| $)) (-15 -3797 ((-111) |t#2| $)) (-15 -3490 ((-3 |t#2| "failed") |t#2| $)) (-15 -2529 (|t#2| $)) (-15 -2607 ((-606 $) |t#2|)) (-15 -4190 ((-3 $ "failed") |t#2| (-874))) (-15 -4150 (|t#1| |t#2| $ |t#1|)) (-15 -3962 (|t#1| |t#2| $ |t#1|)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-3000 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731)) 96)) (-1607 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 56)) (-2540 (((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)) 87)) (-3615 (((-731) (-606 |#4|) (-606 |#5|)) 27)) (-2764 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 58) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111)) 60)) (-4035 (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111)) 79)) (-3996 (((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 82)) (-4134 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-111)) 55)) (-3550 (((-731) (-606 |#4|) (-606 |#5|)) 19))) +(((-1016 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-111))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1016)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) (-5 *1 (-1016 *4 *5 *6 *7 *8)))) (-3000 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-606 *11)) (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) (-5 *6 (-731)) (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) (-4 *11 (-1018 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-5 *1 (-1016 *7 *8 *9 *10 *11)))) (-4035 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-4035 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-2764 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2764 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-2764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *7 *8 *9 *3 *4)) (-4 *4 (-1018 *7 *8 *9 *3)))) (-1607 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-4134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-111))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) +((-3165 (((-111) |#5| $) 21)) (-3398 (((-111) |#5| $) 24)) (-2479 (((-111) |#5| $) 16) (((-111) $) 45)) (-3891 (((-606 $) |#5| $) NIL) (((-606 $) (-606 |#5|) $) 77) (((-606 $) (-606 |#5|) (-606 $)) 75) (((-606 $) |#5| (-606 $)) 78)) (-1540 (($ $ |#5|) NIL) (((-606 $) |#5| $) NIL) (((-606 $) |#5| (-606 $)) 60) (((-606 $) (-606 |#5|) $) 62) (((-606 $) (-606 |#5|) (-606 $)) 64)) (-3014 (((-606 $) |#5| $) NIL) (((-606 $) |#5| (-606 $)) 54) (((-606 $) (-606 |#5|) $) 56) (((-606 $) (-606 |#5|) (-606 $)) 58)) (-3161 (((-111) |#5| $) 27))) +(((-1017 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1540 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -1540 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -1540 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -1540 ((-606 |#1|) |#5| |#1|)) (-15 -3014 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3014 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3014 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3014 ((-606 |#1|) |#5| |#1|)) (-15 -3891 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3891 ((-606 |#1|) |#5| |#1|)) (-15 -3398 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#1|)) (-15 -3161 ((-111) |#5| |#1|)) (-15 -3165 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#5| |#1|)) (-15 -1540 (|#1| |#1| |#5|))) (-1018 |#2| |#3| |#4| |#5|) (-435) (-753) (-807) (-1012 |#2| |#3| |#4|)) (T -1017)) +NIL +(-10 -8 (-15 -1540 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -1540 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -1540 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -1540 ((-606 |#1|) |#5| |#1|)) (-15 -3014 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3014 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3014 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3014 ((-606 |#1|) |#5| |#1|)) (-15 -3891 ((-606 |#1|) |#5| (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) (-606 |#1|))) (-15 -3891 ((-606 |#1|) (-606 |#5|) |#1|)) (-15 -3891 ((-606 |#1|) |#5| |#1|)) (-15 -3398 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#1|)) (-15 -3161 ((-111) |#5| |#1|)) (-15 -3165 ((-111) |#5| |#1|)) (-15 -2479 ((-111) |#5| |#1|)) (-15 -1540 (|#1| |#1| |#5|))) +((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) +(((-1018 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1018)) +((-2479 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3165 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3161 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-3398 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-2806 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 (-111) (-606 *1))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-2605 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *1)))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-2605 (*1 *2 *3 *1) (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3826 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3029 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 *3 (-606 *1))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-1842 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-1395 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3891 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *7)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)))) (-3891 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) (-3014 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-3014 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) (-3014 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *7)))) (-3014 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)))) (-3357 (*1 *1 *2 *1) (-12 (-4 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3357 (*1 *1 *2 *1) (-12 (-5 *2 (-606 *6)) (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)))) (-1540 (*1 *2 *3 *1) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)))) (-1540 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) (-1540 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *7)))) (-1540 (*1 *2 *3 *2) (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1018 *5 *6 *7 *8))))) +(-13 (-1147 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2479 ((-111) |t#4| $)) (-15 -3165 ((-111) |t#4| $)) (-15 -3161 ((-111) |t#4| $)) (-15 -2479 ((-111) $)) (-15 -3398 ((-111) |t#4| $)) (-15 -2806 ((-3 (-111) (-606 $)) |t#4| $)) (-15 -2605 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |t#4| $)) (-15 -2605 ((-111) |t#4| $)) (-15 -3826 ((-606 $) |t#4| $)) (-15 -3029 ((-3 |t#4| (-606 $)) |t#4| |t#4| $)) (-15 -1842 ((-606 (-2 (|:| |val| |t#4|) (|:| -3852 $))) |t#4| |t#4| $)) (-15 -1395 ((-606 (-2 (|:| |val| |t#4|) (|:| -3852 $))) |t#4| $)) (-15 -3891 ((-606 $) |t#4| $)) (-15 -3891 ((-606 $) (-606 |t#4|) $)) (-15 -3891 ((-606 $) (-606 |t#4|) (-606 $))) (-15 -3891 ((-606 $) |t#4| (-606 $))) (-15 -3014 ((-606 $) |t#4| $)) (-15 -3014 ((-606 $) |t#4| (-606 $))) (-15 -3014 ((-606 $) (-606 |t#4|) $)) (-15 -3014 ((-606 $) (-606 |t#4|) (-606 $))) (-15 -3357 ($ |t#4| $)) (-15 -3357 ($ (-606 |t#4|) $)) (-15 -1540 ((-606 $) |t#4| $)) (-15 -1540 ((-606 $) |t#4| (-606 $))) (-15 -1540 ((-606 $) (-606 |t#4|) $)) (-15 -1540 ((-606 $) (-606 |t#4|) (-606 $))) (-15 -3448 ((-606 $) (-606 |t#4|) (-111))))) +(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) +((-1870 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|) 81)) (-2010 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 113)) (-3287 (((-606 |#5|) |#4| |#5|) 70)) (-3707 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-1291 (((-1205)) 37)) (-3761 (((-1205)) 26)) (-2400 (((-1205) (-1100) (-1100) (-1100)) 33)) (-1298 (((-1205) (-1100) (-1100) (-1100)) 22)) (-3223 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|) 96)) (-1979 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111)) 107) (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3843 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 102))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3223 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3843 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-111) |#4| |#5|)) (-15 -3707 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -3287 ((-606 |#5|) |#4| |#5|)) (-15 -1870 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1019)) +((-1870 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2010 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3843 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-1979 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-3223 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-2400 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3761 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3223 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1979 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3843 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2010 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-111) |#4| |#5|)) (-15 -3707 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -3287 ((-606 |#5|) |#4| |#5|)) (-15 -1870 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) +((-2330 (((-111) $ $) NIL)) (-3923 (((-1117) $) 8)) (-1654 (((-1100) $) 16)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 13))) +(((-1020 |#1|) (-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) (-1117)) (T -1020)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1020 *3)) (-14 *3 *2)))) +(-13 (-1045) (-10 -8 (-15 -3923 ((-1117) $)))) +((-2330 (((-111) $ $) NIL)) (-2738 (($ $ (-606 (-1117)) (-1 (-111) (-606 |#3|))) 33)) (-2144 (($ |#3| |#3|) 22) (($ |#3| |#3| (-606 (-1117))) 20)) (-2880 ((|#3| $) 13)) (-1516 (((-3 (-278 |#3|) "failed") $) 58)) (-3958 (((-278 |#3|) $) NIL)) (-2798 (((-606 (-1117)) $) 16)) (-2153 (((-845 |#1|) $) 11)) (-2869 ((|#3| $) 12)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-874)) 39)) (-2341 (((-816) $) 86) (($ (-278 |#3|)) 21)) (-2244 (((-111) $ $) 36))) +(((-1021 |#1| |#2| |#3|) (-13 (-1045) (-270 |#3| |#3|) (-989 (-278 |#3|)) (-10 -8 (-15 -2144 ($ |#3| |#3|)) (-15 -2144 ($ |#3| |#3| (-606 (-1117)))) (-15 -2738 ($ $ (-606 (-1117)) (-1 (-111) (-606 |#3|)))) (-15 -2153 ((-845 |#1|) $)) (-15 -2869 (|#3| $)) (-15 -2880 (|#3| $)) (-15 -1922 (|#3| $ |#3| (-874))) (-15 -2798 ((-606 (-1117)) $)))) (-1045) (-13 (-998) (-839 |#1|) (-807) (-580 (-845 |#1|))) (-13 (-414 |#2|) (-839 |#1|) (-580 (-845 |#1|)))) (T -1021)) +((-2144 (*1 *1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-5 *1 (-1021 *3 *4 *2)) (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))))) (-2144 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1021 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) (-2738 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1 (-111) (-606 *6))) (-4 *6 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1021 *4 *5 *6)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 *2))) (-5 *2 (-845 *3)) (-5 *1 (-1021 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 *2))))) (-2869 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) (-5 *1 (-1021 *3 *4 *2)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) (-2880 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) (-5 *1 (-1021 *3 *4 *2)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) (-1922 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-874)) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1021 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) (-2798 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-5 *2 (-606 (-1117))) (-5 *1 (-1021 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) +(-13 (-1045) (-270 |#3| |#3|) (-989 (-278 |#3|)) (-10 -8 (-15 -2144 ($ |#3| |#3|)) (-15 -2144 ($ |#3| |#3| (-606 (-1117)))) (-15 -2738 ($ $ (-606 (-1117)) (-1 (-111) (-606 |#3|)))) (-15 -2153 ((-845 |#1|) $)) (-15 -2869 (|#3| $)) (-15 -2880 (|#3| $)) (-15 -1922 (|#3| $ |#3| (-874))) (-15 -2798 ((-606 (-1117)) $)))) +((-2330 (((-111) $ $) NIL)) (-2713 (($ (-606 (-1021 |#1| |#2| |#3|))) 13)) (-2155 (((-606 (-1021 |#1| |#2| |#3|)) $) 20)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1922 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-874)) 26)) (-2341 (((-816) $) 16)) (-2244 (((-111) $ $) 19))) +(((-1022 |#1| |#2| |#3|) (-13 (-1045) (-270 |#3| |#3|) (-10 -8 (-15 -2713 ($ (-606 (-1021 |#1| |#2| |#3|)))) (-15 -2155 ((-606 (-1021 |#1| |#2| |#3|)) $)) (-15 -1922 (|#3| $ |#3| (-874))))) (-1045) (-13 (-998) (-839 |#1|) (-807) (-580 (-845 |#1|))) (-13 (-414 |#2|) (-839 |#1|) (-580 (-845 |#1|)))) (T -1022)) +((-2713 (*1 *1 *2) (-12 (-5 *2 (-606 (-1021 *3 *4 *5))) (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) (-5 *1 (-1022 *3 *4 *5)))) (-2155 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) (-5 *2 (-606 (-1021 *3 *4 *5))) (-5 *1 (-1022 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))))) (-1922 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-874)) (-4 *4 (-1045)) (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) (-5 *1 (-1022 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4))))))) +(-13 (-1045) (-270 |#3| |#3|) (-10 -8 (-15 -2713 ($ (-606 (-1021 |#1| |#2| |#3|)))) (-15 -2155 ((-606 (-1021 |#1| |#2| |#3|)) $)) (-15 -1922 (|#3| $ |#3| (-874))))) +((-4167 (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)) 75) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|))) 77) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111)) 76))) +(((-1023 |#1| |#2|) (-10 -7 (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)))) (-13 (-291) (-141)) (-606 (-1117))) (T -1023)) +((-4167 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-13 (-291) (-141))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) (-5 *1 (-1023 *4 *5)) (-5 *3 (-606 (-905 *4))) (-14 *5 (-606 (-1117))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117)))))) +(-10 -7 (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -4167 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)))) +((-3622 (((-402 |#3|) |#3|) 18))) +(((-1024 |#1| |#2| |#3|) (-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) (-1176 (-391 (-537))) (-13 (-347) (-141) (-685 (-391 (-537)) |#1|)) (-1176 |#2|)) (T -1024)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-13 (-347) (-141) (-685 (-391 (-537)) *4))) (-5 *2 (-402 *3)) (-5 *1 (-1024 *4 *5 *3)) (-4 *3 (-1176 *5))))) +(-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 126)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-347)))) (-3377 (($ $) NIL (|has| |#1| (-347)))) (-4017 (((-111) $) NIL (|has| |#1| (-347)))) (-3623 (((-649 |#1|) (-1200 $)) NIL) (((-649 |#1|)) 115)) (-1428 ((|#1| $) 119)) (-1387 (((-1127 (-874) (-731)) (-537)) NIL (|has| |#1| (-333)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-3151 (((-731)) 40 (|has| |#1| (-352)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3447 (($ (-1200 |#1|) (-1200 $)) NIL) (($ (-1200 |#1|)) 43)) (-3242 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-333)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-2664 (((-649 |#1|) $ (-1200 $)) NIL) (((-649 |#1|) $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 106) (((-649 |#1|) (-649 $)) 101)) (-3195 (($ |#2|) 61) (((-3 $ "failed") (-391 |#2|)) NIL (|has| |#1| (-347)))) (-3490 (((-3 $ "failed") $) NIL)) (-3705 (((-874)) 77)) (-1618 (($) 44 (|has| |#1| (-352)))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-4145 (($) NIL (|has| |#1| (-333)))) (-2974 (((-111) $) NIL (|has| |#1| (-333)))) (-2642 (($ $ (-731)) NIL (|has| |#1| (-333))) (($ $) NIL (|has| |#1| (-333)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-4231 (((-874) $) NIL (|has| |#1| (-333))) (((-793 (-874)) $) NIL (|has| |#1| (-333)))) (-2836 (((-111) $) NIL)) (-2055 ((|#1| $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-3199 ((|#2| $) 84 (|has| |#1| (-347)))) (-2334 (((-874) $) 131 (|has| |#1| (-352)))) (-3183 ((|#2| $) 58)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3956 (($) NIL (|has| |#1| (-333)) CONST)) (-2009 (($ (-874)) 125 (|has| |#1| (-352)))) (-2528 (((-1064) $) NIL)) (-1524 (($) 121)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3570 (((-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537))))) NIL (|has| |#1| (-333)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-2067 ((|#1| (-1200 $)) NIL) ((|#1|) 109)) (-3030 (((-731) $) NIL (|has| |#1| (-333))) (((-3 (-731) "failed") $ $) NIL (|has| |#1| (-333)))) (-3456 (($ $) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1 |#1| |#1|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-1630 (((-649 |#1|) (-1200 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-2529 ((|#2|) 73)) (-3553 (($) NIL (|has| |#1| (-333)))) (-1484 (((-1200 |#1|) $ (-1200 $)) 89) (((-649 |#1|) (-1200 $) (-1200 $)) NIL) (((-1200 |#1|) $) 71) (((-649 |#1|) (-1200 $)) 85)) (-3996 (((-1200 |#1|) $) NIL) (($ (-1200 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (|has| |#1| (-333)))) (-2341 (((-816) $) 57) (($ (-537)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-347))) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-347)) (|has| |#1| (-989 (-391 (-537))))))) (-2644 (($ $) NIL (|has| |#1| (-333))) (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-2736 ((|#2| $) 82)) (-3654 (((-731)) 75)) (-2122 (((-1200 $)) 81)) (-3276 (((-111) $ $) NIL (|has| |#1| (-347)))) (-2928 (($) 30 T CONST)) (-2943 (($) 19 T CONST)) (-4230 (($ $) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#1| (-218)) (|has| |#1| (-347))) (|has| |#1| (-333)))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-347)) (|has| |#1| (-853 (-1117))))) (($ $ (-1 |#1| |#1|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-347)))) (-2244 (((-111) $ $) 63)) (-2340 (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) 67) (($ $ $) NIL)) (-2318 (($ $ $) 65)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-391 (-537)) $) NIL (|has| |#1| (-347))) (($ $ (-391 (-537))) NIL (|has| |#1| (-347))))) +(((-1025 |#1| |#2| |#3|) (-685 |#1| |#2|) (-163) (-1176 |#1|) |#2|) (T -1025)) +NIL +(-685 |#1| |#2|) +((-3622 (((-402 |#3|) |#3|) 19))) +(((-1026 |#1| |#2| |#3|) (-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) (-1176 (-391 (-905 (-537)))) (-13 (-347) (-141) (-685 (-391 (-905 (-537))) |#1|)) (-1176 |#2|)) (T -1026)) +((-3622 (*1 *2 *3) (-12 (-4 *4 (-1176 (-391 (-905 (-537))))) (-4 *5 (-13 (-347) (-141) (-685 (-391 (-905 (-537))) *4))) (-5 *2 (-402 *3)) (-5 *1 (-1026 *4 *5 *3)) (-4 *3 (-1176 *5))))) +(-10 -7 (-15 -3622 ((-402 |#3|) |#3|))) +((-2330 (((-111) $ $) NIL)) (-2444 (($ $ $) 14)) (-3889 (($ $ $) 15)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2316 (($) 6)) (-3996 (((-1117) $) 18)) (-2341 (((-816) $) 12)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 13)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 8))) +(((-1027) (-13 (-807) (-10 -8 (-15 -2316 ($)) (-15 -3996 ((-1117) $))))) (T -1027)) +((-2316 (*1 *1) (-5 *1 (-1027))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1027))))) +(-13 (-807) (-10 -8 (-15 -2316 ($)) (-15 -3996 ((-1117) $)))) +((-2341 (((-816) $) 37) (((-1122) $) NIL))) +(((-1028 |#1|) (-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) (-1029)) (T -1028)) +NIL +(-10 -8 (-15 -2341 ((-1122) |#1|)) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (((-1122) $) 14)) (-2244 (((-111) $ $) 6))) +(((-1029) (-134)) (T -1029)) NIL (-13 (-91)) -(((-91) . T) ((-99) . T) ((-572 (-806)) . T) ((-572 (-1107)) . T) ((-1030) . T)) -((-1862 ((|#1| |#1| (-1 (-531) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-1825 (((-1189)) 15)) (-1865 (((-598 |#1|)) 9))) -(((-1016 |#1|) (-10 -7 (-15 -1825 ((-1189))) (-15 -1865 ((-598 |#1|))) (-15 -1862 (|#1| |#1| (-1 (-110) |#1|))) (-15 -1862 (|#1| |#1| (-1 (-531) |#1| |#1|)))) (-129)) (T -1016)) -((-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-531) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2)))) (-1865 (*1 *2) (-12 (-5 *2 (-598 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-129)))) (-1825 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1016 *3)) (-4 *3 (-129))))) -(-10 -7 (-15 -1825 ((-1189))) (-15 -1865 ((-598 |#1|))) (-15 -1862 (|#1| |#1| (-1 (-110) |#1|))) (-15 -1862 (|#1| |#1| (-1 (-531) |#1| |#1|)))) -((-2808 (($ (-106) $) 16)) (-2933 (((-3 (-106) "failed") (-1102) $) 15)) (-3781 (($) 7)) (-2895 (($) 17)) (-2731 (($) 18)) (-1590 (((-598 (-164)) $) 10)) (-2265 (((-806) $) 21))) -(((-1017) (-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1590 ((-598 (-164)) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $)) (-15 -2808 ($ (-106) $)) (-15 -2895 ($)) (-15 -2731 ($))))) (T -1017)) -((-3781 (*1 *1) (-5 *1 (-1017))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-598 (-164))) (-5 *1 (-1017)))) (-2933 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-1017)))) (-2808 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1017)))) (-2895 (*1 *1) (-5 *1 (-1017))) (-2731 (*1 *1) (-5 *1 (-1017)))) -(-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1590 ((-598 (-164)) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $)) (-15 -2808 ($ (-106) $)) (-15 -2895 ($)) (-15 -2731 ($)))) -((-2550 (((-1184 (-639 |#1|)) (-598 (-639 |#1|))) 42) (((-1184 (-639 (-895 |#1|))) (-598 (-1102)) (-639 (-895 |#1|))) 63) (((-1184 (-639 (-388 (-895 |#1|)))) (-598 (-1102)) (-639 (-388 (-895 |#1|)))) 79)) (-3348 (((-1184 |#1|) (-639 |#1|) (-598 (-639 |#1|))) 36))) -(((-1018 |#1|) (-10 -7 (-15 -2550 ((-1184 (-639 (-388 (-895 |#1|)))) (-598 (-1102)) (-639 (-388 (-895 |#1|))))) (-15 -2550 ((-1184 (-639 (-895 |#1|))) (-598 (-1102)) (-639 (-895 |#1|)))) (-15 -2550 ((-1184 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3348 ((-1184 |#1|) (-639 |#1|) (-598 (-639 |#1|))))) (-344)) (T -1018)) -((-3348 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-639 *5))) (-5 *3 (-639 *5)) (-4 *5 (-344)) (-5 *2 (-1184 *5)) (-5 *1 (-1018 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-1018 *4)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344)) (-5 *2 (-1184 (-639 (-895 *5)))) (-5 *1 (-1018 *5)) (-5 *4 (-639 (-895 *5))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344)) (-5 *2 (-1184 (-639 (-388 (-895 *5))))) (-5 *1 (-1018 *5)) (-5 *4 (-639 (-388 (-895 *5))))))) -(-10 -7 (-15 -2550 ((-1184 (-639 (-388 (-895 |#1|)))) (-598 (-1102)) (-639 (-388 (-895 |#1|))))) (-15 -2550 ((-1184 (-639 (-895 |#1|))) (-598 (-1102)) (-639 (-895 |#1|)))) (-15 -2550 ((-1184 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3348 ((-1184 |#1|) (-639 |#1|) (-598 (-639 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1584 (((-598 (-721)) $) NIL) (((-598 (-721)) $ (-1102)) NIL)) (-3449 (((-721) $) NIL) (((-721) $ (-1102)) NIL)) (-2695 (((-598 (-1020 (-1102))) $) NIL)) (-2516 (((-1098 $) $ (-1020 (-1102))) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1020 (-1102)))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-1524 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1020 (-1102)) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL) (((-3 (-1054 |#1| (-1102)) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1020 (-1102)) $) NIL) (((-1102) $) NIL) (((-1054 |#1| (-1102)) $) NIL)) (-3115 (($ $ $ (-1020 (-1102))) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1020 (-1102))) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 (-1020 (-1102))) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1020 (-1102)) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1020 (-1102)) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ (-1102)) NIL) (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) (-1020 (-1102))) NIL) (($ (-1098 $) (-1020 (-1102))) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1020 (-1102))) NIL)) (-3005 (((-503 (-1020 (-1102))) $) NIL) (((-721) $ (-1020 (-1102))) NIL) (((-598 (-721)) $ (-598 (-1020 (-1102)))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 (-1020 (-1102))) (-503 (-1020 (-1102)))) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-4252 (((-1 $ (-721)) (-1102)) NIL) (((-1 $ (-721)) $) NIL (|has| |#1| (-216)))) (-3471 (((-3 (-1020 (-1102)) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2941 (((-1020 (-1102)) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1921 (((-110) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1020 (-1102))) (|:| -1790 (-721))) "failed") $) NIL)) (-2319 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1020 (-1102)) |#1|) NIL) (($ $ (-598 (-1020 (-1102))) (-598 |#1|)) NIL) (($ $ (-1020 (-1102)) $) NIL) (($ $ (-598 (-1020 (-1102))) (-598 $)) NIL) (($ $ (-1102) $) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 $)) NIL (|has| |#1| (-216))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-216)))) (-3176 (($ $ (-1020 (-1102))) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1020 (-1102))) NIL) (($ $ (-598 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3288 (((-598 (-1102)) $) NIL)) (-2012 (((-503 (-1020 (-1102))) $) NIL) (((-721) $ (-1020 (-1102))) NIL) (((-598 (-721)) $ (-598 (-1020 (-1102)))) NIL) (((-721) $ (-1102)) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1020 (-1102)) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1020 (-1102)) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1020 (-1102)) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1020 (-1102))) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-1020 (-1102))) NIL) (($ (-1102)) NIL) (($ (-1054 |#1| (-1102))) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1020 (-1102))) NIL) (($ $ (-598 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1019 |#1|) (-13 (-235 |#1| (-1102) (-1020 (-1102)) (-503 (-1020 (-1102)))) (-977 (-1054 |#1| (-1102)))) (-986)) (T -1019)) -NIL -(-13 (-235 |#1| (-1102) (-1020 (-1102)) (-503 (-1020 (-1102)))) (-977 (-1054 |#1| (-1102)))) -((-2247 (((-110) $ $) NIL)) (-3449 (((-721) $) NIL)) (-3524 ((|#1| $) 10)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3617 (((-721) $) 11)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-4252 (($ |#1| (-721)) 9)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3352 (($ $) NIL) (($ $ (-721)) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 15))) -(((-1020 |#1|) (-248 |#1|) (-797)) (T -1020)) -NIL -(-248 |#1|) -((-3261 (((-598 |#2|) (-1 |#2| |#1|) (-1025 |#1|)) 24 (|has| |#1| (-795))) (((-1025 |#2|) (-1 |#2| |#1|) (-1025 |#1|)) 14))) -(((-1021 |#1| |#2|) (-10 -7 (-15 -3261 ((-1025 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) |%noBranch|)) (-1138) (-1138)) (T -1021)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-795)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-598 *6)) (-5 *1 (-1021 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1025 *6)) (-5 *1 (-1021 *5 *6))))) -(-10 -7 (-15 -3261 ((-1025 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) |%noBranch|)) -((-3261 (((-1023 |#2|) (-1 |#2| |#1|) (-1023 |#1|)) 19))) -(((-1022 |#1| |#2|) (-10 -7 (-15 -3261 ((-1023 |#2|) (-1 |#2| |#1|) (-1023 |#1|)))) (-1138) (-1138)) (T -1022)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1023 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1023 *6)) (-5 *1 (-1022 *5 *6))))) -(-10 -7 (-15 -3261 ((-1023 |#2|) (-1 |#2| |#1|) (-1023 |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3524 (((-1102) $) 11)) (-1347 (((-1025 |#1|) $) 12)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1623 (($ (-1102) (-1025 |#1|)) 10)) (-2265 (((-806) $) 20 (|has| |#1| (-1030)))) (-2148 (((-110) $ $) 15 (|has| |#1| (-1030))))) -(((-1023 |#1|) (-13 (-1138) (-10 -8 (-15 -1623 ($ (-1102) (-1025 |#1|))) (-15 -3524 ((-1102) $)) (-15 -1347 ((-1025 |#1|) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) (-1138)) (T -1023)) -((-1623 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1025 *4)) (-4 *4 (-1138)) (-5 *1 (-1023 *4)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1023 *3)) (-4 *3 (-1138)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-1025 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1138))))) -(-13 (-1138) (-10 -8 (-15 -1623 ($ (-1102) (-1025 |#1|))) (-15 -3524 ((-1102) $)) (-15 -1347 ((-1025 |#1|) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) -((-1347 (($ |#1| |#1|) 7)) (-1915 ((|#1| $) 10)) (-1963 ((|#1| $) 12)) (-1973 (((-531) $) 8)) (-4189 ((|#1| $) 9)) (-1984 ((|#1| $) 11)) (-3318 (($ |#1|) 6)) (-3941 (($ |#1| |#1|) 14)) (-1929 (($ $ (-531)) 13))) -(((-1024 |#1|) (-133) (-1138)) (T -1024)) -((-3941 (*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1929 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1024 *3)) (-4 *3 (-1138)))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1138)) (-5 *2 (-531)))) (-1347 (*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))) -(-13 (-1138) (-10 -8 (-15 -3941 ($ |t#1| |t#1|)) (-15 -1929 ($ $ (-531))) (-15 -1963 (|t#1| $)) (-15 -1984 (|t#1| $)) (-15 -1915 (|t#1| $)) (-15 -4189 (|t#1| $)) (-15 -1973 ((-531) $)) (-15 -1347 ($ |t#1| |t#1|)) (-15 -3318 ($ |t#1|)))) -(((-1138) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1347 (($ |#1| |#1|) 15)) (-3261 (((-598 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-795)))) (-1915 ((|#1| $) 10)) (-1963 ((|#1| $) 9)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1973 (((-531) $) 14)) (-4189 ((|#1| $) 12)) (-1984 ((|#1| $) 11)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2140 (((-598 |#1|) $) 36 (|has| |#1| (-795))) (((-598 |#1|) (-598 $)) 35 (|has| |#1| (-795)))) (-3318 (($ |#1|) 26)) (-2265 (((-806) $) 25 (|has| |#1| (-1030)))) (-3941 (($ |#1| |#1|) 8)) (-1929 (($ $ (-531)) 16)) (-2148 (((-110) $ $) 19 (|has| |#1| (-1030))))) -(((-1025 |#1|) (-13 (-1024 |#1|) (-10 -7 (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-598 |#1|))) |%noBranch|))) (-1138)) (T -1025)) -NIL -(-13 (-1024 |#1|) (-10 -7 (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-598 |#1|))) |%noBranch|))) -((-1347 (($ |#1| |#1|) 7)) (-3261 ((|#2| (-1 |#1| |#1|) $) 16)) (-1915 ((|#1| $) 10)) (-1963 ((|#1| $) 12)) (-1973 (((-531) $) 8)) (-4189 ((|#1| $) 9)) (-1984 ((|#1| $) 11)) (-2140 ((|#2| (-598 $)) 18) ((|#2| $) 17)) (-3318 (($ |#1|) 6)) (-3941 (($ |#1| |#1|) 14)) (-1929 (($ $ (-531)) 13))) -(((-1026 |#1| |#2|) (-133) (-795) (-1076 |t#1|)) (T -1026)) -((-2140 (*1 *2 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795)) (-4 *2 (-1076 *4)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2)) (-4 *3 (-795)) (-4 *2 (-1076 *3)))) (-3261 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795)) (-4 *2 (-1076 *4))))) -(-13 (-1024 |t#1|) (-10 -8 (-15 -2140 (|t#2| (-598 $))) (-15 -2140 (|t#2| $)) (-15 -3261 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1024 |#1|) . T) ((-1138) . T)) -((-4210 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3252 (($ $ $) 10)) (-1786 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1027 |#1| |#2|) (-10 -8 (-15 -4210 (|#1| |#2| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -1786 (|#1| |#1| |#1|))) (-1028 |#2|) (-1030)) (T -1027)) -NIL -(-10 -8 (-15 -4210 (|#1| |#2| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -1786 (|#1| |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-4210 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3252 (($ $ $) 20)) (-3890 (((-110) $ $) 19)) (-4058 (((-110) $ (-721)) 35)) (-1245 (($) 25) (($ (-598 |#1|)) 24)) (-2177 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4273)))) (-4082 (($) 36 T CONST)) (-3086 (($ $) 59 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 43 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 28)) (-3280 (((-110) $ (-721)) 34)) (-2445 (((-598 |#1|) $) 44 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 38)) (-3332 (((-110) $ (-721)) 33)) (-1521 (((-1085) $) 9)) (-1301 (($ $ $) 23)) (-2529 (((-1049) $) 10)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-2294 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 50 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 48 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 (-276 |#1|))) 47 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 29)) (-1589 (((-110) $) 32)) (-3781 (($) 31)) (-1786 (($ $ $) 22) (($ $ |#1|) 21)) (-2539 (((-721) |#1| $) 45 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4273)))) (-2480 (($ $) 30)) (-3318 (((-507) $) 60 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 51)) (-2265 (((-806) $) 11)) (-3445 (($) 27) (($ (-598 |#1|)) 26)) (-2060 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 37 (|has| $ (-6 -4273))))) -(((-1028 |#1|) (-133) (-1030)) (T -1028)) -((-2170 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-3445 (*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3)))) (-1245 (*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-1245 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3)))) (-1301 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-1786 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-1786 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-3252 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-3890 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-4210 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-4210 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-4210 (*1 *1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) -(-13 (-1030) (-144 |t#1|) (-10 -8 (-6 -4263) (-15 -2170 ((-110) $ $)) (-15 -3445 ($)) (-15 -3445 ($ (-598 |t#1|))) (-15 -1245 ($)) (-15 -1245 ($ (-598 |t#1|))) (-15 -1301 ($ $ $)) (-15 -1786 ($ $ $)) (-15 -1786 ($ $ |t#1|)) (-15 -3252 ($ $ $)) (-15 -3890 ((-110) $ $)) (-15 -4210 ($ $ $)) (-15 -4210 ($ $ |t#1|)) (-15 -4210 ($ |t#1| $)))) -(((-33) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) . T) ((-1138) . T)) -((-1521 (((-1085) $) 10)) (-2529 (((-1049) $) 8))) -(((-1029 |#1|) (-10 -8 (-15 -1521 ((-1085) |#1|)) (-15 -2529 ((-1049) |#1|))) (-1030)) (T -1029)) -NIL -(-10 -8 (-15 -1521 ((-1085) |#1|)) (-15 -2529 ((-1049) |#1|))) -((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-1030) (-133)) (T -1030)) -((-2529 (*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1049)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1085))))) -(-13 (-99) (-572 (-806)) (-10 -8 (-15 -2529 ((-1049) $)) (-15 -1521 ((-1085) $)))) -(((-99) . T) ((-572 (-806)) . T)) -((-2247 (((-110) $ $) NIL)) (-3006 (((-721)) 30)) (-1821 (($ (-598 (-864))) 52)) (-2845 (((-3 $ "failed") $ (-864) (-864)) 58)) (-1381 (($) 32)) (-1883 (((-110) (-864) $) 35)) (-2211 (((-864) $) 50)) (-1521 (((-1085) $) NIL)) (-1889 (($ (-864)) 31)) (-2892 (((-3 $ "failed") $ (-864)) 55)) (-2529 (((-1049) $) NIL)) (-2732 (((-1184 $)) 40)) (-1371 (((-598 (-864)) $) 24)) (-1784 (((-721) $ (-864) (-864)) 56)) (-2265 (((-806) $) 29)) (-2148 (((-110) $ $) 21))) -(((-1031 |#1| |#2|) (-13 (-349) (-10 -8 (-15 -2892 ((-3 $ "failed") $ (-864))) (-15 -2845 ((-3 $ "failed") $ (-864) (-864))) (-15 -1371 ((-598 (-864)) $)) (-15 -1821 ($ (-598 (-864)))) (-15 -2732 ((-1184 $))) (-15 -1883 ((-110) (-864) $)) (-15 -1784 ((-721) $ (-864) (-864))))) (-864) (-864)) (T -1031)) -((-2892 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2845 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-2732 (*1 *2) (-12 (-5 *2 (-1184 (-1031 *3 *4))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-864)) (-5 *2 (-110)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1784 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-721)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-349) (-10 -8 (-15 -2892 ((-3 $ "failed") $ (-864))) (-15 -2845 ((-3 $ "failed") $ (-864) (-864))) (-15 -1371 ((-598 (-864)) $)) (-15 -1821 ($ (-598 (-864)))) (-15 -2732 ((-1184 $))) (-15 -1883 ((-110) (-864) $)) (-15 -1784 ((-721) $ (-864) (-864))))) -((-2247 (((-110) $ $) NIL)) (-3847 (($) NIL (|has| |#1| (-349)))) (-4210 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3252 (($ $ $) 72)) (-3890 (((-110) $ $) 73)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-1245 (($ (-598 |#1|)) NIL) (($) 13)) (-2245 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) 67 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4273)))) (-1381 (($) NIL (|has| |#1| (-349)))) (-2227 (((-598 |#1|) $) 19 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-4103 ((|#1| $) 57 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1241 ((|#1| $) 55 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 34)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 70)) (-3540 ((|#1| $) 25)) (-3944 (($ |#1| $) 65)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-2529 (((-1049) $) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-4192 ((|#1| $) 27)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 21)) (-3781 (($) 11)) (-1786 (($ $ |#1|) NIL) (($ $ $) 71)) (-2543 (($) NIL) (($ (-598 |#1|)) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 16)) (-3318 (((-507) $) 52 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 61)) (-1595 (($ $) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL)) (-4112 (((-721) $) NIL)) (-3445 (($ (-598 |#1|)) NIL) (($) 12)) (-2524 (($ (-598 |#1|)) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 54)) (-2167 (((-721) $) 10 (|has| $ (-6 -4273))))) -(((-1032 |#1|) (-406 |#1|) (-1030)) (T -1032)) -NIL -(-406 |#1|) -((-2247 (((-110) $ $) 7)) (-1660 (((-110) $) 32)) (-3287 ((|#2| $) 27)) (-1700 (((-110) $) 33)) (-3149 ((|#1| $) 28)) (-3342 (((-110) $) 35)) (-3922 (((-110) $) 37)) (-2169 (((-110) $) 34)) (-1521 (((-1085) $) 9)) (-1939 (((-110) $) 31)) (-3310 ((|#3| $) 26)) (-2529 (((-1049) $) 10)) (-1298 (((-110) $) 30)) (-2947 ((|#4| $) 25)) (-3486 ((|#5| $) 24)) (-2723 (((-110) $ $) 38)) (-1785 (($ $ (-531)) 14) (($ $ (-598 (-531))) 13)) (-2625 (((-598 $) $) 29)) (-3318 (($ (-598 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2265 (((-806) $) 11)) (-2929 (($ $) 16)) (-2919 (($ $) 17)) (-1331 (((-110) $) 36)) (-2148 (((-110) $ $) 6)) (-2167 (((-531) $) 15))) -(((-1033 |#1| |#2| |#3| |#4| |#5|) (-133) (-1030) (-1030) (-1030) (-1030) (-1030)) (T -1033)) -((-2723 (*1 *2 *1 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1939 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-2625 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *2 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *2 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *2 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-2919 (*1 *1 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-2929 (*1 *1 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-531)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -2723 ((-110) $ $)) (-15 -3922 ((-110) $)) (-15 -1331 ((-110) $)) (-15 -3342 ((-110) $)) (-15 -2169 ((-110) $)) (-15 -1700 ((-110) $)) (-15 -1660 ((-110) $)) (-15 -1939 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2625 ((-598 $) $)) (-15 -3149 (|t#1| $)) (-15 -3287 (|t#2| $)) (-15 -3310 (|t#3| $)) (-15 -2947 (|t#4| $)) (-15 -3486 (|t#5| $)) (-15 -3318 ($ (-598 $))) (-15 -3318 ($ |t#1|)) (-15 -3318 ($ |t#2|)) (-15 -3318 ($ |t#3|)) (-15 -3318 ($ |t#4|)) (-15 -3318 ($ |t#5|)) (-15 -2919 ($ $)) (-15 -2929 ($ $)) (-15 -2167 ((-531) $)) (-15 -1785 ($ $ (-531))) (-15 -1785 ($ $ (-598 (-531)))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL)) (-1660 (((-110) $) NIL)) (-3287 (((-1102) $) NIL)) (-1700 (((-110) $) NIL)) (-3149 (((-1085) $) NIL)) (-3342 (((-110) $) NIL)) (-3922 (((-110) $) NIL)) (-2169 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-1939 (((-110) $) NIL)) (-3310 (((-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-1298 (((-110) $) NIL)) (-2947 (((-208) $) NIL)) (-3486 (((-806) $) NIL)) (-2723 (((-110) $ $) NIL)) (-1785 (($ $ (-531)) NIL) (($ $ (-598 (-531))) NIL)) (-2625 (((-598 $) $) NIL)) (-3318 (($ (-598 $)) NIL) (($ (-1085)) NIL) (($ (-1102)) NIL) (($ (-531)) NIL) (($ (-208)) NIL) (($ (-806)) NIL)) (-2265 (((-806) $) NIL)) (-2929 (($ $) NIL)) (-2919 (($ $) NIL)) (-1331 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-531) $) NIL))) -(((-1034) (-1033 (-1085) (-1102) (-531) (-208) (-806))) (T -1034)) -NIL -(-1033 (-1085) (-1102) (-531) (-208) (-806)) -((-2247 (((-110) $ $) NIL)) (-1660 (((-110) $) 38)) (-3287 ((|#2| $) 42)) (-1700 (((-110) $) 37)) (-3149 ((|#1| $) 41)) (-3342 (((-110) $) 35)) (-3922 (((-110) $) 14)) (-2169 (((-110) $) 36)) (-1521 (((-1085) $) NIL)) (-1939 (((-110) $) 39)) (-3310 ((|#3| $) 44)) (-2529 (((-1049) $) NIL)) (-1298 (((-110) $) 40)) (-2947 ((|#4| $) 43)) (-3486 ((|#5| $) 45)) (-2723 (((-110) $ $) 34)) (-1785 (($ $ (-531)) 56) (($ $ (-598 (-531))) 58)) (-2625 (((-598 $) $) 22)) (-3318 (($ (-598 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2265 (((-806) $) 23)) (-2929 (($ $) 21)) (-2919 (($ $) 52)) (-1331 (((-110) $) 18)) (-2148 (((-110) $ $) 33)) (-2167 (((-531) $) 54))) -(((-1035 |#1| |#2| |#3| |#4| |#5|) (-1033 |#1| |#2| |#3| |#4| |#5|) (-1030) (-1030) (-1030) (-1030) (-1030)) (T -1035)) -NIL -(-1033 |#1| |#2| |#3| |#4| |#5|) -((-3206 (((-1189) $) 23)) (-3187 (($ (-1102) (-415) |#2|) 11)) (-2265 (((-806) $) 16))) -(((-1036 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3187 ($ (-1102) (-415) |#2|)))) (-797) (-411 |#1|)) (T -1036)) -((-3187 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-415)) (-4 *5 (-797)) (-5 *1 (-1036 *5 *4)) (-4 *4 (-411 *5))))) -(-13 (-376) (-10 -8 (-15 -3187 ($ (-1102) (-415) |#2|)))) -((-1242 (((-110) |#5| |#5|) 38)) (-1724 (((-110) |#5| |#5|) 52)) (-2946 (((-110) |#5| (-598 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-4249 (((-110) (-598 |#4|) (-598 |#4|)) 58)) (-3386 (((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 63)) (-1837 (((-1189)) 33)) (-1564 (((-1189) (-1085) (-1085) (-1085)) 29)) (-1907 (((-598 |#5|) (-598 |#5|)) 82)) (-3783 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) 80)) (-1750 (((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110)) 102)) (-2094 (((-110) |#5| |#5|) 47)) (-2897 (((-3 (-110) "failed") |#5| |#5|) 71)) (-1396 (((-110) (-598 |#4|) (-598 |#4|)) 57)) (-2285 (((-110) (-598 |#4|) (-598 |#4|)) 59)) (-1744 (((-110) (-598 |#4|) (-598 |#4|)) 60)) (-1799 (((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-3852 (((-598 |#5|) (-598 |#5|)) 43))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1037)) -((-1799 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9)))) (-5 *1 (-1037 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9)) (-4 *4 (-1005 *6 *7 *8 *9)))) (-1750 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9))))) (-5 *1 (-1037 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7)))) (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1037 *5 *6 *7 *8 *3)))) (-2946 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2897 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2285 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1396 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1724 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2094 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))) (-1242 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1837 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-1564 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)))) -((-1901 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|) 96)) (-3487 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|) 72)) (-2596 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 91)) (-1343 (((-598 |#5|) |#4| |#5|) 110)) (-4071 (((-598 |#5|) |#4| |#5|) 117)) (-3613 (((-598 |#5|) |#4| |#5|) 118)) (-3281 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 97)) (-2805 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 116)) (-1375 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-1864 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110)) 84) (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3324 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 79)) (-4108 (((-1189)) 37)) (-2098 (((-1189)) 26)) (-2747 (((-1189) (-1085) (-1085) (-1085)) 33)) (-3260 (((-1189) (-1085) (-1085) (-1085)) 22))) -(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -3487 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3324 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2596 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1375 ((-110) |#4| |#5|)) (-15 -3281 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -1343 ((-598 |#5|) |#4| |#5|)) (-15 -2805 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -4071 ((-598 |#5|) |#4| |#5|)) (-15 -1375 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3613 ((-598 |#5|) |#4| |#5|)) (-15 -1901 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1038)) -((-1901 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1375 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4071 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1343 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1375 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2596 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3324 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797)) (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9)))) (-5 *1 (-1038 *6 *7 *4 *8 *9)))) (-1864 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-3487 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4108 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-2747 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2098 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-3260 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -3487 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3324 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2596 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1375 ((-110) |#4| |#5|)) (-15 -3281 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -1343 ((-598 |#5|) |#4| |#5|)) (-15 -2805 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -4071 ((-598 |#5|) |#4| |#5|)) (-15 -1375 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3613 ((-598 |#5|) |#4| |#5|)) (-15 -1901 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|))) -((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273))))) -(((-1039 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1039)) -NIL -(-13 (-1005 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1005 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T)) -((-3733 (((-598 (-531)) (-531) (-531) (-531)) 22)) (-2630 (((-598 (-531)) (-531) (-531) (-531)) 12)) (-2561 (((-598 (-531)) (-531) (-531) (-531)) 18)) (-2396 (((-531) (-531) (-531)) 9)) (-4076 (((-1184 (-531)) (-598 (-531)) (-1184 (-531)) (-531)) 46) (((-1184 (-531)) (-1184 (-531)) (-1184 (-531)) (-531)) 41)) (-1920 (((-598 (-531)) (-598 (-531)) (-598 (-531)) (-110)) 28)) (-1329 (((-639 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531))) 45)) (-3263 (((-639 (-531)) (-598 (-531)) (-598 (-531))) 33)) (-3205 (((-598 (-639 (-531))) (-598 (-531))) 35)) (-3542 (((-598 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531))) 49)) (-2901 (((-639 (-531)) (-598 (-531)) (-598 (-531)) (-598 (-531))) 57))) -(((-1040) (-10 -7 (-15 -2901 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -3542 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -3205 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -3263 ((-639 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -1329 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -1920 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-110))) (-15 -4076 ((-1184 (-531)) (-1184 (-531)) (-1184 (-531)) (-531))) (-15 -4076 ((-1184 (-531)) (-598 (-531)) (-1184 (-531)) (-531))) (-15 -2396 ((-531) (-531) (-531))) (-15 -2561 ((-598 (-531)) (-531) (-531) (-531))) (-15 -2630 ((-598 (-531)) (-531) (-531) (-531))) (-15 -3733 ((-598 (-531)) (-531) (-531) (-531))))) (T -1040)) -((-3733 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))) (-2630 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))) (-2561 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1040)))) (-4076 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-598 (-531))) (-5 *4 (-531)) (-5 *1 (-1040)))) (-4076 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-531)) (-5 *1 (-1040)))) (-1920 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *3 (-110)) (-5 *1 (-1040)))) (-1329 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-639 (-531))) (-5 *3 (-598 (-531))) (-5 *1 (-1040)))) (-3263 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-1040)))) (-3542 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *3 (-639 (-531))) (-5 *1 (-1040)))) (-2901 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040))))) -(-10 -7 (-15 -2901 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -3542 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -3205 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -3263 ((-639 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -1329 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -1920 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-110))) (-15 -4076 ((-1184 (-531)) (-1184 (-531)) (-1184 (-531)) (-531))) (-15 -4076 ((-1184 (-531)) (-598 (-531)) (-1184 (-531)) (-531))) (-15 -2396 ((-531) (-531) (-531))) (-15 -2561 ((-598 (-531)) (-531) (-531) (-531))) (-15 -2630 ((-598 (-531)) (-531) (-531) (-531))) (-15 -3733 ((-598 (-531)) (-531) (-531) (-531)))) -((** (($ $ (-864)) 10))) -(((-1041 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-864)))) (-1042)) (T -1041)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-864)))) -((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13)) (* (($ $ $) 14))) -(((-1042) (-133)) (T -1042)) -((* (*1 *1 *1 *1) (-4 *1 (-1042))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-864))))) -(-13 (-1030) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-864))))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-2247 (((-110) $ $) NIL (|has| |#3| (-1030)))) (-3019 (((-110) $) NIL (|has| |#3| (-128)))) (-1685 (($ (-864)) NIL (|has| |#3| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#3| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#3| (-349)))) (-3459 (((-531) $) NIL (|has| |#3| (-795)))) (-2454 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) ((|#3| $) NIL (|has| |#3| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) NIL (|has| |#3| (-986))) (((-639 |#3|) (-639 $)) NIL (|has| |#3| (-986)))) (-3622 (((-3 $ "failed") $) NIL (|has| |#3| (-677)))) (-1381 (($) NIL (|has| |#3| (-349)))) (-2693 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#3| $ (-531)) 12)) (-1599 (((-110) $) NIL (|has| |#3| (-795)))) (-2227 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#3| (-677)))) (-2985 (((-110) $) NIL (|has| |#3| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2445 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2680 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#3| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#3| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#3| (-349)))) (-2529 (((-1049) $) NIL (|has| |#3| (-1030)))) (-3046 ((|#3| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#3|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 |#3|) (-598 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-3163 (((-598 |#3|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#3| $ (-531) |#3|) NIL) ((|#3| $ (-531)) NIL)) (-3225 ((|#3| $ $) NIL (|has| |#3| (-986)))) (-2602 (($ (-1184 |#3|)) NIL)) (-2190 (((-130)) NIL (|has| |#3| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986)))) (-2539 (((-721) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273))) (((-721) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#3|) $) NIL) (($ (-531)) NIL (-1435 (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (|has| |#3| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) (($ |#3|) NIL (|has| |#3| (-1030))) (((-806) $) NIL (|has| |#3| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#3| (-986)))) (-2060 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#3| (-795)))) (-3035 (($) NIL (|has| |#3| (-128)) CONST)) (-3050 (($) NIL (|has| |#3| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2148 (((-110) $ $) NIL (|has| |#3| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2174 (((-110) $ $) 17 (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2263 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2250 (($ $ $) NIL (|has| |#3| (-986))) (($ $) NIL (|has| |#3| (-986)))) (-2237 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-721)) NIL (|has| |#3| (-677))) (($ $ (-864)) NIL (|has| |#3| (-677)))) (* (($ (-531) $) NIL (|has| |#3| (-986))) (($ $ $) NIL (|has| |#3| (-677))) (($ $ |#3|) NIL (|has| |#3| (-677))) (($ |#3| $) NIL (|has| |#3| (-677))) (($ (-721) $) NIL (|has| |#3| (-128))) (($ (-864) $) NIL (|has| |#3| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1043 |#1| |#2| |#3|) (-221 |#1| |#3|) (-721) (-721) (-743)) (T -1043)) -NIL -(-221 |#1| |#3|) -((-3402 (((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 37)) (-3988 (((-531) (-1157 |#2| |#1|)) 69 (|has| |#1| (-432)))) (-3221 (((-531) (-1157 |#2| |#1|)) 54)) (-1601 (((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 45)) (-1769 (((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 68 (|has| |#1| (-432)))) (-4101 (((-598 |#1|) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 48)) (-2538 (((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 53))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -3402 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -1601 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -4101 ((-598 |#1|) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -2538 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3221 ((-531) (-1157 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1769 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3988 ((-531) (-1157 |#2| |#1|)))) |%noBranch|)) (-770) (-1102)) (T -1044)) -((-3988 (*1 *2 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-1769 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-2538 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-4101 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 *4)) (-5 *1 (-1044 *4 *5)))) (-1601 (*1 *2 *3 *3) (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4)))) (-3402 (*1 *2 *3 *3) (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4))))) -(-10 -7 (-15 -3402 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -1601 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -4101 ((-598 |#1|) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -2538 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3221 ((-531) (-1157 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1769 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3988 ((-531) (-1157 |#2| |#1|)))) |%noBranch|)) -((-3459 (((-3 (-531) "failed") |#2| (-1102) |#2| (-1085)) 17) (((-3 (-531) "failed") |#2| (-1102) (-790 |#2|)) 15) (((-3 (-531) "failed") |#2|) 54))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -3459 ((-3 (-531) "failed") |#2|)) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) (-790 |#2|))) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) |#2| (-1085)))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531)) (-432)) (-13 (-27) (-1124) (-411 |#1|))) (T -1045)) -((-3459 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-1085)) (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) (-5 *2 (-531)) (-5 *1 (-1045 *6 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))))) (-3459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) (-5 *2 (-531)) (-5 *1 (-1045 *6 *3)))) (-3459 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) (-5 *2 (-531)) (-5 *1 (-1045 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4)))))) -(-10 -7 (-15 -3459 ((-3 (-531) "failed") |#2|)) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) (-790 |#2|))) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) |#2| (-1085)))) -((-3459 (((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)) (-1085)) 35) (((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-790 (-388 (-895 |#1|)))) 30) (((-3 (-531) "failed") (-388 (-895 |#1|))) 13))) -(((-1046 |#1|) (-10 -7 (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-790 (-388 (-895 |#1|))))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)) (-1085)))) (-432)) (T -1046)) -((-3459 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1102)) (-5 *5 (-1085)) (-4 *6 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *6)))) (-3459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 (-388 (-895 *6)))) (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *6)))) (-3459 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *4))))) -(-10 -7 (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-790 (-388 (-895 |#1|))))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)) (-1085)))) -((-2247 (((-110) $ $) NIL)) (-1671 (((-1107) $) 10)) (-1619 (((-598 (-1107)) $) 11)) (-1424 (($ (-598 (-1107)) (-1107)) 9)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20)) (-2148 (((-110) $ $) 14))) -(((-1047) (-13 (-1030) (-10 -8 (-15 -1424 ($ (-598 (-1107)) (-1107))) (-15 -1671 ((-1107) $)) (-15 -1619 ((-598 (-1107)) $))))) (T -1047)) -((-1424 (*1 *1 *2 *3) (-12 (-5 *2 (-598 (-1107))) (-5 *3 (-1107)) (-5 *1 (-1047)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1047)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1047))))) -(-13 (-1030) (-10 -8 (-15 -1424 ($ (-598 (-1107)) (-1107))) (-15 -1671 ((-1107) $)) (-15 -1619 ((-598 (-1107)) $)))) -((-4013 (((-297 (-531)) (-47)) 12))) -(((-1048) (-10 -7 (-15 -4013 ((-297 (-531)) (-47))))) (T -1048)) -((-4013 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-531))) (-5 *1 (-1048))))) -(-10 -7 (-15 -4013 ((-297 (-531)) (-47)))) -((-2247 (((-110) $ $) NIL)) (-1813 (($ $) 41)) (-3019 (((-110) $) 65)) (-3082 (($ $ $) 48)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) 74)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) 71)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL)) (-2523 (((-531) $) NIL)) (-3650 (($ $ $) 59)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 79) (((-639 (-531)) (-639 $)) 28)) (-3622 (((-3 $ "failed") $) NIL)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($) 82) (($ $) 83)) (-3630 (($ $ $) 58)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) 80)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) 66)) (-4250 (((-110) $) 64)) (-3745 (($ $) 42)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) 75)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) 72)) (-4103 (($ $ $) 68) (($) 39)) (-1241 (($ $ $) 67) (($) 38)) (-3107 (($ $) NIL)) (-2428 (($ $) 70)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) 50)) (-2529 (((-1049) $) NIL) (($ $) 69)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) 62) (($ (-598 $)) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 61)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1651 (($ $) 51)) (-2480 (($ $) NIL)) (-3318 (((-531) $) 32) (((-507) $) NIL) (((-835 (-531)) $) NIL) (((-360) $) NIL) (((-208) $) NIL)) (-2265 (((-806) $) 31) (($ (-531)) 81) (($ $) NIL) (($ (-531)) 81)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) 37)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) 73)) (-1620 (($ $) 63)) (-1868 (($ $ $) 44)) (-3035 (($) 35 T CONST)) (-4251 (($ $ $) 47)) (-3050 (($) 36 T CONST)) (-4231 (((-1085) $) 21) (((-1085) $ (-110)) 23) (((-1189) (-772) $) 24) (((-1189) (-772) $ (-110)) 25)) (-1223 (($ $) 45)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-4240 (($ $ $) 46)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 40)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 49)) (-1854 (($ $ $) 43)) (-2250 (($ $) 52) (($ $ $) 54)) (-2237 (($ $ $) 53)) (** (($ $ (-864)) NIL) (($ $ (-721)) 57)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 34) (($ $ $) 55))) -(((-1049) (-13 (-516) (-614) (-778) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -1241 ($)) (-15 -4103 ($)) (-15 -3745 ($ $)) (-15 -1813 ($ $)) (-15 -1854 ($ $ $)) (-15 -1868 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1223 ($ $)) (-15 -4240 ($ $ $)) (-15 -4251 ($ $ $))))) (T -1049)) -((-1868 (*1 *1 *1 *1) (-5 *1 (-1049))) (-1854 (*1 *1 *1 *1) (-5 *1 (-1049))) (-1813 (*1 *1 *1) (-5 *1 (-1049))) (-1241 (*1 *1) (-5 *1 (-1049))) (-4103 (*1 *1) (-5 *1 (-1049))) (-3745 (*1 *1 *1) (-5 *1 (-1049))) (-3082 (*1 *1 *1 *1) (-5 *1 (-1049))) (-1223 (*1 *1 *1) (-5 *1 (-1049))) (-4240 (*1 *1 *1 *1) (-5 *1 (-1049))) (-4251 (*1 *1 *1 *1) (-5 *1 (-1049)))) -(-13 (-516) (-614) (-778) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -1241 ($)) (-15 -4103 ($)) (-15 -3745 ($ $)) (-15 -1813 ($ $)) (-15 -1854 ($ $ $)) (-15 -1868 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1223 ($ $)) (-15 -4240 ($ $ $)) (-15 -4251 ($ $ $)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-1573 ((|#1| $) 44)) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-3196 ((|#1| |#1| $) 46)) (-4205 ((|#1| $) 45)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1216 (((-721) $) 43)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1050 |#1|) (-133) (-1138)) (T -1050)) -((-3196 (*1 *2 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))) (-1216 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1138)) (-5 *2 (-721))))) -(-13 (-104 |t#1|) (-10 -8 (-6 -4273) (-15 -3196 (|t#1| |t#1| $)) (-15 -4205 (|t#1| $)) (-15 -1573 (|t#1| $)) (-15 -1216 ((-721) $)))) -(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-1354 ((|#3| $) 76)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#3| $) 37)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) 73) (((-639 |#3|) (-639 $)) 65)) (-3352 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-2806 ((|#3| $) 78)) (-2823 ((|#4| $) 32)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ |#3|) 16)) (** (($ $ (-864)) NIL) (($ $ (-721)) 15) (($ $ (-531)) 82))) -(((-1051 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 -2806 (|#3| |#1|)) (-15 -1354 (|#3| |#1|)) (-15 -2823 (|#4| |#1|)) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -2265 ((-806) |#1|))) (-1052 |#2| |#3| |#4| |#5|) (-721) (-986) (-221 |#2| |#3|) (-221 |#2| |#3|)) (T -1051)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 -2806 (|#3| |#1|)) (-15 -1354 (|#3| |#1|)) (-15 -2823 (|#4| |#1|)) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1354 ((|#2| $) 70)) (-2719 (((-110) $) 110)) (-2128 (((-3 $ "failed") $ $) 19)) (-1878 (((-110) $) 108)) (-4058 (((-110) $ (-721)) 100)) (-3264 (($ |#2|) 73)) (-4082 (($) 17 T CONST)) (-2800 (($ $) 127 (|has| |#2| (-289)))) (-4011 ((|#3| $ (-531)) 122)) (-3154 (((-3 (-531) "failed") $) 84 (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 82 (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) 79)) (-2523 (((-531) $) 85 (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) 83 (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) 78)) (-3073 (((-639 (-531)) (-639 $)) 77 (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 76 (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 75) (((-639 |#2|) (-639 $)) 74)) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-721) $) 128 (|has| |#2| (-523)))) (-2627 ((|#2| $ (-531) (-531)) 120)) (-2227 (((-598 |#2|) $) 93 (|has| $ (-6 -4273)))) (-3481 (((-110) $) 30)) (-4091 (((-721) $) 129 (|has| |#2| (-523)))) (-3001 (((-598 |#4|) $) 130 (|has| |#2| (-523)))) (-1548 (((-721) $) 116)) (-1557 (((-721) $) 117)) (-3280 (((-110) $ (-721)) 101)) (-2803 ((|#2| $) 65 (|has| |#2| (-6 (-4275 "*"))))) (-1271 (((-531) $) 112)) (-1665 (((-531) $) 114)) (-2445 (((-598 |#2|) $) 92 (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) 90 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 113)) (-2394 (((-531) $) 115)) (-2200 (($ (-598 (-598 |#2|))) 107)) (-2680 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3924 (((-598 (-598 |#2|)) $) 118)) (-3332 (((-110) $ (-721)) 102)) (-1521 (((-1085) $) 9)) (-2147 (((-3 $ "failed") $) 64 (|has| |#2| (-344)))) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-523)))) (-2294 (((-110) (-1 (-110) |#2|) $) 95 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) 89 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 88 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 106)) (-1589 (((-110) $) 103)) (-3781 (($) 104)) (-1785 ((|#2| $ (-531) (-531) |#2|) 121) ((|#2| $ (-531) (-531)) 119)) (-3352 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-721)) 49) (($ $ (-598 (-1102)) (-598 (-721))) 42 (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) 41 (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) 40 (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) 39 (|has| |#2| (-843 (-1102)))) (($ $ (-721)) 37 (|has| |#2| (-216))) (($ $) 35 (|has| |#2| (-216)))) (-2806 ((|#2| $) 69)) (-3223 (($ (-598 |#2|)) 72)) (-1439 (((-110) $) 109)) (-2823 ((|#3| $) 71)) (-3253 ((|#2| $) 66 (|has| |#2| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#2|) $) 94 (|has| $ (-6 -4273))) (((-721) |#2| $) 91 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 105)) (-3431 ((|#4| $ (-531)) 123)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 81 (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) 80)) (-2284 (((-721)) 28)) (-2060 (((-110) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4273)))) (-2116 (((-110) $) 111)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-721)) 47) (($ $ (-598 (-1102)) (-598 (-721))) 46 (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) 45 (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) 44 (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) 43 (|has| |#2| (-843 (-1102)))) (($ $ (-721)) 38 (|has| |#2| (-216))) (($ $) 36 (|has| |#2| (-216)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#2|) 126 (|has| |#2| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 63 (|has| |#2| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2167 (((-721) $) 99 (|has| $ (-6 -4273))))) -(((-1052 |#1| |#2| |#3| |#4|) (-133) (-721) (-986) (-221 |t#1| |t#2|) (-221 |t#1| |t#2|)) (T -1052)) -((-3264 (*1 *1 *2) (-12 (-4 *2 (-986)) (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-986)) (-4 *1 (-1052 *3 *4 *5 *6)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-986)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-986)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1052 *3 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *2 (-221 *3 *4)) (-4 *5 (-221 *3 *4)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2147 (*1 *1 *1) (|partial| -12 (-4 *1 (-1052 *2 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1052 *3 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344))))) -(-13 (-214 |t#2|) (-109 |t#2| |t#2|) (-989 |t#1| |t#1| |t#2| |t#3| |t#4|) (-392 |t#2|) (-358 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-668 |t#2|)) |%noBranch|) (-15 -3264 ($ |t#2|)) (-15 -3223 ($ (-598 |t#2|))) (-15 -2823 (|t#3| $)) (-15 -1354 (|t#2| $)) (-15 -2806 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4275 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3253 (|t#2| $)) (-15 -2803 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-344)) (PROGN (-15 -2147 ((-3 $ "failed") $)) (-15 ** ($ $ (-531)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4275 "*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-214 |#2|) . T) ((-216) |has| |#2| (-216)) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-358 |#2|) . T) ((-392 |#2|) . T) ((-468 |#2|) . T) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-601 |#2|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#2| (-594 (-531))) ((-594 |#2|) . T) ((-668 |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-6 (-4275 "*")))) ((-677) . T) ((-843 (-1102)) |has| |#2| (-843 (-1102))) ((-989 |#1| |#1| |#2| |#3| |#4|) . T) ((-977 (-388 (-531))) |has| |#2| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#2| (-977 (-531))) ((-977 |#2|) . T) ((-992 |#2|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1138) . T)) -((-1275 ((|#4| |#4|) 70)) (-3098 ((|#4| |#4|) 65)) (-3850 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|) 78)) (-1655 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-4238 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1053 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 (|#4| |#4|)) (-15 -4238 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1275 (|#4| |#4|)) (-15 -1655 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3850 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|))) (-289) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -1053)) -((-3850 (*1 *2 *3 *4) (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-1053 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) (-1655 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-1275 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(-10 -7 (-15 -3098 (|#4| |#4|)) (-15 -4238 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1275 (|#4| |#4|)) (-15 -1655 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3850 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 17)) (-2695 (((-598 |#2|) $) 159)) (-2516 (((-1098 $) $ |#2|) 54) (((-1098 |#1|) $) 43)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 108 (|has| |#1| (-523)))) (-3258 (($ $) 110 (|has| |#1| (-523)))) (-2921 (((-110) $) 112 (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 |#2|)) 192)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 156) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 |#2| "failed") $) NIL)) (-2523 ((|#1| $) 154) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) ((|#2| $) NIL)) (-3115 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-2500 (($ $) 196)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 82)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 |#2|) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) 19)) (-3517 (((-721) $) 26)) (-2682 (($ (-1098 |#1|) |#2|) 48) (($ (-1098 $) |#2|) 64)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) 32)) (-2669 (($ |#1| (-503 |#2|)) 71) (($ $ |#2| (-721)) 52) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#2|) NIL)) (-3005 (((-503 |#2|) $) 186) (((-721) $ |#2|) 187) (((-598 (-721)) $ (-598 |#2|)) 188)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 |#2|) (-503 |#2|)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 120)) (-3471 (((-3 |#2| "failed") $) 161)) (-2462 (($ $) 195)) (-2475 ((|#1| $) 37)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 33)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 138 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 143 (|has| |#1| (-432))) (($ $ $) 130 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-598 |#2|) (-598 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-598 |#2|) (-598 $)) 176)) (-3176 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3352 (($ $ |#2|) 194) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2012 (((-503 |#2|) $) 182) (((-721) $ |#2|) 178) (((-598 (-721)) $ (-598 |#2|)) 180)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#1| $) 126 (|has| |#1| (-432))) (($ $ |#2|) 129 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 149) (($ (-531)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2708 (((-598 |#1|) $) 152)) (-3188 ((|#1| $ (-503 |#2|)) 73) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 79)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) 115 (|has| |#1| (-523)))) (-3035 (($) 12 T CONST)) (-3050 (($) 14 T CONST)) (-4020 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 97)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 124 (|has| |#1| (-344)))) (-2250 (($ $) 85) (($ $ $) 95)) (-2237 (($ $ $) 49)) (** (($ $ (-864)) 102) (($ $ (-721)) 100)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 88) (($ $ $) 65) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1054 |#1| |#2|) (-892 |#1| (-503 |#2|) |#2|) (-986) (-797)) (T -1054)) -NIL -(-892 |#1| (-503 |#2|) |#2|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2367 (($ $) 143 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2391 (($ $) 147 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3383 (((-895 |#1|) $ (-721)) NIL) (((-895 |#1|) $ (-721) (-721)) NIL)) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $ |#2|) NIL) (((-721) $ |#2| (-721)) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3380 (((-110) $) NIL)) (-2669 (($ $ (-598 |#2|) (-598 (-503 |#2|))) NIL) (($ $ |#2| (-503 |#2|)) NIL) (($ |#1| (-503 |#2|)) NIL) (($ $ |#2| (-721)) 58) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) 113 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $ |#2|) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-4003 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-388 (-531)))))) (-1846 (($ $ (-721)) 15)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-2798 (($ $) 111 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (($ $ |#2| $) 97) (($ $ (-598 |#2|) (-598 $)) 90) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL)) (-3352 (($ $ |#2|) 100) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2012 (((-503 |#2|) $) NIL)) (-3417 (((-1 (-1083 |#3|) |#3|) (-598 |#2|) (-598 (-1083 |#3|))) 79)) (-2403 (($ $) 149 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 145 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 17)) (-2265 (((-806) $) 182) (($ (-531)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#2|) 65) (($ |#3|) 63)) (-3188 ((|#1| $ (-503 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL) ((|#3| $ (-721)) 42)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2442 (($ $) 155 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 151 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 159 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2753 (($ $) 161 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 157 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 153 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 10 T CONST)) (-4020 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) 184 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 61)) (** (($ $ (-864)) NIL) (($ $ (-721)) 70) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 103 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 60) (($ $ (-388 (-531))) 108 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 106 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1055 |#1| |#2| |#3|) (-13 (-691 |#1| |#2|) (-10 -8 (-15 -3188 (|#3| $ (-721))) (-15 -2265 ($ |#2|)) (-15 -2265 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3417 ((-1 (-1083 |#3|) |#3|) (-598 |#2|) (-598 (-1083 |#3|)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ |#2| |#1|)) (-15 -4003 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-986) (-797) (-892 |#1| (-503 |#2|) |#2|)) (T -1055)) -((-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *2 (-892 *4 (-503 *5) *5)) (-5 *1 (-1055 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-797)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *2 (-797)) (-5 *1 (-1055 *3 *2 *4)) (-4 *4 (-892 *3 (-503 *2) *2)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2)) (-4 *2 (-892 *3 (-503 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2)) (-4 *2 (-892 *3 (-503 *4) *4)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1083 *7))) (-4 *6 (-797)) (-4 *7 (-892 *5 (-503 *6) *6)) (-4 *5 (-986)) (-5 *2 (-1 (-1083 *7) *7)) (-5 *1 (-1055 *5 *6 *7)))) (-1788 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-4 *2 (-797)) (-5 *1 (-1055 *3 *2 *4)) (-4 *4 (-892 *3 (-503 *2) *2)))) (-4003 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1055 *4 *3 *5))) (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)) (-4 *3 (-797)) (-5 *1 (-1055 *4 *3 *5)) (-4 *5 (-892 *4 (-503 *3) *3))))) -(-13 (-691 |#1| |#2|) (-10 -8 (-15 -3188 (|#3| $ (-721))) (-15 -2265 ($ |#2|)) (-15 -2265 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3417 ((-1 (-1083 |#3|) |#3|) (-598 |#2|) (-598 (-1083 |#3|)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ |#2| |#1|)) (-15 -4003 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273))))) -(((-1056 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1056)) -NIL -(-13 (-1039 |t#1| |t#2| |t#3| |t#4|) (-734 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-734 |#1| |#2| |#3| |#4|) . T) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1005 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1039 |#1| |#2| |#3| |#4|) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T)) -((-1871 (((-598 |#2|) |#1|) 12)) (-1766 (((-598 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-598 |#2|) |#1|) 52)) (-3372 (((-598 |#2|) |#2| |#2| |#2|) 39) (((-598 |#2|) |#1|) 50)) (-2197 ((|#2| |#1|) 46)) (-1543 (((-2 (|:| |solns| (-598 |#2|)) (|:| |maps| (-598 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3364 (((-598 |#2|) |#2| |#2|) 38) (((-598 |#2|) |#1|) 49)) (-1374 (((-598 |#2|) |#2| |#2| |#2| |#2|) 40) (((-598 |#2|) |#1|) 51)) (-1728 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3111 ((|#2| |#2| |#2| |#2|) 43)) (-2440 ((|#2| |#2| |#2|) 42)) (-3066 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1057 |#1| |#2|) (-10 -7 (-15 -1871 ((-598 |#2|) |#1|)) (-15 -2197 (|#2| |#1|)) (-15 -1543 ((-2 (|:| |solns| (-598 |#2|)) (|:| |maps| (-598 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3364 ((-598 |#2|) |#1|)) (-15 -3372 ((-598 |#2|) |#1|)) (-15 -1374 ((-598 |#2|) |#1|)) (-15 -1766 ((-598 |#2|) |#1|)) (-15 -3364 ((-598 |#2|) |#2| |#2|)) (-15 -3372 ((-598 |#2|) |#2| |#2| |#2|)) (-15 -1374 ((-598 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1766 ((-598 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2440 (|#2| |#2| |#2|)) (-15 -3111 (|#2| |#2| |#2| |#2|)) (-15 -3066 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1160 |#2|) (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (T -1057)) -((-1728 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-3066 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-3111 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-2440 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-1766 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-1374 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-3372 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-3364 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-3372 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-3364 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-2 (|:| |solns| (-598 *5)) (|:| |maps| (-598 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1057 *3 *5)) (-4 *3 (-1160 *5)))) (-2197 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -1871 ((-598 |#2|) |#1|)) (-15 -2197 (|#2| |#1|)) (-15 -1543 ((-2 (|:| |solns| (-598 |#2|)) (|:| |maps| (-598 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3364 ((-598 |#2|) |#1|)) (-15 -3372 ((-598 |#2|) |#1|)) (-15 -1374 ((-598 |#2|) |#1|)) (-15 -1766 ((-598 |#2|) |#1|)) (-15 -3364 ((-598 |#2|) |#2| |#2|)) (-15 -3372 ((-598 |#2|) |#2| |#2| |#2|)) (-15 -1374 ((-598 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1766 ((-598 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2440 (|#2| |#2| |#2|)) (-15 -3111 (|#2| |#2| |#2| |#2|)) (-15 -3066 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1681 (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|))))) 95) (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102))) 94) (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|)))) 92) (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 90) (((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|)))) 75) (((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))) (-1102)) 76) (((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|))) 70) (((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)) (-1102)) 59)) (-3878 (((-598 (-598 (-297 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 88) (((-598 (-297 |#1|)) (-388 (-895 |#1|)) (-1102)) 43)) (-3084 (((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-388 (-895 |#1|)) (-1102)) 98) (((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102)) 97))) -(((-1058 |#1|) (-10 -7 (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -3878 ((-598 (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3878 ((-598 (-598 (-297 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-388 (-895 |#1|)) (-1102)))) (-13 (-289) (-797) (-140))) (T -1058)) -((-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-3878 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-297 *5)))) (-5 *1 (-1058 *5)))) (-3878 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-297 *5))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-276 (-388 (-895 *5))))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-598 (-388 (-895 *4)))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-276 (-388 (-895 *4)))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1058 *5))))) -(-10 -7 (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -3878 ((-598 (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3878 ((-598 (-598 (-297 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-388 (-895 |#1|)) (-1102)))) -((-3461 (((-388 (-1098 (-297 |#1|))) (-1184 (-297 |#1|)) (-388 (-1098 (-297 |#1|))) (-531)) 29)) (-2546 (((-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|)))) 40))) -(((-1059 |#1|) (-10 -7 (-15 -2546 ((-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))))) (-15 -3461 ((-388 (-1098 (-297 |#1|))) (-1184 (-297 |#1|)) (-388 (-1098 (-297 |#1|))) (-531)))) (-13 (-523) (-797))) (T -1059)) -((-3461 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-388 (-1098 (-297 *5)))) (-5 *3 (-1184 (-297 *5))) (-5 *4 (-531)) (-4 *5 (-13 (-523) (-797))) (-5 *1 (-1059 *5)))) (-2546 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-388 (-1098 (-297 *3)))) (-4 *3 (-13 (-523) (-797))) (-5 *1 (-1059 *3))))) -(-10 -7 (-15 -2546 ((-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))))) (-15 -3461 ((-388 (-1098 (-297 |#1|))) (-1184 (-297 |#1|)) (-388 (-1098 (-297 |#1|))) (-531)))) -((-1871 (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-297 |#1|))) (-598 (-1102))) 224) (((-598 (-276 (-297 |#1|))) (-297 |#1|) (-1102)) 20) (((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1102)) 26) (((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|))) 25) (((-598 (-276 (-297 |#1|))) (-297 |#1|)) 21))) -(((-1060 |#1|) (-10 -7 (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|) (-1102))) (-15 -1871 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-297 |#1|))) (-598 (-1102))))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (T -1060)) -((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1060 *5)) (-5 *3 (-598 (-276 (-297 *5)))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-297 *5)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-276 (-297 *5))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-276 (-297 *4))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-297 *4))))) -(-10 -7 (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|) (-1102))) (-15 -1871 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-297 |#1|))) (-598 (-1102))))) -((-3809 ((|#2| |#2|) 20 (|has| |#1| (-797))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-1382 ((|#2| |#2|) 19 (|has| |#1| (-797))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16))) -(((-1061 |#1| |#2|) (-10 -7 (-15 -1382 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3809 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-797)) (PROGN (-15 -1382 (|#2| |#2|)) (-15 -3809 (|#2| |#2|))) |%noBranch|)) (-1138) (-13 (-564 (-531) |#1|) (-10 -7 (-6 -4273) (-6 -4274)))) (T -1061)) -((-3809 (*1 *2 *2) (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274)))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274)))))) (-3809 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2)) (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274)))))) (-1382 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2)) (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274))))))) -(-10 -7 (-15 -1382 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3809 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-797)) (PROGN (-15 -1382 (|#2| |#2|)) (-15 -3809 (|#2| |#2|))) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-1841 (((-1091 3 |#1|) $) 107)) (-2868 (((-110) $) 72)) (-3292 (($ $ (-598 (-886 |#1|))) 20) (($ $ (-598 (-598 |#1|))) 75) (($ (-598 (-886 |#1|))) 74) (((-598 (-886 |#1|)) $) 73)) (-1231 (((-110) $) 41)) (-4042 (($ $ (-886 |#1|)) 46) (($ $ (-598 |#1|)) 51) (($ $ (-721)) 53) (($ (-886 |#1|)) 47) (((-886 |#1|) $) 45)) (-3265 (((-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721))) $) 105)) (-3422 (((-721) $) 26)) (-2262 (((-721) $) 25)) (-3235 (($ $ (-721) (-886 |#1|)) 39)) (-2622 (((-110) $) 82)) (-2046 (($ $ (-598 (-598 (-886 |#1|))) (-598 (-161)) (-161)) 89) (($ $ (-598 (-598 (-598 |#1|))) (-598 (-161)) (-161)) 91) (($ $ (-598 (-598 (-886 |#1|))) (-110) (-110)) 85) (($ $ (-598 (-598 (-598 |#1|))) (-110) (-110)) 93) (($ (-598 (-598 (-886 |#1|)))) 86) (($ (-598 (-598 (-886 |#1|))) (-110) (-110)) 87) (((-598 (-598 (-886 |#1|))) $) 84)) (-3508 (($ (-598 $)) 28) (($ $ $) 29)) (-1526 (((-598 (-161)) $) 102)) (-3507 (((-598 (-886 |#1|)) $) 96)) (-3101 (((-598 (-598 (-161))) $) 101)) (-1249 (((-598 (-598 (-598 (-886 |#1|)))) $) NIL)) (-2127 (((-598 (-598 (-598 (-721)))) $) 99)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1794 (((-721) $ (-598 (-886 |#1|))) 37)) (-2775 (((-110) $) 54)) (-2430 (($ $ (-598 (-886 |#1|))) 56) (($ $ (-598 (-598 |#1|))) 62) (($ (-598 (-886 |#1|))) 57) (((-598 (-886 |#1|)) $) 55)) (-2758 (($) 23) (($ (-1091 3 |#1|)) 24)) (-2480 (($ $) 35)) (-4171 (((-598 $) $) 34)) (-2960 (($ (-598 $)) 31)) (-3015 (((-598 $) $) 33)) (-2265 (((-806) $) 111)) (-1482 (((-110) $) 64)) (-2872 (($ $ (-598 (-886 |#1|))) 66) (($ $ (-598 (-598 |#1|))) 69) (($ (-598 (-886 |#1|))) 67) (((-598 (-886 |#1|)) $) 65)) (-1321 (($ $) 106)) (-2148 (((-110) $ $) NIL))) -(((-1062 |#1|) (-1063 |#1|) (-986)) (T -1062)) -NIL -(-1063 |#1|) -((-2247 (((-110) $ $) 7)) (-1841 (((-1091 3 |#1|) $) 13)) (-2868 (((-110) $) 29)) (-3292 (($ $ (-598 (-886 |#1|))) 33) (($ $ (-598 (-598 |#1|))) 32) (($ (-598 (-886 |#1|))) 31) (((-598 (-886 |#1|)) $) 30)) (-1231 (((-110) $) 44)) (-4042 (($ $ (-886 |#1|)) 49) (($ $ (-598 |#1|)) 48) (($ $ (-721)) 47) (($ (-886 |#1|)) 46) (((-886 |#1|) $) 45)) (-3265 (((-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721))) $) 15)) (-3422 (((-721) $) 58)) (-2262 (((-721) $) 59)) (-3235 (($ $ (-721) (-886 |#1|)) 50)) (-2622 (((-110) $) 21)) (-2046 (($ $ (-598 (-598 (-886 |#1|))) (-598 (-161)) (-161)) 28) (($ $ (-598 (-598 (-598 |#1|))) (-598 (-161)) (-161)) 27) (($ $ (-598 (-598 (-886 |#1|))) (-110) (-110)) 26) (($ $ (-598 (-598 (-598 |#1|))) (-110) (-110)) 25) (($ (-598 (-598 (-886 |#1|)))) 24) (($ (-598 (-598 (-886 |#1|))) (-110) (-110)) 23) (((-598 (-598 (-886 |#1|))) $) 22)) (-3508 (($ (-598 $)) 57) (($ $ $) 56)) (-1526 (((-598 (-161)) $) 16)) (-3507 (((-598 (-886 |#1|)) $) 20)) (-3101 (((-598 (-598 (-161))) $) 17)) (-1249 (((-598 (-598 (-598 (-886 |#1|)))) $) 18)) (-2127 (((-598 (-598 (-598 (-721)))) $) 19)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-1794 (((-721) $ (-598 (-886 |#1|))) 51)) (-2775 (((-110) $) 39)) (-2430 (($ $ (-598 (-886 |#1|))) 43) (($ $ (-598 (-598 |#1|))) 42) (($ (-598 (-886 |#1|))) 41) (((-598 (-886 |#1|)) $) 40)) (-2758 (($) 61) (($ (-1091 3 |#1|)) 60)) (-2480 (($ $) 52)) (-4171 (((-598 $) $) 53)) (-2960 (($ (-598 $)) 55)) (-3015 (((-598 $) $) 54)) (-2265 (((-806) $) 11)) (-1482 (((-110) $) 34)) (-2872 (($ $ (-598 (-886 |#1|))) 38) (($ $ (-598 (-598 |#1|))) 37) (($ (-598 (-886 |#1|))) 36) (((-598 (-886 |#1|)) $) 35)) (-1321 (($ $) 14)) (-2148 (((-110) $ $) 6))) -(((-1063 |#1|) (-133) (-986)) (T -1063)) -((-2265 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-806)))) (-2758 (*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-1091 3 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3015 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (-598 (-886 *4))) (-4 *1 (-1063 *4)) (-4 *4 (-986)) (-5 *2 (-721)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-886 *4)) (-4 *1 (-1063 *4)) (-4 *4 (-986)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-4042 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-886 *3)))) (-1231 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-2046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-598 (-886 *5)))) (-5 *3 (-598 (-161))) (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986)))) (-2046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-598 (-161))) (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986)))) (-2046 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) (-4 *1 (-1063 *4)) (-4 *4 (-986)))) (-2046 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-110)) (-4 *1 (-1063 *4)) (-4 *4 (-986)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 *3)))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2046 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) (-4 *4 (-986)) (-4 *1 (-1063 *4)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-886 *3)))))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-598 (-721))))))) (-1249 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-598 (-886 *3))))))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-161)))))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-161))))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721)))))) (-1321 (*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-1091 3 *3))))) -(-13 (-1030) (-10 -8 (-15 -2758 ($)) (-15 -2758 ($ (-1091 3 |t#1|))) (-15 -2262 ((-721) $)) (-15 -3422 ((-721) $)) (-15 -3508 ($ (-598 $))) (-15 -3508 ($ $ $)) (-15 -2960 ($ (-598 $))) (-15 -3015 ((-598 $) $)) (-15 -4171 ((-598 $) $)) (-15 -2480 ($ $)) (-15 -1794 ((-721) $ (-598 (-886 |t#1|)))) (-15 -3235 ($ $ (-721) (-886 |t#1|))) (-15 -4042 ($ $ (-886 |t#1|))) (-15 -4042 ($ $ (-598 |t#1|))) (-15 -4042 ($ $ (-721))) (-15 -4042 ($ (-886 |t#1|))) (-15 -4042 ((-886 |t#1|) $)) (-15 -1231 ((-110) $)) (-15 -2430 ($ $ (-598 (-886 |t#1|)))) (-15 -2430 ($ $ (-598 (-598 |t#1|)))) (-15 -2430 ($ (-598 (-886 |t#1|)))) (-15 -2430 ((-598 (-886 |t#1|)) $)) (-15 -2775 ((-110) $)) (-15 -2872 ($ $ (-598 (-886 |t#1|)))) (-15 -2872 ($ $ (-598 (-598 |t#1|)))) (-15 -2872 ($ (-598 (-886 |t#1|)))) (-15 -2872 ((-598 (-886 |t#1|)) $)) (-15 -1482 ((-110) $)) (-15 -3292 ($ $ (-598 (-886 |t#1|)))) (-15 -3292 ($ $ (-598 (-598 |t#1|)))) (-15 -3292 ($ (-598 (-886 |t#1|)))) (-15 -3292 ((-598 (-886 |t#1|)) $)) (-15 -2868 ((-110) $)) (-15 -2046 ($ $ (-598 (-598 (-886 |t#1|))) (-598 (-161)) (-161))) (-15 -2046 ($ $ (-598 (-598 (-598 |t#1|))) (-598 (-161)) (-161))) (-15 -2046 ($ $ (-598 (-598 (-886 |t#1|))) (-110) (-110))) (-15 -2046 ($ $ (-598 (-598 (-598 |t#1|))) (-110) (-110))) (-15 -2046 ($ (-598 (-598 (-886 |t#1|))))) (-15 -2046 ($ (-598 (-598 (-886 |t#1|))) (-110) (-110))) (-15 -2046 ((-598 (-598 (-886 |t#1|))) $)) (-15 -2622 ((-110) $)) (-15 -3507 ((-598 (-886 |t#1|)) $)) (-15 -2127 ((-598 (-598 (-598 (-721)))) $)) (-15 -1249 ((-598 (-598 (-598 (-886 |t#1|)))) $)) (-15 -3101 ((-598 (-598 (-161))) $)) (-15 -1526 ((-598 (-161)) $)) (-15 -3265 ((-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721))) $)) (-15 -1321 ($ $)) (-15 -1841 ((-1091 3 |t#1|) $)) (-15 -2265 ((-806) $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-3093 (((-598 (-1107)) (-1085)) 9))) -(((-1064) (-10 -7 (-15 -3093 ((-598 (-1107)) (-1085))))) (T -1064)) -((-3093 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-1064))))) -(-10 -7 (-15 -3093 ((-598 (-1107)) (-1085)))) -((-2289 (((-1189) (-598 (-806))) 23) (((-1189) (-806)) 22)) (-2702 (((-1189) (-598 (-806))) 21) (((-1189) (-806)) 20)) (-3206 (((-1189) (-598 (-806))) 19) (((-1189) (-806)) 11) (((-1189) (-1085) (-806)) 17))) -(((-1065) (-10 -7 (-15 -3206 ((-1189) (-1085) (-806))) (-15 -3206 ((-1189) (-806))) (-15 -2702 ((-1189) (-806))) (-15 -2289 ((-1189) (-806))) (-15 -3206 ((-1189) (-598 (-806)))) (-15 -2702 ((-1189) (-598 (-806)))) (-15 -2289 ((-1189) (-598 (-806)))))) (T -1065)) -((-2289 (*1 *2 *3) (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065))))) -(-10 -7 (-15 -3206 ((-1189) (-1085) (-806))) (-15 -3206 ((-1189) (-806))) (-15 -2702 ((-1189) (-806))) (-15 -2289 ((-1189) (-806))) (-15 -3206 ((-1189) (-598 (-806)))) (-15 -2702 ((-1189) (-598 (-806)))) (-15 -2289 ((-1189) (-598 (-806))))) -((-1690 (($ $ $) 10)) (-2188 (($ $) 9)) (-3031 (($ $ $) 13)) (-2143 (($ $ $) 15)) (-1702 (($ $ $) 12)) (-2081 (($ $ $) 14)) (-3558 (($ $) 17)) (-2336 (($ $) 16)) (-1620 (($ $) 6)) (-3926 (($ $ $) 11) (($ $) 7)) (-1312 (($ $ $) 8))) -(((-1066) (-133)) (T -1066)) -((-3558 (*1 *1 *1) (-4 *1 (-1066))) (-2336 (*1 *1 *1) (-4 *1 (-1066))) (-2143 (*1 *1 *1 *1) (-4 *1 (-1066))) (-2081 (*1 *1 *1 *1) (-4 *1 (-1066))) (-3031 (*1 *1 *1 *1) (-4 *1 (-1066))) (-1702 (*1 *1 *1 *1) (-4 *1 (-1066))) (-3926 (*1 *1 *1 *1) (-4 *1 (-1066))) (-1690 (*1 *1 *1 *1) (-4 *1 (-1066))) (-2188 (*1 *1 *1) (-4 *1 (-1066))) (-1312 (*1 *1 *1 *1) (-4 *1 (-1066))) (-3926 (*1 *1 *1) (-4 *1 (-1066))) (-1620 (*1 *1 *1) (-4 *1 (-1066)))) -(-13 (-10 -8 (-15 -1620 ($ $)) (-15 -3926 ($ $)) (-15 -1312 ($ $ $)) (-15 -2188 ($ $)) (-15 -1690 ($ $ $)) (-15 -3926 ($ $ $)) (-15 -1702 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -2081 ($ $ $)) (-15 -2143 ($ $ $)) (-15 -2336 ($ $)) (-15 -3558 ($ $)))) -((-2247 (((-110) $ $) 41)) (-3482 ((|#1| $) 15)) (-3424 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-2182 (((-110) $) 17)) (-3053 (($ $ |#1|) 28)) (-3578 (($ $ (-110)) 30)) (-2908 (($ $) 31)) (-2795 (($ $ |#2|) 29)) (-1521 (((-1085) $) NIL)) (-2853 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-2529 (((-1049) $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 10)) (-2480 (($ $) 27)) (-2274 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) 21) (((-598 $) (-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|)))) 24) (((-598 $) |#1| (-598 |#2|)) 26)) (-2017 ((|#2| $) 16)) (-2265 (((-806) $) 50)) (-2148 (((-110) $ $) 39))) -(((-1067 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -3781 ($)) (-15 -1589 ((-110) $)) (-15 -3482 (|#1| $)) (-15 -2017 (|#2| $)) (-15 -2182 ((-110) $)) (-15 -2274 ($ |#1| |#2| (-110))) (-15 -2274 ($ |#1| |#2|)) (-15 -2274 ($ (-2 (|:| |val| |#1|) (|:| -2410 |#2|)))) (-15 -2274 ((-598 $) (-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))))) (-15 -2274 ((-598 $) |#1| (-598 |#2|))) (-15 -2480 ($ $)) (-15 -3053 ($ $ |#1|)) (-15 -2795 ($ $ |#2|)) (-15 -3578 ($ $ (-110))) (-15 -2908 ($ $)) (-15 -2853 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3424 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1030) (-33)) (-13 (-1030) (-33))) (T -1067)) -((-3781 (*1 *1) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-3482 (*1 *2 *1) (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-13 (-1030) (-33))))) (-2017 (*1 *2 *1) (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *3 *2)) (-4 *3 (-13 (-1030) (-33))))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2410 *4))) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1067 *3 *4)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |val| *4) (|:| -2410 *5)))) (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-598 (-1067 *4 *5))) (-5 *1 (-1067 *4 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *5)) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-598 (-1067 *3 *5))) (-5 *1 (-1067 *3 *5)) (-4 *3 (-13 (-1030) (-33))))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-3053 (*1 *1 *1 *2) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2795 (*1 *1 *1 *2) (-12 (-5 *1 (-1067 *3 *2)) (-4 *3 (-13 (-1030) (-33))) (-4 *2 (-13 (-1030) (-33))))) (-3578 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-2908 (*1 *1 *1) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2853 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1067 *5 *6)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33)))))) -(-13 (-1030) (-10 -8 (-15 -3781 ($)) (-15 -1589 ((-110) $)) (-15 -3482 (|#1| $)) (-15 -2017 (|#2| $)) (-15 -2182 ((-110) $)) (-15 -2274 ($ |#1| |#2| (-110))) (-15 -2274 ($ |#1| |#2|)) (-15 -2274 ($ (-2 (|:| |val| |#1|) (|:| -2410 |#2|)))) (-15 -2274 ((-598 $) (-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))))) (-15 -2274 ((-598 $) |#1| (-598 |#2|))) (-15 -2480 ($ $)) (-15 -3053 ($ $ |#1|)) (-15 -2795 ($ $ |#2|)) (-15 -3578 ($ $ (-110))) (-15 -2908 ($ $)) (-15 -2853 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3424 ((-110) $ $ (-1 (-110) |#2| |#2|))))) -((-2247 (((-110) $ $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-3482 (((-1067 |#1| |#2|) $) 25)) (-2467 (($ $) 76)) (-1975 (((-110) (-1067 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-1433 (($ $ $ (-598 (-1067 |#1| |#2|))) 90) (($ $ $ (-598 (-1067 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-4058 (((-110) $ (-721)) NIL)) (-2039 (((-1067 |#1| |#2|) $ (-1067 |#1| |#2|)) 43 (|has| $ (-6 -4274)))) (-2454 (((-1067 |#1| |#2|) $ "value" (-1067 |#1| |#2|)) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-1725 (((-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) $) 80)) (-2717 (($ (-1067 |#1| |#2|) $) 39)) (-2283 (($ (-1067 |#1| |#2|) $) 31)) (-2227 (((-598 (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 51)) (-1957 (((-110) (-1067 |#1| |#2|) $) 82)) (-1478 (((-110) $ $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 (-1067 |#1| |#2|)) $) 55 (|has| $ (-6 -4273)))) (-1883 (((-110) (-1067 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-1067 |#1| |#2|) (-1030))))) (-2680 (($ (-1 (-1067 |#1| |#2|) (-1067 |#1| |#2|)) $) 47 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-1067 |#1| |#2|) (-1067 |#1| |#2|)) $) 46)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 (-1067 |#1| |#2|)) $) 53)) (-2672 (((-110) $) 42)) (-1521 (((-1085) $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-2529 (((-1049) $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-1251 (((-3 $ "failed") $) 75)) (-2294 (((-110) (-1 (-110) (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-1067 |#1| |#2|)))) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030)))) (($ $ (-276 (-1067 |#1| |#2|))) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030)))) (($ $ (-1067 |#1| |#2|) (-1067 |#1| |#2|)) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030)))) (($ $ (-598 (-1067 |#1| |#2|)) (-598 (-1067 |#1| |#2|))) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030))))) (-2019 (((-110) $ $) 50)) (-1589 (((-110) $) 22)) (-3781 (($) 24)) (-1785 (((-1067 |#1| |#2|) $ "value") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) 44)) (-2539 (((-721) (-1 (-110) (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273))) (((-721) (-1067 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-1067 |#1| |#2|) (-1030))))) (-2480 (($ $) 49)) (-2274 (($ (-1067 |#1| |#2|)) 9) (($ |#1| |#2| (-598 $)) 12) (($ |#1| |#2| (-598 (-1067 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-598 |#2|)) 17)) (-2858 (((-598 |#2|) $) 81)) (-2265 (((-806) $) 73 (|has| (-1067 |#1| |#2|) (-572 (-806))))) (-3495 (((-598 $) $) 28)) (-2910 (((-110) $ $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-2060 (((-110) (-1 (-110) (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 64 (|has| (-1067 |#1| |#2|) (-1030)))) (-2167 (((-721) $) 58 (|has| $ (-6 -4273))))) -(((-1068 |#1| |#2|) (-13 (-951 (-1067 |#1| |#2|)) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1251 ((-3 $ "failed") $)) (-15 -2467 ($ $)) (-15 -2274 ($ (-1067 |#1| |#2|))) (-15 -2274 ($ |#1| |#2| (-598 $))) (-15 -2274 ($ |#1| |#2| (-598 (-1067 |#1| |#2|)))) (-15 -2274 ($ |#1| |#2| |#1| (-598 |#2|))) (-15 -2858 ((-598 |#2|) $)) (-15 -1725 ((-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) $)) (-15 -1957 ((-110) (-1067 |#1| |#2|) $)) (-15 -1975 ((-110) (-1067 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2283 ($ (-1067 |#1| |#2|) $)) (-15 -2717 ($ (-1067 |#1| |#2|) $)) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)))) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1030) (-33)) (-13 (-1030) (-33))) (T -1068)) -((-1251 (*1 *1 *1) (|partial| -12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2467 (*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-598 (-1068 *2 *3))) (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-598 (-1067 *2 *3))) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))) (-5 *1 (-1068 *2 *3)))) (-2274 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-1030) (-33))) (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-598 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1068 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-1957 (*1 *2 *3 *1) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1068 *4 *5)))) (-1975 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1067 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1068 *5 *6)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-2717 (*1 *1 *2 *1) (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-1433 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-598 (-1067 *3 *4))) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-1433 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1067 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) (-5 *1 (-1068 *4 *5))))) -(-13 (-951 (-1067 |#1| |#2|)) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1251 ((-3 $ "failed") $)) (-15 -2467 ($ $)) (-15 -2274 ($ (-1067 |#1| |#2|))) (-15 -2274 ($ |#1| |#2| (-598 $))) (-15 -2274 ($ |#1| |#2| (-598 (-1067 |#1| |#2|)))) (-15 -2274 ($ |#1| |#2| |#1| (-598 |#2|))) (-15 -2858 ((-598 |#2|) $)) (-15 -1725 ((-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) $)) (-15 -1957 ((-110) (-1067 |#1| |#2|) $)) (-15 -1975 ((-110) (-1067 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2283 ($ (-1067 |#1| |#2|) $)) (-15 -2717 ($ (-1067 |#1| |#2|) $)) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)))) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2096 (($ $) NIL)) (-1354 ((|#2| $) NIL)) (-2719 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4000 (($ (-639 |#2|)) 47)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3264 (($ |#2|) 9)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 60 (|has| |#2| (-289)))) (-4011 (((-223 |#1| |#2|) $ (-531)) 34)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 74)) (-2277 (((-721) $) 62 (|has| |#2| (-523)))) (-2627 ((|#2| $ (-531) (-531)) NIL)) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL)) (-4091 (((-721) $) 64 (|has| |#2| (-523)))) (-3001 (((-598 (-223 |#1| |#2|)) $) 68 (|has| |#2| (-523)))) (-1548 (((-721) $) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#2| $) 58 (|has| |#2| (-6 (-4275 "*"))))) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#2|))) 29)) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3924 (((-598 (-598 |#2|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2147 (((-3 $ "failed") $) 71 (|has| |#2| (-344)))) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) (-531) |#2|) NIL) ((|#2| $ (-531) (-531)) NIL)) (-3352 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2806 ((|#2| $) NIL)) (-3223 (($ (-598 |#2|)) 42)) (-1439 (((-110) $) NIL)) (-2823 (((-223 |#1| |#2|) $) NIL)) (-3253 ((|#2| $) 56 (|has| |#2| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 83 (|has| |#2| (-573 (-507))))) (-3431 (((-223 |#1| |#2|) $ (-531)) 36)) (-2265 (((-806) $) 39) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) NIL) (((-639 |#2|) $) 44)) (-2284 (((-721)) 17)) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-3035 (($) 11 T CONST)) (-3050 (($) 14 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) 54) (($ $ (-531)) 73 (|has| |#2| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) 50) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) 52)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1069 |#1| |#2|) (-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-10 -8 (-15 -2096 ($ $)) (-15 -4000 ($ (-639 |#2|))) (-15 -2265 ((-639 |#2|) $)) (IF (|has| |#2| (-6 (-4275 "*"))) (-6 -4262) |%noBranch|) (IF (|has| |#2| (-6 (-4275 "*"))) (IF (|has| |#2| (-6 -4270)) (-6 -4270) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) (-721) (-986)) (T -1069)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-639 *4)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-721)) (-4 *4 (-986)))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-721)) (-4 *3 (-986)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-639 *4)) (-4 *4 (-986)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-721))))) -(-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-10 -8 (-15 -2096 ($ $)) (-15 -4000 ($ (-639 |#2|))) (-15 -2265 ((-639 |#2|) $)) (IF (|has| |#2| (-6 (-4275 "*"))) (-6 -4262) |%noBranch|) (IF (|has| |#2| (-6 (-4275 "*"))) (IF (|has| |#2| (-6 -4270)) (-6 -4270) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) -((-4102 (($ $) 19)) (-3634 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-3009 (((-110) $ $) 24)) (-2559 (($ $) 17)) (-1785 (((-137) $ (-531) (-137)) NIL) (((-137) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL) (($ $ $) 29)) (-2265 (($ (-137)) 27) (((-806) $) NIL))) -(((-1070 |#1|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| (-134))) (-15 -3634 (|#1| |#1| (-137))) (-15 -2265 (|#1| (-137))) (-15 -3009 ((-110) |#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1785 ((-137) |#1| (-531))) (-15 -1785 ((-137) |#1| (-531) (-137)))) (-1071)) (T -1070)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| (-134))) (-15 -3634 (|#1| |#1| (-137))) (-15 -2265 (|#1| (-137))) (-15 -3009 ((-110) |#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1785 ((-137) |#1| (-531))) (-15 -1785 ((-137) |#1| (-531) (-137)))) -((-2247 (((-110) $ $) 19 (|has| (-137) (-1030)))) (-2815 (($ $) 120)) (-4102 (($ $) 121)) (-3634 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) 118)) (-2955 (((-110) $ $ (-531)) 117)) (-2040 (((-598 $) $ (-137)) 110) (((-598 $) $ (-134)) 109)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| (-137) (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 (((-137) $ (-531) (-137)) 52 (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2810 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-2407 (($ $ (-1151 (-531)) $) 114)) (-3086 (($ $) 78 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-137) $) 77 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) 53 (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) 51)) (-3009 (((-110) $ $) 119)) (-1976 (((-531) (-1 (-110) (-137)) $) 97) (((-531) (-137) $) 96 (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) 95 (|has| (-137) (-1030))) (((-531) $ $ (-531)) 113) (((-531) (-134) $ (-531)) 112)) (-2227 (((-598 (-137)) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) 115)) (-2869 (((-721) $ $ (-137)) 116)) (-2680 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-1659 (($ $) 122)) (-2559 (($ $) 123)) (-3332 (((-110) $ (-721)) 10)) (-2821 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1521 (((-1085) $) 22 (|has| (-137) (-1030)))) (-4059 (($ (-137) $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| (-137) (-1030)))) (-3046 (((-137) $) 42 (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-3742 (($ $ (-137)) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 (((-137) $ (-531) (-137)) 50) (((-137) $ (-531)) 49) (($ $ (-1151 (-531))) 63) (($ $ $) 102)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4273))) (((-721) (-137) $) 28 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) 70)) (-3536 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (($ (-137)) 111) (((-806) $) 18 (|has| (-137) (-572 (-806))))) (-2060 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| (-137) (-797)))) (-2184 (((-110) $ $) 83 (|has| (-137) (-797)))) (-2148 (((-110) $ $) 20 (|has| (-137) (-1030)))) (-2195 (((-110) $ $) 85 (|has| (-137) (-797)))) (-2174 (((-110) $ $) 82 (|has| (-137) (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1071) (-133)) (T -1071)) -((-2559 (*1 *1 *1) (-4 *1 (-1071))) (-1659 (*1 *1 *1) (-4 *1 (-1071))) (-4102 (*1 *1 *1) (-4 *1 (-1071))) (-2815 (*1 *1 *1) (-4 *1 (-1071))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110)))) (-2982 (*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110)))) (-2955 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-531)) (-5 *2 (-110)))) (-2869 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-721)))) (-3816 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-110)))) (-2407 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-1151 (-531))))) (-1976 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)))) (-1976 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)) (-5 *3 (-134)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1071)))) (-2040 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-598 *1)) (-4 *1 (-1071)))) (-2040 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-598 *1)) (-4 *1 (-1071)))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) (-2821 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))) (-2821 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) (-2810 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))) (-2810 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) (-1785 (*1 *1 *1 *1) (-4 *1 (-1071)))) -(-13 (-19 (-137)) (-10 -8 (-15 -2559 ($ $)) (-15 -1659 ($ $)) (-15 -4102 ($ $)) (-15 -2815 ($ $)) (-15 -3009 ((-110) $ $)) (-15 -2982 ((-110) $ $)) (-15 -2955 ((-110) $ $ (-531))) (-15 -2869 ((-721) $ $ (-137))) (-15 -3816 ((-110) $ $ (-137))) (-15 -2407 ($ $ (-1151 (-531)) $)) (-15 -1976 ((-531) $ $ (-531))) (-15 -1976 ((-531) (-134) $ (-531))) (-15 -2265 ($ (-137))) (-15 -2040 ((-598 $) $ (-137))) (-15 -2040 ((-598 $) $ (-134))) (-15 -3634 ($ $ (-137))) (-15 -3634 ($ $ (-134))) (-15 -2821 ($ $ (-137))) (-15 -2821 ($ $ (-134))) (-15 -2810 ($ $ (-137))) (-15 -2810 ($ $ (-134))) (-15 -1785 ($ $ $)))) -(((-33) . T) ((-99) -1435 (|has| (-137) (-1030)) (|has| (-137) (-797))) ((-572 (-806)) -1435 (|has| (-137) (-1030)) (|has| (-137) (-797)) (|has| (-137) (-572 (-806)))) ((-144 #0=(-137)) . T) ((-573 (-507)) |has| (-137) (-573 (-507))) ((-268 #1=(-531) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-354 #0#) . T) ((-468 #0#) . T) ((-564 #1# #0#) . T) ((-492 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-604 #0#) . T) ((-19 #0#) . T) ((-797) |has| (-137) (-797)) ((-1030) -1435 (|has| (-137) (-1030)) (|has| (-137) (-797))) ((-1138) . T)) -((-3602 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721)) 94)) (-3565 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 54)) (-4180 (((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)) 85)) (-2884 (((-721) (-598 |#4|) (-598 |#5|)) 27)) (-2056 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 56) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110)) 58)) (-4044 (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110)) 77)) (-3318 (((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 80)) (-2970 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 53)) (-1501 (((-721) (-598 |#4|) (-598 |#5|)) 19))) -(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1039 |#1| |#2| |#3| |#4|)) (T -1072)) -((-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1039 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085)) (-5 *1 (-1072 *4 *5 *6 *7 *8)))) (-3602 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-598 *11)) (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11)))))) (-5 *6 (-721)) (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11)))) (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9)) (-4 *11 (-1039 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-5 *1 (-1072 *7 *8 *9 *10 *11)))) (-4044 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-4044 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-2056 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))) (-2056 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3)))) (-2056 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1039 *7 *8 *9 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3)))) (-2970 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)))) -((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) 110) (((-598 $) (-598 |#4|) (-110)) 111) (((-598 $) (-598 |#4|) (-110) (-110)) 109) (((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110)) 112)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 84)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 62)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) 26 (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 39)) (-3785 ((|#4| |#4| $) 65)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2950 (((-110) |#4| $) NIL)) (-1428 (((-110) |#4| $) NIL)) (-2213 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1988 (((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110)) 124)) (-2227 (((-598 |#4|) $) 16 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 33)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 17 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) NIL)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 103)) (-2309 (((-3 |#4| "failed") $) 37)) (-2918 (((-598 $) |#4| $) 88)) (-1568 (((-3 (-110) (-598 $)) |#4| $) NIL)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-1301 (((-598 $) |#4| $) 107) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 108) (((-598 $) |#4| (-598 $)) NIL)) (-1434 (((-598 $) (-598 |#4|) (-110) (-110) (-110)) 119)) (-2106 (($ |#4| $) 75) (($ (-598 |#4|) $) 76) (((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-1979 (((-598 |#4|) $) NIL)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 35)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) 48)) (-1846 (($ $ |#4|) NIL) (((-598 $) |#4| $) 90) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 86)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 13)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 12)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 20)) (-3382 (($ $ |#3|) 42)) (-2021 (($ $ |#3|) 44)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 31) (((-598 |#4|) $) 40)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-3777 (((-598 $) |#4| $) 54) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-3695 (((-110) |#4| $) NIL)) (-1697 (((-110) |#3| $) 61)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1073 |#1| |#2| |#3| |#4|) (-13 (-1039 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110))))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -1073)) -((-2106 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *3))) (-5 *1 (-1073 *5 *6 *7 *3)) (-4 *3 (-1000 *5 *6 *7)))) (-2855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) (-2855 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) (-1434 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) (-1988 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-598 *8)) (|:| |towers| (-598 (-1073 *5 *6 *7 *8))))) (-5 *1 (-1073 *5 *6 *7 *8)) (-5 *3 (-598 *8))))) -(-13 (-1039 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110))))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1573 ((|#1| $) 34)) (-2751 (($ (-598 |#1|)) 39)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-3196 ((|#1| |#1| $) 36)) (-4205 ((|#1| $) 32)) (-2227 (((-598 |#1|) $) 18 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 22)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 35)) (-3944 (($ |#1| $) 37)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4192 ((|#1| $) 33)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 31)) (-3781 (($) 38)) (-1216 (((-721) $) 29)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 27)) (-2265 (((-806) $) 14 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 17 (|has| |#1| (-1030)))) (-2167 (((-721) $) 30 (|has| $ (-6 -4273))))) -(((-1074 |#1|) (-13 (-1050 |#1|) (-10 -8 (-15 -2751 ($ (-598 |#1|))))) (-1138)) (T -1074)) -((-2751 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1074 *3))))) -(-13 (-1050 |#1|) (-10 -8 (-15 -2751 ($ (-598 |#1|))))) -((-2454 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1151 (-531)) |#2|) 44) ((|#2| $ (-531) |#2|) 41)) (-2141 (((-110) $) 12)) (-2680 (($ (-1 |#2| |#2|) $) 39)) (-3046 ((|#2| $) NIL) (($ $ (-721)) 17)) (-3742 (($ $ |#2|) 40)) (-2765 (((-110) $) 11)) (-1785 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1151 (-531))) 31) ((|#2| $ (-531)) 23) ((|#2| $ (-531) |#2|) NIL)) (-1818 (($ $ $) 47) (($ $ |#2|) NIL)) (-3536 (($ $ $) 33) (($ |#2| $) NIL) (($ (-598 $)) 36) (($ $ |#2|) NIL))) -(((-1075 |#1| |#2|) (-10 -8 (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| "last")) (-15 -1785 (|#1| |#1| "rest")) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|))) (-1076 |#2|) (-1138)) (T -1075)) -NIL -(-10 -8 (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| "last")) (-15 -1785 (|#1| |#1| "rest")) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-3137 (((-1189) $ (-531) (-531)) 97 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 117 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 86 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4273)))) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-3086 (($ $) 99 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4273))) (($ |#1| $) 100 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2693 ((|#1| $ (-531) |#1|) 85 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 87)) (-2141 (((-110) $) 83)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) 108)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 95 (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 94 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-4059 (($ $ $ (-531)) 116) (($ |#1| $ (-531)) 115)) (-3765 (((-598 (-531)) $) 92)) (-3059 (((-110) (-531) $) 91)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-3742 (($ $ |#1|) 96 (|has| $ (-6 -4274)))) (-2765 (((-110) $) 84)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 90)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1151 (-531))) 112) ((|#1| $ (-531)) 89) ((|#1| $ (-531) |#1|) 88)) (-2357 (((-531) $ $) 44)) (-1723 (($ $ (-1151 (-531))) 114) (($ $ (-531)) 113)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 98 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 107)) (-1818 (($ $ $) 61 (|has| $ (-6 -4274))) (($ $ |#1|) 60 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 77) (($ (-598 $)) 110) (($ $ |#1|) 109)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1076 |#1|) (-133) (-1138)) (T -1076)) -((-2765 (*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))) -(-13 (-1172 |t#1|) (-604 |t#1|) (-10 -8 (-15 -2765 ((-110) $)) (-15 -2141 ((-110) $)))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T) ((-1172 |#1|) . T)) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1077 |#1| |#2| |#3|) (-1115 |#1| |#2|) (-1030) (-1030) |#2|) (T -1077)) -NIL -(-1115 |#1| |#2|) -((-2247 (((-110) $ $) 7)) (-2342 (((-3 $ "failed") $) 13)) (-1521 (((-1085) $) 9)) (-3788 (($) 14 T CONST)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6))) -(((-1078) (-133)) (T -1078)) -((-3788 (*1 *1) (-4 *1 (-1078))) (-2342 (*1 *1 *1) (|partial| -4 *1 (-1078)))) -(-13 (-1030) (-10 -8 (-15 -3788 ($) -2651) (-15 -2342 ((-3 $ "failed") $)))) -(((-99) . T) ((-572 (-806)) . T) ((-1030) . T)) -((-1792 (((-1083 |#1|) (-1083 |#1|)) 17)) (-1283 (((-1083 |#1|) (-1083 |#1|)) 13)) (-4244 (((-1083 |#1|) (-1083 |#1|) (-531) (-531)) 20)) (-3350 (((-1083 |#1|) (-1083 |#1|)) 15))) -(((-1079 |#1|) (-10 -7 (-15 -1283 ((-1083 |#1|) (-1083 |#1|))) (-15 -3350 ((-1083 |#1|) (-1083 |#1|))) (-15 -1792 ((-1083 |#1|) (-1083 |#1|))) (-15 -4244 ((-1083 |#1|) (-1083 |#1|) (-531) (-531)))) (-13 (-523) (-140))) (T -1079)) -((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1079 *4)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1079 *3)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1079 *3)))) (-1283 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1079 *3))))) -(-10 -7 (-15 -1283 ((-1083 |#1|) (-1083 |#1|))) (-15 -3350 ((-1083 |#1|) (-1083 |#1|))) (-15 -1792 ((-1083 |#1|) (-1083 |#1|))) (-15 -4244 ((-1083 |#1|) (-1083 |#1|) (-531) (-531)))) -((-3536 (((-1083 |#1|) (-1083 (-1083 |#1|))) 15))) -(((-1080 |#1|) (-10 -7 (-15 -3536 ((-1083 |#1|) (-1083 (-1083 |#1|))))) (-1138)) (T -1080)) -((-3536 (*1 *2 *3) (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1080 *4)) (-4 *4 (-1138))))) -(-10 -7 (-15 -3536 ((-1083 |#1|) (-1083 (-1083 |#1|))))) -((-3203 (((-1083 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)) 25)) (-1760 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)) 26)) (-3261 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 16))) -(((-1081 |#1| |#2|) (-10 -7 (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|))) (-15 -3203 ((-1083 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|))) (-15 -1760 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)))) (-1138) (-1138)) (T -1081)) -((-1760 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1083 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-1081 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1083 *6)) (-4 *6 (-1138)) (-4 *3 (-1138)) (-5 *2 (-1083 *3)) (-5 *1 (-1081 *6 *3)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6))))) -(-10 -7 (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|))) (-15 -3203 ((-1083 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|))) (-15 -1760 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)))) -((-3261 (((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-1083 |#2|)) 21))) -(((-1082 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-1083 |#2|)))) (-1138) (-1138) (-1138)) (T -1082)) -((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-1083 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) (-5 *1 (-1082 *6 *7 *8))))) -(-10 -7 (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-1083 |#2|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) 51)) (-3137 (((-1189) $ (-531) (-531)) 76 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 110 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-1834 (((-806) $) 41 (|has| |#1| (-1030)))) (-3357 (((-110)) 40 (|has| |#1| (-1030)))) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) 98 (|has| $ (-6 -4274))) (($ $ (-531) $) 122)) (-2136 ((|#1| $ |#1|) 107 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 102 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4274))) (($ $ "rest" $) 106 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 89 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 55 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 58)) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-1969 (($ $) 14)) (-3062 (($ $) 29) (($ $ (-721)) 88)) (-3148 (((-110) (-598 |#1|) $) 116 (|has| |#1| (-1030)))) (-2851 (($ (-598 |#1|)) 112)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) 57)) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-2131 (((-1189) (-531) $) 121 (|has| |#1| (-1030)))) (-3971 (((-721) $) 118)) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1630 (($ $) 90)) (-2952 (((-110) $) 13)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) 74)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2107 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1366 ((|#1| $) 10)) (-3046 ((|#1| $) 28) (($ $ (-721)) 49)) (-2437 (((-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))) (-721) $) 25)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2153 (($ (-1 (-110) |#1|) $) 126)) (-2164 (($ (-1 (-110) |#1|) $) 127)) (-3742 (($ $ |#1|) 68 (|has| $ (-6 -4274)))) (-1846 (($ $ (-531)) 32)) (-2765 (((-110) $) 72)) (-3339 (((-110) $) 12)) (-1643 (((-110) $) 117)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 20)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 43)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) 54) ((|#1| $ (-531) |#1|) NIL)) (-2357 (((-531) $ $) 48)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2419 (($ (-1 $)) 47)) (-2930 (((-110) $) 69)) (-1958 (($ $) 70)) (-2980 (($ $) 99 (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 44)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 53)) (-1566 (($ |#1| $) 97)) (-1818 (($ $ $) 100 (|has| $ (-6 -4274))) (($ $ |#1|) 101 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 45) (($ (-598 $)) 83) (($ $ |#1|) 77)) (-3437 (($ $) 50)) (-2265 (($ (-598 |#1|)) 111) (((-806) $) 42 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 114 (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1083 |#1|) (-13 (-626 |#1|) (-10 -8 (-6 -4274) (-15 -2265 ($ (-598 |#1|))) (-15 -2851 ($ (-598 |#1|))) (IF (|has| |#1| (-1030)) (-15 -3148 ((-110) (-598 |#1|) $)) |%noBranch|) (-15 -2437 ((-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))) (-721) $)) (-15 -2419 ($ (-1 $))) (-15 -1566 ($ |#1| $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2131 ((-1189) (-531) $)) (-15 -1834 ((-806) $)) (-15 -3357 ((-110)))) |%noBranch|) (-15 -1998 ($ $ (-531) $)) (-15 -2107 ($ (-1 |#1|))) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)))) (-1138)) (T -1083)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-3148 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-4 *4 (-1138)) (-5 *2 (-110)) (-5 *1 (-1083 *4)))) (-2437 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721)))) (-5 *1 (-1083 *4)) (-4 *4 (-1138)) (-5 *3 (-721)))) (-2419 (*1 *1 *2) (-12 (-5 *2 (-1 (-1083 *3))) (-5 *1 (-1083 *3)) (-4 *3 (-1138)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *1 (-1083 *2)) (-4 *2 (-1138)))) (-2131 (*1 *2 *3 *1) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1083 *4)) (-4 *4 (-1030)) (-4 *4 (-1138)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1083 *3)) (-4 *3 (-1030)) (-4 *3 (-1138)))) (-3357 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1083 *3)) (-4 *3 (-1030)) (-4 *3 (-1138)))) (-1998 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1083 *3)) (-4 *3 (-1138)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))) -(-13 (-626 |#1|) (-10 -8 (-6 -4274) (-15 -2265 ($ (-598 |#1|))) (-15 -2851 ($ (-598 |#1|))) (IF (|has| |#1| (-1030)) (-15 -3148 ((-110) (-598 |#1|) $)) |%noBranch|) (-15 -2437 ((-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))) (-721) $)) (-15 -2419 ($ (-1 $))) (-15 -1566 ($ |#1| $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2131 ((-1189) (-531) $)) (-15 -1834 ((-806) $)) (-15 -3357 ((-110)))) |%noBranch|) (-15 -1998 ($ $ (-531) $)) (-15 -2107 ($ (-1 |#1|))) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)))) -((-2247 (((-110) $ $) 19)) (-2815 (($ $) 120)) (-4102 (($ $) 121)) (-3634 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) 118)) (-2955 (((-110) $ $ (-531)) 117)) (-3149 (($ (-531)) 127)) (-2040 (((-598 $) $ (-137)) 110) (((-598 $) $ (-134)) 109)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| (-137) (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 (((-137) $ (-531) (-137)) 52 (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2810 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-2407 (($ $ (-1151 (-531)) $) 114)) (-3086 (($ $) 78 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-137) $) 77 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) 53 (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) 51)) (-3009 (((-110) $ $) 119)) (-1976 (((-531) (-1 (-110) (-137)) $) 97) (((-531) (-137) $) 96 (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) 95 (|has| (-137) (-1030))) (((-531) $ $ (-531)) 113) (((-531) (-134) $ (-531)) 112)) (-2227 (((-598 (-137)) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) 115)) (-2869 (((-721) $ $ (-137)) 116)) (-2680 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-1659 (($ $) 122)) (-2559 (($ $) 123)) (-3332 (((-110) $ (-721)) 10)) (-2821 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1521 (((-1085) $) 22)) (-4059 (($ (-137) $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21)) (-3046 (((-137) $) 42 (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-3742 (($ $ (-137)) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 (((-137) $ (-531) (-137)) 50) (((-137) $ (-531)) 49) (($ $ (-1151 (-531))) 63) (($ $ $) 102)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4273))) (((-721) (-137) $) 28 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) 70)) (-3536 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (($ (-137)) 111) (((-806) $) 18)) (-2060 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4273)))) (-4231 (((-1085) $) 131) (((-1085) $ (-110)) 130) (((-1189) (-772) $) 129) (((-1189) (-772) $ (-110)) 128)) (-2207 (((-110) $ $) 84 (|has| (-137) (-797)))) (-2184 (((-110) $ $) 83 (|has| (-137) (-797)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) 85 (|has| (-137) (-797)))) (-2174 (((-110) $ $) 82 (|has| (-137) (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1084) (-133)) (T -1084)) -((-3149 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1084))))) -(-13 (-1071) (-1030) (-778) (-10 -8 (-15 -3149 ($ (-531))))) -(((-33) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 #0=(-137)) . T) ((-573 (-507)) |has| (-137) (-573 (-507))) ((-268 #1=(-531) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-354 #0#) . T) ((-468 #0#) . T) ((-564 #1# #0#) . T) ((-492 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-604 #0#) . T) ((-19 #0#) . T) ((-778) . T) ((-797) |has| (-137) (-797)) ((-1030) . T) ((-1071) . T) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-2815 (($ $) NIL)) (-4102 (($ $) NIL)) (-3634 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) NIL)) (-2955 (((-110) $ $ (-531)) NIL)) (-3149 (($ (-531)) 7)) (-2040 (((-598 $) $ (-137)) NIL) (((-598 $) $ (-134)) NIL)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-137) (-797))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-137) $ (-531) (-137)) NIL (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2810 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2407 (($ $ (-1151 (-531)) $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2283 (($ (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) NIL (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) NIL)) (-3009 (((-110) $ $) NIL)) (-1976 (((-531) (-1 (-110) (-137)) $) NIL) (((-531) (-137) $) NIL (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) NIL (|has| (-137) (-1030))) (((-531) $ $ (-531)) NIL) (((-531) (-134) $ (-531)) NIL)) (-2227 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) NIL)) (-2869 (((-721) $ $ (-137)) NIL)) (-2680 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-1659 (($ $) NIL)) (-2559 (($ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2821 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1521 (((-1085) $) NIL)) (-4059 (($ (-137) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-137) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-3742 (($ $ (-137)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-137) $ (-531) (-137)) NIL) (((-137) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL) (($ $ $) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (((-721) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) NIL)) (-3536 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (($ (-137)) NIL) (((-806) $) NIL)) (-2060 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4231 (((-1085) $) 18) (((-1085) $ (-110)) 20) (((-1189) (-772) $) 21) (((-1189) (-772) $ (-110)) 22)) (-2207 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1085) (-1084)) (T -1085)) -NIL -(-1084) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-3137 (((-1189) $ (-1085) (-1085)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-1085) |#1|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#1| "failed") (-1085) $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#1| "failed") (-1085) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-1085) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-1085)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-3345 (((-598 (-1085)) $) NIL)) (-1727 (((-110) (-1085) $) NIL)) (-3540 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3765 (((-598 (-1085)) $) NIL)) (-3059 (((-110) (-1085) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-3046 ((|#1| $) NIL (|has| (-1085) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) "failed") (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-1085)) NIL) ((|#1| $ (-1085) |#1|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-572 (-806))) (|has| |#1| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1086 |#1|) (-13 (-1115 (-1085) |#1|) (-10 -7 (-6 -4273))) (-1030)) (T -1086)) -NIL -(-13 (-1115 (-1085) |#1|) (-10 -7 (-6 -4273))) -((-3853 (((-1083 |#1|) (-1083 |#1|)) 77)) (-3622 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 37)) (-3269 (((-1083 |#1|) (-388 (-531)) (-1083 |#1|)) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3158 (((-1083 |#1|) |#1| (-1083 |#1|)) 127 (|has| |#1| (-344)))) (-3128 (((-1083 |#1|) (-1083 |#1|)) 90)) (-2221 (((-1083 (-531)) (-531)) 57)) (-2380 (((-1083 |#1|) (-1083 (-1083 |#1|))) 109 (|has| |#1| (-37 (-388 (-531)))))) (-3714 (((-1083 |#1|) (-531) (-531) (-1083 |#1|)) 95)) (-4007 (((-1083 |#1|) |#1| (-531)) 45)) (-3378 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 60)) (-1645 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 124 (|has| |#1| (-344)))) (-3870 (((-1083 |#1|) |#1| (-1 (-1083 |#1|))) 108 (|has| |#1| (-37 (-388 (-531)))))) (-1774 (((-1083 |#1|) (-1 |#1| (-531)) |#1| (-1 (-1083 |#1|))) 125 (|has| |#1| (-344)))) (-1656 (((-1083 |#1|) (-1083 |#1|)) 89)) (-2971 (((-1083 |#1|) (-1083 |#1|)) 76)) (-3721 (((-1083 |#1|) (-531) (-531) (-1083 |#1|)) 96)) (-1788 (((-1083 |#1|) |#1| (-1083 |#1|)) 105 (|has| |#1| (-37 (-388 (-531)))))) (-2690 (((-1083 (-531)) (-531)) 56)) (-4150 (((-1083 |#1|) |#1|) 59)) (-2942 (((-1083 |#1|) (-1083 |#1|) (-531) (-531)) 92)) (-2194 (((-1083 |#1|) (-1 |#1| (-531)) (-1083 |#1|)) 66)) (-3609 (((-3 (-1083 |#1|) "failed") (-1083 |#1|) (-1083 |#1|)) 35)) (-1352 (((-1083 |#1|) (-1083 |#1|)) 91)) (-4115 (((-1083 |#1|) (-1083 |#1|) |#1|) 71)) (-2654 (((-1083 |#1|) (-1083 |#1|)) 62)) (-3990 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 72)) (-2265 (((-1083 |#1|) |#1|) 67)) (-3599 (((-1083 |#1|) (-1083 (-1083 |#1|))) 82)) (-2263 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 36)) (-2250 (((-1083 |#1|) (-1083 |#1|)) 21) (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 23)) (-2237 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 17)) (* (((-1083 |#1|) (-1083 |#1|) |#1|) 29) (((-1083 |#1|) |#1| (-1083 |#1|)) 26) (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 27))) -(((-1087 |#1|) (-10 -7 (-15 -2237 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3609 ((-3 (-1083 |#1|) "failed") (-1083 |#1|) (-1083 |#1|))) (-15 -2263 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3622 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4007 ((-1083 |#1|) |#1| (-531))) (-15 -2690 ((-1083 (-531)) (-531))) (-15 -2221 ((-1083 (-531)) (-531))) (-15 -4150 ((-1083 |#1|) |#1|)) (-15 -3378 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2654 ((-1083 |#1|) (-1083 |#1|))) (-15 -2194 ((-1083 |#1|) (-1 |#1| (-531)) (-1083 |#1|))) (-15 -2265 ((-1083 |#1|) |#1|)) (-15 -4115 ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3990 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2971 ((-1083 |#1|) (-1083 |#1|))) (-15 -3853 ((-1083 |#1|) (-1083 |#1|))) (-15 -3599 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -1656 ((-1083 |#1|) (-1083 |#1|))) (-15 -3128 ((-1083 |#1|) (-1083 |#1|))) (-15 -1352 ((-1083 |#1|) (-1083 |#1|))) (-15 -2942 ((-1083 |#1|) (-1083 |#1|) (-531) (-531))) (-15 -3714 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (-15 -3721 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 -3870 ((-1083 |#1|) |#1| (-1 (-1083 |#1|)))) (-15 -2380 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -3269 ((-1083 |#1|) (-388 (-531)) (-1083 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1645 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1774 ((-1083 |#1|) (-1 |#1| (-531)) |#1| (-1 (-1083 |#1|)))) (-15 -3158 ((-1083 |#1|) |#1| (-1083 |#1|)))) |%noBranch|)) (-986)) (T -1087)) -((-3158 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-1774 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-531))) (-5 *5 (-1 (-1083 *4))) (-4 *4 (-344)) (-4 *4 (-986)) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3269 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-37 *3)) (-4 *4 (-986)) (-5 *3 (-388 (-531))) (-5 *1 (-1087 *4)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)) (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)))) (-3870 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1083 *3))) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)))) (-1788 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3721 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-3714 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-2942 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)) (-4 *4 (-986)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2971 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3990 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) (-2194 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-1 *4 (-531))) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-4150 (*1 *2 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) (-2221 (*1 *2 *3) (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986)) (-5 *3 (-531)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986)) (-5 *3 (-531)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) (-3622 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2263 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3609 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2250 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))) -(-10 -7 (-15 -2237 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3609 ((-3 (-1083 |#1|) "failed") (-1083 |#1|) (-1083 |#1|))) (-15 -2263 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3622 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4007 ((-1083 |#1|) |#1| (-531))) (-15 -2690 ((-1083 (-531)) (-531))) (-15 -2221 ((-1083 (-531)) (-531))) (-15 -4150 ((-1083 |#1|) |#1|)) (-15 -3378 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2654 ((-1083 |#1|) (-1083 |#1|))) (-15 -2194 ((-1083 |#1|) (-1 |#1| (-531)) (-1083 |#1|))) (-15 -2265 ((-1083 |#1|) |#1|)) (-15 -4115 ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3990 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2971 ((-1083 |#1|) (-1083 |#1|))) (-15 -3853 ((-1083 |#1|) (-1083 |#1|))) (-15 -3599 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -1656 ((-1083 |#1|) (-1083 |#1|))) (-15 -3128 ((-1083 |#1|) (-1083 |#1|))) (-15 -1352 ((-1083 |#1|) (-1083 |#1|))) (-15 -2942 ((-1083 |#1|) (-1083 |#1|) (-531) (-531))) (-15 -3714 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (-15 -3721 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 -3870 ((-1083 |#1|) |#1| (-1 (-1083 |#1|)))) (-15 -2380 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -3269 ((-1083 |#1|) (-388 (-531)) (-1083 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1645 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1774 ((-1083 |#1|) (-1 |#1| (-531)) |#1| (-1 (-1083 |#1|)))) (-15 -3158 ((-1083 |#1|) |#1| (-1083 |#1|)))) |%noBranch|)) -((-2367 (((-1083 |#1|) (-1083 |#1|)) 57)) (-2218 (((-1083 |#1|) (-1083 |#1|)) 39)) (-2343 (((-1083 |#1|) (-1083 |#1|)) 53)) (-2198 (((-1083 |#1|) (-1083 |#1|)) 35)) (-2391 (((-1083 |#1|) (-1083 |#1|)) 60)) (-2241 (((-1083 |#1|) (-1083 |#1|)) 42)) (-2076 (((-1083 |#1|) (-1083 |#1|)) 31)) (-2798 (((-1083 |#1|) (-1083 |#1|)) 27)) (-2403 (((-1083 |#1|) (-1083 |#1|)) 61)) (-2253 (((-1083 |#1|) (-1083 |#1|)) 43)) (-2379 (((-1083 |#1|) (-1083 |#1|)) 58)) (-2229 (((-1083 |#1|) (-1083 |#1|)) 40)) (-2356 (((-1083 |#1|) (-1083 |#1|)) 55)) (-2210 (((-1083 |#1|) (-1083 |#1|)) 37)) (-2442 (((-1083 |#1|) (-1083 |#1|)) 65)) (-2292 (((-1083 |#1|) (-1083 |#1|)) 47)) (-2416 (((-1083 |#1|) (-1083 |#1|)) 63)) (-2266 (((-1083 |#1|) (-1083 |#1|)) 45)) (-2468 (((-1083 |#1|) (-1083 |#1|)) 68)) (-2318 (((-1083 |#1|) (-1083 |#1|)) 50)) (-2753 (((-1083 |#1|) (-1083 |#1|)) 69)) (-2331 (((-1083 |#1|) (-1083 |#1|)) 51)) (-2456 (((-1083 |#1|) (-1083 |#1|)) 67)) (-2305 (((-1083 |#1|) (-1083 |#1|)) 49)) (-2429 (((-1083 |#1|) (-1083 |#1|)) 66)) (-2279 (((-1083 |#1|) (-1083 |#1|)) 48)) (** (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 33))) -(((-1088 |#1|) (-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|)))) (-37 (-388 (-531)))) (T -1088)) -((-2753 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3))))) -(-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|)))) -((-2367 (((-1083 |#1|) (-1083 |#1|)) 100)) (-2218 (((-1083 |#1|) (-1083 |#1|)) 64)) (-2252 (((-2 (|:| -2343 (-1083 |#1|)) (|:| -2356 (-1083 |#1|))) (-1083 |#1|)) 96)) (-2343 (((-1083 |#1|) (-1083 |#1|)) 97)) (-4220 (((-2 (|:| -2198 (-1083 |#1|)) (|:| -2210 (-1083 |#1|))) (-1083 |#1|)) 53)) (-2198 (((-1083 |#1|) (-1083 |#1|)) 54)) (-2391 (((-1083 |#1|) (-1083 |#1|)) 102)) (-2241 (((-1083 |#1|) (-1083 |#1|)) 71)) (-2076 (((-1083 |#1|) (-1083 |#1|)) 39)) (-2798 (((-1083 |#1|) (-1083 |#1|)) 36)) (-2403 (((-1083 |#1|) (-1083 |#1|)) 103)) (-2253 (((-1083 |#1|) (-1083 |#1|)) 72)) (-2379 (((-1083 |#1|) (-1083 |#1|)) 101)) (-2229 (((-1083 |#1|) (-1083 |#1|)) 67)) (-2356 (((-1083 |#1|) (-1083 |#1|)) 98)) (-2210 (((-1083 |#1|) (-1083 |#1|)) 55)) (-2442 (((-1083 |#1|) (-1083 |#1|)) 111)) (-2292 (((-1083 |#1|) (-1083 |#1|)) 86)) (-2416 (((-1083 |#1|) (-1083 |#1|)) 105)) (-2266 (((-1083 |#1|) (-1083 |#1|)) 82)) (-2468 (((-1083 |#1|) (-1083 |#1|)) 115)) (-2318 (((-1083 |#1|) (-1083 |#1|)) 90)) (-2753 (((-1083 |#1|) (-1083 |#1|)) 117)) (-2331 (((-1083 |#1|) (-1083 |#1|)) 92)) (-2456 (((-1083 |#1|) (-1083 |#1|)) 113)) (-2305 (((-1083 |#1|) (-1083 |#1|)) 88)) (-2429 (((-1083 |#1|) (-1083 |#1|)) 107)) (-2279 (((-1083 |#1|) (-1083 |#1|)) 84)) (** (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 40))) -(((-1089 |#1|) (-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4220 ((-2 (|:| -2198 (-1083 |#1|)) (|:| -2210 (-1083 |#1|))) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2252 ((-2 (|:| -2343 (-1083 |#1|)) (|:| -2356 (-1083 |#1|))) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|)))) (-37 (-388 (-531)))) (T -1089)) -((-2753 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-2 (|:| -2343 (-1083 *4)) (|:| -2356 (-1083 *4)))) (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-2 (|:| -2198 (-1083 *4)) (|:| -2210 (-1083 *4)))) (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3))))) -(-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4220 ((-2 (|:| -2198 (-1083 |#1|)) (|:| -2210 (-1083 |#1|))) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2252 ((-2 (|:| -2343 (-1083 |#1|)) (|:| -2356 (-1083 |#1|))) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|)))) -((-3998 (((-901 |#2|) |#2| |#2|) 35)) (-2226 ((|#2| |#2| |#1|) 19 (|has| |#1| (-289))))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -3998 ((-901 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -2226 (|#2| |#2| |#1|)) |%noBranch|)) (-523) (-1160 |#1|)) (T -1090)) -((-2226 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-1090 *3 *2)) (-4 *2 (-1160 *3)))) (-3998 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-901 *3)) (-5 *1 (-1090 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -3998 ((-901 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -2226 (|#2| |#2| |#1|)) |%noBranch|)) -((-2247 (((-110) $ $) NIL)) (-2122 (($ $ (-598 (-721))) 67)) (-1841 (($) 26)) (-1225 (($ $) 42)) (-3245 (((-598 $) $) 51)) (-3068 (((-110) $) 16)) (-1516 (((-598 (-886 |#2|)) $) 74)) (-3849 (($ $) 68)) (-1603 (((-721) $) 37)) (-3010 (($) 25)) (-3061 (($ $ (-598 (-721)) (-886 |#2|)) 60) (($ $ (-598 (-721)) (-721)) 61) (($ $ (-721) (-886 |#2|)) 63)) (-3508 (($ $ $) 48) (($ (-598 $)) 50)) (-1618 (((-721) $) 75)) (-2672 (((-110) $) 15)) (-1521 (((-1085) $) NIL)) (-2759 (((-110) $) 18)) (-2529 (((-1049) $) NIL)) (-2656 (((-161) $) 73)) (-1843 (((-886 |#2|) $) 69)) (-1260 (((-721) $) 70)) (-3003 (((-110) $) 72)) (-3314 (($ $ (-598 (-721)) (-161)) 66)) (-3629 (($ $) 43)) (-2265 (((-806) $) 86)) (-2997 (($ $ (-598 (-721)) (-110)) 65)) (-3495 (((-598 $) $) 11)) (-1296 (($ $ (-721)) 36)) (-1923 (($ $) 32)) (-4117 (($ $ $ (-886 |#2|) (-721)) 56)) (-4027 (($ $ (-886 |#2|)) 55)) (-3567 (($ $ (-598 (-721)) (-886 |#2|)) 54) (($ $ (-598 (-721)) (-721)) 58) (((-721) $ (-886 |#2|)) 59)) (-2148 (((-110) $ $) 80))) -(((-1091 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2672 ((-110) $)) (-15 -3068 ((-110) $)) (-15 -2759 ((-110) $)) (-15 -3010 ($)) (-15 -1841 ($)) (-15 -1923 ($ $)) (-15 -1296 ($ $ (-721))) (-15 -3495 ((-598 $) $)) (-15 -1603 ((-721) $)) (-15 -1225 ($ $)) (-15 -3629 ($ $)) (-15 -3508 ($ $ $)) (-15 -3508 ($ (-598 $))) (-15 -3245 ((-598 $) $)) (-15 -3567 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -4027 ($ $ (-886 |#2|))) (-15 -4117 ($ $ $ (-886 |#2|) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -3567 ($ $ (-598 (-721)) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-721))) (-15 -3567 ((-721) $ (-886 |#2|))) (-15 -3061 ($ $ (-721) (-886 |#2|))) (-15 -2997 ($ $ (-598 (-721)) (-110))) (-15 -3314 ($ $ (-598 (-721)) (-161))) (-15 -2122 ($ $ (-598 (-721)))) (-15 -1843 ((-886 |#2|) $)) (-15 -1260 ((-721) $)) (-15 -3003 ((-110) $)) (-15 -2656 ((-161) $)) (-15 -1618 ((-721) $)) (-15 -3849 ($ $)) (-15 -1516 ((-598 (-886 |#2|)) $)))) (-864) (-986)) (T -1091)) -((-2672 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3010 (*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1841 (*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1923 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-3629 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-3508 (*1 *1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3567 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-4027 (*1 *1 *1 *2) (-12 (-5 *2 (-886 *4)) (-4 *4 (-986)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)))) (-4117 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-886 *5)) (-5 *3 (-721)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-3567 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *2 (-721)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-110)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-3314 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-161)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-886 *4)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3849 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-598 (-886 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986))))) -(-13 (-1030) (-10 -8 (-15 -2672 ((-110) $)) (-15 -3068 ((-110) $)) (-15 -2759 ((-110) $)) (-15 -3010 ($)) (-15 -1841 ($)) (-15 -1923 ($ $)) (-15 -1296 ($ $ (-721))) (-15 -3495 ((-598 $) $)) (-15 -1603 ((-721) $)) (-15 -1225 ($ $)) (-15 -3629 ($ $)) (-15 -3508 ($ $ $)) (-15 -3508 ($ (-598 $))) (-15 -3245 ((-598 $) $)) (-15 -3567 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -4027 ($ $ (-886 |#2|))) (-15 -4117 ($ $ $ (-886 |#2|) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -3567 ($ $ (-598 (-721)) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-721))) (-15 -3567 ((-721) $ (-886 |#2|))) (-15 -3061 ($ $ (-721) (-886 |#2|))) (-15 -2997 ($ $ (-598 (-721)) (-110))) (-15 -3314 ($ $ (-598 (-721)) (-161))) (-15 -2122 ($ $ (-598 (-721)))) (-15 -1843 ((-886 |#2|) $)) (-15 -1260 ((-721) $)) (-15 -3003 ((-110) $)) (-15 -2656 ((-161) $)) (-15 -1618 ((-721) $)) (-15 -3849 ($ $)) (-15 -1516 ((-598 (-886 |#2|)) $)))) -((-2247 (((-110) $ $) NIL)) (-1493 ((|#2| $) 11)) (-1484 ((|#1| $) 10)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2274 (($ |#1| |#2|) 9)) (-2265 (((-806) $) 16)) (-2148 (((-110) $ $) NIL))) -(((-1092 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2274 ($ |#1| |#2|)) (-15 -1484 (|#1| $)) (-15 -1493 (|#2| $)))) (-1030) (-1030)) (T -1092)) -((-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-1092 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1484 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1030)))) (-1493 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *3 *2)) (-4 *3 (-1030))))) -(-13 (-1030) (-10 -8 (-15 -2274 ($ |#1| |#2|)) (-15 -1484 (|#1| $)) (-15 -1493 (|#2| $)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-1100 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3258 (($ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2921 (((-110) $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2796 (($ $ (-531)) NIL) (($ $ (-531) (-531)) 66)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) NIL)) (-2594 (((-1100 |#1| |#2| |#3|) $) 36)) (-1891 (((-3 (-1100 |#1| |#2| |#3|) "failed") $) 29)) (-2373 (((-1100 |#1| |#2| |#3|) $) 30)) (-2367 (($ $) 107 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 83 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) 103 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 79 (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) 111 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 87 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1100 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1102) "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-531) "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2523 (((-1100 |#1| |#2| |#3|) $) 131) (((-1102) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-388 (-531)) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-531) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2581 (($ $) 34) (($ (-531) $) 35)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-1100 |#1| |#2| |#3|)) (-639 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-1100 |#1| |#2| |#3|))) (|:| |vec| (-1184 (-1100 |#1| |#2| |#3|)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) 48)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 65 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 67 (|has| |#1| (-523)))) (-1381 (($) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-1599 (((-110) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) 25)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-829 (-531))) (|has| |#1| (-344)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-829 (-360))) (|has| |#1| (-344))))) (-3617 (((-531) $) NIL) (((-531) $ (-531)) 24)) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL (|has| |#1| (-344)))) (-1840 (((-1100 |#1| |#2| |#3|) $) 38 (|has| |#1| (-344)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) NIL)) (-3192 (($ (-1 |#1| (-531)) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-531)) 18) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-4103 (($ $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-1241 (($ $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2076 (($ $) 72 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2385 (($ (-531) (-1100 |#1| |#2| |#3|)) 33)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 70 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 71 (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2943 (((-1100 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 145)) (-3609 (((-3 $ "failed") $ $) 49 (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) 73 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) (-1100 |#1| |#2| |#3|)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-492 (-1102) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-1100 |#1| |#2| |#3|))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-492 (-1102) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-276 (-1100 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1100 |#1| |#2| |#3|))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1100 |#1| |#2| |#3|)) (-598 (-1100 |#1| |#2| |#3|))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) NIL) (($ $ $) 54 (|has| (-531) (-1042))) (($ $ (-1100 |#1| |#2| |#3|)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-268 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1180 |#2|)) 51) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 50 (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1853 (((-1100 |#1| |#2| |#3|) $) 41 (|has| |#1| (-344)))) (-2012 (((-531) $) 37)) (-2403 (($ $) 113 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 89 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 109 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 85 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 105 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 81 (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-507) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-573 (-507))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-835 (-360)) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 149) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1100 |#1| |#2| |#3|)) 27) (($ (-1180 |#2|)) 23) (($ (-1102)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (($ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523)))) (($ (-388 (-531))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-531))))))) (-3188 ((|#1| $ (-531)) 68)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 12)) (-3831 (((-1100 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-2442 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 95 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2416 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 91 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 99 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 101 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 97 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 93 (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3035 (($) 20 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2207 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2184 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2174 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 44 (|has| |#1| (-344))) (($ (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) 45 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 21)) (** (($ $ (-864)) NIL) (($ $ (-721)) 53) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) 74 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 128 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1100 |#1| |#2| |#3|)) 43 (|has| |#1| (-344))) (($ (-1100 |#1| |#2| |#3|) $) 42 (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1093 |#1| |#2| |#3|) (-13 (-1146 |#1| (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1093)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1146 |#1| (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-3539 ((|#2| |#2| (-1023 |#2|)) 26) ((|#2| |#2| (-1102)) 28))) -(((-1094 |#1| |#2|) (-10 -7 (-15 -3539 (|#2| |#2| (-1102))) (-15 -3539 (|#2| |#2| (-1023 |#2|)))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531))) (-13 (-411 |#1|) (-151) (-27) (-1124))) (T -1094)) -((-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124))) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1094 *4 *2)))) (-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124)))))) -(-10 -7 (-15 -3539 (|#2| |#2| (-1102))) (-15 -3539 (|#2| |#2| (-1023 |#2|)))) -((-3539 (((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1023 (-388 (-895 |#1|)))) 31) (((-388 (-895 |#1|)) (-895 |#1|) (-1023 (-895 |#1|))) 44) (((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1102)) 33) (((-388 (-895 |#1|)) (-895 |#1|) (-1102)) 36))) -(((-1095 |#1|) (-10 -7 (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1102))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1023 (-895 |#1|)))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1023 (-388 (-895 |#1|)))))) (-13 (-523) (-797) (-977 (-531)))) (T -1095)) -((-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-3 *3 (-297 *5))) (-5 *1 (-1095 *5)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-895 *5))) (-5 *3 (-895 *5)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-388 *3)) (-5 *1 (-1095 *5)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-3 (-388 (-895 *5)) (-297 *5))) (-5 *1 (-1095 *5)) (-5 *3 (-388 (-895 *5))))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-388 (-895 *5))) (-5 *1 (-1095 *5)) (-5 *3 (-895 *5))))) -(-10 -7 (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1102))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1023 (-895 |#1|)))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1023 (-388 (-895 |#1|)))))) -((-3261 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 13))) -(((-1096 |#1| |#2|) (-10 -7 (-15 -3261 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)))) (-986) (-986)) (T -1096)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6))))) -(-10 -7 (-15 -3261 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)))) -((-2956 (((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))) 51)) (-2552 (((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))) 52))) -(((-1097 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|)))) (-15 -2956 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))))) (-743) (-797) (-432) (-892 |#3| |#1| |#2|)) (T -1097)) -((-2956 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7)))) (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7))))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7)))) (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7)))))) -(-10 -7 (-15 -2552 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|)))) (-15 -2956 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))))) -((-2247 (((-110) $ $) 137)) (-3019 (((-110) $) 28)) (-3191 (((-1184 |#1|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#1|)) NIL)) (-2516 (((-1098 $) $ (-1014)) 58) (((-1098 |#1|) $) 47)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) 132 (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) 126 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) 71 (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 91 (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3767 (($ $ (-721)) 40)) (-3441 (($ $ (-721)) 41)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1014) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $ $) 128 (|has| |#1| (-162)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 56)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-1376 (($ $ $) 104)) (-1570 (($ $ $) NIL (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2226 (($ $) 133 (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-721) $) 45)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-1362 (((-806) $ (-806)) 117)) (-3617 (((-721) $ $) NIL (|has| |#1| (-523)))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) 49) (($ (-1098 $) (-1014)) 65)) (-3688 (($ $ (-721)) 32)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 63) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 121)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3294 (((-1098 |#1|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) 52)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) 39)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 31)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 79 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) 135 (|has| |#1| (-432)))) (-1816 (($ $ (-721) |#1| $) 99)) (-3799 (((-399 (-1098 $)) (-1098 $)) 77 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 76 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 84 (|has| |#1| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#1|) NIL) (($ $ (-598 (-1014)) (-598 |#1|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) 35)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 138 (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $) 124 (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2012 (((-721) $) 54) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 130 (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-523)))) (-2265 (((-806) $) 118) (($ (-531)) NIL) (($ |#1|) 53) (($ (-1014)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) 26 (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 15 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 96)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 139 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 66)) (** (($ $ (-864)) 14) (($ $ (-721)) 12)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 25) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1098 |#1|) (-13 (-1160 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))) (-15 -1816 ($ $ (-721) |#1| $)))) (-986)) (T -1098)) -((-1362 (*1 *2 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1098 *3)) (-4 *3 (-986)))) (-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1098 *3)) (-4 *3 (-986))))) -(-13 (-1160 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))) (-15 -1816 ($ $ (-721) |#1| $)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1093 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1100 |#1| |#2| |#3|) "failed") $) 36)) (-2523 (((-1093 |#1| |#2| |#3|) $) NIL) (((-1100 |#1| |#2| |#3|) $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1318 (((-388 (-531)) $) 55)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) (-1093 |#1| |#2| |#3|)) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) 20) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3671 (((-1093 |#1| |#2| |#3|) $) 41)) (-1633 (((-3 (-1093 |#1| |#2| |#3|) "failed") $) NIL)) (-2385 (((-1093 |#1| |#2| |#3|) $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 39 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 40 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $ (-1180 |#2|)) 38)) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 58) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1093 |#1| |#2| |#3|)) 30) (($ (-1100 |#1| |#2| |#3|)) 31) (($ (-1180 |#2|)) 26) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 12)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 22 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 24)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1099 |#1| |#2| |#3|) (-13 (-1167 |#1| (-1093 |#1| |#2| |#3|)) (-977 (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1099)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1167 |#1| (-1093 |#1| |#2| |#3|)) (-977 (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 125)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 116)) (-3361 (((-1157 |#2| |#1|) $ (-721)) 63)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-721)) 79) (($ $ (-721) (-721)) 76)) (-4034 (((-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|))) $) 102)) (-2367 (($ $) 169 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 145 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 165 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|)))) 115) (($ (-1083 |#1|)) 110)) (-2391 (($ $) 173 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 149 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) 23)) (-2034 (($ $) 26)) (-3383 (((-895 |#1|) $ (-721)) 75) (((-895 |#1|) $ (-721) (-721)) 77)) (-3201 (((-110) $) 120)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $) 122) (((-721) $ (-721)) 124)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL)) (-3192 (($ (-1 |#1| (-531)) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 13) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $) 129 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-1846 (($ $ (-721)) 15)) (-3609 (((-3 $ "failed") $ $) 24 (|has| |#1| (-523)))) (-2798 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-721)))))) (-1785 ((|#1| $ (-721)) 119) (($ $ $) 128 (|has| (-721) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $ (-1180 |#2|)) 29)) (-2012 (((-721) $) NIL)) (-2403 (($ $) 175 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 151 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 171 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 147 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 167 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 201) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1157 |#2| |#1|)) 51) (($ (-1180 |#2|)) 32)) (-2708 (((-1083 |#1|) $) 98)) (-3188 ((|#1| $ (-721)) 118)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 54)) (-2442 (($ $) 181 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 157 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 177 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 153 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 185 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 161 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-721)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-721)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 187 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 163 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 183 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 159 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 179 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 155 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 17 T CONST)) (-3050 (($) 19 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 194)) (-2237 (($ $ $) 31)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ |#1|) 198 (|has| |#1| (-344))) (($ $ $) 134 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 137 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1100 |#1| |#2| |#3|) (-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1100)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-1100 *3 *4 *5)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1100 *4 *5 *6)) (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-2265 (((-806) $) 27) (($ (-1102)) 29)) (-1435 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 40)) (-1425 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 33) (($ $) 34)) (-3100 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 35)) (-3085 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 37)) (-3069 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 36)) (-3054 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 38)) (-3861 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 39))) -(((-1101) (-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3100 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3069 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3085 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3054 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1435 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3861 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ $))))) (T -1101)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1101)))) (-3100 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3069 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3085 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3054 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-1435 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3861 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-1425 (*1 *1 *1) (-5 *1 (-1101)))) -(-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3100 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3069 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3085 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3054 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1435 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3861 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ $)))) -((-2247 (((-110) $ $) NIL)) (-3526 (($ $ (-598 (-806))) 59)) (-1440 (($ $ (-598 (-806))) 57)) (-3149 (((-1085) $) 84)) (-2441 (((-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))) $) 87)) (-3463 (((-110) $) 22)) (-3322 (($ $ (-598 (-598 (-806)))) 56) (($ $ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806))))) 82)) (-4082 (($) 124 T CONST)) (-2927 (((-1189)) 106)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 66) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 73)) (-3010 (($) 95) (($ $) 101)) (-3955 (($ $) 83)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2907 (((-598 $) $) 107)) (-1521 (((-1085) $) 90)) (-2529 (((-1049) $) NIL)) (-1785 (($ $ (-598 (-806))) 58)) (-3318 (((-507) $) 46) (((-1102) $) 47) (((-835 (-531)) $) 77) (((-835 (-360)) $) 75)) (-2265 (((-806) $) 53) (($ (-1085)) 48)) (-2564 (($ $ (-598 (-806))) 60)) (-4231 (((-1085) $) 33) (((-1085) $ (-110)) 34) (((-1189) (-772) $) 35) (((-1189) (-772) $ (-110)) 36)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 49)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 50))) -(((-1102) (-13 (-797) (-573 (-507)) (-778) (-573 (-1102)) (-573 (-835 (-531))) (-573 (-835 (-360))) (-829 (-531)) (-829 (-360)) (-10 -8 (-15 -3010 ($)) (-15 -3010 ($ $)) (-15 -2927 ((-1189))) (-15 -2265 ($ (-1085))) (-15 -3955 ($ $)) (-15 -3463 ((-110) $)) (-15 -2441 ((-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))) $)) (-15 -3322 ($ $ (-598 (-598 (-806))))) (-15 -3322 ($ $ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))))) (-15 -1440 ($ $ (-598 (-806)))) (-15 -3526 ($ $ (-598 (-806)))) (-15 -2564 ($ $ (-598 (-806)))) (-15 -1785 ($ $ (-598 (-806)))) (-15 -3149 ((-1085) $)) (-15 -2907 ((-598 $) $)) (-15 -4082 ($) -2651)))) (T -1102)) -((-3010 (*1 *1) (-5 *1 (-1102))) (-3010 (*1 *1 *1) (-5 *1 (-1102))) (-2927 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1102)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1102)))) (-3955 (*1 *1 *1) (-5 *1 (-1102))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1102)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806))))) (-5 *1 (-1102)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-1102)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806))))) (-5 *1 (-1102)))) (-1440 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1102)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1102)))) (-4082 (*1 *1) (-5 *1 (-1102)))) -(-13 (-797) (-573 (-507)) (-778) (-573 (-1102)) (-573 (-835 (-531))) (-573 (-835 (-360))) (-829 (-531)) (-829 (-360)) (-10 -8 (-15 -3010 ($)) (-15 -3010 ($ $)) (-15 -2927 ((-1189))) (-15 -2265 ($ (-1085))) (-15 -3955 ($ $)) (-15 -3463 ((-110) $)) (-15 -2441 ((-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))) $)) (-15 -3322 ($ $ (-598 (-598 (-806))))) (-15 -3322 ($ $ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))))) (-15 -1440 ($ $ (-598 (-806)))) (-15 -3526 ($ $ (-598 (-806)))) (-15 -2564 ($ $ (-598 (-806)))) (-15 -1785 ($ $ (-598 (-806)))) (-15 -3149 ((-1085) $)) (-15 -2907 ((-598 $) $)) (-15 -4082 ($) -2651))) -((-4072 (((-1184 |#1|) |#1| (-864)) 16) (((-1184 |#1|) (-598 |#1|)) 20))) -(((-1103 |#1|) (-10 -7 (-15 -4072 ((-1184 |#1|) (-598 |#1|))) (-15 -4072 ((-1184 |#1|) |#1| (-864)))) (-986)) (T -1103)) -((-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-1184 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-986)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-986)) (-5 *2 (-1184 *4)) (-5 *1 (-1103 *4))))) -(-10 -7 (-15 -4072 ((-1184 |#1|) (-598 |#1|))) (-15 -4072 ((-1184 |#1|) |#1| (-864)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-2490 (($ $ |#1| (-913) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-913)) NIL)) (-3005 (((-913) $) NIL)) (-2736 (($ (-1 (-913) (-913)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-1816 (($ $ (-913) |#1| $) NIL (-12 (|has| (-913) (-128)) (|has| |#1| (-523))))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2012 (((-913) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-913)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 9 T CONST)) (-3050 (($) 14 T CONST)) (-2148 (((-110) $ $) 16)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 19)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1104 |#1|) (-13 (-307 |#1| (-913)) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| (-913) (-128)) (-15 -1816 ($ $ (-913) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) (-986)) (T -1104)) -((-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-913)) (-4 *2 (-128)) (-5 *1 (-1104 *3)) (-4 *3 (-523)) (-4 *3 (-986))))) -(-13 (-307 |#1| (-913)) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| (-913) (-128)) (-15 -1816 ($ $ (-913) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) -((-4052 (((-1106) (-1102) $) 25)) (-1738 (($) 29)) (-2852 (((-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-1102) $) 22)) (-2607 (((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) $) 41) (((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) 42) (((-1189) (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) 43)) (-1844 (((-1189) (-1102)) 58)) (-3042 (((-1189) (-1102) $) 55) (((-1189) (-1102)) 56) (((-1189)) 57)) (-2502 (((-1189) (-1102)) 37)) (-2986 (((-1102)) 36)) (-3781 (($) 34)) (-2347 (((-418) (-1102) (-418) (-1102) $) 45) (((-418) (-598 (-1102)) (-418) (-1102) $) 49) (((-418) (-1102) (-418)) 46) (((-418) (-1102) (-418) (-1102)) 50)) (-1535 (((-1102)) 35)) (-2265 (((-806) $) 28)) (-2278 (((-1189)) 30) (((-1189) (-1102)) 33)) (-3618 (((-598 (-1102)) (-1102) $) 24)) (-2296 (((-1189) (-1102) (-598 (-1102)) $) 38) (((-1189) (-1102) (-598 (-1102))) 39) (((-1189) (-598 (-1102))) 40))) -(((-1105) (-13 (-572 (-806)) (-10 -8 (-15 -1738 ($)) (-15 -2278 ((-1189))) (-15 -2278 ((-1189) (-1102))) (-15 -2347 ((-418) (-1102) (-418) (-1102) $)) (-15 -2347 ((-418) (-598 (-1102)) (-418) (-1102) $)) (-15 -2347 ((-418) (-1102) (-418))) (-15 -2347 ((-418) (-1102) (-418) (-1102))) (-15 -2502 ((-1189) (-1102))) (-15 -1535 ((-1102))) (-15 -2986 ((-1102))) (-15 -2296 ((-1189) (-1102) (-598 (-1102)) $)) (-15 -2296 ((-1189) (-1102) (-598 (-1102)))) (-15 -2296 ((-1189) (-598 (-1102)))) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -2607 ((-1189) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -3042 ((-1189) (-1102) $)) (-15 -3042 ((-1189) (-1102))) (-15 -3042 ((-1189))) (-15 -1844 ((-1189) (-1102))) (-15 -3781 ($)) (-15 -2852 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-1102) $)) (-15 -3618 ((-598 (-1102)) (-1102) $)) (-15 -4052 ((-1106) (-1102) $))))) (T -1105)) -((-1738 (*1 *1) (-5 *1 (-1105))) (-2278 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *4 (-1102)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-1535 (*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105)))) (-2986 (*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105)))) (-2296 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2607 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1102)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3042 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3042 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3781 (*1 *1) (-5 *1 (-1105))) (-2852 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *1 (-1105)))) (-3618 (*1 *2 *3 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1105)) (-5 *3 (-1102)))) (-4052 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1106)) (-5 *1 (-1105))))) -(-13 (-572 (-806)) (-10 -8 (-15 -1738 ($)) (-15 -2278 ((-1189))) (-15 -2278 ((-1189) (-1102))) (-15 -2347 ((-418) (-1102) (-418) (-1102) $)) (-15 -2347 ((-418) (-598 (-1102)) (-418) (-1102) $)) (-15 -2347 ((-418) (-1102) (-418))) (-15 -2347 ((-418) (-1102) (-418) (-1102))) (-15 -2502 ((-1189) (-1102))) (-15 -1535 ((-1102))) (-15 -2986 ((-1102))) (-15 -2296 ((-1189) (-1102) (-598 (-1102)) $)) (-15 -2296 ((-1189) (-1102) (-598 (-1102)))) (-15 -2296 ((-1189) (-598 (-1102)))) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -2607 ((-1189) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -3042 ((-1189) (-1102) $)) (-15 -3042 ((-1189) (-1102))) (-15 -3042 ((-1189))) (-15 -1844 ((-1189) (-1102))) (-15 -3781 ($)) (-15 -2852 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-1102) $)) (-15 -3618 ((-598 (-1102)) (-1102) $)) (-15 -4052 ((-1106) (-1102) $)))) -((-1838 (((-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) $) 59)) (-2276 (((-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))) (-415) $) 43)) (-3152 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))) 17)) (-1844 (((-1189) $) 67)) (-1780 (((-598 (-1102)) $) 22)) (-3483 (((-1034) $) 55)) (-2057 (((-418) (-1102) $) 27)) (-1215 (((-598 (-1102)) $) 30)) (-3781 (($) 19)) (-2347 (((-418) (-598 (-1102)) (-418) $) 25) (((-418) (-1102) (-418) $) 24)) (-2265 (((-806) $) 9) (((-1112 (-1102) (-418)) $) 13))) -(((-1106) (-13 (-572 (-806)) (-10 -8 (-15 -2265 ((-1112 (-1102) (-418)) $)) (-15 -3781 ($)) (-15 -2347 ((-418) (-598 (-1102)) (-418) $)) (-15 -2347 ((-418) (-1102) (-418) $)) (-15 -2057 ((-418) (-1102) $)) (-15 -1780 ((-598 (-1102)) $)) (-15 -2276 ((-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))) (-415) $)) (-15 -1215 ((-598 (-1102)) $)) (-15 -1838 ((-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) $)) (-15 -3483 ((-1034) $)) (-15 -1844 ((-1189) $)) (-15 -3152 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))))))) (T -1106)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-1112 (-1102) (-418))) (-5 *1 (-1106)))) (-3781 (*1 *1) (-5 *1 (-1106))) (-2347 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *1 (-1106)))) (-2347 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1106)))) (-2057 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-418)) (-5 *1 (-1106)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106)))) (-2276 (*1 *2 *3 *1) (-12 (-5 *3 (-415)) (-5 *2 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) (-5 *1 (-1106)))) (-1215 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))))) (-5 *1 (-1106)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1106)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1106)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))) (-5 *1 (-1106))))) -(-13 (-572 (-806)) (-10 -8 (-15 -2265 ((-1112 (-1102) (-418)) $)) (-15 -3781 ($)) (-15 -2347 ((-418) (-598 (-1102)) (-418) $)) (-15 -2347 ((-418) (-1102) (-418) $)) (-15 -2057 ((-418) (-1102) $)) (-15 -1780 ((-598 (-1102)) $)) (-15 -2276 ((-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))) (-415) $)) (-15 -1215 ((-598 (-1102)) $)) (-15 -1838 ((-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) $)) (-15 -3483 ((-1034) $)) (-15 -1844 ((-1189) $)) (-15 -3152 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418)))))))) -((-2247 (((-110) $ $) NIL)) (-1405 (((-110) $) 42)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1715 (((-3 (-531) (-208) (-1102) (-1085) $) $) 50)) (-3846 (((-598 $) $) 55)) (-3318 (((-1034) $) 24) (($ (-1034)) 25)) (-2920 (((-110) $) 52)) (-2265 (((-806) $) NIL) (($ (-531)) 26) (((-531) $) 28) (($ (-208)) 29) (((-208) $) 31) (($ (-1102)) 32) (((-1102) $) 34) (($ (-1085)) 35) (((-1085) $) 37)) (-3022 (((-110) $ (|[\|\|]| (-531))) 11) (((-110) $ (|[\|\|]| (-208))) 15) (((-110) $ (|[\|\|]| (-1102))) 23) (((-110) $ (|[\|\|]| (-1085))) 19)) (-1553 (($ (-1102) (-598 $)) 39) (($ $ (-598 $)) 40)) (-2520 (((-531) $) 27) (((-208) $) 30) (((-1102) $) 33) (((-1085) $) 36)) (-2148 (((-110) $ $) 7))) -(((-1107) (-13 (-1179) (-1030) (-10 -8 (-15 -3318 ((-1034) $)) (-15 -3318 ($ (-1034))) (-15 -2265 ($ (-531))) (-15 -2265 ((-531) $)) (-15 -2520 ((-531) $)) (-15 -2265 ($ (-208))) (-15 -2265 ((-208) $)) (-15 -2520 ((-208) $)) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2520 ((-1102) $)) (-15 -2265 ($ (-1085))) (-15 -2265 ((-1085) $)) (-15 -2520 ((-1085) $)) (-15 -1553 ($ (-1102) (-598 $))) (-15 -1553 ($ $ (-598 $))) (-15 -1405 ((-110) $)) (-15 -1715 ((-3 (-531) (-208) (-1102) (-1085) $) $)) (-15 -3846 ((-598 $) $)) (-15 -2920 ((-110) $)) (-15 -3022 ((-110) $ (|[\|\|]| (-531)))) (-15 -3022 ((-110) $ (|[\|\|]| (-208)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1102)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1085))))))) (T -1107)) -((-3318 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1107)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) (-1553 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-1107))) (-5 *1 (-1107)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-3 (-531) (-208) (-1102) (-1085) (-1107))) (-5 *1 (-1107)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-110)) (-5 *1 (-1107))))) -(-13 (-1179) (-1030) (-10 -8 (-15 -3318 ((-1034) $)) (-15 -3318 ($ (-1034))) (-15 -2265 ($ (-531))) (-15 -2265 ((-531) $)) (-15 -2520 ((-531) $)) (-15 -2265 ($ (-208))) (-15 -2265 ((-208) $)) (-15 -2520 ((-208) $)) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2520 ((-1102) $)) (-15 -2265 ($ (-1085))) (-15 -2265 ((-1085) $)) (-15 -2520 ((-1085) $)) (-15 -1553 ($ (-1102) (-598 $))) (-15 -1553 ($ $ (-598 $))) (-15 -1405 ((-110) $)) (-15 -1715 ((-3 (-531) (-208) (-1102) (-1085) $) $)) (-15 -3846 ((-598 $) $)) (-15 -2920 ((-110) $)) (-15 -3022 ((-110) $ (|[\|\|]| (-531)))) (-15 -3022 ((-110) $ (|[\|\|]| (-208)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1102)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1085)))))) -((-4088 (((-598 (-598 (-895 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 57)) (-1871 (((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|)))) 69) (((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|))) 65) (((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102)) 70) (((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102)) 64) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|))))) 93) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|)))) 92) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102))) 94) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 91))) -(((-1108 |#1|) (-10 -7 (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))))) (-15 -4088 ((-598 (-598 (-895 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))))) (-523)) (T -1108)) -((-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-895 *5)))) (-5 *1 (-1108 *5)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4))))) (-5 *1 (-1108 *4)) (-5 *3 (-276 (-388 (-895 *4)))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4))))) (-5 *1 (-1108 *4)) (-5 *3 (-388 (-895 *4))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5)) (-5 *3 (-276 (-388 (-895 *5)))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5)) (-5 *3 (-388 (-895 *5))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-1108 *4)) (-5 *3 (-598 (-276 (-388 (-895 *4))))))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-598 (-388 (-895 *4)))) (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-1108 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-1108 *5)) (-5 *3 (-598 (-276 (-388 (-895 *5))))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-1108 *5))))) -(-10 -7 (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))))) (-15 -4088 ((-598 (-598 (-895 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))))) -((-3811 (((-1085)) 7)) (-1836 (((-1085)) 9)) (-2891 (((-1189) (-1085)) 11)) (-2417 (((-1085)) 8))) -(((-1109) (-10 -7 (-15 -3811 ((-1085))) (-15 -2417 ((-1085))) (-15 -1836 ((-1085))) (-15 -2891 ((-1189) (-1085))))) (T -1109)) -((-2891 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1109)))) (-1836 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))) (-2417 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))) (-3811 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109))))) -(-10 -7 (-15 -3811 ((-1085))) (-15 -2417 ((-1085))) (-15 -1836 ((-1085))) (-15 -2891 ((-1189) (-1085)))) -((-2665 (((-598 (-598 |#1|)) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|)))) 38)) (-2372 (((-598 (-598 (-598 |#1|))) (-598 (-598 |#1|))) 24)) (-2047 (((-1111 (-598 |#1|)) (-598 |#1|)) 34)) (-1460 (((-598 (-598 |#1|)) (-598 |#1|)) 30)) (-3876 (((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 (-598 (-598 |#1|)))) 37)) (-1474 (((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 |#1|) (-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|)))) 36)) (-3903 (((-598 (-598 |#1|)) (-598 (-598 |#1|))) 28)) (-2147 (((-598 |#1|) (-598 |#1|)) 31)) (-2662 (((-598 (-598 (-598 |#1|))) (-598 |#1|) (-598 (-598 (-598 |#1|)))) 18)) (-1333 (((-598 (-598 (-598 |#1|))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 (-598 |#1|)))) 16)) (-2481 (((-2 (|:| |fs| (-110)) (|:| |sd| (-598 |#1|)) (|:| |td| (-598 (-598 |#1|)))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 |#1|))) 14)) (-2511 (((-598 (-598 |#1|)) (-598 (-598 (-598 |#1|)))) 39)) (-2484 (((-598 (-598 |#1|)) (-1111 (-598 |#1|))) 41))) -(((-1110 |#1|) (-10 -7 (-15 -2481 ((-2 (|:| |fs| (-110)) (|:| |sd| (-598 |#1|)) (|:| |td| (-598 (-598 |#1|)))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 |#1|)))) (-15 -1333 ((-598 (-598 (-598 |#1|))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2662 ((-598 (-598 (-598 |#1|))) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2665 ((-598 (-598 |#1|)) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2511 ((-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2484 ((-598 (-598 |#1|)) (-1111 (-598 |#1|)))) (-15 -2372 ((-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)))) (-15 -2047 ((-1111 (-598 |#1|)) (-598 |#1|))) (-15 -3903 ((-598 (-598 |#1|)) (-598 (-598 |#1|)))) (-15 -1460 ((-598 (-598 |#1|)) (-598 |#1|))) (-15 -2147 ((-598 |#1|) (-598 |#1|))) (-15 -1474 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 |#1|) (-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))))) (-15 -3876 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 (-598 (-598 |#1|)))))) (-797)) (T -1110)) -((-3876 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-2 (|:| |f1| (-598 *4)) (|:| |f2| (-598 (-598 (-598 *4)))) (|:| |f3| (-598 (-598 *4))) (|:| |f4| (-598 (-598 (-598 *4)))))) (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 (-598 *4)))))) (-1474 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-797)) (-5 *3 (-598 *6)) (-5 *5 (-598 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-598 *5)) (|:| |f3| *5) (|:| |f4| (-598 *5)))) (-5 *1 (-1110 *6)) (-5 *4 (-598 *5)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-1110 *3)))) (-1460 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)) (-5 *3 (-598 *4)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-797)) (-5 *1 (-1110 *3)))) (-2047 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-1111 (-598 *4))) (-5 *1 (-1110 *4)) (-5 *3 (-598 *4)))) (-2372 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 (-598 *4)))) (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 *4))))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1111 (-598 *4))) (-4 *4 (-797)) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)) (-4 *4 (-797)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4))) (-4 *4 (-797)) (-5 *1 (-1110 *4)))) (-2662 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-598 *4)) (-4 *4 (-797)) (-5 *1 (-1110 *4)))) (-1333 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-598 *5)) (-4 *5 (-797)) (-5 *1 (-1110 *5)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-797)) (-5 *4 (-598 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-598 *4)))) (-5 *1 (-1110 *6)) (-5 *5 (-598 *4))))) -(-10 -7 (-15 -2481 ((-2 (|:| |fs| (-110)) (|:| |sd| (-598 |#1|)) (|:| |td| (-598 (-598 |#1|)))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 |#1|)))) (-15 -1333 ((-598 (-598 (-598 |#1|))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2662 ((-598 (-598 (-598 |#1|))) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2665 ((-598 (-598 |#1|)) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2511 ((-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2484 ((-598 (-598 |#1|)) (-1111 (-598 |#1|)))) (-15 -2372 ((-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)))) (-15 -2047 ((-1111 (-598 |#1|)) (-598 |#1|))) (-15 -3903 ((-598 (-598 |#1|)) (-598 (-598 |#1|)))) (-15 -1460 ((-598 (-598 |#1|)) (-598 |#1|))) (-15 -2147 ((-598 |#1|) (-598 |#1|))) (-15 -1474 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 |#1|) (-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))))) (-15 -3876 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 (-598 (-598 |#1|)))))) -((-3330 (($ (-598 (-598 |#1|))) 10)) (-3924 (((-598 (-598 |#1|)) $) 11)) (-2265 (((-806) $) 26))) -(((-1111 |#1|) (-10 -8 (-15 -3330 ($ (-598 (-598 |#1|)))) (-15 -3924 ((-598 (-598 |#1|)) $)) (-15 -2265 ((-806) $))) (-1030)) (T -1111)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1111 *3)) (-4 *3 (-1030)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 *3))) (-5 *1 (-1111 *3)) (-4 *3 (-1030)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-1111 *3))))) -(-10 -8 (-15 -3330 ($ (-598 (-598 |#1|)))) (-15 -3924 ((-598 (-598 |#1|)) $)) (-15 -2265 ((-806) $))) -((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1112 |#1| |#2|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030)) (T -1112)) -NIL -(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) -((-4161 ((|#1| (-598 |#1|)) 32)) (-3275 ((|#1| |#1| (-531)) 18)) (-3465 (((-1098 |#1|) |#1| (-864)) 15))) -(((-1113 |#1|) (-10 -7 (-15 -4161 (|#1| (-598 |#1|))) (-15 -3465 ((-1098 |#1|) |#1| (-864))) (-15 -3275 (|#1| |#1| (-531)))) (-344)) (T -1113)) -((-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-1113 *2)) (-4 *2 (-344)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-1098 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-344)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-1113 *2)) (-4 *2 (-344))))) -(-10 -7 (-15 -4161 (|#1| (-598 |#1|))) (-15 -3465 ((-1098 |#1|) |#1| (-864))) (-15 -3275 (|#1| |#1| (-531)))) -((-2995 (($) 10) (($ (-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)))) 14)) (-2717 (($ (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 39) (((-598 |#3|) $) 41)) (-2680 (($ (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3261 (($ (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3540 (((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 54)) (-3944 (($ (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 16)) (-3765 (((-598 |#2|) $) 19)) (-3059 (((-110) |#2| $) 59)) (-4190 (((-3 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) "failed") (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 58)) (-4192 (((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 63)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-3163 (((-598 |#3|) $) 43)) (-1785 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-721) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) NIL) (((-721) |#3| $) NIL) (((-721) (-1 (-110) |#3|) $) 68)) (-2265 (((-806) $) 27)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-2148 (((-110) $ $) 49))) -(((-1114 |#1| |#2| |#3|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2995 (|#1| (-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))))) (-15 -2995 (|#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#3|) |#1|)) (-15 -2227 ((-598 |#3|) |#1|)) (-15 -2539 ((-721) |#3| |#1|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -3059 ((-110) |#2| |#1|)) (-15 -3765 ((-598 |#2|) |#1|)) (-15 -2717 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2717 (|#1| (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2717 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4190 ((-3 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) "failed") (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3540 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -3944 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4192 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2539 ((-721) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2227 ((-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2539 ((-721) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2294 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2060 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2680 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3261 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|))) (-1115 |#2| |#3|) (-1030) (-1030)) (T -1114)) -NIL -(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2995 (|#1| (-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))))) (-15 -2995 (|#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#3|) |#1|)) (-15 -2227 ((-598 |#3|) |#1|)) (-15 -2539 ((-721) |#3| |#1|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -3059 ((-110) |#2| |#1|)) (-15 -3765 ((-598 |#2|) |#1|)) (-15 -2717 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2717 (|#1| (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2717 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4190 ((-3 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) "failed") (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3540 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -3944 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4192 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2539 ((-721) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2227 ((-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2539 ((-721) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2294 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2060 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2680 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3261 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|))) -((-2247 (((-110) $ $) 19 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2995 (($) 72) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 71)) (-3137 (((-1189) $ |#1| |#1|) 99 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#2| $ |#1| |#2|) 73)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 55 (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 61)) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 46 (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 62)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 54 (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 56 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 53 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 52 (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 88)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 30 (|has| $ (-6 -4273))) (((-598 |#2|) $) 79 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-3804 ((|#1| $) 96 (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 29 (|has| $ (-6 -4273))) (((-598 |#2|) $) 80 (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2327 ((|#1| $) 95 (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 34 (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3345 (((-598 |#1|) $) 63)) (-1727 (((-110) |#1| $) 64)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 39)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 40)) (-3765 (((-598 |#1|) $) 93)) (-3059 (((-110) |#1| $) 92)) (-2529 (((-1049) $) 21 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3046 ((|#2| $) 97 (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 51)) (-3742 (($ $ |#2|) 98 (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 41)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 32 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 26 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 25 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 24 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 23 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) 91)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2543 (($) 49) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 48)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 31 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-721) |#2| $) 81 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4273)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 50)) (-2265 (((-806) $) 18 (-1435 (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 42)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 33 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1115 |#1| |#2|) (-133) (-1030) (-1030)) (T -1115)) -((-2454 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2995 (*1 *1) (-12 (-4 *1 (-1115 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 *3) (|:| -1798 *4)))) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *1 (-1115 *3 *4)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1115 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))))) -(-13 (-569 |t#1| |t#2|) (-564 |t#1| |t#2|) (-10 -8 (-15 -2454 (|t#2| $ |t#1| |t#2|)) (-15 -2995 ($)) (-15 -2995 ($ (-598 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|))))) (-15 -3261 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-104 #0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-99) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))) ((-144 #0#) . T) ((-573 (-507)) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-468 #0#) . T) ((-468 |#2|) . T) ((-564 |#1| |#2|) . T) ((-492 #0# #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-569 |#1| |#2|) . T) ((-1030) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-1138) . T)) -((-3110 (((-110)) 24)) (-1938 (((-1189) (-1085)) 26)) (-2742 (((-110)) 36)) (-2050 (((-1189)) 34)) (-3156 (((-1189) (-1085) (-1085)) 25)) (-3808 (((-110)) 37)) (-3944 (((-1189) |#1| |#2|) 44)) (-3884 (((-1189)) 20)) (-3638 (((-3 |#2| "failed") |#1|) 42)) (-1999 (((-1189)) 35))) -(((-1116 |#1| |#2|) (-10 -7 (-15 -3884 ((-1189))) (-15 -3156 ((-1189) (-1085) (-1085))) (-15 -1938 ((-1189) (-1085))) (-15 -2050 ((-1189))) (-15 -1999 ((-1189))) (-15 -3110 ((-110))) (-15 -2742 ((-110))) (-15 -3808 ((-110))) (-15 -3638 ((-3 |#2| "failed") |#1|)) (-15 -3944 ((-1189) |#1| |#2|))) (-1030) (-1030)) (T -1116)) -((-3944 (*1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-3638 (*1 *2 *3) (|partial| -12 (-4 *2 (-1030)) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1030)))) (-3808 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-2742 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-3110 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-1999 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-2050 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)))) (-3156 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)))) (-3884 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))))) -(-10 -7 (-15 -3884 ((-1189))) (-15 -3156 ((-1189) (-1085) (-1085))) (-15 -1938 ((-1189) (-1085))) (-15 -2050 ((-1189))) (-15 -1999 ((-1189))) (-15 -3110 ((-110))) (-15 -2742 ((-110))) (-15 -3808 ((-110))) (-15 -3638 ((-3 |#2| "failed") |#1|)) (-15 -3944 ((-1189) |#1| |#2|))) -((-3024 (((-1085) (-1085)) 18)) (-2447 (((-51) (-1085)) 21))) -(((-1117) (-10 -7 (-15 -2447 ((-51) (-1085))) (-15 -3024 ((-1085) (-1085))))) (T -1117)) -((-3024 (*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1117)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-1117))))) -(-10 -7 (-15 -2447 ((-51) (-1085))) (-15 -3024 ((-1085) (-1085)))) -((-2265 (((-1119) |#1|) 11))) -(((-1118 |#1|) (-10 -7 (-15 -2265 ((-1119) |#1|))) (-1030)) (T -1118)) -((-2265 (*1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *1 (-1118 *3)) (-4 *3 (-1030))))) -(-10 -7 (-15 -2265 ((-1119) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3356 (((-598 (-1085)) $) 34)) (-3813 (((-598 (-1085)) $ (-598 (-1085))) 37)) (-2617 (((-598 (-1085)) $ (-598 (-1085))) 36)) (-3619 (((-598 (-1085)) $ (-598 (-1085))) 38)) (-1340 (((-598 (-1085)) $) 33)) (-3010 (($) 22)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3692 (((-598 (-1085)) $) 35)) (-2286 (((-1189) $ (-531)) 29) (((-1189) $) 30)) (-3318 (($ (-806) (-531)) 26) (($ (-806) (-531) (-806)) NIL)) (-2265 (((-806) $) 40) (($ (-806)) 24)) (-2148 (((-110) $ $) NIL))) -(((-1119) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -3318 ($ (-806) (-531) (-806))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -3356 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3813 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085))))))) (T -1119)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1119)))) (-3318 (*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119)))) (-3318 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1119)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1119)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3010 (*1 *1) (-5 *1 (-1119))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3619 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3813 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-2617 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -3318 ($ (-806) (-531) (-806))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -3356 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3813 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085)))))) -((-2247 (((-110) $ $) NIL)) (-3957 (((-1085) $ (-1085)) 17) (((-1085) $) 16)) (-2618 (((-1085) $ (-1085)) 15)) (-1743 (($ $ (-1085)) NIL)) (-3113 (((-3 (-1085) "failed") $) 11)) (-2554 (((-1085) $) 8)) (-1616 (((-3 (-1085) "failed") $) 12)) (-3641 (((-1085) $) 9)) (-1833 (($ (-369)) NIL) (($ (-369) (-1085)) NIL)) (-3955 (((-369) $) NIL)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2843 (((-110) $) 18)) (-2265 (((-806) $) NIL)) (-4074 (($ $) NIL)) (-2148 (((-110) $ $) NIL))) -(((-1120) (-13 (-345 (-369) (-1085)) (-10 -8 (-15 -3957 ((-1085) $ (-1085))) (-15 -3957 ((-1085) $)) (-15 -2554 ((-1085) $)) (-15 -3113 ((-3 (-1085) "failed") $)) (-15 -1616 ((-3 (-1085) "failed") $)) (-15 -2843 ((-110) $))))) (T -1120)) -((-3957 (*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-3113 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-1616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1120))))) -(-13 (-345 (-369) (-1085)) (-10 -8 (-15 -3957 ((-1085) $ (-1085))) (-15 -3957 ((-1085) $)) (-15 -2554 ((-1085) $)) (-15 -3113 ((-3 (-1085) "failed") $)) (-15 -1616 ((-3 (-1085) "failed") $)) (-15 -2843 ((-110) $)))) -((-3459 (((-3 (-531) "failed") |#1|) 19)) (-1933 (((-3 (-531) "failed") |#1|) 14)) (-2427 (((-531) (-1085)) 28))) -(((-1121 |#1|) (-10 -7 (-15 -3459 ((-3 (-531) "failed") |#1|)) (-15 -1933 ((-3 (-531) "failed") |#1|)) (-15 -2427 ((-531) (-1085)))) (-986)) (T -1121)) -((-2427 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-1121 *4)) (-4 *4 (-986)))) (-1933 (*1 *2 *3) (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986)))) (-3459 (*1 *2 *3) (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986))))) -(-10 -7 (-15 -3459 ((-3 (-531) "failed") |#1|)) (-15 -1933 ((-3 (-531) "failed") |#1|)) (-15 -2427 ((-531) (-1085)))) -((-1449 (((-1062 (-208))) 9))) -(((-1122) (-10 -7 (-15 -1449 ((-1062 (-208)))))) (T -1122)) -((-1449 (*1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1122))))) -(-10 -7 (-15 -1449 ((-1062 (-208))))) -((-1880 (($) 11)) (-2442 (($ $) 35)) (-2416 (($ $) 33)) (-2266 (($ $) 25)) (-2468 (($ $) 17)) (-2753 (($ $) 15)) (-2456 (($ $) 19)) (-2305 (($ $) 30)) (-2429 (($ $) 34)) (-2279 (($ $) 29))) -(((-1123 |#1|) (-10 -8 (-15 -1880 (|#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2279 (|#1| |#1|))) (-1124)) (T -1123)) -NIL -(-10 -8 (-15 -1880 (|#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2279 (|#1| |#1|))) -((-2367 (($ $) 26)) (-2218 (($ $) 11)) (-2343 (($ $) 27)) (-2198 (($ $) 10)) (-2391 (($ $) 28)) (-2241 (($ $) 9)) (-1880 (($) 16)) (-2076 (($ $) 19)) (-2798 (($ $) 18)) (-2403 (($ $) 29)) (-2253 (($ $) 8)) (-2379 (($ $) 30)) (-2229 (($ $) 7)) (-2356 (($ $) 31)) (-2210 (($ $) 6)) (-2442 (($ $) 20)) (-2292 (($ $) 32)) (-2416 (($ $) 21)) (-2266 (($ $) 33)) (-2468 (($ $) 22)) (-2318 (($ $) 34)) (-2753 (($ $) 23)) (-2331 (($ $) 35)) (-2456 (($ $) 24)) (-2305 (($ $) 36)) (-2429 (($ $) 25)) (-2279 (($ $) 37)) (** (($ $ $) 17))) -(((-1124) (-133)) (T -1124)) -((-1880 (*1 *1) (-4 *1 (-1124)))) -(-13 (-1127) (-93) (-471) (-34) (-266) (-10 -8 (-15 -1880 ($)))) -(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-1127) . T)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 17)) (-1594 (($ |#1| (-598 $)) 23) (($ (-598 |#1|)) 27) (($ |#1|) 25)) (-4058 (((-110) $ (-721)) 48)) (-2039 ((|#1| $ |#1|) 14 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 13 (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-2227 (((-598 |#1|) $) 52 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 43)) (-1478 (((-110) $ $) 33 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 41)) (-2445 (((-598 |#1|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 22)) (-3332 (((-110) $ (-721)) 40)) (-2132 (((-598 |#1|) $) 37)) (-2672 (((-110) $) 36)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 74)) (-1589 (((-110) $) 9)) (-3781 (($) 10)) (-1785 ((|#1| $ "value") NIL)) (-2357 (((-531) $ $) 32)) (-1946 (((-598 $) $) 59)) (-1691 (((-110) $ $) 77)) (-3518 (((-598 $) $) 72)) (-1294 (($ $) 73)) (-2930 (((-110) $) 56)) (-2539 (((-721) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4273))) (((-721) |#1| $) 16 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 58)) (-2265 (((-806) $) 61 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 12)) (-2910 (((-110) $ $) 29 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 28 (|has| |#1| (-1030)))) (-2167 (((-721) $) 39 (|has| $ (-6 -4273))))) -(((-1125 |#1|) (-13 (-951 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -1594 ($ |#1| (-598 $))) (-15 -1594 ($ (-598 |#1|))) (-15 -1594 ($ |#1|)) (-15 -2930 ((-110) $)) (-15 -1294 ($ $)) (-15 -3518 ((-598 $) $)) (-15 -1691 ((-110) $ $)) (-15 -1946 ((-598 $) $)))) (-1030)) (T -1125)) -((-2930 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-1125 *2))) (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-1125 *3)))) (-1594 (*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) (-1294 (*1 *1 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))) (-1691 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030))))) -(-13 (-951 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -1594 ($ |#1| (-598 $))) (-15 -1594 ($ (-598 |#1|))) (-15 -1594 ($ |#1|)) (-15 -2930 ((-110) $)) (-15 -1294 ($ $)) (-15 -3518 ((-598 $) $)) (-15 -1691 ((-110) $ $)) (-15 -1946 ((-598 $) $)))) -((-2218 (($ $) 15)) (-2241 (($ $) 12)) (-2253 (($ $) 10)) (-2229 (($ $) 17))) -(((-1126 |#1|) (-10 -8 (-15 -2229 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2218 (|#1| |#1|))) (-1127)) (T -1126)) -NIL -(-10 -8 (-15 -2229 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2218 (|#1| |#1|))) -((-2218 (($ $) 11)) (-2198 (($ $) 10)) (-2241 (($ $) 9)) (-2253 (($ $) 8)) (-2229 (($ $) 7)) (-2210 (($ $) 6))) -(((-1127) (-133)) (T -1127)) -((-2218 (*1 *1 *1) (-4 *1 (-1127))) (-2198 (*1 *1 *1) (-4 *1 (-1127))) (-2241 (*1 *1 *1) (-4 *1 (-1127))) (-2253 (*1 *1 *1) (-4 *1 (-1127))) (-2229 (*1 *1 *1) (-4 *1 (-1127))) (-2210 (*1 *1 *1) (-4 *1 (-1127)))) -(-13 (-10 -8 (-15 -2210 ($ $)) (-15 -2229 ($ $)) (-15 -2253 ($ $)) (-15 -2241 ($ $)) (-15 -2198 ($ $)) (-15 -2218 ($ $)))) -((-1709 ((|#2| |#2|) 88)) (-4209 (((-110) |#2|) 26)) (-2577 ((|#2| |#2|) 30)) (-2590 ((|#2| |#2|) 32)) (-1824 ((|#2| |#2| (-1102)) 83) ((|#2| |#2|) 84)) (-1284 (((-159 |#2|) |#2|) 28)) (-1703 ((|#2| |#2| (-1102)) 85) ((|#2| |#2|) 86))) -(((-1128 |#1| |#2|) (-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -1709 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1284 ((-159 |#2|) |#2|))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -1128)) -((-1284 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-159 *3)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-110)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-1703 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-1824 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))) -(-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -1709 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1284 ((-159 |#2|) |#2|))) -((-2824 ((|#4| |#4| |#1|) 27)) (-1804 ((|#4| |#4| |#1|) 28))) -(((-1129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2824 (|#4| |#4| |#1|)) (-15 -1804 (|#4| |#4| |#1|))) (-523) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -1129)) -((-1804 (*1 *2 *2 *3) (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(-10 -7 (-15 -2824 (|#4| |#4| |#1|)) (-15 -1804 (|#4| |#4| |#1|))) -((-1498 ((|#2| |#2|) 133)) (-2531 ((|#2| |#2|) 130)) (-2756 ((|#2| |#2|) 121)) (-2018 ((|#2| |#2|) 118)) (-3439 ((|#2| |#2|) 126)) (-3975 ((|#2| |#2|) 114)) (-3296 ((|#2| |#2|) 43)) (-1927 ((|#2| |#2|) 94)) (-4013 ((|#2| |#2|) 74)) (-2945 ((|#2| |#2|) 128)) (-3344 ((|#2| |#2|) 116)) (-1472 ((|#2| |#2|) 138)) (-1970 ((|#2| |#2|) 136)) (-1503 ((|#2| |#2|) 137)) (-2692 ((|#2| |#2|) 135)) (-2744 ((|#2| |#2|) 148)) (-2642 ((|#2| |#2|) 30 (-12 (|has| |#2| (-573 (-835 |#1|))) (|has| |#2| (-829 |#1|)) (|has| |#1| (-573 (-835 |#1|))) (|has| |#1| (-829 |#1|))))) (-1483 ((|#2| |#2|) 75)) (-3615 ((|#2| |#2|) 139)) (-2140 ((|#2| |#2|) 140)) (-1602 ((|#2| |#2|) 127)) (-1772 ((|#2| |#2|) 115)) (-4024 ((|#2| |#2|) 134)) (-2479 ((|#2| |#2|) 132)) (-1338 ((|#2| |#2|) 122)) (-2346 ((|#2| |#2|) 120)) (-3271 ((|#2| |#2|) 124)) (-4156 ((|#2| |#2|) 112))) -(((-1130 |#1| |#2|) (-10 -7 (-15 -2140 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -2756 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (IF (|has| |#1| (-829 |#1|)) (IF (|has| |#1| (-573 (-835 |#1|))) (IF (|has| |#2| (-573 (-835 |#1|))) (IF (|has| |#2| (-829 |#1|)) (-15 -2642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-797) (-432)) (-13 (-411 |#1|) (-1124))) (T -1130)) -((-2642 (*1 *2 *2) (-12 (-4 *3 (-573 (-835 *3))) (-4 *3 (-829 *3)) (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-573 (-835 *3))) (-4 *2 (-829 *3)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2531 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2756 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124)))))) -(-10 -7 (-15 -2140 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -2756 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (IF (|has| |#1| (-829 |#1|)) (IF (|has| |#1| (-573 (-835 |#1|))) (IF (|has| |#2| (-573 (-835 |#1|))) (IF (|has| |#2| (-829 |#1|)) (-15 -2642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3823 (((-110) |#5| $) 60) (((-110) $) 102)) (-3911 ((|#5| |#5| $) 75)) (-2177 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4221 (((-598 |#5|) (-598 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3154 (((-3 $ "failed") (-598 |#5|)) 126)) (-3062 (((-3 $ "failed") $) 112)) (-3785 ((|#5| |#5| $) 94)) (-2125 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-2551 ((|#5| |#5| $) 98)) (-1760 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-4160 (((-2 (|:| -2259 (-598 |#5|)) (|:| -1833 (-598 |#5|))) $) 55)) (-1426 (((-110) |#5| $) 58) (((-110) $) 103)) (-4075 ((|#4| $) 108)) (-2309 (((-3 |#5| "failed") $) 110)) (-1979 (((-598 |#5|) $) 49)) (-2009 (((-110) |#5| $) 67) (((-110) $) 107)) (-1279 ((|#5| |#5| $) 81)) (-1744 (((-110) $ $) 27)) (-2421 (((-110) |#5| $) 63) (((-110) $) 105)) (-3044 ((|#5| |#5| $) 78)) (-3046 (((-3 |#5| "failed") $) 109)) (-1846 (($ $ |#5|) 127)) (-2012 (((-721) $) 52)) (-2274 (($ (-598 |#5|)) 124)) (-3382 (($ $ |#4|) 122)) (-2021 (($ $ |#4|) 121)) (-2862 (($ $) 120)) (-2265 (((-806) $) NIL) (((-598 |#5|) $) 113)) (-3873 (((-721) $) 130)) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-1363 (((-110) $ (-1 (-110) |#5| (-598 |#5|))) 100)) (-1646 (((-598 |#4|) $) 115)) (-1697 (((-110) |#4| $) 118)) (-2148 (((-110) $ $) 19))) -(((-1131 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3873 ((-721) |#1|)) (-15 -1846 (|#1| |#1| |#5|)) (-15 -2177 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1697 ((-110) |#4| |#1|)) (-15 -1646 ((-598 |#4|) |#1|)) (-15 -3062 ((-3 |#1| "failed") |#1|)) (-15 -2309 ((-3 |#5| "failed") |#1|)) (-15 -3046 ((-3 |#5| "failed") |#1|)) (-15 -2551 (|#5| |#5| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3785 (|#5| |#5| |#1|)) (-15 -1279 (|#5| |#5| |#1|)) (-15 -3044 (|#5| |#5| |#1|)) (-15 -3911 (|#5| |#5| |#1|)) (-15 -4221 ((-598 |#5|) (-598 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -1760 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2009 ((-110) |#1|)) (-15 -2421 ((-110) |#1|)) (-15 -3823 ((-110) |#1|)) (-15 -1363 ((-110) |#1| (-1 (-110) |#5| (-598 |#5|)))) (-15 -2009 ((-110) |#5| |#1|)) (-15 -2421 ((-110) |#5| |#1|)) (-15 -3823 ((-110) |#5| |#1|)) (-15 -2125 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -1426 ((-110) |#1|)) (-15 -1426 ((-110) |#5| |#1|)) (-15 -4160 ((-2 (|:| -2259 (-598 |#5|)) (|:| -1833 (-598 |#5|))) |#1|)) (-15 -2012 ((-721) |#1|)) (-15 -1979 ((-598 |#5|) |#1|)) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1744 ((-110) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4075 (|#4| |#1|)) (-15 -3154 ((-3 |#1| "failed") (-598 |#5|))) (-15 -2265 ((-598 |#5|) |#1|)) (-15 -2274 (|#1| (-598 |#5|))) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2177 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-1132 |#2| |#3| |#4| |#5|) (-523) (-743) (-797) (-1000 |#2| |#3| |#4|)) (T -1131)) -NIL -(-10 -8 (-15 -3873 ((-721) |#1|)) (-15 -1846 (|#1| |#1| |#5|)) (-15 -2177 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1697 ((-110) |#4| |#1|)) (-15 -1646 ((-598 |#4|) |#1|)) (-15 -3062 ((-3 |#1| "failed") |#1|)) (-15 -2309 ((-3 |#5| "failed") |#1|)) (-15 -3046 ((-3 |#5| "failed") |#1|)) (-15 -2551 (|#5| |#5| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3785 (|#5| |#5| |#1|)) (-15 -1279 (|#5| |#5| |#1|)) (-15 -3044 (|#5| |#5| |#1|)) (-15 -3911 (|#5| |#5| |#1|)) (-15 -4221 ((-598 |#5|) (-598 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -1760 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2009 ((-110) |#1|)) (-15 -2421 ((-110) |#1|)) (-15 -3823 ((-110) |#1|)) (-15 -1363 ((-110) |#1| (-1 (-110) |#5| (-598 |#5|)))) (-15 -2009 ((-110) |#5| |#1|)) (-15 -2421 ((-110) |#5| |#1|)) (-15 -3823 ((-110) |#5| |#1|)) (-15 -2125 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -1426 ((-110) |#1|)) (-15 -1426 ((-110) |#5| |#1|)) (-15 -4160 ((-2 (|:| -2259 (-598 |#5|)) (|:| -1833 (-598 |#5|))) |#1|)) (-15 -2012 ((-721) |#1|)) (-15 -1979 ((-598 |#5|) |#1|)) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1744 ((-110) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4075 (|#4| |#1|)) (-15 -3154 ((-3 |#1| "failed") (-598 |#5|))) (-15 -2265 ((-598 |#5|) |#1|)) (-15 -2274 (|#1| (-598 |#5|))) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2177 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) -((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2309 (((-3 |#4| "failed") $) 83)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273))))) -(((-1132 |#1| |#2| |#3| |#4|) (-133) (-523) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1132)) -((-1744 (*1 *2 *1 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-1507 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *8)))) (-5 *3 (-598 *8)) (-4 *1 (-1132 *5 *6 *7 *8)))) (-1507 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *9)))) (-5 *3 (-598 *9)) (-4 *1 (-1132 *6 *7 *8 *9)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *6)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-721)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-2 (|:| -2259 (-598 *6)) (|:| -1833 (-598 *6)))))) (-1426 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-2125 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1132 *5 *6 *7 *3)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)))) (-3823 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2421 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2009 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-598 *7))) (-4 *1 (-1132 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-1760 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1132 *5 *6 *7 *2)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *2 (-1000 *5 *6 *7)))) (-4221 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1132 *5 *6 *7 *8)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)))) (-3911 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3044 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-1279 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3785 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2862 (*1 *1 *1) (-12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4)))) (-2551 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1132 *4 *5 *6 *7)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| -2259 *1) (|:| -1833 (-598 *7))))) (-5 *3 (-598 *7)) (-4 *1 (-1132 *4 *5 *6 *7)))) (-3046 (*1 *2 *1) (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2309 (*1 *2 *1) (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3062 (*1 *1 *1) (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) (-1697 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *3 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110)))) (-2177 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1132 *4 *5 *3 *2)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *2 (-1000 *4 *5 *3)))) (-3032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-721))))) -(-13 (-918 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -1744 ((-110) $ $)) (-15 -1507 ((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |t#4|))) "failed") (-598 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1507 ((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |t#4|))) "failed") (-598 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1979 ((-598 |t#4|) $)) (-15 -2012 ((-721) $)) (-15 -4160 ((-2 (|:| -2259 (-598 |t#4|)) (|:| -1833 (-598 |t#4|))) $)) (-15 -1426 ((-110) |t#4| $)) (-15 -1426 ((-110) $)) (-15 -2125 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -3823 ((-110) |t#4| $)) (-15 -2421 ((-110) |t#4| $)) (-15 -2009 ((-110) |t#4| $)) (-15 -1363 ((-110) $ (-1 (-110) |t#4| (-598 |t#4|)))) (-15 -3823 ((-110) $)) (-15 -2421 ((-110) $)) (-15 -2009 ((-110) $)) (-15 -1760 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -4221 ((-598 |t#4|) (-598 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3911 (|t#4| |t#4| $)) (-15 -3044 (|t#4| |t#4| $)) (-15 -1279 (|t#4| |t#4| $)) (-15 -3785 (|t#4| |t#4| $)) (-15 -2862 ($ $)) (-15 -2551 (|t#4| |t#4| $)) (-15 -2855 ((-598 $) (-598 |t#4|))) (-15 -3663 ((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |t#4|)))) (-598 |t#4|))) (-15 -3046 ((-3 |t#4| "failed") $)) (-15 -2309 ((-3 |t#4| "failed") $)) (-15 -3062 ((-3 $ "failed") $)) (-15 -1646 ((-598 |t#3|) $)) (-15 -1697 ((-110) |t#3| $)) (-15 -2177 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3032 ((-3 $ "failed") $ |t#4|)) (-15 -1846 ($ $ |t#4|)) (IF (|has| |t#3| (-349)) (-15 -3873 ((-721) $)) |%noBranch|))) -(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1138) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1102)) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3383 (((-895 |#1|) $ (-721)) 17) (((-895 |#1|) $ (-721) (-721)) NIL)) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $ (-1102)) NIL) (((-721) $ (-1102) (-721)) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3380 (((-110) $) NIL)) (-2669 (($ $ (-598 (-1102)) (-598 (-503 (-1102)))) NIL) (($ $ (-1102) (-503 (-1102))) NIL) (($ |#1| (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $ (-1102)) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-4003 (($ (-1 $) (-1102) |#1|) NIL (|has| |#1| (-37 (-388 (-531)))))) (-1846 (($ $ (-721)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (($ $ (-1102) $) NIL) (($ $ (-598 (-1102)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL)) (-3352 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2012 (((-503 (-1102)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-1102)) NIL) (($ (-895 |#1|)) NIL)) (-3188 ((|#1| $ (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (((-895 |#1|) $ (-721)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1133 |#1|) (-13 (-691 |#1| (-1102)) (-10 -8 (-15 -3188 ((-895 |#1|) $ (-721))) (-15 -2265 ($ (-1102))) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ (-1102) |#1|)) (-15 -4003 ($ (-1 $) (-1102) |#1|))) |%noBranch|))) (-986)) (T -1133)) -((-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-895 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-986)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-986)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-1133 *3)))) (-1788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)))) (-4003 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1133 *4))) (-5 *3 (-1102)) (-5 *1 (-1133 *4)) (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986))))) -(-13 (-691 |#1| (-1102)) (-10 -8 (-15 -3188 ((-895 |#1|) $ (-721))) (-15 -2265 ($ (-1102))) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ (-1102) |#1|)) (-15 -4003 ($ (-1 $) (-1102) |#1|))) |%noBranch|))) -((-1952 (($ |#1| (-598 (-598 (-886 (-208)))) (-110)) 19)) (-4172 (((-110) $ (-110)) 18)) (-1910 (((-110) $) 17)) (-3766 (((-598 (-598 (-886 (-208)))) $) 13)) (-1226 ((|#1| $) 8)) (-1934 (((-110) $) 15))) -(((-1134 |#1|) (-10 -8 (-15 -1226 (|#1| $)) (-15 -3766 ((-598 (-598 (-886 (-208)))) $)) (-15 -1934 ((-110) $)) (-15 -1910 ((-110) $)) (-15 -4172 ((-110) $ (-110))) (-15 -1952 ($ |#1| (-598 (-598 (-886 (-208)))) (-110)))) (-916)) (T -1134)) -((-1952 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-110)) (-5 *1 (-1134 *2)) (-4 *2 (-916)))) (-4172 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-1226 (*1 *2 *1) (-12 (-5 *1 (-1134 *2)) (-4 *2 (-916))))) -(-10 -8 (-15 -1226 (|#1| $)) (-15 -3766 ((-598 (-598 (-886 (-208)))) $)) (-15 -1934 ((-110) $)) (-15 -1910 ((-110) $)) (-15 -4172 ((-110) $ (-110))) (-15 -1952 ($ |#1| (-598 (-598 (-886 (-208)))) (-110)))) -((-1685 (((-886 (-208)) (-886 (-208))) 25)) (-4042 (((-886 (-208)) (-208) (-208) (-208) (-208)) 10)) (-2706 (((-598 (-886 (-208))) (-886 (-208)) (-886 (-208)) (-886 (-208)) (-208) (-598 (-598 (-208)))) 37)) (-3225 (((-208) (-886 (-208)) (-886 (-208))) 21)) (-2261 (((-886 (-208)) (-886 (-208)) (-886 (-208))) 22)) (-2353 (((-598 (-598 (-208))) (-531)) 31)) (-2250 (((-886 (-208)) (-886 (-208)) (-886 (-208))) 20)) (-2237 (((-886 (-208)) (-886 (-208)) (-886 (-208))) 19)) (* (((-886 (-208)) (-208) (-886 (-208))) 18))) -(((-1135) (-10 -7 (-15 -4042 ((-886 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-886 (-208)) (-208) (-886 (-208)))) (-15 -2237 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -2250 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -3225 ((-208) (-886 (-208)) (-886 (-208)))) (-15 -2261 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -1685 ((-886 (-208)) (-886 (-208)))) (-15 -2353 ((-598 (-598 (-208))) (-531))) (-15 -2706 ((-598 (-886 (-208))) (-886 (-208)) (-886 (-208)) (-886 (-208)) (-208) (-598 (-598 (-208))))))) (T -1135)) -((-2706 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-598 (-598 (-208)))) (-5 *4 (-208)) (-5 *2 (-598 (-886 *4))) (-5 *1 (-1135)) (-5 *3 (-886 *4)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-531)) (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-1135)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (-2261 (*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-886 (-208))) (-5 *2 (-208)) (-5 *1 (-1135)))) (-2250 (*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-886 (-208))) (-5 *3 (-208)) (-5 *1 (-1135)))) (-4042 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)) (-5 *3 (-208))))) -(-10 -7 (-15 -4042 ((-886 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-886 (-208)) (-208) (-886 (-208)))) (-15 -2237 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -2250 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -3225 ((-208) (-886 (-208)) (-886 (-208)))) (-15 -2261 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -1685 ((-886 (-208)) (-886 (-208)))) (-15 -2353 ((-598 (-598 (-208))) (-531))) (-15 -2706 ((-598 (-886 (-208))) (-886 (-208)) (-886 (-208)) (-886 (-208)) (-208) (-598 (-598 (-208)))))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2177 ((|#1| $ (-721)) 13)) (-2428 (((-721) $) 12)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2265 (((-901 |#1|) $) 10) (($ (-901 |#1|)) 9) (((-806) $) 23 (|has| |#1| (-572 (-806))))) (-2148 (((-110) $ $) 16 (|has| |#1| (-1030))))) -(((-1136 |#1|) (-13 (-572 (-901 |#1|)) (-10 -8 (-15 -2265 ($ (-901 |#1|))) (-15 -2177 (|#1| $ (-721))) (-15 -2428 ((-721) $)) (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) (-1138)) (T -1136)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-901 *3)) (-4 *3 (-1138)) (-5 *1 (-1136 *3)))) (-2177 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-1136 *2)) (-4 *2 (-1138)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1136 *3)) (-4 *3 (-1138))))) -(-13 (-572 (-901 |#1|)) (-10 -8 (-15 -2265 ($ (-901 |#1|))) (-15 -2177 (|#1| $ (-721))) (-15 -2428 ((-721) $)) (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) -((-2754 (((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)) (-531)) 80)) (-4057 (((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|))) 74)) (-2913 (((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|))) 59))) -(((-1137 |#1|) (-10 -7 (-15 -4057 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2913 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2754 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)) (-531)))) (-330)) (T -1137)) -((-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-4 *5 (-330)) (-5 *2 (-399 (-1098 (-1098 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-1098 (-1098 *5))))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4))))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4)))))) -(-10 -7 (-15 -4057 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2913 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2754 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)) (-531)))) -NIL -(((-1138) (-133)) (T -1138)) +(((-91) . T) ((-100) . T) ((-579 (-816)) . T) ((-579 (-1122)) . T) ((-1045) . T)) +((-2307 ((|#1| |#1| (-1 (-537) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-2166 (((-1205)) 15)) (-3849 (((-606 |#1|)) 9))) +(((-1030 |#1|) (-10 -7 (-15 -2166 ((-1205))) (-15 -3849 ((-606 |#1|))) (-15 -2307 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2307 (|#1| |#1| (-1 (-537) |#1| |#1|)))) (-130)) (T -1030)) +((-2307 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-537) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2)))) (-2307 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2)))) (-3849 (*1 *2) (-12 (-5 *2 (-606 *3)) (-5 *1 (-1030 *3)) (-4 *3 (-130)))) (-2166 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1030 *3)) (-4 *3 (-130))))) +(-10 -7 (-15 -2166 ((-1205))) (-15 -3849 ((-606 |#1|))) (-15 -2307 (|#1| |#1| (-1 (-111) |#1|))) (-15 -2307 (|#1| |#1| (-1 (-537) |#1| |#1|)))) +((-4102 (($ (-107) $) 16)) (-3124 (((-3 (-107) "failed") (-1117) $) 15)) (-3425 (($) 7)) (-2320 (($) 17)) (-1888 (($) 18)) (-4122 (((-606 (-165)) $) 10)) (-2341 (((-816) $) 21))) +(((-1031) (-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -4122 ((-606 (-165)) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $)) (-15 -4102 ($ (-107) $)) (-15 -2320 ($)) (-15 -1888 ($))))) (T -1031)) +((-3425 (*1 *1) (-5 *1 (-1031))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-606 (-165))) (-5 *1 (-1031)))) (-3124 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-1031)))) (-4102 (*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1031)))) (-2320 (*1 *1) (-5 *1 (-1031))) (-1888 (*1 *1) (-5 *1 (-1031)))) +(-13 (-579 (-816)) (-10 -8 (-15 -3425 ($)) (-15 -4122 ((-606 (-165)) $)) (-15 -3124 ((-3 (-107) "failed") (-1117) $)) (-15 -4102 ($ (-107) $)) (-15 -2320 ($)) (-15 -1888 ($)))) +((-3822 (((-1200 (-649 |#1|)) (-606 (-649 |#1|))) 42) (((-1200 (-649 (-905 |#1|))) (-606 (-1117)) (-649 (-905 |#1|))) 63) (((-1200 (-649 (-391 (-905 |#1|)))) (-606 (-1117)) (-649 (-391 (-905 |#1|)))) 79)) (-1484 (((-1200 |#1|) (-649 |#1|) (-606 (-649 |#1|))) 36))) +(((-1032 |#1|) (-10 -7 (-15 -3822 ((-1200 (-649 (-391 (-905 |#1|)))) (-606 (-1117)) (-649 (-391 (-905 |#1|))))) (-15 -3822 ((-1200 (-649 (-905 |#1|))) (-606 (-1117)) (-649 (-905 |#1|)))) (-15 -3822 ((-1200 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1484 ((-1200 |#1|) (-649 |#1|) (-606 (-649 |#1|))))) (-347)) (T -1032)) +((-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-649 *5))) (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 (-1200 *5)) (-5 *1 (-1032 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-1032 *4)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) (-5 *2 (-1200 (-649 (-905 *5)))) (-5 *1 (-1032 *5)) (-5 *4 (-649 (-905 *5))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) (-5 *2 (-1200 (-649 (-391 (-905 *5))))) (-5 *1 (-1032 *5)) (-5 *4 (-649 (-391 (-905 *5))))))) +(-10 -7 (-15 -3822 ((-1200 (-649 (-391 (-905 |#1|)))) (-606 (-1117)) (-649 (-391 (-905 |#1|))))) (-15 -3822 ((-1200 (-649 (-905 |#1|))) (-606 (-1117)) (-649 (-905 |#1|)))) (-15 -3822 ((-1200 (-649 |#1|)) (-606 (-649 |#1|)))) (-15 -1484 ((-1200 |#1|) (-649 |#1|) (-606 (-649 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2766 (((-606 (-731)) $) NIL) (((-606 (-731)) $ (-1117)) NIL)) (-3073 (((-731) $) NIL) (((-731) $ (-1117)) NIL)) (-3757 (((-606 (-1034 (-1117))) $) NIL)) (-3588 (((-1113 $) $ (-1034 (-1117))) NIL) (((-1113 |#1|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1034 (-1117)))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1696 (($ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1034 (-1117)) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL) (((-3 (-1069 |#1| (-1117)) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1034 (-1117)) $) NIL) (((-1117) $) NIL) (((-1069 |#1| (-1117)) $) NIL)) (-4086 (($ $ $ (-1034 (-1117))) NIL (|has| |#1| (-163)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ (-1034 (-1117))) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 (-1034 (-1117))) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1034 (-1117)) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1034 (-1117)) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ (-1117)) NIL) (((-731) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-3746 (($ (-1113 |#1|) (-1034 (-1117))) NIL) (($ (-1113 $) (-1034 (-1117))) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-509 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1034 (-1117))) NIL)) (-1883 (((-509 (-1034 (-1117))) $) NIL) (((-731) $ (-1034 (-1117))) NIL) (((-606 (-731)) $ (-606 (-1034 (-1117)))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 (-1034 (-1117))) (-509 (-1034 (-1117)))) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2441 (((-1 $ (-731)) (-1117)) NIL) (((-1 $ (-731)) $) NIL (|has| |#1| (-218)))) (-1310 (((-3 (-1034 (-1117)) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1299 (((-1034 (-1117)) $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2518 (((-111) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1034 (-1117))) (|:| -3283 (-731))) "failed") $) NIL)) (-3744 (($ $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1034 (-1117)) |#1|) NIL) (($ $ (-606 (-1034 (-1117))) (-606 |#1|)) NIL) (($ $ (-1034 (-1117)) $) NIL) (($ $ (-606 (-1034 (-1117))) (-606 $)) NIL) (($ $ (-1117) $) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 $)) NIL (|has| |#1| (-218))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-218))) (($ $ (-606 (-1117)) (-606 |#1|)) NIL (|has| |#1| (-218)))) (-2067 (($ $ (-1034 (-1117))) NIL (|has| |#1| (-163)))) (-3456 (($ $ (-1034 (-1117))) NIL) (($ $ (-606 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4170 (((-606 (-1117)) $) NIL)) (-2872 (((-509 (-1034 (-1117))) $) NIL) (((-731) $ (-1034 (-1117))) NIL) (((-606 (-731)) $ (-606 (-1034 (-1117)))) NIL) (((-731) $ (-1117)) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1034 (-1117)) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1034 (-1117)) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1034 (-1117)) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) NIL (|has| |#1| (-435))) (($ $ (-1034 (-1117))) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-1034 (-1117))) NIL) (($ (-1117)) NIL) (($ (-1069 |#1| (-1117))) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-509 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1034 (-1117))) NIL) (($ $ (-606 (-1034 (-1117)))) NIL) (($ $ (-1034 (-1117)) (-731)) NIL) (($ $ (-606 (-1034 (-1117))) (-606 (-731))) NIL) (($ $) NIL (|has| |#1| (-218))) (($ $ (-731)) NIL (|has| |#1| (-218))) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1033 |#1|) (-13 (-237 |#1| (-1117) (-1034 (-1117)) (-509 (-1034 (-1117)))) (-989 (-1069 |#1| (-1117)))) (-998)) (T -1033)) +NIL +(-13 (-237 |#1| (-1117) (-1034 (-1117)) (-509 (-1034 (-1117)))) (-989 (-1069 |#1| (-1117)))) +((-2330 (((-111) $ $) NIL)) (-3073 (((-731) $) NIL)) (-1890 ((|#1| $) 10)) (-1516 (((-3 |#1| "failed") $) NIL)) (-3958 ((|#1| $) NIL)) (-4231 (((-731) $) 11)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-2441 (($ |#1| (-731)) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3456 (($ $) NIL) (($ $ (-731)) NIL)) (-2341 (((-816) $) NIL) (($ |#1|) NIL)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 15))) +(((-1034 |#1|) (-250 |#1|) (-807)) (T -1034)) +NIL +(-250 |#1|) +((-1612 (((-606 |#2|) (-1 |#2| |#1|) (-1040 |#1|)) 24 (|has| |#1| (-805))) (((-1040 |#2|) (-1 |#2| |#1|) (-1040 |#1|)) 14))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -1612 ((-1040 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) |%noBranch|)) (-1154) (-1154)) (T -1035)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-805)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-606 *6)) (-5 *1 (-1035 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1040 *6)) (-5 *1 (-1035 *5 *6))))) +(-10 -7 (-15 -1612 ((-1040 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-606 |#2|) (-1 |#2| |#1|) (-1040 |#1|))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-4015 (((-606 (-1122)) $) 9)) (-2244 (((-111) $ $) NIL))) +(((-1036) (-13 (-1029) (-10 -8 (-15 -4015 ((-606 (-1122)) $))))) (T -1036)) +((-4015 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1036))))) +(-13 (-1029) (-10 -8 (-15 -4015 ((-606 (-1122)) $)))) +((-1612 (((-1038 |#2|) (-1 |#2| |#1|) (-1038 |#1|)) 19))) +(((-1037 |#1| |#2|) (-10 -7 (-15 -1612 ((-1038 |#2|) (-1 |#2| |#1|) (-1038 |#1|)))) (-1154) (-1154)) (T -1037)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1038 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1038 *6)) (-5 *1 (-1037 *5 *6))))) +(-10 -7 (-15 -1612 ((-1038 |#2|) (-1 |#2| |#1|) (-1038 |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1890 (((-1117) $) 11)) (-3975 (((-1040 |#1|) $) 12)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3056 (($ (-1117) (-1040 |#1|)) 10)) (-2341 (((-816) $) 20 (|has| |#1| (-1045)))) (-2244 (((-111) $ $) 15 (|has| |#1| (-1045))))) +(((-1038 |#1|) (-13 (-1154) (-10 -8 (-15 -3056 ($ (-1117) (-1040 |#1|))) (-15 -1890 ((-1117) $)) (-15 -3975 ((-1040 |#1|) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) (-1154)) (T -1038)) +((-3056 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1040 *4)) (-4 *4 (-1154)) (-5 *1 (-1038 *4)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1038 *3)) (-4 *3 (-1154)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1040 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1154))))) +(-13 (-1154) (-10 -8 (-15 -3056 ($ (-1117) (-1040 |#1|))) (-15 -1890 ((-1117) $)) (-15 -3975 ((-1040 |#1|) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) +((-3975 (($ |#1| |#1|) 7)) (-3039 ((|#1| $) 10)) (-1609 ((|#1| $) 12)) (-1622 (((-537) $) 8)) (-1687 ((|#1| $) 9)) (-1631 ((|#1| $) 11)) (-3996 (($ |#1|) 6)) (-3401 (($ |#1| |#1|) 14)) (-2042 (($ $ (-537)) 13))) +(((-1039 |#1|) (-134) (-1154)) (T -1039)) +((-3401 (*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1039 *3)) (-4 *3 (-1154)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1154)) (-5 *2 (-537)))) (-3975 (*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) +(-13 (-1154) (-10 -8 (-15 -3401 ($ |t#1| |t#1|)) (-15 -2042 ($ $ (-537))) (-15 -1609 (|t#1| $)) (-15 -1631 (|t#1| $)) (-15 -3039 (|t#1| $)) (-15 -1687 (|t#1| $)) (-15 -1622 ((-537) $)) (-15 -3975 ($ |t#1| |t#1|)) (-15 -3996 ($ |t#1|)))) +(((-1154) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3975 (($ |#1| |#1|) 15)) (-1612 (((-606 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-805)))) (-3039 ((|#1| $) 10)) (-1609 ((|#1| $) 9)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1622 (((-537) $) 14)) (-1687 ((|#1| $) 12)) (-1631 ((|#1| $) 11)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1905 (((-606 |#1|) $) 36 (|has| |#1| (-805))) (((-606 |#1|) (-606 $)) 35 (|has| |#1| (-805)))) (-3996 (($ |#1|) 26)) (-2341 (((-816) $) 25 (|has| |#1| (-1045)))) (-3401 (($ |#1| |#1|) 8)) (-2042 (($ $ (-537)) 16)) (-2244 (((-111) $ $) 19 (|has| |#1| (-1045))))) +(((-1040 |#1|) (-13 (-1039 |#1|) (-10 -7 (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-606 |#1|))) |%noBranch|))) (-1154)) (T -1040)) +NIL +(-13 (-1039 |#1|) (-10 -7 (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-606 |#1|))) |%noBranch|))) +((-3975 (($ |#1| |#1|) 7)) (-1612 ((|#2| (-1 |#1| |#1|) $) 16)) (-3039 ((|#1| $) 10)) (-1609 ((|#1| $) 12)) (-1622 (((-537) $) 8)) (-1687 ((|#1| $) 9)) (-1631 ((|#1| $) 11)) (-1905 ((|#2| (-606 $)) 18) ((|#2| $) 17)) (-3996 (($ |#1|) 6)) (-3401 (($ |#1| |#1|) 14)) (-2042 (($ $ (-537)) 13))) +(((-1041 |#1| |#2|) (-134) (-805) (-1091 |t#1|)) (T -1041)) +((-1905 (*1 *2 *3) (-12 (-5 *3 (-606 *1)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) (-4 *2 (-1091 *4)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2)) (-4 *3 (-805)) (-4 *2 (-1091 *3)))) (-1612 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) (-4 *2 (-1091 *4))))) +(-13 (-1039 |t#1|) (-10 -8 (-15 -1905 (|t#2| (-606 $))) (-15 -1905 (|t#2| $)) (-15 -1612 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1039 |#1|) . T) ((-1154) . T)) +((-4221 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2969 (($ $ $) 10)) (-2867 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1042 |#1| |#2|) (-10 -8 (-15 -4221 (|#1| |#2| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2867 (|#1| |#1| |#1|))) (-1043 |#2|) (-1045)) (T -1042)) +NIL +(-10 -8 (-15 -4221 (|#1| |#2| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2867 (|#1| |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-4221 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2969 (($ $ $) 20)) (-3495 (((-111) $ $) 19)) (-2506 (((-111) $ (-731)) 35)) (-1272 (($) 25) (($ (-606 |#1|)) 24)) (-1936 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4300)))) (-3832 (($) 36 T CONST)) (-3221 (($ $) 59 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 58 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4300)))) (-3661 (((-606 |#1|) $) 43 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) 28)) (-1642 (((-111) $ (-731)) 34)) (-3703 (((-606 |#1|) $) 44 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 38)) (-2489 (((-111) $ (-731)) 33)) (-1654 (((-1100) $) 9)) (-3891 (($ $ $) 23)) (-2528 (((-1064) $) 10)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-3206 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#1|) (-606 |#1|)) 50 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 48 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 (-278 |#1|))) 47 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 29)) (-2193 (((-111) $) 32)) (-3425 (($) 31)) (-2867 (($ $ $) 22) (($ $ |#1|) 21)) (-2539 (((-731) |#1| $) 45 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4300)))) (-2494 (($ $) 30)) (-3996 (((-513) $) 60 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 51)) (-2341 (((-816) $) 11)) (-3575 (($) 27) (($ (-606 |#1|)) 26)) (-2030 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 37 (|has| $ (-6 -4300))))) +(((-1043 |#1|) (-134) (-1045)) (T -1043)) +((-3577 (*1 *2 *1 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-3575 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) (-1272 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-1272 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) (-3891 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-2867 (*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-2969 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111)))) (-4221 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-4221 (*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) (-4221 (*1 *1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(-13 (-1045) (-145 |t#1|) (-10 -8 (-6 -4290) (-15 -3577 ((-111) $ $)) (-15 -3575 ($)) (-15 -3575 ($ (-606 |t#1|))) (-15 -1272 ($)) (-15 -1272 ($ (-606 |t#1|))) (-15 -3891 ($ $ $)) (-15 -2867 ($ $ $)) (-15 -2867 ($ $ |t#1|)) (-15 -2969 ($ $ $)) (-15 -3495 ((-111) $ $)) (-15 -4221 ($ $ $)) (-15 -4221 ($ $ |t#1|)) (-15 -4221 ($ |t#1| $)))) +(((-33) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) . T) ((-1154) . T)) +((-1654 (((-1100) $) 10)) (-2528 (((-1064) $) 8))) +(((-1044 |#1|) (-10 -8 (-15 -1654 ((-1100) |#1|)) (-15 -2528 ((-1064) |#1|))) (-1045)) (T -1044)) +NIL +(-10 -8 (-15 -1654 ((-1100) |#1|)) (-15 -2528 ((-1064) |#1|))) +((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-1045) (-134)) (T -1045)) +((-2528 (*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1064)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1100))))) +(-13 (-100) (-579 (-816)) (-10 -8 (-15 -2528 ((-1064) $)) (-15 -1654 ((-1100) $)))) +(((-100) . T) ((-579 (-816)) . T)) +((-2330 (((-111) $ $) NIL)) (-3151 (((-731)) 30)) (-3795 (($ (-606 (-874))) 52)) (-1603 (((-3 $ "failed") $ (-874) (-874)) 58)) (-1618 (($) 32)) (-3122 (((-111) (-874) $) 35)) (-2334 (((-874) $) 50)) (-1654 (((-1100) $) NIL)) (-2009 (($ (-874)) 31)) (-3141 (((-3 $ "failed") $ (-874)) 55)) (-2528 (((-1064) $) NIL)) (-1960 (((-1200 $)) 40)) (-2243 (((-606 (-874)) $) 24)) (-2108 (((-731) $ (-874) (-874)) 56)) (-2341 (((-816) $) 29)) (-2244 (((-111) $ $) 21))) +(((-1046 |#1| |#2|) (-13 (-352) (-10 -8 (-15 -3141 ((-3 $ "failed") $ (-874))) (-15 -1603 ((-3 $ "failed") $ (-874) (-874))) (-15 -2243 ((-606 (-874)) $)) (-15 -3795 ($ (-606 (-874)))) (-15 -1960 ((-1200 $))) (-15 -3122 ((-111) (-874) $)) (-15 -2108 ((-731) $ (-874) (-874))))) (-874) (-874)) (T -1046)) +((-3141 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1603 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-1960 (*1 *2) (-12 (-5 *2 (-1200 (-1046 *3 *4))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) (-3122 (*1 *2 *3 *1) (-12 (-5 *3 (-874)) (-5 *2 (-111)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2108 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-731)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-352) (-10 -8 (-15 -3141 ((-3 $ "failed") $ (-874))) (-15 -1603 ((-3 $ "failed") $ (-874) (-874))) (-15 -2243 ((-606 (-874)) $)) (-15 -3795 ($ (-606 (-874)))) (-15 -1960 ((-1200 $))) (-15 -3122 ((-111) (-874) $)) (-15 -2108 ((-731) $ (-874) (-874))))) +((-2330 (((-111) $ $) NIL)) (-1750 (($) NIL (|has| |#1| (-352)))) (-4221 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2969 (($ $ $) 72)) (-3495 (((-111) $ $) 73)) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#1| (-352)))) (-1272 (($ (-606 |#1|)) NIL) (($) 13)) (-3435 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3026 (($ |#1| $) 67 (|has| $ (-6 -4300))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4300)))) (-1618 (($) NIL (|has| |#1| (-352)))) (-3661 (((-606 |#1|) $) 19 (|has| $ (-6 -4300)))) (-3577 (((-111) $ $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-2444 ((|#1| $) 57 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3889 ((|#1| $) 55 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 34)) (-2334 (((-874) $) NIL (|has| |#1| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3891 (($ $ $) 70)) (-2783 ((|#1| $) 25)) (-3499 (($ |#1| $) 65)) (-2009 (($ (-874)) NIL (|has| |#1| (-352)))) (-2528 (((-1064) $) NIL)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-1599 ((|#1| $) 27)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 21)) (-3425 (($) 11)) (-2867 (($ $ |#1|) NIL) (($ $ $) 71)) (-1341 (($) NIL) (($ (-606 |#1|)) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 16)) (-3996 (((-513) $) 52 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 61)) (-1583 (($ $) NIL (|has| |#1| (-352)))) (-2341 (((-816) $) NIL)) (-1627 (((-731) $) NIL)) (-3575 (($ (-606 |#1|)) NIL) (($) 12)) (-2753 (($ (-606 |#1|)) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 54)) (-2258 (((-731) $) 10 (|has| $ (-6 -4300))))) +(((-1047 |#1|) (-409 |#1|) (-1045)) (T -1047)) +NIL +(-409 |#1|) +((-2330 (((-111) $ $) 7)) (-3128 (((-111) $) 32)) (-1694 ((|#2| $) 27)) (-3330 (((-111) $) 33)) (-3035 ((|#1| $) 28)) (-2114 (((-111) $) 35)) (-2942 (((-111) $) 37)) (-3477 (((-111) $) 34)) (-1654 (((-1100) $) 9)) (-1660 (((-111) $) 31)) (-1715 ((|#3| $) 26)) (-2528 (((-1064) $) 10)) (-2807 (((-111) $) 30)) (-2851 ((|#4| $) 25)) (-1845 ((|#5| $) 24)) (-4113 (((-111) $ $) 38)) (-1922 (($ $ (-537)) 14) (($ $ (-606 (-537))) 13)) (-3690 (((-606 $) $) 29)) (-3996 (($ (-606 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2341 (((-816) $) 11)) (-1313 (($ $) 16)) (-1297 (($ $) 17)) (-4233 (((-111) $) 36)) (-2244 (((-111) $ $) 6)) (-2258 (((-537) $) 15))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-134) (-1045) (-1045) (-1045) (-1045) (-1045)) (T -1048)) +((-4113 (*1 *2 *1 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-2114 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111)))) (-3690 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1845 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *2 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *2 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-1045)))) (-3996 (*1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) (-1297 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-1313 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-537)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -4113 ((-111) $ $)) (-15 -2942 ((-111) $)) (-15 -4233 ((-111) $)) (-15 -2114 ((-111) $)) (-15 -3477 ((-111) $)) (-15 -3330 ((-111) $)) (-15 -3128 ((-111) $)) (-15 -1660 ((-111) $)) (-15 -2807 ((-111) $)) (-15 -3690 ((-606 $) $)) (-15 -3035 (|t#1| $)) (-15 -1694 (|t#2| $)) (-15 -1715 (|t#3| $)) (-15 -2851 (|t#4| $)) (-15 -1845 (|t#5| $)) (-15 -3996 ($ (-606 $))) (-15 -3996 ($ |t#1|)) (-15 -3996 ($ |t#2|)) (-15 -3996 ($ |t#3|)) (-15 -3996 ($ |t#4|)) (-15 -3996 ($ |t#5|)) (-15 -1297 ($ $)) (-15 -1313 ($ $)) (-15 -2258 ((-537) $)) (-15 -1922 ($ $ (-537))) (-15 -1922 ($ $ (-606 (-537)))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL)) (-3128 (((-111) $) NIL)) (-1694 (((-1117) $) NIL)) (-3330 (((-111) $) NIL)) (-3035 (((-1100) $) NIL)) (-2114 (((-111) $) NIL)) (-2942 (((-111) $) NIL)) (-3477 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-1660 (((-111) $) NIL)) (-1715 (((-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-2807 (((-111) $) NIL)) (-2851 (((-210) $) NIL)) (-1845 (((-816) $) NIL)) (-4113 (((-111) $ $) NIL)) (-1922 (($ $ (-537)) NIL) (($ $ (-606 (-537))) NIL)) (-3690 (((-606 $) $) NIL)) (-3996 (($ (-606 $)) NIL) (($ (-1100)) NIL) (($ (-1117)) NIL) (($ (-537)) NIL) (($ (-210)) NIL) (($ (-816)) NIL)) (-2341 (((-816) $) NIL)) (-1313 (($ $) NIL)) (-1297 (($ $) NIL)) (-4233 (((-111) $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-537) $) NIL))) +(((-1049) (-1048 (-1100) (-1117) (-537) (-210) (-816))) (T -1049)) +NIL +(-1048 (-1100) (-1117) (-537) (-210) (-816)) +((-2330 (((-111) $ $) NIL)) (-3128 (((-111) $) 38)) (-1694 ((|#2| $) 42)) (-3330 (((-111) $) 37)) (-3035 ((|#1| $) 41)) (-2114 (((-111) $) 35)) (-2942 (((-111) $) 14)) (-3477 (((-111) $) 36)) (-1654 (((-1100) $) NIL)) (-1660 (((-111) $) 39)) (-1715 ((|#3| $) 44)) (-2528 (((-1064) $) NIL)) (-2807 (((-111) $) 40)) (-2851 ((|#4| $) 43)) (-1845 ((|#5| $) 45)) (-4113 (((-111) $ $) 34)) (-1922 (($ $ (-537)) 56) (($ $ (-606 (-537))) 58)) (-3690 (((-606 $) $) 22)) (-3996 (($ (-606 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2341 (((-816) $) 23)) (-1313 (($ $) 21)) (-1297 (($ $) 52)) (-4233 (((-111) $) 18)) (-2244 (((-111) $ $) 33)) (-2258 (((-537) $) 54))) +(((-1050 |#1| |#2| |#3| |#4| |#5|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-1045) (-1045) (-1045) (-1045)) (T -1050)) +NIL +(-1048 |#1| |#2| |#3| |#4| |#5|) +((-3322 (((-1205) $) 23)) (-2106 (($ (-1117) (-418) |#2|) 11)) (-2341 (((-816) $) 16))) +(((-1051 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -2106 ($ (-1117) (-418) |#2|)))) (-807) (-414 |#1|)) (T -1051)) +((-2106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1117)) (-5 *3 (-418)) (-4 *5 (-807)) (-5 *1 (-1051 *5 *4)) (-4 *4 (-414 *5))))) +(-13 (-379) (-10 -8 (-15 -2106 ($ (-1117) (-418) |#2|)))) +((-3078 (((-111) |#5| |#5|) 38)) (-3798 (((-111) |#5| |#5|) 52)) (-2843 (((-111) |#5| (-606 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-2296 (((-111) (-606 |#4|) (-606 |#4|)) 58)) (-3803 (((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 63)) (-1982 (((-1205)) 33)) (-1261 (((-1205) (-1100) (-1100) (-1100)) 29)) (-3509 (((-606 |#5|) (-606 |#5|)) 82)) (-2457 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) 80)) (-3921 (((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111)) 102)) (-3433 (((-111) |#5| |#5|) 47)) (-2513 (((-3 (-111) "failed") |#5| |#5|) 71)) (-2314 (((-111) (-606 |#4|) (-606 |#4|)) 57)) (-3730 (((-111) (-606 |#4|) (-606 |#4|)) 59)) (-1981 (((-111) (-606 |#4|) (-606 |#4|)) 60)) (-1761 (((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-2207 (((-606 |#5|) (-606 |#5|)) 43))) +(((-1052 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1052)) +((-1761 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) (-5 *1 (-1052 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) (-4 *4 (-1018 *6 *7 *8 *9)))) (-3921 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) (-5 *1 (-1052 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9)))) (-2457 (*1 *2 *2) (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1052 *3 *4 *5 *6 *7)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *6 *7)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1052 *5 *6 *7 *8 *3)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2513 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-2296 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3798 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-3433 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-1052 *3 *4 *5 *6 *7)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) (-1982 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1261 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(-10 -7 (-15 -1261 ((-1205) (-1100) (-1100) (-1100))) (-15 -1982 ((-1205))) (-15 -3078 ((-111) |#5| |#5|)) (-15 -2207 ((-606 |#5|) (-606 |#5|))) (-15 -3433 ((-111) |#5| |#5|)) (-15 -3798 ((-111) |#5| |#5|)) (-15 -2296 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2314 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -3730 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -1981 ((-111) (-606 |#4|) (-606 |#4|))) (-15 -2513 ((-3 (-111) "failed") |#5| |#5|)) (-15 -2843 ((-111) |#5| |#5|)) (-15 -2843 ((-111) |#5| (-606 |#5|))) (-15 -3509 ((-606 |#5|) (-606 |#5|))) (-15 -3803 ((-111) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2457 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-15 -3921 ((-606 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|)))) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -1761 ((-3 (-2 (|:| -4113 (-606 |#4|)) (|:| -3852 |#5|) (|:| |ineq| (-606 |#4|))) "failed") (-606 |#4|) |#5| (-606 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-2240 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|) 96)) (-3265 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|) 72)) (-1802 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 91)) (-1730 (((-606 |#5|) |#4| |#5|) 110)) (-4164 (((-606 |#5|) |#4| |#5|) 117)) (-1906 (((-606 |#5|) |#4| |#5|) 118)) (-1733 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 97)) (-2884 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 116)) (-2580 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-2509 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111)) 84) (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3651 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|) 79)) (-1291 (((-1205)) 37)) (-3761 (((-1205)) 26)) (-2400 (((-1205) (-1100) (-1100) (-1100)) 33)) (-1298 (((-1205) (-1100) (-1100) (-1100)) 22))) +(((-1053 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3265 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3651 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2580 ((-111) |#4| |#5|)) (-15 -1733 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1730 ((-606 |#5|) |#4| |#5|)) (-15 -2884 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -4164 ((-606 |#5|) |#4| |#5|)) (-15 -2580 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1906 ((-606 |#5|) |#4| |#5|)) (-15 -2240 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1018 |#1| |#2| |#3| |#4|)) (T -1053)) +((-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1906 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2884 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1730 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1802 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-3651 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) (-5 *1 (-1053 *6 *7 *4 *8 *9)))) (-2509 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) (-3265 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-2400 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) (-3761 (*1 *2) (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) (-1298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(-10 -7 (-15 -1298 ((-1205) (-1100) (-1100) (-1100))) (-15 -3761 ((-1205))) (-15 -2400 ((-1205) (-1100) (-1100) (-1100))) (-15 -1291 ((-1205))) (-15 -3265 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -2509 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) |#3| (-111))) (-15 -3651 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#4| |#5|)) (-15 -2580 ((-111) |#4| |#5|)) (-15 -1733 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1730 ((-606 |#5|) |#4| |#5|)) (-15 -2884 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -4164 ((-606 |#5|) |#4| |#5|)) (-15 -2580 ((-606 (-2 (|:| |val| (-111)) (|:| -3852 |#5|))) |#4| |#5|)) (-15 -1906 ((-606 |#5|) |#4| |#5|)) (-15 -2240 ((-606 (-2 (|:| |val| |#4|) (|:| -3852 |#5|))) |#4| |#5|))) +((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) +(((-1054 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1054)) +NIL +(-13 (-1018 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1018 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) +((-3484 (((-606 (-537)) (-537) (-537) (-537)) 22)) (-3465 (((-606 (-537)) (-537) (-537) (-537)) 12)) (-2759 (((-606 (-537)) (-537) (-537) (-537)) 18)) (-2651 (((-537) (-537) (-537)) 9)) (-1564 (((-1200 (-537)) (-606 (-537)) (-1200 (-537)) (-537)) 46) (((-1200 (-537)) (-1200 (-537)) (-1200 (-537)) (-537)) 41)) (-2432 (((-606 (-537)) (-606 (-537)) (-606 (-537)) (-111)) 28)) (-3721 (((-649 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537))) 45)) (-2997 (((-649 (-537)) (-606 (-537)) (-606 (-537))) 33)) (-1985 (((-606 (-649 (-537))) (-606 (-537))) 35)) (-3001 (((-606 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537))) 49)) (-2763 (((-649 (-537)) (-606 (-537)) (-606 (-537)) (-606 (-537))) 57))) +(((-1055) (-10 -7 (-15 -2763 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3001 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -1985 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -2997 ((-649 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3721 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -2432 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-111))) (-15 -1564 ((-1200 (-537)) (-1200 (-537)) (-1200 (-537)) (-537))) (-15 -1564 ((-1200 (-537)) (-606 (-537)) (-1200 (-537)) (-537))) (-15 -2651 ((-537) (-537) (-537))) (-15 -2759 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3465 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3484 ((-606 (-537)) (-537) (-537) (-537))))) (T -1055)) +((-3484 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537)))) (-3465 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537)))) (-2759 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537)))) (-2651 (*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1055)))) (-1564 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-606 (-537))) (-5 *4 (-537)) (-5 *1 (-1055)))) (-1564 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-537)) (-5 *1 (-1055)))) (-2432 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *3 (-111)) (-5 *1 (-1055)))) (-3721 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-649 (-537))) (-5 *3 (-606 (-537))) (-5 *1 (-1055)))) (-2997 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-1055)))) (-3001 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *3 (-649 (-537))) (-5 *1 (-1055)))) (-2763 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055))))) +(-10 -7 (-15 -2763 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3001 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -1985 ((-606 (-649 (-537))) (-606 (-537)))) (-15 -2997 ((-649 (-537)) (-606 (-537)) (-606 (-537)))) (-15 -3721 ((-649 (-537)) (-606 (-537)) (-606 (-537)) (-649 (-537)))) (-15 -2432 ((-606 (-537)) (-606 (-537)) (-606 (-537)) (-111))) (-15 -1564 ((-1200 (-537)) (-1200 (-537)) (-1200 (-537)) (-537))) (-15 -1564 ((-1200 (-537)) (-606 (-537)) (-1200 (-537)) (-537))) (-15 -2651 ((-537) (-537) (-537))) (-15 -2759 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3465 ((-606 (-537)) (-537) (-537) (-537))) (-15 -3484 ((-606 (-537)) (-537) (-537) (-537)))) +((** (($ $ (-874)) 10))) +(((-1056 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-874)))) (-1057)) (T -1056)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-874)))) +((-2330 (((-111) $ $) 7)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6)) (** (($ $ (-874)) 13)) (* (($ $ $) 14))) +(((-1057) (-134)) (T -1057)) +((* (*1 *1 *1 *1) (-4 *1 (-1057))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-874))))) +(-13 (-1045) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-874))))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2330 (((-111) $ $) NIL (|has| |#3| (-1045)))) (-1656 (((-111) $) NIL (|has| |#3| (-129)))) (-3492 (($ (-874)) NIL (|has| |#3| (-998)))) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2169 (($ $ $) NIL (|has| |#3| (-753)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-2506 (((-111) $ (-731)) NIL)) (-3151 (((-731)) NIL (|has| |#3| (-352)))) (-2537 (((-537) $) NIL (|has| |#3| (-805)))) (-2476 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1045)))) (-3958 (((-537) $) NIL (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045)))) (((-391 (-537)) $) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) ((|#3| $) NIL (|has| |#3| (-1045)))) (-2053 (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#3| (-602 (-537))) (|has| |#3| (-998)))) (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) NIL (|has| |#3| (-998))) (((-649 |#3|) (-649 $)) NIL (|has| |#3| (-998)))) (-3490 (((-3 $ "failed") $) NIL (|has| |#3| (-687)))) (-1618 (($) NIL (|has| |#3| (-352)))) (-4091 ((|#3| $ (-537) |#3|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#3| $ (-537)) 12)) (-3797 (((-111) $) NIL (|has| |#3| (-805)))) (-3661 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL (|has| |#3| (-687)))) (-2840 (((-111) $) NIL (|has| |#3| (-805)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-3703 (((-606 |#3|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-4081 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#3| |#3|) $) NIL)) (-2334 (((-874) $) NIL (|has| |#3| (-352)))) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#3| (-1045)))) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2009 (($ (-874)) NIL (|has| |#3| (-352)))) (-2528 (((-1064) $) NIL (|has| |#3| (-1045)))) (-3188 ((|#3| $) NIL (|has| (-537) (-807)))) (-3040 (($ $ |#3|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#3|))) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-278 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045)))) (($ $ (-606 |#3|) (-606 |#3|)) NIL (-12 (|has| |#3| (-293 |#3|)) (|has| |#3| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-3010 (((-606 |#3|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#3| $ (-537) |#3|) NIL) ((|#3| $ (-537)) NIL)) (-3416 ((|#3| $ $) NIL (|has| |#3| (-998)))) (-3668 (($ (-1200 |#3|)) NIL)) (-1839 (((-131)) NIL (|has| |#3| (-347)))) (-3456 (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998)))) (-2539 (((-731) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300))) (((-731) |#3| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#3| (-1045))))) (-2494 (($ $) NIL)) (-2341 (((-1200 |#3|) $) NIL) (($ (-537)) NIL (-1533 (-12 (|has| |#3| (-989 (-537))) (|has| |#3| (-1045))) (|has| |#3| (-998)))) (($ (-391 (-537))) NIL (-12 (|has| |#3| (-989 (-391 (-537)))) (|has| |#3| (-1045)))) (($ |#3|) NIL (|has| |#3| (-1045))) (((-816) $) NIL (|has| |#3| (-579 (-816))))) (-3654 (((-731)) NIL (|has| |#3| (-998)))) (-2030 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4300)))) (-2209 (($ $) NIL (|has| |#3| (-805)))) (-2928 (($) NIL (|has| |#3| (-129)) CONST)) (-2943 (($) NIL (|has| |#3| (-687)) CONST)) (-4230 (($ $) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-731)) NIL (-12 (|has| |#3| (-218)) (|has| |#3| (-998)))) (($ $ (-1117)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#3| (-853 (-1117))) (|has| |#3| (-998)))) (($ $ (-1 |#3| |#3|) (-731)) NIL (|has| |#3| (-998))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-998)))) (-2293 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2271 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2244 (((-111) $ $) NIL (|has| |#3| (-1045)))) (-2282 (((-111) $ $) NIL (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2263 (((-111) $ $) 17 (-1533 (|has| |#3| (-753)) (|has| |#3| (-805))))) (-2340 (($ $ |#3|) NIL (|has| |#3| (-347)))) (-2329 (($ $ $) NIL (|has| |#3| (-998))) (($ $) NIL (|has| |#3| (-998)))) (-2318 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-731)) NIL (|has| |#3| (-687))) (($ $ (-874)) NIL (|has| |#3| (-687)))) (* (($ (-537) $) NIL (|has| |#3| (-998))) (($ $ $) NIL (|has| |#3| (-687))) (($ $ |#3|) NIL (|has| |#3| (-687))) (($ |#3| $) NIL (|has| |#3| (-687))) (($ (-731) $) NIL (|has| |#3| (-129))) (($ (-874) $) NIL (|has| |#3| (-25)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1058 |#1| |#2| |#3|) (-223 |#1| |#3|) (-731) (-731) (-753)) (T -1058)) +NIL +(-223 |#1| |#3|) +((-3320 (((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 37)) (-3032 (((-537) (-1173 |#2| |#1|)) 69 (|has| |#1| (-435)))) (-2952 (((-537) (-1173 |#2| |#1|)) 54)) (-4032 (((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 45)) (-2023 (((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 68 (|has| |#1| (-435)))) (-2011 (((-606 |#1|) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 48)) (-2047 (((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|)) 53))) +(((-1059 |#1| |#2|) (-10 -7 (-15 -3320 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -4032 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2011 ((-606 |#1|) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2047 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2952 ((-537) (-1173 |#2| |#1|))) (IF (|has| |#1| (-435)) (PROGN (-15 -2023 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -3032 ((-537) (-1173 |#2| |#1|)))) |%noBranch|)) (-780) (-1117)) (T -1059)) +((-3032 (*1 *2 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2023 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2047 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5)))) (-2011 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 *4)) (-5 *1 (-1059 *4 *5)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4)))) (-3320 (*1 *2 *3 *3) (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4))))) +(-10 -7 (-15 -3320 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -4032 ((-606 (-1173 |#2| |#1|)) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2011 ((-606 |#1|) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2047 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -2952 ((-537) (-1173 |#2| |#1|))) (IF (|has| |#1| (-435)) (PROGN (-15 -2023 ((-537) (-1173 |#2| |#1|) (-1173 |#2| |#1|))) (-15 -3032 ((-537) (-1173 |#2| |#1|)))) |%noBranch|)) +((-2537 (((-3 (-537) "failed") |#2| (-1117) |#2| (-1100)) 17) (((-3 (-537) "failed") |#2| (-1117) (-800 |#2|)) 15) (((-3 (-537) "failed") |#2|) 54))) +(((-1060 |#1| |#2|) (-10 -7 (-15 -2537 ((-3 (-537) "failed") |#2|)) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) (-800 |#2|))) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) |#2| (-1100)))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537)) (-435)) (-13 (-27) (-1139) (-414 |#1|))) (T -1060)) +((-2537 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1100)) (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))))) (-2537 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)))) (-2537 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) (-5 *2 (-537)) (-5 *1 (-1060 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4)))))) +(-10 -7 (-15 -2537 ((-3 (-537) "failed") |#2|)) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) (-800 |#2|))) (-15 -2537 ((-3 (-537) "failed") |#2| (-1117) |#2| (-1100)))) +((-2537 (((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)) (-1100)) 35) (((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-800 (-391 (-905 |#1|)))) 30) (((-3 (-537) "failed") (-391 (-905 |#1|))) 13))) +(((-1061 |#1|) (-10 -7 (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-800 (-391 (-905 |#1|))))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)) (-1100)))) (-435)) (T -1061)) +((-2537 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1117)) (-5 *5 (-1100)) (-4 *6 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *6)))) (-2537 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 (-391 (-905 *6)))) (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *6)))) (-2537 (*1 *2 *3) (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *4))))) +(-10 -7 (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-800 (-391 (-905 |#1|))))) (-15 -2537 ((-3 (-537) "failed") (-391 (-905 |#1|)) (-1117) (-391 (-905 |#1|)) (-1100)))) +((-2330 (((-111) $ $) NIL)) (-1796 (((-1122) $) 10)) (-1744 (((-606 (-1122)) $) 11)) (-1747 (($ (-606 (-1122)) (-1122)) 9)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 20)) (-2244 (((-111) $ $) 14))) +(((-1062) (-13 (-1045) (-10 -8 (-15 -1747 ($ (-606 (-1122)) (-1122))) (-15 -1796 ((-1122) $)) (-15 -1744 ((-606 (-1122)) $))))) (T -1062)) +((-1747 (*1 *1 *2 *3) (-12 (-5 *2 (-606 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1062)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1062)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1062))))) +(-13 (-1045) (-10 -8 (-15 -1747 ($ (-606 (-1122)) (-1122))) (-15 -1796 ((-1122) $)) (-15 -1744 ((-606 (-1122)) $)))) +((-3176 (((-300 (-537)) (-47)) 12))) +(((-1063) (-10 -7 (-15 -3176 ((-300 (-537)) (-47))))) (T -1063)) +((-3176 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-300 (-537))) (-5 *1 (-1063))))) +(-10 -7 (-15 -3176 ((-300 (-537)) (-47)))) +((-2330 (((-111) $ $) NIL)) (-3284 (($ $) 41)) (-1656 (((-111) $) 65)) (-1435 (($ $ $) 48)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-2675 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3480 (($ $ $ $) 74)) (-1395 (($ $) NIL)) (-2414 (((-402 $) $) NIL)) (-4099 (((-111) $ $) NIL)) (-2537 (((-537) $) NIL)) (-3879 (($ $ $) 71)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL)) (-3958 (((-537) $) NIL)) (-3563 (($ $ $) 59)) (-2053 (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 79) (((-649 (-537)) (-649 $)) 28)) (-3490 (((-3 $ "failed") $) NIL)) (-2484 (((-3 (-391 (-537)) "failed") $) NIL)) (-1797 (((-111) $) NIL)) (-2616 (((-391 (-537)) $) NIL)) (-1618 (($) 82) (($ $) 83)) (-3539 (($ $ $) 58)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL)) (-2639 (((-111) $) NIL)) (-2238 (($ $ $ $) NIL)) (-1255 (($ $ $) 80)) (-3797 (((-111) $) NIL)) (-2967 (($ $ $) NIL)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL)) (-2836 (((-111) $) 66)) (-2353 (((-111) $) 64)) (-3679 (($ $) 42)) (-2824 (((-3 $ "failed") $) NIL)) (-2840 (((-111) $) 75)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-1910 (($ $ $ $) 72)) (-2444 (($ $ $) 68) (($) 39)) (-3889 (($ $ $) 67) (($) 38)) (-1454 (($ $) NIL)) (-3845 (($ $) 70)) (-2183 (($ $ $) NIL) (($ (-606 $)) NIL)) (-1654 (((-1100) $) NIL)) (-1753 (($ $ $) NIL)) (-3956 (($) NIL T CONST)) (-4078 (($ $) 50)) (-2528 (((-1064) $) NIL) (($ $) 69)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL)) (-2211 (($ $ $) 62) (($ (-606 $)) NIL)) (-2871 (($ $) NIL)) (-3622 (((-402 $) $) NIL)) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL)) (-3515 (((-3 $ "failed") $ $) NIL)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL)) (-2977 (((-111) $) NIL)) (-1930 (((-731) $) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 61)) (-3456 (($ $ (-731)) NIL) (($ $) NIL)) (-3089 (($ $) 51)) (-2494 (($ $) NIL)) (-3996 (((-537) $) 32) (((-513) $) NIL) (((-845 (-537)) $) NIL) (((-363) $) NIL) (((-210) $) NIL)) (-2341 (((-816) $) 31) (($ (-537)) 81) (($ $) NIL) (($ (-537)) 81)) (-3654 (((-731)) NIL)) (-3246 (((-111) $ $) NIL)) (-2360 (($ $ $) NIL)) (-1605 (($) 37)) (-3276 (((-111) $ $) NIL)) (-2319 (($ $ $ $) 73)) (-2209 (($ $) 63)) (-1512 (($ $ $) 44)) (-2928 (($) 35 T CONST)) (-2617 (($ $ $) 47)) (-2943 (($) 36 T CONST)) (-1379 (((-1100) $) 21) (((-1100) $ (-111)) 23) (((-1205) (-782) $) 24) (((-1205) (-782) $ (-111)) 25)) (-2626 (($ $) 45)) (-4230 (($ $ (-731)) NIL) (($ $) NIL)) (-2608 (($ $ $) 46)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 40)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 49)) (-1501 (($ $ $) 43)) (-2329 (($ $) 52) (($ $ $) 54)) (-2318 (($ $ $) 53)) (** (($ $ (-874)) NIL) (($ $ (-731)) 57)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 34) (($ $ $) 55))) +(((-1064) (-13 (-522) (-622) (-788) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3889 ($)) (-15 -2444 ($)) (-15 -3679 ($ $)) (-15 -3284 ($ $)) (-15 -1501 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -1435 ($ $ $)) (-15 -2626 ($ $)) (-15 -2608 ($ $ $)) (-15 -2617 ($ $ $))))) (T -1064)) +((-1512 (*1 *1 *1 *1) (-5 *1 (-1064))) (-1501 (*1 *1 *1 *1) (-5 *1 (-1064))) (-3284 (*1 *1 *1) (-5 *1 (-1064))) (-3889 (*1 *1) (-5 *1 (-1064))) (-2444 (*1 *1) (-5 *1 (-1064))) (-3679 (*1 *1 *1) (-5 *1 (-1064))) (-1435 (*1 *1 *1 *1) (-5 *1 (-1064))) (-2626 (*1 *1 *1) (-5 *1 (-1064))) (-2608 (*1 *1 *1 *1) (-5 *1 (-1064))) (-2617 (*1 *1 *1 *1) (-5 *1 (-1064)))) +(-13 (-522) (-622) (-788) (-10 -8 (-6 -4287) (-6 -4292) (-6 -4288) (-15 -3889 ($)) (-15 -2444 ($)) (-15 -3679 ($ $)) (-15 -3284 ($ $)) (-15 -1501 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -1435 ($ $ $)) (-15 -2626 ($ $)) (-15 -2608 ($ $ $)) (-15 -2617 ($ $ $)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2992 ((|#1| $) 44)) (-2506 (((-111) $ (-731)) 8)) (-3832 (($) 7 T CONST)) (-2993 ((|#1| |#1| $) 46)) (-3444 ((|#1| $) 45)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2783 ((|#1| $) 39)) (-3499 (($ |#1| $) 40)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-1599 ((|#1| $) 41)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-3731 (((-731) $) 43)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) 42)) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1065 |#1|) (-134) (-1154)) (T -1065)) +((-2993 (*1 *2 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) +(-13 (-105 |t#1|) (-10 -8 (-6 -4300) (-15 -2993 (|t#1| |t#1| $)) (-15 -3444 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -3731 ((-731) $)))) +(((-33) . T) ((-105 |#1|) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-1428 ((|#3| $) 76)) (-1516 (((-3 (-537) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3958 (((-537) $) NIL) (((-391 (-537)) $) NIL) ((|#3| $) 37)) (-2053 (((-649 (-537)) (-649 $)) NIL) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL) (((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 $) (-1200 $)) 73) (((-649 |#3|) (-649 $)) 65)) (-3456 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117)) NIL) (($ $ (-731)) NIL) (($ $) NIL)) (-3018 ((|#3| $) 78)) (-4089 ((|#4| $) 32)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ |#3|) 16)) (** (($ $ (-874)) NIL) (($ $ (-731)) 15) (($ $ (-537)) 82))) +(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 -3018 (|#3| |#1|)) (-15 -1428 (|#3| |#1|)) (-15 -4089 (|#4| |#1|)) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -2341 ((-816) |#1|))) (-1067 |#2| |#3| |#4| |#5|) (-731) (-998) (-223 |#2| |#3|) (-223 |#2| |#3|)) (T -1066)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-537))) (-15 -3018 (|#3| |#1|)) (-15 -1428 (|#3| |#1|)) (-15 -4089 (|#4| |#1|)) (-15 -2053 ((-649 |#3|) (-649 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 |#3|)) (|:| |vec| (-1200 |#3|))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 |#1|) (-1200 |#1|))) (-15 -2053 ((-649 (-537)) (-649 |#1|))) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -2341 (|#1| |#3|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-537) |#1|)) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|) (-731))) (-15 -3456 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1428 ((|#2| $) 70)) (-3234 (((-111) $) 110)) (-3418 (((-3 $ "failed") $ $) 19)) (-3348 (((-111) $) 108)) (-2506 (((-111) $ (-731)) 100)) (-3110 (($ |#2|) 73)) (-3832 (($) 17 T CONST)) (-3630 (($ $) 127 (|has| |#2| (-291)))) (-2964 ((|#3| $ (-537)) 122)) (-1516 (((-3 (-537) "failed") $) 84 (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) 82 (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) 79)) (-3958 (((-537) $) 85 (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) 83 (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) 78)) (-2053 (((-649 (-537)) (-649 $)) 77 (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 76 (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 75) (((-649 |#2|) (-649 $)) 74)) (-3490 (((-3 $ "failed") $) 32)) (-3705 (((-731) $) 128 (|has| |#2| (-529)))) (-4030 ((|#2| $ (-537) (-537)) 120)) (-3661 (((-606 |#2|) $) 93 (|has| $ (-6 -4300)))) (-2836 (((-111) $) 30)) (-2342 (((-731) $) 129 (|has| |#2| (-529)))) (-2630 (((-606 |#4|) $) 130 (|has| |#2| (-529)))) (-2931 (((-731) $) 116)) (-2945 (((-731) $) 117)) (-1642 (((-111) $ (-731)) 101)) (-3960 ((|#2| $) 65 (|has| |#2| (-6 (-4302 "*"))))) (-4111 (((-537) $) 112)) (-2454 (((-537) $) 114)) (-3703 (((-606 |#2|) $) 92 (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-3126 (((-537) $) 113)) (-2485 (((-537) $) 115)) (-3299 (($ (-606 (-606 |#2|))) 107)) (-4081 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3156 (((-606 (-606 |#2|)) $) 118)) (-2489 (((-111) $ (-731)) 102)) (-1654 (((-1100) $) 9)) (-1321 (((-3 $ "failed") $) 64 (|has| |#2| (-347)))) (-2528 (((-1064) $) 10)) (-3515 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-529)))) (-3206 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) 89 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 88 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 86 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 106)) (-2193 (((-111) $) 103)) (-3425 (($) 104)) (-1922 ((|#2| $ (-537) (-537) |#2|) 121) ((|#2| $ (-537) (-537)) 119)) (-3456 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-731)) 49) (($ $ (-606 (-1117)) (-606 (-731))) 42 (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) 41 (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) 40 (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) 39 (|has| |#2| (-853 (-1117)))) (($ $ (-731)) 37 (|has| |#2| (-218))) (($ $) 35 (|has| |#2| (-218)))) (-3018 ((|#2| $) 69)) (-3189 (($ (-606 |#2|)) 72)) (-3400 (((-111) $) 109)) (-4089 ((|#3| $) 71)) (-3075 ((|#2| $) 66 (|has| |#2| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4300))) (((-731) |#2| $) 91 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 105)) (-2198 ((|#4| $ (-537)) 123)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 81 (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) 80)) (-3654 (((-731)) 28)) (-2030 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4300)))) (-1830 (((-111) $) 111)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-731)) 47) (($ $ (-606 (-1117)) (-606 (-731))) 46 (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) 45 (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) 44 (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) 43 (|has| |#2| (-853 (-1117)))) (($ $ (-731)) 38 (|has| |#2| (-218))) (($ $) 36 (|has| |#2| (-218)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#2|) 126 (|has| |#2| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 63 (|has| |#2| (-347)))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2258 (((-731) $) 99 (|has| $ (-6 -4300))))) +(((-1067 |#1| |#2| |#3| |#4|) (-134) (-731) (-998) (-223 |t#1| |t#2|) (-223 |t#1| |t#2|)) (T -1067)) +((-3110 (*1 *1 *2) (-12 (-4 *2 (-998)) (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-606 *4)) (-4 *4 (-998)) (-4 *1 (-1067 *3 *4 *5 *6)) (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *2 (-223 *3 *4)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (-4 *2 (-998)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (-4 *2 (-998)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *2 (-223 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *2 (-223 *3 *4)) (-4 *5 (-223 *3 *4)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) (-1321 (*1 *1 *1) (|partial| -12 (-4 *1 (-1067 *2 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-223 *2 *3)) (-4 *5 (-223 *2 *3)) (-4 *3 (-347)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1067 *3 *4 *5 *6)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4)) (-4 *4 (-347))))) +(-13 (-216 |t#2|) (-110 |t#2| |t#2|) (-1001 |t#1| |t#1| |t#2| |t#3| |t#4|) (-395 |t#2|) (-361 |t#2|) (-10 -8 (IF (|has| |t#2| (-163)) (-6 (-678 |t#2|)) |%noBranch|) (-15 -3110 ($ |t#2|)) (-15 -3189 ($ (-606 |t#2|))) (-15 -4089 (|t#3| $)) (-15 -1428 (|t#2| $)) (-15 -3018 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4302 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3075 (|t#2| $)) (-15 -3960 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-347)) (PROGN (-15 -1321 ((-3 $ "failed") $)) (-15 ** ($ $ (-537)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4302 "*"))) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-216 |#2|) . T) ((-218) |has| |#2| (-218)) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-361 |#2|) . T) ((-395 |#2|) . T) ((-471 |#2|) . T) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-609 |#2|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#2| (-602 (-537))) ((-602 |#2|) . T) ((-678 |#2|) -1533 (|has| |#2| (-163)) (|has| |#2| (-6 (-4302 "*")))) ((-687) . T) ((-853 (-1117)) |has| |#2| (-853 (-1117))) ((-1001 |#1| |#1| |#2| |#3| |#4|) . T) ((-989 (-391 (-537))) |has| |#2| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#2| (-989 (-537))) ((-989 |#2|) . T) ((-1004 |#2|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1154) . T)) +((-1574 ((|#4| |#4|) 70)) (-3116 ((|#4| |#4|) 65)) (-2029 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|) 78)) (-3904 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3834 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1068 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3116 (|#4| |#4|)) (-15 -3834 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1574 (|#4| |#4|)) (-15 -3904 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2029 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|))) (-291) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -1068)) +((-2029 (*1 *2 *3 *4) (-12 (-4 *5 (-291)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) (-5 *1 (-1068 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) (-3904 (*1 *2 *3) (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-1574 (*1 *2 *2) (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-3834 (*1 *2 *3) (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(-10 -7 (-15 -3116 (|#4| |#4|)) (-15 -3834 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1574 (|#4| |#4|)) (-15 -3904 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2029 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2122 (-606 |#3|))) |#4| |#3|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 17)) (-3757 (((-606 |#2|) $) 159)) (-3588 (((-1113 $) $ |#2|) 54) (((-1113 |#1|) $) 43)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 108 (|has| |#1| (-529)))) (-3377 (($ $) 110 (|has| |#1| (-529)))) (-4017 (((-111) $) 112 (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 |#2|)) 192)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) 156) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 |#2| "failed") $) NIL)) (-3958 ((|#1| $) 154) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) ((|#2| $) NIL)) (-4086 (($ $ $ |#2|) NIL (|has| |#1| (-163)))) (-3940 (($ $) 196)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 82)) (-1351 (($ $) NIL (|has| |#1| (-435))) (($ $ |#2|) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-509 |#2|) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#1| (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#1| (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-2836 (((-111) $) 19)) (-2668 (((-731) $) 26)) (-3746 (($ (-1113 |#1|) |#2|) 48) (($ (-1113 $) |#2|) 64)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) 32)) (-3733 (($ |#1| (-509 |#2|)) 71) (($ $ |#2| (-731)) 52) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ |#2|) NIL)) (-1883 (((-509 |#2|) $) 186) (((-731) $ |#2|) 187) (((-606 (-731)) $ (-606 |#2|)) 188)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-509 |#2|) (-509 |#2|)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 120)) (-1310 (((-3 |#2| "failed") $) 161)) (-3901 (($ $) 195)) (-3912 ((|#1| $) 37)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-731))) "failed") $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 33)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 138 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 143 (|has| |#1| (-435))) (($ $ $) 130 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#1| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-862)))) (-3515 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-529)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-606 |#2|) (-606 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-606 |#2|) (-606 $)) 176)) (-2067 (($ $ |#2|) NIL (|has| |#1| (-163)))) (-3456 (($ $ |#2|) 194) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2872 (((-509 |#2|) $) 182) (((-731) $ |#2|) 178) (((-606 (-731)) $ (-606 |#2|)) 180)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| |#1| (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| |#1| (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| |#1| (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#1| $) 126 (|has| |#1| (-435))) (($ $ |#2|) 129 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2341 (((-816) $) 149) (($ (-537)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-529))) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3459 (((-606 |#1|) $) 152)) (-3500 ((|#1| $ (-509 |#2|)) 73) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 79)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) 115 (|has| |#1| (-529)))) (-2928 (($) 12 T CONST)) (-2943 (($) 14 T CONST)) (-4230 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 97)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 124 (|has| |#1| (-347)))) (-2329 (($ $) 85) (($ $ $) 95)) (-2318 (($ $ $) 49)) (** (($ $ (-874)) 102) (($ $ (-731)) 100)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 88) (($ $ $) 65) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1069 |#1| |#2|) (-902 |#1| (-509 |#2|) |#2|) (-998) (-807)) (T -1069)) +NIL +(-902 |#1| (-509 |#2|) |#2|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1403 (($ $) 143 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-1429 (($ $) 147 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1706 (((-905 |#1|) $ (-731)) NIL) (((-905 |#1|) $ (-731) (-731)) NIL)) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $ |#2|) NIL) (((-731) $ |#2| (-731)) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1538 (((-111) $) NIL)) (-3733 (($ $ (-606 |#2|) (-606 (-509 |#2|))) NIL) (($ $ |#2| (-509 |#2|)) NIL) (($ |#1| (-509 |#2|)) NIL) (($ $ |#2| (-731)) 58) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) 113 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $ |#2|) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3714 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-391 (-537)))))) (-1540 (($ $ (-731)) 15)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4185 (($ $) 111 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (($ $ |#2| $) 97) (($ $ (-606 |#2|) (-606 $)) 90) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL)) (-3456 (($ $ |#2|) 100) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2872 (((-509 |#2|) $) NIL)) (-3356 (((-1 (-1098 |#3|) |#3|) (-606 |#2|) (-606 (-1098 |#3|))) 79)) (-1441 (($ $) 149 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 145 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 17)) (-2341 (((-816) $) 182) (($ (-537)) NIL) (($ |#1|) 44 (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-529))) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#2|) 65) (($ |#3|) 63)) (-3500 ((|#1| $ (-509 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL) ((|#3| $ (-731)) 42)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-1475 (($ $) 155 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 151 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 159 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-4141 (($ $) 161 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 157 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 153 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 10 T CONST)) (-4230 (($ $ |#2|) NIL) (($ $ (-606 |#2|)) NIL) (($ $ |#2| (-731)) NIL) (($ $ (-606 |#2|) (-606 (-731))) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) 184 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 61)) (** (($ $ (-874)) NIL) (($ $ (-731)) 70) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 103 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 60) (($ $ (-391 (-537))) 108 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 106 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1070 |#1| |#2| |#3|) (-13 (-701 |#1| |#2|) (-10 -8 (-15 -3500 (|#3| $ (-731))) (-15 -2341 ($ |#2|)) (-15 -2341 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3356 ((-1 (-1098 |#3|) |#3|) (-606 |#2|) (-606 (-1098 |#3|)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ |#2| |#1|)) (-15 -3714 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-998) (-807) (-902 |#1| (-509 |#2|) |#2|)) (T -1070)) +((-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *2 (-902 *4 (-509 *5) *5)) (-5 *1 (-1070 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-807)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *2 (-807)) (-5 *1 (-1070 *3 *2 *4)) (-4 *4 (-902 *3 (-509 *2) *2)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-902 *3 (-509 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-902 *3 (-509 *4) *4)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1098 *7))) (-4 *6 (-807)) (-4 *7 (-902 *5 (-509 *6) *6)) (-4 *5 (-998)) (-5 *2 (-1 (-1098 *7) *7)) (-5 *1 (-1070 *5 *6 *7)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-4 *2 (-807)) (-5 *1 (-1070 *3 *2 *4)) (-4 *4 (-902 *3 (-509 *2) *2)))) (-3714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1070 *4 *3 *5))) (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998)) (-4 *3 (-807)) (-5 *1 (-1070 *4 *3 *5)) (-4 *5 (-902 *4 (-509 *3) *3))))) +(-13 (-701 |#1| |#2|) (-10 -8 (-15 -3500 (|#3| $ (-731))) (-15 -2341 ($ |#2|)) (-15 -2341 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3356 ((-1 (-1098 |#3|) |#3|) (-606 |#2|) (-606 (-1098 |#3|)))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ |#2| |#1|)) (-15 -3714 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86) (((-606 $) (-606 |#4|) (-111)) 111)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 126)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3165 (((-111) |#4| $) 136)) (-3398 (((-111) |#4| $) 133)) (-2479 (((-111) |#4| $) 137) (((-111) $) 134)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) 128)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 127)) (-2375 (((-3 |#4| "failed") $) 83)) (-3826 (((-606 $) |#4| $) 129)) (-2806 (((-3 (-111) (-606 $)) |#4| $) 132)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3891 (((-606 $) |#4| $) 125) (((-606 $) (-606 |#4|) $) 124) (((-606 $) (-606 |#4|) (-606 $)) 123) (((-606 $) |#4| (-606 $)) 122)) (-3357 (($ |#4| $) 117) (($ (-606 |#4|) $) 116)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77) (((-606 $) |#4| $) 115) (((-606 $) |#4| (-606 $)) 114) (((-606 $) (-606 |#4|) $) 113) (((-606 $) (-606 |#4|) (-606 $)) 112)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-3014 (((-606 $) |#4| $) 121) (((-606 $) |#4| (-606 $)) 120) (((-606 $) (-606 |#4|) $) 119) (((-606 $) (-606 |#4|) (-606 $)) 118)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3161 (((-111) |#4| $) 135)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) +(((-1071 |#1| |#2| |#3| |#4|) (-134) (-435) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1071)) +NIL +(-13 (-1054 |t#1| |t#2| |t#3| |t#4|) (-744 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-744 |#1| |#2| |#3| |#4|) . T) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1018 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1054 |#1| |#2| |#3| |#4|) . T) ((-1147 |#1| |#2| |#3| |#4|) . T) ((-1154) . T)) +((-1895 (((-606 |#2|) |#1|) 12)) (-1755 (((-606 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-606 |#2|) |#1|) 52)) (-1951 (((-606 |#2|) |#2| |#2| |#2|) 39) (((-606 |#2|) |#1|) 50)) (-1431 ((|#2| |#1|) 46)) (-3680 (((-2 (|:| |solns| (-606 |#2|)) (|:| |maps| (-606 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1682 (((-606 |#2|) |#2| |#2|) 38) (((-606 |#2|) |#1|) 49)) (-2493 (((-606 |#2|) |#2| |#2| |#2| |#2|) 40) (((-606 |#2|) |#1|) 51)) (-2829 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-1886 ((|#2| |#2| |#2| |#2|) 43)) (-3397 ((|#2| |#2| |#2|) 42)) (-3983 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -1895 ((-606 |#2|) |#1|)) (-15 -1431 (|#2| |#1|)) (-15 -3680 ((-2 (|:| |solns| (-606 |#2|)) (|:| |maps| (-606 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1682 ((-606 |#2|) |#1|)) (-15 -1951 ((-606 |#2|) |#1|)) (-15 -2493 ((-606 |#2|) |#1|)) (-15 -1755 ((-606 |#2|) |#1|)) (-15 -1682 ((-606 |#2|) |#2| |#2|)) (-15 -1951 ((-606 |#2|) |#2| |#2| |#2|)) (-15 -2493 ((-606 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1755 ((-606 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3397 (|#2| |#2| |#2|)) (-15 -1886 (|#2| |#2| |#2| |#2|)) (-15 -3983 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2829 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1176 |#2|) (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (T -1072)) +((-2829 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-3983 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-1886 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-3397 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-1755 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-2493 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-1951 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-1682 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3)))) (-1755 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-1951 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-1682 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-2 (|:| |solns| (-606 *5)) (|:| |maps| (-606 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1072 *3 *5)) (-4 *3 (-1176 *5)))) (-1431 (*1 *2 *3) (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2)))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -1895 ((-606 |#2|) |#1|)) (-15 -1431 (|#2| |#1|)) (-15 -3680 ((-2 (|:| |solns| (-606 |#2|)) (|:| |maps| (-606 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1682 ((-606 |#2|) |#1|)) (-15 -1951 ((-606 |#2|) |#1|)) (-15 -2493 ((-606 |#2|) |#1|)) (-15 -1755 ((-606 |#2|) |#1|)) (-15 -1682 ((-606 |#2|) |#2| |#2|)) (-15 -1951 ((-606 |#2|) |#2| |#2| |#2|)) (-15 -2493 ((-606 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1755 ((-606 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3397 (|#2| |#2| |#2|)) (-15 -1886 (|#2| |#2| |#2| |#2|)) (-15 -3983 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2829 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1381 (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|))))) 95) (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117))) 94) (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|)))) 92) (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 90) (((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|)))) 75) (((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))) (-1117)) 76) (((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|))) 70) (((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)) (-1117)) 59)) (-1661 (((-606 (-606 (-300 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 88) (((-606 (-300 |#1|)) (-391 (-905 |#1|)) (-1117)) 43)) (-1562 (((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-391 (-905 |#1|)) (-1117)) 98) (((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117)) 97))) +(((-1073 |#1|) (-10 -7 (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1661 ((-606 (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -1661 ((-606 (-606 (-300 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-391 (-905 |#1|)) (-1117)))) (-13 (-291) (-807) (-141))) (T -1073)) +((-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-300 *5)))) (-5 *1 (-1073 *5)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-300 *5))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-278 (-391 (-905 *5))))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-606 (-391 (-905 *4)))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-278 (-391 (-905 *4)))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1073 *5)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1073 *4)))) (-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1073 *5))))) +(-10 -7 (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-391 (-905 |#1|)))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1381 ((-606 (-278 (-300 |#1|))) (-278 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-391 (-905 |#1|))))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1381 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1661 ((-606 (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -1661 ((-606 (-606 (-300 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1562 ((-1107 (-606 (-300 |#1|)) (-606 (-278 (-300 |#1|)))) (-391 (-905 |#1|)) (-1117)))) +((-2692 (((-391 (-1113 (-300 |#1|))) (-1200 (-300 |#1|)) (-391 (-1113 (-300 |#1|))) (-537)) 29)) (-3361 (((-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|)))) 40))) +(((-1074 |#1|) (-10 -7 (-15 -3361 ((-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))))) (-15 -2692 ((-391 (-1113 (-300 |#1|))) (-1200 (-300 |#1|)) (-391 (-1113 (-300 |#1|))) (-537)))) (-13 (-529) (-807))) (T -1074)) +((-2692 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-391 (-1113 (-300 *5)))) (-5 *3 (-1200 (-300 *5))) (-5 *4 (-537)) (-4 *5 (-13 (-529) (-807))) (-5 *1 (-1074 *5)))) (-3361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-391 (-1113 (-300 *3)))) (-4 *3 (-13 (-529) (-807))) (-5 *1 (-1074 *3))))) +(-10 -7 (-15 -3361 ((-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))) (-391 (-1113 (-300 |#1|))))) (-15 -2692 ((-391 (-1113 (-300 |#1|))) (-1200 (-300 |#1|)) (-391 (-1113 (-300 |#1|))) (-537)))) +((-1895 (((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-300 |#1|))) (-606 (-1117))) 224) (((-606 (-278 (-300 |#1|))) (-300 |#1|) (-1117)) 20) (((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)) (-1117)) 26) (((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|))) 25) (((-606 (-278 (-300 |#1|))) (-300 |#1|)) 21))) +(((-1075 |#1|) (-10 -7 (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|) (-1117))) (-15 -1895 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-300 |#1|))) (-606 (-1117))))) (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (T -1075)) +((-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1117))) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-606 (-278 (-300 *5)))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) (-5 *3 (-300 *5)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) (-5 *3 (-278 (-300 *5))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-278 (-300 *4))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-300 *4))))) +(-10 -7 (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-278 (-300 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-300 |#1|))) (-300 |#1|) (-1117))) (-15 -1895 ((-606 (-606 (-278 (-300 |#1|)))) (-606 (-278 (-300 |#1|))) (-606 (-1117))))) +((-2583 ((|#2| |#2|) 20 (|has| |#1| (-807))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-1558 ((|#2| |#2|) 19 (|has| |#1| (-807))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) +(((-1076 |#1| |#2|) (-10 -7 (-15 -1558 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2583 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-807)) (PROGN (-15 -1558 (|#2| |#2|)) (-15 -2583 (|#2| |#2|))) |%noBranch|)) (-1154) (-13 (-570 (-537) |#1|) (-10 -7 (-6 -4300) (-6 -4301)))) (T -1076)) +((-2583 (*1 *2 *2) (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301)))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301)))))) (-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301)))))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301))))))) +(-10 -7 (-15 -1558 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -2583 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-807)) (PROGN (-15 -1558 (|#2| |#2|)) (-15 -2583 (|#2| |#2|))) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-4108 (((-1106 3 |#1|) $) 107)) (-2654 (((-111) $) 72)) (-3376 (($ $ (-606 (-896 |#1|))) 20) (($ $ (-606 (-606 |#1|))) 75) (($ (-606 (-896 |#1|))) 74) (((-606 (-896 |#1|)) $) 73)) (-2194 (((-111) $) 41)) (-2385 (($ $ (-896 |#1|)) 46) (($ $ (-606 |#1|)) 51) (($ $ (-731)) 53) (($ (-896 |#1|)) 47) (((-896 |#1|) $) 45)) (-1594 (((-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731))) $) 105)) (-2641 (((-731) $) 26)) (-4147 (((-731) $) 25)) (-2090 (($ $ (-731) (-896 |#1|)) 39)) (-4097 (((-111) $) 82)) (-3106 (($ $ (-606 (-606 (-896 |#1|))) (-606 (-162)) (-162)) 89) (($ $ (-606 (-606 (-606 |#1|))) (-606 (-162)) (-162)) 91) (($ $ (-606 (-606 (-896 |#1|))) (-111) (-111)) 85) (($ $ (-606 (-606 (-606 |#1|))) (-111) (-111)) 93) (($ (-606 (-606 (-896 |#1|)))) 86) (($ (-606 (-606 (-896 |#1|))) (-111) (-111)) 87) (((-606 (-606 (-896 |#1|))) $) 84)) (-1470 (($ (-606 $)) 28) (($ $ $) 29)) (-1421 (((-606 (-162)) $) 102)) (-1834 (((-606 (-896 |#1|)) $) 96)) (-3334 (((-606 (-606 (-162))) $) 101)) (-1616 (((-606 (-606 (-606 (-896 |#1|)))) $) NIL)) (-1568 (((-606 (-606 (-606 (-731)))) $) 99)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2502 (((-731) $ (-606 (-896 |#1|))) 37)) (-3068 (((-111) $) 54)) (-1943 (($ $ (-606 (-896 |#1|))) 56) (($ $ (-606 (-606 |#1|))) 62) (($ (-606 (-896 |#1|))) 57) (((-606 (-896 |#1|)) $) 55)) (-2092 (($) 23) (($ (-1106 3 |#1|)) 24)) (-2494 (($ $) 35)) (-1457 (((-606 $) $) 34)) (-2727 (($ (-606 $)) 31)) (-4267 (((-606 $) $) 33)) (-2341 (((-816) $) 111)) (-3036 (((-111) $) 64)) (-1827 (($ $ (-606 (-896 |#1|))) 66) (($ $ (-606 (-606 |#1|))) 69) (($ (-606 (-896 |#1|))) 67) (((-606 (-896 |#1|)) $) 65)) (-3065 (($ $) 106)) (-2244 (((-111) $ $) NIL))) +(((-1077 |#1|) (-1078 |#1|) (-998)) (T -1077)) +NIL +(-1078 |#1|) +((-2330 (((-111) $ $) 7)) (-4108 (((-1106 3 |#1|) $) 13)) (-2654 (((-111) $) 29)) (-3376 (($ $ (-606 (-896 |#1|))) 33) (($ $ (-606 (-606 |#1|))) 32) (($ (-606 (-896 |#1|))) 31) (((-606 (-896 |#1|)) $) 30)) (-2194 (((-111) $) 44)) (-2385 (($ $ (-896 |#1|)) 49) (($ $ (-606 |#1|)) 48) (($ $ (-731)) 47) (($ (-896 |#1|)) 46) (((-896 |#1|) $) 45)) (-1594 (((-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731))) $) 15)) (-2641 (((-731) $) 58)) (-4147 (((-731) $) 59)) (-2090 (($ $ (-731) (-896 |#1|)) 50)) (-4097 (((-111) $) 21)) (-3106 (($ $ (-606 (-606 (-896 |#1|))) (-606 (-162)) (-162)) 28) (($ $ (-606 (-606 (-606 |#1|))) (-606 (-162)) (-162)) 27) (($ $ (-606 (-606 (-896 |#1|))) (-111) (-111)) 26) (($ $ (-606 (-606 (-606 |#1|))) (-111) (-111)) 25) (($ (-606 (-606 (-896 |#1|)))) 24) (($ (-606 (-606 (-896 |#1|))) (-111) (-111)) 23) (((-606 (-606 (-896 |#1|))) $) 22)) (-1470 (($ (-606 $)) 57) (($ $ $) 56)) (-1421 (((-606 (-162)) $) 16)) (-1834 (((-606 (-896 |#1|)) $) 20)) (-3334 (((-606 (-606 (-162))) $) 17)) (-1616 (((-606 (-606 (-606 (-896 |#1|)))) $) 18)) (-1568 (((-606 (-606 (-606 (-731)))) $) 19)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2502 (((-731) $ (-606 (-896 |#1|))) 51)) (-3068 (((-111) $) 39)) (-1943 (($ $ (-606 (-896 |#1|))) 43) (($ $ (-606 (-606 |#1|))) 42) (($ (-606 (-896 |#1|))) 41) (((-606 (-896 |#1|)) $) 40)) (-2092 (($) 61) (($ (-1106 3 |#1|)) 60)) (-2494 (($ $) 52)) (-1457 (((-606 $) $) 53)) (-2727 (($ (-606 $)) 55)) (-4267 (((-606 $) $) 54)) (-2341 (((-816) $) 11)) (-3036 (((-111) $) 34)) (-1827 (($ $ (-606 (-896 |#1|))) 38) (($ $ (-606 (-606 |#1|))) 37) (($ (-606 (-896 |#1|))) 36) (((-606 (-896 |#1|)) $) 35)) (-3065 (($ $) 14)) (-2244 (((-111) $ $) 6))) +(((-1078 |#1|) (-134) (-998)) (T -1078)) +((-2341 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-816)))) (-2092 (*1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1106 3 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1470 (*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-4267 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)))) (-1457 (*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)))) (-2494 (*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-2502 (*1 *2 *1 *3) (-12 (-5 *3 (-606 (-896 *4))) (-4 *1 (-1078 *4)) (-4 *4 (-998)) (-5 *2 (-731)))) (-2090 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-896 *4)) (-4 *1 (-1078 *4)) (-4 *4 (-998)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-2385 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-896 *3)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1827 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-3106 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-606 (-896 *5)))) (-5 *3 (-606 (-162))) (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998)))) (-3106 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-606 (-162))) (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998)))) (-3106 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) (-4 *1 (-1078 *4)) (-4 *4 (-998)))) (-3106 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-111)) (-4 *1 (-1078 *4)) (-4 *4 (-998)))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 *3)))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) (-3106 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) (-4 *4 (-998)) (-4 *1 (-1078 *4)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-896 *3)))))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-606 (-731))))))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-606 (-896 *3))))))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-162)))))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-162))))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731)))))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-1106 3 *3))))) +(-13 (-1045) (-10 -8 (-15 -2092 ($)) (-15 -2092 ($ (-1106 3 |t#1|))) (-15 -4147 ((-731) $)) (-15 -2641 ((-731) $)) (-15 -1470 ($ (-606 $))) (-15 -1470 ($ $ $)) (-15 -2727 ($ (-606 $))) (-15 -4267 ((-606 $) $)) (-15 -1457 ((-606 $) $)) (-15 -2494 ($ $)) (-15 -2502 ((-731) $ (-606 (-896 |t#1|)))) (-15 -2090 ($ $ (-731) (-896 |t#1|))) (-15 -2385 ($ $ (-896 |t#1|))) (-15 -2385 ($ $ (-606 |t#1|))) (-15 -2385 ($ $ (-731))) (-15 -2385 ($ (-896 |t#1|))) (-15 -2385 ((-896 |t#1|) $)) (-15 -2194 ((-111) $)) (-15 -1943 ($ $ (-606 (-896 |t#1|)))) (-15 -1943 ($ $ (-606 (-606 |t#1|)))) (-15 -1943 ($ (-606 (-896 |t#1|)))) (-15 -1943 ((-606 (-896 |t#1|)) $)) (-15 -3068 ((-111) $)) (-15 -1827 ($ $ (-606 (-896 |t#1|)))) (-15 -1827 ($ $ (-606 (-606 |t#1|)))) (-15 -1827 ($ (-606 (-896 |t#1|)))) (-15 -1827 ((-606 (-896 |t#1|)) $)) (-15 -3036 ((-111) $)) (-15 -3376 ($ $ (-606 (-896 |t#1|)))) (-15 -3376 ($ $ (-606 (-606 |t#1|)))) (-15 -3376 ($ (-606 (-896 |t#1|)))) (-15 -3376 ((-606 (-896 |t#1|)) $)) (-15 -2654 ((-111) $)) (-15 -3106 ($ $ (-606 (-606 (-896 |t#1|))) (-606 (-162)) (-162))) (-15 -3106 ($ $ (-606 (-606 (-606 |t#1|))) (-606 (-162)) (-162))) (-15 -3106 ($ $ (-606 (-606 (-896 |t#1|))) (-111) (-111))) (-15 -3106 ($ $ (-606 (-606 (-606 |t#1|))) (-111) (-111))) (-15 -3106 ($ (-606 (-606 (-896 |t#1|))))) (-15 -3106 ($ (-606 (-606 (-896 |t#1|))) (-111) (-111))) (-15 -3106 ((-606 (-606 (-896 |t#1|))) $)) (-15 -4097 ((-111) $)) (-15 -1834 ((-606 (-896 |t#1|)) $)) (-15 -1568 ((-606 (-606 (-606 (-731)))) $)) (-15 -1616 ((-606 (-606 (-606 (-896 |t#1|)))) $)) (-15 -3334 ((-606 (-606 (-162))) $)) (-15 -1421 ((-606 (-162)) $)) (-15 -1594 ((-2 (|:| -3732 (-731)) (|:| |curves| (-731)) (|:| |polygons| (-731)) (|:| |constructs| (-731))) $)) (-15 -3065 ($ $)) (-15 -4108 ((-1106 3 |t#1|) $)) (-15 -2341 ((-816) $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2979 (((-606 (-1122)) (-1100)) 9))) +(((-1079) (-10 -7 (-15 -2979 ((-606 (-1122)) (-1100))))) (T -1079)) +((-2979 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-1079))))) +(-10 -7 (-15 -2979 ((-606 (-1122)) (-1100)))) +((-4056 (((-1205) (-606 (-816))) 23) (((-1205) (-816)) 22)) (-4123 (((-1205) (-606 (-816))) 21) (((-1205) (-816)) 20)) (-3322 (((-1205) (-606 (-816))) 19) (((-1205) (-816)) 11) (((-1205) (-1100) (-816)) 17))) +(((-1080) (-10 -7 (-15 -3322 ((-1205) (-1100) (-816))) (-15 -3322 ((-1205) (-816))) (-15 -4123 ((-1205) (-816))) (-15 -4056 ((-1205) (-816))) (-15 -3322 ((-1205) (-606 (-816)))) (-15 -4123 ((-1205) (-606 (-816)))) (-15 -4056 ((-1205) (-606 (-816)))))) (T -1080)) +((-4056 (*1 *2 *3) (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080))))) +(-10 -7 (-15 -3322 ((-1205) (-1100) (-816))) (-15 -3322 ((-1205) (-816))) (-15 -4123 ((-1205) (-816))) (-15 -4056 ((-1205) (-816))) (-15 -3322 ((-1205) (-606 (-816)))) (-15 -4123 ((-1205) (-606 (-816)))) (-15 -4056 ((-1205) (-606 (-816))))) +((-3548 (($ $ $) 10)) (-1593 (($ $) 9)) (-3288 (($ $ $) 13)) (-1961 (($ $ $) 15)) (-2354 (($ $ $) 12)) (-1716 (($ $ $) 14)) (-2147 (($ $) 17)) (-3502 (($ $) 16)) (-2209 (($ $) 6)) (-2247 (($ $ $) 11) (($ $) 7)) (-2611 (($ $ $) 8))) +(((-1081) (-134)) (T -1081)) +((-2147 (*1 *1 *1) (-4 *1 (-1081))) (-3502 (*1 *1 *1) (-4 *1 (-1081))) (-1961 (*1 *1 *1 *1) (-4 *1 (-1081))) (-1716 (*1 *1 *1 *1) (-4 *1 (-1081))) (-3288 (*1 *1 *1 *1) (-4 *1 (-1081))) (-2354 (*1 *1 *1 *1) (-4 *1 (-1081))) (-2247 (*1 *1 *1 *1) (-4 *1 (-1081))) (-3548 (*1 *1 *1 *1) (-4 *1 (-1081))) (-1593 (*1 *1 *1) (-4 *1 (-1081))) (-2611 (*1 *1 *1 *1) (-4 *1 (-1081))) (-2247 (*1 *1 *1) (-4 *1 (-1081))) (-2209 (*1 *1 *1) (-4 *1 (-1081)))) +(-13 (-10 -8 (-15 -2209 ($ $)) (-15 -2247 ($ $)) (-15 -2611 ($ $ $)) (-15 -1593 ($ $)) (-15 -3548 ($ $ $)) (-15 -2247 ($ $ $)) (-15 -2354 ($ $ $)) (-15 -3288 ($ $ $)) (-15 -1716 ($ $ $)) (-15 -1961 ($ $ $)) (-15 -3502 ($ $)) (-15 -2147 ($ $)))) +((-2330 (((-111) $ $) 41)) (-3619 ((|#1| $) 15)) (-1699 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-3610 (((-111) $) 17)) (-1306 (($ $ |#1|) 28)) (-3521 (($ $ (-111)) 30)) (-2235 (($ $) 31)) (-1498 (($ $ |#2|) 29)) (-1654 (((-1100) $) NIL)) (-1455 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-2528 (((-1064) $) NIL)) (-2193 (((-111) $) 14)) (-3425 (($) 10)) (-2494 (($ $) 27)) (-2350 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) 21) (((-606 $) (-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|)))) 24) (((-606 $) |#1| (-606 |#2|)) 26)) (-3441 ((|#2| $) 16)) (-2341 (((-816) $) 50)) (-2244 (((-111) $ $) 39))) +(((-1082 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3425 ($)) (-15 -2193 ((-111) $)) (-15 -3619 (|#1| $)) (-15 -3441 (|#2| $)) (-15 -3610 ((-111) $)) (-15 -2350 ($ |#1| |#2| (-111))) (-15 -2350 ($ |#1| |#2|)) (-15 -2350 ($ (-2 (|:| |val| |#1|) (|:| -3852 |#2|)))) (-15 -2350 ((-606 $) (-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))))) (-15 -2350 ((-606 $) |#1| (-606 |#2|))) (-15 -2494 ($ $)) (-15 -1306 ($ $ |#1|)) (-15 -1498 ($ $ |#2|)) (-15 -3521 ($ $ (-111))) (-15 -2235 ($ $)) (-15 -1455 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -1699 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1045) (-33)) (-13 (-1045) (-33))) (T -1082)) +((-3425 (*1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-3619 (*1 *2 *1) (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-13 (-1045) (-33))))) (-3441 (*1 *2 *1) (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *3 *2)) (-4 *3 (-13 (-1045) (-33))))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3852 *4))) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1082 *3 *4)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-606 (-2 (|:| |val| *4) (|:| -3852 *5)))) (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-606 (-1082 *4 *5))) (-5 *1 (-1082 *4 *5)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *4 (-606 *5)) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-606 (-1082 *3 *5))) (-5 *1 (-1082 *3 *5)) (-4 *3 (-13 (-1045) (-33))))) (-2494 (*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1306 (*1 *1 *1 *2) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1498 (*1 *1 *1 *2) (-12 (-5 *1 (-1082 *3 *2)) (-4 *3 (-13 (-1045) (-33))) (-4 *2 (-13 (-1045) (-33))))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-2235 (*1 *1 *1) (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1455 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1082 *5 *6)))) (-1699 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33)))))) +(-13 (-1045) (-10 -8 (-15 -3425 ($)) (-15 -2193 ((-111) $)) (-15 -3619 (|#1| $)) (-15 -3441 (|#2| $)) (-15 -3610 ((-111) $)) (-15 -2350 ($ |#1| |#2| (-111))) (-15 -2350 ($ |#1| |#2|)) (-15 -2350 ($ (-2 (|:| |val| |#1|) (|:| -3852 |#2|)))) (-15 -2350 ((-606 $) (-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))))) (-15 -2350 ((-606 $) |#1| (-606 |#2|))) (-15 -2494 ($ $)) (-15 -1306 ($ $ |#1|)) (-15 -1498 ($ $ |#2|)) (-15 -3521 ($ $ (-111))) (-15 -2235 ($ $)) (-15 -1455 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -1699 ((-111) $ $ (-1 (-111) |#2| |#2|))))) +((-2330 (((-111) $ $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-3619 (((-1082 |#1| |#2|) $) 25)) (-1876 (($ $) 76)) (-3285 (((-111) (-1082 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-2677 (($ $ $ (-606 (-1082 |#1| |#2|))) 90) (($ $ $ (-606 (-1082 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-2506 (((-111) $ (-731)) NIL)) (-3650 (((-1082 |#1| |#2|) $ (-1082 |#1| |#2|)) 43 (|has| $ (-6 -4301)))) (-2476 (((-1082 |#1| |#2|) $ "value" (-1082 |#1| |#2|)) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-1371 (((-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) $) 80)) (-3026 (($ (-1082 |#1| |#2|) $) 39)) (-2355 (($ (-1082 |#1| |#2|) $) 31)) (-3661 (((-606 (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 51)) (-3033 (((-111) (-1082 |#1| |#2|) $) 82)) (-3868 (((-111) $ $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 (-1082 |#1| |#2|)) $) 55 (|has| $ (-6 -4300)))) (-3122 (((-111) (-1082 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-1082 |#1| |#2|) (-1045))))) (-4081 (($ (-1 (-1082 |#1| |#2|) (-1082 |#1| |#2|)) $) 47 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-1082 |#1| |#2|) (-1082 |#1| |#2|)) $) 46)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 (-1082 |#1| |#2|)) $) 53)) (-3862 (((-111) $) 42)) (-1654 (((-1100) $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-2528 (((-1064) $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-1862 (((-3 $ "failed") $) 75)) (-3206 (((-111) (-1 (-111) (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-1082 |#1| |#2|)))) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045)))) (($ $ (-278 (-1082 |#1| |#2|))) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045)))) (($ $ (-1082 |#1| |#2|) (-1082 |#1| |#2|)) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045)))) (($ $ (-606 (-1082 |#1| |#2|)) (-606 (-1082 |#1| |#2|))) NIL (-12 (|has| (-1082 |#1| |#2|) (-293 (-1082 |#1| |#2|))) (|has| (-1082 |#1| |#2|) (-1045))))) (-2305 (((-111) $ $) 50)) (-2193 (((-111) $) 22)) (-3425 (($) 24)) (-1922 (((-1082 |#1| |#2|) $ "value") NIL)) (-2364 (((-537) $ $) NIL)) (-3335 (((-111) $) 44)) (-2539 (((-731) (-1 (-111) (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300))) (((-731) (-1082 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-1082 |#1| |#2|) (-1045))))) (-2494 (($ $) 49)) (-2350 (($ (-1082 |#1| |#2|)) 9) (($ |#1| |#2| (-606 $)) 12) (($ |#1| |#2| (-606 (-1082 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-606 |#2|)) 17)) (-4280 (((-606 |#2|) $) 81)) (-2341 (((-816) $) 73 (|has| (-1082 |#1| |#2|) (-579 (-816))))) (-2804 (((-606 $) $) 28)) (-4261 (((-111) $ $) NIL (|has| (-1082 |#1| |#2|) (-1045)))) (-2030 (((-111) (-1 (-111) (-1082 |#1| |#2|)) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 64 (|has| (-1082 |#1| |#2|) (-1045)))) (-2258 (((-731) $) 58 (|has| $ (-6 -4300))))) +(((-1083 |#1| |#2|) (-13 (-962 (-1082 |#1| |#2|)) (-10 -8 (-6 -4301) (-6 -4300) (-15 -1862 ((-3 $ "failed") $)) (-15 -1876 ($ $)) (-15 -2350 ($ (-1082 |#1| |#2|))) (-15 -2350 ($ |#1| |#2| (-606 $))) (-15 -2350 ($ |#1| |#2| (-606 (-1082 |#1| |#2|)))) (-15 -2350 ($ |#1| |#2| |#1| (-606 |#2|))) (-15 -4280 ((-606 |#2|) $)) (-15 -1371 ((-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) $)) (-15 -3033 ((-111) (-1082 |#1| |#2|) $)) (-15 -3285 ((-111) (-1082 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2355 ($ (-1082 |#1| |#2|) $)) (-15 -3026 ($ (-1082 |#1| |#2|) $)) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)))) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1045) (-33)) (-13 (-1045) (-33))) (T -1083)) +((-1862 (*1 *1 *1) (|partial| -12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-1876 (*1 *1 *1) (-12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-606 (-1083 *2 *3))) (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) (-2350 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-606 (-1082 *2 *3))) (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))) (-5 *1 (-1083 *2 *3)))) (-2350 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-1045) (-33))) (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-606 *4)) (-5 *1 (-1083 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) (-5 *1 (-1083 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))))) (-3033 (*1 *2 *3 *1) (-12 (-5 *3 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5)))) (-3285 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1082 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1083 *5 *6)))) (-2355 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-2677 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-606 (-1082 *3 *4))) (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) (-2677 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-1082 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) (-5 *1 (-1083 *4 *5))))) +(-13 (-962 (-1082 |#1| |#2|)) (-10 -8 (-6 -4301) (-6 -4300) (-15 -1862 ((-3 $ "failed") $)) (-15 -1876 ($ $)) (-15 -2350 ($ (-1082 |#1| |#2|))) (-15 -2350 ($ |#1| |#2| (-606 $))) (-15 -2350 ($ |#1| |#2| (-606 (-1082 |#1| |#2|)))) (-15 -2350 ($ |#1| |#2| |#1| (-606 |#2|))) (-15 -4280 ((-606 |#2|) $)) (-15 -1371 ((-606 (-2 (|:| |val| |#1|) (|:| -3852 |#2|))) $)) (-15 -3033 ((-111) (-1082 |#1| |#2|) $)) (-15 -3285 ((-111) (-1082 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -2355 ($ (-1082 |#1| |#2|) $)) (-15 -3026 ($ (-1082 |#1| |#2|) $)) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)))) (-15 -2677 ($ $ $ (-606 (-1082 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3660 (($ $) NIL)) (-1428 ((|#2| $) NIL)) (-3234 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3422 (($ (-649 |#2|)) 47)) (-3348 (((-111) $) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-3110 (($ |#2|) 9)) (-3832 (($) NIL T CONST)) (-3630 (($ $) 60 (|has| |#2| (-291)))) (-2964 (((-225 |#1| |#2|) $ (-537)) 34)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 |#2| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) ((|#2| $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) 74)) (-3705 (((-731) $) 62 (|has| |#2| (-529)))) (-4030 ((|#2| $ (-537) (-537)) NIL)) (-3661 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-2836 (((-111) $) NIL)) (-2342 (((-731) $) 64 (|has| |#2| (-529)))) (-2630 (((-606 (-225 |#1| |#2|)) $) 68 (|has| |#2| (-529)))) (-2931 (((-731) $) NIL)) (-2945 (((-731) $) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-3960 ((|#2| $) 58 (|has| |#2| (-6 (-4302 "*"))))) (-4111 (((-537) $) NIL)) (-2454 (((-537) $) NIL)) (-3703 (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3126 (((-537) $) NIL)) (-2485 (((-537) $) NIL)) (-3299 (($ (-606 (-606 |#2|))) 29)) (-4081 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3156 (((-606 (-606 |#2|)) $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-1321 (((-3 $ "failed") $) 71 (|has| |#2| (-347)))) (-2528 (((-1064) $) NIL)) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529)))) (-3206 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ (-537) (-537) |#2|) NIL) ((|#2| $ (-537) (-537)) NIL)) (-3456 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-3018 ((|#2| $) NIL)) (-3189 (($ (-606 |#2|)) 42)) (-3400 (((-111) $) NIL)) (-4089 (((-225 |#1| |#2|) $) NIL)) (-3075 ((|#2| $) 56 (|has| |#2| (-6 (-4302 "*"))))) (-2539 (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 83 (|has| |#2| (-580 (-513))))) (-2198 (((-225 |#1| |#2|) $ (-537)) 36)) (-2341 (((-816) $) 39) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#2| (-989 (-391 (-537))))) (($ |#2|) NIL) (((-649 |#2|) $) 44)) (-3654 (((-731)) 17)) (-2030 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-1830 (((-111) $) NIL)) (-2928 (($) 11 T CONST)) (-2943 (($) 14 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-731)) NIL (|has| |#2| (-218))) (($ $) NIL (|has| |#2| (-218)))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) 54) (($ $ (-537)) 73 (|has| |#2| (-347)))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-225 |#1| |#2|) $ (-225 |#1| |#2|)) 50) (((-225 |#1| |#2|) (-225 |#1| |#2|) $) 52)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1084 |#1| |#2|) (-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-10 -8 (-15 -3660 ($ $)) (-15 -3422 ($ (-649 |#2|))) (-15 -2341 ((-649 |#2|) $)) (IF (|has| |#2| (-6 (-4302 "*"))) (-6 -4289) |%noBranch|) (IF (|has| |#2| (-6 (-4302 "*"))) (IF (|has| |#2| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) (-731) (-998)) (T -1084)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-649 *4)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-731)) (-4 *4 (-998)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-731)) (-4 *3 (-998)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-649 *4)) (-4 *4 (-998)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-731))))) +(-13 (-1067 |#1| |#2| (-225 |#1| |#2|) (-225 |#1| |#2|)) (-579 (-649 |#2|)) (-10 -8 (-15 -3660 ($ $)) (-15 -3422 ($ (-649 |#2|))) (-15 -2341 ((-649 |#2|) $)) (IF (|has| |#2| (-6 (-4302 "*"))) (-6 -4289) |%noBranch|) (IF (|has| |#2| (-6 (-4302 "*"))) (IF (|has| |#2| (-6 -4297)) (-6 -4297) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-580 (-513))) (-6 (-580 (-513))) |%noBranch|))) +((-2099 (($ $) 19)) (-2594 (($ $ (-138)) 10) (($ $ (-135)) 14)) (-1367 (((-111) $ $) 24)) (-2602 (($ $) 17)) (-1922 (((-138) $ (-537) (-138)) NIL) (((-138) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL) (($ $ $) 29)) (-2341 (($ (-138)) 27) (((-816) $) NIL))) +(((-1085 |#1|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -2594 (|#1| |#1| (-135))) (-15 -2594 (|#1| |#1| (-138))) (-15 -2341 (|#1| (-138))) (-15 -1367 ((-111) |#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1922 ((-138) |#1| (-537))) (-15 -1922 ((-138) |#1| (-537) (-138)))) (-1086)) (T -1085)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -2594 (|#1| |#1| (-135))) (-15 -2594 (|#1| |#1| (-138))) (-15 -2341 (|#1| (-138))) (-15 -1367 ((-111) |#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2602 (|#1| |#1|)) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -1922 ((-138) |#1| (-537))) (-15 -1922 ((-138) |#1| (-537) (-138)))) +((-2330 (((-111) $ $) 19 (|has| (-138) (-1045)))) (-1561 (($ $) 120)) (-2099 (($ $) 121)) (-2594 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) 118)) (-1315 (((-111) $ $ (-537)) 117)) (-3763 (((-606 $) $ (-138)) 110) (((-606 $) $ (-135)) 109)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| (-138) (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 (((-138) $ (-537) (-138)) 52 (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-2972 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-2619 (($ $ (-1167 (-537)) $) 114)) (-3221 (($ $) 78 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-138) $) 77 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) 53 (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) 51)) (-1367 (((-111) $ $) 119)) (-2299 (((-537) (-1 (-111) (-138)) $) 97) (((-537) (-138) $) 96 (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) 95 (|has| (-138) (-1045))) (((-537) $ $ (-537)) 113) (((-537) (-135) $ (-537)) 112)) (-3661 (((-606 (-138)) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) 115)) (-1244 (((-731) $ $ (-138)) 116)) (-4081 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3037 (($ $) 122)) (-2602 (($ $) 123)) (-2489 (((-111) $ (-731)) 10)) (-2985 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-1654 (((-1100) $) 22 (|has| (-138) (-1045)))) (-4049 (($ (-138) $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| (-138) (-1045)))) (-3188 (((-138) $) 42 (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-3040 (($ $ (-138)) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) 26 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) 23 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 (((-138) $ (-537) (-138)) 50) (((-138) $ (-537)) 49) (($ $ (-1167 (-537))) 63) (($ $ $) 102)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4300))) (((-731) (-138) $) 28 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) 70)) (-3434 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (($ (-138)) 111) (((-816) $) 18 (|has| (-138) (-579 (-816))))) (-2030 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| (-138) (-807)))) (-2271 (((-111) $ $) 83 (|has| (-138) (-807)))) (-2244 (((-111) $ $) 20 (|has| (-138) (-1045)))) (-2282 (((-111) $ $) 85 (|has| (-138) (-807)))) (-2263 (((-111) $ $) 82 (|has| (-138) (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1086) (-134)) (T -1086)) +((-2602 (*1 *1 *1) (-4 *1 (-1086))) (-3037 (*1 *1 *1) (-4 *1 (-1086))) (-2099 (*1 *1 *1) (-4 *1 (-1086))) (-1561 (*1 *1 *1) (-4 *1 (-1086))) (-1367 (*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111)))) (-1342 (*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111)))) (-1315 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-537)) (-5 *2 (-111)))) (-1244 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-731)))) (-3760 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-111)))) (-2619 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-1167 (-537))))) (-2299 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537)))) (-2299 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537)) (-5 *3 (-135)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1086)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-606 *1)) (-4 *1 (-1086)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-606 *1)) (-4 *1 (-1086)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) (-2985 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138)))) (-2985 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) (-1922 (*1 *1 *1 *1) (-4 *1 (-1086)))) +(-13 (-19 (-138)) (-10 -8 (-15 -2602 ($ $)) (-15 -3037 ($ $)) (-15 -2099 ($ $)) (-15 -1561 ($ $)) (-15 -1367 ((-111) $ $)) (-15 -1342 ((-111) $ $)) (-15 -1315 ((-111) $ $ (-537))) (-15 -1244 ((-731) $ $ (-138))) (-15 -3760 ((-111) $ $ (-138))) (-15 -2619 ($ $ (-1167 (-537)) $)) (-15 -2299 ((-537) $ $ (-537))) (-15 -2299 ((-537) (-135) $ (-537))) (-15 -2341 ($ (-138))) (-15 -3763 ((-606 $) $ (-138))) (-15 -3763 ((-606 $) $ (-135))) (-15 -2594 ($ $ (-138))) (-15 -2594 ($ $ (-135))) (-15 -2985 ($ $ (-138))) (-15 -2985 ($ $ (-135))) (-15 -2972 ($ $ (-138))) (-15 -2972 ($ $ (-135))) (-15 -1922 ($ $ $)))) +(((-33) . T) ((-100) -1533 (|has| (-138) (-1045)) (|has| (-138) (-807))) ((-579 (-816)) -1533 (|has| (-138) (-1045)) (|has| (-138) (-807)) (|has| (-138) (-579 (-816)))) ((-145 #0=(-138)) . T) ((-580 (-513)) |has| (-138) (-580 (-513))) ((-270 #1=(-537) #0#) . T) ((-272 #1# #0#) . T) ((-293 #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-357 #0#) . T) ((-471 #0#) . T) ((-570 #1# #0#) . T) ((-495 #0# #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-612 #0#) . T) ((-19 #0#) . T) ((-807) |has| (-138) (-807)) ((-1045) -1533 (|has| (-138) (-1045)) (|has| (-138) (-807))) ((-1154) . T)) +((-3000 (((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731)) 94)) (-1607 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 54)) (-2540 (((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)) 85)) (-3615 (((-731) (-606 |#4|) (-606 |#5|)) 27)) (-2764 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731)) 56) (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111)) 58)) (-4035 (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111)) 77)) (-3996 (((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) 80)) (-4134 (((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|) 53)) (-3550 (((-731) (-606 |#4|) (-606 |#5|)) 19))) +(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|) (-1054 |#1| |#2| |#3| |#4|)) (T -1087)) +((-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) (-5 *1 (-1087 *4 *5 *6 *7 *8)))) (-3000 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-606 *11)) (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) (-5 *6 (-731)) (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-5 *1 (-1087 *7 *8 *9 *10 *11)))) (-4035 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-4035 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-2764 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-2764 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-2764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) (-1607 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *3 (-1012 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) (-4134 (*1 *2 *3 *4) (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-606 *4)) (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3550 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -3615 ((-731) (-606 |#4|) (-606 |#5|))) (-15 -4134 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -1607 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731) (-111))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5| (-731))) (-15 -2764 ((-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) |#4| |#5|)) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111))) (-15 -4035 ((-606 |#5|) (-606 |#4|) (-606 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -3000 ((-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-606 |#4|) (-606 |#5|) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-2 (|:| |done| (-606 |#5|)) (|:| |todo| (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))))) (-731))) (-15 -3996 ((-1100) (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|)))) (-15 -2540 ((-1205) (-606 (-2 (|:| |val| (-606 |#4|)) (|:| -3852 |#5|))) (-731)))) +((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) 110) (((-606 $) (-606 |#4|) (-111)) 111) (((-606 $) (-606 |#4|) (-111) (-111)) 109) (((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111)) 112)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1395 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| $) 84)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 62)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) 26 (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3801 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 39)) (-2627 ((|#4| |#4| $) 65)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3165 (((-111) |#4| $) NIL)) (-3398 (((-111) |#4| $) NIL)) (-2479 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1819 (((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111)) 124)) (-3661 (((-606 |#4|) $) 16 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 33)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 17 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-4081 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 21)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-3029 (((-3 |#4| (-606 $)) |#4| |#4| $) NIL)) (-1842 (((-606 (-2 (|:| |val| |#4|) (|:| -3852 $))) |#4| |#4| $) 103)) (-2375 (((-3 |#4| "failed") $) 37)) (-3826 (((-606 $) |#4| $) 88)) (-2806 (((-3 (-111) (-606 $)) |#4| $) NIL)) (-2605 (((-606 (-2 (|:| |val| (-111)) (|:| -3852 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-3891 (((-606 $) |#4| $) 107) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 108) (((-606 $) |#4| (-606 $)) NIL)) (-2755 (((-606 $) (-606 |#4|) (-111) (-111) (-111)) 119)) (-3357 (($ |#4| $) 75) (($ (-606 |#4|) $) 76) (((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-2422 (((-606 |#4|) $) NIL)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) NIL)) (-1981 (((-111) $ $) NIL)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 35)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) 48)) (-1540 (($ $ |#4|) NIL) (((-606 $) |#4| $) 90) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) 86)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 13)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) 12)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 20)) (-1713 (($ $ |#3|) 42)) (-2488 (($ $ |#3|) 44)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) 31) (((-606 |#4|) $) 40)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-3014 (((-606 $) |#4| $) 54) (((-606 $) |#4| (-606 $)) NIL) (((-606 $) (-606 |#4|) $) NIL) (((-606 $) (-606 |#4|) (-606 $)) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3161 (((-111) |#4| $) NIL)) (-3042 (((-111) |#3| $) 61)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1088 |#1| |#2| |#3| |#4|) (-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) (-435) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -1088)) +((-3357 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *3))) (-5 *1 (-1088 *5 *6 *7 *3)) (-4 *3 (-1012 *5 *6 *7)))) (-3448 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) (-3448 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) (-2755 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) (-1819 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-606 *8)) (|:| |towers| (-606 (-1088 *5 *6 *7 *8))))) (-5 *1 (-1088 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) +(-13 (-1054 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3357 ((-606 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111))) (-15 -3448 ((-606 $) (-606 |#4|) (-111) (-111) (-111) (-111))) (-15 -2755 ((-606 $) (-606 |#4|) (-111) (-111) (-111))) (-15 -1819 ((-2 (|:| |val| (-606 |#4|)) (|:| |towers| (-606 $))) (-606 |#4|) (-111) (-111))))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2992 ((|#1| $) 34)) (-4160 (($ (-606 |#1|)) 39)) (-2506 (((-111) $ (-731)) NIL)) (-3832 (($) NIL T CONST)) (-2993 ((|#1| |#1| $) 36)) (-3444 ((|#1| $) 32)) (-3661 (((-606 |#1|) $) 18 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 22)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2783 ((|#1| $) 35)) (-3499 (($ |#1| $) 37)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1599 ((|#1| $) 33)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 31)) (-3425 (($) 38)) (-3731 (((-731) $) 29)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 27)) (-2341 (((-816) $) 14 (|has| |#1| (-579 (-816))))) (-2753 (($ (-606 |#1|)) NIL)) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 17 (|has| |#1| (-1045)))) (-2258 (((-731) $) 30 (|has| $ (-6 -4300))))) +(((-1089 |#1|) (-13 (-1065 |#1|) (-10 -8 (-15 -4160 ($ (-606 |#1|))))) (-1154)) (T -1089)) +((-4160 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1089 *3))))) +(-13 (-1065 |#1|) (-10 -8 (-15 -4160 ($ (-606 |#1|))))) +((-2476 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1167 (-537)) |#2|) 44) ((|#2| $ (-537) |#2|) 41)) (-4254 (((-111) $) 12)) (-4081 (($ (-1 |#2| |#2|) $) 39)) (-3188 ((|#2| $) NIL) (($ $ (-731)) 17)) (-3040 (($ $ |#2|) 40)) (-1492 (((-111) $) 11)) (-1922 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1167 (-537))) 31) ((|#2| $ (-537)) 23) ((|#2| $ (-537) |#2|) NIL)) (-3115 (($ $ $) 47) (($ $ |#2|) NIL)) (-3434 (($ $ $) 33) (($ |#2| $) NIL) (($ (-606 $)) 36) (($ $ |#2|) NIL))) +(((-1090 |#1| |#2|) (-10 -8 (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| "last")) (-15 -1922 (|#1| |#1| "rest")) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -1922 (|#2| |#1| "value")) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|))) (-1091 |#2|) (-1154)) (T -1090)) +NIL +(-10 -8 (-15 -4254 ((-111) |#1|)) (-15 -1492 ((-111) |#1|)) (-15 -2476 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537) |#2|)) (-15 -1922 (|#2| |#1| (-537))) (-15 -3040 (|#1| |#1| |#2|)) (-15 -3434 (|#1| |#1| |#2|)) (-15 -3434 (|#1| (-606 |#1|))) (-15 -1922 (|#1| |#1| (-1167 (-537)))) (-15 -2476 (|#2| |#1| (-1167 (-537)) |#2|)) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3115 (|#1| |#1| |#2|)) (-15 -3115 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| "last")) (-15 -1922 (|#1| |#1| "rest")) (-15 -3188 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "first")) (-15 -3188 (|#2| |#1|)) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -1922 (|#2| |#1| "value")) (-15 -4081 (|#1| (-1 |#2| |#2|) |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-1279 (((-1205) $ (-537) (-537)) 97 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 117 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 86 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4300)))) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-3221 (($ $) 99 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4300))) (($ |#1| $) 100 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4091 ((|#1| $ (-537) |#1|) 85 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 87)) (-4254 (((-111) $) 83)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) 108)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 95 (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 94 (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-4049 (($ $ $ (-537)) 116) (($ |#1| $ (-537)) 115)) (-1270 (((-606 (-537)) $) 92)) (-1641 (((-111) (-537) $) 91)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-3040 (($ $ |#1|) 96 (|has| $ (-6 -4301)))) (-1492 (((-111) $) 84)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 90)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1167 (-537))) 112) ((|#1| $ (-537)) 89) ((|#1| $ (-537) |#1|) 88)) (-2364 (((-537) $ $) 44)) (-1856 (($ $ (-1167 (-537))) 114) (($ $ (-537)) 113)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3996 (((-513) $) 98 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 107)) (-3115 (($ $ $) 61 (|has| $ (-6 -4301))) (($ $ |#1|) 60 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 77) (($ (-606 $)) 110) (($ $ |#1|) 109)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1091 |#1|) (-134) (-1154)) (T -1091)) +((-1492 (*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) +(-13 (-1188 |t#1|) (-612 |t#1|) (-10 -8 (-15 -1492 ((-111) $)) (-15 -4254 ((-111) $)))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T) ((-1188 |#1|) . T)) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1092 |#1| |#2| |#3|) (-1130 |#1| |#2|) (-1045) (-1045) |#2|) (T -1092)) +NIL +(-1130 |#1| |#2|) +((-2330 (((-111) $ $) 7)) (-2824 (((-3 $ "failed") $) 13)) (-1654 (((-1100) $) 9)) (-3956 (($) 14 T CONST)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11)) (-2244 (((-111) $ $) 6))) +(((-1093) (-134)) (T -1093)) +((-3956 (*1 *1) (-4 *1 (-1093))) (-2824 (*1 *1 *1) (|partial| -4 *1 (-1093)))) +(-13 (-1045) (-10 -8 (-15 -3956 ($) -2787) (-15 -2824 ((-3 $ "failed") $)))) +(((-100) . T) ((-579 (-816)) . T) ((-1045) . T)) +((-2339 (((-1098 |#1|) (-1098 |#1|)) 17)) (-2965 (((-1098 |#1|) (-1098 |#1|)) 13)) (-3005 (((-1098 |#1|) (-1098 |#1|) (-537) (-537)) 20)) (-3481 (((-1098 |#1|) (-1098 |#1|)) 15))) +(((-1094 |#1|) (-10 -7 (-15 -2965 ((-1098 |#1|) (-1098 |#1|))) (-15 -3481 ((-1098 |#1|) (-1098 |#1|))) (-15 -2339 ((-1098 |#1|) (-1098 |#1|))) (-15 -3005 ((-1098 |#1|) (-1098 |#1|) (-537) (-537)))) (-13 (-529) (-141))) (T -1094)) +((-3005 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-1094 *4)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1094 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1094 *3)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1094 *3))))) +(-10 -7 (-15 -2965 ((-1098 |#1|) (-1098 |#1|))) (-15 -3481 ((-1098 |#1|) (-1098 |#1|))) (-15 -2339 ((-1098 |#1|) (-1098 |#1|))) (-15 -3005 ((-1098 |#1|) (-1098 |#1|) (-537) (-537)))) +((-3434 (((-1098 |#1|) (-1098 (-1098 |#1|))) 15))) +(((-1095 |#1|) (-10 -7 (-15 -3434 ((-1098 |#1|) (-1098 (-1098 |#1|))))) (-1154)) (T -1095)) +((-3434 (*1 *2 *3) (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1095 *4)) (-4 *4 (-1154))))) +(-10 -7 (-15 -3434 ((-1098 |#1|) (-1098 (-1098 |#1|))))) +((-2547 (((-1098 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)) 25)) (-3195 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)) 26)) (-1612 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 16))) +(((-1096 |#1| |#2|) (-10 -7 (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))) (-15 -2547 ((-1098 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|))) (-15 -3195 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)))) (-1154) (-1154)) (T -1096)) +((-3195 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-1096 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1098 *6)) (-4 *6 (-1154)) (-4 *3 (-1154)) (-5 *2 (-1098 *3)) (-5 *1 (-1096 *6 *3)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6))))) +(-10 -7 (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))) (-15 -2547 ((-1098 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|))) (-15 -3195 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1098 |#1|)))) +((-1612 (((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-1098 |#2|)) 21))) +(((-1097 |#1| |#2| |#3|) (-10 -7 (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-1098 |#2|)))) (-1154) (-1154) (-1154)) (T -1097)) +((-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-1098 *7)) (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) (-5 *1 (-1097 *6 *7 *8))))) +(-10 -7 (-15 -1612 ((-1098 |#3|) (-1 |#3| |#1| |#2|) (-1098 |#1|) (-1098 |#2|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) NIL)) (-1658 ((|#1| $) NIL)) (-4199 (($ $) 51)) (-1279 (((-1205) $ (-537) (-537)) 76 (|has| $ (-6 -4301)))) (-3704 (($ $ (-537)) 110 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-1773 (((-816) $) 41 (|has| |#1| (-1045)))) (-4051 (((-111)) 40 (|has| |#1| (-1045)))) (-3650 ((|#1| $ |#1|) NIL (|has| $ (-6 -4301)))) (-1536 (($ $ $) 98 (|has| $ (-6 -4301))) (($ $ (-537) $) 122)) (-2236 ((|#1| $ |#1|) 107 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 102 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4301))) (($ $ "rest" $) 106 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 89 (|has| $ (-6 -4301))) ((|#1| $ (-537) |#1|) 55 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 58)) (-1647 ((|#1| $) NIL)) (-3832 (($) NIL T CONST)) (-2784 (($ $) 14)) (-3200 (($ $) 29) (($ $ (-731)) 88)) (-4264 (((-111) (-606 |#1|) $) 116 (|has| |#1| (-1045)))) (-4165 (($ (-606 |#1|)) 112)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) 57)) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-4254 (((-111) $) NIL)) (-3661 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3569 (((-1205) (-537) $) 121 (|has| |#1| (-1045)))) (-2227 (((-731) $) 118)) (-2570 (((-606 $) $) NIL)) (-3868 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2489 (((-111) $ (-731)) NIL)) (-3583 (((-606 |#1|) $) NIL)) (-3862 (((-111) $) NIL)) (-4201 (($ $) 90)) (-3253 (((-111) $) 13)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2375 ((|#1| $) NIL) (($ $ (-731)) NIL)) (-4049 (($ $ $ (-537)) NIL) (($ |#1| $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) 74)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1873 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2950 ((|#1| $) 10)) (-3188 ((|#1| $) 28) (($ $ (-731)) 49)) (-1311 (((-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731))) (-731) $) 25)) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1915 (($ (-1 (-111) |#1|) $) 126)) (-1926 (($ (-1 (-111) |#1|) $) 127)) (-3040 (($ $ |#1|) 68 (|has| $ (-6 -4301)))) (-1540 (($ $ (-537)) 32)) (-1492 (((-111) $) 72)) (-1892 (((-111) $) 12)) (-2848 (((-111) $) 117)) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 20)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) 15)) (-3425 (($) 43)) (-1922 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1167 (-537))) NIL) ((|#1| $ (-537)) 54) ((|#1| $ (-537) |#1|) NIL)) (-2364 (((-537) $ $) 48)) (-1856 (($ $ (-1167 (-537))) NIL) (($ $ (-537)) NIL)) (-2343 (($ (-1 $)) 47)) (-3335 (((-111) $) 69)) (-3136 (($ $) 70)) (-3743 (($ $) 99 (|has| $ (-6 -4301)))) (-3597 (((-731) $) NIL)) (-1935 (($ $) NIL)) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 44)) (-3996 (((-513) $) NIL (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 53)) (-1683 (($ |#1| $) 97)) (-3115 (($ $ $) 100 (|has| $ (-6 -4301))) (($ $ |#1|) 101 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 45) (($ (-606 $)) 83) (($ $ |#1|) 77)) (-1577 (($ $) 50)) (-2341 (($ (-606 |#1|)) 111) (((-816) $) 42 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) NIL)) (-4261 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 114 (|has| |#1| (-1045)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1098 |#1|) (-13 (-635 |#1|) (-10 -8 (-6 -4301) (-15 -2341 ($ (-606 |#1|))) (-15 -4165 ($ (-606 |#1|))) (IF (|has| |#1| (-1045)) (-15 -4264 ((-111) (-606 |#1|) $)) |%noBranch|) (-15 -1311 ((-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731))) (-731) $)) (-15 -2343 ($ (-1 $))) (-15 -1683 ($ |#1| $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3569 ((-1205) (-537) $)) (-15 -1773 ((-816) $)) (-15 -4051 ((-111)))) |%noBranch|) (-15 -1536 ($ $ (-537) $)) (-15 -1873 ($ (-1 |#1|))) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)))) (-1154)) (T -1098)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-4165 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-4264 (*1 *2 *3 *1) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-4 *4 (-1154)) (-5 *2 (-111)) (-5 *1 (-1098 *4)))) (-1311 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731)))) (-5 *1 (-1098 *4)) (-4 *4 (-1154)) (-5 *3 (-731)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-1 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1154)))) (-1683 (*1 *1 *2 *1) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1154)))) (-3569 (*1 *2 *3 *1) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1098 *4)) (-4 *4 (-1045)) (-4 *4 (-1154)))) (-1773 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) (-4 *3 (-1154)))) (-4051 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) (-4 *3 (-1154)))) (-1536 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1098 *3)) (-4 *3 (-1154)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-1915 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) (-1926 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) +(-13 (-635 |#1|) (-10 -8 (-6 -4301) (-15 -2341 ($ (-606 |#1|))) (-15 -4165 ($ (-606 |#1|))) (IF (|has| |#1| (-1045)) (-15 -4264 ((-111) (-606 |#1|) $)) |%noBranch|) (-15 -1311 ((-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731))) (-731) $)) (-15 -2343 ($ (-1 $))) (-15 -1683 ($ |#1| $)) (IF (|has| |#1| (-1045)) (PROGN (-15 -3569 ((-1205) (-537) $)) (-15 -1773 ((-816) $)) (-15 -4051 ((-111)))) |%noBranch|) (-15 -1536 ($ $ (-537) $)) (-15 -1873 ($ (-1 |#1|))) (-15 -1873 ($ (-1 |#1| |#1|) |#1|)) (-15 -1915 ($ (-1 (-111) |#1|) $)) (-15 -1926 ($ (-1 (-111) |#1|) $)))) +((-2330 (((-111) $ $) 19)) (-1561 (($ $) 120)) (-2099 (($ $) 121)) (-2594 (($ $ (-138)) 108) (($ $ (-135)) 107)) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) 118)) (-1315 (((-111) $ $ (-537)) 117)) (-3035 (($ (-537)) 127)) (-3763 (((-606 $) $ (-138)) 110) (((-606 $) $ (-135)) 109)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) 98) (((-111) $) 92 (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| (-138) (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) 99) (($ $) 93 (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 (((-138) $ (-537) (-138)) 52 (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-2972 (($ $ (-138)) 104) (($ $ (-135)) 103)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-2619 (($ $ (-1167 (-537)) $) 114)) (-3221 (($ $) 78 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ (-138) $) 77 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-138)) $) 74 (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) 76 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) 73 (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) 72 (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) 53 (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) 51)) (-1367 (((-111) $ $) 119)) (-2299 (((-537) (-1 (-111) (-138)) $) 97) (((-537) (-138) $) 96 (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) 95 (|has| (-138) (-1045))) (((-537) $ $ (-537)) 113) (((-537) (-135) $ (-537)) 112)) (-3661 (((-606 (-138)) $) 30 (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) 101) (($ $ $) 94 (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) 27 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) 115)) (-1244 (((-731) $ $ (-138)) 116)) (-4081 (($ (-1 (-138) (-138)) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) 35) (($ (-1 (-138) (-138) (-138)) $ $) 64)) (-3037 (($ $) 122)) (-2602 (($ $) 123)) (-2489 (((-111) $ (-731)) 10)) (-2985 (($ $ (-138)) 106) (($ $ (-135)) 105)) (-1654 (((-1100) $) 22)) (-4049 (($ (-138) $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21)) (-3188 (((-138) $) 42 (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) 71)) (-3040 (($ $ (-138)) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) 26 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) 25 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) 24 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) 23 (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) (-138) $) 45 (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 (((-138) $ (-537) (-138)) 50) (((-138) $ (-537)) 49) (($ $ (-1167 (-537))) 63) (($ $ $) 102)) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2539 (((-731) (-1 (-111) (-138)) $) 31 (|has| $ (-6 -4300))) (((-731) (-138) $) 28 (-12 (|has| (-138) (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) 70)) (-3434 (($ $ (-138)) 68) (($ (-138) $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (($ (-138)) 111) (((-816) $) 18)) (-2030 (((-111) (-1 (-111) (-138)) $) 33 (|has| $ (-6 -4300)))) (-1379 (((-1100) $) 131) (((-1100) $ (-111)) 130) (((-1205) (-782) $) 129) (((-1205) (-782) $ (-111)) 128)) (-2293 (((-111) $ $) 84 (|has| (-138) (-807)))) (-2271 (((-111) $ $) 83 (|has| (-138) (-807)))) (-2244 (((-111) $ $) 20)) (-2282 (((-111) $ $) 85 (|has| (-138) (-807)))) (-2263 (((-111) $ $) 82 (|has| (-138) (-807)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1099) (-134)) (T -1099)) +((-3035 (*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1099))))) +(-13 (-1086) (-1045) (-788) (-10 -8 (-15 -3035 ($ (-537))))) +(((-33) . T) ((-100) . T) ((-579 (-816)) . T) ((-145 #0=(-138)) . T) ((-580 (-513)) |has| (-138) (-580 (-513))) ((-270 #1=(-537) #0#) . T) ((-272 #1# #0#) . T) ((-293 #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-357 #0#) . T) ((-471 #0#) . T) ((-570 #1# #0#) . T) ((-495 #0# #0#) -12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))) ((-612 #0#) . T) ((-19 #0#) . T) ((-788) . T) ((-807) |has| (-138) (-807)) ((-1045) . T) ((-1086) . T) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1561 (($ $) NIL)) (-2099 (($ $) NIL)) (-2594 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-1342 (((-111) $ $) NIL)) (-1315 (((-111) $ $ (-537)) NIL)) (-3035 (($ (-537)) 7)) (-3763 (((-606 $) $ (-138)) NIL) (((-606 $) $ (-135)) NIL)) (-2450 (((-111) (-1 (-111) (-138) (-138)) $) NIL) (((-111) $) NIL (|has| (-138) (-807)))) (-1543 (($ (-1 (-111) (-138) (-138)) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| (-138) (-807))))) (-1566 (($ (-1 (-111) (-138) (-138)) $) NIL) (($ $) NIL (|has| (-138) (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 (((-138) $ (-537) (-138)) NIL (|has| $ (-6 -4301))) (((-138) $ (-1167 (-537)) (-138)) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-2972 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-2619 (($ $ (-1167 (-537)) $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2355 (($ (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (($ (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-138) (-1 (-138) (-138) (-138)) $ (-138) (-138)) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045)))) (((-138) (-1 (-138) (-138) (-138)) $ (-138)) NIL (|has| $ (-6 -4300))) (((-138) (-1 (-138) (-138) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4091 (((-138) $ (-537) (-138)) NIL (|has| $ (-6 -4301)))) (-4030 (((-138) $ (-537)) NIL)) (-1367 (((-111) $ $) NIL)) (-2299 (((-537) (-1 (-111) (-138)) $) NIL) (((-537) (-138) $) NIL (|has| (-138) (-1045))) (((-537) (-138) $ (-537)) NIL (|has| (-138) (-1045))) (((-537) $ $ (-537)) NIL) (((-537) (-135) $ (-537)) NIL)) (-3661 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3157 (($ (-731) (-138)) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| (-138) (-807)))) (-1470 (($ (-1 (-111) (-138) (-138)) $ $) NIL) (($ $ $) NIL (|has| (-138) (-807)))) (-3703 (((-606 (-138)) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| (-138) (-807)))) (-3760 (((-111) $ $ (-138)) NIL)) (-1244 (((-731) $ $ (-138)) NIL)) (-4081 (($ (-1 (-138) (-138)) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-138) (-138)) $) NIL) (($ (-1 (-138) (-138) (-138)) $ $) NIL)) (-3037 (($ $) NIL)) (-2602 (($ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-2985 (($ $ (-138)) NIL) (($ $ (-135)) NIL)) (-1654 (((-1100) $) NIL)) (-4049 (($ (-138) $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-138) $) NIL (|has| (-537) (-807)))) (-1266 (((-3 (-138) "failed") (-1 (-111) (-138)) $) NIL)) (-3040 (($ $ (-138)) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-138)))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-278 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-138) (-138)) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045)))) (($ $ (-606 (-138)) (-606 (-138))) NIL (-12 (|has| (-138) (-293 (-138))) (|has| (-138) (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-3010 (((-606 (-138)) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 (((-138) $ (-537) (-138)) NIL) (((-138) $ (-537)) NIL) (($ $ (-1167 (-537))) NIL) (($ $ $) NIL)) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2539 (((-731) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300))) (((-731) (-138) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-138) (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-138) (-580 (-513))))) (-2350 (($ (-606 (-138))) NIL)) (-3434 (($ $ (-138)) NIL) (($ (-138) $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (($ (-138)) NIL) (((-816) $) NIL)) (-2030 (((-111) (-1 (-111) (-138)) $) NIL (|has| $ (-6 -4300)))) (-1379 (((-1100) $) 18) (((-1100) $ (-111)) 20) (((-1205) (-782) $) 21) (((-1205) (-782) $ (-111)) 22)) (-2293 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2271 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2263 (((-111) $ $) NIL (|has| (-138) (-807)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1100) (-1099)) (T -1100)) +NIL +(-1099) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-1279 (((-1205) $ (-1100) (-1100)) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-1100) |#1|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#1| "failed") (-1100) $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#1| "failed") (-1100) $) NIL)) (-2355 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-1100) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-1100)) NIL)) (-3661 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-1100) $) NIL (|has| (-1100) (-807)))) (-3703 (((-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-1100) $) NIL (|has| (-1100) (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-1688 (((-606 (-1100)) $) NIL)) (-4011 (((-111) (-1100) $) NIL)) (-2783 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-1270 (((-606 (-1100)) $) NIL)) (-1641 (((-111) (-1100) $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-3188 ((|#1| $) NIL (|has| (-1100) (-807)))) (-1266 (((-3 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) "failed") (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL (-12 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-293 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-1100)) NIL) ((|#1| $ (-1100) |#1|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-579 (-816))) (|has| |#1| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 (-1100)) (|:| -2140 |#1|)) (-1045)) (|has| |#1| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1101 |#1|) (-13 (-1130 (-1100) |#1|) (-10 -7 (-6 -4300))) (-1045)) (T -1101)) +NIL +(-13 (-1130 (-1100) |#1|) (-10 -7 (-6 -4300))) +((-4127 (((-1098 |#1|) (-1098 |#1|)) 77)) (-3490 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 37)) (-3296 (((-1098 |#1|) (-391 (-537)) (-1098 |#1|)) 121 (|has| |#1| (-37 (-391 (-537)))))) (-3669 (((-1098 |#1|) |#1| (-1098 |#1|)) 127 (|has| |#1| (-347)))) (-4016 (((-1098 |#1|) (-1098 |#1|)) 90)) (-2016 (((-1098 (-537)) (-537)) 57)) (-3706 (((-1098 |#1|) (-1098 (-1098 |#1|))) 109 (|has| |#1| (-37 (-391 (-537)))))) (-2438 (((-1098 |#1|) (-537) (-537) (-1098 |#1|)) 95)) (-2367 (((-1098 |#1|) |#1| (-537)) 45)) (-1320 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 60)) (-3076 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 124 (|has| |#1| (-347)))) (-4184 (((-1098 |#1|) |#1| (-1 (-1098 |#1|))) 108 (|has| |#1| (-37 (-391 (-537)))))) (-1283 (((-1098 |#1|) (-1 |#1| (-537)) |#1| (-1 (-1098 |#1|))) 125 (|has| |#1| (-347)))) (-4009 (((-1098 |#1|) (-1098 |#1|)) 89)) (-4222 (((-1098 |#1|) (-1098 |#1|)) 76)) (-1929 (((-1098 |#1|) (-537) (-537) (-1098 |#1|)) 96)) (-3092 (((-1098 |#1|) |#1| (-1098 |#1|)) 105 (|has| |#1| (-37 (-391 (-537)))))) (-2499 (((-1098 (-537)) (-537)) 56)) (-3129 (((-1098 |#1|) |#1|) 59)) (-3724 (((-1098 |#1|) (-1098 |#1|) (-537) (-537)) 92)) (-4175 (((-1098 |#1|) (-1 |#1| (-537)) (-1098 |#1|)) 66)) (-3515 (((-3 (-1098 |#1|) "failed") (-1098 |#1|) (-1098 |#1|)) 35)) (-3111 (((-1098 |#1|) (-1098 |#1|)) 91)) (-4116 (((-1098 |#1|) (-1098 |#1|) |#1|) 71)) (-1918 (((-1098 |#1|) (-1098 |#1|)) 62)) (-3353 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 72)) (-2341 (((-1098 |#1|) |#1|) 67)) (-3902 (((-1098 |#1|) (-1098 (-1098 |#1|))) 82)) (-2340 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 36)) (-2329 (((-1098 |#1|) (-1098 |#1|)) 21) (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 23)) (-2318 (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 17)) (* (((-1098 |#1|) (-1098 |#1|) |#1|) 29) (((-1098 |#1|) |#1| (-1098 |#1|)) 26) (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 27))) +(((-1102 |#1|) (-10 -7 (-15 -2318 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3515 ((-3 (-1098 |#1|) "failed") (-1098 |#1|) (-1098 |#1|))) (-15 -2340 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -3490 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2367 ((-1098 |#1|) |#1| (-537))) (-15 -2499 ((-1098 (-537)) (-537))) (-15 -2016 ((-1098 (-537)) (-537))) (-15 -3129 ((-1098 |#1|) |#1|)) (-15 -1320 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1918 ((-1098 |#1|) (-1098 |#1|))) (-15 -4175 ((-1098 |#1|) (-1 |#1| (-537)) (-1098 |#1|))) (-15 -2341 ((-1098 |#1|) |#1|)) (-15 -4116 ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3353 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4222 ((-1098 |#1|) (-1098 |#1|))) (-15 -4127 ((-1098 |#1|) (-1098 |#1|))) (-15 -3902 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -4009 ((-1098 |#1|) (-1098 |#1|))) (-15 -4016 ((-1098 |#1|) (-1098 |#1|))) (-15 -3111 ((-1098 |#1|) (-1098 |#1|))) (-15 -3724 ((-1098 |#1|) (-1098 |#1|) (-537) (-537))) (-15 -2438 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (-15 -1929 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 -4184 ((-1098 |#1|) |#1| (-1 (-1098 |#1|)))) (-15 -3706 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -3296 ((-1098 |#1|) (-391 (-537)) (-1098 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3076 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1283 ((-1098 |#1|) (-1 |#1| (-537)) |#1| (-1 (-1098 |#1|)))) (-15 -3669 ((-1098 |#1|) |#1| (-1098 |#1|)))) |%noBranch|)) (-998)) (T -1102)) +((-3669 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-1283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-537))) (-5 *5 (-1 (-1098 *4))) (-4 *4 (-347)) (-4 *4 (-998)) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)))) (-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3296 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *4)) (-4 *4 (-37 *3)) (-4 *4 (-998)) (-5 *3 (-391 (-537))) (-5 *1 (-1102 *4)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1098 *3))) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)))) (-3092 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-1929 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-2438 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-3724 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) (-4 *4 (-998)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4222 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3353 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-4116 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2341 (*1 *2 *3) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) (-4175 (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *4)) (-5 *3 (-1 *4 (-537))) (-4 *4 (-998)) (-5 *1 (-1102 *4)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-1320 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) (-2016 (*1 *2 *3) (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) (-5 *3 (-537)))) (-2499 (*1 *2 *3) (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) (-5 *3 (-537)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) (-3490 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2340 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-3515 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2329 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) (-2318 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) +(-10 -7 (-15 -2318 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2329 ((-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 * ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 * ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3515 ((-3 (-1098 |#1|) "failed") (-1098 |#1|) (-1098 |#1|))) (-15 -2340 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -3490 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2367 ((-1098 |#1|) |#1| (-537))) (-15 -2499 ((-1098 (-537)) (-537))) (-15 -2016 ((-1098 (-537)) (-537))) (-15 -3129 ((-1098 |#1|) |#1|)) (-15 -1320 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1918 ((-1098 |#1|) (-1098 |#1|))) (-15 -4175 ((-1098 |#1|) (-1 |#1| (-537)) (-1098 |#1|))) (-15 -2341 ((-1098 |#1|) |#1|)) (-15 -4116 ((-1098 |#1|) (-1098 |#1|) |#1|)) (-15 -3353 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4222 ((-1098 |#1|) (-1098 |#1|))) (-15 -4127 ((-1098 |#1|) (-1098 |#1|))) (-15 -3902 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -4009 ((-1098 |#1|) (-1098 |#1|))) (-15 -4016 ((-1098 |#1|) (-1098 |#1|))) (-15 -3111 ((-1098 |#1|) (-1098 |#1|))) (-15 -3724 ((-1098 |#1|) (-1098 |#1|) (-537) (-537))) (-15 -2438 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (-15 -1929 ((-1098 |#1|) (-537) (-537) (-1098 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ((-1098 |#1|) |#1| (-1098 |#1|))) (-15 -4184 ((-1098 |#1|) |#1| (-1 (-1098 |#1|)))) (-15 -3706 ((-1098 |#1|) (-1098 (-1098 |#1|)))) (-15 -3296 ((-1098 |#1|) (-391 (-537)) (-1098 |#1|)))) |%noBranch|) (IF (|has| |#1| (-347)) (PROGN (-15 -3076 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -1283 ((-1098 |#1|) (-1 |#1| (-537)) |#1| (-1 (-1098 |#1|)))) (-15 -3669 ((-1098 |#1|) |#1| (-1098 |#1|)))) |%noBranch|)) +((-1403 (((-1098 |#1|) (-1098 |#1|)) 57)) (-1247 (((-1098 |#1|) (-1098 |#1|)) 39)) (-1378 (((-1098 |#1|) (-1098 |#1|)) 53)) (-4270 (((-1098 |#1|) (-1098 |#1|)) 35)) (-1429 (((-1098 |#1|) (-1098 |#1|)) 60)) (-1273 (((-1098 |#1|) (-1098 |#1|)) 42)) (-2180 (((-1098 |#1|) (-1098 |#1|)) 31)) (-4185 (((-1098 |#1|) (-1098 |#1|)) 27)) (-1441 (((-1098 |#1|) (-1098 |#1|)) 61)) (-1286 (((-1098 |#1|) (-1098 |#1|)) 43)) (-1415 (((-1098 |#1|) (-1098 |#1|)) 58)) (-1259 (((-1098 |#1|) (-1098 |#1|)) 40)) (-1389 (((-1098 |#1|) (-1098 |#1|)) 55)) (-1234 (((-1098 |#1|) (-1098 |#1|)) 37)) (-1475 (((-1098 |#1|) (-1098 |#1|)) 65)) (-1328 (((-1098 |#1|) (-1098 |#1|)) 47)) (-1453 (((-1098 |#1|) (-1098 |#1|)) 63)) (-1300 (((-1098 |#1|) (-1098 |#1|)) 45)) (-1495 (((-1098 |#1|) (-1098 |#1|)) 68)) (-1352 (((-1098 |#1|) (-1098 |#1|)) 50)) (-4141 (((-1098 |#1|) (-1098 |#1|)) 69)) (-1365 (((-1098 |#1|) (-1098 |#1|)) 51)) (-1485 (((-1098 |#1|) (-1098 |#1|)) 67)) (-1340 (((-1098 |#1|) (-1098 |#1|)) 49)) (-1465 (((-1098 |#1|) (-1098 |#1|)) 66)) (-1314 (((-1098 |#1|) (-1098 |#1|)) 48)) (** (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 33))) +(((-1103 |#1|) (-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) (-37 (-391 (-537)))) (T -1103)) +((-4141 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1286 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1259 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1247 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-1234 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1103 *3))))) +(-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) +((-1403 (((-1098 |#1|) (-1098 |#1|)) 100)) (-1247 (((-1098 |#1|) (-1098 |#1|)) 64)) (-2746 (((-2 (|:| -1378 (-1098 |#1|)) (|:| -1389 (-1098 |#1|))) (-1098 |#1|)) 96)) (-1378 (((-1098 |#1|) (-1098 |#1|)) 97)) (-2436 (((-2 (|:| -4270 (-1098 |#1|)) (|:| -1234 (-1098 |#1|))) (-1098 |#1|)) 53)) (-4270 (((-1098 |#1|) (-1098 |#1|)) 54)) (-1429 (((-1098 |#1|) (-1098 |#1|)) 102)) (-1273 (((-1098 |#1|) (-1098 |#1|)) 71)) (-2180 (((-1098 |#1|) (-1098 |#1|)) 39)) (-4185 (((-1098 |#1|) (-1098 |#1|)) 36)) (-1441 (((-1098 |#1|) (-1098 |#1|)) 103)) (-1286 (((-1098 |#1|) (-1098 |#1|)) 72)) (-1415 (((-1098 |#1|) (-1098 |#1|)) 101)) (-1259 (((-1098 |#1|) (-1098 |#1|)) 67)) (-1389 (((-1098 |#1|) (-1098 |#1|)) 98)) (-1234 (((-1098 |#1|) (-1098 |#1|)) 55)) (-1475 (((-1098 |#1|) (-1098 |#1|)) 111)) (-1328 (((-1098 |#1|) (-1098 |#1|)) 86)) (-1453 (((-1098 |#1|) (-1098 |#1|)) 105)) (-1300 (((-1098 |#1|) (-1098 |#1|)) 82)) (-1495 (((-1098 |#1|) (-1098 |#1|)) 115)) (-1352 (((-1098 |#1|) (-1098 |#1|)) 90)) (-4141 (((-1098 |#1|) (-1098 |#1|)) 117)) (-1365 (((-1098 |#1|) (-1098 |#1|)) 92)) (-1485 (((-1098 |#1|) (-1098 |#1|)) 113)) (-1340 (((-1098 |#1|) (-1098 |#1|)) 88)) (-1465 (((-1098 |#1|) (-1098 |#1|)) 107)) (-1314 (((-1098 |#1|) (-1098 |#1|)) 84)) (** (((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) 40))) +(((-1104 |#1|) (-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2436 ((-2 (|:| -4270 (-1098 |#1|)) (|:| -1234 (-1098 |#1|))) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -2746 ((-2 (|:| -1378 (-1098 |#1|)) (|:| -1389 (-1098 |#1|))) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) (-37 (-391 (-537)))) (T -1104)) +((-4141 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1465 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-2 (|:| -1378 (-1098 *4)) (|:| -1389 (-1098 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1286 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1259 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1247 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-1234 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-4270 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-2436 (*1 *2 *3) (-12 (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-2 (|:| -4270 (-1098 *4)) (|:| -1234 (-1098 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-2180 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1104 *3))))) +(-10 -7 (-15 -4185 ((-1098 |#1|) (-1098 |#1|))) (-15 -2180 ((-1098 |#1|) (-1098 |#1|))) (-15 ** ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2436 ((-2 (|:| -4270 (-1098 |#1|)) (|:| -1234 (-1098 |#1|))) (-1098 |#1|))) (-15 -4270 ((-1098 |#1|) (-1098 |#1|))) (-15 -1234 ((-1098 |#1|) (-1098 |#1|))) (-15 -1247 ((-1098 |#1|) (-1098 |#1|))) (-15 -1259 ((-1098 |#1|) (-1098 |#1|))) (-15 -1273 ((-1098 |#1|) (-1098 |#1|))) (-15 -1286 ((-1098 |#1|) (-1098 |#1|))) (-15 -1300 ((-1098 |#1|) (-1098 |#1|))) (-15 -1314 ((-1098 |#1|) (-1098 |#1|))) (-15 -1328 ((-1098 |#1|) (-1098 |#1|))) (-15 -1340 ((-1098 |#1|) (-1098 |#1|))) (-15 -1352 ((-1098 |#1|) (-1098 |#1|))) (-15 -1365 ((-1098 |#1|) (-1098 |#1|))) (-15 -2746 ((-2 (|:| -1378 (-1098 |#1|)) (|:| -1389 (-1098 |#1|))) (-1098 |#1|))) (-15 -1378 ((-1098 |#1|) (-1098 |#1|))) (-15 -1389 ((-1098 |#1|) (-1098 |#1|))) (-15 -1403 ((-1098 |#1|) (-1098 |#1|))) (-15 -1415 ((-1098 |#1|) (-1098 |#1|))) (-15 -1429 ((-1098 |#1|) (-1098 |#1|))) (-15 -1441 ((-1098 |#1|) (-1098 |#1|))) (-15 -1453 ((-1098 |#1|) (-1098 |#1|))) (-15 -1465 ((-1098 |#1|) (-1098 |#1|))) (-15 -1475 ((-1098 |#1|) (-1098 |#1|))) (-15 -1485 ((-1098 |#1|) (-1098 |#1|))) (-15 -1495 ((-1098 |#1|) (-1098 |#1|))) (-15 -4141 ((-1098 |#1|) (-1098 |#1|)))) +((-3341 (((-911 |#2|) |#2| |#2|) 35)) (-1351 ((|#2| |#2| |#1|) 19 (|has| |#1| (-291))))) +(((-1105 |#1| |#2|) (-10 -7 (-15 -3341 ((-911 |#2|) |#2| |#2|)) (IF (|has| |#1| (-291)) (-15 -1351 (|#2| |#2| |#1|)) |%noBranch|)) (-529) (-1176 |#1|)) (T -1105)) +((-1351 (*1 *2 *2 *3) (-12 (-4 *3 (-291)) (-4 *3 (-529)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-1176 *3)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-529)) (-5 *2 (-911 *3)) (-5 *1 (-1105 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -3341 ((-911 |#2|) |#2| |#2|)) (IF (|has| |#1| (-291)) (-15 -1351 (|#2| |#2| |#1|)) |%noBranch|)) +((-2330 (((-111) $ $) NIL)) (-4115 (($ $ (-606 (-731))) 67)) (-4108 (($) 26)) (-3855 (($ $) 42)) (-3655 (((-606 $) $) 51)) (-1681 (((-111) $) 16)) (-3286 (((-606 (-896 |#2|)) $) 74)) (-1939 (($ $) 68)) (-2978 (((-731) $) 37)) (-3157 (($) 25)) (-3587 (($ $ (-606 (-731)) (-896 |#2|)) 60) (($ $ (-606 (-731)) (-731)) 61) (($ $ (-731) (-896 |#2|)) 63)) (-1470 (($ $ $) 48) (($ (-606 $)) 50)) (-3027 (((-731) $) 75)) (-3862 (((-111) $) 15)) (-1654 (((-1100) $) NIL)) (-2181 (((-111) $) 18)) (-2528 (((-1064) $) NIL)) (-2087 (((-162) $) 73)) (-1294 (((-896 |#2|) $) 69)) (-3571 (((-731) $) 70)) (-1707 (((-111) $) 72)) (-2116 (($ $ (-606 (-731)) (-162)) 66)) (-2981 (($ $) 43)) (-2341 (((-816) $) 86)) (-2507 (($ $ (-606 (-731)) (-111)) 65)) (-2804 (((-606 $) $) 11)) (-3062 (($ $ (-731)) 36)) (-2696 (($ $) 32)) (-3768 (($ $ $ (-896 |#2|) (-731)) 56)) (-2059 (($ $ (-896 |#2|)) 55)) (-3474 (($ $ (-606 (-731)) (-896 |#2|)) 54) (($ $ (-606 (-731)) (-731)) 58) (((-731) $ (-896 |#2|)) 59)) (-2244 (((-111) $ $) 80))) +(((-1106 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -3862 ((-111) $)) (-15 -1681 ((-111) $)) (-15 -2181 ((-111) $)) (-15 -3157 ($)) (-15 -4108 ($)) (-15 -2696 ($ $)) (-15 -3062 ($ $ (-731))) (-15 -2804 ((-606 $) $)) (-15 -2978 ((-731) $)) (-15 -3855 ($ $)) (-15 -2981 ($ $)) (-15 -1470 ($ $ $)) (-15 -1470 ($ (-606 $))) (-15 -3655 ((-606 $) $)) (-15 -3474 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -2059 ($ $ (-896 |#2|))) (-15 -3768 ($ $ $ (-896 |#2|) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -3474 ($ $ (-606 (-731)) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-731))) (-15 -3474 ((-731) $ (-896 |#2|))) (-15 -3587 ($ $ (-731) (-896 |#2|))) (-15 -2507 ($ $ (-606 (-731)) (-111))) (-15 -2116 ($ $ (-606 (-731)) (-162))) (-15 -4115 ($ $ (-606 (-731)))) (-15 -1294 ((-896 |#2|) $)) (-15 -3571 ((-731) $)) (-15 -1707 ((-111) $)) (-15 -2087 ((-162) $)) (-15 -3027 ((-731) $)) (-15 -1939 ($ $)) (-15 -3286 ((-606 (-896 |#2|)) $)))) (-874) (-998)) (T -1106)) +((-3862 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3157 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-4108 (*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-2696 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-2981 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-1470 (*1 *1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3474 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-896 *4)) (-4 *4 (-998)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)))) (-3768 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-896 *5)) (-5 *3 (-731)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-3587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-3474 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-3587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-3474 (*1 *2 *1 *3) (-12 (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *2 (-731)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-3587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) (-2507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-111)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-2116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-606 (-731))) (-5 *3 (-162)) (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)) (-4 *5 (-998)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-896 *4)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-162)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998)))) (-1939 (*1 *1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-606 (-896 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) (-4 *4 (-998))))) +(-13 (-1045) (-10 -8 (-15 -3862 ((-111) $)) (-15 -1681 ((-111) $)) (-15 -2181 ((-111) $)) (-15 -3157 ($)) (-15 -4108 ($)) (-15 -2696 ($ $)) (-15 -3062 ($ $ (-731))) (-15 -2804 ((-606 $) $)) (-15 -2978 ((-731) $)) (-15 -3855 ($ $)) (-15 -2981 ($ $)) (-15 -1470 ($ $ $)) (-15 -1470 ($ (-606 $))) (-15 -3655 ((-606 $) $)) (-15 -3474 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -2059 ($ $ (-896 |#2|))) (-15 -3768 ($ $ $ (-896 |#2|) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-896 |#2|))) (-15 -3474 ($ $ (-606 (-731)) (-731))) (-15 -3587 ($ $ (-606 (-731)) (-731))) (-15 -3474 ((-731) $ (-896 |#2|))) (-15 -3587 ($ $ (-731) (-896 |#2|))) (-15 -2507 ($ $ (-606 (-731)) (-111))) (-15 -2116 ($ $ (-606 (-731)) (-162))) (-15 -4115 ($ $ (-606 (-731)))) (-15 -1294 ((-896 |#2|) $)) (-15 -3571 ((-731) $)) (-15 -1707 ((-111) $)) (-15 -2087 ((-162) $)) (-15 -3027 ((-731) $)) (-15 -1939 ($ $)) (-15 -3286 ((-606 (-896 |#2|)) $)))) +((-2330 (((-111) $ $) NIL)) (-2880 ((|#2| $) 11)) (-2869 ((|#1| $) 10)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2350 (($ |#1| |#2|) 9)) (-2341 (((-816) $) 16)) (-2244 (((-111) $ $) NIL))) +(((-1107 |#1| |#2|) (-13 (-1045) (-10 -8 (-15 -2350 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -2880 (|#2| $)))) (-1045) (-1045)) (T -1107)) +((-2350 (*1 *1 *2 *3) (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *2 *3)) (-4 *3 (-1045)))) (-2880 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1045))))) +(-13 (-1045) (-10 -8 (-15 -2350 ($ |#1| |#2|)) (-15 -2869 (|#1| $)) (-15 -2880 (|#2| $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-3377 (($ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4017 (((-111) $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1586 (($ $ (-537)) NIL) (($ $ (-537) (-537)) 66)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) NIL)) (-2712 (((-1115 |#1| |#2| |#3|) $) 36)) (-2516 (((-3 (-1115 |#1| |#2| |#3|) "failed") $) 29)) (-3815 (((-1115 |#1| |#2| |#3|) $) 30)) (-1403 (($ $) 107 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 83 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) 103 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 79 (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) 111 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 87 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1115 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1117) "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-537) "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-3958 (((-1115 |#1| |#2| |#3|) $) 131) (((-1117) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-391 (-537)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-537) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-4000 (($ $) 34) (($ (-537) $) 35)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-1115 |#1| |#2| |#3|)) (-649 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-1115 |#1| |#2| |#3|))) (|:| |vec| (-1200 (-1115 |#1| |#2| |#3|)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) 48)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 65 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 67 (|has| |#1| (-529)))) (-1618 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-3797 (((-111) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) 25)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-839 (-537))) (|has| |#1| (-347)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-839 (-363))) (|has| |#1| (-347))))) (-4231 (((-537) $) NIL) (((-537) $ (-537)) 24)) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL (|has| |#1| (-347)))) (-3301 (((-1115 |#1| |#2| |#3|) $) 38 (|has| |#1| (-347)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) NIL)) (-3968 (($ (-1 |#1| (-537)) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-537)) 18) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-2444 (($ $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-3889 (($ $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-347)))) (-2180 (($ $) 72 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3827 (($ (-537) (-1115 |#1| |#2| |#3|)) 33)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 70 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 71 (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1790 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3830 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 145)) (-3515 (((-3 $ "failed") $ $) 49 (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) 73 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-495 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-495 (-1117) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-278 (-1115 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-278 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1115 |#1| |#2| |#3|)) (-606 (-1115 |#1| |#2| |#3|))) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-293 (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) NIL) (($ $ $) 54 (|has| (-537) (-1057))) (($ $ (-1115 |#1| |#2| |#3|)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-270 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1196 |#2|)) 51) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 50 (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2395 (($ $) NIL (|has| |#1| (-347)))) (-3315 (((-1115 |#1| |#2| |#3|) $) 41 (|has| |#1| (-347)))) (-2872 (((-537) $) 37)) (-1441 (($ $) 113 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 89 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 109 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 85 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 105 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 81 (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-513) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-580 (-513))) (|has| |#1| (-347)))) (((-363) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-210) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-845 (-363)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 149) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1115 |#1| |#2| |#3|)) 27) (($ (-1196 |#2|)) 23) (($ (-1117)) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (($ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529)))) (($ (-391 (-537))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))) (|has| |#1| (-37 (-391 (-537))))))) (-3500 ((|#1| $ (-537)) 68)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 12)) (-3903 (((-1115 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1475 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 95 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1453 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 91 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 99 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 101 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 97 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 93 (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) NIL (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2928 (($) 20 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2293 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2271 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2263 (((-111) $ $) NIL (-1533 (-12 (|has| (-1115 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1115 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 44 (|has| |#1| (-347))) (($ (-1115 |#1| |#2| |#3|) (-1115 |#1| |#2| |#3|)) 45 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 21)) (** (($ $ (-874)) NIL) (($ $ (-731)) 53) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) 74 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 128 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1115 |#1| |#2| |#3|)) 43 (|has| |#1| (-347))) (($ (-1115 |#1| |#2| |#3|) $) 42 (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1108 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1108)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1162 |#1| (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-4236 ((|#2| |#2| (-1038 |#2|)) 26) ((|#2| |#2| (-1117)) 28))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -4236 (|#2| |#2| (-1117))) (-15 -4236 (|#2| |#2| (-1038 |#2|)))) (-13 (-529) (-807) (-989 (-537)) (-602 (-537))) (-13 (-414 |#1|) (-152) (-27) (-1139))) (T -1109)) +((-4236 (*1 *2 *2 *3) (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139))) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1109 *4 *2)))) (-4236 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139)))))) +(-10 -7 (-15 -4236 (|#2| |#2| (-1117))) (-15 -4236 (|#2| |#2| (-1038 |#2|)))) +((-4236 (((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1038 (-391 (-905 |#1|)))) 31) (((-391 (-905 |#1|)) (-905 |#1|) (-1038 (-905 |#1|))) 44) (((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1117)) 33) (((-391 (-905 |#1|)) (-905 |#1|) (-1117)) 36))) +(((-1110 |#1|) (-10 -7 (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1117))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1038 (-905 |#1|)))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1038 (-391 (-905 |#1|)))))) (-13 (-529) (-807) (-989 (-537)))) (T -1110)) +((-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-3 *3 (-300 *5))) (-5 *1 (-1110 *5)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1038 (-905 *5))) (-5 *3 (-905 *5)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-391 *3)) (-5 *1 (-1110 *5)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-3 (-391 (-905 *5)) (-300 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-391 (-905 *5))))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-391 (-905 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-905 *5))))) +(-10 -7 (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1117))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1117))) (-15 -4236 ((-391 (-905 |#1|)) (-905 |#1|) (-1038 (-905 |#1|)))) (-15 -4236 ((-3 (-391 (-905 |#1|)) (-300 |#1|)) (-391 (-905 |#1|)) (-1038 (-391 (-905 |#1|)))))) +((-1612 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 13))) +(((-1111 |#1| |#2|) (-10 -7 (-15 -1612 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-998) (-998)) (T -1111)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-5 *2 (-1113 *6)) (-5 *1 (-1111 *5 *6))))) +(-10 -7 (-15 -1612 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) +((-2414 (((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))) 51)) (-3622 (((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))) 52))) +(((-1112 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3622 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|)))) (-15 -2414 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))))) (-753) (-807) (-435) (-902 |#3| |#1| |#2|)) (T -1112)) +((-2414 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7))))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7)))))) +(-10 -7 (-15 -3622 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|)))) (-15 -2414 ((-402 (-1113 (-391 |#4|))) (-1113 (-391 |#4|))))) +((-2330 (((-111) $ $) 137)) (-1656 (((-111) $) 28)) (-3847 (((-1200 |#1|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#1|)) NIL)) (-3588 (((-1113 $) $ (-1027)) 58) (((-1113 |#1|) $) 47)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) 132 (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) 126 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) 71 (|has| |#1| (-862)))) (-1395 (($ $) NIL (|has| |#1| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 91 (|has| |#1| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1505 (($ $ (-731)) 40)) (-3719 (($ $ (-731)) 41)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#1| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#1| $) NIL) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-1027) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $ $) 128 (|has| |#1| (-163)))) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) 56)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) NIL) (((-649 |#1|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-2657 (($ $ $) 104)) (-2971 (($ $ $) NIL (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-1351 (($ $) 133 (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-731) $) 45)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-3819 (((-816) $ (-816)) 117)) (-4231 (((-731) $ $) NIL (|has| |#1| (-529)))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) 49) (($ (-1113 $) (-1027)) 65)) (-3172 (($ $ (-731)) 32)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 63) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 121)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3589 (((-1113 |#1|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) 52)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) NIL (|has| |#1| (-435)))) (-1654 (((-1100) $) NIL)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) 39)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) 31)) (-3890 ((|#1| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 79 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-435))) (($ $ $) 135 (|has| |#1| (-435)))) (-3148 (($ $ (-731) |#1| $) 99)) (-1319 (((-402 (-1113 $)) (-1113 $)) 77 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 76 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 84 (|has| |#1| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#1|) NIL) (($ $ (-606 (-1027)) (-606 |#1|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) NIL (|has| |#1| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) 35)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 138 (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#1| (-163))) ((|#1| $) 124 (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2872 (((-731) $) 54) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 130 (|has| |#1| (-435))) (($ $ (-1027)) NIL (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#1| (-862))))) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#1| (-529)))) (-2341 (((-816) $) 118) (($ (-537)) NIL) (($ |#1|) 53) (($ (-1027)) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) 26 (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 15 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) 96)) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 139 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 66)) (** (($ $ (-874)) 14) (($ $ (-731)) 12)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 25) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1113 |#1|) (-13 (-1176 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))) (-15 -3148 ($ $ (-731) |#1| $)))) (-998)) (T -1113)) +((-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1113 *3)) (-4 *3 (-998)))) (-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1113 *3)) (-4 *3 (-998))))) +(-13 (-1176 |#1|) (-10 -8 (-15 -3819 ((-816) $ (-816))) (-15 -3148 ($ $ (-731) |#1| $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1108 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1115 |#1| |#2| |#3|) "failed") $) 36)) (-3958 (((-1108 |#1| |#2| |#3|) $) NIL) (((-1115 |#1| |#2| |#3|) $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2017 (((-391 (-537)) $) 55)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) (-1108 |#1| |#2| |#3|)) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) 20) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2176 (((-1108 |#1| |#2| |#3|) $) 41)) (-1447 (((-3 (-1108 |#1| |#2| |#3|) "failed") $) NIL)) (-3827 (((-1108 |#1| |#2| |#3|) $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 39 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 40 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $ (-1196 |#2|)) 38)) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 58) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1108 |#1| |#2| |#3|)) 30) (($ (-1115 |#1| |#2| |#3|)) 31) (($ (-1196 |#2|)) 26) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 12)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 22 T CONST)) (-2943 (($) 16 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 24)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1114 |#1| |#2| |#3|) (-13 (-1183 |#1| (-1108 |#1| |#2| |#3|)) (-989 (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1114)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1183 |#1| (-1108 |#1| |#2| |#3|)) (-989 (-1115 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 125)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 116)) (-3235 (((-1173 |#2| |#1|) $ (-731)) 63)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-731)) 79) (($ $ (-731) (-731)) 76)) (-1525 (((-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|))) $) 102)) (-1403 (($ $) 169 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 145 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 165 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|)))) 115) (($ (-1098 |#1|)) 110)) (-1429 (($ $) 173 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 149 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) 23)) (-1388 (($ $) 26)) (-1706 (((-905 |#1|) $ (-731)) 75) (((-905 |#1|) $ (-731) (-731)) 77)) (-2362 (((-111) $) 120)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $) 122) (((-731) $ (-731)) 124)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL)) (-3968 (($ (-1 |#1| (-537)) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 13) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $) 129 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 130 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-1540 (($ $ (-731)) 15)) (-3515 (((-3 $ "failed") $ $) 24 (|has| |#1| (-529)))) (-4185 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-731)))))) (-1922 ((|#1| $ (-731)) 119) (($ $ $) 128 (|has| (-731) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $ (-1196 |#2|)) 29)) (-2872 (((-731) $) NIL)) (-1441 (($ $) 175 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 151 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 171 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 147 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 167 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 143 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 201) (($ (-537)) NIL) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 126 (|has| |#1| (-163))) (($ (-1173 |#2| |#1|)) 51) (($ (-1196 |#2|)) 32)) (-3459 (((-1098 |#1|) $) 98)) (-3500 ((|#1| $ (-731)) 118)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 54)) (-1475 (($ $) 181 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 157 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 177 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 153 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 185 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 161 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-731)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-731)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 187 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 163 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 183 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 159 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 179 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 155 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 17 T CONST)) (-2943 (($) 19 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 194)) (-2318 (($ $ $) 31)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ |#1|) 198 (|has| |#1| (-347))) (($ $ $) 134 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 137 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1115 |#1| |#2| |#3|) (-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1115)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1115 *3 *4 *5)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-2341 (((-816) $) 27) (($ (-1117)) 29)) (-1533 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 40)) (-1521 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 33) (($ $) 34)) (-2986 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 35)) (-2973 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 37)) (-2960 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 36)) (-2947 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 38)) (-3809 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $))) 39))) +(((-1116) (-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -2986 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2960 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2973 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2947 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1533 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -3809 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ $))))) (T -1116)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) (-2986 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-2960 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-2973 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-2947 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-1533 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-3809 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) (-5 *1 (-1116)))) (-1521 (*1 *1 *1) (-5 *1 (-1116)))) +(-13 (-579 (-816)) (-10 -8 (-15 -2341 ($ (-1117))) (-15 -2986 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2960 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2973 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -2947 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1533 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -3809 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)) (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) (|:| CF (-300 (-160 (-363)))) (|:| |switch| $)))) (-15 -1521 ($ $)))) +((-2330 (((-111) $ $) NIL)) (-4129 (($ $ (-606 (-816))) 59)) (-3510 (($ $ (-606 (-816))) 57)) (-3035 (((-1100) $) 84)) (-3858 (((-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))) $) 87)) (-1767 (((-111) $) 22)) (-2225 (($ $ (-606 (-606 (-816)))) 56) (($ $ (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816))))) 82)) (-3832 (($) 124 T CONST)) (-3104 (((-1205)) 106)) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 66) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 73)) (-3157 (($) 95) (($ $) 101)) (-3923 (($ $) 83)) (-2444 (($ $ $) NIL)) (-3889 (($ $ $) NIL)) (-1285 (((-606 $) $) 107)) (-1654 (((-1100) $) 90)) (-2528 (((-1064) $) NIL)) (-1922 (($ $ (-606 (-816))) 58)) (-3996 (((-513) $) 46) (((-1117) $) 47) (((-845 (-537)) $) 77) (((-845 (-363)) $) 75)) (-2341 (((-816) $) 53) (($ (-1100)) 48)) (-1766 (($ $ (-606 (-816))) 60)) (-1379 (((-1100) $) 33) (((-1100) $ (-111)) 34) (((-1205) (-782) $) 35) (((-1205) (-782) $ (-111)) 36)) (-2293 (((-111) $ $) NIL)) (-2271 (((-111) $ $) NIL)) (-2244 (((-111) $ $) 49)) (-2282 (((-111) $ $) NIL)) (-2263 (((-111) $ $) 50))) +(((-1117) (-13 (-807) (-580 (-513)) (-788) (-580 (-1117)) (-580 (-845 (-537))) (-580 (-845 (-363))) (-839 (-537)) (-839 (-363)) (-10 -8 (-15 -3157 ($)) (-15 -3157 ($ $)) (-15 -3104 ((-1205))) (-15 -2341 ($ (-1100))) (-15 -3923 ($ $)) (-15 -1767 ((-111) $)) (-15 -3858 ((-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))) $)) (-15 -2225 ($ $ (-606 (-606 (-816))))) (-15 -2225 ($ $ (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))))) (-15 -3510 ($ $ (-606 (-816)))) (-15 -4129 ($ $ (-606 (-816)))) (-15 -1766 ($ $ (-606 (-816)))) (-15 -1922 ($ $ (-606 (-816)))) (-15 -3035 ((-1100) $)) (-15 -1285 ((-606 $) $)) (-15 -3832 ($) -2787)))) (T -1117)) +((-3157 (*1 *1) (-5 *1 (-1117))) (-3157 (*1 *1 *1) (-5 *1 (-1117))) (-3104 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1117)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1117)))) (-3923 (*1 *1 *1) (-5 *1 (-1117))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1117)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816))))) (-5 *1 (-1117)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-1117)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816))))) (-5 *1 (-1117)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-1766 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1117)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1117)))) (-3832 (*1 *1) (-5 *1 (-1117)))) +(-13 (-807) (-580 (-513)) (-788) (-580 (-1117)) (-580 (-845 (-537))) (-580 (-845 (-363))) (-839 (-537)) (-839 (-363)) (-10 -8 (-15 -3157 ($)) (-15 -3157 ($ $)) (-15 -3104 ((-1205))) (-15 -2341 ($ (-1100))) (-15 -3923 ($ $)) (-15 -1767 ((-111) $)) (-15 -3858 ((-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))) $)) (-15 -2225 ($ $ (-606 (-606 (-816))))) (-15 -2225 ($ $ (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) (|:| |args| (-606 (-816)))))) (-15 -3510 ($ $ (-606 (-816)))) (-15 -4129 ($ $ (-606 (-816)))) (-15 -1766 ($ $ (-606 (-816)))) (-15 -1922 ($ $ (-606 (-816)))) (-15 -3035 ((-1100) $)) (-15 -1285 ((-606 $) $)) (-15 -3832 ($) -2787))) +((-1232 (((-1200 |#1|) |#1| (-874)) 16) (((-1200 |#1|) (-606 |#1|)) 20))) +(((-1118 |#1|) (-10 -7 (-15 -1232 ((-1200 |#1|) (-606 |#1|))) (-15 -1232 ((-1200 |#1|) |#1| (-874)))) (-998)) (T -1118)) +((-1232 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-1200 *3)) (-5 *1 (-1118 *3)) (-4 *3 (-998)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-998)) (-5 *2 (-1200 *4)) (-5 *1 (-1118 *4))))) +(-10 -7 (-15 -1232 ((-1200 |#1|) (-606 |#1|))) (-15 -1232 ((-1200 |#1|) |#1| (-874)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| |#1| (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#1| (-989 (-391 (-537))))) (((-3 |#1| "failed") $) NIL)) (-3958 (((-537) $) NIL (|has| |#1| (-989 (-537)))) (((-391 (-537)) $) NIL (|has| |#1| (-989 (-391 (-537))))) ((|#1| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1351 (($ $) NIL (|has| |#1| (-435)))) (-3240 (($ $ |#1| (-924) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-924)) NIL)) (-1883 (((-924) $) NIL)) (-2199 (($ (-1 (-924) (-924)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#1| $) NIL)) (-3148 (($ $ (-924) |#1| $) NIL (-12 (|has| (-924) (-129)) (|has| |#1| (-529))))) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-529)))) (-2872 (((-924) $) NIL)) (-1835 ((|#1| $) NIL (|has| |#1| (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) NIL) (($ (-391 (-537))) NIL (-1533 (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-989 (-391 (-537))))))) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ (-924)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#1| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2928 (($) 9 T CONST)) (-2943 (($) 14 T CONST)) (-2244 (((-111) $ $) 16)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 19)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1119 |#1|) (-13 (-310 |#1| (-924)) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| (-924) (-129)) (-15 -3148 ($ $ (-924) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) (-998)) (T -1119)) +((-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-924)) (-4 *2 (-129)) (-5 *1 (-1119 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) +(-13 (-310 |#1| (-924)) (-10 -8 (IF (|has| |#1| (-529)) (IF (|has| (-924) (-129)) (-15 -3148 ($ $ (-924) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) +((-2306 (((-1121) (-1117) $) 25)) (-2554 (($) 29)) (-1316 (((-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-1117) $) 22)) (-1587 (((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) $) 41) (((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) 42) (((-1205) (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) 43)) (-1422 (((-1205) (-1117)) 58)) (-1843 (((-1205) (-1117) $) 55) (((-1205) (-1117)) 56) (((-1205)) 57)) (-1384 (((-1205) (-1117)) 37)) (-2917 (((-1117)) 36)) (-3425 (($) 34)) (-3817 (((-421) (-1117) (-421) (-1117) $) 45) (((-421) (-606 (-1117)) (-421) (-1117) $) 49) (((-421) (-1117) (-421)) 46) (((-421) (-1117) (-421) (-1117)) 50)) (-4057 (((-1117)) 35)) (-2341 (((-816) $) 28)) (-4006 (((-1205)) 30) (((-1205) (-1117)) 33)) (-1353 (((-606 (-1117)) (-1117) $) 24)) (-3411 (((-1205) (-1117) (-606 (-1117)) $) 38) (((-1205) (-1117) (-606 (-1117))) 39) (((-1205) (-606 (-1117))) 40))) +(((-1120) (-13 (-579 (-816)) (-10 -8 (-15 -2554 ($)) (-15 -4006 ((-1205))) (-15 -4006 ((-1205) (-1117))) (-15 -3817 ((-421) (-1117) (-421) (-1117) $)) (-15 -3817 ((-421) (-606 (-1117)) (-421) (-1117) $)) (-15 -3817 ((-421) (-1117) (-421))) (-15 -3817 ((-421) (-1117) (-421) (-1117))) (-15 -1384 ((-1205) (-1117))) (-15 -4057 ((-1117))) (-15 -2917 ((-1117))) (-15 -3411 ((-1205) (-1117) (-606 (-1117)) $)) (-15 -3411 ((-1205) (-1117) (-606 (-1117)))) (-15 -3411 ((-1205) (-606 (-1117)))) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1587 ((-1205) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1843 ((-1205) (-1117) $)) (-15 -1843 ((-1205) (-1117))) (-15 -1843 ((-1205))) (-15 -1422 ((-1205) (-1117))) (-15 -3425 ($)) (-15 -1316 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-1117) $)) (-15 -1353 ((-606 (-1117)) (-1117) $)) (-15 -2306 ((-1121) (-1117) $))))) (T -1120)) +((-2554 (*1 *1) (-5 *1 (-1120))) (-4006 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *4 (-1117)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-3817 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-4057 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-2917 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120)))) (-3411 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1587 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1843 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) (-3425 (*1 *1) (-5 *1 (-1120))) (-1316 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *1 (-1120)))) (-1353 (*1 *2 *3 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117)))) (-2306 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) +(-13 (-579 (-816)) (-10 -8 (-15 -2554 ($)) (-15 -4006 ((-1205))) (-15 -4006 ((-1205) (-1117))) (-15 -3817 ((-421) (-1117) (-421) (-1117) $)) (-15 -3817 ((-421) (-606 (-1117)) (-421) (-1117) $)) (-15 -3817 ((-421) (-1117) (-421))) (-15 -3817 ((-421) (-1117) (-421) (-1117))) (-15 -1384 ((-1205) (-1117))) (-15 -4057 ((-1117))) (-15 -2917 ((-1117))) (-15 -3411 ((-1205) (-1117) (-606 (-1117)) $)) (-15 -3411 ((-1205) (-1117) (-606 (-1117)))) (-15 -3411 ((-1205) (-606 (-1117)))) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")) $)) (-15 -1587 ((-1205) (-1117) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1587 ((-1205) (-3 (|:| |fst| (-418)) (|:| -1374 "void")))) (-15 -1843 ((-1205) (-1117) $)) (-15 -1843 ((-1205) (-1117))) (-15 -1843 ((-1205))) (-15 -1422 ((-1205) (-1117))) (-15 -3425 ($)) (-15 -1316 ((-3 (|:| |fst| (-418)) (|:| -1374 "void")) (-1117) $)) (-15 -1353 ((-606 (-1117)) (-1117) $)) (-15 -2306 ((-1121) (-1117) $)))) +((-2082 (((-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) $) 59)) (-3900 (((-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))) (-418) $) 43)) (-1514 (($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))) 17)) (-1422 (((-1205) $) 67)) (-3693 (((-606 (-1117)) $) 22)) (-2953 (((-1049) $) 55)) (-1772 (((-421) (-1117) $) 27)) (-3562 (((-606 (-1117)) $) 30)) (-3425 (($) 19)) (-3817 (((-421) (-606 (-1117)) (-421) $) 25) (((-421) (-1117) (-421) $) 24)) (-2341 (((-816) $) 9) (((-1127 (-1117) (-421)) $) 13))) +(((-1121) (-13 (-579 (-816)) (-10 -8 (-15 -2341 ((-1127 (-1117) (-421)) $)) (-15 -3425 ($)) (-15 -3817 ((-421) (-606 (-1117)) (-421) $)) (-15 -3817 ((-421) (-1117) (-421) $)) (-15 -1772 ((-421) (-1117) $)) (-15 -3693 ((-606 (-1117)) $)) (-15 -3900 ((-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))) (-418) $)) (-15 -3562 ((-606 (-1117)) $)) (-15 -2082 ((-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) $)) (-15 -2953 ((-1049) $)) (-15 -1422 ((-1205) $)) (-15 -1514 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))))))) (T -1121)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-1127 (-1117) (-421))) (-5 *1 (-1121)))) (-3425 (*1 *1) (-5 *1 (-1121))) (-3817 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *1 (-1121)))) (-3817 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1121)))) (-1772 (*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-421)) (-5 *1 (-1121)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121)))) (-3900 (*1 *2 *3 *1) (-12 (-5 *3 (-418)) (-5 *2 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) (-5 *1 (-1121)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))))) (-5 *1 (-1121)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1121)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1121)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))) (-5 *1 (-1121))))) +(-13 (-579 (-816)) (-10 -8 (-15 -2341 ((-1127 (-1117) (-421)) $)) (-15 -3425 ($)) (-15 -3817 ((-421) (-606 (-1117)) (-421) $)) (-15 -3817 ((-421) (-1117) (-421) $)) (-15 -1772 ((-421) (-1117) $)) (-15 -3693 ((-606 (-1117)) $)) (-15 -3900 ((-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))) (-418) $)) (-15 -3562 ((-606 (-1117)) $)) (-15 -2082 ((-606 (-606 (-3 (|:| -3923 (-1117)) (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) $)) (-15 -2953 ((-1049) $)) (-15 -1422 ((-1205) $)) (-15 -1514 ($ (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421)))))))) +((-2330 (((-111) $ $) NIL)) (-1994 (((-111) $) 42)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4242 (((-3 (-537) (-210) (-1117) (-1100) $) $) 50)) (-2735 (((-606 $) $) 55)) (-3996 (((-1049) $) 24) (($ (-1049)) 25)) (-3925 (((-111) $) 52)) (-2341 (((-816) $) NIL) (($ (-537)) 26) (((-537) $) 28) (($ (-210)) 29) (((-210) $) 31) (($ (-1117)) 32) (((-1117) $) 34) (($ (-1100)) 35) (((-1100) $) 37)) (-2915 (((-111) $ (|[\|\|]| (-537))) 11) (((-111) $ (|[\|\|]| (-210))) 15) (((-111) $ (|[\|\|]| (-1117))) 23) (((-111) $ (|[\|\|]| (-1100))) 19)) (-2357 (($ (-1117) (-606 $)) 39) (($ $ (-606 $)) 40)) (-2522 (((-537) $) 27) (((-210) $) 30) (((-1117) $) 33) (((-1100) $) 36)) (-2244 (((-111) $ $) 7))) +(((-1122) (-13 (-1195) (-1045) (-10 -8 (-15 -3996 ((-1049) $)) (-15 -3996 ($ (-1049))) (-15 -2341 ($ (-537))) (-15 -2341 ((-537) $)) (-15 -2522 ((-537) $)) (-15 -2341 ($ (-210))) (-15 -2341 ((-210) $)) (-15 -2522 ((-210) $)) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2522 ((-1117) $)) (-15 -2341 ($ (-1100))) (-15 -2341 ((-1100) $)) (-15 -2522 ((-1100) $)) (-15 -2357 ($ (-1117) (-606 $))) (-15 -2357 ($ $ (-606 $))) (-15 -1994 ((-111) $)) (-15 -4242 ((-3 (-537) (-210) (-1117) (-1100) $) $)) (-15 -2735 ((-606 $) $)) (-15 -3925 ((-111) $)) (-15 -2915 ((-111) $ (|[\|\|]| (-537)))) (-15 -2915 ((-111) $ (|[\|\|]| (-210)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1117)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1100))))))) (T -1122)) +((-3996 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) (-2357 (*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-1122))) (-5 *1 (-1122)))) (-2357 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-3 (-537) (-210) (-1117) (-1100) (-1122))) (-5 *1 (-1122)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-210))) (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-111)) (-5 *1 (-1122)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1100))) (-5 *2 (-111)) (-5 *1 (-1122))))) +(-13 (-1195) (-1045) (-10 -8 (-15 -3996 ((-1049) $)) (-15 -3996 ($ (-1049))) (-15 -2341 ($ (-537))) (-15 -2341 ((-537) $)) (-15 -2522 ((-537) $)) (-15 -2341 ($ (-210))) (-15 -2341 ((-210) $)) (-15 -2522 ((-210) $)) (-15 -2341 ($ (-1117))) (-15 -2341 ((-1117) $)) (-15 -2522 ((-1117) $)) (-15 -2341 ($ (-1100))) (-15 -2341 ((-1100) $)) (-15 -2522 ((-1100) $)) (-15 -2357 ($ (-1117) (-606 $))) (-15 -2357 ($ $ (-606 $))) (-15 -1994 ((-111) $)) (-15 -4242 ((-3 (-537) (-210) (-1117) (-1100) $) $)) (-15 -2735 ((-606 $) $)) (-15 -3925 ((-111) $)) (-15 -2915 ((-111) $ (|[\|\|]| (-537)))) (-15 -2915 ((-111) $ (|[\|\|]| (-210)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1117)))) (-15 -2915 ((-111) $ (|[\|\|]| (-1100)))))) +((-3178 (((-606 (-606 (-905 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 57)) (-1895 (((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|)))) 69) (((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|))) 65) (((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117)) 70) (((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117)) 64) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|))))) 93) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|)))) 92) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117))) 94) (((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))) (-606 (-1117))) 91))) +(((-1123 |#1|) (-10 -7 (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))))) (-15 -3178 ((-606 (-606 (-905 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))))) (-529)) (T -1123)) +((-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-905 *5)))) (-5 *1 (-1123 *5)))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) (-5 *1 (-1123 *4)) (-5 *3 (-278 (-391 (-905 *4)))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) (-5 *1 (-1123 *4)) (-5 *3 (-391 (-905 *4))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) (-5 *3 (-278 (-391 (-905 *5)))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1117)) (-4 *5 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) (-5 *3 (-391 (-905 *5))))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-1123 *4)) (-5 *3 (-606 (-278 (-391 (-905 *4))))))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-606 (-391 (-905 *4)))) (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-1123 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-1123 *5)) (-5 *3 (-606 (-278 (-391 (-905 *5))))))) (-1895 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-1123 *5))))) +(-10 -7 (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))) (-606 (-1117)))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-391 (-905 |#1|))))) (-15 -1895 ((-606 (-606 (-278 (-391 (-905 |#1|))))) (-606 (-278 (-391 (-905 |#1|)))))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))) (-1117))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-391 (-905 |#1|)))) (-15 -1895 ((-606 (-278 (-391 (-905 |#1|)))) (-278 (-391 (-905 |#1|))))) (-15 -3178 ((-606 (-606 (-905 |#1|))) (-606 (-391 (-905 |#1|))) (-606 (-1117))))) +((-1633 (((-1100)) 7)) (-1879 (((-1100)) 9)) (-2809 (((-1205) (-1100)) 11)) (-3317 (((-1100)) 8))) +(((-1124) (-10 -7 (-15 -1633 ((-1100))) (-15 -3317 ((-1100))) (-15 -1879 ((-1100))) (-15 -2809 ((-1205) (-1100))))) (T -1124)) +((-2809 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1124)))) (-1879 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124)))) (-3317 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124)))) (-1633 (*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) +(-10 -7 (-15 -1633 ((-1100))) (-15 -3317 ((-1100))) (-15 -1879 ((-1100))) (-15 -2809 ((-1205) (-1100)))) +((-1639 (((-606 (-606 |#1|)) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|)))) 38)) (-1327 (((-606 (-606 (-606 |#1|))) (-606 (-606 |#1|))) 24)) (-3213 (((-1126 (-606 |#1|)) (-606 |#1|)) 34)) (-1695 (((-606 (-606 |#1|)) (-606 |#1|)) 30)) (-2671 (((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 (-606 (-606 |#1|)))) 37)) (-3423 (((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 |#1|) (-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|)))) 36)) (-2604 (((-606 (-606 |#1|)) (-606 (-606 |#1|))) 28)) (-1321 (((-606 |#1|) (-606 |#1|)) 31)) (-1355 (((-606 (-606 (-606 |#1|))) (-606 |#1|) (-606 (-606 (-606 |#1|)))) 18)) (-1318 (((-606 (-606 (-606 |#1|))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 (-606 |#1|)))) 16)) (-1619 (((-2 (|:| |fs| (-111)) (|:| |sd| (-606 |#1|)) (|:| |td| (-606 (-606 |#1|)))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 |#1|))) 14)) (-4119 (((-606 (-606 |#1|)) (-606 (-606 (-606 |#1|)))) 39)) (-3665 (((-606 (-606 |#1|)) (-1126 (-606 |#1|))) 41))) +(((-1125 |#1|) (-10 -7 (-15 -1619 ((-2 (|:| |fs| (-111)) (|:| |sd| (-606 |#1|)) (|:| |td| (-606 (-606 |#1|)))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 |#1|)))) (-15 -1318 ((-606 (-606 (-606 |#1|))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1355 ((-606 (-606 (-606 |#1|))) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1639 ((-606 (-606 |#1|)) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -4119 ((-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -3665 ((-606 (-606 |#1|)) (-1126 (-606 |#1|)))) (-15 -1327 ((-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)))) (-15 -3213 ((-1126 (-606 |#1|)) (-606 |#1|))) (-15 -2604 ((-606 (-606 |#1|)) (-606 (-606 |#1|)))) (-15 -1695 ((-606 (-606 |#1|)) (-606 |#1|))) (-15 -1321 ((-606 |#1|) (-606 |#1|))) (-15 -3423 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 |#1|) (-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))))) (-15 -2671 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 (-606 (-606 |#1|)))))) (-807)) (T -1125)) +((-2671 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-2 (|:| |f1| (-606 *4)) (|:| |f2| (-606 (-606 (-606 *4)))) (|:| |f3| (-606 (-606 *4))) (|:| |f4| (-606 (-606 (-606 *4)))))) (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 (-606 *4)))))) (-3423 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-807)) (-5 *3 (-606 *6)) (-5 *5 (-606 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-606 *5)) (|:| |f3| *5) (|:| |f4| (-606 *5)))) (-5 *1 (-1125 *6)) (-5 *4 (-606 *5)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-1125 *3)))) (-1695 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)) (-5 *3 (-606 *4)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-807)) (-5 *1 (-1125 *3)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-1126 (-606 *4))) (-5 *1 (-1125 *4)) (-5 *3 (-606 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 (-606 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 *4))))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-1126 (-606 *4))) (-4 *4 (-807)) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)) (-4 *4 (-807)))) (-1639 (*1 *2 *2 *3) (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) (-4 *4 (-807)) (-5 *1 (-1125 *4)))) (-1355 (*1 *2 *3 *2) (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-606 *4)) (-4 *4 (-807)) (-5 *1 (-1125 *4)))) (-1318 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-606 *5)) (-4 *5 (-807)) (-5 *1 (-1125 *5)))) (-1619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-807)) (-5 *4 (-606 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-606 *4)))) (-5 *1 (-1125 *6)) (-5 *5 (-606 *4))))) +(-10 -7 (-15 -1619 ((-2 (|:| |fs| (-111)) (|:| |sd| (-606 |#1|)) (|:| |td| (-606 (-606 |#1|)))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 |#1|)))) (-15 -1318 ((-606 (-606 (-606 |#1|))) (-1 (-111) |#1| |#1|) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1355 ((-606 (-606 (-606 |#1|))) (-606 |#1|) (-606 (-606 (-606 |#1|))))) (-15 -1639 ((-606 (-606 |#1|)) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -4119 ((-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))))) (-15 -3665 ((-606 (-606 |#1|)) (-1126 (-606 |#1|)))) (-15 -1327 ((-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)))) (-15 -3213 ((-1126 (-606 |#1|)) (-606 |#1|))) (-15 -2604 ((-606 (-606 |#1|)) (-606 (-606 |#1|)))) (-15 -1695 ((-606 (-606 |#1|)) (-606 |#1|))) (-15 -1321 ((-606 |#1|) (-606 |#1|))) (-15 -3423 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 |#1|) (-606 (-606 (-606 |#1|))) (-606 (-606 |#1|)) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))) (-606 (-606 (-606 |#1|))))) (-15 -2671 ((-2 (|:| |f1| (-606 |#1|)) (|:| |f2| (-606 (-606 (-606 |#1|)))) (|:| |f3| (-606 (-606 |#1|))) (|:| |f4| (-606 (-606 (-606 |#1|))))) (-606 (-606 (-606 |#1|)))))) +((-2345 (($ (-606 (-606 |#1|))) 10)) (-3156 (((-606 (-606 |#1|)) $) 11)) (-2341 (((-816) $) 26))) +(((-1126 |#1|) (-10 -8 (-15 -2345 ($ (-606 (-606 |#1|)))) (-15 -3156 ((-606 (-606 |#1|)) $)) (-15 -2341 ((-816) $))) (-1045)) (T -1126)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1126 *3)) (-4 *3 (-1045)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1045)))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-1126 *3))))) +(-10 -8 (-15 -2345 ($ (-606 (-606 |#1|)))) (-15 -3156 ((-606 (-606 |#1|)) $)) (-15 -2341 ((-816) $))) +((-2330 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3144 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-1279 (((-1205) $ |#1| |#1|) NIL (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#2| $ |#1| |#2|) NIL)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) NIL)) (-3832 (($) NIL T CONST)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) NIL)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) NIL)) (-1659 ((|#1| $) NIL (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-606 |#2|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-2187 ((|#1| $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-1688 (((-606 |#1|) $) NIL)) (-4011 (((-111) |#1| $) NIL)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-1270 (((-606 |#1|) $) NIL)) (-1641 (((-111) |#1| $) NIL)) (-2528 (((-1064) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-3188 ((|#2| $) NIL (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL)) (-3040 (($ $ |#2|) NIL (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1341 (($) NIL) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) NIL (-12 (|has| $ (-6 -4300)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (((-731) |#2| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045)))) (((-731) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2341 (((-816) $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816))) (|has| |#2| (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) NIL)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) NIL (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) NIL (-1533 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| |#2| (-1045))))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1127 |#1| |#2|) (-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) (-1045) (-1045)) (T -1127)) +NIL +(-13 (-1130 |#1| |#2|) (-10 -7 (-6 -4300))) +((-1711 ((|#1| (-606 |#1|)) 32)) (-1760 ((|#1| |#1| (-537)) 18)) (-1964 (((-1113 |#1|) |#1| (-874)) 15))) +(((-1128 |#1|) (-10 -7 (-15 -1711 (|#1| (-606 |#1|))) (-15 -1964 ((-1113 |#1|) |#1| (-874))) (-15 -1760 (|#1| |#1| (-537)))) (-347)) (T -1128)) +((-1760 (*1 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-1128 *2)) (-4 *2 (-347)))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-874)) (-5 *2 (-1113 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-347)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-1128 *2)) (-4 *2 (-347))))) +(-10 -7 (-15 -1711 (|#1| (-606 |#1|))) (-15 -1964 ((-1113 |#1|) |#1| (-874))) (-15 -1760 (|#1| |#1| (-537)))) +((-3144 (($) 10) (($ (-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)))) 14)) (-3026 (($ (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3661 (((-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 39) (((-606 |#3|) $) 41)) (-4081 (($ (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1612 (($ (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2783 (((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 54)) (-3499 (($ (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 16)) (-1270 (((-606 |#2|) $) 19)) (-1641 (((-111) |#2| $) 59)) (-1266 (((-3 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) "failed") (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) 58)) (-1599 (((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) 63)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-3010 (((-606 |#3|) $) 43)) (-1922 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-731) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) $) NIL) (((-731) |#3| $) NIL) (((-731) (-1 (-111) |#3|) $) 68)) (-2341 (((-816) $) 27)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-2244 (((-111) $ $) 49))) +(((-1129 |#1| |#2| |#3|) (-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3144 (|#1| (-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))))) (-15 -3144 (|#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#3|) |#1|)) (-15 -3661 ((-606 |#3|) |#1|)) (-15 -2539 ((-731) |#3| |#1|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1641 ((-111) |#2| |#1|)) (-15 -1270 ((-606 |#2|) |#1|)) (-15 -3026 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3026 (|#1| (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3026 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1266 ((-3 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) "failed") (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2783 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3499 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1599 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -2539 ((-731) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3661 ((-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2539 ((-731) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3206 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2030 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -4081 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -1612 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|))) (-1130 |#2| |#3|) (-1045) (-1045)) (T -1129)) +NIL +(-10 -8 (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -1612 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3144 (|#1| (-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))))) (-15 -3144 (|#1|)) (-15 -1612 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4081 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2030 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3206 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -2539 ((-731) (-1 (-111) |#3|) |#1|)) (-15 -3661 ((-606 |#3|) |#1|)) (-15 -2539 ((-731) |#3| |#1|)) (-15 -1922 (|#3| |#1| |#2| |#3|)) (-15 -1922 (|#3| |#1| |#2|)) (-15 -3010 ((-606 |#3|) |#1|)) (-15 -1641 ((-111) |#2| |#1|)) (-15 -1270 ((-606 |#2|) |#1|)) (-15 -3026 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3026 (|#1| (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3026 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1266 ((-3 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) "failed") (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2783 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3499 (|#1| (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -1599 ((-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -2539 ((-731) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) |#1|)) (-15 -3661 ((-606 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2539 ((-731) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -3206 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -2030 ((-111) (-1 (-111) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -4081 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|)) (-15 -1612 (|#1| (-1 (-2 (|:| -2926 |#2|) (|:| -2140 |#3|)) (-2 (|:| -2926 |#2|) (|:| -2140 |#3|))) |#1|))) +((-2330 (((-111) $ $) 19 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3144 (($) 72) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 71)) (-1279 (((-1205) $ |#1| |#1|) 99 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#2| $ |#1| |#2|) 73)) (-3435 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 45 (|has| $ (-6 -4300)))) (-1936 (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 55 (|has| $ (-6 -4300)))) (-2859 (((-3 |#2| "failed") |#1| $) 61)) (-3832 (($) 7 T CONST)) (-3221 (($ $) 58 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300))))) (-3026 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 47 (|has| $ (-6 -4300))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 46 (|has| $ (-6 -4300))) (((-3 |#2| "failed") |#1| $) 62)) (-2355 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 54 (|has| $ (-6 -4300)))) (-3195 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 56 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 53 (|has| $ (-6 -4300))) (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 52 (|has| $ (-6 -4300)))) (-4091 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4301)))) (-4030 ((|#2| $ |#1|) 88)) (-3661 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 30 (|has| $ (-6 -4300))) (((-606 |#2|) $) 79 (|has| $ (-6 -4300)))) (-1642 (((-111) $ (-731)) 9)) (-1659 ((|#1| $) 96 (|has| |#1| (-807)))) (-3703 (((-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 29 (|has| $ (-6 -4300))) (((-606 |#2|) $) 80 (|has| $ (-6 -4300)))) (-3122 (((-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300))))) (-2187 ((|#1| $) 95 (|has| |#1| (-807)))) (-4081 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 34 (|has| $ (-6 -4301))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4301)))) (-1612 (($ (-1 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2489 (((-111) $ (-731)) 10)) (-1654 (((-1100) $) 22 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-1688 (((-606 |#1|) $) 63)) (-4011 (((-111) |#1| $) 64)) (-2783 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 39)) (-3499 (($ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 40)) (-1270 (((-606 |#1|) $) 93)) (-1641 (((-111) |#1| $) 92)) (-2528 (((-1064) $) 21 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-3188 ((|#2| $) 97 (|has| |#1| (-807)))) (-1266 (((-3 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) "failed") (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 51)) (-3040 (($ $ |#2|) 98 (|has| $ (-6 -4301)))) (-1599 (((-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 41)) (-3206 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 32 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))))) 26 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-278 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 25 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) 24 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 23 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)))) (($ $ (-606 |#2|) (-606 |#2|)) 86 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-278 |#2|)) 84 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045)))) (($ $ (-606 (-278 |#2|))) 83 (-12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4300)) (|has| |#2| (-1045))))) (-3010 (((-606 |#2|) $) 91)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1341 (($) 49) (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 48)) (-2539 (((-731) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 31 (|has| $ (-6 -4300))) (((-731) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| $ (-6 -4300)))) (((-731) |#2| $) 81 (-12 (|has| |#2| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4300)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 59 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))))) (-2350 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 50)) (-2341 (((-816) $) 18 (-1533 (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))))) (-2753 (($ (-606 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) 42)) (-2030 (((-111) (-1 (-111) (-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) $) 33 (|has| $ (-6 -4300))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (-1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1130 |#1| |#2|) (-134) (-1045) (-1045)) (T -1130)) +((-2476 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) (-3144 (*1 *1) (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-606 (-2 (|:| -2926 *3) (|:| -2140 *4)))) (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *1 (-1130 *3 *4)))) (-1612 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045))))) +(-13 (-576 |t#1| |t#2|) (-570 |t#1| |t#2|) (-10 -8 (-15 -2476 (|t#2| $ |t#1| |t#2|)) (-15 -3144 ($)) (-15 -3144 ($ (-606 (-2 (|:| -2926 |t#1|) (|:| -2140 |t#2|))))) (-15 -1612 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-105 #0=(-2 (|:| -2926 |#1|) (|:| -2140 |#2|))) . T) ((-100) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-579 (-816)) -1533 (|has| |#2| (-1045)) (|has| |#2| (-579 (-816))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-579 (-816)))) ((-145 #0#) . T) ((-580 (-513)) |has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-580 (-513))) ((-214 #0#) . T) ((-220 #0#) . T) ((-270 |#1| |#2|) . T) ((-272 |#1| |#2|) . T) ((-293 #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-293 |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-471 #0#) . T) ((-471 |#2|) . T) ((-570 |#1| |#2|) . T) ((-495 #0# #0#) -12 (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-293 (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)))) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-495 |#2| |#2|) -12 (|has| |#2| (-293 |#2|)) (|has| |#2| (-1045))) ((-576 |#1| |#2|) . T) ((-1045) -1533 (|has| |#2| (-1045)) (|has| (-2 (|:| -2926 |#1|) (|:| -2140 |#2|)) (-1045))) ((-1154) . T)) +((-1800 (((-111)) 24)) (-1579 (((-1205) (-1100)) 26)) (-1527 (((-111)) 36)) (-2361 (((-1205)) 34)) (-3552 (((-1205) (-1100) (-1100)) 25)) (-2487 (((-111)) 37)) (-3499 (((-1205) |#1| |#2|) 44)) (-4098 (((-1205)) 20)) (-1859 (((-3 |#2| "failed") |#1|) 42)) (-1620 (((-1205)) 35))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -4098 ((-1205))) (-15 -3552 ((-1205) (-1100) (-1100))) (-15 -1579 ((-1205) (-1100))) (-15 -2361 ((-1205))) (-15 -1620 ((-1205))) (-15 -1800 ((-111))) (-15 -1527 ((-111))) (-15 -2487 ((-111))) (-15 -1859 ((-3 |#2| "failed") |#1|)) (-15 -3499 ((-1205) |#1| |#2|))) (-1045) (-1045)) (T -1131)) +((-3499 (*1 *2 *3 *4) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1859 (*1 *2 *3) (|partial| -12 (-4 *2 (-1045)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1045)))) (-2487 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1527 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1800 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1620 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-2361 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)))) (-3552 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)))) (-4098 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045))))) +(-10 -7 (-15 -4098 ((-1205))) (-15 -3552 ((-1205) (-1100) (-1100))) (-15 -1579 ((-1205) (-1100))) (-15 -2361 ((-1205))) (-15 -1620 ((-1205))) (-15 -1800 ((-111))) (-15 -1527 ((-111))) (-15 -2487 ((-111))) (-15 -1859 ((-3 |#2| "failed") |#1|)) (-15 -3499 ((-1205) |#1| |#2|))) +((-3844 (((-1100) (-1100)) 18)) (-3943 (((-51) (-1100)) 21))) +(((-1132) (-10 -7 (-15 -3943 ((-51) (-1100))) (-15 -3844 ((-1100) (-1100))))) (T -1132)) +((-3844 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1132)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-1132))))) +(-10 -7 (-15 -3943 ((-51) (-1100))) (-15 -3844 ((-1100) (-1100)))) +((-2341 (((-1134) |#1|) 11))) +(((-1133 |#1|) (-10 -7 (-15 -2341 ((-1134) |#1|))) (-1045)) (T -1133)) +((-2341 (*1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *1 (-1133 *3)) (-4 *3 (-1045))))) +(-10 -7 (-15 -2341 ((-1134) |#1|))) +((-2330 (((-111) $ $) NIL)) (-2253 (((-606 (-1100)) $) 34)) (-1814 (((-606 (-1100)) $ (-606 (-1100))) 37)) (-3066 (((-606 (-1100)) $ (-606 (-1100))) 36)) (-1486 (((-606 (-1100)) $ (-606 (-1100))) 38)) (-1677 (((-606 (-1100)) $) 33)) (-3157 (($) 22)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4107 (((-606 (-1100)) $) 35)) (-2356 (((-1205) $ (-537)) 29) (((-1205) $) 30)) (-3996 (($ (-816) (-537)) 26) (($ (-816) (-537) (-816)) NIL)) (-2341 (((-816) $) 40) (($ (-816)) 24)) (-2244 (((-111) $ $) NIL))) +(((-1134) (-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -3996 ($ (-816) (-537) (-816))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2253 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1814 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100))))))) (T -1134)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1134)))) (-3996 (*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) (-3996 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) (-2356 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1134)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1134)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-3157 (*1 *1) (-5 *1 (-1134))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-1486 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-1814 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134)))) (-3066 (*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(-13 (-1045) (-10 -8 (-15 -2341 ($ (-816))) (-15 -3996 ($ (-816) (-537))) (-15 -3996 ($ (-816) (-537) (-816))) (-15 -2356 ((-1205) $ (-537))) (-15 -2356 ((-1205) $)) (-15 -4107 ((-606 (-1100)) $)) (-15 -2253 ((-606 (-1100)) $)) (-15 -3157 ($)) (-15 -1677 ((-606 (-1100)) $)) (-15 -1486 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -1814 ((-606 (-1100)) $ (-606 (-1100)))) (-15 -3066 ((-606 (-1100)) $ (-606 (-1100)))))) +((-2330 (((-111) $ $) NIL)) (-2331 (((-1100) $ (-1100)) 17) (((-1100) $) 16)) (-3160 (((-1100) $ (-1100)) 15)) (-1898 (($ $ (-1100)) NIL)) (-2079 (((-3 (-1100) "failed") $) 11)) (-2870 (((-1100) $) 8)) (-2012 (((-3 (-1100) "failed") $) 12)) (-2151 (((-1100) $) 9)) (-3309 (($ (-372)) NIL) (($ (-372) (-1100)) NIL)) (-3923 (((-372) $) NIL)) (-1654 (((-1100) $) NIL)) (-3216 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2491 (((-111) $) 18)) (-2341 (((-816) $) NIL)) (-1338 (($ $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-1135) (-13 (-348 (-372) (-1100)) (-10 -8 (-15 -2331 ((-1100) $ (-1100))) (-15 -2331 ((-1100) $)) (-15 -2870 ((-1100) $)) (-15 -2079 ((-3 (-1100) "failed") $)) (-15 -2012 ((-3 (-1100) "failed") $)) (-15 -2491 ((-111) $))))) (T -1135)) +((-2331 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2079 (*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2012 (*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1135))))) +(-13 (-348 (-372) (-1100)) (-10 -8 (-15 -2331 ((-1100) $ (-1100))) (-15 -2331 ((-1100) $)) (-15 -2870 ((-1100) $)) (-15 -2079 ((-3 (-1100) "failed") $)) (-15 -2012 ((-3 (-1100) "failed") $)) (-15 -2491 ((-111) $)))) +((-2537 (((-3 (-537) "failed") |#1|) 19)) (-2255 (((-3 (-537) "failed") |#1|) 14)) (-1846 (((-537) (-1100)) 28))) +(((-1136 |#1|) (-10 -7 (-15 -2537 ((-3 (-537) "failed") |#1|)) (-15 -2255 ((-3 (-537) "failed") |#1|)) (-15 -1846 ((-537) (-1100)))) (-998)) (T -1136)) +((-1846 (*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-1136 *4)) (-4 *4 (-998)))) (-2255 (*1 *2 *3) (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998)))) (-2537 (*1 *2 *3) (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998))))) +(-10 -7 (-15 -2537 ((-3 (-537) "failed") |#1|)) (-15 -2255 ((-3 (-537) "failed") |#1|)) (-15 -1846 ((-537) (-1100)))) +((-3015 (((-1077 (-210))) 9))) +(((-1137) (-10 -7 (-15 -3015 ((-1077 (-210)))))) (T -1137)) +((-3015 (*1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1137))))) +(-10 -7 (-15 -3015 ((-1077 (-210))))) +((-3338 (($) 11)) (-1475 (($ $) 35)) (-1453 (($ $) 33)) (-1300 (($ $) 25)) (-1495 (($ $) 17)) (-4141 (($ $) 15)) (-1485 (($ $) 19)) (-1340 (($ $) 30)) (-1465 (($ $) 34)) (-1314 (($ $) 29))) +(((-1138 |#1|) (-10 -8 (-15 -3338 (|#1|)) (-15 -1475 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1314 (|#1| |#1|))) (-1139)) (T -1138)) +NIL +(-10 -8 (-15 -3338 (|#1|)) (-15 -1475 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1314 (|#1| |#1|))) +((-1403 (($ $) 26)) (-1247 (($ $) 11)) (-1378 (($ $) 27)) (-4270 (($ $) 10)) (-1429 (($ $) 28)) (-1273 (($ $) 9)) (-3338 (($) 16)) (-2180 (($ $) 19)) (-4185 (($ $) 18)) (-1441 (($ $) 29)) (-1286 (($ $) 8)) (-1415 (($ $) 30)) (-1259 (($ $) 7)) (-1389 (($ $) 31)) (-1234 (($ $) 6)) (-1475 (($ $) 20)) (-1328 (($ $) 32)) (-1453 (($ $) 21)) (-1300 (($ $) 33)) (-1495 (($ $) 22)) (-1352 (($ $) 34)) (-4141 (($ $) 23)) (-1365 (($ $) 35)) (-1485 (($ $) 24)) (-1340 (($ $) 36)) (-1465 (($ $) 25)) (-1314 (($ $) 37)) (** (($ $ $) 17))) +(((-1139) (-134)) (T -1139)) +((-3338 (*1 *1) (-4 *1 (-1139)))) +(-13 (-1142) (-93) (-474) (-34) (-268) (-10 -8 (-15 -3338 ($)))) +(((-34) . T) ((-93) . T) ((-268) . T) ((-474) . T) ((-1142) . T)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3619 ((|#1| $) 17)) (-3016 (($ |#1| (-606 $)) 23) (($ (-606 |#1|)) 27) (($ |#1|) 25)) (-2506 (((-111) $ (-731)) 48)) (-3650 ((|#1| $ |#1|) 14 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 13 (|has| $ (-6 -4301)))) (-3832 (($) NIL T CONST)) (-3661 (((-606 |#1|) $) 52 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 43)) (-3868 (((-111) $ $) 33 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 41)) (-3703 (((-606 |#1|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-4081 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 22)) (-2489 (((-111) $ (-731)) 40)) (-3583 (((-606 |#1|) $) 37)) (-3862 (((-111) $) 36)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3206 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 74)) (-2193 (((-111) $) 9)) (-3425 (($) 10)) (-1922 ((|#1| $ "value") NIL)) (-2364 (((-537) $ $) 32)) (-1588 (((-606 $) $) 59)) (-3642 (((-111) $ $) 77)) (-1662 (((-606 $) $) 72)) (-1438 (($ $) 73)) (-3335 (((-111) $) 56)) (-2539 (((-731) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4300))) (((-731) |#1| $) 16 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2494 (($ $) 58)) (-2341 (((-816) $) 61 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 12)) (-4261 (((-111) $ $) 29 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 28 (|has| |#1| (-1045)))) (-2258 (((-731) $) 39 (|has| $ (-6 -4300))))) +(((-1140 |#1|) (-13 (-962 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -3016 ($ |#1| (-606 $))) (-15 -3016 ($ (-606 |#1|))) (-15 -3016 ($ |#1|)) (-15 -3335 ((-111) $)) (-15 -1438 ($ $)) (-15 -1662 ((-606 $) $)) (-15 -3642 ((-111) $ $)) (-15 -1588 ((-606 $) $)))) (-1045)) (T -1140)) +((-3335 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045)))) (-3016 (*1 *1 *2 *3) (-12 (-5 *3 (-606 (-1140 *2))) (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-1140 *3)))) (-3016 (*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) (-1438 (*1 *1 *1) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045)))) (-3642 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) +(-13 (-962 |#1|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -3016 ($ |#1| (-606 $))) (-15 -3016 ($ (-606 |#1|))) (-15 -3016 ($ |#1|)) (-15 -3335 ((-111) $)) (-15 -1438 ($ $)) (-15 -1662 ((-606 $) $)) (-15 -3642 ((-111) $ $)) (-15 -1588 ((-606 $) $)))) +((-1247 (($ $) 15)) (-1273 (($ $) 12)) (-1286 (($ $) 10)) (-1259 (($ $) 17))) +(((-1141 |#1|) (-10 -8 (-15 -1259 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1247 (|#1| |#1|))) (-1142)) (T -1141)) +NIL +(-10 -8 (-15 -1259 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1247 (|#1| |#1|))) +((-1247 (($ $) 11)) (-4270 (($ $) 10)) (-1273 (($ $) 9)) (-1286 (($ $) 8)) (-1259 (($ $) 7)) (-1234 (($ $) 6))) +(((-1142) (-134)) (T -1142)) +((-1247 (*1 *1 *1) (-4 *1 (-1142))) (-4270 (*1 *1 *1) (-4 *1 (-1142))) (-1273 (*1 *1 *1) (-4 *1 (-1142))) (-1286 (*1 *1 *1) (-4 *1 (-1142))) (-1259 (*1 *1 *1) (-4 *1 (-1142))) (-1234 (*1 *1 *1) (-4 *1 (-1142)))) +(-13 (-10 -8 (-15 -1234 ($ $)) (-15 -1259 ($ $)) (-15 -1286 ($ $)) (-15 -1273 ($ $)) (-15 -4270 ($ $)) (-15 -1247 ($ $)))) +((-1860 ((|#2| |#2|) 88)) (-3928 (((-111) |#2|) 26)) (-3645 ((|#2| |#2|) 30)) (-3656 ((|#2| |#2|) 32)) (-2523 ((|#2| |#2| (-1117)) 83) ((|#2| |#2|) 84)) (-3082 (((-160 |#2|) |#2|) 28)) (-2435 ((|#2| |#2| (-1117)) 85) ((|#2| |#2|) 86))) +(((-1143 |#1| |#2|) (-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -1860 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -3082 ((-160 |#2|) |#2|))) (-13 (-435) (-807) (-989 (-537)) (-602 (-537))) (-13 (-27) (-1139) (-414 |#1|))) (T -1143)) +((-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-160 *3)) (-5 *1 (-1143 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *2 (-111)) (-5 *1 (-1143 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *4))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-2435 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) (-2523 (*1 *2 *2 *3) (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) +(-10 -7 (-15 -2523 (|#2| |#2|)) (-15 -2523 (|#2| |#2| (-1117))) (-15 -2435 (|#2| |#2|)) (-15 -2435 (|#2| |#2| (-1117))) (-15 -1860 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3928 ((-111) |#2|)) (-15 -3082 ((-160 |#2|) |#2|))) +((-4202 ((|#4| |#4| |#1|) 27)) (-2216 ((|#4| |#4| |#1|) 28))) +(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 (|#4| |#4| |#1|)) (-15 -2216 (|#4| |#4| |#1|))) (-529) (-357 |#1|) (-357 |#1|) (-647 |#1| |#2| |#3|)) (T -1144)) +((-2216 (*1 *2 *2 *3) (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) (-4202 (*1 *2 *2 *3) (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(-10 -7 (-15 -4202 (|#4| |#4| |#1|)) (-15 -2216 (|#4| |#4| |#1|))) +((-2088 ((|#2| |#2|) 133)) (-2327 ((|#2| |#2|) 130)) (-1912 ((|#2| |#2|) 121)) (-3393 ((|#2| |#2|) 118)) (-3512 ((|#2| |#2|) 126)) (-4275 ((|#2| |#2|) 114)) (-3840 ((|#2| |#2|) 43)) (-1878 ((|#2| |#2|) 94)) (-3176 ((|#2| |#2|) 74)) (-2778 ((|#2| |#2|) 128)) (-4140 ((|#2| |#2|) 116)) (-1572 ((|#2| |#2|) 138)) (-2878 ((|#2| |#2|) 136)) (-3780 ((|#2| |#2|) 137)) (-2662 ((|#2| |#2|) 135)) (-1670 ((|#2| |#2|) 148)) (-3295 ((|#2| |#2|) 30 (-12 (|has| |#2| (-580 (-845 |#1|))) (|has| |#2| (-839 |#1|)) (|has| |#1| (-580 (-845 |#1|))) (|has| |#1| (-839 |#1|))))) (-3140 ((|#2| |#2|) 75)) (-3990 ((|#2| |#2|) 139)) (-1905 ((|#2| |#2|) 140)) (-2856 ((|#2| |#2|) 127)) (-4109 ((|#2| |#2|) 115)) (-1809 ((|#2| |#2|) 134)) (-1535 ((|#2| |#2|) 132)) (-2699 ((|#2| |#2|) 122)) (-3086 ((|#2| |#2|) 120)) (-4268 ((|#2| |#2|) 124)) (-2455 ((|#2| |#2|) 112))) +(((-1145 |#1| |#2|) (-10 -7 (-15 -1905 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -4268 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -1809 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -2778 (|#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (IF (|has| |#1| (-839 |#1|)) (IF (|has| |#1| (-580 (-845 |#1|))) (IF (|has| |#2| (-580 (-845 |#1|))) (IF (|has| |#2| (-839 |#1|)) (-15 -3295 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-807) (-435)) (-13 (-414 |#1|) (-1139))) (T -1145)) +((-3295 (*1 *2 *2) (-12 (-4 *3 (-580 (-845 *3))) (-4 *3 (-839 *3)) (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-580 (-845 *3))) (-4 *2 (-839 *3)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1572 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2878 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3086 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1912 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2778 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1809 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-2455 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3990 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3140 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139))))) (-1905 (*1 *2 *2) (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-414 *3) (-1139)))))) +(-10 -7 (-15 -1905 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1878 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3140 (|#2| |#2|)) (-15 -3990 (|#2| |#2|)) (-15 -2455 (|#2| |#2|)) (-15 -4268 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -1809 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -2778 (|#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2088 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2327 (|#2| |#2|)) (-15 -3086 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -1572 (|#2| |#2|)) (IF (|has| |#1| (-839 |#1|)) (IF (|has| |#1| (-580 (-845 |#1|))) (IF (|has| |#2| (-580 (-845 |#1|))) (IF (|has| |#2| (-839 |#1|)) (-15 -3295 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1503 (((-111) |#5| $) 60) (((-111) $) 102)) (-4186 ((|#5| |#5| $) 75)) (-1936 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2550 (((-606 |#5|) (-606 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-1516 (((-3 $ "failed") (-606 |#5|)) 126)) (-3200 (((-3 $ "failed") $) 112)) (-2627 ((|#5| |#5| $) 94)) (-1369 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-3946 ((|#5| |#5| $) 98)) (-3195 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-2702 (((-2 (|:| -2337 (-606 |#5|)) (|:| -3309 (-606 |#5|))) $) 55)) (-3201 (((-111) |#5| $) 58) (((-111) $) 103)) (-1464 ((|#4| $) 108)) (-2375 (((-3 |#5| "failed") $) 110)) (-2422 (((-606 |#5|) $) 49)) (-3812 (((-111) |#5| $) 67) (((-111) $) 107)) (-3787 ((|#5| |#5| $) 81)) (-1981 (((-111) $ $) 27)) (-2524 (((-111) |#5| $) 63) (((-111) $) 105)) (-2021 ((|#5| |#5| $) 78)) (-3188 (((-3 |#5| "failed") $) 109)) (-1540 (($ $ |#5|) 127)) (-2872 (((-731) $) 52)) (-2350 (($ (-606 |#5|)) 124)) (-1713 (($ $ |#4|) 122)) (-2488 (($ $ |#4|) 121)) (-2830 (($ $) 120)) (-2341 (((-816) $) NIL) (((-606 |#5|) $) 113)) (-3458 (((-731) $) 130)) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-3893 (((-111) $ (-1 (-111) |#5| (-606 |#5|))) 100)) (-3194 (((-606 |#4|) $) 115)) (-3042 (((-111) |#4| $) 118)) (-2244 (((-111) $ $) 19))) +(((-1146 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3458 ((-731) |#1|)) (-15 -1540 (|#1| |#1| |#5|)) (-15 -1936 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3042 ((-111) |#4| |#1|)) (-15 -3194 ((-606 |#4|) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-3 |#5| "failed") |#1|)) (-15 -3188 ((-3 |#5| "failed") |#1|)) (-15 -3946 (|#5| |#5| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -2627 (|#5| |#5| |#1|)) (-15 -3787 (|#5| |#5| |#1|)) (-15 -2021 (|#5| |#5| |#1|)) (-15 -4186 (|#5| |#5| |#1|)) (-15 -2550 ((-606 |#5|) (-606 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3195 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3812 ((-111) |#1|)) (-15 -2524 ((-111) |#1|)) (-15 -1503 ((-111) |#1|)) (-15 -3893 ((-111) |#1| (-1 (-111) |#5| (-606 |#5|)))) (-15 -3812 ((-111) |#5| |#1|)) (-15 -2524 ((-111) |#5| |#1|)) (-15 -1503 ((-111) |#5| |#1|)) (-15 -1369 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3201 ((-111) |#1|)) (-15 -3201 ((-111) |#5| |#1|)) (-15 -2702 ((-2 (|:| -2337 (-606 |#5|)) (|:| -3309 (-606 |#5|))) |#1|)) (-15 -2872 ((-731) |#1|)) (-15 -2422 ((-606 |#5|) |#1|)) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5| |#5|))) (-15 -1981 ((-111) |#1| |#1|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -1464 (|#4| |#1|)) (-15 -1516 ((-3 |#1| "failed") (-606 |#5|))) (-15 -2341 ((-606 |#5|) |#1|)) (-15 -2350 (|#1| (-606 |#5|))) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1936 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) (-1147 |#2| |#3| |#4| |#5|) (-529) (-753) (-807) (-1012 |#2| |#3| |#4|)) (T -1146)) +NIL +(-10 -8 (-15 -3458 ((-731) |#1|)) (-15 -1540 (|#1| |#1| |#5|)) (-15 -1936 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3042 ((-111) |#4| |#1|)) (-15 -3194 ((-606 |#4|) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1|)) (-15 -2375 ((-3 |#5| "failed") |#1|)) (-15 -3188 ((-3 |#5| "failed") |#1|)) (-15 -3946 (|#5| |#5| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -2627 (|#5| |#5| |#1|)) (-15 -3787 (|#5| |#5| |#1|)) (-15 -2021 (|#5| |#5| |#1|)) (-15 -4186 (|#5| |#5| |#1|)) (-15 -2550 ((-606 |#5|) (-606 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3195 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -3812 ((-111) |#1|)) (-15 -2524 ((-111) |#1|)) (-15 -1503 ((-111) |#1|)) (-15 -3893 ((-111) |#1| (-1 (-111) |#5| (-606 |#5|)))) (-15 -3812 ((-111) |#5| |#1|)) (-15 -2524 ((-111) |#5| |#1|)) (-15 -1503 ((-111) |#5| |#1|)) (-15 -1369 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3201 ((-111) |#1|)) (-15 -3201 ((-111) |#5| |#1|)) (-15 -2702 ((-2 (|:| -2337 (-606 |#5|)) (|:| -3309 (-606 |#5|))) |#1|)) (-15 -2872 ((-731) |#1|)) (-15 -2422 ((-606 |#5|) |#1|)) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -2895 ((-3 (-2 (|:| |bas| |#1|) (|:| -2992 (-606 |#5|))) "failed") (-606 |#5|) (-1 (-111) |#5| |#5|))) (-15 -1981 ((-111) |#1| |#1|)) (-15 -1713 (|#1| |#1| |#4|)) (-15 -2488 (|#1| |#1| |#4|)) (-15 -1464 (|#4| |#1|)) (-15 -1516 ((-3 |#1| "failed") (-606 |#5|))) (-15 -2341 ((-606 |#5|) |#1|)) (-15 -2350 (|#1| (-606 |#5|))) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1936 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -3195 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2341 ((-816) |#1|)) (-15 -2244 ((-111) |#1| |#1|))) +((-2330 (((-111) $ $) 7)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) 85)) (-3448 (((-606 $) (-606 |#4|)) 86)) (-3757 (((-606 |#3|) $) 33)) (-1409 (((-111) $) 26)) (-2734 (((-111) $) 17 (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) 101) (((-111) $) 97)) (-4186 ((|#4| |#4| $) 92)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) 27)) (-2506 (((-111) $ (-731)) 44)) (-1936 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) 79)) (-3832 (($) 45 T CONST)) (-2121 (((-111) $) 22 (|has| |#1| (-529)))) (-2159 (((-111) $ $) 24 (|has| |#1| (-529)))) (-2819 (((-111) $ $) 23 (|has| |#1| (-529)))) (-4002 (((-111) $) 25 (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-3801 (((-606 |#4|) (-606 |#4|) $) 18 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) 19 (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) 36)) (-3958 (($ (-606 |#4|)) 35)) (-3200 (((-3 $ "failed") $) 82)) (-2627 ((|#4| |#4| $) 89)) (-3221 (($ $) 68 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#4| $) 67 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-3946 ((|#4| |#4| $) 87)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) 105)) (-3661 (((-606 |#4|) $) 52 (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) 104) (((-111) $) 103)) (-1464 ((|#3| $) 34)) (-1642 (((-111) $ (-731)) 43)) (-3703 (((-606 |#4|) $) 53 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) 47)) (-2901 (((-606 |#3|) $) 32)) (-3726 (((-111) |#3| $) 31)) (-2489 (((-111) $ (-731)) 42)) (-1654 (((-1100) $) 9)) (-2375 (((-3 |#4| "failed") $) 83)) (-2422 (((-606 |#4|) $) 107)) (-3812 (((-111) |#4| $) 99) (((-111) $) 95)) (-3787 ((|#4| |#4| $) 90)) (-1981 (((-111) $ $) 110)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) 100) (((-111) $) 96)) (-2021 ((|#4| |#4| $) 91)) (-2528 (((-1064) $) 10)) (-3188 (((-3 |#4| "failed") $) 84)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3389 (((-3 $ "failed") $ |#4|) 78)) (-1540 (($ $ |#4|) 77)) (-3206 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) 59 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) 57 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) 56 (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) 38)) (-2193 (((-111) $) 41)) (-3425 (($) 40)) (-2872 (((-731) $) 106)) (-2539 (((-731) |#4| $) 54 (-12 (|has| |#4| (-1045)) (|has| $ (-6 -4300)))) (((-731) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4300)))) (-2494 (($ $) 39)) (-3996 (((-513) $) 69 (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) 60)) (-1713 (($ $ |#3|) 28)) (-2488 (($ $ |#3|) 30)) (-2830 (($ $) 88)) (-1449 (($ $ |#3|) 29)) (-2341 (((-816) $) 11) (((-606 |#4|) $) 37)) (-3458 (((-731) $) 76 (|has| |#3| (-352)))) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) 98)) (-2030 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) 81)) (-3042 (((-111) |#3| $) 80)) (-2244 (((-111) $ $) 6)) (-2258 (((-731) $) 46 (|has| $ (-6 -4300))))) +(((-1147 |#1| |#2| |#3| |#4|) (-134) (-529) (-753) (-807) (-1012 |t#1| |t#2| |t#3|)) (T -1147)) +((-1981 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *8)))) (-5 *3 (-606 *8)) (-4 *1 (-1147 *5 *6 *7 *8)))) (-2895 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *9)))) (-5 *3 (-606 *9)) (-4 *1 (-1147 *6 *7 *8 *9)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *6)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-731)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-2 (|:| -2337 (-606 *6)) (|:| -3309 (-606 *6)))))) (-3201 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-1369 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1147 *5 *6 *7 *3)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)))) (-1503 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-2524 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3812 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-606 *7))) (-4 *1 (-1147 *4 *5 *6 *7)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) (-3195 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1147 *5 *6 *7 *2)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *2 (-1012 *5 *6 *7)))) (-2550 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1147 *5 *6 *7 *8)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)))) (-4186 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2021 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3787 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2627 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2830 (*1 *1 *1) (-12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4)))) (-3946 (*1 *2 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) (-4 *1 (-1147 *4 *5 *6 *7)))) (-2544 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-606 (-2 (|:| -2337 *1) (|:| -3309 (-606 *7))))) (-5 *3 (-606 *7)) (-4 *1 (-1147 *4 *5 *6 *7)))) (-3188 (*1 *2 *1) (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-2375 (*1 *2 *1) (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3200 (*1 *1 *1) (|partial| -12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) (-3042 (*1 *2 *3 *1) (-12 (-4 *1 (-1147 *4 *5 *3 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111)))) (-1936 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1147 *4 *5 *3 *2)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *3 (-807)) (-4 *2 (-1012 *4 *5 *3)))) (-3389 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-1540 (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *5 (-352)) (-5 *2 (-731))))) +(-13 (-929 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4300) (-6 -4301) (-15 -1981 ((-111) $ $)) (-15 -2895 ((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |t#4|))) "failed") (-606 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2895 ((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |t#4|))) "failed") (-606 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2422 ((-606 |t#4|) $)) (-15 -2872 ((-731) $)) (-15 -2702 ((-2 (|:| -2337 (-606 |t#4|)) (|:| -3309 (-606 |t#4|))) $)) (-15 -3201 ((-111) |t#4| $)) (-15 -3201 ((-111) $)) (-15 -1369 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -1503 ((-111) |t#4| $)) (-15 -2524 ((-111) |t#4| $)) (-15 -3812 ((-111) |t#4| $)) (-15 -3893 ((-111) $ (-1 (-111) |t#4| (-606 |t#4|)))) (-15 -1503 ((-111) $)) (-15 -2524 ((-111) $)) (-15 -3812 ((-111) $)) (-15 -3195 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -2550 ((-606 |t#4|) (-606 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4186 (|t#4| |t#4| $)) (-15 -2021 (|t#4| |t#4| $)) (-15 -3787 (|t#4| |t#4| $)) (-15 -2627 (|t#4| |t#4| $)) (-15 -2830 ($ $)) (-15 -3946 (|t#4| |t#4| $)) (-15 -3448 ((-606 $) (-606 |t#4|))) (-15 -2544 ((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |t#4|)))) (-606 |t#4|))) (-15 -3188 ((-3 |t#4| "failed") $)) (-15 -2375 ((-3 |t#4| "failed") $)) (-15 -3200 ((-3 $ "failed") $)) (-15 -3194 ((-606 |t#3|) $)) (-15 -3042 ((-111) |t#3| $)) (-15 -1936 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3389 ((-3 $ "failed") $ |t#4|)) (-15 -1540 ($ $ |t#4|)) (IF (|has| |t#3| (-352)) (-15 -3458 ((-731) $)) |%noBranch|))) +(((-33) . T) ((-100) . T) ((-579 (-606 |#4|)) . T) ((-579 (-816)) . T) ((-145 |#4|) . T) ((-580 (-513)) |has| |#4| (-580 (-513))) ((-293 |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-471 |#4|) . T) ((-495 |#4| |#4|) -12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))) ((-929 |#1| |#2| |#3| |#4|) . T) ((-1045) . T) ((-1154) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1117)) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1706 (((-905 |#1|) $ (-731)) 17) (((-905 |#1|) $ (-731) (-731)) NIL)) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $ (-1117)) NIL) (((-731) $ (-1117) (-731)) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1538 (((-111) $) NIL)) (-3733 (($ $ (-606 (-1117)) (-606 (-509 (-1117)))) NIL) (($ $ (-1117) (-509 (-1117))) NIL) (($ |#1| (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-3092 (($ $ (-1117)) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117) |#1|) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3714 (($ (-1 $) (-1117) |#1|) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1540 (($ $ (-731)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (($ $ (-1117) $) NIL) (($ $ (-606 (-1117)) (-606 $)) NIL) (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL)) (-3456 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2872 (((-509 (-1117)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ $) NIL (|has| |#1| (-529))) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-1117)) NIL) (($ (-905 |#1|)) NIL)) (-3500 ((|#1| $ (-509 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (((-905 |#1|) $ (-731)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) NIL T CONST)) (-2943 (($) NIL T CONST)) (-4230 (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1148 |#1|) (-13 (-701 |#1| (-1117)) (-10 -8 (-15 -3500 ((-905 |#1|) $ (-731))) (-15 -2341 ($ (-1117))) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ (-1117) |#1|)) (-15 -3714 ($ (-1 $) (-1117) |#1|))) |%noBranch|))) (-998)) (T -1148)) +((-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-905 *4)) (-5 *1 (-1148 *4)) (-4 *4 (-998)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-998)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-1148 *3)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)))) (-3714 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1148 *4))) (-5 *3 (-1117)) (-5 *1 (-1148 *4)) (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998))))) +(-13 (-701 |#1| (-1117)) (-10 -8 (-15 -3500 ((-905 |#1|) $ (-731))) (-15 -2341 ($ (-1117))) (-15 -2341 ($ (-905 |#1|))) (IF (|has| |#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $ (-1117) |#1|)) (-15 -3714 ($ (-1 $) (-1117) |#1|))) |%noBranch|))) +((-3911 (($ |#1| (-606 (-606 (-896 (-210)))) (-111)) 19)) (-1549 (((-111) $ (-111)) 18)) (-3738 (((-111) $) 17)) (-1400 (((-606 (-606 (-896 (-210)))) $) 13)) (-3986 ((|#1| $) 8)) (-4179 (((-111) $) 15))) +(((-1149 |#1|) (-10 -8 (-15 -3986 (|#1| $)) (-15 -1400 ((-606 (-606 (-896 (-210)))) $)) (-15 -4179 ((-111) $)) (-15 -3738 ((-111) $)) (-15 -1549 ((-111) $ (-111))) (-15 -3911 ($ |#1| (-606 (-606 (-896 (-210)))) (-111)))) (-927)) (T -1149)) +((-3911 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-111)) (-5 *1 (-1149 *2)) (-4 *2 (-927)))) (-1549 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-1149 *3)) (-4 *3 (-927)))) (-3986 (*1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-927))))) +(-10 -8 (-15 -3986 (|#1| $)) (-15 -1400 ((-606 (-606 (-896 (-210)))) $)) (-15 -4179 ((-111) $)) (-15 -3738 ((-111) $)) (-15 -1549 ((-111) $ (-111))) (-15 -3911 ($ |#1| (-606 (-606 (-896 (-210)))) (-111)))) +((-3492 (((-896 (-210)) (-896 (-210))) 25)) (-2385 (((-896 (-210)) (-210) (-210) (-210) (-210)) 10)) (-1494 (((-606 (-896 (-210))) (-896 (-210)) (-896 (-210)) (-896 (-210)) (-210) (-606 (-606 (-210)))) 37)) (-3416 (((-210) (-896 (-210)) (-896 (-210))) 21)) (-2218 (((-896 (-210)) (-896 (-210)) (-896 (-210))) 22)) (-3340 (((-606 (-606 (-210))) (-537)) 31)) (-2329 (((-896 (-210)) (-896 (-210)) (-896 (-210))) 20)) (-2318 (((-896 (-210)) (-896 (-210)) (-896 (-210))) 19)) (* (((-896 (-210)) (-210) (-896 (-210))) 18))) +(((-1150) (-10 -7 (-15 -2385 ((-896 (-210)) (-210) (-210) (-210) (-210))) (-15 * ((-896 (-210)) (-210) (-896 (-210)))) (-15 -2318 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -2329 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3416 ((-210) (-896 (-210)) (-896 (-210)))) (-15 -2218 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3492 ((-896 (-210)) (-896 (-210)))) (-15 -3340 ((-606 (-606 (-210))) (-537))) (-15 -1494 ((-606 (-896 (-210))) (-896 (-210)) (-896 (-210)) (-896 (-210)) (-210) (-606 (-606 (-210))))))) (T -1150)) +((-1494 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-606 (-606 (-210)))) (-5 *4 (-210)) (-5 *2 (-606 (-896 *4))) (-5 *1 (-1150)) (-5 *3 (-896 *4)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-537)) (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-1150)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (-2218 (*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-896 (-210))) (-5 *2 (-210)) (-5 *1 (-1150)))) (-2329 (*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (-2318 (*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-896 (-210))) (-5 *3 (-210)) (-5 *1 (-1150)))) (-2385 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)) (-5 *3 (-210))))) +(-10 -7 (-15 -2385 ((-896 (-210)) (-210) (-210) (-210) (-210))) (-15 * ((-896 (-210)) (-210) (-896 (-210)))) (-15 -2318 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -2329 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3416 ((-210) (-896 (-210)) (-896 (-210)))) (-15 -2218 ((-896 (-210)) (-896 (-210)) (-896 (-210)))) (-15 -3492 ((-896 (-210)) (-896 (-210)))) (-15 -3340 ((-606 (-606 (-210))) (-537))) (-15 -1494 ((-606 (-896 (-210))) (-896 (-210)) (-896 (-210)) (-896 (-210)) (-210) (-606 (-606 (-210)))))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-1936 ((|#1| $ (-731)) 13)) (-3845 (((-731) $) 12)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-2341 (((-911 |#1|) $) 10) (($ (-911 |#1|)) 9) (((-816) $) 23 (|has| |#1| (-579 (-816))))) (-2244 (((-111) $ $) 16 (|has| |#1| (-1045))))) +(((-1151 |#1|) (-13 (-579 (-911 |#1|)) (-10 -8 (-15 -2341 ($ (-911 |#1|))) (-15 -1936 (|#1| $ (-731))) (-15 -3845 ((-731) $)) (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) (-1154)) (T -1151)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-911 *3)) (-4 *3 (-1154)) (-5 *1 (-1151 *3)))) (-1936 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-1151 *2)) (-4 *2 (-1154)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1151 *3)) (-4 *3 (-1154))))) +(-13 (-579 (-911 |#1|)) (-10 -8 (-15 -2341 ($ (-911 |#1|))) (-15 -1936 (|#1| $ (-731))) (-15 -3845 ((-731) $)) (IF (|has| |#1| (-579 (-816))) (-6 (-579 (-816))) |%noBranch|) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|))) +((-1727 (((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)) (-537)) 80)) (-2460 (((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|))) 74)) (-1560 (((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|))) 59))) +(((-1152 |#1|) (-10 -7 (-15 -2460 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1560 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1727 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)) (-537)))) (-333)) (T -1152)) +((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-537)) (-4 *5 (-333)) (-5 *2 (-402 (-1113 (-1113 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-1113 (-1113 *5))))) (-1560 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4))))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4)))))) +(-10 -7 (-15 -2460 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1560 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)))) (-15 -1727 ((-402 (-1113 (-1113 |#1|))) (-1113 (-1113 |#1|)) (-537)))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) NIL) (((-1122) $) NIL) (($ (-1122)) 8)) (-2244 (((-111) $ $) NIL))) +(((-1153) (-13 (-1029) (-10 -8 (-15 -2341 ($ (-1122)))))) (T -1153)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1153))))) +(-13 (-1029) (-10 -8 (-15 -2341 ($ (-1122))))) +NIL +(((-1154) (-134)) (T -1154)) NIL (-13 (-10 -7 (-6 -4120))) -((-2133 (((-110)) 15)) (-1622 (((-1189) (-598 |#1|) (-598 |#1|)) 19) (((-1189) (-598 |#1|)) 20)) (-3280 (((-110) |#1| |#1|) 32 (|has| |#1| (-797)))) (-3332 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-2777 ((|#1| (-598 |#1|)) 33 (|has| |#1| (-797))) ((|#1| (-598 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-1276 (((-2 (|:| -1915 (-598 |#1|)) (|:| -4189 (-598 |#1|)))) 17))) -(((-1139 |#1|) (-10 -7 (-15 -1622 ((-1189) (-598 |#1|))) (-15 -1622 ((-1189) (-598 |#1|) (-598 |#1|))) (-15 -1276 ((-2 (|:| -1915 (-598 |#1|)) (|:| -4189 (-598 |#1|))))) (-15 -3332 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3332 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2777 (|#1| (-598 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2133 ((-110))) (IF (|has| |#1| (-797)) (PROGN (-15 -2777 (|#1| (-598 |#1|))) (-15 -3280 ((-110) |#1| |#1|))) |%noBranch|)) (-1030)) (T -1139)) -((-3280 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-797)) (-4 *3 (-1030)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-797)) (-5 *1 (-1139 *2)))) (-2133 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) (-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1139 *2)) (-4 *2 (-1030)))) (-3332 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1030)) (-5 *2 (-110)) (-5 *1 (-1139 *3)))) (-3332 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) (-1276 (*1 *2) (-12 (-5 *2 (-2 (|:| -1915 (-598 *3)) (|:| -4189 (-598 *3)))) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) (-1622 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189)) (-5 *1 (-1139 *4)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189)) (-5 *1 (-1139 *4))))) -(-10 -7 (-15 -1622 ((-1189) (-598 |#1|))) (-15 -1622 ((-1189) (-598 |#1|) (-598 |#1|))) (-15 -1276 ((-2 (|:| -1915 (-598 |#1|)) (|:| -4189 (-598 |#1|))))) (-15 -3332 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3332 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2777 (|#1| (-598 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2133 ((-110))) (IF (|has| |#1| (-797)) (PROGN (-15 -2777 (|#1| (-598 |#1|))) (-15 -3280 ((-110) |#1| |#1|))) |%noBranch|)) -((-4182 (((-1189) (-598 (-1102)) (-598 (-1102))) 13) (((-1189) (-598 (-1102))) 11)) (-3435 (((-1189)) 14)) (-3099 (((-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102))))) 18))) -(((-1140) (-10 -7 (-15 -4182 ((-1189) (-598 (-1102)))) (-15 -4182 ((-1189) (-598 (-1102)) (-598 (-1102)))) (-15 -3099 ((-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102)))))) (-15 -3435 ((-1189))))) (T -1140)) -((-3435 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1140)))) (-3099 (*1 *2) (-12 (-5 *2 (-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102))))) (-5 *1 (-1140)))) (-4182 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140))))) -(-10 -7 (-15 -4182 ((-1189) (-598 (-1102)))) (-15 -4182 ((-1189) (-598 (-1102)) (-598 (-1102)))) (-15 -3099 ((-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102)))))) (-15 -3435 ((-1189)))) -((-3240 (($ $) 17)) (-2534 (((-110) $) 24))) -(((-1141 |#1|) (-10 -8 (-15 -3240 (|#1| |#1|)) (-15 -2534 ((-110) |#1|))) (-1142)) (T -1141)) -NIL -(-10 -8 (-15 -3240 (|#1| |#1|)) (-15 -2534 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 49)) (-2956 (((-399 $) $) 50)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-2534 (((-110) $) 51)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 48)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24))) -(((-1142) (-133)) (T -1142)) -((-2534 (*1 *2 *1) (-12 (-4 *1 (-1142)) (-5 *2 (-110)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142)))) (-3240 (*1 *1 *1) (-4 *1 (-1142))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142))))) -(-13 (-432) (-10 -8 (-15 -2534 ((-110) $)) (-15 -2956 ((-399 $) $)) (-15 -3240 ($ $)) (-15 -2552 ((-399 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3261 (((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)) 23))) -(((-1143 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3261 ((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)))) (-986) (-986) (-1102) (-1102) |#1| |#2|) (T -1143)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5 *7 *9)) (-4 *5 (-986)) (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1148 *6 *8 *10)) (-5 *1 (-1143 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1102))))) -(-10 -7 (-15 -3261 ((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 96) (($ $ (-531) (-531)) 95)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 171)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 169 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 168 (|has| |#1| (-523)))) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-531) $) 98) (((-531) $ (-531)) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99)) (-3192 (($ (-1 |#1| (-531)) $) 170)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-531)) 59) (($ $ (-1014) (-531)) 74) (($ $ (-598 (-1014)) (-598 (-531))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-531)))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) 102) (($ $ $) 79 (|has| (-531) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2012 (((-531) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-531)) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-1144 |#1|) (-133) (-986)) (T -1144)) -((-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) (-4 *3 (-986)) (-4 *1 (-1144 *3)))) (-3192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1144 *3)) (-4 *3 (-986)))) (-4163 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523)) (-5 *2 (-388 (-895 *4))))) (-4163 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523)) (-5 *2 (-388 (-895 *4))))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) (-1788 (*1 *1 *1 *2) (-1435 (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986)) (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) (-4 *3 (-37 (-388 (-531)))))) (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986)) (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531))))))))) -(-13 (-1162 |t#1| (-531)) (-10 -8 (-15 -4067 ($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |t#1|))))) (-15 -3192 ($ (-1 |t#1| (-531)) $)) (IF (|has| |t#1| (-523)) (PROGN (-15 -4163 ((-388 (-895 |t#1|)) $ (-531))) (-15 -4163 ((-388 (-895 |t#1|)) $ (-531) (-531)))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (IF (|has| |t#1| (-15 -1788 (|t#1| |t#1| (-1102)))) (IF (|has| |t#1| (-15 -2695 ((-598 (-1102)) |t#1|))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1124)) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-29 (-531))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-943)) (-6 (-1124))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-531)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-531) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-531) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1142) |has| |#1| (-344)) ((-1162 |#1| #0#) . T)) -((-3019 (((-110) $) 12)) (-3154 (((-3 |#3| "failed") $) 17) (((-3 (-1102) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL)) (-2523 ((|#3| $) 14) (((-1102) $) NIL) (((-388 (-531)) $) NIL) (((-531) $) NIL))) -(((-1145 |#1| |#2| |#3|) (-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|))) (-1146 |#2| |#3|) (-986) (-1175 |#2|)) (T -1145)) -NIL -(-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 ((|#2| $) 228 (-3427 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 96) (($ $ (-531) (-531)) 95)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 103)) (-2594 ((|#2| $) 264)) (-1891 (((-3 |#2| "failed") $) 260)) (-2373 ((|#2| $) 261)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 237 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 234 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) 246 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 171)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#2| "failed") $) 267) (((-3 (-531) "failed") $) 256 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) 254 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-1102) "failed") $) 239 (-3427 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2523 ((|#2| $) 266) (((-531) $) 257 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-388 (-531)) $) 255 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-1102) $) 240 (-3427 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2581 (($ $) 263) (($ (-531) $) 262)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3073 (((-639 |#2|) (-639 $)) 218 (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 217 (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 216 (-3427 (|has| |#2| (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) 215 (-3427 (|has| |#2| (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) 32)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 169 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 168 (|has| |#1| (-523)))) (-1381 (($) 230 (-3427 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-1599 (((-110) $) 244 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 222 (-3427 (|has| |#2| (-829 (-360))) (|has| |#1| (-344)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 221 (-3427 (|has| |#2| (-829 (-531))) (|has| |#1| (-344))))) (-3617 (((-531) $) 98) (((-531) $ (-531)) 97)) (-3481 (((-110) $) 30)) (-3027 (($ $) 226 (|has| |#1| (-344)))) (-1840 ((|#2| $) 224 (|has| |#1| (-344)))) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) 258 (-3427 (|has| |#2| (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) 245 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) 99)) (-3192 (($ (-1 |#1| (-531)) $) 170)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-531)) 59) (($ $ (-1014) (-531)) 74) (($ $ (-598 (-1014)) (-598 (-531))) 73)) (-4103 (($ $ $) 248 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-1241 (($ $ $) 249 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-3261 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-344)))) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2385 (($ (-531) |#2|) 265)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-3788 (($) 259 (-3427 (|has| |#2| (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2322 (($ $) 229 (-3427 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2943 ((|#2| $) 232 (-3427 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) 235 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) 236 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) |#2|) 209 (-3427 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 |#2|)) 208 (-3427 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-276 |#2|))) 207 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) 206 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) 205 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-598 |#2|) (-598 |#2|)) 204 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) 102) (($ $ $) 79 (|has| (-531) (-1042))) (($ $ |#2|) 203 (-3427 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) 213 (|has| |#1| (-344))) (($ $ (-721)) 82 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 80 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) 87 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102) (-721)) 86 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-598 (-1102))) 85 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102)) 84 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))))) (-2842 (($ $) 227 (|has| |#1| (-344)))) (-1853 ((|#2| $) 225 (|has| |#1| (-344)))) (-2012 (((-531) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-208) $) 243 (-3427 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-360) $) 242 (-3427 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-507) $) 241 (-3427 (|has| |#2| (-573 (-507))) (|has| |#1| (-344)))) (((-835 (-360)) $) 220 (-3427 (|has| |#2| (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) 219 (-3427 (|has| |#2| (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 233 (-3427 (-3427 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#1| (-344))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 268) (($ (-1102)) 238 (-3427 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344)))) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-531)) 57)) (-2750 (((-3 $ "failed") $) 46 (-1435 (-3427 (-1435 (|has| |#2| (-138)) (-3427 (|has| $ (-138)) (|has| |#2| (-852)))) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-3831 ((|#2| $) 231 (-3427 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) 247 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) 211 (|has| |#1| (-344))) (($ $ (-721)) 83 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 81 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) 91 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102) (-721)) 90 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-598 (-1102))) 89 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102)) 88 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))))) (-2207 (((-110) $ $) 251 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2184 (((-110) $ $) 252 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 250 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2174 (((-110) $ $) 253 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344))) (($ |#2| |#2|) 223 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-344))) (($ |#2| $) 201 (|has| |#1| (-344))) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-1146 |#1| |#2|) (-133) (-986) (-1175 |t#1|)) (T -1146)) -((-2012 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1175 *3)) (-5 *2 (-531)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-1146 *3 *2)) (-4 *2 (-1175 *3)))) (-2385 (*1 *1 *2 *3) (-12 (-5 *2 (-531)) (-4 *4 (-986)) (-4 *1 (-1146 *4 *3)) (-4 *3 (-1175 *4)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-1146 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1175 *2)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1175 *3)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))) (-1891 (*1 *2 *1) (|partial| -12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3))))) -(-13 (-1144 |t#1|) (-977 |t#2|) (-10 -8 (-15 -2385 ($ (-531) |t#2|)) (-15 -2012 ((-531) $)) (-15 -2594 (|t#2| $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)) (-15 -2265 ($ |t#2|)) (-15 -2373 (|t#2| $)) (-15 -1891 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-344)) (-6 (-934 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-531)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-344)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-344)) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-573 (-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) ((-573 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) ((-573 (-507)) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-531))))) ((-214 |#2|) |has| |#1| (-344)) ((-216) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 |#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) ((-268 $ $) |has| (-531) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-344) |has| |#1| (-344)) ((-319 |#2|) |has| |#1| (-344)) ((-358 |#2|) |has| |#1| (-344)) ((-381 |#2|) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-492 (-1102) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-492 (-1102) |#2|))) ((-492 |#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 |#2|) |has| |#1| (-344)) ((-601 $) . T) ((-594 (-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-594 (-531)))) ((-594 |#2|) |has| |#1| (-344)) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 |#2|) |has| |#1| (-344)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-741) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-742) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-744) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-745) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-770) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-795) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-797) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-797))) (-12 (|has| |#1| (-344)) (|has| |#2| (-770)))) ((-843 (-1102)) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-843 (-1102)))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) ((-829 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-531)))) ((-827 |#2|) |has| |#1| (-344)) ((-852) -12 (|has| |#1| (-344)) (|has| |#2| (-852))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-934 |#2|) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-962) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) ((-977 (-388 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))) ((-977 (-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))) ((-977 (-1102)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-1102)))) ((-977 |#2|) . T) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 |#2|) |has| |#1| (-344)) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) -12 (|has| |#1| (-344)) (|has| |#2| (-1078))) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1138) |has| |#1| (-344)) ((-1142) |has| |#1| (-344)) ((-1144 |#1|) . T) ((-1162 |#1| #0#) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 70)) (-1317 ((|#2| $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 88)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 97) (($ $ (-531) (-531)) 99)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 47)) (-2594 ((|#2| $) 11)) (-1891 (((-3 |#2| "failed") $) 30)) (-2373 ((|#2| $) 31)) (-2367 (($ $) 192 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 168 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) 188 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 164 (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 57)) (-2391 (($ $) 196 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 172 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 144) (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-1102) "failed") $) NIL (-12 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2523 ((|#2| $) 143) (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-1102) $) NIL (-12 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2581 (($ $) 61) (($ (-531) $) 24)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 |#2|) (-639 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) 77)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 112 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 114 (|has| |#1| (-523)))) (-1381 (($) NIL (-12 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-1599 (((-110) $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) 64)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#2| (-829 (-360))) (|has| |#1| (-344)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#2| (-829 (-531))) (|has| |#1| (-344))))) (-3617 (((-531) $) 93) (((-531) $ (-531)) 95)) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL (|has| |#1| (-344)))) (-1840 ((|#2| $) 151 (|has| |#1| (-344)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) 136)) (-3192 (($ (-1 |#1| (-531)) $) 132)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-531)) 19) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-4103 (($ $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-1241 (($ $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-3261 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-344)))) (-2076 (($ $) 162 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2385 (($ (-531) |#2|) 10)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 145 (|has| |#1| (-344)))) (-1788 (($ $) 214 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 219 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124)))))) (-3788 (($) NIL (-12 (|has| |#2| (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2943 ((|#2| $) NIL (-12 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 126)) (-3609 (((-3 $ "failed") $ $) 116 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) 160 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) |#2|) NIL (-12 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 |#2|)) NIL (-12 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) 91) (($ $ $) 79 (|has| (-531) (-1042))) (($ $ |#2|) NIL (-12 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 137 (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) 140 (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1853 ((|#2| $) 152 (|has| |#1| (-344)))) (-2012 (((-531) $) 12)) (-2403 (($ $) 198 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 174 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 194 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 170 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 190 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 166 (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-208) $) NIL (-12 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-507) $) NIL (-12 (|has| |#2| (-573 (-507))) (|has| |#1| (-344)))) (((-835 (-360)) $) NIL (-12 (|has| |#2| (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) NIL (-12 (|has| |#2| (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852)) (|has| |#1| (-344))))) (-3437 (($ $) 124)) (-2265 (((-806) $) 245) (($ (-531)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1102)) NIL (-12 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344)))) (($ (-388 (-531))) 155 (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-531)) 74)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852)) (|has| |#1| (-344))) (-12 (|has| |#2| (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) 142)) (-3840 ((|#1| $) 90)) (-3831 ((|#2| $) NIL (-12 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-2442 (($ $) 204 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 180 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 200 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 176 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 208 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 184 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 210 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 186 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 206 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 182 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 202 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 178 (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3035 (($) 13 T CONST)) (-3050 (($) 17 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) NIL (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2207 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2184 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2148 (((-110) $ $) 63)) (-2195 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2174 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 149 (|has| |#1| (-344))) (($ |#2| |#2|) 150 (|has| |#1| (-344)))) (-2250 (($ $) 213) (($ $ $) 68)) (-2237 (($ $ $) 66)) (** (($ $ (-864)) NIL) (($ $ (-721)) 73) (($ $ (-531)) 146 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 158 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-344))) (($ |#2| $) 147 (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1147 |#1| |#2|) (-1146 |#1| |#2|) (-986) (-1175 |#1|)) (T -1147)) -NIL -(-1146 |#1| |#2|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 10)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3258 (($ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2921 (((-110) $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2796 (($ $ (-531)) NIL) (($ $ (-531) (-531)) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) NIL)) (-2594 (((-1176 |#1| |#2| |#3|) $) NIL)) (-1891 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) NIL)) (-2373 (((-1176 |#1| |#2| |#3|) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-531) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2523 (((-1176 |#1| |#2| |#3|) $) NIL) (((-1102) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-388 (-531)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-531) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2581 (($ $) NIL) (($ (-531) $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-1176 |#1| |#2| |#3|)) (-639 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-1176 |#1| |#2| |#3|))) (|:| |vec| (-1184 (-1176 |#1| |#2| |#3|)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) NIL)) (-4163 (((-388 (-895 |#1|)) $ (-531)) NIL (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) NIL (|has| |#1| (-523)))) (-1381 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-1599 (((-110) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-829 (-531))) (|has| |#1| (-344)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-829 (-360))) (|has| |#1| (-344))))) (-3617 (((-531) $) NIL) (((-531) $ (-531)) NIL)) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL (|has| |#1| (-344)))) (-1840 (((-1176 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) NIL)) (-3192 (($ (-1 |#1| (-531)) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-531)) 17) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-4103 (($ $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-1241 (($ $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2385 (($ (-531) (-1176 |#1| |#2| |#3|)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 25 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 26 (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2943 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-531)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-492 (-1102) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-492 (-1102) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-276 (-1176 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1176 |#1| |#2| |#3|)) (-598 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) NIL) (($ $ $) NIL (|has| (-531) (-1042))) (($ $ (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-268 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1180 |#2|)) 24) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 23 (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1853 (((-1176 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-2012 (((-531) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-507) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-573 (-507))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-835 (-360)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1176 |#1| |#2| |#3|)) NIL) (($ (-1180 |#2|)) 22) (($ (-1102)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (($ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523)))) (($ (-388 (-531))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-531))))))) (-3188 ((|#1| $ (-531)) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 11)) (-3831 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3035 (($) 19 T CONST)) (-3050 (($) 15 T CONST)) (-4020 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2207 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2184 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2174 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344))) (($ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 20)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1176 |#1| |#2| |#3|)) NIL (|has| |#1| (-344))) (($ (-1176 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1148 |#1| |#2| |#3|) (-13 (-1146 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1148)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1146 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-3452 (((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)) 12)) (-4184 (((-399 |#1|) |#1|) 22)) (-2552 (((-399 |#1|) |#1|) 21))) -(((-1149 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)))) (-1160 (-531))) (T -1149)) -((-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531)))))) -(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)))) -((-3261 (((-1083 |#2|) (-1 |#2| |#1|) (-1151 |#1|)) 23 (|has| |#1| (-795))) (((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|)) 17))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3261 ((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) |%noBranch|)) (-1138) (-1138)) (T -1150)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-795)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1083 *6)) (-5 *1 (-1150 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1151 *6)) (-5 *1 (-1150 *5 *6))))) -(-10 -7 (-15 -3261 ((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) |%noBranch|)) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1347 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3261 (((-1083 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-795)))) (-1915 ((|#1| $) 14)) (-1963 ((|#1| $) 10)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1973 (((-531) $) 18)) (-4189 ((|#1| $) 17)) (-1984 ((|#1| $) 11)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2154 (((-110) $) 16)) (-2140 (((-1083 |#1|) $) 38 (|has| |#1| (-795))) (((-1083 |#1|) (-598 $)) 37 (|has| |#1| (-795)))) (-3318 (($ |#1|) 25)) (-2265 (($ (-1025 |#1|)) 24) (((-806) $) 34 (|has| |#1| (-1030)))) (-3941 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1929 (($ $ (-531)) 13)) (-2148 (((-110) $ $) 27 (|has| |#1| (-1030))))) -(((-1151 |#1|) (-13 (-1024 |#1|) (-10 -8 (-15 -3941 ($ |#1|)) (-15 -1347 ($ |#1|)) (-15 -2265 ($ (-1025 |#1|))) (-15 -2154 ((-110) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-1083 |#1|))) |%noBranch|))) (-1138)) (T -1151)) -((-3941 (*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138)))) (-1347 (*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1025 *3)) (-4 *3 (-1138)) (-5 *1 (-1151 *3)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1151 *3)) (-4 *3 (-1138))))) -(-13 (-1024 |#1|) (-10 -8 (-15 -3941 ($ |#1|)) (-15 -1347 ($ |#1|)) (-15 -2265 ($ (-1025 |#1|))) (-15 -2154 ((-110) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-1083 |#1|))) |%noBranch|))) -((-3261 (((-1157 |#3| |#4|) (-1 |#4| |#2|) (-1157 |#1| |#2|)) 15))) -(((-1152 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 ((-1157 |#3| |#4|) (-1 |#4| |#2|) (-1157 |#1| |#2|)))) (-1102) (-986) (-1102) (-986)) (T -1152)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1157 *5 *6)) (-14 *5 (-1102)) (-4 *6 (-986)) (-4 *8 (-986)) (-5 *2 (-1157 *7 *8)) (-5 *1 (-1152 *5 *6 *7 *8)) (-14 *7 (-1102))))) -(-10 -7 (-15 -3261 ((-1157 |#3| |#4|) (-1 |#4| |#2|) (-1157 |#1| |#2|)))) -((-1682 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2807 ((|#1| |#3|) 13)) (-1349 ((|#3| |#3|) 19))) -(((-1153 |#1| |#2| |#3|) (-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-523) (-934 |#1|) (-1160 |#2|)) (T -1153)) -((-1682 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1153 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-1153 *3 *4 *2)) (-4 *2 (-1160 *4)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-1153 *2 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3590 (((-3 |#2| "failed") |#2| (-721) |#1|) 29)) (-1476 (((-3 |#2| "failed") |#2| (-721)) 30)) (-3236 (((-3 (-2 (|:| -3144 |#2|) (|:| -3157 |#2|)) "failed") |#2|) 43)) (-2686 (((-598 |#2|) |#2|) 45)) (-2438 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1154 |#1| |#2|) (-10 -7 (-15 -1476 ((-3 |#2| "failed") |#2| (-721))) (-15 -3590 ((-3 |#2| "failed") |#2| (-721) |#1|)) (-15 -2438 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3236 ((-3 (-2 (|:| -3144 |#2|) (|:| -3157 |#2|)) "failed") |#2|)) (-15 -2686 ((-598 |#2|) |#2|))) (-13 (-523) (-140)) (-1160 |#1|)) (T -1154)) -((-2686 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-598 *3)) (-5 *1 (-1154 *4 *3)) (-4 *3 (-1160 *4)))) (-3236 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-1154 *4 *3)) (-4 *3 (-1160 *4)))) (-2438 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1160 *3)))) (-3590 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4)))) (-1476 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4))))) -(-10 -7 (-15 -1476 ((-3 |#2| "failed") |#2| (-721))) (-15 -3590 ((-3 |#2| "failed") |#2| (-721) |#1|)) (-15 -2438 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3236 ((-3 (-2 (|:| -3144 |#2|) (|:| -3157 |#2|)) "failed") |#2|)) (-15 -2686 ((-598 |#2|) |#2|))) -((-1678 (((-3 (-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) "failed") |#2| |#2|) 32))) -(((-1155 |#1| |#2|) (-10 -7 (-15 -1678 ((-3 (-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) "failed") |#2| |#2|))) (-523) (-1160 |#1|)) (T -1155)) -((-1678 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-1155 *4 *3)) (-4 *3 (-1160 *4))))) -(-10 -7 (-15 -1678 ((-3 (-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) "failed") |#2| |#2|))) -((-1274 ((|#2| |#2| |#2|) 19)) (-1731 ((|#2| |#2| |#2|) 30)) (-1634 ((|#2| |#2| |#2| (-721) (-721)) 36))) -(((-1156 |#1| |#2|) (-10 -7 (-15 -1274 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -1634 (|#2| |#2| |#2| (-721) (-721)))) (-986) (-1160 |#1|)) (T -1156)) -((-1634 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-1156 *4 *2)) (-4 *2 (-1160 *4)))) (-1731 (*1 *2 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3)))) (-1274 (*1 *2 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3))))) -(-10 -7 (-15 -1274 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -1634 (|#2| |#2| |#2| (-721) (-721)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3191 (((-1184 |#2|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#2|)) NIL)) (-2516 (((-1098 $) $ (-1014)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) NIL (|has| |#2| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3767 (($ $ (-721)) NIL)) (-3441 (($ $ (-721)) NIL)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-1014) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-3650 (($ $ $) NIL (|has| |#2| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#2| (-344)))) (-1376 (($ $ $) NIL)) (-1570 (($ $ $) NIL (|has| |#2| (-523)))) (-1647 (((-2 (|:| -2005 |#2|) (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#2| (-344)))) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-1014)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-721) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3617 (((-721) $ $) NIL (|has| |#2| (-523)))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#2| (-1078)))) (-2682 (($ (-1098 |#2|) (-1014)) NIL) (($ (-1098 $) (-1014)) NIL)) (-3688 (($ $ (-721)) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-721)) 17) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3294 (((-1098 |#2|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#2| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1816 (($ $ (-721) |#2| $) NIL)) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#2|) NIL) (($ $ (-598 (-1014)) (-598 |#2|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#2| (-344)))) (-1785 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#2| (-523))) ((|#2| (-388 $) |#2|) NIL (|has| |#2| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#2| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2012 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-1014)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#2| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#2| (-523)))) (-2265 (((-806) $) 13) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-1014)) NIL) (($ (-1180 |#1|)) 19) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) 14 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1157 |#1| |#2|) (-13 (-1160 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))) (-15 -1816 ($ $ (-721) |#2| $)))) (-1102) (-986)) (T -1157)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-1157 *3 *4)) (-4 *4 (-986)))) (-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1157 *4 *3)) (-14 *4 (-1102)) (-4 *3 (-986))))) -(-13 (-1160 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))) (-15 -1816 ($ $ (-721) |#2| $)))) -((-3261 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|))) (-986) (-1160 |#1|) (-986) (-1160 |#3|)) (T -1158)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-4 *2 (-1160 *6)) (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1160 *5))))) -(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|))) -((-3191 (((-1184 |#2|) $ (-721)) 114)) (-2695 (((-598 (-1014)) $) 15)) (-1310 (($ (-1098 |#2|)) 67)) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) 18)) (-1383 (((-399 (-1098 $)) (-1098 $)) 185)) (-3240 (($ $) 175)) (-2956 (((-399 $) $) 173)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 82)) (-3767 (($ $ (-721)) 71)) (-3441 (($ $ (-721)) 73)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3154 (((-3 |#2| "failed") $) 117) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#2| $) 115) (((-388 (-531)) $) NIL) (((-531) $) NIL) (((-1014) $) NIL)) (-1570 (($ $ $) 151)) (-1647 (((-2 (|:| -2005 |#2|) (|:| -2937 $) (|:| -4124 $)) $ $) 153)) (-3617 (((-721) $ $) 170)) (-2342 (((-3 $ "failed") $) 123)) (-2669 (($ |#2| (-721)) NIL) (($ $ (-1014) (-721)) 47) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) 42) (((-598 (-721)) $ (-598 (-1014))) 43)) (-3294 (((-1098 |#2|) $) 59)) (-3471 (((-3 (-1014) "failed") $) 40)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) 70)) (-1788 (($ $) 197)) (-3788 (($) 119)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 182)) (-3799 (((-399 (-1098 $)) (-1098 $)) 88)) (-2894 (((-399 (-1098 $)) (-1098 $)) 86)) (-2552 (((-399 $) $) 107)) (-4115 (($ $ (-598 (-276 $))) 39) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#2|) 31) (($ $ (-598 (-1014)) (-598 |#2|)) 28) (($ $ (-1014) $) 25) (($ $ (-598 (-1014)) (-598 $)) 23)) (-4100 (((-721) $) 188)) (-1785 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) 147) ((|#2| (-388 $) |#2|) 187) (((-388 $) $ (-388 $)) 169)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 191)) (-3352 (($ $ (-1014)) 140) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) 138) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2012 (((-721) $) NIL) (((-721) $ (-1014)) 16) (((-598 (-721)) $ (-598 (-1014))) 20)) (-1767 ((|#2| $) NIL) (($ $ (-1014)) 125)) (-2960 (((-3 $ "failed") $ $) 161) (((-3 (-388 $) "failed") (-388 $) $) 157)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-1014)) 51) (($ (-388 (-531))) NIL) (($ $) NIL))) -(((-1159 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -1785 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1785 (|#2| (-388 |#1|) |#2|)) (-15 -3245 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1647 ((-2 (|:| -2005 |#2|) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1570 (|#1| |#1| |#1|)) (-15 -2960 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -2960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3617 ((-721) |#1| |#1|)) (-15 -1785 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1| (-721))) (-15 -3767 (|#1| |#1| (-721))) (-15 -4017 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| (-721))) (-15 -1310 (|#1| (-1098 |#2|))) (-15 -3294 ((-1098 |#2|) |#1|)) (-15 -3191 ((-1184 |#2|) |#1| (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| |#2|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -1383 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1767 (|#1| |#1| (-1014))) (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -4109 ((-721) |#1| (-598 (-1014)))) (-15 -4109 ((-721) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -2669 (|#1| |#1| (-1014) (-721))) (-15 -3005 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -3005 ((-721) |#1| (-1014))) (-15 -3471 ((-3 (-1014) "failed") |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -2012 ((-721) |#1| (-1014))) (-15 -2523 ((-1014) |#1|)) (-15 -3154 ((-3 (-1014) "failed") |#1|)) (-15 -2265 (|#1| (-1014))) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-1014) |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1014) |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 ((-721) |#1|)) (-15 -2669 (|#1| |#2| (-721))) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3005 ((-721) |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3352 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1014) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1014)))) (-15 -3352 (|#1| |#1| (-1014))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-1160 |#2|) (-986)) (T -1159)) -NIL -(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -1785 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1785 (|#2| (-388 |#1|) |#2|)) (-15 -3245 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1647 ((-2 (|:| -2005 |#2|) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1570 (|#1| |#1| |#1|)) (-15 -2960 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -2960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3617 ((-721) |#1| |#1|)) (-15 -1785 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1| (-721))) (-15 -3767 (|#1| |#1| (-721))) (-15 -4017 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| (-721))) (-15 -1310 (|#1| (-1098 |#2|))) (-15 -3294 ((-1098 |#2|) |#1|)) (-15 -3191 ((-1184 |#2|) |#1| (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| |#2|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -1383 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1767 (|#1| |#1| (-1014))) (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -4109 ((-721) |#1| (-598 (-1014)))) (-15 -4109 ((-721) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -2669 (|#1| |#1| (-1014) (-721))) (-15 -3005 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -3005 ((-721) |#1| (-1014))) (-15 -3471 ((-3 (-1014) "failed") |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -2012 ((-721) |#1| (-1014))) (-15 -2523 ((-1014) |#1|)) (-15 -3154 ((-3 (-1014) "failed") |#1|)) (-15 -2265 (|#1| (-1014))) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-1014) |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1014) |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 ((-721) |#1|)) (-15 -2669 (|#1| |#2| (-721))) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3005 ((-721) |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3352 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1014) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1014)))) (-15 -3352 (|#1| |#1| (-1014))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3191 (((-1184 |#1|) $ (-721)) 236)) (-2695 (((-598 (-1014)) $) 108)) (-1310 (($ (-1098 |#1|)) 234)) (-2516 (((-1098 $) $ (-1014)) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 (-1014))) 109)) (-2128 (((-3 $ "failed") $ $) 19)) (-3720 (($ $ $) 221 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-2760 (((-110) $ $) 206 (|has| |#1| (-344)))) (-3767 (($ $ (-721)) 229)) (-3441 (($ $ (-721)) 228)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-432)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) 134)) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) (((-1014) $) 133)) (-3115 (($ $ $ (-1014)) 106 (|has| |#1| (-162))) ((|#1| $ $) 224 (|has| |#1| (-162)))) (-3650 (($ $ $) 210 (|has| |#1| (-344)))) (-2500 (($ $) 152)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 209 (|has| |#1| (-344)))) (-1376 (($ $ $) 227)) (-1570 (($ $ $) 218 (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) 217 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 204 (|has| |#1| (-344)))) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ (-1014)) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-721) $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ $) 222 (|has| |#1| (-523)))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-2342 (((-3 $ "failed") $) 202 (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) 115) (($ (-1098 $) (-1014)) 114)) (-3688 (($ $ (-721)) 233)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 213 (|has| |#1| (-344)))) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| (-721)) 151) (($ $ (-1014) (-721)) 117) (($ $ (-598 (-1014)) (-598 (-721))) 116)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) 118) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 231)) (-3005 (((-721) $) 168) (((-721) $ (-1014)) 120) (((-598 (-721)) $ (-598 (-1014))) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-3294 (((-1098 |#1|) $) 235)) (-3471 (((-3 (-1014) "failed") $) 121)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1521 (((-1085) $) 9)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) 230)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) 111)) (-1788 (($ $) 214 (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) 201 (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 211 (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 205 (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ (-1014) |#1|) 139) (($ $ (-598 (-1014)) (-598 |#1|)) 138) (($ $ (-1014) $) 137) (($ $ (-598 (-1014)) (-598 $)) 136)) (-4100 (((-721) $) 207 (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-388 $) (-388 $) (-388 $)) 223 (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) 215 (|has| |#1| (-344))) (((-388 $) $ (-388 $)) 203 (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) 232)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 208 (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) 105 (|has| |#1| (-162))) ((|#1| $) 225 (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) 40) (($ $ (-598 (-1014))) 39) (($ $ (-1014) (-721)) 38) (($ $ (-598 (-1014)) (-598 (-721))) 37) (($ $ (-721)) 251) (($ $) 249) (($ $ (-1102)) 248 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 247 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 246 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 245 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2012 (((-721) $) 148) (((-721) $ (-1014)) 128) (((-598 (-721)) $ (-598 (-1014))) 127)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ (-1014)) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2960 (((-3 $ "failed") $ $) 220 (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) 219 (|has| |#1| (-523)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ (-1014)) 135) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531)))))) (($ $) 83 (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ (-721)) 153) (($ $ (-1014) (-721)) 126) (($ $ (-598 (-1014)) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1014)) 36) (($ $ (-598 (-1014))) 35) (($ $ (-1014) (-721)) 34) (($ $ (-598 (-1014)) (-598 (-721))) 33) (($ $ (-721)) 252) (($ $) 250) (($ $ (-1102)) 244 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 243 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 242 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 241 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1160 |#1|) (-133) (-986)) (T -1160)) -((-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-1160 *4)) (-4 *4 (-986)) (-5 *2 (-1184 *4)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-5 *2 (-1098 *3)))) (-1310 (*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-986)) (-4 *1 (-1160 *3)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-2605 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-2382 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *3)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *4)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-1376 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)))) (-3352 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162)))) (-3115 (*1 *2 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162)))) (-1785 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)))) (-3617 (*1 *2 *1 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)) (-5 *2 (-721)))) (-3720 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-2960 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-2960 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)))) (-1570 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-1647 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2005 *3) (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *3)))) (-3245 (*1 *2 *1 *1) (-12 (-4 *3 (-432)) (-4 *3 (-986)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1160 *3)))) (-1785 (*1 *2 *3 *2) (-12 (-5 *3 (-388 *1)) (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531))))))) -(-13 (-892 |t#1| (-721) (-1014)) (-268 |t#1| |t#1|) (-268 $ $) (-216) (-214 |t#1|) (-10 -8 (-15 -3191 ((-1184 |t#1|) $ (-721))) (-15 -3294 ((-1098 |t#1|) $)) (-15 -1310 ($ (-1098 |t#1|))) (-15 -3688 ($ $ (-721))) (-15 -2605 ((-3 $ "failed") $ (-721))) (-15 -2382 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -4017 ((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721))) (-15 -3767 ($ $ (-721))) (-15 -3441 ($ $ (-721))) (-15 -1376 ($ $ $)) (-15 -3352 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3176 (|t#1| $)) (-15 -3115 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-268 (-388 $) (-388 $))) (-15 -1785 ((-388 $) (-388 $) (-388 $))) (-15 -3617 ((-721) $ $)) (-15 -3720 ($ $ $)) (-15 -2960 ((-3 $ "failed") $ $)) (-15 -2960 ((-3 (-388 $) "failed") (-388 $) $)) (-15 -1570 ($ $ $)) (-15 -1647 ((-2 (|:| -2005 |t#1|) (|:| -2937 $) (|:| -4124 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (-15 -3245 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-289)) (-6 -4269) (-15 -1785 (|t#1| (-388 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (-15 -1788 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-721)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531))))) ((-214 |#1|) . T) ((-216) . T) ((-268 (-388 $) (-388 $)) |has| |#1| (-523)) ((-268 |#1| |#1|) . T) ((-268 $ $) . T) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 $) . T) ((-307 |#1| #0#) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-492 #2=(-1014) |#1|) . T) ((-492 #2# $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-601 #1#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #1#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 #2#) . T) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-829 (-360)) -12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360)))) ((-829 (-531)) -12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))) ((-892 |#1| #0# #2#) . T) ((-852) |has| |#1| (-852)) ((-863) |has| |#1| (-344)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 #2#) . T) ((-977 |#1|) . T) ((-992 #1#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-1078)) ((-1142) |has| |#1| (-852))) -((-2695 (((-598 (-1014)) $) 28)) (-2500 (($ $) 25)) (-2669 (($ |#2| |#3|) NIL) (($ $ (-1014) |#3|) 22) (($ $ (-598 (-1014)) (-598 |#3|)) 21)) (-2462 (($ $) 14)) (-2475 ((|#2| $) 12)) (-2012 ((|#3| $) 10))) -(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 |#3|))) (-15 -2669 (|#1| |#1| (-1014) |#3|)) (-15 -2500 (|#1| |#1|)) (-15 -2669 (|#1| |#2| |#3|)) (-15 -2012 (|#3| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2475 (|#2| |#1|))) (-1162 |#2| |#3|) (-986) (-742)) (T -1161)) -NIL -(-10 -8 (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 |#3|))) (-15 -2669 (|#1| |#1| (-1014) |#3|)) (-15 -2500 (|#1| |#1|)) (-15 -2669 (|#1| |#2| |#3|)) (-15 -2012 (|#3| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2475 (|#2| |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4034 (((-1083 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3201 (((-110) $) 71)) (-3617 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-3481 (((-110) $) 30)) (-3688 (($ $ (-864)) 99)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59) (($ $ (-1014) |#2|) 74) (($ $ (-598 (-1014)) (-598 |#2|)) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-1846 (($ $ |#2|) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1785 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2012 ((|#2| $) 62)) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-4148 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-1162 |#1| |#2|) (-133) (-986) (-742)) (T -1162)) -((-4034 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-1083 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1785 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-1102)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-3617 (*1 *2 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-2796 (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-2796 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-4148 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2265 (*2 (-1102)))) (-4 *2 (-986)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1083 *3))))) -(-13 (-915 |t#1| |t#2| (-1014)) (-10 -8 (-15 -4034 ((-1083 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1785 (|t#1| $ |t#2|)) (-15 -3524 ((-1102) $)) (-15 -3840 (|t#1| $)) (-15 -3688 ($ $ (-864))) (-15 -3617 (|t#2| $)) (-15 -3617 (|t#2| $ |t#2|)) (-15 -2796 ($ $ |t#2|)) (-15 -2796 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2265 (|t#1| (-1102)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4148 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1846 ($ $ |t#2|)) (IF (|has| |t#2| (-1042)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-216)) (IF (|has| |t#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4115 ((-1083 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-268 $ $) |has| |#2| (-1042)) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| |#2| (-1014)) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-3240 ((|#2| |#2|) 12)) (-2956 (((-399 |#2|) |#2|) 14)) (-2973 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531)))) 30))) -(((-1163 |#1| |#2|) (-10 -7 (-15 -2956 ((-399 |#2|) |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -2973 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531)))))) (-523) (-13 (-1160 |#1|) (-523) (-10 -8 (-15 -2109 ($ $ $))))) (T -1163)) -((-2973 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-531)))) (-4 *4 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $))))) (-4 *3 (-523)) (-5 *1 (-1163 *3 *4)))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $))))))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-1163 *4 *3)) (-4 *3 (-13 (-1160 *4) (-523) (-10 -8 (-15 -2109 ($ $ $)))))))) -(-10 -7 (-15 -2956 ((-399 |#2|) |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -2973 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531)))))) -((-3261 (((-1169 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1169 |#1| |#3| |#5|)) 24))) -(((-1164 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3261 ((-1169 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1169 |#1| |#3| |#5|)))) (-986) (-986) (-1102) (-1102) |#1| |#2|) (T -1164)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5 *7 *9)) (-4 *5 (-986)) (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1169 *6 *8 *10)) (-5 *1 (-1164 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1102))))) -(-10 -7 (-15 -3261 ((-1169 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1169 |#1| |#3| |#5|)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) 96) (($ $ (-388 (-531)) (-388 (-531))) 95)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) 169)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) 98) (((-388 (-531)) $ (-388 (-531))) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99) (($ $ (-388 (-531))) 168)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-388 (-531))) 59) (($ $ (-1014) (-388 (-531))) 74) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) 102) (($ $ $) 79 (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-1165 |#1|) (-133) (-986)) (T -1165)) -((-4067 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4)))) (-4 *4 (-986)) (-4 *1 (-1165 *4)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-1165 *3)) (-4 *3 (-986)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) (-1788 (*1 *1 *1 *2) (-1435 (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986)) (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) (-4 *3 (-37 (-388 (-531)))))) (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986)) (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531))))))))) -(-13 (-1162 |t#1| (-388 (-531))) (-10 -8 (-15 -4067 ($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |t#1|))))) (-15 -3688 ($ $ (-388 (-531)))) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (IF (|has| |t#1| (-15 -1788 (|t#1| |t#1| (-1102)))) (IF (|has| |t#1| (-15 -2695 ((-598 (-1102)) |t#1|))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1124)) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-29 (-531))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-943)) (-6 (-1124))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-531))) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-388 (-531)) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1142) |has| |#1| (-344)) ((-1162 |#1| #0#) . T)) -((-3019 (((-110) $) 12)) (-3154 (((-3 |#3| "failed") $) 17)) (-2523 ((|#3| $) 14))) -(((-1166 |#1| |#2| |#3|) (-10 -8 (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|))) (-1167 |#2| |#3|) (-986) (-1144 |#2|)) (T -1166)) -NIL -(-10 -8 (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) 96) (($ $ (-388 (-531)) (-388 (-531))) 95)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) 169)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#2| "failed") $) 180)) (-2523 ((|#2| $) 179)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-1318 (((-388 (-531)) $) 177)) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) |#2|) 178)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) 98) (((-388 (-531)) $ (-388 (-531))) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99) (($ $ (-388 (-531))) 168)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-388 (-531))) 59) (($ $ (-1014) (-388 (-531))) 74) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-3671 ((|#2| $) 176)) (-1633 (((-3 |#2| "failed") $) 174)) (-2385 ((|#2| $) 175)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) 102) (($ $ $) 79 (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 181) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-1167 |#1| |#2|) (-133) (-986) (-1144 |t#1|)) (T -1167)) -((-2012 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3)) (-5 *2 (-388 (-531))))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-1167 *3 *2)) (-4 *2 (-1144 *3)))) (-2397 (*1 *1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-4 *4 (-986)) (-4 *1 (-1167 *4 *3)) (-4 *3 (-1144 *4)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3)) (-5 *2 (-388 (-531))))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))) (-1633 (*1 *2 *1) (|partial| -12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3))))) -(-13 (-1165 |t#1|) (-977 |t#2|) (-10 -8 (-15 -2397 ($ (-388 (-531)) |t#2|)) (-15 -1318 ((-388 (-531)) $)) (-15 -3671 (|t#2| $)) (-15 -2012 ((-388 (-531)) $)) (-15 -2265 ($ |t#2|)) (-15 -2385 (|t#2| $)) (-15 -1633 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-531))) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-388 (-531)) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-977 |#2|) . T) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1142) |has| |#1| (-344)) ((-1162 |#1| #0#) . T) ((-1165 |#1|) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 96)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) 106) (($ $ (-388 (-531)) (-388 (-531))) 108)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 51)) (-2367 (($ $) 180 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 156 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) 176 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 152 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) 61)) (-2391 (($ $) 184 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 160 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL)) (-2523 ((|#2| $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) 79)) (-1318 (((-388 (-531)) $) 13)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) |#2|) 11)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) 68)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) 103) (((-388 (-531)) $ (-388 (-531))) 104)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 120) (($ $ (-388 (-531))) 118)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) 31) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 115)) (-2076 (($ $) 150 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3671 ((|#2| $) 12)) (-1633 (((-3 |#2| "failed") $) 41)) (-2385 ((|#2| $) 42)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 93 (|has| |#1| (-344)))) (-1788 (($ $) 135 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 140 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) 112)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) 148 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) 100) (($ $ $) 86 (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) 127 (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) 16)) (-2403 (($ $) 186 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 162 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 182 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 158 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 178 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 154 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 110)) (-2265 (((-806) $) NIL) (($ (-531)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-388 (-531))) 128 (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 99)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 117)) (-3840 ((|#1| $) 98)) (-2442 (($ $) 192 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 168 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 188 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 164 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 196 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 172 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 198 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 174 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 194 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 170 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 190 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 166 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 21 T CONST)) (-3050 (($) 17 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) 66)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 92 (|has| |#1| (-344)))) (-2250 (($ $) 131) (($ $ $) 72)) (-2237 (($ $ $) 70)) (** (($ $ (-864)) NIL) (($ $ (-721)) 76) (($ $ (-531)) 145 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 146 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1168 |#1| |#2|) (-1167 |#1| |#2|) (-986) (-1144 |#1|)) (T -1168)) -NIL -(-1167 |#1| |#2|) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1148 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 22)) (-2523 (((-1148 |#1| |#2| |#3|) $) NIL) (((-1176 |#1| |#2| |#3|) $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1318 (((-388 (-531)) $) 57)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) (-1148 |#1| |#2| |#3|)) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) 30) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3671 (((-1148 |#1| |#2| |#3|) $) 60)) (-1633 (((-3 (-1148 |#1| |#2| |#3|) "failed") $) NIL)) (-2385 (((-1148 |#1| |#2| |#3|) $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 39 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 40 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $ (-1180 |#2|)) 38)) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 89) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1148 |#1| |#2| |#3|)) 16) (($ (-1176 |#1| |#2| |#3|)) 17) (($ (-1180 |#2|)) 36) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 12)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 32 T CONST)) (-3050 (($) 26 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 34)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1169 |#1| |#2| |#3|) (-13 (-1167 |#1| (-1148 |#1| |#2| |#3|)) (-977 (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1169)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1167 |#1| (-1148 |#1| |#2| |#3|)) (-977 (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 34)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-388 (-531))))) (((-3 (-1169 |#2| |#3| |#4|) "failed") $) 20)) (-2523 (((-531) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-531)))) (((-388 (-531)) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-388 (-531))))) (((-1169 |#2| |#3| |#4|) $) NIL)) (-2500 (($ $) 35)) (-3622 (((-3 $ "failed") $) 25)) (-2226 (($ $) NIL (|has| (-1169 |#2| |#3| |#4|) (-432)))) (-2490 (($ $ (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 11)) (-3380 (((-110) $) NIL)) (-2669 (($ (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) 23)) (-3005 (((-300 |#2| |#3| |#4|) $) NIL)) (-2736 (($ (-1 (-300 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) $) NIL)) (-3261 (($ (-1 (-1169 |#2| |#3| |#4|) (-1169 |#2| |#3| |#4|)) $) NIL)) (-1872 (((-3 (-790 |#2|) "failed") $) 75)) (-2462 (($ $) NIL)) (-2475 (((-1169 |#2| |#3| |#4|) $) 18)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 (((-1169 |#2| |#3| |#4|) $) NIL)) (-3609 (((-3 $ "failed") $ (-1169 |#2| |#3| |#4|)) NIL (|has| (-1169 |#2| |#3| |#4|) (-523))) (((-3 $ "failed") $ $) NIL)) (-4069 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#2|)))))) (|:| |%type| (-1085))) "failed") $) 58)) (-2012 (((-300 |#2| |#3| |#4|) $) 14)) (-1767 (((-1169 |#2| |#3| |#4|) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-1169 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL (-1435 (|has| (-1169 |#2| |#3| |#4|) (-37 (-388 (-531)))) (|has| (-1169 |#2| |#3| |#4|) (-977 (-388 (-531))))))) (-2708 (((-598 (-1169 |#2| |#3| |#4|)) $) NIL)) (-3188 (((-1169 |#2| |#3| |#4|) $ (-300 |#2| |#3| |#4|)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| (-1169 |#2| |#3| |#4|) (-138)))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| (-1169 |#2| |#3| |#4|) (-162)))) (-2587 (((-110) $ $) NIL)) (-3035 (($) 63 T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ (-1169 |#2| |#3| |#4|)) NIL (|has| (-1169 |#2| |#3| |#4|) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-1169 |#2| |#3| |#4|)) NIL) (($ (-1169 |#2| |#3| |#4|) $) NIL) (($ (-388 (-531)) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| (-1169 |#2| |#3| |#4|) (-37 (-388 (-531))))))) -(((-1170 |#1| |#2| |#3| |#4|) (-13 (-307 (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-523) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -4069 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#2|)))))) (|:| |%type| (-1085))) "failed") $)))) (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)) (-13 (-27) (-1124) (-411 |#1|)) (-1102) |#2|) (T -1170)) -((-1872 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *2 (-790 *4)) (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4))) (-4069 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4)))))) (|:| |%type| (-1085)))) (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4)))) -(-13 (-307 (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-523) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -4069 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#2|)))))) (|:| |%type| (-1085))) "failed") $)))) -((-3482 ((|#2| $) 29)) (-3308 ((|#2| $) 18)) (-2072 (($ $) 36)) (-2300 (($ $ (-531)) 64)) (-4058 (((-110) $ (-721)) 33)) (-2039 ((|#2| $ |#2|) 61)) (-2136 ((|#2| $ |#2|) 59)) (-2454 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2713 (($ $ (-598 $)) 60)) (-3297 ((|#2| $) 17)) (-3062 (($ $) NIL) (($ $ (-721)) 42)) (-1555 (((-598 $) $) 26)) (-1478 (((-110) $ $) 50)) (-3280 (((-110) $ (-721)) 32)) (-3332 (((-110) $ (-721)) 31)) (-2672 (((-110) $) 28)) (-2309 ((|#2| $) 24) (($ $ (-721)) 46)) (-1785 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2930 (((-110) $) 22)) (-1958 (($ $) 39)) (-2980 (($ $) 65)) (-3124 (((-721) $) 41)) (-2874 (($ $) 40)) (-3536 (($ $ $) 58) (($ |#2| $) NIL)) (-3495 (((-598 $) $) 27)) (-2148 (((-110) $ $) 48)) (-2167 (((-721) $) 35))) -(((-1171 |#1| |#2|) (-10 -8 (-15 -2300 (|#1| |#1| (-531))) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2136 (|#2| |#1| |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -2980 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -3308 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -1785 (|#2| |#1| "first")) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2039 (|#2| |#1| |#2|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2713 (|#1| |#1| (-598 |#1|))) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721)))) (-1172 |#2|) (-1138)) (T -1171)) -NIL -(-10 -8 (-15 -2300 (|#1| |#1| (-531))) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2136 (|#2| |#1| |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -2980 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -3308 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -1785 (|#2| |#1| "first")) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2039 (|#2| |#1| |#2|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2713 (|#1| |#1| (-598 |#1|))) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721)))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-1818 (($ $ $) 61 (|has| $ (-6 -4274))) (($ $ |#1|) 60 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 77)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1172 |#1|) (-133) (-1138)) (T -1172)) -((-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2874 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-1958 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2980 (*1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3112 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1998 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2454 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-2136 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3)) (-4 *3 (-1138))))) -(-13 (-951 |t#1|) (-10 -8 (-15 -3536 ($ $ $)) (-15 -3536 ($ |t#1| $)) (-15 -3046 (|t#1| $)) (-15 -1785 (|t#1| $ "first")) (-15 -3046 ($ $ (-721))) (-15 -3062 ($ $)) (-15 -1785 ($ $ "rest")) (-15 -3062 ($ $ (-721))) (-15 -2309 (|t#1| $)) (-15 -1785 (|t#1| $ "last")) (-15 -2309 ($ $ (-721))) (-15 -2072 ($ $)) (-15 -3297 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -2874 ($ $)) (-15 -3124 ((-721) $)) (-15 -1958 ($ $)) (IF (|has| $ (-6 -4274)) (PROGN (-15 -1818 ($ $ $)) (-15 -1818 ($ $ |t#1|)) (-15 -2980 ($ $)) (-15 -3112 (|t#1| $ |t#1|)) (-15 -2454 (|t#1| $ "first" |t#1|)) (-15 -1998 ($ $ $)) (-15 -2454 ($ $ "rest" $)) (-15 -2136 (|t#1| $ |t#1|)) (-15 -2454 (|t#1| $ "last" |t#1|)) (-15 -2300 ($ $ (-531)))) |%noBranch|))) -(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T)) -((-3261 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|))) (-986) (-986) (-1175 |#1|) (-1175 |#2|)) (T -1173)) -((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-4 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6 *4 *2)) (-4 *4 (-1175 *5))))) -(-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|))) -((-3019 (((-110) $) 15)) (-2367 (($ $) 92)) (-2218 (($ $) 68)) (-2343 (($ $) 88)) (-2198 (($ $) 64)) (-2391 (($ $) 96)) (-2241 (($ $) 72)) (-2076 (($ $) 62)) (-2798 (($ $) 60)) (-2403 (($ $) 98)) (-2253 (($ $) 74)) (-2379 (($ $) 94)) (-2229 (($ $) 70)) (-2356 (($ $) 90)) (-2210 (($ $) 66)) (-2265 (((-806) $) 48) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2442 (($ $) 104)) (-2292 (($ $) 80)) (-2416 (($ $) 100)) (-2266 (($ $) 76)) (-2468 (($ $) 108)) (-2318 (($ $) 84)) (-2753 (($ $) 110)) (-2331 (($ $) 86)) (-2456 (($ $) 106)) (-2305 (($ $) 82)) (-2429 (($ $) 102)) (-2279 (($ $) 78)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-388 (-531))) 58))) -(((-1174 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2229 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -3019 ((-110) |#1|)) (-15 -2265 ((-806) |#1|))) (-1175 |#2|) (-986)) (T -1174)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2229 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -3019 ((-110) |#1|)) (-15 -2265 ((-806) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-721)) 96) (($ $ (-721) (-721)) 95)) (-4034 (((-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|)))) 153) (($ (-1083 |#1|)) 151)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-2034 (($ $) 150)) (-3383 (((-895 |#1|) $ (-721)) 148) (((-895 |#1|) $ (-721) (-721)) 147)) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $) 98) (((-721) $ (-721)) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99)) (-3192 (($ (-1 |#1| (-531)) $) 149)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-721)) 59) (($ $ (-1014) (-721)) 74) (($ $ (-598 (-1014)) (-598 (-721))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-1788 (($ $) 145 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 144 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-1846 (($ $ (-721)) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-721)))))) (-1785 ((|#1| $ (-721)) 102) (($ $ $) 79 (|has| (-721) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2012 (((-721) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-2708 (((-1083 |#1|) $) 152)) (-3188 ((|#1| $ (-721)) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-721)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-721)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ |#1|) 146 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531))))))) -(((-1175 |#1|) (-133) (-986)) (T -1175)) -((-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-721)) (|:| |c| *3)))) (-4 *3 (-986)) (-4 *1 (-1175 *3)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-5 *2 (-1083 *3)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-4 *1 (-1175 *3)))) (-2034 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)))) (-3192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1175 *3)) (-4 *3 (-986)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986)) (-5 *2 (-895 *4)))) (-3383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986)) (-5 *2 (-895 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) (-1788 (*1 *1 *1 *2) (-1435 (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) (-4 *3 (-37 (-388 (-531)))))) (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531))))))))) -(-13 (-1162 |t#1| (-721)) (-10 -8 (-15 -4067 ($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |t#1|))))) (-15 -2708 ((-1083 |t#1|) $)) (-15 -4067 ($ (-1083 |t#1|))) (-15 -2034 ($ $)) (-15 -3192 ($ (-1 |t#1| (-531)) $)) (-15 -3383 ((-895 |t#1|) $ (-721))) (-15 -3383 ((-895 |t#1|) $ (-721) (-721))) (IF (|has| |t#1| (-344)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (IF (|has| |t#1| (-15 -1788 (|t#1| |t#1| (-1102)))) (IF (|has| |t#1| (-15 -2695 ((-598 (-1102)) |t#1|))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1124)) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-29 (-531))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-943)) (-6 (-1124))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-721)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-721) |#1|))) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-721) (-1042)) ((-272) |has| |#1| (-523)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) |has| |#1| (-523)) ((-601 #1#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1162 |#1| #0#) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 87)) (-3361 (((-1157 |#2| |#1|) $ (-721)) 73)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) 137 (|has| |#1| (-523)))) (-2796 (($ $ (-721)) 122) (($ $ (-721) (-721)) 124)) (-4034 (((-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|))) $) 42)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|)))) 53) (($ (-1083 |#1|)) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3853 (($ $) 128)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2034 (($ $) 135)) (-3383 (((-895 |#1|) $ (-721)) 63) (((-895 |#1|) $ (-721) (-721)) 65)) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $) NIL) (((-721) $ (-721)) NIL)) (-3481 (((-110) $) NIL)) (-3128 (($ $) 112)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3714 (($ (-531) (-531) $) 130)) (-3688 (($ $ (-864)) 134)) (-3192 (($ (-1 |#1| (-531)) $) 106)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 15) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 94)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1656 (($ $) 110)) (-2971 (($ $) 108)) (-3721 (($ (-531) (-531) $) 132)) (-1788 (($ $) 145 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 151 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 146 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2942 (($ $ (-531) (-531)) 116)) (-1846 (($ $ (-721)) 118)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-1352 (($ $) 114)) (-4115 (((-1083 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-721)))))) (-1785 ((|#1| $ (-721)) 91) (($ $ $) 126 (|has| (-721) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) 103 (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $ (-1180 |#2|)) 99)) (-2012 (((-721) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 120)) (-2265 (((-806) $) NIL) (($ (-531)) 24) (($ (-388 (-531))) 143 (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1157 |#2| |#1|)) 80) (($ (-1180 |#2|)) 20)) (-2708 (((-1083 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) 90)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 88)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-721)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-721)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 17 T CONST)) (-3050 (($) 13 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 102)) (-2237 (($ $ $) 18)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ |#1|) 140 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))))) -(((-1176 |#1| |#2| |#3|) (-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (-15 -2971 ($ $)) (-15 -1656 ($ $)) (-15 -3128 ($ $)) (-15 -1352 ($ $)) (-15 -2942 ($ $ (-531) (-531))) (-15 -3853 ($ $)) (-15 -3714 ($ (-531) (-531) $)) (-15 -3721 ($ (-531) (-531) $)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1176)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1176 *4 *5 *6)) (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-1656 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-3128 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-1352 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-2942 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3))) (-3853 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-3714 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3))) (-3721 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (-15 -2971 ($ $)) (-15 -1656 ($ $)) (-15 -3128 ($ $)) (-15 -1352 ($ $)) (-15 -2942 ($ $ (-531) (-531))) (-15 -3853 ($ $)) (-15 -3714 ($ (-531) (-531) $)) (-15 -3721 ($ (-531) (-531) $)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) -((-3189 (((-1 (-1083 |#1|) (-598 (-1083 |#1|))) (-1 |#2| (-598 |#2|))) 24)) (-2301 (((-1 (-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3917 (((-1 (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2|)) 13)) (-3920 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4140 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3014 ((|#2| (-1 |#2| (-598 |#2|)) (-598 |#1|)) 54)) (-3168 (((-598 |#2|) (-598 |#1|) (-598 (-1 |#2| (-598 |#2|)))) 61)) (-3632 ((|#2| |#2| |#2|) 43))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -3917 ((-1 (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2|))) (-15 -2301 ((-1 (-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3189 ((-1 (-1083 |#1|) (-598 (-1083 |#1|))) (-1 |#2| (-598 |#2|)))) (-15 -3632 (|#2| |#2| |#2|)) (-15 -4140 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3920 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3014 (|#2| (-1 |#2| (-598 |#2|)) (-598 |#1|))) (-15 -3168 ((-598 |#2|) (-598 |#1|) (-598 (-1 |#2| (-598 |#2|)))))) (-37 (-388 (-531))) (-1175 |#1|)) (T -1177)) -((-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 (-1 *6 (-598 *6)))) (-4 *5 (-37 (-388 (-531)))) (-4 *6 (-1175 *5)) (-5 *2 (-598 *6)) (-5 *1 (-1177 *5 *6)))) (-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-598 *2))) (-5 *4 (-598 *5)) (-4 *5 (-37 (-388 (-531)))) (-4 *2 (-1175 *5)) (-5 *1 (-1177 *5 *2)))) (-3920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2)) (-4 *4 (-37 (-388 (-531)))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2)) (-4 *4 (-37 (-388 (-531)))))) (-3632 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1175 *3)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-598 *5))) (-4 *5 (-1175 *4)) (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-598 (-1083 *4)))) (-5 *1 (-1177 *4 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1175 *4)) (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-1083 *4) (-1083 *4))) (-5 *1 (-1177 *4 *5)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1175 *4)) (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-1083 *4))) (-5 *1 (-1177 *4 *5))))) -(-10 -7 (-15 -3917 ((-1 (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2|))) (-15 -2301 ((-1 (-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3189 ((-1 (-1083 |#1|) (-598 (-1083 |#1|))) (-1 |#2| (-598 |#2|)))) (-15 -3632 (|#2| |#2| |#2|)) (-15 -4140 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3920 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3014 (|#2| (-1 |#2| (-598 |#2|)) (-598 |#1|))) (-15 -3168 ((-598 |#2|) (-598 |#1|) (-598 (-1 |#2| (-598 |#2|)))))) -((-1286 ((|#2| |#4| (-721)) 30)) (-3729 ((|#4| |#2|) 25)) (-3559 ((|#4| (-388 |#2|)) 52 (|has| |#1| (-523)))) (-3639 (((-1 |#4| (-598 |#4|)) |#3|) 46))) -(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 (|#4| |#2|)) (-15 -1286 (|#2| |#4| (-721))) (-15 -3639 ((-1 |#4| (-598 |#4|)) |#3|)) (IF (|has| |#1| (-523)) (-15 -3559 (|#4| (-388 |#2|))) |%noBranch|)) (-986) (-1160 |#1|) (-609 |#2|) (-1175 |#1|)) (T -1178)) -((-3559 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-523)) (-4 *4 (-986)) (-4 *2 (-1175 *4)) (-5 *1 (-1178 *4 *5 *6 *2)) (-4 *6 (-609 *5)))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *5 (-1160 *4)) (-5 *2 (-1 *6 (-598 *6))) (-5 *1 (-1178 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-1175 *4)))) (-1286 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-1178 *5 *2 *6 *3)) (-4 *6 (-609 *2)) (-4 *3 (-1175 *5)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *3 (-1160 *4)) (-4 *2 (-1175 *4)) (-5 *1 (-1178 *4 *3 *5 *2)) (-4 *5 (-609 *3))))) -(-10 -7 (-15 -3729 (|#4| |#2|)) (-15 -1286 (|#2| |#4| (-721))) (-15 -3639 ((-1 |#4| (-598 |#4|)) |#3|)) (IF (|has| |#1| (-523)) (-15 -3559 (|#4| (-388 |#2|))) |%noBranch|)) -NIL -(((-1179) (-133)) (T -1179)) +((-3008 (((-111)) 15)) (-4223 (((-1205) (-606 |#1|) (-606 |#1|)) 19) (((-1205) (-606 |#1|)) 20)) (-1642 (((-111) |#1| |#1|) 32 (|has| |#1| (-807)))) (-2489 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-3273 ((|#1| (-606 |#1|)) 33 (|has| |#1| (-807))) ((|#1| (-606 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-1685 (((-2 (|:| -3039 (-606 |#1|)) (|:| -1687 (-606 |#1|)))) 17))) +(((-1155 |#1|) (-10 -7 (-15 -4223 ((-1205) (-606 |#1|))) (-15 -4223 ((-1205) (-606 |#1|) (-606 |#1|))) (-15 -1685 ((-2 (|:| -3039 (-606 |#1|)) (|:| -1687 (-606 |#1|))))) (-15 -2489 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2489 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -3273 (|#1| (-606 |#1|) (-1 (-111) |#1| |#1|))) (-15 -3008 ((-111))) (IF (|has| |#1| (-807)) (PROGN (-15 -3273 (|#1| (-606 |#1|))) (-15 -1642 ((-111) |#1| |#1|))) |%noBranch|)) (-1045)) (T -1155)) +((-1642 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-807)) (-4 *3 (-1045)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-807)) (-5 *1 (-1155 *2)))) (-3008 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1155 *2)) (-4 *2 (-1045)))) (-2489 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1045)) (-5 *2 (-111)) (-5 *1 (-1155 *3)))) (-2489 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) (-1685 (*1 *2) (-12 (-5 *2 (-2 (|:| -3039 (-606 *3)) (|:| -1687 (-606 *3)))) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) (-4223 (*1 *2 *3 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) (-5 *1 (-1155 *4)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) (-5 *1 (-1155 *4))))) +(-10 -7 (-15 -4223 ((-1205) (-606 |#1|))) (-15 -4223 ((-1205) (-606 |#1|) (-606 |#1|))) (-15 -1685 ((-2 (|:| -3039 (-606 |#1|)) (|:| -1687 (-606 |#1|))))) (-15 -2489 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2489 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -3273 (|#1| (-606 |#1|) (-1 (-111) |#1| |#1|))) (-15 -3008 ((-111))) (IF (|has| |#1| (-807)) (PROGN (-15 -3273 (|#1| (-606 |#1|))) (-15 -1642 ((-111) |#1| |#1|))) |%noBranch|)) +((-2970 (((-1205) (-606 (-1117)) (-606 (-1117))) 13) (((-1205) (-606 (-1117))) 11)) (-1407 (((-1205)) 14)) (-3233 (((-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117))))) 18))) +(((-1156) (-10 -7 (-15 -2970 ((-1205) (-606 (-1117)))) (-15 -2970 ((-1205) (-606 (-1117)) (-606 (-1117)))) (-15 -3233 ((-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117)))))) (-15 -1407 ((-1205))))) (T -1156)) +((-1407 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1156)))) (-3233 (*1 *2) (-12 (-5 *2 (-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117))))) (-5 *1 (-1156)))) (-2970 (*1 *2 *3 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156))))) +(-10 -7 (-15 -2970 ((-1205) (-606 (-1117)))) (-15 -2970 ((-1205) (-606 (-1117)) (-606 (-1117)))) (-15 -3233 ((-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117)))))) (-15 -1407 ((-1205)))) +((-1395 (($ $) 17)) (-2639 (((-111) $) 24))) +(((-1157 |#1|) (-10 -8 (-15 -1395 (|#1| |#1|)) (-15 -2639 ((-111) |#1|))) (-1158)) (T -1157)) +NIL +(-10 -8 (-15 -1395 (|#1| |#1|)) (-15 -2639 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 49)) (-2414 (((-402 $) $) 50)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2639 (((-111) $) 51)) (-2836 (((-111) $) 30)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 48)) (-3515 (((-3 $ "failed") $ $) 40)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41)) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24))) +(((-1158) (-134)) (T -1158)) +((-2639 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-111)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158)))) (-1395 (*1 *1 *1) (-4 *1 (-1158))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158))))) +(-13 (-435) (-10 -8 (-15 -2639 ((-111) $)) (-15 -2414 ((-402 $) $)) (-15 -1395 ($ $)) (-15 -3622 ((-402 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-100) . T) ((-110 $ $) . T) ((-129) . T) ((-579 (-816)) . T) ((-163) . T) ((-274) . T) ((-435) . T) ((-529) . T) ((-609 $) . T) ((-678 $) . T) ((-687) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1612 (((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)) 23))) +(((-1159 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1612 ((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)))) (-998) (-998) (-1117) (-1117) |#1| |#2|) (T -1159)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5 *7 *9)) (-4 *5 (-998)) (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1164 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) +(-10 -7 (-15 -1612 ((-1164 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1164 |#1| |#3| |#5|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 96) (($ $ (-537) (-537)) 95)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 171)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 169 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 168 (|has| |#1| (-529)))) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-537) $) 98) (((-537) $ (-537)) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99)) (-3968 (($ (-1 |#1| (-537)) $) 170)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-537)) 59) (($ $ (-1027) (-537)) 74) (($ $ (-606 (-1027)) (-606 (-537))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-537)))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) 102) (($ $ $) 79 (|has| (-537) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2872 (((-537) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-537)) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-537) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-1160 |#1|) (-134) (-998)) (T -1160)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) (-4 *3 (-998)) (-4 *1 (-1160 *3)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1160 *3)) (-4 *3 (-998)))) (-1897 (*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) (-5 *2 (-391 (-905 *4))))) (-1897 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) (-5 *2 (-391 (-905 *4))))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) (-3092 (*1 *1 *1 *2) (-1533 (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) (-4 *3 (-37 (-391 (-537)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537))))))))) +(-13 (-1178 |t#1| (-537)) (-10 -8 (-15 -2411 ($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |t#1|))))) (-15 -3968 ($ (-1 |t#1| (-537)) $)) (IF (|has| |t#1| (-529)) (PROGN (-15 -1897 ((-391 (-905 |t#1|)) $ (-537))) (-15 -1897 ((-391 (-905 |t#1|)) $ (-537) (-537)))) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (IF (|has| |t#1| (-15 -3092 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3757 ((-606 (-1117)) |t#1|))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1139)) (IF (|has| |t#1| (-912)) (IF (|has| |t#1| (-29 (-537))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-954)) (-6 (-1139))) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-347)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-537)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-537) |#1|))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-537) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-347) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1158) |has| |#1| (-347)) ((-1178 |#1| #0#) . T)) +((-1656 (((-111) $) 12)) (-1516 (((-3 |#3| "failed") $) 17) (((-3 (-1117) "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL)) (-3958 ((|#3| $) 14) (((-1117) $) NIL) (((-391 (-537)) $) NIL) (((-537) $) NIL))) +(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) (-1162 |#2| |#3|) (-998) (-1191 |#2|)) (T -1161)) +NIL +(-10 -8 (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -3958 ((-1117) |#1|)) (-15 -1516 ((-3 (-1117) "failed") |#1|)) (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-1874 ((|#2| $) 228 (-3319 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 96) (($ $ (-537) (-537)) 95)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 103)) (-2712 ((|#2| $) 264)) (-2516 (((-3 |#2| "failed") $) 260)) (-3815 ((|#2| $) 261)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1649 (((-402 (-1113 $)) (-1113 $)) 237 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 234 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) 246 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 171)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#2| "failed") $) 267) (((-3 (-537) "failed") $) 256 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) 254 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-1117) "failed") $) 239 (-3319 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-3958 ((|#2| $) 266) (((-537) $) 257 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-391 (-537)) $) 255 (-3319 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-1117) $) 240 (-3319 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-4000 (($ $) 263) (($ (-537) $) 262)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-2053 (((-649 |#2|) (-649 $)) 218 (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) 217 (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 216 (-3319 (|has| |#2| (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) 215 (-3319 (|has| |#2| (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) 32)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 169 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 168 (|has| |#1| (-529)))) (-1618 (($) 230 (-3319 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-3797 (((-111) $) 244 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 222 (-3319 (|has| |#2| (-839 (-363))) (|has| |#1| (-347)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 221 (-3319 (|has| |#2| (-839 (-537))) (|has| |#1| (-347))))) (-4231 (((-537) $) 98) (((-537) $ (-537)) 97)) (-2836 (((-111) $) 30)) (-2868 (($ $) 226 (|has| |#1| (-347)))) (-3301 ((|#2| $) 224 (|has| |#1| (-347)))) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) 258 (-3319 (|has| |#2| (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) 245 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) 99)) (-3968 (($ (-1 |#1| (-537)) $) 170)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-537)) 59) (($ $ (-1027) (-537)) 74) (($ $ (-606 (-1027)) (-606 (-537))) 73)) (-2444 (($ $ $) 248 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-3889 (($ $ $) 249 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-1612 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-347)))) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-3827 (($ (-537) |#2|) 265)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-3956 (($) 259 (-3319 (|has| |#2| (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-1790 (($ $) 229 (-3319 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3830 ((|#2| $) 232 (-3319 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) 235 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) 236 (-3319 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) |#2|) 209 (-3319 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 |#2|)) 208 (-3319 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-278 |#2|))) 207 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-278 |#2|)) 206 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ |#2| |#2|) 205 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-606 |#2|) (-606 |#2|)) 204 (-3319 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) 102) (($ $ $) 79 (|has| (-537) (-1057))) (($ $ |#2|) 203 (-3319 (|has| |#2| (-270 |#2| |#2|)) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) 213 (|has| |#1| (-347))) (($ $ (-731)) 82 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 80 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) 87 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117) (-731)) 86 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-606 (-1117))) 85 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117)) 84 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))))) (-2395 (($ $) 227 (|has| |#1| (-347)))) (-3315 ((|#2| $) 225 (|has| |#1| (-347)))) (-2872 (((-537) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-210) $) 243 (-3319 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-363) $) 242 (-3319 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-513) $) 241 (-3319 (|has| |#2| (-580 (-513))) (|has| |#1| (-347)))) (((-845 (-363)) $) 220 (-3319 (|has| |#2| (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) 219 (-3319 (|has| |#2| (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 233 (-3319 (-3319 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#1| (-347))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 268) (($ (-1117)) 238 (-3319 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347)))) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-537)) 57)) (-2644 (((-3 $ "failed") $) 46 (-1533 (-3319 (-1533 (|has| |#2| (-139)) (-3319 (|has| $ (-139)) (|has| |#2| (-862)))) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-3903 ((|#2| $) 231 (-3319 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) 247 (-3319 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) 211 (|has| |#1| (-347))) (($ $ (-731)) 83 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 81 (-1533 (-3319 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) 91 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117) (-731)) 90 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-606 (-1117))) 89 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))))) (($ $ (-1117)) 88 (-1533 (-3319 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))))) (-2293 (((-111) $ $) 251 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2271 (((-111) $ $) 252 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 250 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2263 (((-111) $ $) 253 (-3319 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347))) (($ |#2| |#2|) 223 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-347))) (($ |#2| $) 201 (|has| |#1| (-347))) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-1162 |#1| |#2|) (-134) (-998) (-1191 |t#1|)) (T -1162)) +((-2872 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1191 *3)) (-5 *2 (-537)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-1162 *3 *2)) (-4 *2 (-1191 *3)))) (-3827 (*1 *1 *2 *3) (-12 (-5 *2 (-537)) (-4 *4 (-998)) (-4 *1 (-1162 *4 *3)) (-4 *3 (-1191 *4)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3)))) (-4000 (*1 *1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1191 *2)))) (-4000 (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1191 *3)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3)))) (-2516 (*1 *2 *1) (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3))))) +(-13 (-1160 |t#1|) (-989 |t#2|) (-10 -8 (-15 -3827 ($ (-537) |t#2|)) (-15 -2872 ((-537) $)) (-15 -2712 (|t#2| $)) (-15 -4000 ($ $)) (-15 -4000 ($ (-537) $)) (-15 -2341 ($ |t#2|)) (-15 -3815 (|t#2| $)) (-15 -2516 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-347)) (-6 (-945 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-537)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 |#2|) |has| |#1| (-347)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-347)) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-139))) (|has| |#1| (-139))) ((-141) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-141))) (|has| |#1| (-141))) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-580 (-210)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) ((-580 (-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) ((-580 (-513)) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-580 (-845 (-537))))) ((-216 |#2|) |has| |#1| (-347)) ((-218) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-218))) (|has| |#1| (-15 * (|#1| (-537) |#1|)))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 |#2| $) -12 (|has| |#1| (-347)) (|has| |#2| (-270 |#2| |#2|))) ((-270 $ $) |has| (-537) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-293 |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|))) ((-347) |has| |#1| (-347)) ((-322 |#2|) |has| |#1| (-347)) ((-361 |#2|) |has| |#1| (-347)) ((-384 |#2|) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-495 (-1117) |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-495 (-1117) |#2|))) ((-495 |#2| |#2|) -12 (|has| |#1| (-347)) (|has| |#2| (-293 |#2|))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 |#2|) |has| |#1| (-347)) ((-609 $) . T) ((-602 (-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-602 (-537)))) ((-602 |#2|) |has| |#1| (-347)) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 |#2|) |has| |#1| (-347)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-751) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-752) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-754) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-755) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-780) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-805) -12 (|has| |#1| (-347)) (|has| |#2| (-780))) ((-807) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-807))) (-12 (|has| |#1| (-347)) (|has| |#2| (-780)))) ((-853 (-1117)) -1533 (-12 (|has| |#1| (-347)) (|has| |#2| (-853 (-1117)))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))) ((-839 (-363)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-363)))) ((-839 (-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-839 (-537)))) ((-837 |#2|) |has| |#1| (-347)) ((-862) -12 (|has| |#1| (-347)) (|has| |#2| (-862))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-945 |#2|) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-973) -12 (|has| |#1| (-347)) (|has| |#2| (-973))) ((-989 (-391 (-537))) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537)))) ((-989 (-537)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-537)))) ((-989 (-1117)) -12 (|has| |#1| (-347)) (|has| |#2| (-989 (-1117)))) ((-989 |#2|) . T) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 |#2|) |has| |#1| (-347)) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) -12 (|has| |#1| (-347)) (|has| |#2| (-1093))) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1154) |has| |#1| (-347)) ((-1158) |has| |#1| (-347)) ((-1160 |#1|) . T) ((-1178 |#1| #0#) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 70)) (-1874 ((|#2| $) NIL (-12 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 88)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-537)) 97) (($ $ (-537) (-537)) 99)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) 47)) (-2712 ((|#2| $) 11)) (-2516 (((-3 |#2| "failed") $) 30)) (-3815 ((|#2| $) 31)) (-1403 (($ $) 192 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 168 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) 188 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 164 (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) 57)) (-1429 (($ $) 196 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 172 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) 144) (((-3 (-537) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-1117) "failed") $) NIL (-12 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-3958 ((|#2| $) 143) (((-537) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-391 (-537)) $) NIL (-12 (|has| |#2| (-989 (-537))) (|has| |#1| (-347)))) (((-1117) $) NIL (-12 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347))))) (-4000 (($ $) 61) (($ (-537) $) 24)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 |#2|) (-649 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| |#2| (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) 77)) (-1897 (((-391 (-905 |#1|)) $ (-537)) 112 (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) 114 (|has| |#1| (-529)))) (-1618 (($) NIL (-12 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-3797 (((-111) $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) 64)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| |#2| (-839 (-363))) (|has| |#1| (-347)))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| |#2| (-839 (-537))) (|has| |#1| (-347))))) (-4231 (((-537) $) 93) (((-537) $ (-537)) 95)) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL (|has| |#1| (-347)))) (-3301 ((|#2| $) 151 (|has| |#1| (-347)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) 136)) (-3968 (($ (-1 |#1| (-537)) $) 132)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-537)) 19) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-2444 (($ $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-3889 (($ $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-1612 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-347)))) (-2180 (($ $) 162 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3827 (($ (-537) |#2|) 10)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 145 (|has| |#1| (-347)))) (-3092 (($ $) 214 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 219 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139)))))) (-3956 (($) NIL (-12 (|has| |#2| (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1790 (($ $) NIL (-12 (|has| |#2| (-291)) (|has| |#1| (-347))))) (-3830 ((|#2| $) NIL (-12 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-537)) 126)) (-3515 (((-3 $ "failed") $ $) 116 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) 160 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) |#2|) NIL (-12 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 |#2|)) NIL (-12 (|has| |#2| (-495 (-1117) |#2|)) (|has| |#1| (-347)))) (($ $ (-606 (-278 |#2|))) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-278 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347)))) (($ $ (-606 |#2|) (-606 |#2|)) NIL (-12 (|has| |#2| (-293 |#2|)) (|has| |#1| (-347))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) 91) (($ $ $) 79 (|has| (-537) (-1057))) (($ $ |#2|) NIL (-12 (|has| |#2| (-270 |#2| |#2|)) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 137 (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) 140 (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2395 (($ $) NIL (|has| |#1| (-347)))) (-3315 ((|#2| $) 152 (|has| |#1| (-347)))) (-2872 (((-537) $) 12)) (-1441 (($ $) 198 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 174 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 194 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 170 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 190 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 166 (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-210) $) NIL (-12 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-363) $) NIL (-12 (|has| |#2| (-973)) (|has| |#1| (-347)))) (((-513) $) NIL (-12 (|has| |#2| (-580 (-513))) (|has| |#1| (-347)))) (((-845 (-363)) $) NIL (-12 (|has| |#2| (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) NIL (-12 (|has| |#2| (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862)) (|has| |#1| (-347))))) (-1577 (($ $) 124)) (-2341 (((-816) $) 245) (($ (-537)) 23) (($ |#1|) 21 (|has| |#1| (-163))) (($ |#2|) 20) (($ (-1117)) NIL (-12 (|has| |#2| (-989 (-1117))) (|has| |#1| (-347)))) (($ (-391 (-537))) 155 (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-537)) 74)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862)) (|has| |#1| (-347))) (-12 (|has| |#2| (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) 142)) (-2184 ((|#1| $) 90)) (-3903 ((|#2| $) NIL (-12 (|has| |#2| (-522)) (|has| |#1| (-347))))) (-1475 (($ $) 204 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 180 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 200 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 176 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 208 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 184 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 210 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 186 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 206 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 182 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 202 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 178 (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) NIL (-12 (|has| |#2| (-780)) (|has| |#1| (-347))))) (-2928 (($) 13 T CONST)) (-2943 (($) 17 T CONST)) (-4230 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-347))) (($ $ (-1 |#2| |#2|) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) NIL (-1533 (-12 (|has| |#2| (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#2| (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2293 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2271 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2244 (((-111) $ $) 63)) (-2282 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2263 (((-111) $ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-347))))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 149 (|has| |#1| (-347))) (($ |#2| |#2|) 150 (|has| |#1| (-347)))) (-2329 (($ $) 213) (($ $ $) 68)) (-2318 (($ $ $) 66)) (** (($ $ (-874)) NIL) (($ $ (-731)) 73) (($ $ (-537)) 146 (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 158 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-347))) (($ |#2| $) 147 (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1163 |#1| |#2|) (-1162 |#1| |#2|) (-998) (-1191 |#1|)) (T -1163)) +NIL +(-1162 |#1| |#2|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-1874 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 10)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-3377 (($ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4017 (((-111) $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1586 (($ $ (-537)) NIL) (($ $ (-537) (-537)) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|))) $) NIL)) (-2712 (((-1192 |#1| |#2| |#3|) $) NIL)) (-2516 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL)) (-3815 (((-1192 |#1| |#2| |#3|) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2537 (((-537) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2411 (($ (-1098 (-2 (|:| |k| (-537)) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1117) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-3 (-391 (-537)) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-3 (-537) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-3958 (((-1192 |#1| |#2| |#3|) $) NIL) (((-1117) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (((-391 (-537)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347)))) (((-537) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))))) (-4000 (($ $) NIL) (($ (-537) $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-1192 |#1| |#2| |#3|)) (-649 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-1192 |#1| |#2| |#3|))) (|:| |vec| (-1200 (-1192 |#1| |#2| |#3|)))) (-649 $) (-1200 $)) NIL (|has| |#1| (-347))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347)))) (((-649 (-537)) (-649 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-602 (-537))) (|has| |#1| (-347))))) (-3490 (((-3 $ "failed") $) NIL)) (-1897 (((-391 (-905 |#1|)) $ (-537)) NIL (|has| |#1| (-529))) (((-391 (-905 |#1|)) $ (-537) (-537)) NIL (|has| |#1| (-529)))) (-1618 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-3797 (((-111) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4196 (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-839 (-537))) (|has| |#1| (-347)))) (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-839 (-363))) (|has| |#1| (-347))))) (-4231 (((-537) $) NIL) (((-537) $ (-537)) NIL)) (-2836 (((-111) $) NIL)) (-2868 (($ $) NIL (|has| |#1| (-347)))) (-3301 (((-1192 |#1| |#2| |#3|) $) NIL (|has| |#1| (-347)))) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2824 (((-3 $ "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))))) (-2840 (((-111) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-3172 (($ $ (-874)) NIL)) (-3968 (($ (-1 |#1| (-537)) $) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-537)) 17) (($ $ (-1027) (-537)) NIL) (($ $ (-606 (-1027)) (-606 (-537))) NIL)) (-2444 (($ $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-3889 (($ $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-347)))) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3827 (($ (-537) (-1192 |#1| |#2| |#3|)) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 25 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 26 (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1093)) (|has| |#1| (-347))) CONST)) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-1790 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-291)) (|has| |#1| (-347))))) (-3830 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-537)) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-537))))) (($ $ (-1117) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-495 (-1117) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1117)) (-606 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-495 (-1117) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-278 (-1192 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-278 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347)))) (($ $ (-606 (-1192 |#1| |#2| |#3|)) (-606 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-293 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-537)) NIL) (($ $ $) NIL (|has| (-537) (-1057))) (($ $ (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-270 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-347))))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-1196 |#2|)) 24) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) 23 (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2395 (($ $) NIL (|has| |#1| (-347)))) (-3315 (((-1192 |#1| |#2| |#3|) $) NIL (|has| |#1| (-347)))) (-2872 (((-537) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3996 (((-513) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-580 (-513))) (|has| |#1| (-347)))) (((-363) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-210) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-973)) (|has| |#1| (-347)))) (((-845 (-363)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-580 (-845 (-363)))) (|has| |#1| (-347)))) (((-845 (-537)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-580 (-845 (-537)))) (|has| |#1| (-347))))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1192 |#1| |#2| |#3|)) NIL) (($ (-1196 |#2|)) 22) (($ (-1117)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-1117))) (|has| |#1| (-347)))) (($ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529)))) (($ (-391 (-537))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-989 (-537))) (|has| |#1| (-347))) (|has| |#1| (-37 (-391 (-537))))))) (-3500 ((|#1| $ (-537)) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-139)) (|has| |#1| (-347))) (|has| |#1| (-139))))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 11)) (-3903 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-522)) (|has| |#1| (-347))))) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-862)) (|has| |#1| (-347))) (|has| |#1| (-529))))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-537)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-537)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2209 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))))) (-2928 (($) 19 T CONST)) (-2943 (($) 15 T CONST)) (-4230 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-347))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-731)) NIL (|has| |#1| (-347))) (($ $ (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-218)) (|has| |#1| (-347))) (|has| |#1| (-15 * (|#1| (-537) |#1|))))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117) (-731)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-606 (-1117))) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117)))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-853 (-1117))) (|has| |#1| (-347))) (-12 (|has| |#1| (-15 * (|#1| (-537) |#1|))) (|has| |#1| (-853 (-1117))))))) (-2293 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2271 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2263 (((-111) $ $) NIL (-1533 (-12 (|has| (-1192 |#1| |#2| |#3|) (-780)) (|has| |#1| (-347))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-807)) (|has| |#1| (-347)))))) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347))) (($ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 20)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1192 |#1| |#2| |#3|)) NIL (|has| |#1| (-347))) (($ (-1192 |#1| |#2| |#3|) $) NIL (|has| |#1| (-347))) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1164 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1164)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1162 |#1| (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-3054 (((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)) 12)) (-3159 (((-402 |#1|) |#1|) 22)) (-3622 (((-402 |#1|) |#1|) 21))) +(((-1165 |#1|) (-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)))) (-1176 (-537))) (T -1165)) +((-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537))))) (-3159 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537))))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) +(-10 -7 (-15 -3622 ((-402 |#1|) |#1|)) (-15 -3159 ((-402 |#1|) |#1|)) (-15 -3054 ((-2 (|:| |contp| (-537)) (|:| -3415 (-606 (-2 (|:| |irr| |#1|) (|:| -2430 (-537)))))) |#1| (-111)))) +((-1612 (((-1098 |#2|) (-1 |#2| |#1|) (-1167 |#1|)) 23 (|has| |#1| (-805))) (((-1167 |#2|) (-1 |#2| |#1|) (-1167 |#1|)) 17))) +(((-1166 |#1| |#2|) (-10 -7 (-15 -1612 ((-1167 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) |%noBranch|)) (-1154) (-1154)) (T -1166)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-805)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1098 *6)) (-5 *1 (-1166 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1167 *6)) (-5 *1 (-1166 *5 *6))))) +(-10 -7 (-15 -1612 ((-1167 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) (IF (|has| |#1| (-805)) (-15 -1612 ((-1098 |#2|) (-1 |#2| |#1|) (-1167 |#1|))) |%noBranch|)) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-3975 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1612 (((-1098 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-805)))) (-3039 ((|#1| $) 14)) (-1609 ((|#1| $) 10)) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-1622 (((-537) $) 18)) (-1687 ((|#1| $) 17)) (-1631 ((|#1| $) 11)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-1743 (((-111) $) 16)) (-1905 (((-1098 |#1|) $) 38 (|has| |#1| (-805))) (((-1098 |#1|) (-606 $)) 37 (|has| |#1| (-805)))) (-3996 (($ |#1|) 25)) (-2341 (($ (-1040 |#1|)) 24) (((-816) $) 34 (|has| |#1| (-1045)))) (-3401 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2042 (($ $ (-537)) 13)) (-2244 (((-111) $ $) 27 (|has| |#1| (-1045))))) +(((-1167 |#1|) (-13 (-1039 |#1|) (-10 -8 (-15 -3401 ($ |#1|)) (-15 -3975 ($ |#1|)) (-15 -2341 ($ (-1040 |#1|))) (-15 -1743 ((-111) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-1098 |#1|))) |%noBranch|))) (-1154)) (T -1167)) +((-3401 (*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154)))) (-3975 (*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1040 *3)) (-4 *3 (-1154)) (-5 *1 (-1167 *3)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1167 *3)) (-4 *3 (-1154))))) +(-13 (-1039 |#1|) (-10 -8 (-15 -3401 ($ |#1|)) (-15 -3975 ($ |#1|)) (-15 -2341 ($ (-1040 |#1|))) (-15 -1743 ((-111) $)) (IF (|has| |#1| (-1045)) (-6 (-1045)) |%noBranch|) (IF (|has| |#1| (-805)) (-6 (-1041 |#1| (-1098 |#1|))) |%noBranch|))) +((-1612 (((-1173 |#3| |#4|) (-1 |#4| |#2|) (-1173 |#1| |#2|)) 15))) +(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 ((-1173 |#3| |#4|) (-1 |#4| |#2|) (-1173 |#1| |#2|)))) (-1117) (-998) (-1117) (-998)) (T -1168)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1173 *5 *6)) (-14 *5 (-1117)) (-4 *6 (-998)) (-4 *8 (-998)) (-5 *2 (-1173 *7 *8)) (-5 *1 (-1168 *5 *6 *7 *8)) (-14 *7 (-1117))))) +(-10 -7 (-15 -1612 ((-1173 |#3| |#4|) (-1 |#4| |#2|) (-1173 |#1| |#2|)))) +((-1478 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1246 ((|#1| |#3|) 13)) (-4067 ((|#3| |#3|) 19))) +(((-1169 |#1| |#2| |#3|) (-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-529) (-945 |#1|) (-1176 |#2|)) (T -1169)) +((-1478 (*1 *2 *3) (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1169 *4 *5 *3)) (-4 *3 (-1176 *5)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-1169 *3 *4 *2)) (-4 *2 (-1176 *4)))) (-1246 (*1 *2 *3) (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-1169 *2 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -1246 (|#1| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -1478 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4128 (((-3 |#2| "failed") |#2| (-731) |#1|) 29)) (-3648 (((-3 |#2| "failed") |#2| (-731)) 30)) (-2189 (((-3 (-2 (|:| -3267 |#2|) (|:| -3278 |#2|)) "failed") |#2|) 43)) (-3403 (((-606 |#2|) |#2|) 45)) (-1423 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1170 |#1| |#2|) (-10 -7 (-15 -3648 ((-3 |#2| "failed") |#2| (-731))) (-15 -4128 ((-3 |#2| "failed") |#2| (-731) |#1|)) (-15 -1423 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2189 ((-3 (-2 (|:| -3267 |#2|) (|:| -3278 |#2|)) "failed") |#2|)) (-15 -3403 ((-606 |#2|) |#2|))) (-13 (-529) (-141)) (-1176 |#1|)) (T -1170)) +((-3403 (*1 *2 *3) (-12 (-4 *4 (-13 (-529) (-141))) (-5 *2 (-606 *3)) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1176 *4)))) (-2189 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-529) (-141))) (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-1170 *4 *3)) (-4 *3 (-1176 *4)))) (-1423 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1170 *3 *2)) (-4 *2 (-1176 *3)))) (-4128 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4)))) (-3648 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4))))) +(-10 -7 (-15 -3648 ((-3 |#2| "failed") |#2| (-731))) (-15 -4128 ((-3 |#2| "failed") |#2| (-731) |#1|)) (-15 -1423 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2189 ((-3 (-2 (|:| -3267 |#2|) (|:| -3278 |#2|)) "failed") |#2|)) (-15 -3403 ((-606 |#2|) |#2|))) +((-4095 (((-3 (-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) "failed") |#2| |#2|) 32))) +(((-1171 |#1| |#2|) (-10 -7 (-15 -4095 ((-3 (-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) "failed") |#2| |#2|))) (-529) (-1176 |#1|)) (T -1171)) +((-4095 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-1171 *4 *3)) (-4 *3 (-1176 *4))))) +(-10 -7 (-15 -4095 ((-3 (-2 (|:| -3413 |#2|) (|:| -1672 |#2|)) "failed") |#2| |#2|))) +((-1452 ((|#2| |#2| |#2|) 19)) (-3142 ((|#2| |#2| |#2|) 30)) (-1537 ((|#2| |#2| |#2| (-731) (-731)) 36))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -1452 (|#2| |#2| |#2|)) (-15 -3142 (|#2| |#2| |#2|)) (-15 -1537 (|#2| |#2| |#2| (-731) (-731)))) (-998) (-1176 |#1|)) (T -1172)) +((-1537 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-1172 *4 *2)) (-4 *2 (-1176 *4)))) (-3142 (*1 *2 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3)))) (-1452 (*1 *2 *2 *2) (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3))))) +(-10 -7 (-15 -1452 (|#2| |#2| |#2|)) (-15 -3142 (|#2| |#2| |#2|)) (-15 -1537 (|#2| |#2| |#2| (-731) (-731)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3847 (((-1200 |#2|) $ (-731)) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-3739 (($ (-1113 |#2|)) NIL)) (-3588 (((-1113 $) $ (-1027)) NIL) (((-1113 |#2|) $) NIL)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#2| (-529)))) (-3377 (($ $) NIL (|has| |#2| (-529)))) (-4017 (((-111) $) NIL (|has| |#2| (-529)))) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1841 (($ $ $) NIL (|has| |#2| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-1395 (($ $) NIL (|has| |#2| (-435)))) (-2414 (((-402 $) $) NIL (|has| |#2| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-4099 (((-111) $ $) NIL (|has| |#2| (-347)))) (-1505 (($ $ (-731)) NIL)) (-3719 (($ $ (-731)) NIL)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-435)))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL) (((-3 (-391 (-537)) "failed") $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) NIL (|has| |#2| (-989 (-537)))) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#2| $) NIL) (((-391 (-537)) $) NIL (|has| |#2| (-989 (-391 (-537))))) (((-537) $) NIL (|has| |#2| (-989 (-537)))) (((-1027) $) NIL)) (-4086 (($ $ $ (-1027)) NIL (|has| |#2| (-163))) ((|#2| $ $) NIL (|has| |#2| (-163)))) (-3563 (($ $ $) NIL (|has| |#2| (-347)))) (-3940 (($ $) NIL)) (-2053 (((-649 (-537)) (-649 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) NIL (|has| |#2| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#2|)) (|:| |vec| (-1200 |#2|))) (-649 $) (-1200 $)) NIL) (((-649 |#2|) (-649 $)) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-3539 (($ $ $) NIL (|has| |#2| (-347)))) (-2657 (($ $ $) NIL)) (-2971 (($ $ $) NIL (|has| |#2| (-529)))) (-3293 (((-2 (|:| -3449 |#2|) (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#2| (-347)))) (-1351 (($ $) NIL (|has| |#2| (-435))) (($ $ (-1027)) NIL (|has| |#2| (-435)))) (-3926 (((-606 $) $) NIL)) (-2639 (((-111) $) NIL (|has| |#2| (-862)))) (-3240 (($ $ |#2| (-731) $) NIL)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) NIL (-12 (|has| (-1027) (-839 (-363))) (|has| |#2| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) NIL (-12 (|has| (-1027) (-839 (-537))) (|has| |#2| (-839 (-537)))))) (-4231 (((-731) $ $) NIL (|has| |#2| (-529)))) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-2824 (((-3 $ "failed") $) NIL (|has| |#2| (-1093)))) (-3746 (($ (-1113 |#2|) (-1027)) NIL) (($ (-1113 $) (-1027)) NIL)) (-3172 (($ $ (-731)) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-3733 (($ |#2| (-731)) 17) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) NIL) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-2444 (($ $ $) NIL (|has| |#2| (-807)))) (-3889 (($ $ $) NIL (|has| |#2| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-3589 (((-1113 |#2|) $) NIL)) (-1310 (((-3 (-1027) "failed") $) NIL)) (-3901 (($ $) NIL)) (-3912 ((|#2| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-1654 (((-1100) $) NIL)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) NIL)) (-3898 (((-3 (-606 $) "failed") $) NIL)) (-2566 (((-3 (-606 $) "failed") $) NIL)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) NIL)) (-3092 (($ $) NIL (|has| |#2| (-37 (-391 (-537)))))) (-3956 (($) NIL (|has| |#2| (-1093)) CONST)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 ((|#2| $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#2| (-435)))) (-2211 (($ (-606 $)) NIL (|has| |#2| (-435))) (($ $ $) NIL (|has| |#2| (-435)))) (-3148 (($ $ (-731) |#2| $) NIL)) (-1319 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) NIL (|has| |#2| (-862)))) (-3622 (((-402 $) $) NIL (|has| |#2| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#2| (-347)))) (-3515 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-529))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#2| (-347)))) (-4116 (($ $ (-606 (-278 $))) NIL) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#2|) NIL) (($ $ (-606 (-1027)) (-606 |#2|)) NIL) (($ $ (-1027) $) NIL) (($ $ (-606 (-1027)) (-606 $)) NIL)) (-1930 (((-731) $) NIL (|has| |#2| (-347)))) (-1922 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) NIL (|has| |#2| (-529))) ((|#2| (-391 $) |#2|) NIL (|has| |#2| (-347))) (((-391 $) $ (-391 $)) NIL (|has| |#2| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) NIL)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#2| (-347)))) (-2067 (($ $ (-1027)) NIL (|has| |#2| (-163))) ((|#2| $) NIL (|has| |#2| (-163)))) (-3456 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2872 (((-731) $) NIL) (((-731) $ (-1027)) NIL) (((-606 (-731)) $ (-606 (-1027))) NIL)) (-3996 (((-845 (-363)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#2| (-580 (-845 (-363)))))) (((-845 (-537)) $) NIL (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#2| (-580 (-845 (-537)))))) (((-513) $) NIL (-12 (|has| (-1027) (-580 (-513))) (|has| |#2| (-580 (-513)))))) (-1835 ((|#2| $) NIL (|has| |#2| (-435))) (($ $ (-1027)) NIL (|has| |#2| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) NIL (-12 (|has| $ (-139)) (|has| |#2| (-862))))) (-2727 (((-3 $ "failed") $ $) NIL (|has| |#2| (-529))) (((-3 (-391 $) "failed") (-391 $) $) NIL (|has| |#2| (-529)))) (-2341 (((-816) $) 13) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-1027)) NIL) (($ (-1196 |#1|)) 19) (($ (-391 (-537))) NIL (-1533 (|has| |#2| (-37 (-391 (-537)))) (|has| |#2| (-989 (-391 (-537)))))) (($ $) NIL (|has| |#2| (-529)))) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-731)) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-2644 (((-3 $ "failed") $) NIL (-1533 (-12 (|has| $ (-139)) (|has| |#2| (-862))) (|has| |#2| (-139))))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| |#2| (-163)))) (-3276 (((-111) $ $) NIL (|has| |#2| (-529)))) (-2928 (($) NIL T CONST)) (-2943 (($) 14 T CONST)) (-4230 (($ $ (-1027)) NIL) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) NIL) (($ $ (-1117)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1117) (-731)) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) NIL (|has| |#2| (-853 (-1117)))) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2293 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2244 (((-111) $ $) NIL)) (-2282 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#2| (-807)))) (-2340 (($ $ |#2|) NIL (|has| |#2| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-391 (-537))) NIL (|has| |#2| (-37 (-391 (-537))))) (($ (-391 (-537)) $) NIL (|has| |#2| (-37 (-391 (-537))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1173 |#1| |#2|) (-13 (-1176 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))) (-15 -3148 ($ $ (-731) |#2| $)))) (-1117) (-998)) (T -1173)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-1173 *3 *4)) (-4 *4 (-998)))) (-3148 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1173 *4 *3)) (-14 *4 (-1117)) (-4 *3 (-998))))) +(-13 (-1176 |#2|) (-10 -8 (-15 -2341 ($ (-1196 |#1|))) (-15 -3148 ($ $ (-731) |#2| $)))) +((-1612 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) (-998) (-1176 |#1|) (-998) (-1176 |#3|)) (T -1174)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-4 *2 (-1176 *6)) (-5 *1 (-1174 *5 *4 *6 *2)) (-4 *4 (-1176 *5))))) +(-10 -7 (-15 -1612 (|#4| (-1 |#3| |#1|) |#2|))) +((-3847 (((-1200 |#2|) $ (-731)) 114)) (-3757 (((-606 (-1027)) $) 15)) (-3739 (($ (-1113 |#2|)) 67)) (-1394 (((-731) $) NIL) (((-731) $ (-606 (-1027))) 18)) (-1649 (((-402 (-1113 $)) (-1113 $)) 185)) (-1395 (($ $) 175)) (-2414 (((-402 $) $) 173)) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 82)) (-1505 (($ $ (-731)) 71)) (-3719 (($ $ (-731)) 73)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1516 (((-3 |#2| "failed") $) 117) (((-3 (-391 (-537)) "failed") $) NIL) (((-3 (-537) "failed") $) NIL) (((-3 (-1027) "failed") $) NIL)) (-3958 ((|#2| $) 115) (((-391 (-537)) $) NIL) (((-537) $) NIL) (((-1027) $) NIL)) (-2971 (($ $ $) 151)) (-3293 (((-2 (|:| -3449 |#2|) (|:| -3413 $) (|:| -1672 $)) $ $) 153)) (-4231 (((-731) $ $) 170)) (-2824 (((-3 $ "failed") $) 123)) (-3733 (($ |#2| (-731)) NIL) (($ $ (-1027) (-731)) 47) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-1883 (((-731) $) NIL) (((-731) $ (-1027)) 42) (((-606 (-731)) $ (-606 (-1027))) 43)) (-3589 (((-1113 |#2|) $) 59)) (-1310 (((-3 (-1027) "failed") $) 40)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) 70)) (-3092 (($ $) 197)) (-3956 (($) 119)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 182)) (-1319 (((-402 (-1113 $)) (-1113 $)) 88)) (-3370 (((-402 (-1113 $)) (-1113 $)) 86)) (-3622 (((-402 $) $) 107)) (-4116 (($ $ (-606 (-278 $))) 39) (($ $ (-278 $)) NIL) (($ $ $ $) NIL) (($ $ (-606 $) (-606 $)) NIL) (($ $ (-1027) |#2|) 31) (($ $ (-606 (-1027)) (-606 |#2|)) 28) (($ $ (-1027) $) 25) (($ $ (-606 (-1027)) (-606 $)) 23)) (-1930 (((-731) $) 188)) (-1922 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-391 $) (-391 $) (-391 $)) 147) ((|#2| (-391 $) |#2|) 187) (((-391 $) $ (-391 $)) 169)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 191)) (-3456 (($ $ (-1027)) 140) (($ $ (-606 (-1027))) NIL) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL) (($ $ (-731)) NIL) (($ $) 138) (($ $ (-1117)) NIL) (($ $ (-606 (-1117))) NIL) (($ $ (-1117) (-731)) NIL) (($ $ (-606 (-1117)) (-606 (-731))) NIL) (($ $ (-1 |#2| |#2|) (-731)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2872 (((-731) $) NIL) (((-731) $ (-1027)) 16) (((-606 (-731)) $ (-606 (-1027))) 20)) (-1835 ((|#2| $) NIL) (($ $ (-1027)) 125)) (-2727 (((-3 $ "failed") $ $) 161) (((-3 (-391 $) "failed") (-391 $) $) 157)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#2|) NIL) (($ (-1027)) 51) (($ (-391 (-537))) NIL) (($ $) NIL))) +(((-1175 |#1| |#2|) (-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-391 |#1|) |#1| (-391 |#1|))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -1922 (|#2| (-391 |#1|) |#2|)) (-15 -3655 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3293 ((-2 (|:| -3449 |#2|) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2727 ((-3 (-391 |#1|) "failed") (-391 |#1|) |#1|)) (-15 -2727 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4231 ((-731) |#1| |#1|)) (-15 -1922 ((-391 |#1|) (-391 |#1|) (-391 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1| (-731))) (-15 -1505 (|#1| |#1| (-731))) (-15 -2405 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| (-731))) (-15 -3739 (|#1| (-1113 |#2|))) (-15 -3589 ((-1113 |#2|) |#1|)) (-15 -3847 ((-1200 |#2|) |#1| (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| |#2|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -1649 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -1835 (|#1| |#1| (-1027))) (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -1394 ((-731) |#1| (-606 (-1027)))) (-15 -1394 ((-731) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3733 (|#1| |#1| (-1027) (-731))) (-15 -1883 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -1883 ((-731) |#1| (-1027))) (-15 -1310 ((-3 (-1027) "failed") |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -2872 ((-731) |#1| (-1027))) (-15 -3958 ((-1027) |#1|)) (-15 -1516 ((-3 (-1027) "failed") |#1|)) (-15 -2341 (|#1| (-1027))) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-1027) |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1027) |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 ((-731) |#1|)) (-15 -3733 (|#1| |#2| (-731))) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1883 ((-731) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3456 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1027) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1027)))) (-15 -3456 (|#1| |#1| (-1027))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) (-1176 |#2|) (-998)) (T -1175)) +NIL +(-10 -8 (-15 -2341 (|#1| |#1|)) (-15 -2298 ((-1113 |#1|) (-1113 |#1|) (-1113 |#1|))) (-15 -2414 ((-402 |#1|) |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -3956 (|#1|)) (-15 -2824 ((-3 |#1| "failed") |#1|)) (-15 -1922 ((-391 |#1|) |#1| (-391 |#1|))) (-15 -1930 ((-731) |#1|)) (-15 -3998 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -3092 (|#1| |#1|)) (-15 -1922 (|#2| (-391 |#1|) |#2|)) (-15 -3655 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3293 ((-2 (|:| -3449 |#2|) (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| |#1|)) (-15 -2971 (|#1| |#1| |#1|)) (-15 -2727 ((-3 (-391 |#1|) "failed") (-391 |#1|) |#1|)) (-15 -2727 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4231 ((-731) |#1| |#1|)) (-15 -1922 ((-391 |#1|) (-391 |#1|) (-391 |#1|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3719 (|#1| |#1| (-731))) (-15 -1505 (|#1| |#1| (-731))) (-15 -2405 ((-2 (|:| -3413 |#1|) (|:| -1672 |#1|)) |#1| (-731))) (-15 -3739 (|#1| (-1113 |#2|))) (-15 -3589 ((-1113 |#2|) |#1|)) (-15 -3847 ((-1200 |#2|) |#1| (-731))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3456 (|#1| |#1| (-1 |#2| |#2|) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1117) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1117)))) (-15 -3456 (|#1| |#1| (-1117))) (-15 -3456 (|#1| |#1|)) (-15 -3456 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1922 (|#2| |#1| |#2|)) (-15 -3622 ((-402 |#1|) |#1|)) (-15 -1649 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -3370 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -1319 ((-402 (-1113 |#1|)) (-1113 |#1|))) (-15 -2022 ((-3 (-606 (-1113 |#1|)) "failed") (-606 (-1113 |#1|)) (-1113 |#1|))) (-15 -1835 (|#1| |#1| (-1027))) (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -1394 ((-731) |#1| (-606 (-1027)))) (-15 -1394 ((-731) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3733 (|#1| |#1| (-1027) (-731))) (-15 -1883 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -1883 ((-731) |#1| (-1027))) (-15 -1310 ((-3 (-1027) "failed") |#1|)) (-15 -2872 ((-606 (-731)) |#1| (-606 (-1027)))) (-15 -2872 ((-731) |#1| (-1027))) (-15 -3958 ((-1027) |#1|)) (-15 -1516 ((-3 (-1027) "failed") |#1|)) (-15 -2341 (|#1| (-1027))) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#1|))) (-15 -4116 (|#1| |#1| (-1027) |#1|)) (-15 -4116 (|#1| |#1| (-606 (-1027)) (-606 |#2|))) (-15 -4116 (|#1| |#1| (-1027) |#2|)) (-15 -4116 (|#1| |#1| (-606 |#1|) (-606 |#1|))) (-15 -4116 (|#1| |#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| (-278 |#1|))) (-15 -4116 (|#1| |#1| (-606 (-278 |#1|)))) (-15 -2872 ((-731) |#1|)) (-15 -3733 (|#1| |#2| (-731))) (-15 -3958 ((-537) |#1|)) (-15 -1516 ((-3 (-537) "failed") |#1|)) (-15 -3958 ((-391 (-537)) |#1|)) (-15 -1516 ((-3 (-391 (-537)) "failed") |#1|)) (-15 -2341 (|#1| |#2|)) (-15 -1516 ((-3 |#2| "failed") |#1|)) (-15 -3958 (|#2| |#1|)) (-15 -1883 ((-731) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -3456 (|#1| |#1| (-606 (-1027)) (-606 (-731)))) (-15 -3456 (|#1| |#1| (-1027) (-731))) (-15 -3456 (|#1| |#1| (-606 (-1027)))) (-15 -3456 (|#1| |#1| (-1027))) (-15 -2341 (|#1| (-537))) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3847 (((-1200 |#1|) $ (-731)) 236)) (-3757 (((-606 (-1027)) $) 108)) (-3739 (($ (-1113 |#1|)) 234)) (-3588 (((-1113 $) $ (-1027)) 123) (((-1113 |#1|) $) 122)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 85 (|has| |#1| (-529)))) (-3377 (($ $) 86 (|has| |#1| (-529)))) (-4017 (((-111) $) 88 (|has| |#1| (-529)))) (-1394 (((-731) $) 110) (((-731) $ (-606 (-1027))) 109)) (-3418 (((-3 $ "failed") $ $) 19)) (-1841 (($ $ $) 221 (|has| |#1| (-529)))) (-1649 (((-402 (-1113 $)) (-1113 $)) 98 (|has| |#1| (-862)))) (-1395 (($ $) 96 (|has| |#1| (-435)))) (-2414 (((-402 $) $) 95 (|has| |#1| (-435)))) (-2022 (((-3 (-606 (-1113 $)) "failed") (-606 (-1113 $)) (-1113 $)) 101 (|has| |#1| (-862)))) (-4099 (((-111) $ $) 206 (|has| |#1| (-347)))) (-1505 (($ $ (-731)) 229)) (-3719 (($ $ (-731)) 228)) (-3655 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-435)))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 162) (((-3 (-391 (-537)) "failed") $) 160 (|has| |#1| (-989 (-391 (-537))))) (((-3 (-537) "failed") $) 158 (|has| |#1| (-989 (-537)))) (((-3 (-1027) "failed") $) 134)) (-3958 ((|#1| $) 163) (((-391 (-537)) $) 159 (|has| |#1| (-989 (-391 (-537))))) (((-537) $) 157 (|has| |#1| (-989 (-537)))) (((-1027) $) 133)) (-4086 (($ $ $ (-1027)) 106 (|has| |#1| (-163))) ((|#1| $ $) 224 (|has| |#1| (-163)))) (-3563 (($ $ $) 210 (|has| |#1| (-347)))) (-3940 (($ $) 152)) (-2053 (((-649 (-537)) (-649 $)) 132 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 (-537))) (|:| |vec| (-1200 (-537)))) (-649 $) (-1200 $)) 131 (|has| |#1| (-602 (-537)))) (((-2 (|:| -2756 (-649 |#1|)) (|:| |vec| (-1200 |#1|))) (-649 $) (-1200 $)) 130) (((-649 |#1|) (-649 $)) 129)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 209 (|has| |#1| (-347)))) (-2657 (($ $ $) 227)) (-2971 (($ $ $) 218 (|has| |#1| (-529)))) (-3293 (((-2 (|:| -3449 |#1|) (|:| -3413 $) (|:| -1672 $)) $ $) 217 (|has| |#1| (-529)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 204 (|has| |#1| (-347)))) (-1351 (($ $) 174 (|has| |#1| (-435))) (($ $ (-1027)) 103 (|has| |#1| (-435)))) (-3926 (((-606 $) $) 107)) (-2639 (((-111) $) 94 (|has| |#1| (-862)))) (-3240 (($ $ |#1| (-731) $) 170)) (-4196 (((-842 (-363) $) $ (-845 (-363)) (-842 (-363) $)) 82 (-12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363))))) (((-842 (-537) $) $ (-845 (-537)) (-842 (-537) $)) 81 (-12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))))) (-4231 (((-731) $ $) 222 (|has| |#1| (-529)))) (-2836 (((-111) $) 30)) (-2668 (((-731) $) 167)) (-2824 (((-3 $ "failed") $) 202 (|has| |#1| (-1093)))) (-3746 (($ (-1113 |#1|) (-1027)) 115) (($ (-1113 $) (-1027)) 114)) (-3172 (($ $ (-731)) 233)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 213 (|has| |#1| (-347)))) (-1645 (((-606 $) $) 124)) (-1538 (((-111) $) 150)) (-3733 (($ |#1| (-731)) 151) (($ $ (-1027) (-731)) 117) (($ $ (-606 (-1027)) (-606 (-731))) 116)) (-3932 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $ (-1027)) 118) (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 231)) (-1883 (((-731) $) 168) (((-731) $ (-1027)) 120) (((-606 (-731)) $ (-606 (-1027))) 119)) (-2444 (($ $ $) 77 (|has| |#1| (-807)))) (-3889 (($ $ $) 76 (|has| |#1| (-807)))) (-2199 (($ (-1 (-731) (-731)) $) 169)) (-1612 (($ (-1 |#1| |#1|) $) 149)) (-3589 (((-1113 |#1|) $) 235)) (-1310 (((-3 (-1027) "failed") $) 121)) (-3901 (($ $) 147)) (-3912 ((|#1| $) 146)) (-2183 (($ (-606 $)) 92 (|has| |#1| (-435))) (($ $ $) 91 (|has| |#1| (-435)))) (-1654 (((-1100) $) 9)) (-2405 (((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731)) 230)) (-3898 (((-3 (-606 $) "failed") $) 112)) (-2566 (((-3 (-606 $) "failed") $) 113)) (-2983 (((-3 (-2 (|:| |var| (-1027)) (|:| -3283 (-731))) "failed") $) 111)) (-3092 (($ $) 214 (|has| |#1| (-37 (-391 (-537)))))) (-3956 (($) 201 (|has| |#1| (-1093)) CONST)) (-2528 (((-1064) $) 10)) (-3876 (((-111) $) 164)) (-3890 ((|#1| $) 165)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 93 (|has| |#1| (-435)))) (-2211 (($ (-606 $)) 90 (|has| |#1| (-435))) (($ $ $) 89 (|has| |#1| (-435)))) (-1319 (((-402 (-1113 $)) (-1113 $)) 100 (|has| |#1| (-862)))) (-3370 (((-402 (-1113 $)) (-1113 $)) 99 (|has| |#1| (-862)))) (-3622 (((-402 $) $) 97 (|has| |#1| (-862)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 211 (|has| |#1| (-347)))) (-3515 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-529))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 205 (|has| |#1| (-347)))) (-4116 (($ $ (-606 (-278 $))) 143) (($ $ (-278 $)) 142) (($ $ $ $) 141) (($ $ (-606 $) (-606 $)) 140) (($ $ (-1027) |#1|) 139) (($ $ (-606 (-1027)) (-606 |#1|)) 138) (($ $ (-1027) $) 137) (($ $ (-606 (-1027)) (-606 $)) 136)) (-1930 (((-731) $) 207 (|has| |#1| (-347)))) (-1922 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-391 $) (-391 $) (-391 $)) 223 (|has| |#1| (-529))) ((|#1| (-391 $) |#1|) 215 (|has| |#1| (-347))) (((-391 $) $ (-391 $)) 203 (|has| |#1| (-529)))) (-1383 (((-3 $ "failed") $ (-731)) 232)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 208 (|has| |#1| (-347)))) (-2067 (($ $ (-1027)) 105 (|has| |#1| (-163))) ((|#1| $) 225 (|has| |#1| (-163)))) (-3456 (($ $ (-1027)) 40) (($ $ (-606 (-1027))) 39) (($ $ (-1027) (-731)) 38) (($ $ (-606 (-1027)) (-606 (-731))) 37) (($ $ (-731)) 251) (($ $) 249) (($ $ (-1117)) 248 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 247 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 246 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 245 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2872 (((-731) $) 148) (((-731) $ (-1027)) 128) (((-606 (-731)) $ (-606 (-1027))) 127)) (-3996 (((-845 (-363)) $) 80 (-12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363)))))) (((-845 (-537)) $) 79 (-12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537)))))) (((-513) $) 78 (-12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))))) (-1835 ((|#1| $) 173 (|has| |#1| (-435))) (($ $ (-1027)) 104 (|has| |#1| (-435)))) (-2466 (((-3 (-1200 $) "failed") (-649 $)) 102 (-3319 (|has| $ (-139)) (|has| |#1| (-862))))) (-2727 (((-3 $ "failed") $ $) 220 (|has| |#1| (-529))) (((-3 (-391 $) "failed") (-391 $) $) 219 (|has| |#1| (-529)))) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 161) (($ (-1027)) 135) (($ (-391 (-537))) 70 (-1533 (|has| |#1| (-989 (-391 (-537)))) (|has| |#1| (-37 (-391 (-537)))))) (($ $) 83 (|has| |#1| (-529)))) (-3459 (((-606 |#1|) $) 166)) (-3500 ((|#1| $ (-731)) 153) (($ $ (-1027) (-731)) 126) (($ $ (-606 (-1027)) (-606 (-731))) 125)) (-2644 (((-3 $ "failed") $) 71 (-1533 (-3319 (|has| $ (-139)) (|has| |#1| (-862))) (|has| |#1| (-139))))) (-3654 (((-731)) 28)) (-1345 (($ $ $ (-731)) 171 (|has| |#1| (-163)))) (-3276 (((-111) $ $) 87 (|has| |#1| (-529)))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-1027)) 36) (($ $ (-606 (-1027))) 35) (($ $ (-1027) (-731)) 34) (($ $ (-606 (-1027)) (-606 (-731))) 33) (($ $ (-731)) 252) (($ $) 250) (($ $ (-1117)) 244 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117))) 243 (|has| |#1| (-853 (-1117)))) (($ $ (-1117) (-731)) 242 (|has| |#1| (-853 (-1117)))) (($ $ (-606 (-1117)) (-606 (-731))) 241 (|has| |#1| (-853 (-1117)))) (($ $ (-1 |#1| |#1|) (-731)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2293 (((-111) $ $) 74 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 73 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 6)) (-2282 (((-111) $ $) 75 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 72 (|has| |#1| (-807)))) (-2340 (($ $ |#1|) 154 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 156 (|has| |#1| (-37 (-391 (-537))))) (($ (-391 (-537)) $) 155 (|has| |#1| (-37 (-391 (-537))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1176 |#1|) (-134) (-998)) (T -1176)) +((-3847 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-1176 *4)) (-4 *4 (-998)) (-5 *2 (-1200 *4)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-5 *2 (-1113 *3)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-998)) (-4 *1 (-1176 *3)))) (-3172 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-1383 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-3932 (*1 *2 *1 *1) (-12 (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *3)))) (-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *4)))) (-1505 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-2657 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)))) (-3456 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163)))) (-4086 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163)))) (-1922 (*1 *2 *2 *2) (-12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)))) (-4231 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)) (-5 *2 (-731)))) (-1841 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-2727 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-2727 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)))) (-2971 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) (-3293 (*1 *2 *1 *1) (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-5 *2 (-2 (|:| -3449 *3) (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *3)))) (-3655 (*1 *2 *1 *1) (-12 (-4 *3 (-435)) (-4 *3 (-998)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1176 *3)))) (-1922 (*1 *2 *3 *2) (-12 (-5 *3 (-391 *1)) (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537))))))) +(-13 (-902 |t#1| (-731) (-1027)) (-270 |t#1| |t#1|) (-270 $ $) (-218) (-216 |t#1|) (-10 -8 (-15 -3847 ((-1200 |t#1|) $ (-731))) (-15 -3589 ((-1113 |t#1|) $)) (-15 -3739 ($ (-1113 |t#1|))) (-15 -3172 ($ $ (-731))) (-15 -1383 ((-3 $ "failed") $ (-731))) (-15 -3932 ((-2 (|:| -3413 $) (|:| -1672 $)) $ $)) (-15 -2405 ((-2 (|:| -3413 $) (|:| -1672 $)) $ (-731))) (-15 -1505 ($ $ (-731))) (-15 -3719 ($ $ (-731))) (-15 -2657 ($ $ $)) (-15 -3456 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-163)) (PROGN (-15 -2067 (|t#1| $)) (-15 -4086 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-529)) (PROGN (-6 (-270 (-391 $) (-391 $))) (-15 -1922 ((-391 $) (-391 $) (-391 $))) (-15 -4231 ((-731) $ $)) (-15 -1841 ($ $ $)) (-15 -2727 ((-3 $ "failed") $ $)) (-15 -2727 ((-3 (-391 $) "failed") (-391 $) $)) (-15 -2971 ($ $ $)) (-15 -3293 ((-2 (|:| -3449 |t#1|) (|:| -3413 $) (|:| -1672 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-435)) (-15 -3655 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-347)) (PROGN (-6 (-291)) (-6 -4296) (-15 -1922 (|t#1| (-391 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (-15 -3092 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-731)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-580 (-513)) -12 (|has| (-1027) (-580 (-513))) (|has| |#1| (-580 (-513)))) ((-580 (-845 (-363))) -12 (|has| (-1027) (-580 (-845 (-363)))) (|has| |#1| (-580 (-845 (-363))))) ((-580 (-845 (-537))) -12 (|has| (-1027) (-580 (-845 (-537)))) (|has| |#1| (-580 (-845 (-537))))) ((-216 |#1|) . T) ((-218) . T) ((-270 (-391 $) (-391 $)) |has| |#1| (-529)) ((-270 |#1| |#1|) . T) ((-270 $ $) . T) ((-274) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-293 $) . T) ((-310 |#1| #0#) . T) ((-361 |#1|) . T) ((-395 |#1|) . T) ((-435) -1533 (|has| |#1| (-862)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-495 #2=(-1027) |#1|) . T) ((-495 #2# $) . T) ((-495 $ $) . T) ((-529) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-609 #1#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-602 (-537)) |has| |#1| (-602 (-537))) ((-602 |#1|) . T) ((-678 #1#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347))) ((-687) . T) ((-807) |has| |#1| (-807)) ((-853 #2#) . T) ((-853 (-1117)) |has| |#1| (-853 (-1117))) ((-839 (-363)) -12 (|has| (-1027) (-839 (-363))) (|has| |#1| (-839 (-363)))) ((-839 (-537)) -12 (|has| (-1027) (-839 (-537))) (|has| |#1| (-839 (-537)))) ((-902 |#1| #0# #2#) . T) ((-862) |has| |#1| (-862)) ((-873) |has| |#1| (-347)) ((-989 (-391 (-537))) |has| |#1| (-989 (-391 (-537)))) ((-989 (-537)) |has| |#1| (-989 (-537))) ((-989 #2#) . T) ((-989 |#1|) . T) ((-1004 #1#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-862)) (|has| |#1| (-529)) (|has| |#1| (-435)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1093) |has| |#1| (-1093)) ((-1158) |has| |#1| (-862))) +((-3757 (((-606 (-1027)) $) 28)) (-3940 (($ $) 25)) (-3733 (($ |#2| |#3|) NIL) (($ $ (-1027) |#3|) 22) (($ $ (-606 (-1027)) (-606 |#3|)) 21)) (-3901 (($ $) 14)) (-3912 ((|#2| $) 12)) (-2872 ((|#3| $) 10))) +(((-1177 |#1| |#2| |#3|) (-10 -8 (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 |#3|))) (-15 -3733 (|#1| |#1| (-1027) |#3|)) (-15 -3940 (|#1| |#1|)) (-15 -3733 (|#1| |#2| |#3|)) (-15 -2872 (|#3| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3912 (|#2| |#1|))) (-1178 |#2| |#3|) (-998) (-752)) (T -1177)) +NIL +(-10 -8 (-15 -3757 ((-606 (-1027)) |#1|)) (-15 -3733 (|#1| |#1| (-606 (-1027)) (-606 |#3|))) (-15 -3733 (|#1| |#1| (-1027) |#3|)) (-15 -3940 (|#1| |#1|)) (-15 -3733 (|#1| |#2| |#3|)) (-15 -2872 (|#3| |#1|)) (-15 -3901 (|#1| |#1|)) (-15 -3912 (|#2| |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-1525 (((-1098 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2362 (((-111) $) 71)) (-4231 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2836 (((-111) $) 30)) (-3172 (($ $ (-874)) 99)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| |#2|) 59) (($ $ (-1027) |#2|) 74) (($ $ (-606 (-1027)) (-606 |#2|)) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1540 (($ $ |#2|) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1922 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2872 ((|#2| $) 62)) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3500 ((|#1| $ |#2|) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-4150 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-1178 |#1| |#2|) (-134) (-998) (-752)) (T -1178)) +((-1525 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-1098 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1922 (*1 *2 *1 *3) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (-5 *2 (-1117)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) (-3172 (*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-4231 (*1 *2 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-1586 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-1586 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-4150 (*1 *2 *1 *3) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2341 (*2 (-1117)))) (-4 *2 (-998)))) (-1540 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) (-4116 (*1 *2 *1 *3) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1098 *3))))) +(-13 (-926 |t#1| |t#2| (-1027)) (-10 -8 (-15 -1525 ((-1098 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1922 (|t#1| $ |t#2|)) (-15 -1890 ((-1117) $)) (-15 -2184 (|t#1| $)) (-15 -3172 ($ $ (-874))) (-15 -4231 (|t#2| $)) (-15 -4231 (|t#2| $ |t#2|)) (-15 -1586 ($ $ |t#2|)) (-15 -1586 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2341 (|t#1| (-1117)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4150 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1540 ($ $ |t#2|)) (IF (|has| |t#2| (-1057)) (-6 (-270 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-218)) (IF (|has| |t#1| (-853 (-1117))) (-6 (-853 (-1117))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4116 ((-1098 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-100) . T) ((-110 #0# #0#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-270 $ $) |has| |#2| (-1057)) ((-274) |has| |#1| (-529)) ((-529) |has| |#1| (-529)) ((-609 #0#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| |#2| (-1027)) . T) ((-1004 #0#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-1395 ((|#2| |#2|) 12)) (-2414 (((-402 |#2|) |#2|) 14)) (-1433 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537)))) 30))) +(((-1179 |#1| |#2|) (-10 -7 (-15 -2414 ((-402 |#2|) |#2|)) (-15 -1395 (|#2| |#2|)) (-15 -1433 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537)))))) (-529) (-13 (-1176 |#1|) (-529) (-10 -8 (-15 -2211 ($ $ $))))) (T -1179)) +((-1433 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-537)))) (-4 *4 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $))))) (-4 *3 (-529)) (-5 *1 (-1179 *3 *4)))) (-1395 (*1 *2 *2) (-12 (-4 *3 (-529)) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $))))))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-1179 *4 *3)) (-4 *3 (-13 (-1176 *4) (-529) (-10 -8 (-15 -2211 ($ $ $)))))))) +(-10 -7 (-15 -2414 ((-402 |#2|) |#2|)) (-15 -1395 (|#2| |#2|)) (-15 -1433 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-537)))))) +((-1612 (((-1185 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1185 |#1| |#3| |#5|)) 24))) +(((-1180 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1612 ((-1185 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1185 |#1| |#3| |#5|)))) (-998) (-998) (-1117) (-1117) |#1| |#2|) (T -1180)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5 *7 *9)) (-4 *5 (-998)) (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1185 *6 *8 *10)) (-5 *1 (-1180 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1117))))) +(-10 -7 (-15 -1612 ((-1185 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1185 |#1| |#3| |#5|)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) 96) (($ $ (-391 (-537)) (-391 (-537))) 95)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) 169)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) 98) (((-391 (-537)) $ (-391 (-537))) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99) (($ $ (-391 (-537))) 168)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-391 (-537))) 59) (($ $ (-1027) (-391 (-537))) 74) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) 102) (($ $ $) 79 (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-1181 |#1|) (-134) (-998)) (T -1181)) +((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))) (-4 *4 (-998)) (-4 *1 (-1181 *4)))) (-3172 (*1 *1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-1181 *3)) (-4 *3 (-998)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) (-3092 (*1 *1 *1 *2) (-1533 (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) (-4 *3 (-37 (-391 (-537)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537))))))))) +(-13 (-1178 |t#1| (-391 (-537))) (-10 -8 (-15 -2411 ($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |t#1|))))) (-15 -3172 ($ $ (-391 (-537)))) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (IF (|has| |t#1| (-15 -3092 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3757 ((-606 (-1117)) |t#1|))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1139)) (IF (|has| |t#1| (-912)) (IF (|has| |t#1| (-29 (-537))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-954)) (-6 (-1139))) |%noBranch|) (IF (|has| |t#1| (-347)) (-6 (-347)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-391 (-537))) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-391 (-537)) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-347) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1158) |has| |#1| (-347)) ((-1178 |#1| #0#) . T)) +((-1656 (((-111) $) 12)) (-1516 (((-3 |#3| "failed") $) 17)) (-3958 ((|#3| $) 14))) +(((-1182 |#1| |#2| |#3|) (-10 -8 (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) (-1183 |#2| |#3|) (-998) (-1160 |#2|)) (T -1182)) +NIL +(-10 -8 (-15 -3958 (|#3| |#1|)) (-15 -1516 ((-3 |#3| "failed") |#1|)) (-15 -1656 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) 96) (($ $ (-391 (-537)) (-391 (-537))) 95)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 160 (|has| |#1| (-347)))) (-2414 (((-402 $) $) 161 (|has| |#1| (-347)))) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) 151 (|has| |#1| (-347)))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) 169)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#2| "failed") $) 180)) (-3958 ((|#2| $) 179)) (-3563 (($ $ $) 155 (|has| |#1| (-347)))) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-2017 (((-391 (-537)) $) 177)) (-3539 (($ $ $) 154 (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) |#2|) 178)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 149 (|has| |#1| (-347)))) (-2639 (((-111) $) 162 (|has| |#1| (-347)))) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) 98) (((-391 (-537)) $ (-391 (-537))) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99) (($ $ (-391 (-537))) 168)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 158 (|has| |#1| (-347)))) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-391 (-537))) 59) (($ $ (-1027) (-391 (-537))) 74) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-2183 (($ (-606 $)) 147 (|has| |#1| (-347))) (($ $ $) 146 (|has| |#1| (-347)))) (-2176 ((|#2| $) 176)) (-1447 (((-3 |#2| "failed") $) 174)) (-3827 ((|#2| $) 175)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 163 (|has| |#1| (-347)))) (-3092 (($ $) 167 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 166 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 148 (|has| |#1| (-347)))) (-2211 (($ (-606 $)) 145 (|has| |#1| (-347))) (($ $ $) 144 (|has| |#1| (-347)))) (-3622 (((-402 $) $) 159 (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 156 (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 150 (|has| |#1| (-347)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) 152 (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) 102) (($ $ $) 79 (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 153 (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 45 (|has| |#1| (-163))) (($ |#2|) 181) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347))) (($ $ $) 165 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 164 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-1183 |#1| |#2|) (-134) (-998) (-1160 |t#1|)) (T -1183)) +((-2872 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) (-5 *2 (-391 (-537))))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *1 (-1183 *3 *2)) (-4 *2 (-1160 *3)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-4 *4 (-998)) (-4 *1 (-1183 *4 *3)) (-4 *3 (-1160 *4)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) (-5 *2 (-391 (-537))))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3)))) (-1447 (*1 *2 *1) (|partial| -12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3))))) +(-13 (-1181 |t#1|) (-989 |t#2|) (-10 -8 (-15 -3839 ($ (-391 (-537)) |t#2|)) (-15 -2017 ((-391 (-537)) $)) (-15 -2176 (|t#2| $)) (-15 -2872 ((-391 (-537)) $)) (-15 -2341 ($ |t#2|)) (-15 -3827 (|t#2| $)) (-15 -1447 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-391 (-537))) . T) ((-25) . T) ((-37 #1=(-391 (-537))) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) ((-228) |has| |#1| (-347)) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-391 (-537)) (-1057)) ((-274) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-291) |has| |#1| (-347)) ((-347) |has| |#1| (-347)) ((-435) |has| |#1| (-347)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-609 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347))) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-873) |has| |#1| (-347)) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-989 |#2|) . T) ((-1004 #1#) -1533 (|has| |#1| (-347)) (|has| |#1| (-37 (-391 (-537))))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-347)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1158) |has| |#1| (-347)) ((-1178 |#1| #0#) . T) ((-1181 |#1|) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 96)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) 106) (($ $ (-391 (-537)) (-391 (-537))) 108)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) 51)) (-1403 (($ $) 180 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 156 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) 176 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 152 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) 61)) (-1429 (($ $) 184 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 160 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL)) (-3958 ((|#2| $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) 79)) (-2017 (((-391 (-537)) $) 13)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) |#2|) 11)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) 68)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) 103) (((-391 (-537)) $ (-391 (-537))) 104)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 120) (($ $ (-391 (-537))) 118)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) 31) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 115)) (-2180 (($ $) 150 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2176 ((|#2| $) 12)) (-1447 (((-3 |#2| "failed") $) 41)) (-3827 ((|#2| $) 42)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) 93 (|has| |#1| (-347)))) (-3092 (($ $) 135 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 140 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) 112)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) 148 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) 100) (($ $ $) 86 (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) 127 (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2872 (((-391 (-537)) $) 16)) (-1441 (($ $) 186 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 162 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 182 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 158 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 178 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 154 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 110)) (-2341 (((-816) $) NIL) (($ (-537)) 35) (($ |#1|) 27 (|has| |#1| (-163))) (($ |#2|) 32) (($ (-391 (-537))) 128 (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) 99)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) 117)) (-2184 ((|#1| $) 98)) (-1475 (($ $) 192 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 168 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) 188 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 164 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 196 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 172 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 198 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 174 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 194 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 170 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 190 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 166 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 21 T CONST)) (-2943 (($) 17 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) 66)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) 92 (|has| |#1| (-347)))) (-2329 (($ $) 131) (($ $ $) 72)) (-2318 (($ $ $) 70)) (** (($ $ (-874)) NIL) (($ $ (-731)) 76) (($ $ (-537)) 145 (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 146 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1184 |#1| |#2|) (-1183 |#1| |#2|) (-998) (-1160 |#1|)) (T -1184)) +NIL +(-1183 |#1| |#2|) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 11)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) NIL (|has| |#1| (-529)))) (-1586 (($ $ (-391 (-537))) NIL) (($ $ (-391 (-537)) (-391 (-537))) NIL)) (-1525 (((-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|))) $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-1395 (($ $) NIL (|has| |#1| (-347)))) (-2414 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4099 (((-111) $ $) NIL (|has| |#1| (-347)))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-731) (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#1|)))) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 22)) (-3958 (((-1164 |#1| |#2| |#3|) $) NIL) (((-1192 |#1| |#2| |#3|) $) NIL)) (-3563 (($ $ $) NIL (|has| |#1| (-347)))) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-2017 (((-391 (-537)) $) 57)) (-3539 (($ $ $) NIL (|has| |#1| (-347)))) (-3839 (($ (-391 (-537)) (-1164 |#1| |#2| |#3|)) NIL)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) NIL (|has| |#1| (-347)))) (-2639 (((-111) $) NIL (|has| |#1| (-347)))) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-391 (-537)) $) NIL) (((-391 (-537)) $ (-391 (-537))) NIL)) (-2836 (((-111) $) NIL)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) NIL) (($ $ (-391 (-537))) NIL)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-391 (-537))) 30) (($ $ (-1027) (-391 (-537))) NIL) (($ $ (-606 (-1027)) (-606 (-391 (-537)))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-2183 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2176 (((-1164 |#1| |#2| |#3|) $) 60)) (-1447 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL)) (-3827 (((-1164 |#1| |#2| |#3|) $) NIL)) (-1654 (((-1100) $) NIL)) (-3865 (($ $) NIL (|has| |#1| (-347)))) (-3092 (($ $) 39 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) NIL (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 40 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) NIL (|has| |#1| (-347)))) (-2211 (($ (-606 $)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-3622 (((-402 $) $) NIL (|has| |#1| (-347)))) (-3663 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-347))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) NIL (|has| |#1| (-347)))) (-1540 (($ $ (-391 (-537))) NIL)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4245 (((-3 (-606 $) "failed") (-606 $) $) NIL (|has| |#1| (-347)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))))) (-1930 (((-731) $) NIL (|has| |#1| (-347)))) (-1922 ((|#1| $ (-391 (-537))) NIL) (($ $ $) NIL (|has| (-391 (-537)) (-1057)))) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) NIL (|has| |#1| (-347)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $ (-1196 |#2|)) 38)) (-2872 (((-391 (-537)) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) NIL)) (-2341 (((-816) $) 89) (($ (-537)) NIL) (($ |#1|) NIL (|has| |#1| (-163))) (($ (-1164 |#1| |#2| |#3|)) 16) (($ (-1192 |#1| |#2| |#3|)) 17) (($ (-1196 |#2|)) 36) (($ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529)))) (-3500 ((|#1| $ (-391 (-537))) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 12)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-391 (-537))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-391 (-537))))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 32 T CONST)) (-2943 (($) 26 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-391 (-537)) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 34)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ (-537)) NIL (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1185 |#1| |#2| |#3|) (-13 (-1183 |#1| (-1164 |#1| |#2| |#3|)) (-989 (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1185)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1183 |#1| (-1164 |#1| |#2| |#3|)) (-989 (-1192 |#1| |#2| |#3|)) (-10 -8 (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 34)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL)) (-3377 (($ $) NIL)) (-4017 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 (-537) "failed") $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-537)))) (((-3 (-391 (-537)) "failed") $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-391 (-537))))) (((-3 (-1185 |#2| |#3| |#4|) "failed") $) 20)) (-3958 (((-537) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-537)))) (((-391 (-537)) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-989 (-391 (-537))))) (((-1185 |#2| |#3| |#4|) $) NIL)) (-3940 (($ $) 35)) (-3490 (((-3 $ "failed") $) 25)) (-1351 (($ $) NIL (|has| (-1185 |#2| |#3| |#4|) (-435)))) (-3240 (($ $ (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|) $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) 11)) (-1538 (((-111) $) NIL)) (-3733 (($ (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) 23)) (-1883 (((-303 |#2| |#3| |#4|) $) NIL)) (-2199 (($ (-1 (-303 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) $) NIL)) (-1612 (($ (-1 (-1185 |#2| |#3| |#4|) (-1185 |#2| |#3| |#4|)) $) NIL)) (-2027 (((-3 (-800 |#2|) "failed") $) 75)) (-3901 (($ $) NIL)) (-3912 (((-1185 |#2| |#3| |#4|) $) 18)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3876 (((-111) $) NIL)) (-3890 (((-1185 |#2| |#3| |#4|) $) NIL)) (-3515 (((-3 $ "failed") $ (-1185 |#2| |#3| |#4|)) NIL (|has| (-1185 |#2| |#3| |#4|) (-529))) (((-3 $ "failed") $ $) NIL)) (-2152 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 |#2| |#3| |#4|)) (|:| |%expon| (-303 |#2| |#3| |#4|)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#2|)))))) (|:| |%type| (-1100))) "failed") $) 58)) (-2872 (((-303 |#2| |#3| |#4|) $) 14)) (-1835 (((-1185 |#2| |#3| |#4|) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-435)))) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ (-1185 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-391 (-537))) NIL (-1533 (|has| (-1185 |#2| |#3| |#4|) (-37 (-391 (-537)))) (|has| (-1185 |#2| |#3| |#4|) (-989 (-391 (-537))))))) (-3459 (((-606 (-1185 |#2| |#3| |#4|)) $) NIL)) (-3500 (((-1185 |#2| |#3| |#4|) $ (-303 |#2| |#3| |#4|)) NIL)) (-2644 (((-3 $ "failed") $) NIL (|has| (-1185 |#2| |#3| |#4|) (-139)))) (-3654 (((-731)) NIL)) (-1345 (($ $ $ (-731)) NIL (|has| (-1185 |#2| |#3| |#4|) (-163)))) (-3276 (((-111) $ $) NIL)) (-2928 (($) 63 T CONST)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ (-1185 |#2| |#3| |#4|)) NIL (|has| (-1185 |#2| |#3| |#4|) (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ (-1185 |#2| |#3| |#4|)) NIL) (($ (-1185 |#2| |#3| |#4|) $) NIL) (($ (-391 (-537)) $) NIL (|has| (-1185 |#2| |#3| |#4|) (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| (-1185 |#2| |#3| |#4|) (-37 (-391 (-537))))))) +(((-1186 |#1| |#2| |#3| |#4|) (-13 (-310 (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) (-529) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2152 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 |#2| |#3| |#4|)) (|:| |%expon| (-303 |#2| |#3| |#4|)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#2|)))))) (|:| |%type| (-1100))) "failed") $)))) (-13 (-807) (-989 (-537)) (-602 (-537)) (-435)) (-13 (-27) (-1139) (-414 |#1|)) (-1117) |#2|) (T -1186)) +((-2027 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *2 (-800 *4)) (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4))) (-2152 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 *4 *5 *6)) (|:| |%expon| (-303 *4 *5 *6)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))))) (|:| |%type| (-1100)))) (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) (-14 *6 *4)))) +(-13 (-310 (-1185 |#2| |#3| |#4|) (-303 |#2| |#3| |#4|)) (-529) (-10 -8 (-15 -2027 ((-3 (-800 |#2|) "failed") $)) (-15 -2152 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1185 |#2| |#3| |#4|)) (|:| |%expon| (-303 |#2| |#3| |#4|)) (|:| |%expTerms| (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| |#2|)))))) (|:| |%type| (-1100))) "failed") $)))) +((-3619 ((|#2| $) 29)) (-1658 ((|#2| $) 18)) (-4199 (($ $) 36)) (-3704 (($ $ (-537)) 64)) (-2506 (((-111) $ (-731)) 33)) (-3650 ((|#2| $ |#2|) 61)) (-2236 ((|#2| $ |#2|) 59)) (-2476 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3999 (($ $ (-606 $)) 60)) (-1647 ((|#2| $) 17)) (-3200 (($ $) NIL) (($ $ (-731)) 42)) (-2570 (((-606 $) $) 26)) (-3868 (((-111) $ $) 50)) (-1642 (((-111) $ (-731)) 32)) (-2489 (((-111) $ (-731)) 31)) (-3862 (((-111) $) 28)) (-2375 ((|#2| $) 24) (($ $ (-731)) 46)) (-1922 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3335 (((-111) $) 22)) (-3136 (($ $) 39)) (-3743 (($ $) 65)) (-3597 (((-731) $) 41)) (-1935 (($ $) 40)) (-3434 (($ $ $) 58) (($ |#2| $) NIL)) (-2804 (((-606 $) $) 27)) (-2244 (((-111) $ $) 48)) (-2258 (((-731) $) 35))) +(((-1187 |#1| |#2|) (-10 -8 (-15 -3704 (|#1| |#1| (-537))) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2236 (|#2| |#1| |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -1658 (|#2| |#1|)) (-15 -1647 (|#2| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -1922 (|#2| |#1| "first")) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3650 (|#2| |#1| |#2|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3999 (|#1| |#1| (-606 |#1|))) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) (-1188 |#2|) (-1154)) (T -1187)) +NIL +(-10 -8 (-15 -3704 (|#1| |#1| (-537))) (-15 -2476 (|#2| |#1| "last" |#2|)) (-15 -2236 (|#2| |#1| |#2|)) (-15 -2476 (|#1| |#1| "rest" |#1|)) (-15 -2476 (|#2| |#1| "first" |#2|)) (-15 -3743 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3597 ((-731) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -1658 (|#2| |#1|)) (-15 -1647 (|#2| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-731))) (-15 -1922 (|#2| |#1| "last")) (-15 -2375 (|#2| |#1|)) (-15 -3200 (|#1| |#1| (-731))) (-15 -1922 (|#1| |#1| "rest")) (-15 -3200 (|#1| |#1|)) (-15 -1922 (|#2| |#1| "first")) (-15 -3434 (|#1| |#2| |#1|)) (-15 -3434 (|#1| |#1| |#1|)) (-15 -3650 (|#2| |#1| |#2|)) (-15 -2476 (|#2| |#1| "value" |#2|)) (-15 -3999 (|#1| |#1| (-606 |#1|))) (-15 -3868 ((-111) |#1| |#1|)) (-15 -3335 ((-111) |#1|)) (-15 -1922 (|#2| |#1| "value")) (-15 -3619 (|#2| |#1|)) (-15 -3862 ((-111) |#1|)) (-15 -2570 ((-606 |#1|) |#1|)) (-15 -2804 ((-606 |#1|) |#1|)) (-15 -2244 ((-111) |#1| |#1|)) (-15 -2258 ((-731) |#1|)) (-15 -2506 ((-111) |#1| (-731))) (-15 -1642 ((-111) |#1| (-731))) (-15 -2489 ((-111) |#1| (-731)))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-3619 ((|#1| $) 48)) (-1658 ((|#1| $) 65)) (-4199 (($ $) 67)) (-3704 (($ $ (-537)) 52 (|has| $ (-6 -4301)))) (-2506 (((-111) $ (-731)) 8)) (-3650 ((|#1| $ |#1|) 39 (|has| $ (-6 -4301)))) (-1536 (($ $ $) 56 (|has| $ (-6 -4301)))) (-2236 ((|#1| $ |#1|) 54 (|has| $ (-6 -4301)))) (-1988 ((|#1| $ |#1|) 58 (|has| $ (-6 -4301)))) (-2476 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4301))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4301))) (($ $ "rest" $) 55 (|has| $ (-6 -4301))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4301)))) (-3999 (($ $ (-606 $)) 41 (|has| $ (-6 -4301)))) (-1647 ((|#1| $) 66)) (-3832 (($) 7 T CONST)) (-3200 (($ $) 73) (($ $ (-731)) 71)) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2570 (((-606 $) $) 50)) (-3868 (((-111) $ $) 42 (|has| |#1| (-1045)))) (-1642 (((-111) $ (-731)) 9)) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35)) (-2489 (((-111) $ (-731)) 10)) (-3583 (((-606 |#1|) $) 45)) (-3862 (((-111) $) 49)) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-2375 ((|#1| $) 70) (($ $ (-731)) 68)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 76) (($ $ (-731)) 74)) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2364 (((-537) $ $) 44)) (-3335 (((-111) $) 46)) (-3136 (($ $) 62)) (-3743 (($ $) 59 (|has| $ (-6 -4301)))) (-3597 (((-731) $) 63)) (-1935 (($ $) 64)) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2494 (($ $) 13)) (-3115 (($ $ $) 61 (|has| $ (-6 -4301))) (($ $ |#1|) 60 (|has| $ (-6 -4301)))) (-3434 (($ $ $) 78) (($ |#1| $) 77)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2804 (((-606 $) $) 51)) (-4261 (((-111) $ $) 43 (|has| |#1| (-1045)))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1188 |#1|) (-134) (-1154)) (T -1188)) +((-3434 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3434 (*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-3200 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-3200 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1922 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1935 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3115 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3743 (*1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1988 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-1536 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2476 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) (-2236 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-2476 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) (-4 *3 (-1154))))) +(-13 (-962 |t#1|) (-10 -8 (-15 -3434 ($ $ $)) (-15 -3434 ($ |t#1| $)) (-15 -3188 (|t#1| $)) (-15 -1922 (|t#1| $ "first")) (-15 -3188 ($ $ (-731))) (-15 -3200 ($ $)) (-15 -1922 ($ $ "rest")) (-15 -3200 ($ $ (-731))) (-15 -2375 (|t#1| $)) (-15 -1922 (|t#1| $ "last")) (-15 -2375 ($ $ (-731))) (-15 -4199 ($ $)) (-15 -1647 (|t#1| $)) (-15 -1658 (|t#1| $)) (-15 -1935 ($ $)) (-15 -3597 ((-731) $)) (-15 -3136 ($ $)) (IF (|has| $ (-6 -4301)) (PROGN (-15 -3115 ($ $ $)) (-15 -3115 ($ $ |t#1|)) (-15 -3743 ($ $)) (-15 -1988 (|t#1| $ |t#1|)) (-15 -2476 (|t#1| $ "first" |t#1|)) (-15 -1536 ($ $ $)) (-15 -2476 ($ $ "rest" $)) (-15 -2236 (|t#1| $ |t#1|)) (-15 -2476 (|t#1| $ "last" |t#1|)) (-15 -3704 ($ $ (-537)))) |%noBranch|))) +(((-33) . T) ((-100) |has| |#1| (-1045)) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-579 (-816)))) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-471 |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-962 |#1|) . T) ((-1045) |has| |#1| (-1045)) ((-1154) . T)) +((-1612 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) (-998) (-998) (-1191 |#1|) (-1191 |#2|)) (T -1189)) +((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) (-4 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6 *4 *2)) (-4 *4 (-1191 *5))))) +(-10 -7 (-15 -1612 (|#4| (-1 |#2| |#1|) |#3|))) +((-1656 (((-111) $) 15)) (-1403 (($ $) 92)) (-1247 (($ $) 68)) (-1378 (($ $) 88)) (-4270 (($ $) 64)) (-1429 (($ $) 96)) (-1273 (($ $) 72)) (-2180 (($ $) 62)) (-4185 (($ $) 60)) (-1441 (($ $) 98)) (-1286 (($ $) 74)) (-1415 (($ $) 94)) (-1259 (($ $) 70)) (-1389 (($ $) 90)) (-1234 (($ $) 66)) (-2341 (((-816) $) 48) (($ (-537)) NIL) (($ (-391 (-537))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1475 (($ $) 104)) (-1328 (($ $) 80)) (-1453 (($ $) 100)) (-1300 (($ $) 76)) (-1495 (($ $) 108)) (-1352 (($ $) 84)) (-4141 (($ $) 110)) (-1365 (($ $) 86)) (-1485 (($ $) 106)) (-1340 (($ $) 82)) (-1465 (($ $) 102)) (-1314 (($ $) 78)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-391 (-537))) 58))) +(((-1190 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1259 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -1656 ((-111) |#1|)) (-15 -2341 ((-816) |#1|))) (-1191 |#2|) (-998)) (T -1190)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-391 (-537)))) (-15 -1247 (|#1| |#1|)) (-15 -4270 (|#1| |#1|)) (-15 -1273 (|#1| |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -1259 (|#1| |#1|)) (-15 -1234 (|#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -1300 (|#1| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -1389 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1441 (|#1| |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1378 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1453 (|#1| |#1|)) (-15 -1475 (|#1| |#1|)) (-15 -2180 (|#1| |#1|)) (-15 -4185 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2341 (|#1| |#2|)) (-15 -2341 (|#1| |#1|)) (-15 -2341 (|#1| (-391 (-537)))) (-15 -2341 (|#1| (-537))) (-15 ** (|#1| |#1| (-731))) (-15 ** (|#1| |#1| (-874))) (-15 -1656 ((-111) |#1|)) (-15 -2341 ((-816) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3757 (((-606 (-1027)) $) 72)) (-1890 (((-1117) $) 101)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 49 (|has| |#1| (-529)))) (-3377 (($ $) 50 (|has| |#1| (-529)))) (-4017 (((-111) $) 52 (|has| |#1| (-529)))) (-1586 (($ $ (-731)) 96) (($ $ (-731) (-731)) 95)) (-1525 (((-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|))) $) 103)) (-1403 (($ $) 133 (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) 116 (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) 19)) (-3633 (($ $) 115 (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) 132 (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) 117 (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|)))) 153) (($ (-1098 |#1|)) 151)) (-1429 (($ $) 131 (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) 118 (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) 17 T CONST)) (-3940 (($ $) 58)) (-3490 (((-3 $ "failed") $) 32)) (-1388 (($ $) 150)) (-1706 (((-905 |#1|) $ (-731)) 148) (((-905 |#1|) $ (-731) (-731)) 147)) (-2362 (((-111) $) 71)) (-3338 (($) 143 (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $) 98) (((-731) $ (-731)) 97)) (-2836 (((-111) $) 30)) (-2590 (($ $ (-537)) 114 (|has| |#1| (-37 (-391 (-537)))))) (-3172 (($ $ (-874)) 99)) (-3968 (($ (-1 |#1| (-537)) $) 149)) (-1538 (((-111) $) 60)) (-3733 (($ |#1| (-731)) 59) (($ $ (-1027) (-731)) 74) (($ $ (-606 (-1027)) (-606 (-731))) 73)) (-1612 (($ (-1 |#1| |#1|) $) 61)) (-2180 (($ $) 140 (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) 63)) (-3912 ((|#1| $) 64)) (-1654 (((-1100) $) 9)) (-3092 (($ $) 145 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 144 (-1533 (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-912)) (|has| |#1| (-1139)) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-37 (-391 (-537)))))))) (-2528 (((-1064) $) 10)) (-1540 (($ $ (-731)) 93)) (-3515 (((-3 $ "failed") $ $) 48 (|has| |#1| (-529)))) (-4185 (($ $) 141 (|has| |#1| (-37 (-391 (-537)))))) (-4116 (((-1098 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-731)))))) (-1922 ((|#1| $ (-731)) 102) (($ $ $) 79 (|has| (-731) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) 87 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117) (-731)) 86 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-606 (-1117))) 85 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117)) 84 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-731)) 82 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2872 (((-731) $) 62)) (-1441 (($ $) 130 (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) 119 (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) 129 (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) 120 (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) 128 (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) 121 (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 70)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ (-391 (-537))) 55 (|has| |#1| (-37 (-391 (-537))))) (($ $) 47 (|has| |#1| (-529))) (($ |#1|) 45 (|has| |#1| (-163)))) (-3459 (((-1098 |#1|) $) 152)) (-3500 ((|#1| $ (-731)) 57)) (-2644 (((-3 $ "failed") $) 46 (|has| |#1| (-139)))) (-3654 (((-731)) 28)) (-2184 ((|#1| $) 100)) (-1475 (($ $) 139 (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) 127 (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) 51 (|has| |#1| (-529)))) (-1453 (($ $) 138 (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) 126 (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) 137 (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) 125 (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-731)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-731)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) 136 (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) 124 (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) 135 (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) 123 (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) 134 (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) 122 (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) 91 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117) (-731)) 90 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-606 (-1117))) 89 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-1117)) 88 (-12 (|has| |#1| (-853 (-1117))) (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (($ $ (-731)) 83 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 56 (|has| |#1| (-347)))) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ |#1|) 146 (|has| |#1| (-347))) (($ $ $) 142 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 113 (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-391 (-537)) $) 54 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) 53 (|has| |#1| (-37 (-391 (-537))))))) +(((-1191 |#1|) (-134) (-998)) (T -1191)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 (-2 (|:| |k| (-731)) (|:| |c| *3)))) (-4 *3 (-998)) (-4 *1 (-1191 *3)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-5 *2 (-1098 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-4 *1 (-1191 *3)))) (-1388 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1191 *3)) (-4 *3 (-998)))) (-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) (-5 *2 (-905 *4)))) (-1706 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) (-5 *2 (-905 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) (-3092 (*1 *1 *1 *2) (-1533 (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) (-4 *3 (-37 (-391 (-537)))))) (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537))))))))) +(-13 (-1178 |t#1| (-731)) (-10 -8 (-15 -2411 ($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |t#1|))))) (-15 -3459 ((-1098 |t#1|) $)) (-15 -2411 ($ (-1098 |t#1|))) (-15 -1388 ($ $)) (-15 -3968 ($ (-1 |t#1| (-537)) $)) (-15 -1706 ((-905 |t#1|) $ (-731))) (-15 -1706 ((-905 |t#1|) $ (-731) (-731))) (IF (|has| |t#1| (-347)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-391 (-537)))) (PROGN (-15 -3092 ($ $)) (IF (|has| |t#1| (-15 -3092 (|t#1| |t#1| (-1117)))) (IF (|has| |t#1| (-15 -3757 ((-606 (-1117)) |t#1|))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1139)) (IF (|has| |t#1| (-912)) (IF (|has| |t#1| (-29 (-537))) (-15 -3092 ($ $ (-1117))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-954)) (-6 (-1139))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-731)) . T) ((-25) . T) ((-37 #1=(-391 (-537))) |has| |#1| (-37 (-391 (-537)))) ((-37 |#1|) |has| |#1| (-163)) ((-37 $) |has| |#1| (-529)) ((-34) |has| |#1| (-37 (-391 (-537)))) ((-93) |has| |#1| (-37 (-391 (-537)))) ((-100) . T) ((-110 #1# #1#) |has| |#1| (-37 (-391 (-537)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-129) . T) ((-139) |has| |#1| (-139)) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-218) |has| |#1| (-15 * (|#1| (-731) |#1|))) ((-268) |has| |#1| (-37 (-391 (-537)))) ((-270 $ $) |has| (-731) (-1057)) ((-274) |has| |#1| (-529)) ((-474) |has| |#1| (-37 (-391 (-537)))) ((-529) |has| |#1| (-529)) ((-609 #1#) |has| |#1| (-37 (-391 (-537)))) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #1#) |has| |#1| (-37 (-391 (-537)))) ((-678 |#1|) |has| |#1| (-163)) ((-678 $) |has| |#1| (-529)) ((-687) . T) ((-853 (-1117)) -12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117)))) ((-926 |#1| #0# (-1027)) . T) ((-954) |has| |#1| (-37 (-391 (-537)))) ((-1004 #1#) |has| |#1| (-37 (-391 (-537)))) ((-1004 |#1|) . T) ((-1004 $) -1533 (|has| |#1| (-529)) (|has| |#1| (-163))) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1139) |has| |#1| (-37 (-391 (-537)))) ((-1142) |has| |#1| (-37 (-391 (-537)))) ((-1178 |#1| #0#) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3757 (((-606 (-1027)) $) NIL)) (-1890 (((-1117) $) 87)) (-3235 (((-1173 |#2| |#1|) $ (-731)) 73)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) NIL (|has| |#1| (-529)))) (-3377 (($ $) NIL (|has| |#1| (-529)))) (-4017 (((-111) $) 137 (|has| |#1| (-529)))) (-1586 (($ $ (-731)) 122) (($ $ (-731) (-731)) 124)) (-1525 (((-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|))) $) 42)) (-1403 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1247 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3418 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1378 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4270 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2411 (($ (-1098 (-2 (|:| |k| (-731)) (|:| |c| |#1|)))) 53) (($ (-1098 |#1|)) NIL)) (-1429 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1273 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3832 (($) NIL T CONST)) (-4127 (($ $) 128)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1388 (($ $) 135)) (-1706 (((-905 |#1|) $ (-731)) 63) (((-905 |#1|) $ (-731) (-731)) 65)) (-2362 (((-111) $) NIL)) (-3338 (($) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4231 (((-731) $) NIL) (((-731) $ (-731)) NIL)) (-2836 (((-111) $) NIL)) (-4016 (($ $) 112)) (-2590 (($ $ (-537)) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2438 (($ (-537) (-537) $) 130)) (-3172 (($ $ (-874)) 134)) (-3968 (($ (-1 |#1| (-537)) $) 106)) (-1538 (((-111) $) NIL)) (-3733 (($ |#1| (-731)) 15) (($ $ (-1027) (-731)) NIL) (($ $ (-606 (-1027)) (-606 (-731))) NIL)) (-1612 (($ (-1 |#1| |#1|) $) 94)) (-2180 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3901 (($ $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-4009 (($ $) 110)) (-4222 (($ $) 108)) (-1929 (($ (-537) (-537) $) 132)) (-3092 (($ $) 145 (|has| |#1| (-37 (-391 (-537))))) (($ $ (-1117)) 151 (-1533 (-12 (|has| |#1| (-15 -3092 (|#1| |#1| (-1117)))) (|has| |#1| (-15 -3757 ((-606 (-1117)) |#1|))) (|has| |#1| (-37 (-391 (-537))))) (-12 (|has| |#1| (-29 (-537))) (|has| |#1| (-37 (-391 (-537)))) (|has| |#1| (-912)) (|has| |#1| (-1139))))) (($ $ (-1196 |#2|)) 146 (|has| |#1| (-37 (-391 (-537)))))) (-2528 (((-1064) $) NIL)) (-3724 (($ $ (-537) (-537)) 116)) (-1540 (($ $ (-731)) 118)) (-3515 (((-3 $ "failed") $ $) NIL (|has| |#1| (-529)))) (-4185 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3111 (($ $) 114)) (-4116 (((-1098 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-731)))))) (-1922 ((|#1| $ (-731)) 91) (($ $ $) 126 (|has| (-731) (-1057)))) (-3456 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) 103 (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $ (-1196 |#2|)) 99)) (-2872 (((-731) $) NIL)) (-1441 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1286 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1415 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1259 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1389 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1234 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1577 (($ $) 120)) (-2341 (((-816) $) NIL) (($ (-537)) 24) (($ (-391 (-537))) 143 (|has| |#1| (-37 (-391 (-537))))) (($ $) NIL (|has| |#1| (-529))) (($ |#1|) 23 (|has| |#1| (-163))) (($ (-1173 |#2| |#1|)) 80) (($ (-1196 |#2|)) 20)) (-3459 (((-1098 |#1|) $) NIL)) (-3500 ((|#1| $ (-731)) 90)) (-2644 (((-3 $ "failed") $) NIL (|has| |#1| (-139)))) (-3654 (((-731)) NIL)) (-2184 ((|#1| $) 88)) (-1475 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1328 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-3276 (((-111) $ $) NIL (|has| |#1| (-529)))) (-1453 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1300 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1352 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-4150 ((|#1| $ (-731)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-731)))) (|has| |#1| (-15 -2341 (|#1| (-1117))))))) (-4141 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1365 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1485 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1340 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1465 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-1314 (($ $) NIL (|has| |#1| (-37 (-391 (-537)))))) (-2928 (($) 17 T CONST)) (-2943 (($) 13 T CONST)) (-4230 (($ $ (-606 (-1117)) (-606 (-731))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117) (-731)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-606 (-1117))) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-1117)) NIL (-12 (|has| |#1| (-15 * (|#1| (-731) |#1|))) (|has| |#1| (-853 (-1117))))) (($ $ (-731)) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-731) |#1|))))) (-2244 (((-111) $ $) NIL)) (-2340 (($ $ |#1|) NIL (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) 102)) (-2318 (($ $ $) 18)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL) (($ $ |#1|) 140 (|has| |#1| (-347))) (($ $ $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537)))))) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-391 (-537)) $) NIL (|has| |#1| (-37 (-391 (-537))))) (($ $ (-391 (-537))) NIL (|has| |#1| (-37 (-391 (-537))))))) +(((-1192 |#1| |#2| |#3|) (-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (-15 -4222 ($ $)) (-15 -4009 ($ $)) (-15 -4016 ($ $)) (-15 -3111 ($ $)) (-15 -3724 ($ $ (-537) (-537))) (-15 -4127 ($ $)) (-15 -2438 ($ (-537) (-537) $)) (-15 -1929 ($ (-537) (-537) $)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) (-998) (-1117) |#1|) (T -1192)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) (-3235 (*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-3456 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *5 *3))) (-4222 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-4009 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-4016 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-3111 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-3724 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) (-14 *4 *2))) (-2438 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3))) (-1929 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) (-14 *5 *3))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) +(-13 (-1191 |#1|) (-10 -8 (-15 -2341 ($ (-1173 |#2| |#1|))) (-15 -3235 ((-1173 |#2| |#1|) $ (-731))) (-15 -2341 ($ (-1196 |#2|))) (-15 -3456 ($ $ (-1196 |#2|))) (-15 -4222 ($ $)) (-15 -4009 ($ $)) (-15 -4016 ($ $)) (-15 -3111 ($ $)) (-15 -3724 ($ $ (-537) (-537))) (-15 -4127 ($ $)) (-15 -2438 ($ (-537) (-537) $)) (-15 -1929 ($ (-537) (-537) $)) (IF (|has| |#1| (-37 (-391 (-537)))) (-15 -3092 ($ $ (-1196 |#2|))) |%noBranch|))) +((-3617 (((-1 (-1098 |#1|) (-606 (-1098 |#1|))) (-1 |#2| (-606 |#2|))) 24)) (-3806 (((-1 (-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3674 (((-1 (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2|)) 13)) (-2748 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3613 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4174 ((|#2| (-1 |#2| (-606 |#2|)) (-606 |#1|)) 54)) (-2445 (((-606 |#2|) (-606 |#1|) (-606 (-1 |#2| (-606 |#2|)))) 61)) (-2461 ((|#2| |#2| |#2|) 43))) +(((-1193 |#1| |#2|) (-10 -7 (-15 -3674 ((-1 (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2|))) (-15 -3806 ((-1 (-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3617 ((-1 (-1098 |#1|) (-606 (-1098 |#1|))) (-1 |#2| (-606 |#2|)))) (-15 -2461 (|#2| |#2| |#2|)) (-15 -3613 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2748 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4174 (|#2| (-1 |#2| (-606 |#2|)) (-606 |#1|))) (-15 -2445 ((-606 |#2|) (-606 |#1|) (-606 (-1 |#2| (-606 |#2|)))))) (-37 (-391 (-537))) (-1191 |#1|)) (T -1193)) +((-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 (-1 *6 (-606 *6)))) (-4 *5 (-37 (-391 (-537)))) (-4 *6 (-1191 *5)) (-5 *2 (-606 *6)) (-5 *1 (-1193 *5 *6)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-606 *2))) (-5 *4 (-606 *5)) (-4 *5 (-37 (-391 (-537)))) (-4 *2 (-1191 *5)) (-5 *1 (-1193 *5 *2)))) (-2748 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) (-4 *4 (-37 (-391 (-537)))))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) (-4 *4 (-37 (-391 (-537)))))) (-2461 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1193 *3 *2)) (-4 *2 (-1191 *3)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-606 *5))) (-4 *5 (-1191 *4)) (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-606 (-1098 *4)))) (-5 *1 (-1193 *4 *5)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1191 *4)) (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-1098 *4) (-1098 *4))) (-5 *1 (-1193 *4 *5)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1191 *4)) (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-1098 *4))) (-5 *1 (-1193 *4 *5))))) +(-10 -7 (-15 -3674 ((-1 (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2|))) (-15 -3806 ((-1 (-1098 |#1|) (-1098 |#1|) (-1098 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3617 ((-1 (-1098 |#1|) (-606 (-1098 |#1|))) (-1 |#2| (-606 |#2|)))) (-15 -2461 (|#2| |#2| |#2|)) (-15 -3613 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2748 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4174 (|#2| (-1 |#2| (-606 |#2|)) (-606 |#1|))) (-15 -2445 ((-606 |#2|) (-606 |#1|) (-606 (-1 |#2| (-606 |#2|)))))) +((-3202 ((|#2| |#4| (-731)) 30)) (-1468 ((|#4| |#2|) 25)) (-4064 ((|#4| (-391 |#2|)) 52 (|has| |#1| (-529)))) (-1965 (((-1 |#4| (-606 |#4|)) |#3|) 46))) +(((-1194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1468 (|#4| |#2|)) (-15 -3202 (|#2| |#4| (-731))) (-15 -1965 ((-1 |#4| (-606 |#4|)) |#3|)) (IF (|has| |#1| (-529)) (-15 -4064 (|#4| (-391 |#2|))) |%noBranch|)) (-998) (-1176 |#1|) (-617 |#2|) (-1191 |#1|)) (T -1194)) +((-4064 (*1 *2 *3) (-12 (-5 *3 (-391 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-529)) (-4 *4 (-998)) (-4 *2 (-1191 *4)) (-5 *1 (-1194 *4 *5 *6 *2)) (-4 *6 (-617 *5)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *5 (-1176 *4)) (-5 *2 (-1 *6 (-606 *6))) (-5 *1 (-1194 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-1191 *4)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-1194 *5 *2 *6 *3)) (-4 *6 (-617 *2)) (-4 *3 (-1191 *5)))) (-1468 (*1 *2 *3) (-12 (-4 *4 (-998)) (-4 *3 (-1176 *4)) (-4 *2 (-1191 *4)) (-5 *1 (-1194 *4 *3 *5 *2)) (-4 *5 (-617 *3))))) +(-10 -7 (-15 -1468 (|#4| |#2|)) (-15 -3202 (|#2| |#4| (-731))) (-15 -1965 ((-1 |#4| (-606 |#4|)) |#3|)) (IF (|has| |#1| (-529)) (-15 -4064 (|#4| (-391 |#2|))) |%noBranch|)) +NIL +(((-1195) (-134)) (T -1195)) NIL (-13 (-10 -7 (-6 -4120))) -((-2247 (((-110) $ $) NIL)) (-3524 (((-1102)) 12)) (-1521 (((-1085) $) 17)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11) (((-1102) $) 8)) (-2148 (((-110) $ $) 14))) -(((-1180 |#1|) (-13 (-1030) (-572 (-1102)) (-10 -8 (-15 -2265 ((-1102) $)) (-15 -3524 ((-1102))))) (-1102)) (T -1180)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2))) (-3524 (*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2)))) -(-13 (-1030) (-572 (-1102)) (-10 -8 (-15 -2265 ((-1102) $)) (-15 -3524 ((-1102))))) -((-4222 (($ (-721)) 18)) (-4212 (((-639 |#2|) $ $) 40)) (-1408 ((|#2| $) 48)) (-2428 ((|#2| $) 47)) (-3225 ((|#2| $ $) 35)) (-2261 (($ $ $) 44)) (-2250 (($ $) 22) (($ $ $) 28)) (-2237 (($ $ $) 15)) (* (($ (-531) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1181 |#1| |#2|) (-10 -8 (-15 -1408 (|#2| |#1|)) (-15 -2428 (|#2| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -4212 ((-639 |#2|) |#1| |#1|)) (-15 -3225 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -4222 (|#1| (-721))) (-15 -2237 (|#1| |#1| |#1|))) (-1182 |#2|) (-1138)) (T -1181)) -NIL -(-10 -8 (-15 -1408 (|#2| |#1|)) (-15 -2428 (|#2| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -4212 ((-639 |#2|) |#1| |#1|)) (-15 -3225 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -4222 (|#1| (-721))) (-15 -2237 (|#1| |#1| |#1|))) -((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4222 (($ (-721)) 112 (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) 105 (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1408 ((|#1| $) 102 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-3332 (((-110) $ (-721)) 10)) (-2428 ((|#1| $) 103 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-3225 ((|#1| $ $) 106 (|has| |#1| (-986)))) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2261 (($ $ $) 104 (|has| |#1| (-986)))) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2250 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2237 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-531) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-677))) (($ $ |#1|) 107 (|has| |#1| (-677)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273))))) -(((-1182 |#1|) (-133) (-1138)) (T -1182)) -((-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-25)))) (-4222 (*1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1182 *3)) (-4 *3 (-23)) (-4 *3 (-1138)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) (-4212 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-986)) (-5 *2 (-639 *3)))) (-2261 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943)) (-4 *2 (-986)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943)) (-4 *2 (-986))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2237 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4222 ($ (-721))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2250 ($ $)) (-15 -2250 ($ $ $)) (-15 * ($ (-531) $))) |%noBranch|) (IF (|has| |t#1| (-677)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-986)) (PROGN (-15 -3225 (|t#1| $ $)) (-15 -4212 ((-639 |t#1|) $ $)) (-15 -2261 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-943)) (IF (|has| |t#1| (-986)) (PROGN (-15 -2428 (|t#1| $)) (-15 -1408 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-19 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T)) -((-3203 (((-1184 |#2|) (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|) 13)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|) 15)) (-3261 (((-3 (-1184 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1184 |#1|)) 28) (((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|)) 18))) -(((-1183 |#1| |#2|) (-10 -7 (-15 -3203 ((-1184 |#2|) (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -3261 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|))) (-15 -3261 ((-3 (-1184 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1184 |#1|)))) (-1138) (-1138)) (T -1183)) -((-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1184 *6)) (-5 *1 (-1183 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1184 *6)) (-5 *1 (-1183 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-1183 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1184 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-1184 *5)) (-5 *1 (-1183 *6 *5))))) -(-10 -7 (-15 -3203 ((-1184 |#2|) (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -3261 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|))) (-15 -3261 ((-3 (-1184 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1184 |#1|)))) -((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721)) NIL (|has| |#1| (-23)))) (-3340 (($ (-598 |#1|)) 9)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 15 (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) NIL (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1408 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-3332 (((-110) $ (-721)) NIL)) (-2428 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-3225 ((|#1| $ $) NIL (|has| |#1| (-986)))) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2261 (($ $ $) NIL (|has| |#1| (-986)))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 19 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 8)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2237 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-531) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-677))) (($ $ |#1|) NIL (|has| |#1| (-677)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1184 |#1|) (-13 (-1182 |#1|) (-10 -8 (-15 -3340 ($ (-598 |#1|))))) (-1138)) (T -1184)) -((-3340 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1184 *3))))) -(-13 (-1182 |#1|) (-10 -8 (-15 -3340 ($ (-598 |#1|))))) -((-2247 (((-110) $ $) NIL)) (-1370 (((-1085) $ (-1085)) 90) (((-1085) $ (-1085) (-1085)) 88) (((-1085) $ (-1085) (-598 (-1085))) 87)) (-3821 (($) 59)) (-3246 (((-1189) $ (-448) (-864)) 45)) (-1247 (((-1189) $ (-864) (-1085)) 73) (((-1189) $ (-864) (-817)) 74)) (-2161 (((-1189) $ (-864) (-360) (-360)) 48)) (-1285 (((-1189) $ (-1085)) 69)) (-1335 (((-1189) $ (-864) (-1085)) 78)) (-3030 (((-1189) $ (-864) (-360) (-360)) 49)) (-1600 (((-1189) $ (-864) (-864)) 46)) (-2562 (((-1189) $) 70)) (-2745 (((-1189) $ (-864) (-1085)) 77)) (-2165 (((-1189) $ (-448) (-864)) 31)) (-1943 (((-1189) $ (-864) (-1085)) 76)) (-4242 (((-598 (-245)) $) 23) (($ $ (-598 (-245))) 24)) (-3467 (((-1189) $ (-721) (-721)) 43)) (-2378 (($ $) 60) (($ (-448) (-598 (-245))) 61)) (-1521 (((-1085) $) NIL)) (-3033 (((-531) $) 38)) (-2529 (((-1049) $) NIL)) (-3083 (((-1184 (-3 (-448) "undefined")) $) 37)) (-1549 (((-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531)))) $) 36)) (-3660 (((-1189) $ (-864) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-817) (-531) (-817) (-531)) 68)) (-3067 (((-598 (-886 (-208))) $) NIL)) (-2639 (((-448) $ (-864)) 33)) (-3711 (((-1189) $ (-721) (-721) (-864) (-864)) 40)) (-1717 (((-1189) $ (-1085)) 79)) (-3398 (((-1189) $ (-864) (-1085)) 75)) (-2265 (((-806) $) 85)) (-2259 (((-1189) $) 80)) (-1935 (((-1189) $ (-864) (-1085)) 71) (((-1189) $ (-864) (-817)) 72)) (-2148 (((-110) $ $) NIL))) -(((-1185) (-13 (-1030) (-10 -8 (-15 -3067 ((-598 (-886 (-208))) $)) (-15 -3821 ($)) (-15 -2378 ($ $)) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -2378 ($ (-448) (-598 (-245)))) (-15 -3660 ((-1189) $ (-864) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-817) (-531) (-817) (-531))) (-15 -1549 ((-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531)))) $)) (-15 -3083 ((-1184 (-3 (-448) "undefined")) $)) (-15 -1285 ((-1189) $ (-1085))) (-15 -2165 ((-1189) $ (-448) (-864))) (-15 -2639 ((-448) $ (-864))) (-15 -1935 ((-1189) $ (-864) (-1085))) (-15 -1935 ((-1189) $ (-864) (-817))) (-15 -1247 ((-1189) $ (-864) (-1085))) (-15 -1247 ((-1189) $ (-864) (-817))) (-15 -1943 ((-1189) $ (-864) (-1085))) (-15 -2745 ((-1189) $ (-864) (-1085))) (-15 -3398 ((-1189) $ (-864) (-1085))) (-15 -1717 ((-1189) $ (-1085))) (-15 -2259 ((-1189) $)) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -3030 ((-1189) $ (-864) (-360) (-360))) (-15 -2161 ((-1189) $ (-864) (-360) (-360))) (-15 -1335 ((-1189) $ (-864) (-1085))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -3246 ((-1189) $ (-448) (-864))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2562 ((-1189) $)) (-15 -3033 ((-531) $)) (-15 -2265 ((-806) $))))) (T -1185)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1185)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-598 (-886 (-208)))) (-5 *1 (-1185)))) (-3821 (*1 *1) (-5 *1 (-1185))) (-2378 (*1 *1 *1) (-5 *1 (-1185))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185)))) (-2378 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-598 (-245))) (-5 *1 (-1185)))) (-3660 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-864)) (-5 *4 (-208)) (-5 *5 (-531)) (-5 *6 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531))))) (-5 *1 (-1185)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1184 (-3 (-448) "undefined"))) (-5 *1 (-1185)))) (-1285 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2165 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2639 (*1 *2 *1 *3) (-12 (-5 *3 (-864)) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1935 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1935 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1943 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2745 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3398 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1717 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3711 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3030 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2161 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1335 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3246 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1600 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1370 (*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185)))) (-1370 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185)))) (-1370 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1185)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1185))))) -(-13 (-1030) (-10 -8 (-15 -3067 ((-598 (-886 (-208))) $)) (-15 -3821 ($)) (-15 -2378 ($ $)) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -2378 ($ (-448) (-598 (-245)))) (-15 -3660 ((-1189) $ (-864) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-817) (-531) (-817) (-531))) (-15 -1549 ((-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531)))) $)) (-15 -3083 ((-1184 (-3 (-448) "undefined")) $)) (-15 -1285 ((-1189) $ (-1085))) (-15 -2165 ((-1189) $ (-448) (-864))) (-15 -2639 ((-448) $ (-864))) (-15 -1935 ((-1189) $ (-864) (-1085))) (-15 -1935 ((-1189) $ (-864) (-817))) (-15 -1247 ((-1189) $ (-864) (-1085))) (-15 -1247 ((-1189) $ (-864) (-817))) (-15 -1943 ((-1189) $ (-864) (-1085))) (-15 -2745 ((-1189) $ (-864) (-1085))) (-15 -3398 ((-1189) $ (-864) (-1085))) (-15 -1717 ((-1189) $ (-1085))) (-15 -2259 ((-1189) $)) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -3030 ((-1189) $ (-864) (-360) (-360))) (-15 -2161 ((-1189) $ (-864) (-360) (-360))) (-15 -1335 ((-1189) $ (-864) (-1085))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -3246 ((-1189) $ (-448) (-864))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2562 ((-1189) $)) (-15 -3033 ((-531) $)) (-15 -2265 ((-806) $)))) -((-2247 (((-110) $ $) NIL)) (-3026 (((-1189) $ (-360)) 140) (((-1189) $ (-360) (-360) (-360)) 141)) (-1370 (((-1085) $ (-1085)) 148) (((-1085) $ (-1085) (-1085)) 146) (((-1085) $ (-1085) (-598 (-1085))) 145)) (-3825 (($) 50)) (-2010 (((-1189) $ (-360) (-360) (-360) (-360) (-360)) 116) (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $) 114) (((-1189) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 115) (((-1189) $ (-531) (-531) (-360) (-360) (-360)) 117) (((-1189) $ (-360) (-360)) 118) (((-1189) $ (-360) (-360) (-360)) 125)) (-1550 (((-360)) 97) (((-360) (-360)) 98)) (-3854 (((-360)) 92) (((-360) (-360)) 94)) (-1736 (((-360)) 95) (((-360) (-360)) 96)) (-3995 (((-360)) 101) (((-360) (-360)) 102)) (-1989 (((-360)) 99) (((-360) (-360)) 100)) (-2161 (((-1189) $ (-360) (-360)) 142)) (-1285 (((-1189) $ (-1085)) 126)) (-1841 (((-1062 (-208)) $) 51) (($ $ (-1062 (-208))) 52)) (-3040 (((-1189) $ (-1085)) 154)) (-3860 (((-1189) $ (-1085)) 155)) (-1269 (((-1189) $ (-360) (-360)) 124) (((-1189) $ (-531) (-531)) 139)) (-1600 (((-1189) $ (-864) (-864)) 132)) (-2562 (((-1189) $) 112)) (-3418 (((-1189) $ (-1085)) 153)) (-3791 (((-1189) $ (-1085)) 109)) (-4242 (((-598 (-245)) $) 53) (($ $ (-598 (-245))) 54)) (-3467 (((-1189) $ (-721) (-721)) 131)) (-3235 (((-1189) $ (-721) (-886 (-208))) 160)) (-3621 (($ $) 56) (($ (-1062 (-208)) (-1085)) 57) (($ (-1062 (-208)) (-598 (-245))) 58)) (-2827 (((-1189) $ (-360) (-360) (-360)) 106)) (-1521 (((-1085) $) NIL)) (-3033 (((-531) $) 103)) (-1306 (((-1189) $ (-360)) 143)) (-3532 (((-1189) $ (-360)) 158)) (-2529 (((-1049) $) NIL)) (-3089 (((-1189) $ (-360)) 157)) (-2518 (((-1189) $ (-1085)) 111)) (-3711 (((-1189) $ (-721) (-721) (-864) (-864)) 130)) (-4014 (((-1189) $ (-1085)) 108)) (-1717 (((-1189) $ (-1085)) 110)) (-3272 (((-1189) $ (-148) (-148)) 129)) (-2265 (((-806) $) 137)) (-2259 (((-1189) $) 113)) (-1369 (((-1189) $ (-1085)) 156)) (-1935 (((-1189) $ (-1085)) 107)) (-2148 (((-110) $ $) NIL))) -(((-1186) (-13 (-1030) (-10 -8 (-15 -3854 ((-360))) (-15 -3854 ((-360) (-360))) (-15 -1736 ((-360))) (-15 -1736 ((-360) (-360))) (-15 -1550 ((-360))) (-15 -1550 ((-360) (-360))) (-15 -1989 ((-360))) (-15 -1989 ((-360) (-360))) (-15 -3995 ((-360))) (-15 -3995 ((-360) (-360))) (-15 -3825 ($)) (-15 -3621 ($ $)) (-15 -3621 ($ (-1062 (-208)) (-1085))) (-15 -3621 ($ (-1062 (-208)) (-598 (-245)))) (-15 -1841 ((-1062 (-208)) $)) (-15 -1841 ($ $ (-1062 (-208)))) (-15 -3235 ((-1189) $ (-721) (-886 (-208)))) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1285 ((-1189) $ (-1085))) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -2010 ((-1189) $ (-360) (-360) (-360) (-360) (-360))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -2010 ((-1189) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -2010 ((-1189) $ (-531) (-531) (-360) (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360) (-360))) (-15 -1717 ((-1189) $ (-1085))) (-15 -1935 ((-1189) $ (-1085))) (-15 -4014 ((-1189) $ (-1085))) (-15 -3791 ((-1189) $ (-1085))) (-15 -2518 ((-1189) $ (-1085))) (-15 -1269 ((-1189) $ (-360) (-360))) (-15 -1269 ((-1189) $ (-531) (-531))) (-15 -3026 ((-1189) $ (-360))) (-15 -3026 ((-1189) $ (-360) (-360) (-360))) (-15 -2161 ((-1189) $ (-360) (-360))) (-15 -3418 ((-1189) $ (-1085))) (-15 -3089 ((-1189) $ (-360))) (-15 -3532 ((-1189) $ (-360))) (-15 -3040 ((-1189) $ (-1085))) (-15 -3860 ((-1189) $ (-1085))) (-15 -1369 ((-1189) $ (-1085))) (-15 -2827 ((-1189) $ (-360) (-360) (-360))) (-15 -1306 ((-1189) $ (-360))) (-15 -2562 ((-1189) $)) (-15 -3272 ((-1189) $ (-148) (-148))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2259 ((-1189) $)) (-15 -3033 ((-531) $))))) (T -1186)) -((-3854 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1736 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1736 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1550 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1989 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3995 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3825 (*1 *1) (-5 *1 (-1186))) (-3621 (*1 *1 *1) (-5 *1 (-1186))) (-3621 (*1 *1 *2 *3) (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1085)) (-5 *1 (-1186)))) (-3621 (*1 *1 *2 *3) (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-598 (-245))) (-5 *1 (-1186)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186)))) (-1841 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186)))) (-3235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1600 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1285 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3711 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-531)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1717 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3791 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1269 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1269 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3026 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3026 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2161 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3089 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3532 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3040 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2827 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1306 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1370 (*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186)))) (-1370 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186)))) (-1370 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1186)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1186))))) -(-13 (-1030) (-10 -8 (-15 -3854 ((-360))) (-15 -3854 ((-360) (-360))) (-15 -1736 ((-360))) (-15 -1736 ((-360) (-360))) (-15 -1550 ((-360))) (-15 -1550 ((-360) (-360))) (-15 -1989 ((-360))) (-15 -1989 ((-360) (-360))) (-15 -3995 ((-360))) (-15 -3995 ((-360) (-360))) (-15 -3825 ($)) (-15 -3621 ($ $)) (-15 -3621 ($ (-1062 (-208)) (-1085))) (-15 -3621 ($ (-1062 (-208)) (-598 (-245)))) (-15 -1841 ((-1062 (-208)) $)) (-15 -1841 ($ $ (-1062 (-208)))) (-15 -3235 ((-1189) $ (-721) (-886 (-208)))) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1285 ((-1189) $ (-1085))) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -2010 ((-1189) $ (-360) (-360) (-360) (-360) (-360))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -2010 ((-1189) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -2010 ((-1189) $ (-531) (-531) (-360) (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360) (-360))) (-15 -1717 ((-1189) $ (-1085))) (-15 -1935 ((-1189) $ (-1085))) (-15 -4014 ((-1189) $ (-1085))) (-15 -3791 ((-1189) $ (-1085))) (-15 -2518 ((-1189) $ (-1085))) (-15 -1269 ((-1189) $ (-360) (-360))) (-15 -1269 ((-1189) $ (-531) (-531))) (-15 -3026 ((-1189) $ (-360))) (-15 -3026 ((-1189) $ (-360) (-360) (-360))) (-15 -2161 ((-1189) $ (-360) (-360))) (-15 -3418 ((-1189) $ (-1085))) (-15 -3089 ((-1189) $ (-360))) (-15 -3532 ((-1189) $ (-360))) (-15 -3040 ((-1189) $ (-1085))) (-15 -3860 ((-1189) $ (-1085))) (-15 -1369 ((-1189) $ (-1085))) (-15 -2827 ((-1189) $ (-360) (-360) (-360))) (-15 -1306 ((-1189) $ (-360))) (-15 -2562 ((-1189) $)) (-15 -3272 ((-1189) $ (-148) (-148))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2259 ((-1189) $)) (-15 -3033 ((-531) $)))) -((-3886 (((-598 (-1085)) (-598 (-1085))) 94) (((-598 (-1085))) 90)) (-1512 (((-598 (-1085))) 88)) (-2411 (((-598 (-864)) (-598 (-864))) 63) (((-598 (-864))) 60)) (-3832 (((-598 (-721)) (-598 (-721))) 57) (((-598 (-721))) 53)) (-2906 (((-1189)) 65)) (-2811 (((-864) (-864)) 81) (((-864)) 80)) (-2443 (((-864) (-864)) 79) (((-864)) 78)) (-2099 (((-817) (-817)) 75) (((-817)) 74)) (-1255 (((-208)) 85) (((-208) (-360)) 87)) (-2244 (((-864)) 82) (((-864) (-864)) 83)) (-3503 (((-864) (-864)) 77) (((-864)) 76)) (-2831 (((-817) (-817)) 69) (((-817)) 67)) (-1454 (((-817) (-817)) 71) (((-817)) 70)) (-4012 (((-817) (-817)) 73) (((-817)) 72))) -(((-1187) (-10 -7 (-15 -2831 ((-817))) (-15 -2831 ((-817) (-817))) (-15 -1454 ((-817))) (-15 -1454 ((-817) (-817))) (-15 -4012 ((-817))) (-15 -4012 ((-817) (-817))) (-15 -2099 ((-817))) (-15 -2099 ((-817) (-817))) (-15 -3503 ((-864))) (-15 -3503 ((-864) (-864))) (-15 -3832 ((-598 (-721)))) (-15 -3832 ((-598 (-721)) (-598 (-721)))) (-15 -2411 ((-598 (-864)))) (-15 -2411 ((-598 (-864)) (-598 (-864)))) (-15 -2906 ((-1189))) (-15 -3886 ((-598 (-1085)))) (-15 -3886 ((-598 (-1085)) (-598 (-1085)))) (-15 -1512 ((-598 (-1085)))) (-15 -2443 ((-864))) (-15 -2811 ((-864))) (-15 -2443 ((-864) (-864))) (-15 -2811 ((-864) (-864))) (-15 -2244 ((-864) (-864))) (-15 -2244 ((-864))) (-15 -1255 ((-208) (-360))) (-15 -1255 ((-208))))) (T -1187)) -((-1255 (*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1187)))) (-1255 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1187)))) (-2244 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2811 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2443 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-1512 (*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) (-3886 (*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) (-2906 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1187)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187)))) (-2411 (*1 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187)))) (-3832 (*1 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-3503 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-2099 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-4012 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-1454 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-1454 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-2831 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))) -(-10 -7 (-15 -2831 ((-817))) (-15 -2831 ((-817) (-817))) (-15 -1454 ((-817))) (-15 -1454 ((-817) (-817))) (-15 -4012 ((-817))) (-15 -4012 ((-817) (-817))) (-15 -2099 ((-817))) (-15 -2099 ((-817) (-817))) (-15 -3503 ((-864))) (-15 -3503 ((-864) (-864))) (-15 -3832 ((-598 (-721)))) (-15 -3832 ((-598 (-721)) (-598 (-721)))) (-15 -2411 ((-598 (-864)))) (-15 -2411 ((-598 (-864)) (-598 (-864)))) (-15 -2906 ((-1189))) (-15 -3886 ((-598 (-1085)))) (-15 -3886 ((-598 (-1085)) (-598 (-1085)))) (-15 -1512 ((-598 (-1085)))) (-15 -2443 ((-864))) (-15 -2811 ((-864))) (-15 -2443 ((-864) (-864))) (-15 -2811 ((-864) (-864))) (-15 -2244 ((-864) (-864))) (-15 -2244 ((-864))) (-15 -1255 ((-208) (-360))) (-15 -1255 ((-208)))) -((-2499 (((-448) (-598 (-598 (-886 (-208)))) (-598 (-245))) 21) (((-448) (-598 (-598 (-886 (-208))))) 20) (((-448) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245))) 19)) (-3985 (((-1185) (-598 (-598 (-886 (-208)))) (-598 (-245))) 27) (((-1185) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245))) 26)) (-2265 (((-1185) (-448)) 38))) -(((-1188) (-10 -7 (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -2265 ((-1185) (-448))))) (T -1188)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1185)) (-5 *1 (-1188)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-1188)))) (-3985 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-1188)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245))) (-5 *2 (-448)) (-5 *1 (-1188)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-448)) (-5 *1 (-1188)))) (-2499 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-448)) (-5 *1 (-1188))))) -(-10 -7 (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -2265 ((-1185) (-448)))) -((-2989 (($) 7)) (-2265 (((-806) $) 10))) -(((-1189) (-10 -8 (-15 -2989 ($)) (-15 -2265 ((-806) $)))) (T -1189)) -((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1189)))) (-2989 (*1 *1) (-5 *1 (-1189)))) -(-10 -8 (-15 -2989 ($)) (-15 -2265 ((-806) $))) -((-2263 (($ $ |#2|) 10))) -(((-1190 |#1| |#2|) (-10 -8 (-15 -2263 (|#1| |#1| |#2|))) (-1191 |#2|) (-344)) (T -1190)) -NIL -(-10 -8 (-15 -2263 (|#1| |#1| |#2|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2190 (((-130)) 28)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 29)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1191 |#1|) (-133) (-344)) (T -1191)) -((-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-344)))) (-2190 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-344)) (-5 *2 (-130))))) -(-13 (-668 |t#1|) (-10 -8 (-15 -2263 ($ $ |t#1|)) (-15 -2190 ((-130))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-992 |#1|) . T) ((-1030) . T)) -((-4211 (((-598 (-1133 |#1|)) (-1102) (-1133 |#1|)) 74)) (-3043 (((-1083 (-1083 (-895 |#1|))) (-1102) (-1083 (-895 |#1|))) 53)) (-2615 (((-1 (-1083 (-1133 |#1|)) (-1083 (-1133 |#1|))) (-721) (-1133 |#1|) (-1083 (-1133 |#1|))) 64)) (-3527 (((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721)) 55)) (-3934 (((-1 (-1098 (-895 |#1|)) (-895 |#1|)) (-1102)) 29)) (-1763 (((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721)) 54))) -(((-1192 |#1|) (-10 -7 (-15 -3527 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -1763 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -3043 ((-1083 (-1083 (-895 |#1|))) (-1102) (-1083 (-895 |#1|)))) (-15 -3934 ((-1 (-1098 (-895 |#1|)) (-895 |#1|)) (-1102))) (-15 -4211 ((-598 (-1133 |#1|)) (-1102) (-1133 |#1|))) (-15 -2615 ((-1 (-1083 (-1133 |#1|)) (-1083 (-1133 |#1|))) (-721) (-1133 |#1|) (-1083 (-1133 |#1|))))) (-344)) (T -1192)) -((-2615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-721)) (-4 *6 (-344)) (-5 *4 (-1133 *6)) (-5 *2 (-1 (-1083 *4) (-1083 *4))) (-5 *1 (-1192 *6)) (-5 *5 (-1083 *4)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-598 (-1133 *5))) (-5 *1 (-1192 *5)) (-5 *4 (-1133 *5)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1 (-1098 (-895 *4)) (-895 *4))) (-5 *1 (-1192 *4)) (-4 *4 (-344)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-1083 (-1083 (-895 *5)))) (-5 *1 (-1192 *5)) (-5 *4 (-1083 (-895 *5))))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4)))) (-5 *1 (-1192 *4)) (-4 *4 (-344)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4)))) (-5 *1 (-1192 *4)) (-4 *4 (-344))))) -(-10 -7 (-15 -3527 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -1763 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -3043 ((-1083 (-1083 (-895 |#1|))) (-1102) (-1083 (-895 |#1|)))) (-15 -3934 ((-1 (-1098 (-895 |#1|)) (-895 |#1|)) (-1102))) (-15 -4211 ((-598 (-1133 |#1|)) (-1102) (-1133 |#1|))) (-15 -2615 ((-1 (-1083 (-1133 |#1|)) (-1083 (-1133 |#1|))) (-721) (-1133 |#1|) (-1083 (-1133 |#1|))))) -((-2720 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|) 75)) (-2670 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) 74))) -(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|))) (-330) (-1160 |#1|) (-1160 |#2|) (-390 |#2| |#3|)) (T -1193)) -((-2720 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-1193 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))) (-2670 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-639 *4)))) (-5 *1 (-1193 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5))))) -(-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 43)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 64) (($ (-531)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-2284 (((-721)) NIL)) (-3575 (((-1189) (-721)) 16)) (-3035 (($) 27 T CONST)) (-3050 (($) 67 T CONST)) (-2148 (((-110) $ $) 69)) (-2263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) 71) (($ $ $) NIL)) (-2237 (($ $ $) 47)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))))) -(((-1194 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2265 ($ |#4|)) (-15 -3575 ((-1189) (-721))))) (-986) (-797) (-743) (-892 |#1| |#3| |#2|) (-598 |#2|) (-598 (-721)) (-721)) (T -1194)) -((-2265 (*1 *2 *1) (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4)) (-14 *7 (-598 (-721))) (-14 *8 (-721)))) (-2263 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-344)) (-4 *2 (-986)) (-4 *3 (-797)) (-4 *4 (-743)) (-14 *6 (-598 *3)) (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-892 *2 *4 *3)) (-14 *7 (-598 (-721))) (-14 *8 (-721)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4)) (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-892 *3 *5 *4)) (-14 *7 (-598 (-721))) (-14 *8 (-721)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) (-14 *8 (-598 *5)) (-5 *2 (-1189)) (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-892 *4 *6 *5)) (-14 *9 (-598 *3)) (-14 *10 *3)))) -(-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2265 ($ |#4|)) (-15 -3575 ((-1189) (-721))))) -((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) 88)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) NIL (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-2339 (((-598 |#4|) (-598 |#4|) $) 25 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 70)) (-3785 ((|#4| |#4| $) 75)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2227 (((-598 |#4|) $) NIL (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 76)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-1345 (((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-598 |#4|)) 35)) (-2680 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) NIL)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2309 (((-3 |#4| "failed") $) NIL)) (-1979 (((-598 |#4|) $) 50)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) 74)) (-1744 (((-110) $ $) 85)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 69)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) NIL)) (-1846 (($ $ |#4|) NIL)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 67)) (-3781 (($) 42)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) NIL)) (-3382 (($ $ |#3|) NIL)) (-2021 (($ $ |#3|) NIL)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) NIL) (((-598 |#4|) $) 57)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-2667 (((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-598 |#4|)) 41)) (-2308 (((-598 $) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-598 $) (-598 |#4|)) 66)) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-1697 (((-110) |#3| $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273))))) -(((-1195 |#1| |#2| |#3| |#4|) (-13 (-1132 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1345 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1345 ((-3 $ "failed") (-598 |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|))) (-15 -2308 ((-598 $) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2308 ((-598 $) (-598 |#4|))))) (-523) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -1195)) -((-1345 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-1345 (*1 *1 *2) (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-2667 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-2667 (*1 *1 *2) (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-2308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-598 (-1195 *6 *7 *8 *9))) (-5 *1 (-1195 *6 *7 *8 *9)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-1195 *4 *5 *6 *7))) (-5 *1 (-1195 *4 *5 *6 *7))))) -(-13 (-1132 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1345 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1345 ((-3 $ "failed") (-598 |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|))) (-15 -2308 ((-598 $) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2308 ((-598 $) (-598 |#4|))))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 36)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1196 |#1|) (-133) (-986)) (T -1196)) -((-2265 (*1 *1 *2) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-986))))) -(-13 (-986) (-109 |t#1| |t#1|) (-10 -8 (-15 -2265 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T)) -((-2247 (((-110) $ $) 60)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 45)) (-2879 (($ $ (-721)) 39)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ (-721)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ $) 63) (($ $ (-769 |#1|)) 49) (($ $ |#1|) 53)) (-3154 (((-3 (-769 |#1|) "failed") $) NIL)) (-2523 (((-769 |#1|) $) NIL)) (-2500 (($ $) 32)) (-3622 (((-3 $ "failed") $) NIL)) (-2513 (((-110) $) NIL)) (-1904 (($ $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 |#1|) |#2|) 31)) (-4104 (($ $) 33)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) 12)) (-2703 (((-769 |#1|) $) NIL)) (-1488 (((-769 |#1|) $) 34)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2931 (($ $ $) 62) (($ $ (-769 |#1|)) 51) (($ $ |#1|) 55)) (-3226 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2462 (((-769 |#1|) $) 28)) (-2475 ((|#2| $) 30)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2012 (((-721) $) 36)) (-3012 (((-110) $) 40)) (-2651 ((|#2| $) NIL)) (-2265 (((-806) $) NIL) (($ (-769 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-531)) NIL)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-769 |#1|)) NIL)) (-2005 ((|#2| $ $) 65) ((|#2| $ (-769 |#1|)) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) 13 T CONST)) (-3050 (($) 15 T CONST)) (-2400 (((-598 (-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2148 (((-110) $ $) 38)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 22)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-769 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1197 |#1| |#2|) (-13 (-363 |#2| (-769 |#1|)) (-1203 |#1| |#2|)) (-797) (-986)) (T -1197)) -NIL -(-13 (-363 |#2| (-769 |#1|)) (-1203 |#1| |#2|)) -((-2076 ((|#3| |#3| (-721)) 23)) (-2798 ((|#3| |#3| (-721)) 27)) (-1451 ((|#3| |#3| |#3| (-721)) 28))) -(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -2798 (|#3| |#3| (-721))) (-15 -2076 (|#3| |#3| (-721))) (-15 -1451 (|#3| |#3| |#3| (-721)))) (-13 (-986) (-668 (-388 (-531)))) (-797) (-1203 |#2| |#1|)) (T -1198)) -((-1451 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-2076 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-2798 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) -(-10 -7 (-15 -2798 (|#3| |#3| (-721))) (-15 -2076 (|#3| |#3| (-721))) (-15 -1451 (|#3| |#3| |#3| (-721)))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3798 (((-598 |#1|) $) 38)) (-2128 (((-3 $ "failed") $ $) 19)) (-3855 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-721)) 40 (|has| |#2| (-162)))) (-4082 (($) 17 T CONST)) (-2489 (($ $ |#1|) 52) (($ $ (-769 |#1|)) 51) (($ $ $) 50)) (-3154 (((-3 (-769 |#1|) "failed") $) 62)) (-2523 (((-769 |#1|) $) 61)) (-3622 (((-3 $ "failed") $) 32)) (-2513 (((-110) $) 43)) (-1904 (($ $) 42)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 48)) (-4007 (($ (-769 |#1|) |#2|) 49)) (-4104 (($ $) 47)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) 58)) (-2703 (((-769 |#1|) $) 59)) (-3261 (($ (-1 |#2| |#2|) $) 39)) (-2931 (($ $ |#1|) 55) (($ $ (-769 |#1|)) 54) (($ $ $) 53)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3012 (((-110) $) 45)) (-2651 ((|#2| $) 44)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#2|) 66) (($ (-769 |#1|)) 63) (($ |#1|) 46)) (-2005 ((|#2| $ (-769 |#1|)) 57) ((|#2| $ $) 56)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1199 |#1| |#2|) (-133) (-797) (-986)) (T -1199)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-769 *3)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-2 (|:| |k| (-769 *3)) (|:| |c| *4))))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-769 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-797)) (-4 *2 (-986)))) (-2005 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) (-2931 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2931 (*1 *1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2489 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-4007 (*1 *1 *2 *3) (-12 (-5 *2 (-769 *4)) (-4 *4 (-797)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-986)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-110)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2265 (*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-110)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-110)))) (-1904 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)) (-4 *3 (-162)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-4 *4 (-162)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-598 *3))))) -(-13 (-986) (-1196 |t#2|) (-977 (-769 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2703 ((-769 |t#1|) $)) (-15 -3039 ((-2 (|:| |k| (-769 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2005 (|t#2| $ (-769 |t#1|))) (-15 -2005 (|t#2| $ $)) (-15 -2931 ($ $ |t#1|)) (-15 -2931 ($ $ (-769 |t#1|))) (-15 -2931 ($ $ $)) (-15 -2489 ($ $ |t#1|)) (-15 -2489 ($ $ (-769 |t#1|))) (-15 -2489 ($ $ $)) (-15 -4007 ($ (-769 |t#1|) |t#2|)) (-15 -3380 ((-110) $)) (-15 -4104 ($ $)) (-15 -2265 ($ |t#1|)) (-15 -3012 ((-110) $)) (-15 -2651 (|t#2| $)) (-15 -2513 ((-110) $)) (-15 -1904 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -3855 ($ $ $)) (-15 -3855 ($ $ (-721)))) |%noBranch|) (-15 -3261 ($ (-1 |t#2| |t#2|) $)) (-15 -3798 ((-598 |t#1|) $)) (IF (|has| |t#2| (-6 -4266)) (-6 -4266) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#2|) . T) ((-601 $) . T) ((-668 |#2|) |has| |#2| (-162)) ((-677) . T) ((-977 (-769 |#1|)) . T) ((-992 |#2|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1196 |#2|) . T)) -((-2330 (((-110) $) 15)) (-1697 (((-110) $) 14)) (-2730 (($ $) 19) (($ $ (-721)) 20))) -(((-1200 |#1| |#2|) (-10 -8 (-15 -2730 (|#1| |#1| (-721))) (-15 -2730 (|#1| |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|))) (-1201 |#2|) (-344)) (T -1200)) -NIL -(-10 -8 (-15 -2730 (|#1| |#1| (-721))) (-15 -2730 (|#1| |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2330 (((-110) $) 91)) (-2675 (((-721)) 87)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 98)) (-2523 ((|#1| $) 97)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3493 (($ $ (-721)) 84 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) 68)) (-3617 (((-783 (-864)) $) 81 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3693 (((-110) $) 90)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-3717 (((-783 (-864))) 88)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-3 (-721) "failed") $ $) 82 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) 96)) (-2012 (((-783 (-864)) $) 89)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ |#1|) 99)) (-2750 (((-3 $ "failed") $) 80 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-1697 (((-110) $) 92)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2730 (($ $) 86 (|has| |#1| (-349))) (($ $ (-721)) 85 (|has| |#1| (-349)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62) (($ $ |#1|) 95)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1201 |#1|) (-133) (-344)) (T -1201)) -((-1697 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864))))) (-3717 (*1 *2) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864))))) (-2675 (*1 *2) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-721)))) (-2730 (*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-344)) (-4 *2 (-349)))) (-2730 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-4 *3 (-349))))) -(-13 (-344) (-977 |t#1|) (-1191 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-383)) |%noBranch|) (-15 -1697 ((-110) $)) (-15 -2330 ((-110) $)) (-15 -3693 ((-110) $)) (-15 -2012 ((-783 (-864)) $)) (-15 -3717 ((-783 (-864)))) (-15 -2675 ((-721))) (IF (|has| |t#1| (-349)) (PROGN (-6 (-383)) (-15 -2730 ($ $)) (-15 -2730 ($ $ (-721)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T) ((-1191 |#1|) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 86)) (-2879 (($ $ (-721)) 89)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-721)) NIL (|has| |#2| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ |#1|) NIL) (($ $ (-769 |#1|)) NIL) (($ $ $) NIL)) (-3154 (((-3 (-769 |#1|) "failed") $) NIL) (((-3 (-836 |#1|) "failed") $) NIL)) (-2523 (((-769 |#1|) $) NIL) (((-836 |#1|) $) NIL)) (-2500 (($ $) 88)) (-3622 (((-3 $ "failed") $) NIL)) (-2513 (((-110) $) 77)) (-1904 (($ $) 81)) (-3488 (($ $ $ (-721)) 90)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 |#1|) |#2|) NIL) (($ (-836 |#1|) |#2|) 26)) (-4104 (($ $) 103)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2703 (((-769 |#1|) $) NIL)) (-1488 (((-769 |#1|) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2931 (($ $ |#1|) NIL) (($ $ (-769 |#1|)) NIL) (($ $ $) NIL)) (-2076 (($ $ (-721)) 97 (|has| |#2| (-668 (-388 (-531)))))) (-3226 (((-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2462 (((-836 |#1|) $) 70)) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2798 (($ $ (-721)) 94 (|has| |#2| (-668 (-388 (-531)))))) (-2012 (((-721) $) 87)) (-3012 (((-110) $) 71)) (-2651 ((|#2| $) 75)) (-2265 (((-806) $) 57) (($ (-531)) NIL) (($ |#2|) 51) (($ (-769 |#1|)) NIL) (($ |#1|) 59) (($ (-836 |#1|)) NIL) (($ (-617 |#1| |#2|)) 43) (((-1197 |#1| |#2|) $) 64) (((-1206 |#1| |#2|) $) 69)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-836 |#1|)) NIL)) (-2005 ((|#2| $ (-769 |#1|)) NIL) ((|#2| $ $) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) 21 T CONST)) (-3050 (($) 25 T CONST)) (-2400 (((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2802 (((-3 (-617 |#1| |#2|) "failed") $) 102)) (-2148 (((-110) $ $) 65)) (-2250 (($ $) 96) (($ $ $) 95)) (-2237 (($ $ $) 20)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-836 |#1|)) NIL))) -(((-1202 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-363 |#2| (-836 |#1|)) (-10 -8 (-15 -2265 ($ (-617 |#1| |#2|))) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1206 |#1| |#2|) $)) (-15 -2802 ((-3 (-617 |#1| |#2|) "failed") $)) (-15 -3488 ($ $ $ (-721))) (IF (|has| |#2| (-668 (-388 (-531)))) (PROGN (-15 -2798 ($ $ (-721))) (-15 -2076 ($ $ (-721)))) |%noBranch|))) (-797) (-162)) (T -1202)) -((-2265 (*1 *1 *2) (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *1 (-1202 *3 *4)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2802 (*1 *2 *1) (|partial| -12 (-5 *2 (-617 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-3488 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162)))) (-2076 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162))))) -(-13 (-1203 |#1| |#2|) (-363 |#2| (-836 |#1|)) (-10 -8 (-15 -2265 ($ (-617 |#1| |#2|))) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1206 |#1| |#2|) $)) (-15 -2802 ((-3 (-617 |#1| |#2|) "failed") $)) (-15 -3488 ($ $ $ (-721))) (IF (|has| |#2| (-668 (-388 (-531)))) (PROGN (-15 -2798 ($ $ (-721))) (-15 -2076 ($ $ (-721)))) |%noBranch|))) -((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3798 (((-598 |#1|) $) 38)) (-2879 (($ $ (-721)) 71)) (-2128 (((-3 $ "failed") $ $) 19)) (-3855 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-721)) 40 (|has| |#2| (-162)))) (-4082 (($) 17 T CONST)) (-2489 (($ $ |#1|) 52) (($ $ (-769 |#1|)) 51) (($ $ $) 50)) (-3154 (((-3 (-769 |#1|) "failed") $) 62)) (-2523 (((-769 |#1|) $) 61)) (-3622 (((-3 $ "failed") $) 32)) (-2513 (((-110) $) 43)) (-1904 (($ $) 42)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 48)) (-4007 (($ (-769 |#1|) |#2|) 49)) (-4104 (($ $) 47)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) 58)) (-2703 (((-769 |#1|) $) 59)) (-1488 (((-769 |#1|) $) 73)) (-3261 (($ (-1 |#2| |#2|) $) 39)) (-2931 (($ $ |#1|) 55) (($ $ (-769 |#1|)) 54) (($ $ $) 53)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 (((-721) $) 72)) (-3012 (((-110) $) 45)) (-2651 ((|#2| $) 44)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#2|) 66) (($ (-769 |#1|)) 63) (($ |#1|) 46)) (-2005 ((|#2| $ (-769 |#1|)) 57) ((|#2| $ $) 56)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1203 |#1| |#2|) (-133) (-797) (-986)) (T -1203)) -((-1488 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-769 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-721)))) (-2879 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))))) -(-13 (-1199 |t#1| |t#2|) (-10 -8 (-15 -1488 ((-769 |t#1|) $)) (-15 -2012 ((-721) $)) (-15 -2879 ($ $ (-721))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#2|) . T) ((-601 $) . T) ((-668 |#2|) |has| |#2| (-162)) ((-677) . T) ((-977 (-769 |#1|)) . T) ((-992 |#2|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1196 |#2|) . T) ((-1199 |#1| |#2|) . T)) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3798 (((-598 (-1102)) $) NIL)) (-1229 (($ (-1197 (-1102) |#1|)) NIL)) (-2879 (($ $ (-721)) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-721)) NIL (|has| |#1| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ (-1102)) NIL) (($ $ (-769 (-1102))) NIL) (($ $ $) NIL)) (-3154 (((-3 (-769 (-1102)) "failed") $) NIL)) (-2523 (((-769 (-1102)) $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2513 (((-110) $) NIL)) (-1904 (($ $) NIL)) (-3481 (((-110) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 (-1102)) |#1|) NIL)) (-4104 (($ $) NIL)) (-3039 (((-2 (|:| |k| (-769 (-1102))) (|:| |c| |#1|)) $) NIL)) (-2703 (((-769 (-1102)) $) NIL)) (-1488 (((-769 (-1102)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2931 (($ $ (-1102)) NIL) (($ $ (-769 (-1102))) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2140 (((-1197 (-1102) |#1|) $) NIL)) (-2012 (((-721) $) NIL)) (-3012 (((-110) $) NIL)) (-2651 ((|#1| $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-769 (-1102))) NIL) (($ (-1102)) NIL)) (-2005 ((|#1| $ (-769 (-1102))) NIL) ((|#1| $ $) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) NIL T CONST)) (-3754 (((-598 (-2 (|:| |k| (-1102)) (|:| |c| $))) $) NIL)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1102) $) NIL))) -(((-1204 |#1|) (-13 (-1203 (-1102) |#1|) (-10 -8 (-15 -2140 ((-1197 (-1102) |#1|) $)) (-15 -1229 ($ (-1197 (-1102) |#1|))) (-15 -3754 ((-598 (-2 (|:| |k| (-1102)) (|:| |c| $))) $)))) (-986)) (T -1204)) -((-2140 (*1 *2 *1) (-12 (-5 *2 (-1197 (-1102) *3)) (-5 *1 (-1204 *3)) (-4 *3 (-986)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-1197 (-1102) *3)) (-4 *3 (-986)) (-5 *1 (-1204 *3)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| (-1102)) (|:| |c| (-1204 *3))))) (-5 *1 (-1204 *3)) (-4 *3 (-986))))) -(-13 (-1203 (-1102) |#1|) (-10 -8 (-15 -2140 ((-1197 (-1102) |#1|) $)) (-15 -1229 ($ (-1197 (-1102) |#1|))) (-15 -3754 ((-598 (-2 (|:| |k| (-1102)) (|:| |c| $))) $)))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL)) (-2523 ((|#2| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) 36)) (-2513 (((-110) $) 30)) (-1904 (($ $) 32)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ |#2| |#1|) NIL)) (-2703 ((|#2| $) 19)) (-1488 ((|#2| $) 16)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3226 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2462 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3012 (((-110) $) 27)) (-2651 ((|#1| $) 28)) (-2265 (((-806) $) 55) (($ (-531)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ |#2|) NIL)) (-2005 ((|#1| $ |#2|) 24)) (-2284 (((-721)) 14)) (-3035 (($) 25 T CONST)) (-3050 (($) 11 T CONST)) (-2400 (((-598 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2148 (((-110) $ $) 26)) (-2263 (($ $ |#1|) 57 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 44)) (** (($ $ (-864)) NIL) (($ $ (-721)) 46)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2167 (((-721) $) 15))) -(((-1205 |#1| |#2|) (-13 (-986) (-1196 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2167 ((-721) $)) (-15 -2265 ($ |#2|)) (-15 -1488 (|#2| $)) (-15 -2703 (|#2| $)) (-15 -2500 ($ $)) (-15 -2005 (|#1| $ |#2|)) (-15 -3012 ((-110) $)) (-15 -2651 (|#1| $)) (-15 -2513 ((-110) $)) (-15 -1904 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2263 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4270)) (-6 -4270) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) (-986) (-793)) (T -1205)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-1205 *3 *4)) (-4 *4 (-793)))) (-2265 (*1 *1 *2) (-12 (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)) (-4 *2 (-793)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) (-4 *4 (-793)))) (-1488 (*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)))) (-2703 (*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)))) (-2005 (*1 *2 *1 *3) (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) (-4 *4 (-793)))) (-2651 (*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) (-4 *4 (-793)))) (-1904 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-344)) (-4 *2 (-986)) (-4 *3 (-793))))) -(-13 (-986) (-1196 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2167 ((-721) $)) (-15 -2265 ($ |#2|)) (-15 -1488 (|#2| $)) (-15 -2703 (|#2| $)) (-15 -2500 ($ $)) (-15 -2005 (|#1| $ |#2|)) (-15 -3012 ((-110) $)) (-15 -2651 (|#1| $)) (-15 -2513 ((-110) $)) (-15 -1904 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2263 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4270)) (-6 -4270) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) -((-2247 (((-110) $ $) 26)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 120)) (-1229 (($ (-1197 |#1| |#2|)) 44)) (-2879 (($ $ (-721)) 32)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-721)) 46 (|has| |#2| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ |#1|) 102) (($ $ (-769 |#1|)) 103) (($ $ $) 25)) (-3154 (((-3 (-769 |#1|) "failed") $) NIL)) (-2523 (((-769 |#1|) $) NIL)) (-3622 (((-3 $ "failed") $) 110)) (-2513 (((-110) $) 105)) (-1904 (($ $) 106)) (-3481 (((-110) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 |#1|) |#2|) 19)) (-4104 (($ $) NIL)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2703 (((-769 |#1|) $) 111)) (-1488 (((-769 |#1|) $) 114)) (-3261 (($ (-1 |#2| |#2|) $) 119)) (-2931 (($ $ |#1|) 100) (($ $ (-769 |#1|)) 101) (($ $ $) 56)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2140 (((-1197 |#1| |#2|) $) 84)) (-2012 (((-721) $) 117)) (-3012 (((-110) $) 70)) (-2651 ((|#2| $) 28)) (-2265 (((-806) $) 63) (($ (-531)) 77) (($ |#2|) 74) (($ (-769 |#1|)) 17) (($ |#1|) 73)) (-2005 ((|#2| $ (-769 |#1|)) 104) ((|#2| $ $) 27)) (-2284 (((-721)) 108)) (-3035 (($) 14 T CONST)) (-3754 (((-598 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 13)) (-2250 (($ $) 88) (($ $ $) 91)) (-2237 (($ $ $) 55)) (** (($ $ (-864)) NIL) (($ $ (-721)) 49)) (* (($ (-864) $) NIL) (($ (-721) $) 47) (($ (-531) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1206 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -8 (-15 -2140 ((-1197 |#1| |#2|) $)) (-15 -1229 ($ (-1197 |#1| |#2|))) (-15 -3754 ((-598 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-797) (-986)) (T -1206)) -((-2140 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *1 (-1206 *3 *4)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))))) -(-13 (-1203 |#1| |#2|) (-10 -8 (-15 -2140 ((-1197 |#1| |#2|) $)) (-15 -1229 ($ (-1197 |#1| |#2|))) (-15 -3754 ((-598 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4139 (((-598 (-1083 |#1|)) (-1 (-598 (-1083 |#1|)) (-598 (-1083 |#1|))) (-531)) 15) (((-1083 |#1|) (-1 (-1083 |#1|) (-1083 |#1|))) 11))) -(((-1207 |#1|) (-10 -7 (-15 -4139 ((-1083 |#1|) (-1 (-1083 |#1|) (-1083 |#1|)))) (-15 -4139 ((-598 (-1083 |#1|)) (-1 (-598 (-1083 |#1|)) (-598 (-1083 |#1|))) (-531)))) (-1138)) (T -1207)) -((-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-598 (-1083 *5)) (-598 (-1083 *5)))) (-5 *4 (-531)) (-5 *2 (-598 (-1083 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1138)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1 (-1083 *4) (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1138))))) -(-10 -7 (-15 -4139 ((-1083 |#1|) (-1 (-1083 |#1|) (-1083 |#1|)))) (-15 -4139 ((-598 (-1083 |#1|)) (-1 (-598 (-1083 |#1|)) (-598 (-1083 |#1|))) (-531)))) -((-3255 (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|))) 148) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110)) 147) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)) 146) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110) (-110)) 145) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-983 |#1| |#2|)) 130)) (-2606 (((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|))) 72) (((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110)) 71) (((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110) (-110)) 70)) (-2956 (((-598 (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) (-983 |#1| |#2|)) 61)) (-1489 (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|))) 115) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110)) 114) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110)) 113) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110) (-110)) 112) (((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|)) 107)) (-1438 (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|))) 120) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110)) 119) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110)) 118) (((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|)) 117)) (-3318 (((-598 (-730 |#1| (-808 |#3|))) (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) 98) (((-1098 (-964 (-388 |#1|))) (-1098 |#1|)) 89) (((-895 (-964 (-388 |#1|))) (-730 |#1| (-808 |#3|))) 96) (((-895 (-964 (-388 |#1|))) (-895 |#1|)) 94) (((-730 |#1| (-808 |#3|)) (-730 |#1| (-808 |#2|))) 33))) -(((-1208 |#1| |#2| |#3|) (-10 -7 (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-983 |#1| |#2|))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -2956 ((-598 (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) (-983 |#1| |#2|))) (-15 -3318 ((-730 |#1| (-808 |#3|)) (-730 |#1| (-808 |#2|)))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-895 |#1|))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-730 |#1| (-808 |#3|)))) (-15 -3318 ((-1098 (-964 (-388 |#1|))) (-1098 |#1|))) (-15 -3318 ((-598 (-730 |#1| (-808 |#3|))) (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))))) (-13 (-795) (-289) (-140) (-962)) (-598 (-1102)) (-598 (-1102))) (T -1208)) -((-3318 (*1 *2 *3) (-12 (-5 *3 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6)))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-730 *4 (-808 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-1098 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-730 *4 (-808 *6))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102))) (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-730 *4 (-808 *5))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-730 *4 (-808 *6))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1489 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-598 (-895 *4))) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-3255 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-3255 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-983 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-2606 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))) -(-10 -7 (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-983 |#1| |#2|))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -2956 ((-598 (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) (-983 |#1| |#2|))) (-15 -3318 ((-730 |#1| (-808 |#3|)) (-730 |#1| (-808 |#2|)))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-895 |#1|))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-730 |#1| (-808 |#3|)))) (-15 -3318 ((-1098 (-964 (-388 |#1|))) (-1098 |#1|))) (-15 -3318 ((-598 (-730 |#1| (-808 |#3|))) (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))))) -((-2463 (((-3 (-1184 (-388 (-531))) "failed") (-1184 |#1|) |#1|) 21)) (-3867 (((-110) (-1184 |#1|)) 12)) (-3827 (((-3 (-1184 (-531)) "failed") (-1184 |#1|)) 16))) -(((-1209 |#1|) (-10 -7 (-15 -3867 ((-110) (-1184 |#1|))) (-15 -3827 ((-3 (-1184 (-531)) "failed") (-1184 |#1|))) (-15 -2463 ((-3 (-1184 (-388 (-531))) "failed") (-1184 |#1|) |#1|))) (-594 (-531))) (T -1209)) -((-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-1184 (-388 (-531)))) (-5 *1 (-1209 *4)))) (-3827 (*1 *2 *3) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-1184 (-531))) (-5 *1 (-1209 *4)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-110)) (-5 *1 (-1209 *4))))) -(-10 -7 (-15 -3867 ((-110) (-1184 |#1|))) (-15 -3827 ((-3 (-1184 (-531)) "failed") (-1184 |#1|))) (-15 -2463 ((-3 (-1184 (-388 (-531))) "failed") (-1184 |#1|) |#1|))) -((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 11)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721)) 8)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) 43)) (-1381 (($) 36)) (-3481 (((-110) $) NIL)) (-2342 (((-3 $ "failed") $) 29)) (-2211 (((-864) $) 15)) (-1521 (((-1085) $) NIL)) (-3788 (($) 25 T CONST)) (-1889 (($ (-864)) 37)) (-2529 (((-1049) $) NIL)) (-3318 (((-531) $) 13)) (-2265 (((-806) $) 22) (($ (-531)) 19)) (-2284 (((-721)) 9)) (-3035 (($) 23 T CONST)) (-3050 (($) 24 T CONST)) (-2148 (((-110) $ $) 27)) (-2250 (($ $) 38) (($ $ $) 35)) (-2237 (($ $ $) 26)) (** (($ $ (-864)) NIL) (($ $ (-721)) 40)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 32) (($ $ $) 31))) -(((-1210 |#1|) (-13 (-162) (-349) (-573 (-531)) (-1078)) (-864)) (T -1210)) -NIL -(-13 (-162) (-349) (-573 (-531)) (-1078)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3139901 3139906 3139911 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3139886 3139891 3139896 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3139871 3139876 3139881 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3139856 3139861 3139866 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1210 3139032 3139731 3139808 "ZMOD" 3139813 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1209 3138142 3138306 3138515 "ZLINDEP" 3138864 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1208 3127546 3129291 3131243 "ZDSOLVE" 3136291 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1207 3126792 3126933 3127122 "YSTREAM" 3127392 NIL YSTREAM (NIL T) -7 NIL NIL) (-1206 3124607 3126097 3126300 "XRPOLY" 3126635 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1205 3121115 3122398 3122980 "XPR" 3124071 NIL XPR (NIL T T) -8 NIL NIL) (-1204 3118875 3120450 3120653 "XPOLY" 3120946 NIL XPOLY (NIL T) -8 NIL NIL) (-1203 3116733 3118067 3118121 "XPOLYC" 3118406 NIL XPOLYC (NIL T T) -9 NIL 3118519) (-1202 3113151 3115250 3115638 "XPBWPOLY" 3116391 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1201 3109144 3111392 3111434 "XF" 3112055 NIL XF (NIL T) -9 NIL 3112454) (-1200 3108765 3108853 3109022 "XF-" 3109027 NIL XF- (NIL T T) -8 NIL NIL) (-1199 3104189 3105444 3105498 "XFALG" 3107646 NIL XFALG (NIL T T) -9 NIL 3108433) (-1198 3103326 3103430 3103634 "XEXPPKG" 3104081 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1197 3101471 3103177 3103272 "XDPOLY" 3103277 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1196 3100394 3100960 3101002 "XALG" 3101064 NIL XALG (NIL T) -9 NIL 3101183) (-1195 3093863 3098371 3098865 "WUTSET" 3099986 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1194 3091721 3092482 3092833 "WP" 3093645 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1193 3090607 3090805 3091100 "WFFINTBS" 3091518 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1192 3088511 3088938 3089400 "WEIER" 3090179 NIL WEIER (NIL T) -7 NIL NIL) (-1191 3087660 3088084 3088126 "VSPACE" 3088262 NIL VSPACE (NIL T) -9 NIL 3088336) (-1190 3087498 3087525 3087616 "VSPACE-" 3087621 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1189 3087244 3087287 3087358 "VOID" 3087449 T VOID (NIL) -8 NIL NIL) (-1188 3085380 3085739 3086145 "VIEW" 3086860 T VIEW (NIL) -7 NIL NIL) (-1187 3081805 3082443 3083180 "VIEWDEF" 3084665 T VIEWDEF (NIL) -7 NIL NIL) (-1186 3071143 3073353 3075526 "VIEW3D" 3079654 T VIEW3D (NIL) -8 NIL NIL) (-1185 3063425 3065054 3066633 "VIEW2D" 3069586 T VIEW2D (NIL) -8 NIL NIL) (-1184 3058834 3063195 3063287 "VECTOR" 3063368 NIL VECTOR (NIL T) -8 NIL NIL) (-1183 3057411 3057670 3057988 "VECTOR2" 3058564 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1182 3050951 3055203 3055246 "VECTCAT" 3056234 NIL VECTCAT (NIL T) -9 NIL 3056818) (-1181 3049965 3050219 3050609 "VECTCAT-" 3050614 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1180 3049446 3049616 3049736 "VARIABLE" 3049880 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1179 3049379 3049384 3049414 "UTYPE" 3049419 T UTYPE (NIL) -9 NIL NIL) (-1178 3048214 3048368 3048629 "UTSODETL" 3049205 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1177 3045654 3046114 3046638 "UTSODE" 3047755 NIL UTSODE (NIL T T) -7 NIL NIL) (-1176 3037544 3043294 3043782 "UTS" 3045223 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1175 3028935 3034254 3034296 "UTSCAT" 3035397 NIL UTSCAT (NIL T) -9 NIL 3036154) (-1174 3026290 3027006 3027994 "UTSCAT-" 3027999 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1173 3025921 3025964 3026095 "UTS2" 3026241 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1172 3020197 3022762 3022805 "URAGG" 3024875 NIL URAGG (NIL T) -9 NIL 3025597) (-1171 3017136 3017999 3019122 "URAGG-" 3019127 NIL URAGG- (NIL T T) -8 NIL NIL) (-1170 3012868 3015753 3016224 "UPXSSING" 3016800 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1169 3004844 3011989 3012269 "UPXS" 3012645 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1168 2997958 3004749 3004820 "UPXSCONS" 3004825 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1167 2988332 2995077 2995138 "UPXSCCA" 2995787 NIL UPXSCCA (NIL T T) -9 NIL 2996028) (-1166 2987971 2988056 2988229 "UPXSCCA-" 2988234 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1165 2978267 2984785 2984827 "UPXSCAT" 2985470 NIL UPXSCAT (NIL T) -9 NIL 2986078) (-1164 2977701 2977780 2977957 "UPXS2" 2978182 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1163 2976355 2976608 2976959 "UPSQFREE" 2977444 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1162 2970292 2973301 2973355 "UPSCAT" 2974504 NIL UPSCAT (NIL T T) -9 NIL 2975278) (-1161 2969497 2969704 2970030 "UPSCAT-" 2970035 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1160 2955629 2963620 2963662 "UPOLYC" 2965740 NIL UPOLYC (NIL T) -9 NIL 2966961) (-1159 2946959 2949384 2952530 "UPOLYC-" 2952535 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1158 2946590 2946633 2946764 "UPOLYC2" 2946910 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1157 2938055 2946159 2946296 "UP" 2946500 NIL UP (NIL NIL T) -8 NIL NIL) (-1156 2937398 2937505 2937668 "UPMP" 2937944 NIL UPMP (NIL T T) -7 NIL NIL) (-1155 2936951 2937032 2937171 "UPDIVP" 2937311 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1154 2935519 2935768 2936084 "UPDECOMP" 2936700 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1153 2934754 2934866 2935051 "UPCDEN" 2935403 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1152 2934277 2934346 2934493 "UP2" 2934679 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1151 2932794 2933481 2933758 "UNISEG" 2934035 NIL UNISEG (NIL T) -8 NIL NIL) (-1150 2932009 2932136 2932341 "UNISEG2" 2932637 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1149 2931069 2931249 2931475 "UNIFACT" 2931825 NIL UNIFACT (NIL T) -7 NIL NIL) (-1148 2915050 2930250 2930500 "ULS" 2930876 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1147 2903100 2914955 2915026 "ULSCONS" 2915031 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1146 2885935 2897863 2897924 "ULSCCAT" 2898636 NIL ULSCCAT (NIL T T) -9 NIL 2898932) (-1145 2884986 2885231 2885618 "ULSCCAT-" 2885623 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1144 2875061 2881493 2881535 "ULSCAT" 2882391 NIL ULSCAT (NIL T) -9 NIL 2883121) (-1143 2874495 2874574 2874751 "ULS2" 2874976 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1142 2872937 2873860 2873890 "UFD" 2874102 T UFD (NIL) -9 NIL 2874216) (-1141 2872731 2872777 2872872 "UFD-" 2872877 NIL UFD- (NIL T) -8 NIL NIL) (-1140 2871813 2871996 2872212 "UDVO" 2872537 T UDVO (NIL) -7 NIL NIL) (-1139 2869629 2870038 2870509 "UDPO" 2871377 NIL UDPO (NIL T) -7 NIL NIL) (-1138 2869562 2869567 2869597 "TYPE" 2869602 T TYPE (NIL) -9 NIL NIL) (-1137 2868533 2868735 2868975 "TWOFACT" 2869356 NIL TWOFACT (NIL T) -7 NIL NIL) (-1136 2867471 2867808 2868071 "TUPLE" 2868305 NIL TUPLE (NIL T) -8 NIL NIL) (-1135 2865162 2865681 2866220 "TUBETOOL" 2866954 T TUBETOOL (NIL) -7 NIL NIL) (-1134 2864011 2864216 2864457 "TUBE" 2864955 NIL TUBE (NIL T) -8 NIL NIL) (-1133 2858781 2862989 2863271 "TS" 2863763 NIL TS (NIL T) -8 NIL NIL) (-1132 2847449 2851541 2851638 "TSETCAT" 2856907 NIL TSETCAT (NIL T T T T) -9 NIL 2858438) (-1131 2842183 2843781 2845672 "TSETCAT-" 2845677 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1130 2836446 2837292 2838234 "TRMANIP" 2841319 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1129 2835887 2835950 2836113 "TRIMAT" 2836378 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1128 2833693 2833930 2834293 "TRIGMNIP" 2835636 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1127 2833213 2833326 2833356 "TRIGCAT" 2833569 T TRIGCAT (NIL) -9 NIL NIL) (-1126 2832882 2832961 2833102 "TRIGCAT-" 2833107 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1125 2829781 2831742 2832022 "TREE" 2832637 NIL TREE (NIL T) -8 NIL NIL) (-1124 2829055 2829583 2829613 "TRANFUN" 2829648 T TRANFUN (NIL) -9 NIL 2829714) (-1123 2828334 2828525 2828805 "TRANFUN-" 2828810 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1122 2828138 2828170 2828231 "TOPSP" 2828295 T TOPSP (NIL) -7 NIL NIL) (-1121 2827490 2827605 2827758 "TOOLSIGN" 2828019 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1120 2826151 2826667 2826906 "TEXTFILE" 2827273 T TEXTFILE (NIL) -8 NIL NIL) (-1119 2824016 2824530 2824968 "TEX" 2825735 T TEX (NIL) -8 NIL NIL) (-1118 2823797 2823828 2823900 "TEX1" 2823979 NIL TEX1 (NIL T) -7 NIL NIL) (-1117 2823445 2823508 2823598 "TEMUTL" 2823729 T TEMUTL (NIL) -7 NIL NIL) (-1116 2821599 2821879 2822204 "TBCMPPK" 2823168 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1115 2813488 2819760 2819816 "TBAGG" 2820216 NIL TBAGG (NIL T T) -9 NIL 2820427) (-1114 2808558 2810046 2811800 "TBAGG-" 2811805 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1113 2807942 2808049 2808194 "TANEXP" 2808447 NIL TANEXP (NIL T) -7 NIL NIL) (-1112 2801443 2807799 2807892 "TABLE" 2807897 NIL TABLE (NIL T T) -8 NIL NIL) (-1111 2800855 2800954 2801092 "TABLEAU" 2801340 NIL TABLEAU (NIL T) -8 NIL NIL) (-1110 2795463 2796683 2797931 "TABLBUMP" 2799641 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1109 2794891 2794991 2795119 "SYSTEM" 2795357 T SYSTEM (NIL) -7 NIL NIL) (-1108 2791354 2792049 2792832 "SYSSOLP" 2794142 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1107 2787645 2788353 2789087 "SYNTAX" 2790642 T SYNTAX (NIL) -8 NIL NIL) (-1106 2784779 2785387 2786025 "SYMTAB" 2787029 T SYMTAB (NIL) -8 NIL NIL) (-1105 2780028 2780930 2781913 "SYMS" 2783818 T SYMS (NIL) -8 NIL NIL) (-1104 2777307 2779488 2779717 "SYMPOLY" 2779833 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1103 2776827 2776902 2777024 "SYMFUNC" 2777219 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1102 2772804 2774064 2774886 "SYMBOL" 2776027 T SYMBOL (NIL) -8 NIL NIL) (-1101 2766343 2768032 2769752 "SWITCH" 2771106 T SWITCH (NIL) -8 NIL NIL) (-1100 2759619 2765170 2765472 "SUTS" 2766098 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1099 2751594 2758740 2759020 "SUPXS" 2759396 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1098 2743131 2751215 2751340 "SUP" 2751503 NIL SUP (NIL T) -8 NIL NIL) (-1097 2742290 2742417 2742634 "SUPFRACF" 2742999 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1096 2741915 2741974 2742085 "SUP2" 2742225 NIL SUP2 (NIL T T) -7 NIL NIL) (-1095 2740333 2740607 2740969 "SUMRF" 2741614 NIL SUMRF (NIL T) -7 NIL NIL) (-1094 2739650 2739716 2739914 "SUMFS" 2740254 NIL SUMFS (NIL T T) -7 NIL NIL) (-1093 2723671 2738831 2739081 "SULS" 2739457 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1092 2722993 2723196 2723336 "SUCH" 2723579 NIL SUCH (NIL T T) -8 NIL NIL) (-1091 2716920 2717932 2718890 "SUBSPACE" 2722081 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1090 2716350 2716440 2716604 "SUBRESP" 2716808 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1089 2709719 2711015 2712326 "STTF" 2715086 NIL STTF (NIL T) -7 NIL NIL) (-1088 2703892 2705012 2706159 "STTFNC" 2708619 NIL STTFNC (NIL T) -7 NIL NIL) (-1087 2695243 2697110 2698903 "STTAYLOR" 2702133 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1086 2688487 2695107 2695190 "STRTBL" 2695195 NIL STRTBL (NIL T) -8 NIL NIL) (-1085 2683878 2688442 2688473 "STRING" 2688478 T STRING (NIL) -8 NIL NIL) (-1084 2678767 2683252 2683282 "STRICAT" 2683341 T STRICAT (NIL) -9 NIL 2683403) (-1083 2671481 2676290 2676910 "STREAM" 2678182 NIL STREAM (NIL T) -8 NIL NIL) (-1082 2670991 2671068 2671212 "STREAM3" 2671398 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1081 2669973 2670156 2670391 "STREAM2" 2670804 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1080 2669661 2669713 2669806 "STREAM1" 2669915 NIL STREAM1 (NIL T) -7 NIL NIL) (-1079 2668677 2668858 2669089 "STINPROD" 2669477 NIL STINPROD (NIL T) -7 NIL NIL) (-1078 2668256 2668440 2668470 "STEP" 2668550 T STEP (NIL) -9 NIL 2668628) (-1077 2661799 2668155 2668232 "STBL" 2668237 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1076 2656975 2661022 2661065 "STAGG" 2661218 NIL STAGG (NIL T) -9 NIL 2661307) (-1075 2654677 2655279 2656151 "STAGG-" 2656156 NIL STAGG- (NIL T T) -8 NIL NIL) (-1074 2652872 2654447 2654539 "STACK" 2654620 NIL STACK (NIL T) -8 NIL NIL) (-1073 2645597 2651013 2651469 "SREGSET" 2652502 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1072 2638023 2639391 2640904 "SRDCMPK" 2644203 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1071 2630991 2635464 2635494 "SRAGG" 2636797 T SRAGG (NIL) -9 NIL 2637405) (-1070 2630008 2630263 2630642 "SRAGG-" 2630647 NIL SRAGG- (NIL T) -8 NIL NIL) (-1069 2624503 2628927 2629354 "SQMATRIX" 2629627 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1068 2618255 2621223 2621949 "SPLTREE" 2623849 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1067 2614245 2614911 2615557 "SPLNODE" 2617681 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1066 2613292 2613525 2613555 "SPFCAT" 2613999 T SPFCAT (NIL) -9 NIL NIL) (-1065 2612029 2612239 2612503 "SPECOUT" 2613050 T SPECOUT (NIL) -7 NIL NIL) (-1064 2611790 2611830 2611899 "SPADPRSR" 2611982 T SPADPRSR (NIL) -7 NIL NIL) (-1063 2603813 2605560 2605602 "SPACEC" 2609925 NIL SPACEC (NIL T) -9 NIL 2611741) (-1062 2601985 2603746 2603794 "SPACE3" 2603799 NIL SPACE3 (NIL T) -8 NIL NIL) (-1061 2600737 2600908 2601199 "SORTPAK" 2601790 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1060 2598793 2599096 2599514 "SOLVETRA" 2600401 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1059 2597804 2598026 2598300 "SOLVESER" 2598566 NIL SOLVESER (NIL T) -7 NIL NIL) (-1058 2593024 2593905 2594907 "SOLVERAD" 2596856 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1057 2588839 2589448 2590177 "SOLVEFOR" 2592391 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1056 2583137 2588189 2588286 "SNTSCAT" 2588291 NIL SNTSCAT (NIL T T T T) -9 NIL 2588361) (-1055 2577287 2581468 2581858 "SMTS" 2582827 NIL SMTS (NIL T T T) -8 NIL NIL) (-1054 2571743 2577176 2577252 "SMP" 2577257 NIL SMP (NIL T T) -8 NIL NIL) (-1053 2569902 2570203 2570601 "SMITH" 2571440 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1052 2562913 2567063 2567165 "SMATCAT" 2568505 NIL SMATCAT (NIL NIL T T T) -9 NIL 2569054) (-1051 2559854 2560677 2561854 "SMATCAT-" 2561859 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1050 2557568 2559091 2559134 "SKAGG" 2559395 NIL SKAGG (NIL T) -9 NIL 2559530) (-1049 2553672 2556672 2556950 "SINT" 2557312 T SINT (NIL) -8 NIL NIL) (-1048 2553444 2553482 2553548 "SIMPAN" 2553628 T SIMPAN (NIL) -7 NIL NIL) (-1047 2552751 2552979 2553119 "SIG" 2553326 T SIG (NIL) -8 NIL NIL) (-1046 2551589 2551810 2552085 "SIGNRF" 2552510 NIL SIGNRF (NIL T) -7 NIL NIL) (-1045 2550398 2550549 2550839 "SIGNEF" 2551418 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1044 2548088 2548542 2549048 "SHP" 2549939 NIL SHP (NIL T NIL) -7 NIL NIL) (-1043 2542027 2547989 2548065 "SHDP" 2548070 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1042 2541627 2541793 2541823 "SGROUP" 2541916 T SGROUP (NIL) -9 NIL 2541978) (-1041 2541485 2541511 2541584 "SGROUP-" 2541589 NIL SGROUP- (NIL T) -8 NIL NIL) (-1040 2538321 2539018 2539741 "SGCF" 2540784 T SGCF (NIL) -7 NIL NIL) (-1039 2532717 2537769 2537866 "SFRTCAT" 2537871 NIL SFRTCAT (NIL T T T T) -9 NIL 2537910) (-1038 2526141 2527156 2528292 "SFRGCD" 2531700 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1037 2519269 2520340 2521526 "SFQCMPK" 2525074 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1036 2518891 2518980 2519090 "SFORT" 2519210 NIL SFORT (NIL T T) -8 NIL NIL) (-1035 2518036 2518731 2518852 "SEXOF" 2518857 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1034 2517170 2517917 2517985 "SEX" 2517990 T SEX (NIL) -8 NIL NIL) (-1033 2511947 2512636 2512731 "SEXCAT" 2516502 NIL SEXCAT (NIL T T T T T) -9 NIL 2517121) (-1032 2509127 2511881 2511929 "SET" 2511934 NIL SET (NIL T) -8 NIL NIL) (-1031 2507378 2507840 2508145 "SETMN" 2508868 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1030 2506986 2507112 2507142 "SETCAT" 2507259 T SETCAT (NIL) -9 NIL 2507343) (-1029 2506766 2506818 2506917 "SETCAT-" 2506922 NIL SETCAT- (NIL T) -8 NIL NIL) (-1028 2503154 2505228 2505271 "SETAGG" 2506141 NIL SETAGG (NIL T) -9 NIL 2506481) (-1027 2502612 2502728 2502965 "SETAGG-" 2502970 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1026 2501816 2502109 2502170 "SEGXCAT" 2502456 NIL SEGXCAT (NIL T T) -9 NIL 2502576) (-1025 2500872 2501482 2501664 "SEG" 2501669 NIL SEG (NIL T) -8 NIL NIL) (-1024 2499779 2499992 2500035 "SEGCAT" 2500617 NIL SEGCAT (NIL T) -9 NIL 2500855) (-1023 2498828 2499158 2499358 "SEGBIND" 2499614 NIL SEGBIND (NIL T) -8 NIL NIL) (-1022 2498449 2498508 2498621 "SEGBIND2" 2498763 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1021 2497668 2497794 2497998 "SEG2" 2498293 NIL SEG2 (NIL T T) -7 NIL NIL) (-1020 2497105 2497603 2497650 "SDVAR" 2497655 NIL SDVAR (NIL T) -8 NIL NIL) (-1019 2489403 2496878 2497006 "SDPOL" 2497011 NIL SDPOL (NIL T) -8 NIL NIL) (-1018 2487996 2488262 2488581 "SCPKG" 2489118 NIL SCPKG (NIL T) -7 NIL NIL) (-1017 2487132 2487312 2487512 "SCOPE" 2487818 T SCOPE (NIL) -8 NIL NIL) (-1016 2486353 2486486 2486665 "SCACHE" 2486987 NIL SCACHE (NIL T) -7 NIL NIL) (-1015 2486080 2486223 2486253 "SASTCAT" 2486258 T SASTCAT (NIL) -9 NIL 2486271) (-1014 2485519 2485840 2485925 "SAOS" 2486017 T SAOS (NIL) -8 NIL NIL) (-1013 2485084 2485119 2485292 "SAERFFC" 2485478 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1012 2479063 2484981 2485061 "SAE" 2485066 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1011 2478656 2478691 2478850 "SAEFACT" 2479022 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1010 2476977 2477291 2477692 "RURPK" 2478322 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1009 2475617 2475896 2476207 "RULESET" 2476811 NIL RULESET (NIL T T T) -8 NIL NIL) (-1008 2472815 2473318 2473781 "RULE" 2475299 NIL RULE (NIL T T T) -8 NIL NIL) (-1007 2472454 2472609 2472692 "RULECOLD" 2472767 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1006 2467303 2468097 2469017 "RSETGCD" 2471653 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1005 2456561 2461613 2461710 "RSETCAT" 2465829 NIL RSETCAT (NIL T T T T) -9 NIL 2466926) (-1004 2454488 2455027 2455851 "RSETCAT-" 2455856 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1003 2446875 2448250 2449770 "RSDCMPK" 2453087 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1002 2444881 2445322 2445396 "RRCC" 2446482 NIL RRCC (NIL T T) -9 NIL 2446826) (-1001 2444232 2444406 2444685 "RRCC-" 2444690 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1000 2418562 2428141 2428207 "RPOLCAT" 2438790 NIL RPOLCAT (NIL T T T) -9 NIL 2441948) (-999 2410065 2412403 2415522 "RPOLCAT-" 2415527 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-998 2401131 2408295 2408775 "ROUTINE" 2409605 T ROUTINE (NIL) -8 NIL NIL) (-997 2397882 2400687 2400834 "ROMAN" 2401004 T ROMAN (NIL) -8 NIL NIL) (-996 2396166 2396751 2397009 "ROIRC" 2397687 NIL ROIRC (NIL T T) -8 NIL NIL) (-995 2392636 2394875 2394903 "RNS" 2395199 T RNS (NIL) -9 NIL 2395469) (-994 2391150 2391533 2392064 "RNS-" 2392137 NIL RNS- (NIL T) -8 NIL NIL) (-993 2390602 2390984 2391012 "RNG" 2391017 T RNG (NIL) -9 NIL 2391038) (-992 2390000 2390362 2390402 "RMODULE" 2390462 NIL RMODULE (NIL T) -9 NIL 2390504) (-991 2388852 2388946 2389276 "RMCAT2" 2389901 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-990 2385566 2388035 2388356 "RMATRIX" 2388587 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-989 2378563 2380797 2380909 "RMATCAT" 2384218 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2385200) (-988 2377942 2378089 2378392 "RMATCAT-" 2378397 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-987 2377512 2377587 2377713 "RINTERP" 2377861 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-986 2376607 2377127 2377155 "RING" 2377265 T RING (NIL) -9 NIL 2377359) (-985 2376402 2376446 2376540 "RING-" 2376545 NIL RING- (NIL T) -8 NIL NIL) (-984 2375250 2375487 2375743 "RIDIST" 2376166 T RIDIST (NIL) -7 NIL NIL) (-983 2366570 2374722 2374926 "RGCHAIN" 2375098 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-982 2363575 2364189 2364857 "RF" 2365934 NIL RF (NIL T) -7 NIL NIL) (-981 2363224 2363287 2363388 "RFFACTOR" 2363506 NIL RFFACTOR (NIL T) -7 NIL NIL) (-980 2362952 2362987 2363082 "RFFACT" 2363183 NIL RFFACT (NIL T) -7 NIL NIL) (-979 2361082 2361446 2361826 "RFDIST" 2362592 T RFDIST (NIL) -7 NIL NIL) (-978 2360540 2360632 2360792 "RETSOL" 2360984 NIL RETSOL (NIL T T) -7 NIL NIL) (-977 2360133 2360213 2360254 "RETRACT" 2360444 NIL RETRACT (NIL T) -9 NIL NIL) (-976 2359985 2360010 2360094 "RETRACT-" 2360099 NIL RETRACT- (NIL T T) -8 NIL NIL) (-975 2352843 2359642 2359767 "RESULT" 2359880 T RESULT (NIL) -8 NIL NIL) (-974 2351474 2352117 2352314 "RESRING" 2352746 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-973 2351114 2351163 2351259 "RESLATC" 2351411 NIL RESLATC (NIL T) -7 NIL NIL) (-972 2350823 2350857 2350962 "REPSQ" 2351073 NIL REPSQ (NIL T) -7 NIL NIL) (-971 2348254 2348834 2349434 "REP" 2350243 T REP (NIL) -7 NIL NIL) (-970 2347955 2347989 2348098 "REPDB" 2348213 NIL REPDB (NIL T) -7 NIL NIL) (-969 2341900 2343279 2344499 "REP2" 2346767 NIL REP2 (NIL T) -7 NIL NIL) (-968 2338306 2338987 2339792 "REP1" 2341127 NIL REP1 (NIL T) -7 NIL NIL) (-967 2331044 2336459 2336913 "REGSET" 2337936 NIL REGSET (NIL T T T T) -8 NIL NIL) (-966 2329865 2330200 2330448 "REF" 2330829 NIL REF (NIL T) -8 NIL NIL) (-965 2329246 2329349 2329514 "REDORDER" 2329749 NIL REDORDER (NIL T T) -7 NIL NIL) (-964 2325280 2328480 2328701 "RECLOS" 2329077 NIL RECLOS (NIL T) -8 NIL NIL) (-963 2324337 2324518 2324731 "REALSOLV" 2325087 T REALSOLV (NIL) -7 NIL NIL) (-962 2324185 2324226 2324254 "REAL" 2324259 T REAL (NIL) -9 NIL 2324294) (-961 2320676 2321478 2322360 "REAL0Q" 2323350 NIL REAL0Q (NIL T) -7 NIL NIL) (-960 2316287 2317275 2318334 "REAL0" 2319657 NIL REAL0 (NIL T) -7 NIL NIL) (-959 2315695 2315767 2315972 "RDIV" 2316209 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-958 2314768 2314942 2315153 "RDIST" 2315517 NIL RDIST (NIL T) -7 NIL NIL) (-957 2313372 2313659 2314028 "RDETRS" 2314476 NIL RDETRS (NIL T T) -7 NIL NIL) (-956 2311193 2311647 2312182 "RDETR" 2312914 NIL RDETR (NIL T T) -7 NIL NIL) (-955 2309809 2310087 2310488 "RDEEFS" 2310909 NIL RDEEFS (NIL T T) -7 NIL NIL) (-954 2308309 2308615 2309044 "RDEEF" 2309497 NIL RDEEF (NIL T T) -7 NIL NIL) (-953 2302659 2305526 2305554 "RCFIELD" 2306831 T RCFIELD (NIL) -9 NIL 2307561) (-952 2300728 2301232 2301925 "RCFIELD-" 2301998 NIL RCFIELD- (NIL T) -8 NIL NIL) (-951 2297060 2298845 2298886 "RCAGG" 2299957 NIL RCAGG (NIL T) -9 NIL 2300422) (-950 2296691 2296785 2296945 "RCAGG-" 2296950 NIL RCAGG- (NIL T T) -8 NIL NIL) (-949 2296035 2296147 2296309 "RATRET" 2296575 NIL RATRET (NIL T) -7 NIL NIL) (-948 2295592 2295659 2295778 "RATFACT" 2295963 NIL RATFACT (NIL T) -7 NIL NIL) (-947 2294907 2295027 2295177 "RANDSRC" 2295462 T RANDSRC (NIL) -7 NIL NIL) (-946 2294644 2294688 2294759 "RADUTIL" 2294856 T RADUTIL (NIL) -7 NIL NIL) (-945 2287716 2293387 2293704 "RADIX" 2294359 NIL RADIX (NIL NIL) -8 NIL NIL) (-944 2279377 2287560 2287688 "RADFF" 2287693 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-943 2279029 2279104 2279132 "RADCAT" 2279289 T RADCAT (NIL) -9 NIL NIL) (-942 2278814 2278862 2278959 "RADCAT-" 2278964 NIL RADCAT- (NIL T) -8 NIL NIL) (-941 2276965 2278589 2278678 "QUEUE" 2278758 NIL QUEUE (NIL T) -8 NIL NIL) (-940 2273547 2276902 2276947 "QUAT" 2276952 NIL QUAT (NIL T) -8 NIL NIL) (-939 2273185 2273228 2273355 "QUATCT2" 2273498 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-938 2267064 2270359 2270399 "QUATCAT" 2271178 NIL QUATCAT (NIL T) -9 NIL 2271943) (-937 2263208 2264245 2265632 "QUATCAT-" 2265726 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-936 2260729 2262293 2262334 "QUAGG" 2262709 NIL QUAGG (NIL T) -9 NIL 2262884) (-935 2259654 2260127 2260299 "QFORM" 2260601 NIL QFORM (NIL NIL T) -8 NIL NIL) (-934 2251013 2256209 2256249 "QFCAT" 2256907 NIL QFCAT (NIL T) -9 NIL 2257900) (-933 2246585 2247786 2249377 "QFCAT-" 2249471 NIL QFCAT- (NIL T T) -8 NIL NIL) (-932 2246223 2246266 2246393 "QFCAT2" 2246536 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-931 2245683 2245793 2245923 "QEQUAT" 2246113 T QEQUAT (NIL) -8 NIL NIL) (-930 2238831 2239902 2241086 "QCMPACK" 2244616 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-929 2236407 2236828 2237256 "QALGSET" 2238486 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-928 2235652 2235826 2236058 "QALGSET2" 2236227 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-927 2234343 2234566 2234883 "PWFFINTB" 2235425 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-926 2232531 2232699 2233052 "PUSHVAR" 2234157 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-925 2228449 2229503 2229544 "PTRANFN" 2231428 NIL PTRANFN (NIL T) -9 NIL NIL) (-924 2226861 2227152 2227473 "PTPACK" 2228160 NIL PTPACK (NIL T) -7 NIL NIL) (-923 2226497 2226554 2226661 "PTFUNC2" 2226798 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-922 2220974 2225315 2225355 "PTCAT" 2225723 NIL PTCAT (NIL T) -9 NIL 2225885) (-921 2220632 2220667 2220791 "PSQFR" 2220933 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-920 2219227 2219525 2219859 "PSEUDLIN" 2220330 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-919 2205996 2208361 2210685 "PSETPK" 2216987 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-918 2199062 2201776 2201871 "PSETCAT" 2204872 NIL PSETCAT (NIL T T T T) -9 NIL 2205686) (-917 2196899 2197533 2198353 "PSETCAT-" 2198358 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-916 2196248 2196413 2196441 "PSCURVE" 2196709 T PSCURVE (NIL) -9 NIL 2196876) (-915 2192744 2194226 2194290 "PSCAT" 2195126 NIL PSCAT (NIL T T T) -9 NIL 2195366) (-914 2191808 2192024 2192423 "PSCAT-" 2192428 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-913 2190460 2191093 2191307 "PRTITION" 2191614 T PRTITION (NIL) -8 NIL NIL) (-912 2179558 2181764 2183952 "PRS" 2188322 NIL PRS (NIL T T) -7 NIL NIL) (-911 2177417 2178909 2178949 "PRQAGG" 2179132 NIL PRQAGG (NIL T) -9 NIL 2179234) (-910 2176988 2177090 2177118 "PROPLOG" 2177303 T PROPLOG (NIL) -9 NIL NIL) (-909 2174111 2174676 2175203 "PROPFRML" 2176493 NIL PROPFRML (NIL T) -8 NIL NIL) (-908 2173571 2173681 2173811 "PROPERTY" 2174001 T PROPERTY (NIL) -8 NIL NIL) (-907 2167656 2171737 2172557 "PRODUCT" 2172797 NIL PRODUCT (NIL T T) -8 NIL NIL) (-906 2164976 2167116 2167349 "PR" 2167467 NIL PR (NIL T T) -8 NIL NIL) (-905 2164772 2164804 2164863 "PRINT" 2164937 T PRINT (NIL) -7 NIL NIL) (-904 2164112 2164229 2164381 "PRIMES" 2164652 NIL PRIMES (NIL T) -7 NIL NIL) (-903 2162177 2162578 2163044 "PRIMELT" 2163691 NIL PRIMELT (NIL T) -7 NIL NIL) (-902 2161906 2161955 2161983 "PRIMCAT" 2162107 T PRIMCAT (NIL) -9 NIL NIL) (-901 2158067 2161844 2161889 "PRIMARR" 2161894 NIL PRIMARR (NIL T) -8 NIL NIL) (-900 2157074 2157252 2157480 "PRIMARR2" 2157885 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-899 2156717 2156773 2156884 "PREASSOC" 2157012 NIL PREASSOC (NIL T T) -7 NIL NIL) (-898 2156192 2156325 2156353 "PPCURVE" 2156558 T PPCURVE (NIL) -9 NIL 2156694) (-897 2155814 2155987 2156070 "PORTNUM" 2156129 T PORTNUM (NIL) -8 NIL NIL) (-896 2153173 2153572 2154164 "POLYROOT" 2155395 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-895 2147125 2152779 2152938 "POLY" 2153046 NIL POLY (NIL T) -8 NIL NIL) (-894 2146510 2146568 2146801 "POLYLIFT" 2147061 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-893 2142795 2143244 2143872 "POLYCATQ" 2146055 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-892 2129882 2135233 2135297 "POLYCAT" 2138782 NIL POLYCAT (NIL T T T) -9 NIL 2140709) (-891 2123333 2125194 2127577 "POLYCAT-" 2127582 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-890 2122922 2122990 2123109 "POLY2UP" 2123259 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-889 2122558 2122615 2122722 "POLY2" 2122859 NIL POLY2 (NIL T T) -7 NIL NIL) (-888 2121243 2121482 2121758 "POLUTIL" 2122332 NIL POLUTIL (NIL T T) -7 NIL NIL) (-887 2119605 2119882 2120212 "POLTOPOL" 2120965 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-886 2115128 2119542 2119587 "POINT" 2119592 NIL POINT (NIL T) -8 NIL NIL) (-885 2113315 2113672 2114047 "PNTHEORY" 2114773 T PNTHEORY (NIL) -7 NIL NIL) (-884 2111743 2112040 2112449 "PMTOOLS" 2113013 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-883 2111336 2111414 2111531 "PMSYM" 2111659 NIL PMSYM (NIL T) -7 NIL NIL) (-882 2110846 2110915 2111089 "PMQFCAT" 2111261 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-881 2110201 2110311 2110467 "PMPRED" 2110723 NIL PMPRED (NIL T) -7 NIL NIL) (-880 2109597 2109683 2109844 "PMPREDFS" 2110102 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-879 2108243 2108451 2108835 "PMPLCAT" 2109359 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-878 2107775 2107854 2108006 "PMLSAGG" 2108158 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-877 2107252 2107328 2107508 "PMKERNEL" 2107693 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-876 2106869 2106944 2107057 "PMINS" 2107171 NIL PMINS (NIL T) -7 NIL NIL) (-875 2106299 2106368 2106583 "PMFS" 2106794 NIL PMFS (NIL T T T) -7 NIL NIL) (-874 2105530 2105648 2105852 "PMDOWN" 2106176 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-873 2104693 2104852 2105034 "PMASS" 2105368 T PMASS (NIL) -7 NIL NIL) (-872 2103967 2104078 2104241 "PMASSFS" 2104579 NIL PMASSFS (NIL T T) -7 NIL NIL) (-871 2103622 2103690 2103784 "PLOTTOOL" 2103893 T PLOTTOOL (NIL) -7 NIL NIL) (-870 2098244 2099433 2100581 "PLOT" 2102494 T PLOT (NIL) -8 NIL NIL) (-869 2094058 2095092 2096013 "PLOT3D" 2097343 T PLOT3D (NIL) -8 NIL NIL) (-868 2092970 2093147 2093382 "PLOT1" 2093862 NIL PLOT1 (NIL T) -7 NIL NIL) (-867 2068364 2073036 2077887 "PLEQN" 2088236 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-866 2067682 2067804 2067984 "PINTERP" 2068229 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-865 2067375 2067422 2067525 "PINTERPA" 2067629 NIL PINTERPA (NIL T T) -7 NIL NIL) (-864 2066660 2067181 2067268 "PI" 2067308 T PI (NIL) -8 NIL NIL) (-863 2065096 2066037 2066065 "PID" 2066247 T PID (NIL) -9 NIL 2066381) (-862 2064821 2064858 2064946 "PICOERCE" 2065053 NIL PICOERCE (NIL T) -7 NIL NIL) (-861 2064141 2064280 2064456 "PGROEB" 2064677 NIL PGROEB (NIL T) -7 NIL NIL) (-860 2059728 2060542 2061447 "PGE" 2063256 T PGE (NIL) -7 NIL NIL) (-859 2057852 2058098 2058464 "PGCD" 2059445 NIL PGCD (NIL T T T T) -7 NIL NIL) (-858 2057190 2057293 2057454 "PFRPAC" 2057736 NIL PFRPAC (NIL T) -7 NIL NIL) (-857 2053870 2055738 2056091 "PFR" 2056869 NIL PFR (NIL T) -8 NIL NIL) (-856 2052259 2052503 2052828 "PFOTOOLS" 2053617 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-855 2050792 2051031 2051382 "PFOQ" 2052016 NIL PFOQ (NIL T T T) -7 NIL NIL) (-854 2049269 2049481 2049843 "PFO" 2050576 NIL PFO (NIL T T T T T) -7 NIL NIL) (-853 2045857 2049158 2049227 "PF" 2049232 NIL PF (NIL NIL) -8 NIL NIL) (-852 2043330 2044567 2044595 "PFECAT" 2045180 T PFECAT (NIL) -9 NIL 2045564) (-851 2042775 2042929 2043143 "PFECAT-" 2043148 NIL PFECAT- (NIL T) -8 NIL NIL) (-850 2041379 2041630 2041931 "PFBRU" 2042524 NIL PFBRU (NIL T T) -7 NIL NIL) (-849 2039246 2039597 2040029 "PFBR" 2041030 NIL PFBR (NIL T T T T) -7 NIL NIL) (-848 2035162 2036622 2037298 "PERM" 2038603 NIL PERM (NIL T) -8 NIL NIL) (-847 2030428 2031369 2032239 "PERMGRP" 2034325 NIL PERMGRP (NIL T) -8 NIL NIL) (-846 2028561 2029492 2029533 "PERMCAT" 2029979 NIL PERMCAT (NIL T) -9 NIL 2030284) (-845 2028216 2028257 2028380 "PERMAN" 2028514 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-844 2025656 2027785 2027916 "PENDTREE" 2028118 NIL PENDTREE (NIL T) -8 NIL NIL) (-843 2023773 2024507 2024548 "PDRING" 2025205 NIL PDRING (NIL T) -9 NIL 2025490) (-842 2022876 2023094 2023456 "PDRING-" 2023461 NIL PDRING- (NIL T T) -8 NIL NIL) (-841 2020017 2020768 2021459 "PDEPROB" 2022205 T PDEPROB (NIL) -8 NIL NIL) (-840 2017588 2018084 2018633 "PDEPACK" 2019488 T PDEPACK (NIL) -7 NIL NIL) (-839 2016500 2016690 2016941 "PDECOMP" 2017387 NIL PDECOMP (NIL T T) -7 NIL NIL) (-838 2014112 2014927 2014955 "PDECAT" 2015740 T PDECAT (NIL) -9 NIL 2016451) (-837 2013865 2013898 2013987 "PCOMP" 2014073 NIL PCOMP (NIL T T) -7 NIL NIL) (-836 2012072 2012668 2012964 "PBWLB" 2013595 NIL PBWLB (NIL T) -8 NIL NIL) (-835 2004580 2006149 2007485 "PATTERN" 2010757 NIL PATTERN (NIL T) -8 NIL NIL) (-834 2004212 2004269 2004378 "PATTERN2" 2004517 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-833 2001969 2002357 2002814 "PATTERN1" 2003801 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-832 1999364 1999918 2000399 "PATRES" 2001534 NIL PATRES (NIL T T) -8 NIL NIL) (-831 1998928 1998995 1999127 "PATRES2" 1999291 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-830 1996825 1997225 1997630 "PATMATCH" 1998597 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-829 1996362 1996545 1996586 "PATMAB" 1996693 NIL PATMAB (NIL T) -9 NIL 1996776) (-828 1994907 1995216 1995474 "PATLRES" 1996167 NIL PATLRES (NIL T T T) -8 NIL NIL) (-827 1994453 1994576 1994617 "PATAB" 1994622 NIL PATAB (NIL T) -9 NIL 1994794) (-826 1991934 1992466 1993039 "PARTPERM" 1993900 T PARTPERM (NIL) -7 NIL NIL) (-825 1991555 1991618 1991720 "PARSURF" 1991865 NIL PARSURF (NIL T) -8 NIL NIL) (-824 1991187 1991244 1991353 "PARSU2" 1991492 NIL PARSU2 (NIL T T) -7 NIL NIL) (-823 1990951 1990991 1991058 "PARSER" 1991140 T PARSER (NIL) -7 NIL NIL) (-822 1990572 1990635 1990737 "PARSCURV" 1990882 NIL PARSCURV (NIL T) -8 NIL NIL) (-821 1990204 1990261 1990370 "PARSC2" 1990509 NIL PARSC2 (NIL T T) -7 NIL NIL) (-820 1989843 1989901 1989998 "PARPCURV" 1990140 NIL PARPCURV (NIL T) -8 NIL NIL) (-819 1989475 1989532 1989641 "PARPC2" 1989780 NIL PARPC2 (NIL T T) -7 NIL NIL) (-818 1988995 1989081 1989200 "PAN2EXPR" 1989376 T PAN2EXPR (NIL) -7 NIL NIL) (-817 1987801 1988116 1988344 "PALETTE" 1988787 T PALETTE (NIL) -8 NIL NIL) (-816 1986269 1986806 1987166 "PAIR" 1987487 NIL PAIR (NIL T T) -8 NIL NIL) (-815 1980184 1985528 1985722 "PADICRC" 1986124 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-814 1973457 1979530 1979714 "PADICRAT" 1980032 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-813 1971807 1973394 1973439 "PADIC" 1973444 NIL PADIC (NIL NIL) -8 NIL NIL) (-812 1969056 1970586 1970626 "PADICCT" 1971207 NIL PADICCT (NIL NIL) -9 NIL 1971489) (-811 1968013 1968213 1968481 "PADEPAC" 1968843 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-810 1967225 1967358 1967564 "PADE" 1967875 NIL PADE (NIL T T T) -7 NIL NIL) (-809 1965282 1966068 1966383 "OWP" 1966993 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-808 1964391 1964887 1965059 "OVAR" 1965150 NIL OVAR (NIL NIL) -8 NIL NIL) (-807 1963655 1963776 1963937 "OUT" 1964250 T OUT (NIL) -7 NIL NIL) (-806 1952709 1954880 1957050 "OUTFORM" 1961505 T OUTFORM (NIL) -8 NIL NIL) (-805 1952117 1952438 1952527 "OSI" 1952640 T OSI (NIL) -8 NIL NIL) (-804 1951674 1951986 1952014 "OSGROUP" 1952019 T OSGROUP (NIL) -9 NIL 1952041) (-803 1950419 1950646 1950931 "ORTHPOL" 1951421 NIL ORTHPOL (NIL T) -7 NIL NIL) (-802 1947836 1950080 1950218 "OREUP" 1950362 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-801 1945281 1947529 1947655 "ORESUP" 1947778 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-800 1942816 1943316 1943876 "OREPCTO" 1944770 NIL OREPCTO (NIL T T) -7 NIL NIL) (-799 1936770 1938932 1938972 "OREPCAT" 1941293 NIL OREPCAT (NIL T) -9 NIL 1942396) (-798 1933918 1934700 1935757 "OREPCAT-" 1935762 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-797 1933096 1933368 1933396 "ORDSET" 1933705 T ORDSET (NIL) -9 NIL 1933869) (-796 1932615 1932737 1932930 "ORDSET-" 1932935 NIL ORDSET- (NIL T) -8 NIL NIL) (-795 1931273 1932030 1932058 "ORDRING" 1932260 T ORDRING (NIL) -9 NIL 1932384) (-794 1930918 1931012 1931156 "ORDRING-" 1931161 NIL ORDRING- (NIL T) -8 NIL NIL) (-793 1930325 1930762 1930790 "ORDMON" 1930795 T ORDMON (NIL) -9 NIL 1930816) (-792 1929487 1929634 1929829 "ORDFUNS" 1930174 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-791 1928999 1929358 1929386 "ORDFIN" 1929391 T ORDFIN (NIL) -9 NIL 1929412) (-790 1925597 1927585 1927994 "ORDCOMP" 1928623 NIL ORDCOMP (NIL T) -8 NIL NIL) (-789 1924863 1924990 1925176 "ORDCOMP2" 1925457 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-788 1921370 1922253 1923090 "OPTPROB" 1924046 T OPTPROB (NIL) -8 NIL NIL) (-787 1918212 1918841 1919535 "OPTPACK" 1920696 T OPTPACK (NIL) -7 NIL NIL) (-786 1915938 1916674 1916702 "OPTCAT" 1917517 T OPTCAT (NIL) -9 NIL 1918163) (-785 1915706 1915745 1915811 "OPQUERY" 1915892 T OPQUERY (NIL) -7 NIL NIL) (-784 1912888 1914033 1914533 "OP" 1915238 NIL OP (NIL T) -8 NIL NIL) (-783 1909739 1911685 1912054 "ONECOMP" 1912552 NIL ONECOMP (NIL T) -8 NIL NIL) (-782 1909044 1909159 1909333 "ONECOMP2" 1909611 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-781 1908463 1908569 1908699 "OMSERVER" 1908934 T OMSERVER (NIL) -7 NIL NIL) (-780 1905352 1907904 1907944 "OMSAGG" 1908005 NIL OMSAGG (NIL T) -9 NIL 1908069) (-779 1903975 1904238 1904520 "OMPKG" 1905090 T OMPKG (NIL) -7 NIL NIL) (-778 1903405 1903508 1903536 "OM" 1903835 T OM (NIL) -9 NIL NIL) (-777 1901990 1902957 1903125 "OMLO" 1903286 NIL OMLO (NIL T T) -8 NIL NIL) (-776 1900920 1901067 1901293 "OMEXPR" 1901816 NIL OMEXPR (NIL T) -7 NIL NIL) (-775 1900238 1900466 1900602 "OMERR" 1900804 T OMERR (NIL) -8 NIL NIL) (-774 1899416 1899659 1899819 "OMERRK" 1900098 T OMERRK (NIL) -8 NIL NIL) (-773 1898894 1899093 1899201 "OMENC" 1899328 T OMENC (NIL) -8 NIL NIL) (-772 1892789 1893974 1895145 "OMDEV" 1897743 T OMDEV (NIL) -8 NIL NIL) (-771 1891858 1892029 1892223 "OMCONN" 1892615 T OMCONN (NIL) -8 NIL NIL) (-770 1890518 1891460 1891488 "OINTDOM" 1891493 T OINTDOM (NIL) -9 NIL 1891514) (-769 1886326 1887510 1888225 "OFMONOID" 1889835 NIL OFMONOID (NIL T) -8 NIL NIL) (-768 1885764 1886263 1886308 "ODVAR" 1886313 NIL ODVAR (NIL T) -8 NIL NIL) (-767 1882974 1885261 1885446 "ODR" 1885639 NIL ODR (NIL T T NIL) -8 NIL NIL) (-766 1875326 1882753 1882877 "ODPOL" 1882882 NIL ODPOL (NIL T) -8 NIL NIL) (-765 1869235 1875198 1875303 "ODP" 1875308 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-764 1868001 1868216 1868491 "ODETOOLS" 1869009 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-763 1864970 1865626 1866342 "ODESYS" 1867334 NIL ODESYS (NIL T T) -7 NIL NIL) (-762 1859874 1860782 1861805 "ODERTRIC" 1864045 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-761 1859300 1859382 1859576 "ODERED" 1859786 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-760 1856202 1856750 1857425 "ODERAT" 1858723 NIL ODERAT (NIL T T) -7 NIL NIL) (-759 1853170 1853634 1854230 "ODEPRRIC" 1855731 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-758 1851039 1851608 1852117 "ODEPROB" 1852681 T ODEPROB (NIL) -8 NIL NIL) (-757 1847571 1848054 1848700 "ODEPRIM" 1850518 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-756 1846824 1846926 1847184 "ODEPAL" 1847463 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-755 1843026 1843807 1844661 "ODEPACK" 1845990 T ODEPACK (NIL) -7 NIL NIL) (-754 1842063 1842170 1842398 "ODEINT" 1842915 NIL ODEINT (NIL T T) -7 NIL NIL) (-753 1836164 1837589 1839036 "ODEIFTBL" 1840636 T ODEIFTBL (NIL) -8 NIL NIL) (-752 1831508 1832294 1833252 "ODEEF" 1835323 NIL ODEEF (NIL T T) -7 NIL NIL) (-751 1830845 1830934 1831163 "ODECONST" 1831413 NIL ODECONST (NIL T T T) -7 NIL NIL) (-750 1829003 1829636 1829664 "ODECAT" 1830267 T ODECAT (NIL) -9 NIL 1830796) (-749 1825921 1828715 1828834 "OCT" 1828916 NIL OCT (NIL T) -8 NIL NIL) (-748 1825559 1825602 1825729 "OCTCT2" 1825872 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-747 1820437 1822831 1822871 "OC" 1823967 NIL OC (NIL T) -9 NIL 1824824) (-746 1817664 1818412 1819402 "OC-" 1819496 NIL OC- (NIL T T) -8 NIL NIL) (-745 1817043 1817485 1817513 "OCAMON" 1817518 T OCAMON (NIL) -9 NIL 1817539) (-744 1816601 1816916 1816944 "OASGP" 1816949 T OASGP (NIL) -9 NIL 1816969) (-743 1815889 1816352 1816380 "OAMONS" 1816420 T OAMONS (NIL) -9 NIL 1816463) (-742 1815330 1815737 1815765 "OAMON" 1815770 T OAMON (NIL) -9 NIL 1815790) (-741 1814635 1815127 1815155 "OAGROUP" 1815160 T OAGROUP (NIL) -9 NIL 1815180) (-740 1814325 1814375 1814463 "NUMTUBE" 1814579 NIL NUMTUBE (NIL T) -7 NIL NIL) (-739 1807898 1809416 1810952 "NUMQUAD" 1812809 T NUMQUAD (NIL) -7 NIL NIL) (-738 1803654 1804642 1805667 "NUMODE" 1806893 T NUMODE (NIL) -7 NIL NIL) (-737 1801058 1801904 1801932 "NUMINT" 1802849 T NUMINT (NIL) -9 NIL 1803605) (-736 1800006 1800203 1800421 "NUMFMT" 1800860 T NUMFMT (NIL) -7 NIL NIL) (-735 1786385 1789322 1791852 "NUMERIC" 1797515 NIL NUMERIC (NIL T) -7 NIL NIL) (-734 1780783 1785835 1785930 "NTSCAT" 1785935 NIL NTSCAT (NIL T T T T) -9 NIL 1785974) (-733 1779977 1780142 1780335 "NTPOLFN" 1780622 NIL NTPOLFN (NIL T) -7 NIL NIL) (-732 1767839 1776819 1777629 "NSUP" 1779199 NIL NSUP (NIL T) -8 NIL NIL) (-731 1767475 1767532 1767639 "NSUP2" 1767776 NIL NSUP2 (NIL T T) -7 NIL NIL) (-730 1757481 1767252 1767383 "NSMP" 1767388 NIL NSMP (NIL T T) -8 NIL NIL) (-729 1755913 1756214 1756571 "NREP" 1757169 NIL NREP (NIL T) -7 NIL NIL) (-728 1754504 1754756 1755114 "NPCOEF" 1755656 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-727 1753570 1753685 1753901 "NORMRETR" 1754385 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-726 1751611 1751901 1752310 "NORMPK" 1753278 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-725 1751296 1751324 1751448 "NORMMA" 1751577 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-724 1751123 1751253 1751282 "NONE" 1751287 T NONE (NIL) -8 NIL NIL) (-723 1750912 1750941 1751010 "NONE1" 1751087 NIL NONE1 (NIL T) -7 NIL NIL) (-722 1750397 1750459 1750644 "NODE1" 1750844 NIL NODE1 (NIL T T) -7 NIL NIL) (-721 1748737 1749560 1749815 "NNI" 1750162 T NNI (NIL) -8 NIL NIL) (-720 1747157 1747470 1747834 "NLINSOL" 1748405 NIL NLINSOL (NIL T) -7 NIL NIL) (-719 1743324 1744292 1745214 "NIPROB" 1746255 T NIPROB (NIL) -8 NIL NIL) (-718 1742081 1742315 1742617 "NFINTBAS" 1743086 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-717 1740789 1741020 1741301 "NCODIV" 1741849 NIL NCODIV (NIL T T) -7 NIL NIL) (-716 1740551 1740588 1740663 "NCNTFRAC" 1740746 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-715 1738731 1739095 1739515 "NCEP" 1740176 NIL NCEP (NIL T) -7 NIL NIL) (-714 1737643 1738382 1738410 "NASRING" 1738520 T NASRING (NIL) -9 NIL 1738594) (-713 1737438 1737482 1737576 "NASRING-" 1737581 NIL NASRING- (NIL T) -8 NIL NIL) (-712 1736592 1737091 1737119 "NARNG" 1737236 T NARNG (NIL) -9 NIL 1737327) (-711 1736284 1736351 1736485 "NARNG-" 1736490 NIL NARNG- (NIL T) -8 NIL NIL) (-710 1735163 1735370 1735605 "NAGSP" 1736069 T NAGSP (NIL) -7 NIL NIL) (-709 1726587 1728233 1729868 "NAGS" 1733548 T NAGS (NIL) -7 NIL NIL) (-708 1725151 1725455 1725782 "NAGF07" 1726280 T NAGF07 (NIL) -7 NIL NIL) (-707 1719733 1721013 1722309 "NAGF04" 1723875 T NAGF04 (NIL) -7 NIL NIL) (-706 1712765 1714363 1715980 "NAGF02" 1718136 T NAGF02 (NIL) -7 NIL NIL) (-705 1708029 1709119 1710226 "NAGF01" 1711678 T NAGF01 (NIL) -7 NIL NIL) (-704 1701689 1703247 1704824 "NAGE04" 1706472 T NAGE04 (NIL) -7 NIL NIL) (-703 1692930 1695033 1697145 "NAGE02" 1699597 T NAGE02 (NIL) -7 NIL NIL) (-702 1688923 1689860 1690814 "NAGE01" 1691996 T NAGE01 (NIL) -7 NIL NIL) (-701 1686730 1687261 1687816 "NAGD03" 1688388 T NAGD03 (NIL) -7 NIL NIL) (-700 1678516 1680435 1682380 "NAGD02" 1684805 T NAGD02 (NIL) -7 NIL NIL) (-699 1672375 1673788 1675216 "NAGD01" 1677108 T NAGD01 (NIL) -7 NIL NIL) (-698 1668632 1669442 1670267 "NAGC06" 1671570 T NAGC06 (NIL) -7 NIL NIL) (-697 1667109 1667438 1667791 "NAGC05" 1668299 T NAGC05 (NIL) -7 NIL NIL) (-696 1666493 1666610 1666752 "NAGC02" 1666987 T NAGC02 (NIL) -7 NIL NIL) (-695 1665555 1666112 1666152 "NAALG" 1666231 NIL NAALG (NIL T) -9 NIL 1666292) (-694 1665390 1665419 1665509 "NAALG-" 1665514 NIL NAALG- (NIL T T) -8 NIL NIL) (-693 1659340 1660448 1661635 "MULTSQFR" 1664286 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-692 1658659 1658734 1658918 "MULTFACT" 1659252 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-691 1651899 1655764 1655816 "MTSCAT" 1656876 NIL MTSCAT (NIL T T) -9 NIL 1657390) (-690 1651611 1651665 1651757 "MTHING" 1651839 NIL MTHING (NIL T) -7 NIL NIL) (-689 1651403 1651436 1651496 "MSYSCMD" 1651571 T MSYSCMD (NIL) -7 NIL NIL) (-688 1647515 1650158 1650478 "MSET" 1651116 NIL MSET (NIL T) -8 NIL NIL) (-687 1644611 1647077 1647118 "MSETAGG" 1647123 NIL MSETAGG (NIL T) -9 NIL 1647157) (-686 1640513 1642009 1642750 "MRING" 1643914 NIL MRING (NIL T T) -8 NIL NIL) (-685 1640083 1640150 1640279 "MRF2" 1640440 NIL MRF2 (NIL T T T) -7 NIL NIL) (-684 1639701 1639736 1639880 "MRATFAC" 1640042 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-683 1637313 1637608 1638039 "MPRFF" 1639406 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-682 1631379 1637168 1637264 "MPOLY" 1637269 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-681 1630869 1630904 1631112 "MPCPF" 1631338 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-680 1630385 1630428 1630611 "MPC3" 1630820 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-679 1629586 1629667 1629886 "MPC2" 1630300 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-678 1627887 1628224 1628614 "MONOTOOL" 1629246 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-677 1627139 1627430 1627458 "MONOID" 1627677 T MONOID (NIL) -9 NIL 1627824) (-676 1626685 1626804 1626985 "MONOID-" 1626990 NIL MONOID- (NIL T) -8 NIL NIL) (-675 1617751 1623652 1623711 "MONOGEN" 1624385 NIL MONOGEN (NIL T T) -9 NIL 1624841) (-674 1614969 1615704 1616704 "MONOGEN-" 1616823 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-673 1613829 1614249 1614277 "MONADWU" 1614669 T MONADWU (NIL) -9 NIL 1614907) (-672 1613201 1613360 1613608 "MONADWU-" 1613613 NIL MONADWU- (NIL T) -8 NIL NIL) (-671 1612587 1612805 1612833 "MONAD" 1613040 T MONAD (NIL) -9 NIL 1613152) (-670 1612272 1612350 1612482 "MONAD-" 1612487 NIL MONAD- (NIL T) -8 NIL NIL) (-669 1610588 1611185 1611464 "MOEBIUS" 1612025 NIL MOEBIUS (NIL T) -8 NIL NIL) (-668 1609982 1610360 1610400 "MODULE" 1610405 NIL MODULE (NIL T) -9 NIL 1610431) (-667 1609550 1609646 1609836 "MODULE-" 1609841 NIL MODULE- (NIL T T) -8 NIL NIL) (-666 1607267 1607916 1608242 "MODRING" 1609375 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-665 1604269 1605388 1605905 "MODOP" 1606799 NIL MODOP (NIL T T) -8 NIL NIL) (-664 1602456 1602908 1603249 "MODMONOM" 1604068 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-663 1592181 1600660 1601082 "MODMON" 1602084 NIL MODMON (NIL T T) -8 NIL NIL) (-662 1589372 1591025 1591301 "MODFIELD" 1592056 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-661 1588376 1588653 1588843 "MMLFORM" 1589202 T MMLFORM (NIL) -8 NIL NIL) (-660 1587902 1587945 1588124 "MMAP" 1588327 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-659 1586183 1586916 1586956 "MLO" 1587373 NIL MLO (NIL T) -9 NIL 1587614) (-658 1583550 1584065 1584667 "MLIFT" 1585664 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-657 1582941 1583025 1583179 "MKUCFUNC" 1583461 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-656 1582540 1582610 1582733 "MKRECORD" 1582864 NIL MKRECORD (NIL T T) -7 NIL NIL) (-655 1581588 1581749 1581977 "MKFUNC" 1582351 NIL MKFUNC (NIL T) -7 NIL NIL) (-654 1580976 1581080 1581236 "MKFLCFN" 1581471 NIL MKFLCFN (NIL T) -7 NIL NIL) (-653 1580402 1580769 1580858 "MKCHSET" 1580920 NIL MKCHSET (NIL T) -8 NIL NIL) (-652 1579679 1579781 1579966 "MKBCFUNC" 1580295 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-651 1576409 1579233 1579369 "MINT" 1579563 T MINT (NIL) -8 NIL NIL) (-650 1575221 1575464 1575741 "MHROWRED" 1576164 NIL MHROWRED (NIL T) -7 NIL NIL) (-649 1570557 1573666 1574090 "MFLOAT" 1574817 T MFLOAT (NIL) -8 NIL NIL) (-648 1569914 1569990 1570161 "MFINFACT" 1570469 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-647 1566229 1567077 1567961 "MESH" 1569050 T MESH (NIL) -7 NIL NIL) (-646 1564619 1564931 1565284 "MDDFACT" 1565916 NIL MDDFACT (NIL T) -7 NIL NIL) (-645 1561462 1563779 1563820 "MDAGG" 1564075 NIL MDAGG (NIL T) -9 NIL 1564218) (-644 1551247 1560755 1560962 "MCMPLX" 1561275 T MCMPLX (NIL) -8 NIL NIL) (-643 1550388 1550534 1550734 "MCDEN" 1551096 NIL MCDEN (NIL T T) -7 NIL NIL) (-642 1548278 1548548 1548928 "MCALCFN" 1550118 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-641 1547189 1547362 1547603 "MAYBE" 1548076 NIL MAYBE (NIL T) -8 NIL NIL) (-640 1544811 1545334 1545895 "MATSTOR" 1546660 NIL MATSTOR (NIL T) -7 NIL NIL) (-639 1540820 1544186 1544433 "MATRIX" 1544596 NIL MATRIX (NIL T) -8 NIL NIL) (-638 1536589 1537293 1538029 "MATLIN" 1540177 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-637 1526787 1529925 1530001 "MATCAT" 1534839 NIL MATCAT (NIL T T T) -9 NIL 1536256) (-636 1523152 1524165 1525520 "MATCAT-" 1525525 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-635 1521754 1521907 1522238 "MATCAT2" 1522987 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-634 1519866 1520190 1520574 "MAPPKG3" 1521429 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-633 1518847 1519020 1519242 "MAPPKG2" 1519690 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-632 1517346 1517630 1517957 "MAPPKG1" 1518553 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-631 1516957 1517015 1517138 "MAPHACK3" 1517282 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-630 1516549 1516610 1516724 "MAPHACK2" 1516889 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-629 1515987 1516090 1516232 "MAPHACK1" 1516440 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-628 1514095 1514689 1514992 "MAGMA" 1515716 NIL MAGMA (NIL T) -8 NIL NIL) (-627 1510570 1512339 1512799 "M3D" 1513668 NIL M3D (NIL T) -8 NIL NIL) (-626 1504726 1508941 1508982 "LZSTAGG" 1509764 NIL LZSTAGG (NIL T) -9 NIL 1510059) (-625 1500699 1501857 1503314 "LZSTAGG-" 1503319 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-624 1497815 1498592 1499078 "LWORD" 1500245 NIL LWORD (NIL T) -8 NIL NIL) (-623 1491021 1497586 1497720 "LSQM" 1497725 NIL LSQM (NIL NIL T) -8 NIL NIL) (-622 1490245 1490384 1490612 "LSPP" 1490876 NIL LSPP (NIL T T T T) -7 NIL NIL) (-621 1488057 1488358 1488814 "LSMP" 1489934 NIL LSMP (NIL T T T T) -7 NIL NIL) (-620 1484836 1485510 1486240 "LSMP1" 1487359 NIL LSMP1 (NIL T) -7 NIL NIL) (-619 1478763 1484005 1484046 "LSAGG" 1484108 NIL LSAGG (NIL T) -9 NIL 1484186) (-618 1475458 1476382 1477595 "LSAGG-" 1477600 NIL LSAGG- (NIL T T) -8 NIL NIL) (-617 1473084 1474602 1474851 "LPOLY" 1475253 NIL LPOLY (NIL T T) -8 NIL NIL) (-616 1472666 1472751 1472874 "LPEFRAC" 1472993 NIL LPEFRAC (NIL T) -7 NIL NIL) (-615 1471013 1471760 1472013 "LO" 1472498 NIL LO (NIL T T T) -8 NIL NIL) (-614 1470667 1470779 1470807 "LOGIC" 1470918 T LOGIC (NIL) -9 NIL 1470998) (-613 1470529 1470552 1470623 "LOGIC-" 1470628 NIL LOGIC- (NIL T) -8 NIL NIL) (-612 1469722 1469862 1470055 "LODOOPS" 1470385 NIL LODOOPS (NIL T T) -7 NIL NIL) (-611 1467186 1469639 1469704 "LODO" 1469709 NIL LODO (NIL T NIL) -8 NIL NIL) (-610 1465732 1465967 1466318 "LODOF" 1466933 NIL LODOF (NIL T T) -7 NIL NIL) (-609 1462196 1464588 1464628 "LODOCAT" 1465060 NIL LODOCAT (NIL T) -9 NIL 1465271) (-608 1461930 1461988 1462114 "LODOCAT-" 1462119 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-607 1459290 1461771 1461889 "LODO2" 1461894 NIL LODO2 (NIL T T) -8 NIL NIL) (-606 1456765 1459227 1459272 "LODO1" 1459277 NIL LODO1 (NIL T) -8 NIL NIL) (-605 1455628 1455793 1456104 "LODEEF" 1456588 NIL LODEEF (NIL T T T) -7 NIL NIL) (-604 1450915 1453759 1453800 "LNAGG" 1454747 NIL LNAGG (NIL T) -9 NIL 1455191) (-603 1450062 1450276 1450618 "LNAGG-" 1450623 NIL LNAGG- (NIL T T) -8 NIL NIL) (-602 1446227 1446989 1447627 "LMOPS" 1449478 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-601 1445625 1445987 1446027 "LMODULE" 1446087 NIL LMODULE (NIL T) -9 NIL 1446129) (-600 1442871 1445270 1445393 "LMDICT" 1445535 NIL LMDICT (NIL T) -8 NIL NIL) (-599 1442615 1442779 1442839 "LITERAL" 1442844 NIL LITERAL (NIL T) -8 NIL NIL) (-598 1435842 1441561 1441859 "LIST" 1442350 NIL LIST (NIL T) -8 NIL NIL) (-597 1435367 1435441 1435580 "LIST3" 1435762 NIL LIST3 (NIL T T T) -7 NIL NIL) (-596 1434374 1434552 1434780 "LIST2" 1435185 NIL LIST2 (NIL T T) -7 NIL NIL) (-595 1432508 1432820 1433219 "LIST2MAP" 1434021 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-594 1431265 1431901 1431941 "LINEXP" 1432194 NIL LINEXP (NIL T) -9 NIL 1432342) (-593 1429912 1430172 1430469 "LINDEP" 1431017 NIL LINDEP (NIL T T) -7 NIL NIL) (-592 1426679 1427398 1428175 "LIMITRF" 1429167 NIL LIMITRF (NIL T) -7 NIL NIL) (-591 1424959 1425254 1425669 "LIMITPS" 1426374 NIL LIMITPS (NIL T T) -7 NIL NIL) (-590 1419414 1424470 1424698 "LIE" 1424780 NIL LIE (NIL T T) -8 NIL NIL) (-589 1418465 1418908 1418948 "LIECAT" 1419088 NIL LIECAT (NIL T) -9 NIL 1419239) (-588 1418306 1418333 1418421 "LIECAT-" 1418426 NIL LIECAT- (NIL T T) -8 NIL NIL) (-587 1410918 1417755 1417920 "LIB" 1418161 T LIB (NIL) -8 NIL NIL) (-586 1406555 1407436 1408371 "LGROBP" 1410035 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-585 1404421 1404695 1405057 "LF" 1406276 NIL LF (NIL T T) -7 NIL NIL) (-584 1403261 1403953 1403981 "LFCAT" 1404188 T LFCAT (NIL) -9 NIL 1404327) (-583 1400173 1400799 1401485 "LEXTRIPK" 1402627 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-582 1396944 1397743 1398246 "LEXP" 1399753 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-581 1395342 1395655 1396056 "LEADCDET" 1396626 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-580 1394532 1394606 1394835 "LAZM3PK" 1395263 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-579 1389495 1392611 1393148 "LAUPOL" 1394045 NIL LAUPOL (NIL T T) -8 NIL NIL) (-578 1389062 1389106 1389273 "LAPLACE" 1389445 NIL LAPLACE (NIL T T) -7 NIL NIL) (-577 1387036 1388163 1388414 "LA" 1388895 NIL LA (NIL T T T) -8 NIL NIL) (-576 1386143 1386693 1386733 "LALG" 1386794 NIL LALG (NIL T) -9 NIL 1386852) (-575 1385858 1385917 1386052 "LALG-" 1386057 NIL LALG- (NIL T T) -8 NIL NIL) (-574 1384768 1384955 1385252 "KOVACIC" 1385658 NIL KOVACIC (NIL T T) -7 NIL NIL) (-573 1384603 1384627 1384668 "KONVERT" 1384730 NIL KONVERT (NIL T) -9 NIL NIL) (-572 1384438 1384462 1384503 "KOERCE" 1384565 NIL KOERCE (NIL T) -9 NIL NIL) (-571 1382172 1382932 1383325 "KERNEL" 1384077 NIL KERNEL (NIL T) -8 NIL NIL) (-570 1381674 1381755 1381885 "KERNEL2" 1382086 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-569 1375526 1380214 1380268 "KDAGG" 1380645 NIL KDAGG (NIL T T) -9 NIL 1380851) (-568 1375055 1375179 1375384 "KDAGG-" 1375389 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-567 1368230 1374716 1374871 "KAFILE" 1374933 NIL KAFILE (NIL T) -8 NIL NIL) (-566 1362685 1367741 1367969 "JORDAN" 1368051 NIL JORDAN (NIL T T) -8 NIL NIL) (-565 1362414 1362473 1362560 "JAVACODE" 1362618 T JAVACODE (NIL) -8 NIL NIL) (-564 1358714 1360620 1360674 "IXAGG" 1361603 NIL IXAGG (NIL T T) -9 NIL 1362062) (-563 1357633 1357939 1358358 "IXAGG-" 1358363 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-562 1353218 1357555 1357614 "IVECTOR" 1357619 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-561 1351984 1352221 1352487 "ITUPLE" 1352985 NIL ITUPLE (NIL T) -8 NIL NIL) (-560 1350420 1350597 1350903 "ITRIGMNP" 1351806 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-559 1349165 1349369 1349652 "ITFUN3" 1350196 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-558 1348797 1348854 1348963 "ITFUN2" 1349102 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-557 1346645 1347670 1347967 "ITAYLOR" 1348532 NIL ITAYLOR (NIL T) -8 NIL NIL) (-556 1335679 1340831 1341990 "ISUPS" 1345518 NIL ISUPS (NIL T) -8 NIL NIL) (-555 1334783 1334923 1335159 "ISUMP" 1335526 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-554 1330047 1334584 1334663 "ISTRING" 1334736 NIL ISTRING (NIL NIL) -8 NIL NIL) (-553 1329257 1329338 1329554 "IRURPK" 1329961 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-552 1328193 1328394 1328634 "IRSN" 1329037 T IRSN (NIL) -7 NIL NIL) (-551 1326228 1326583 1327018 "IRRF2F" 1327831 NIL IRRF2F (NIL T) -7 NIL NIL) (-550 1325975 1326013 1326089 "IRREDFFX" 1326184 NIL IRREDFFX (NIL T) -7 NIL NIL) (-549 1324590 1324849 1325148 "IROOT" 1325708 NIL IROOT (NIL T) -7 NIL NIL) (-548 1321228 1322279 1322969 "IR" 1323932 NIL IR (NIL T) -8 NIL NIL) (-547 1318841 1319336 1319902 "IR2" 1320706 NIL IR2 (NIL T T) -7 NIL NIL) (-546 1317917 1318030 1318250 "IR2F" 1318724 NIL IR2F (NIL T T) -7 NIL NIL) (-545 1317708 1317742 1317802 "IPRNTPK" 1317877 T IPRNTPK (NIL) -7 NIL NIL) (-544 1314327 1317597 1317666 "IPF" 1317671 NIL IPF (NIL NIL) -8 NIL NIL) (-543 1312690 1314252 1314309 "IPADIC" 1314314 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-542 1312189 1312247 1312436 "INVLAPLA" 1312626 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-541 1301838 1304191 1306577 "INTTR" 1309853 NIL INTTR (NIL T T) -7 NIL NIL) (-540 1298186 1298927 1299790 "INTTOOLS" 1301024 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-539 1297772 1297863 1297980 "INTSLPE" 1298089 T INTSLPE (NIL) -7 NIL NIL) (-538 1295767 1297695 1297754 "INTRVL" 1297759 NIL INTRVL (NIL T) -8 NIL NIL) (-537 1293374 1293886 1294460 "INTRF" 1295252 NIL INTRF (NIL T) -7 NIL NIL) (-536 1292789 1292886 1293027 "INTRET" 1293272 NIL INTRET (NIL T) -7 NIL NIL) (-535 1290791 1291180 1291649 "INTRAT" 1292397 NIL INTRAT (NIL T T) -7 NIL NIL) (-534 1288024 1288607 1289232 "INTPM" 1290276 NIL INTPM (NIL T T) -7 NIL NIL) (-533 1284733 1285332 1286076 "INTPAF" 1287410 NIL INTPAF (NIL T T T) -7 NIL NIL) (-532 1279976 1280922 1281957 "INTPACK" 1283718 T INTPACK (NIL) -7 NIL NIL) (-531 1276876 1279705 1279832 "INT" 1279869 T INT (NIL) -8 NIL NIL) (-530 1276128 1276280 1276488 "INTHERTR" 1276718 NIL INTHERTR (NIL T T) -7 NIL NIL) (-529 1275567 1275647 1275835 "INTHERAL" 1276042 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-528 1273413 1273856 1274313 "INTHEORY" 1275130 T INTHEORY (NIL) -7 NIL NIL) (-527 1264735 1266356 1268134 "INTG0" 1271765 NIL INTG0 (NIL T T T) -7 NIL NIL) (-526 1245308 1250098 1254908 "INTFTBL" 1259945 T INTFTBL (NIL) -8 NIL NIL) (-525 1244557 1244695 1244868 "INTFACT" 1245167 NIL INTFACT (NIL T) -7 NIL NIL) (-524 1241948 1242394 1242957 "INTEF" 1244111 NIL INTEF (NIL T T) -7 NIL NIL) (-523 1240454 1241159 1241187 "INTDOM" 1241488 T INTDOM (NIL) -9 NIL 1241695) (-522 1239823 1239997 1240239 "INTDOM-" 1240244 NIL INTDOM- (NIL T) -8 NIL NIL) (-521 1236362 1238248 1238302 "INTCAT" 1239101 NIL INTCAT (NIL T) -9 NIL 1239420) (-520 1235835 1235937 1236065 "INTBIT" 1236254 T INTBIT (NIL) -7 NIL NIL) (-519 1234510 1234664 1234977 "INTALG" 1235680 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-518 1233967 1234057 1234227 "INTAF" 1234414 NIL INTAF (NIL T T) -7 NIL NIL) (-517 1227421 1233777 1233917 "INTABL" 1233922 NIL INTABL (NIL T T T) -8 NIL NIL) (-516 1222418 1225101 1225129 "INS" 1226097 T INS (NIL) -9 NIL 1226778) (-515 1219658 1220429 1221403 "INS-" 1221476 NIL INS- (NIL T) -8 NIL NIL) (-514 1218437 1218664 1218961 "INPSIGN" 1219411 NIL INPSIGN (NIL T T) -7 NIL NIL) (-513 1217555 1217672 1217869 "INPRODPF" 1218317 NIL INPRODPF (NIL T T) -7 NIL NIL) (-512 1216449 1216566 1216803 "INPRODFF" 1217435 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-511 1215449 1215601 1215861 "INNMFACT" 1216285 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-510 1214646 1214743 1214931 "INMODGCD" 1215348 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-509 1213155 1213399 1213723 "INFSP" 1214391 NIL INFSP (NIL T T T) -7 NIL NIL) (-508 1212339 1212456 1212639 "INFPROD0" 1213035 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-507 1209350 1210508 1210999 "INFORM" 1211856 T INFORM (NIL) -8 NIL NIL) (-506 1208960 1209020 1209118 "INFORM1" 1209285 NIL INFORM1 (NIL T) -7 NIL NIL) (-505 1208483 1208572 1208686 "INFINITY" 1208866 T INFINITY (NIL) -7 NIL NIL) (-504 1207100 1207349 1207670 "INEP" 1208231 NIL INEP (NIL T T T) -7 NIL NIL) (-503 1206376 1206997 1207062 "INDE" 1207067 NIL INDE (NIL T) -8 NIL NIL) (-502 1205940 1206008 1206125 "INCRMAPS" 1206303 NIL INCRMAPS (NIL T) -7 NIL NIL) (-501 1201251 1202176 1203120 "INBFF" 1205028 NIL INBFF (NIL T) -7 NIL NIL) (-500 1197746 1201096 1201199 "IMATRIX" 1201204 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-499 1196458 1196581 1196896 "IMATQF" 1197602 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-498 1194678 1194905 1195242 "IMATLIN" 1196214 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-497 1189304 1194602 1194660 "ILIST" 1194665 NIL ILIST (NIL T NIL) -8 NIL NIL) (-496 1187257 1189164 1189277 "IIARRAY2" 1189282 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-495 1182690 1187168 1187232 "IFF" 1187237 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-494 1177733 1181982 1182170 "IFARRAY" 1182547 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-493 1176940 1177637 1177710 "IFAMON" 1177715 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-492 1176524 1176589 1176643 "IEVALAB" 1176850 NIL IEVALAB (NIL T T) -9 NIL NIL) (-491 1176199 1176267 1176427 "IEVALAB-" 1176432 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-490 1175857 1176113 1176176 "IDPO" 1176181 NIL IDPO (NIL T T) -8 NIL NIL) (-489 1175134 1175746 1175821 "IDPOAMS" 1175826 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-488 1174468 1175023 1175098 "IDPOAM" 1175103 NIL IDPOAM (NIL T T) -8 NIL NIL) (-487 1173554 1173804 1173857 "IDPC" 1174270 NIL IDPC (NIL T T) -9 NIL 1174419) (-486 1173050 1173446 1173519 "IDPAM" 1173524 NIL IDPAM (NIL T T) -8 NIL NIL) (-485 1172453 1172942 1173015 "IDPAG" 1173020 NIL IDPAG (NIL T T) -8 NIL NIL) (-484 1172201 1172368 1172418 "IDENT" 1172423 T IDENT (NIL) -8 NIL NIL) (-483 1168456 1169304 1170199 "IDECOMP" 1171358 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-482 1161329 1162379 1163426 "IDEAL" 1167492 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-481 1160493 1160605 1160804 "ICDEN" 1161213 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-480 1159592 1159973 1160120 "ICARD" 1160366 T ICARD (NIL) -8 NIL NIL) (-479 1157664 1157977 1158380 "IBPTOOLS" 1159269 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-478 1153298 1157284 1157397 "IBITS" 1157583 NIL IBITS (NIL NIL) -8 NIL NIL) (-477 1150021 1150597 1151292 "IBATOOL" 1152715 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-476 1147801 1148262 1148795 "IBACHIN" 1149556 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-475 1145678 1147647 1147750 "IARRAY2" 1147755 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-474 1141831 1145604 1145661 "IARRAY1" 1145666 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-473 1135834 1140249 1140727 "IAN" 1141373 T IAN (NIL) -8 NIL NIL) (-472 1135345 1135402 1135575 "IALGFACT" 1135771 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-471 1134873 1134986 1135014 "HYPCAT" 1135221 T HYPCAT (NIL) -9 NIL NIL) (-470 1134411 1134528 1134714 "HYPCAT-" 1134719 NIL HYPCAT- (NIL T) -8 NIL NIL) (-469 1134033 1134206 1134289 "HOSTNAME" 1134348 T HOSTNAME (NIL) -8 NIL NIL) (-468 1130713 1132044 1132085 "HOAGG" 1133066 NIL HOAGG (NIL T) -9 NIL 1133745) (-467 1129307 1129706 1130232 "HOAGG-" 1130237 NIL HOAGG- (NIL T T) -8 NIL NIL) (-466 1123202 1128748 1128914 "HEXADEC" 1129161 T HEXADEC (NIL) -8 NIL NIL) (-465 1121950 1122172 1122435 "HEUGCD" 1122979 NIL HEUGCD (NIL T) -7 NIL NIL) (-464 1121053 1121787 1121917 "HELLFDIV" 1121922 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-463 1119281 1120830 1120918 "HEAP" 1120997 NIL HEAP (NIL T) -8 NIL NIL) (-462 1118616 1118856 1118986 "HEADAST" 1119171 T HEADAST (NIL) -8 NIL NIL) (-461 1112569 1118531 1118593 "HDP" 1118598 NIL HDP (NIL NIL T) -8 NIL NIL) (-460 1106327 1112206 1112357 "HDMP" 1112470 NIL HDMP (NIL NIL T) -8 NIL NIL) (-459 1105652 1105791 1105955 "HB" 1106183 T HB (NIL) -7 NIL NIL) (-458 1099149 1105498 1105602 "HASHTBL" 1105607 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-457 1096967 1098777 1098956 "HACKPI" 1098990 T HACKPI (NIL) -8 NIL NIL) (-456 1092662 1096820 1096933 "GTSET" 1096938 NIL GTSET (NIL T T T T) -8 NIL NIL) (-455 1086188 1092540 1092638 "GSTBL" 1092643 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-454 1078506 1085224 1085488 "GSERIES" 1085979 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-453 1077674 1078065 1078093 "GROUP" 1078296 T GROUP (NIL) -9 NIL 1078430) (-452 1077040 1077199 1077450 "GROUP-" 1077455 NIL GROUP- (NIL T) -8 NIL NIL) (-451 1075409 1075728 1076115 "GROEBSOL" 1076717 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-450 1074350 1074612 1074663 "GRMOD" 1075192 NIL GRMOD (NIL T T) -9 NIL 1075360) (-449 1074118 1074154 1074282 "GRMOD-" 1074287 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-448 1069443 1070472 1071472 "GRIMAGE" 1073138 T GRIMAGE (NIL) -8 NIL NIL) (-447 1067910 1068170 1068494 "GRDEF" 1069139 T GRDEF (NIL) -7 NIL NIL) (-446 1067354 1067470 1067611 "GRAY" 1067789 T GRAY (NIL) -7 NIL NIL) (-445 1066588 1066968 1067019 "GRALG" 1067172 NIL GRALG (NIL T T) -9 NIL 1067264) (-444 1066249 1066322 1066485 "GRALG-" 1066490 NIL GRALG- (NIL T T T) -8 NIL NIL) (-443 1063055 1065836 1066013 "GPOLSET" 1066156 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-442 1062411 1062468 1062725 "GOSPER" 1062992 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-441 1058170 1058849 1059375 "GMODPOL" 1062110 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-440 1057175 1057359 1057597 "GHENSEL" 1057982 NIL GHENSEL (NIL T T) -7 NIL NIL) (-439 1051241 1052084 1053110 "GENUPS" 1056259 NIL GENUPS (NIL T T) -7 NIL NIL) (-438 1050938 1050989 1051078 "GENUFACT" 1051184 NIL GENUFACT (NIL T) -7 NIL NIL) (-437 1050350 1050427 1050592 "GENPGCD" 1050856 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-436 1049824 1049859 1050072 "GENMFACT" 1050309 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-435 1048392 1048647 1048954 "GENEEZ" 1049567 NIL GENEEZ (NIL T T) -7 NIL NIL) (-434 1042312 1048005 1048166 "GDMP" 1048315 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-433 1031689 1036083 1037189 "GCNAALG" 1041295 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-432 1030155 1030983 1031011 "GCDDOM" 1031266 T GCDDOM (NIL) -9 NIL 1031423) (-431 1029625 1029752 1029967 "GCDDOM-" 1029972 NIL GCDDOM- (NIL T) -8 NIL NIL) (-430 1028297 1028482 1028786 "GB" 1029404 NIL GB (NIL T T T T) -7 NIL NIL) (-429 1016917 1019243 1021635 "GBINTERN" 1025988 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-428 1014754 1015046 1015467 "GBF" 1016592 NIL GBF (NIL T T T T) -7 NIL NIL) (-427 1013535 1013700 1013967 "GBEUCLID" 1014570 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-426 1012884 1013009 1013158 "GAUSSFAC" 1013406 T GAUSSFAC (NIL) -7 NIL NIL) (-425 1011261 1011563 1011876 "GALUTIL" 1012603 NIL GALUTIL (NIL T) -7 NIL NIL) (-424 1009578 1009852 1010175 "GALPOLYU" 1010988 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-423 1006967 1007257 1007662 "GALFACTU" 1009275 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-422 998773 1000272 1001880 "GALFACT" 1005399 NIL GALFACT (NIL T) -7 NIL NIL) (-421 996161 996819 996847 "FVFUN" 998003 T FVFUN (NIL) -9 NIL 998723) (-420 995427 995609 995637 "FVC" 995928 T FVC (NIL) -9 NIL 996111) (-419 995069 995224 995305 "FUNCTION" 995379 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-418 992739 993290 993779 "FT" 994600 T FT (NIL) -8 NIL NIL) (-417 991557 992040 992243 "FTEM" 992556 T FTEM (NIL) -8 NIL NIL) (-416 989822 990110 990512 "FSUPFACT" 991249 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-415 988219 988508 988840 "FST" 989510 T FST (NIL) -8 NIL NIL) (-414 987394 987500 987694 "FSRED" 988101 NIL FSRED (NIL T T) -7 NIL NIL) (-413 986073 986328 986682 "FSPRMELT" 987109 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-412 983158 983596 984095 "FSPECF" 985636 NIL FSPECF (NIL T T) -7 NIL NIL) (-411 965687 974089 974129 "FS" 977967 NIL FS (NIL T) -9 NIL 980249) (-410 954337 957327 961383 "FS-" 961680 NIL FS- (NIL T T) -8 NIL NIL) (-409 953853 953907 954083 "FSINT" 954278 NIL FSINT (NIL T T) -7 NIL NIL) (-408 952180 952846 953149 "FSERIES" 953632 NIL FSERIES (NIL T T) -8 NIL NIL) (-407 951198 951314 951544 "FSCINT" 952060 NIL FSCINT (NIL T T) -7 NIL NIL) (-406 947433 950143 950184 "FSAGG" 950554 NIL FSAGG (NIL T) -9 NIL 950813) (-405 945195 945796 946592 "FSAGG-" 946687 NIL FSAGG- (NIL T T) -8 NIL NIL) (-404 944237 944380 944607 "FSAGG2" 945048 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-403 941896 942175 942728 "FS2UPS" 943955 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-402 941482 941525 941678 "FS2" 941847 NIL FS2 (NIL T T T T) -7 NIL NIL) (-401 940342 940513 940821 "FS2EXPXP" 941307 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-400 939768 939883 940035 "FRUTIL" 940222 NIL FRUTIL (NIL T) -7 NIL NIL) (-399 931234 935267 936623 "FR" 938444 NIL FR (NIL T) -8 NIL NIL) (-398 926311 928954 928994 "FRNAALG" 930390 NIL FRNAALG (NIL T) -9 NIL 930997) (-397 921989 923060 924335 "FRNAALG-" 925085 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-396 921627 921670 921797 "FRNAAF2" 921940 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-395 920038 920484 920778 "FRMOD" 921440 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-394 917825 918429 918745 "FRIDEAL" 919829 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-393 917024 917111 917398 "FRIDEAL2" 917732 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-392 916282 916690 916731 "FRETRCT" 916736 NIL FRETRCT (NIL T) -9 NIL 916907) (-391 915394 915625 915976 "FRETRCT-" 915981 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-390 912648 913824 913883 "FRAMALG" 914765 NIL FRAMALG (NIL T T) -9 NIL 915057) (-389 910782 911237 911867 "FRAMALG-" 912090 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-388 904749 910257 910533 "FRAC" 910538 NIL FRAC (NIL T) -8 NIL NIL) (-387 904385 904442 904549 "FRAC2" 904686 NIL FRAC2 (NIL T T) -7 NIL NIL) (-386 904021 904078 904185 "FR2" 904322 NIL FR2 (NIL T T) -7 NIL NIL) (-385 898760 901608 901636 "FPS" 902755 T FPS (NIL) -9 NIL 903311) (-384 898209 898318 898482 "FPS-" 898628 NIL FPS- (NIL T) -8 NIL NIL) (-383 895720 897355 897383 "FPC" 897608 T FPC (NIL) -9 NIL 897750) (-382 895513 895553 895650 "FPC-" 895655 NIL FPC- (NIL T) -8 NIL NIL) (-381 894392 895002 895043 "FPATMAB" 895048 NIL FPATMAB (NIL T) -9 NIL 895200) (-380 892092 892568 892994 "FPARFRAC" 894029 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-379 887485 887984 888666 "FORTRAN" 891524 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-378 885201 885701 886240 "FORT" 886966 T FORT (NIL) -7 NIL NIL) (-377 882877 883439 883467 "FORTFN" 884527 T FORTFN (NIL) -9 NIL 885151) (-376 882641 882691 882719 "FORTCAT" 882778 T FORTCAT (NIL) -9 NIL 882840) (-375 880701 881184 881583 "FORMULA" 882262 T FORMULA (NIL) -8 NIL NIL) (-374 880489 880519 880588 "FORMULA1" 880665 NIL FORMULA1 (NIL T) -7 NIL NIL) (-373 880012 880064 880237 "FORDER" 880431 NIL FORDER (NIL T T T T) -7 NIL NIL) (-372 879108 879272 879465 "FOP" 879839 T FOP (NIL) -7 NIL NIL) (-371 877716 878388 878562 "FNLA" 878990 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-370 876385 876774 876802 "FNCAT" 877374 T FNCAT (NIL) -9 NIL 877667) (-369 875951 876344 876372 "FNAME" 876377 T FNAME (NIL) -8 NIL NIL) (-368 874655 875584 875612 "FMTC" 875617 T FMTC (NIL) -9 NIL 875652) (-367 871019 872180 872808 "FMONOID" 874060 NIL FMONOID (NIL T) -8 NIL NIL) (-366 870239 870762 870910 "FM" 870915 NIL FM (NIL T T) -8 NIL NIL) (-365 867663 868309 868337 "FMFUN" 869481 T FMFUN (NIL) -9 NIL 870189) (-364 866932 867113 867141 "FMC" 867431 T FMC (NIL) -9 NIL 867613) (-363 864162 864996 865049 "FMCAT" 866231 NIL FMCAT (NIL T T) -9 NIL 866725) (-362 863057 863930 864029 "FM1" 864107 NIL FM1 (NIL T T) -8 NIL NIL) (-361 860831 861247 861741 "FLOATRP" 862608 NIL FLOATRP (NIL T) -7 NIL NIL) (-360 854382 858487 859117 "FLOAT" 860221 T FLOAT (NIL) -8 NIL NIL) (-359 851820 852320 852898 "FLOATCP" 853849 NIL FLOATCP (NIL T) -7 NIL NIL) (-358 850653 851457 851497 "FLINEXP" 851502 NIL FLINEXP (NIL T) -9 NIL 851595) (-357 849808 850043 850370 "FLINEXP-" 850375 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-356 848884 849028 849252 "FLASORT" 849660 NIL FLASORT (NIL T T) -7 NIL NIL) (-355 846103 846945 846997 "FLALG" 848224 NIL FLALG (NIL T T) -9 NIL 848691) (-354 839888 843590 843631 "FLAGG" 844893 NIL FLAGG (NIL T) -9 NIL 845545) (-353 838614 838953 839443 "FLAGG-" 839448 NIL FLAGG- (NIL T T) -8 NIL NIL) (-352 837656 837799 838026 "FLAGG2" 838467 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-351 834673 835647 835706 "FINRALG" 836834 NIL FINRALG (NIL T T) -9 NIL 837342) (-350 833833 834062 834401 "FINRALG-" 834406 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-349 833240 833453 833481 "FINITE" 833677 T FINITE (NIL) -9 NIL 833784) (-348 825700 827861 827901 "FINAALG" 831568 NIL FINAALG (NIL T) -9 NIL 833021) (-347 821041 822082 823226 "FINAALG-" 824605 NIL FINAALG- (NIL T T) -8 NIL NIL) (-346 820436 820796 820899 "FILE" 820971 NIL FILE (NIL T) -8 NIL NIL) (-345 819121 819433 819487 "FILECAT" 820171 NIL FILECAT (NIL T T) -9 NIL 820387) (-344 817046 818540 818568 "FIELD" 818608 T FIELD (NIL) -9 NIL 818688) (-343 815666 816051 816562 "FIELD-" 816567 NIL FIELD- (NIL T) -8 NIL NIL) (-342 813546 814303 814649 "FGROUP" 815353 NIL FGROUP (NIL T) -8 NIL NIL) (-341 812636 812800 813020 "FGLMICPK" 813378 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-340 808503 812561 812618 "FFX" 812623 NIL FFX (NIL T NIL) -8 NIL NIL) (-339 808104 808165 808300 "FFSLPE" 808436 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-338 804097 804876 805672 "FFPOLY" 807340 NIL FFPOLY (NIL T) -7 NIL NIL) (-337 803601 803637 803846 "FFPOLY2" 804055 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-336 799487 803520 803583 "FFP" 803588 NIL FFP (NIL T NIL) -8 NIL NIL) (-335 794920 799398 799462 "FF" 799467 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 790081 794263 794453 "FFNBX" 794774 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-333 785055 789216 789474 "FFNBP" 789935 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-332 779723 784339 784550 "FFNB" 784888 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-331 778555 778753 779068 "FFINTBAS" 779520 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-330 774844 777019 777047 "FFIELDC" 777667 T FFIELDC (NIL) -9 NIL 778043) (-329 773507 773877 774374 "FFIELDC-" 774379 NIL FFIELDC- (NIL T) -8 NIL NIL) (-328 773077 773122 773246 "FFHOM" 773449 NIL FFHOM (NIL T T T) -7 NIL NIL) (-327 770775 771259 771776 "FFF" 772592 NIL FFF (NIL T) -7 NIL NIL) (-326 766428 770517 770618 "FFCGX" 770718 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-325 762095 766160 766267 "FFCGP" 766371 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-324 757313 761822 761930 "FFCG" 762031 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-323 739387 748418 748504 "FFCAT" 753669 NIL FFCAT (NIL T T T) -9 NIL 755120) (-322 734585 735632 736946 "FFCAT-" 738176 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-321 733996 734039 734274 "FFCAT2" 734536 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-320 723242 726986 728203 "FEXPR" 732851 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-319 722242 722677 722718 "FEVALAB" 722802 NIL FEVALAB (NIL T) -9 NIL 723063) (-318 721401 721611 721949 "FEVALAB-" 721954 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-317 719994 720784 720987 "FDIV" 721300 NIL FDIV (NIL T T T T) -8 NIL NIL) (-316 717061 717776 717891 "FDIVCAT" 719459 NIL FDIVCAT (NIL T T T T) -9 NIL 719896) (-315 716823 716850 717020 "FDIVCAT-" 717025 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-314 716043 716130 716407 "FDIV2" 716730 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-313 714729 714988 715277 "FCPAK1" 715774 T FCPAK1 (NIL) -7 NIL NIL) (-312 713857 714229 714370 "FCOMP" 714620 NIL FCOMP (NIL T) -8 NIL NIL) (-311 697492 700906 704467 "FC" 710316 T FC (NIL) -8 NIL NIL) (-310 690153 694134 694174 "FAXF" 695976 NIL FAXF (NIL T) -9 NIL 696667) (-309 687432 688087 688912 "FAXF-" 689377 NIL FAXF- (NIL T T) -8 NIL NIL) (-308 682532 686808 686984 "FARRAY" 687289 NIL FARRAY (NIL T) -8 NIL NIL) (-307 677967 679994 680046 "FAMR" 681058 NIL FAMR (NIL T T) -9 NIL 681518) (-306 676858 677160 677594 "FAMR-" 677599 NIL FAMR- (NIL T T T) -8 NIL NIL) (-305 676054 676780 676833 "FAMONOID" 676838 NIL FAMONOID (NIL T) -8 NIL NIL) (-304 673887 674571 674624 "FAMONC" 675565 NIL FAMONC (NIL T T) -9 NIL 675950) (-303 672579 673641 673778 "FAGROUP" 673783 NIL FAGROUP (NIL T) -8 NIL NIL) (-302 670382 670701 671103 "FACUTIL" 672260 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-301 669481 669666 669888 "FACTFUNC" 670192 NIL FACTFUNC (NIL T) -7 NIL NIL) (-300 661886 668732 668944 "EXPUPXS" 669337 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-299 659369 659909 660495 "EXPRTUBE" 661320 T EXPRTUBE (NIL) -7 NIL NIL) (-298 655563 656155 656892 "EXPRODE" 658708 NIL EXPRODE (NIL T T) -7 NIL NIL) (-297 640999 654222 654648 "EXPR" 655169 NIL EXPR (NIL T) -8 NIL NIL) (-296 635427 636014 636826 "EXPR2UPS" 640297 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-295 635063 635120 635227 "EXPR2" 635364 NIL EXPR2 (NIL T T) -7 NIL NIL) (-294 626482 634200 634495 "EXPEXPAN" 634901 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-293 626309 626439 626468 "EXIT" 626473 T EXIT (NIL) -8 NIL NIL) (-292 625936 625998 626111 "EVALCYC" 626241 NIL EVALCYC (NIL T) -7 NIL NIL) (-291 625477 625595 625636 "EVALAB" 625806 NIL EVALAB (NIL T) -9 NIL 625910) (-290 624958 625080 625301 "EVALAB-" 625306 NIL EVALAB- (NIL T T) -8 NIL NIL) (-289 622465 623733 623761 "EUCDOM" 624316 T EUCDOM (NIL) -9 NIL 624666) (-288 620870 621312 621902 "EUCDOM-" 621907 NIL EUCDOM- (NIL T) -8 NIL NIL) (-287 608448 611196 613936 "ESTOOLS" 618150 T ESTOOLS (NIL) -7 NIL NIL) (-286 608084 608141 608248 "ESTOOLS2" 608385 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-285 607835 607877 607957 "ESTOOLS1" 608036 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-284 601773 603497 603525 "ES" 606289 T ES (NIL) -9 NIL 607695) (-283 596720 598007 599824 "ES-" 599988 NIL ES- (NIL T) -8 NIL NIL) (-282 593095 593855 594635 "ESCONT" 595960 T ESCONT (NIL) -7 NIL NIL) (-281 592840 592872 592954 "ESCONT1" 593057 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-280 592515 592565 592665 "ES2" 592784 NIL ES2 (NIL T T) -7 NIL NIL) (-279 592145 592203 592312 "ES1" 592451 NIL ES1 (NIL T T) -7 NIL NIL) (-278 591361 591490 591666 "ERROR" 591989 T ERROR (NIL) -7 NIL NIL) (-277 584864 591220 591311 "EQTBL" 591316 NIL EQTBL (NIL T T) -8 NIL NIL) (-276 577427 580182 581629 "EQ" 583450 NIL -3861 (NIL T) -8 NIL NIL) (-275 577059 577116 577225 "EQ2" 577364 NIL EQ2 (NIL T T) -7 NIL NIL) (-274 572351 573397 574490 "EP" 575998 NIL EP (NIL T) -7 NIL NIL) (-273 570933 571234 571551 "ENV" 572054 T ENV (NIL) -8 NIL NIL) (-272 570137 570657 570685 "ENTIRER" 570690 T ENTIRER (NIL) -9 NIL 570735) (-271 566639 568092 568462 "EMR" 569936 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-270 565783 565968 566022 "ELTAGG" 566402 NIL ELTAGG (NIL T T) -9 NIL 566613) (-269 565502 565564 565705 "ELTAGG-" 565710 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-268 565291 565320 565374 "ELTAB" 565458 NIL ELTAB (NIL T T) -9 NIL NIL) (-267 564417 564563 564762 "ELFUTS" 565142 NIL ELFUTS (NIL T T) -7 NIL NIL) (-266 564159 564215 564243 "ELEMFUN" 564348 T ELEMFUN (NIL) -9 NIL NIL) (-265 564029 564050 564118 "ELEMFUN-" 564123 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-264 558921 562130 562171 "ELAGG" 563111 NIL ELAGG (NIL T) -9 NIL 563574) (-263 557206 557640 558303 "ELAGG-" 558308 NIL ELAGG- (NIL T T) -8 NIL NIL) (-262 555863 556143 556438 "ELABEXPR" 556931 T ELABEXPR (NIL) -8 NIL NIL) (-261 548729 550530 551357 "EFUPXS" 555139 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-260 542179 543980 544790 "EFULS" 548005 NIL EFULS (NIL T T T) -8 NIL NIL) (-259 539610 539968 540446 "EFSTRUC" 541811 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-258 528682 530247 531807 "EF" 538125 NIL EF (NIL T T) -7 NIL NIL) (-257 527783 528167 528316 "EAB" 528553 T EAB (NIL) -8 NIL NIL) (-256 526996 527742 527770 "E04UCFA" 527775 T E04UCFA (NIL) -8 NIL NIL) (-255 526209 526955 526983 "E04NAFA" 526988 T E04NAFA (NIL) -8 NIL NIL) (-254 525422 526168 526196 "E04MBFA" 526201 T E04MBFA (NIL) -8 NIL NIL) (-253 524635 525381 525409 "E04JAFA" 525414 T E04JAFA (NIL) -8 NIL NIL) (-252 523850 524594 524622 "E04GCFA" 524627 T E04GCFA (NIL) -8 NIL NIL) (-251 523065 523809 523837 "E04FDFA" 523842 T E04FDFA (NIL) -8 NIL NIL) (-250 522278 523024 523052 "E04DGFA" 523057 T E04DGFA (NIL) -8 NIL NIL) (-249 516463 517808 519170 "E04AGNT" 520936 T E04AGNT (NIL) -7 NIL NIL) (-248 515190 515670 515710 "DVARCAT" 516185 NIL DVARCAT (NIL T) -9 NIL 516383) (-247 514394 514606 514920 "DVARCAT-" 514925 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-246 507302 514196 514323 "DSMP" 514328 NIL DSMP (NIL T T T) -8 NIL NIL) (-245 502112 503247 504315 "DROPT" 506254 T DROPT (NIL) -8 NIL NIL) (-244 501777 501836 501934 "DROPT1" 502047 NIL DROPT1 (NIL T) -7 NIL NIL) (-243 496892 498018 499155 "DROPT0" 500660 T DROPT0 (NIL) -7 NIL NIL) (-242 495237 495562 495948 "DRAWPT" 496526 T DRAWPT (NIL) -7 NIL NIL) (-241 489824 490747 491826 "DRAW" 494211 NIL DRAW (NIL T) -7 NIL NIL) (-240 489457 489510 489628 "DRAWHACK" 489765 NIL DRAWHACK (NIL T) -7 NIL NIL) (-239 488188 488457 488748 "DRAWCX" 489186 T DRAWCX (NIL) -7 NIL NIL) (-238 487706 487774 487924 "DRAWCURV" 488114 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-237 478177 480136 482251 "DRAWCFUN" 485611 T DRAWCFUN (NIL) -7 NIL NIL) (-236 474991 476873 476914 "DQAGG" 477543 NIL DQAGG (NIL T) -9 NIL 477816) (-235 463544 470236 470318 "DPOLCAT" 472156 NIL DPOLCAT (NIL T T T T) -9 NIL 472700) (-234 458384 459730 461687 "DPOLCAT-" 461692 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-233 451588 458246 458343 "DPMO" 458348 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-232 444695 451369 451535 "DPMM" 451540 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-231 444115 444318 444432 "DOMAIN" 444601 T DOMAIN (NIL) -8 NIL NIL) (-230 437873 443752 443903 "DMP" 444016 NIL DMP (NIL NIL T) -8 NIL NIL) (-229 437473 437529 437673 "DLP" 437811 NIL DLP (NIL T) -7 NIL NIL) (-228 431117 436574 436801 "DLIST" 437278 NIL DLIST (NIL T) -8 NIL NIL) (-227 427964 429973 430014 "DLAGG" 430564 NIL DLAGG (NIL T) -9 NIL 430793) (-226 426819 427449 427477 "DIVRING" 427569 T DIVRING (NIL) -9 NIL 427652) (-225 426056 426246 426546 "DIVRING-" 426551 NIL DIVRING- (NIL T) -8 NIL NIL) (-224 424158 424515 424921 "DISPLAY" 425670 T DISPLAY (NIL) -7 NIL NIL) (-223 418133 424072 424135 "DIRPROD" 424140 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-222 416981 417184 417449 "DIRPROD2" 417926 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-221 406586 412505 412558 "DIRPCAT" 412966 NIL DIRPCAT (NIL NIL T) -9 NIL 413805) (-220 403912 404554 405435 "DIRPCAT-" 405772 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-219 403199 403359 403545 "DIOSP" 403746 T DIOSP (NIL) -7 NIL NIL) (-218 399902 402112 402153 "DIOPS" 402587 NIL DIOPS (NIL T) -9 NIL 402816) (-217 399451 399565 399756 "DIOPS-" 399761 NIL DIOPS- (NIL T T) -8 NIL NIL) (-216 398367 398961 398989 "DIFRING" 399176 T DIFRING (NIL) -9 NIL 399285) (-215 398013 398090 398242 "DIFRING-" 398247 NIL DIFRING- (NIL T) -8 NIL NIL) (-214 395847 397085 397125 "DIFEXT" 397484 NIL DIFEXT (NIL T) -9 NIL 397777) (-213 394133 394561 395226 "DIFEXT-" 395231 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-212 391456 393666 393707 "DIAGG" 393712 NIL DIAGG (NIL T) -9 NIL 393732) (-211 390840 390997 391249 "DIAGG-" 391254 NIL DIAGG- (NIL T T) -8 NIL NIL) (-210 386305 389799 390076 "DHMATRIX" 390609 NIL DHMATRIX (NIL T) -8 NIL NIL) (-209 381917 382826 383836 "DFSFUN" 385315 T DFSFUN (NIL) -7 NIL NIL) (-208 376768 380631 380996 "DFLOAT" 381572 T DFLOAT (NIL) -8 NIL NIL) (-207 375001 375282 375677 "DFINTTLS" 376476 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-206 372080 373036 373434 "DERHAM" 374668 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-205 369929 371855 371944 "DEQUEUE" 372024 NIL DEQUEUE (NIL T) -8 NIL NIL) (-204 369147 369280 369475 "DEGRED" 369791 NIL DEGRED (NIL T T) -7 NIL NIL) (-203 365547 366292 367144 "DEFINTRF" 368375 NIL DEFINTRF (NIL T) -7 NIL NIL) (-202 363078 363547 364145 "DEFINTEF" 365066 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-201 356973 362519 362685 "DECIMAL" 362932 T DECIMAL (NIL) -8 NIL NIL) (-200 354485 354943 355449 "DDFACT" 356517 NIL DDFACT (NIL T T) -7 NIL NIL) (-199 354081 354124 354275 "DBLRESP" 354436 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-198 351791 352125 352494 "DBASE" 353839 NIL DBASE (NIL T) -8 NIL NIL) (-197 351060 351271 351417 "DATABUF" 351690 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-196 350195 351019 351047 "D03FAFA" 351052 T D03FAFA (NIL) -8 NIL NIL) (-195 349331 350154 350182 "D03EEFA" 350187 T D03EEFA (NIL) -8 NIL NIL) (-194 347281 347747 348236 "D03AGNT" 348862 T D03AGNT (NIL) -7 NIL NIL) (-193 346599 347240 347268 "D02EJFA" 347273 T D02EJFA (NIL) -8 NIL NIL) (-192 345917 346558 346586 "D02CJFA" 346591 T D02CJFA (NIL) -8 NIL NIL) (-191 345235 345876 345904 "D02BHFA" 345909 T D02BHFA (NIL) -8 NIL NIL) (-190 344553 345194 345222 "D02BBFA" 345227 T D02BBFA (NIL) -8 NIL NIL) (-189 337751 339339 340945 "D02AGNT" 342967 T D02AGNT (NIL) -7 NIL NIL) (-188 335520 336042 336588 "D01WGTS" 337225 T D01WGTS (NIL) -7 NIL NIL) (-187 334623 335479 335507 "D01TRNS" 335512 T D01TRNS (NIL) -8 NIL NIL) (-186 333726 334582 334610 "D01GBFA" 334615 T D01GBFA (NIL) -8 NIL NIL) (-185 332829 333685 333713 "D01FCFA" 333718 T D01FCFA (NIL) -8 NIL NIL) (-184 331932 332788 332816 "D01ASFA" 332821 T D01ASFA (NIL) -8 NIL NIL) (-183 331035 331891 331919 "D01AQFA" 331924 T D01AQFA (NIL) -8 NIL NIL) (-182 330138 330994 331022 "D01APFA" 331027 T D01APFA (NIL) -8 NIL NIL) (-181 329241 330097 330125 "D01ANFA" 330130 T D01ANFA (NIL) -8 NIL NIL) (-180 328344 329200 329228 "D01AMFA" 329233 T D01AMFA (NIL) -8 NIL NIL) (-179 327447 328303 328331 "D01ALFA" 328336 T D01ALFA (NIL) -8 NIL NIL) (-178 326550 327406 327434 "D01AKFA" 327439 T D01AKFA (NIL) -8 NIL NIL) (-177 325653 326509 326537 "D01AJFA" 326542 T D01AJFA (NIL) -8 NIL NIL) (-176 318957 320506 322065 "D01AGNT" 324114 T D01AGNT (NIL) -7 NIL NIL) (-175 318294 318422 318574 "CYCLOTOM" 318825 T CYCLOTOM (NIL) -7 NIL NIL) (-174 315029 315742 316469 "CYCLES" 317587 T CYCLES (NIL) -7 NIL NIL) (-173 314341 314475 314646 "CVMP" 314890 NIL CVMP (NIL T) -7 NIL NIL) (-172 312122 312380 312755 "CTRIGMNP" 314069 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 311633 311822 311921 "CTORCALL" 312043 T CTORCALL (NIL) -8 NIL NIL) (-170 311007 311106 311259 "CSTTOOLS" 311530 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 306806 307463 308221 "CRFP" 310319 NIL CRFP (NIL T T) -7 NIL NIL) (-168 305853 306038 306266 "CRAPACK" 306610 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 305237 305338 305542 "CPMATCH" 305729 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 304962 304990 305096 "CPIMA" 305203 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 301326 301998 302716 "COORDSYS" 304297 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 300710 300839 300989 "CONTOUR" 301196 T CONTOUR (NIL) -8 NIL NIL) (-163 296636 298713 299205 "CONTFRAC" 300250 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 295834 296354 296382 "COMRING" 296387 T COMRING (NIL) -9 NIL 296438) (-161 294915 295192 295376 "COMPPROP" 295670 T COMPPROP (NIL) -8 NIL NIL) (-160 294576 294611 294739 "COMPLPAT" 294874 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 284642 294385 294494 "COMPLEX" 294499 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 284278 284335 284442 "COMPLEX2" 284579 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-157 283996 284031 284129 "COMPFACT" 284237 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 268416 278625 278665 "COMPCAT" 279667 NIL COMPCAT (NIL T) -9 NIL 281060) (-155 257931 260855 264482 "COMPCAT-" 264838 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 257662 257690 257792 "COMMUPC" 257897 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 257457 257490 257549 "COMMONOP" 257623 T COMMONOP (NIL) -7 NIL NIL) (-152 257040 257208 257295 "COMM" 257390 T COMM (NIL) -8 NIL NIL) (-151 256289 256483 256511 "COMBOPC" 256849 T COMBOPC (NIL) -9 NIL 257024) (-150 255185 255395 255637 "COMBINAT" 256079 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 251383 251956 252596 "COMBF" 254607 NIL COMBF (NIL T T) -7 NIL NIL) (-148 250169 250499 250734 "COLOR" 251168 T COLOR (NIL) -8 NIL NIL) (-147 249809 249856 249981 "CMPLXRT" 250116 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 245311 246339 247419 "CLIP" 248749 T CLIP (NIL) -7 NIL NIL) (-145 243695 244419 244657 "CLIF" 245139 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 239918 241842 241883 "CLAGG" 242812 NIL CLAGG (NIL T) -9 NIL 243348) (-143 238340 238797 239380 "CLAGG-" 239385 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 237884 237969 238109 "CINTSLPE" 238249 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 235385 235856 236404 "CHVAR" 237412 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 234652 235172 235200 "CHARZ" 235205 T CHARZ (NIL) -9 NIL 235219) (-139 234406 234446 234524 "CHARPOL" 234606 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 233557 234110 234138 "CHARNZ" 234185 T CHARNZ (NIL) -9 NIL 234240) (-137 231582 232247 232582 "CHAR" 233242 T CHAR (NIL) -8 NIL NIL) (-136 231308 231369 231397 "CFCAT" 231508 T CFCAT (NIL) -9 NIL NIL) (-135 230553 230664 230846 "CDEN" 231192 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 226545 229706 229986 "CCLASS" 230293 T CCLASS (NIL) -8 NIL NIL) (-133 226464 226490 226525 "CATEGORY" 226530 T -10 (NIL) -8 NIL NIL) (-132 221516 222493 223246 "CARTEN" 225767 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 220624 220772 220993 "CARTEN2" 221363 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-130 218968 219776 220032 "CARD" 220388 T CARD (NIL) -8 NIL NIL) (-129 218341 218669 218697 "CACHSET" 218829 T CACHSET (NIL) -9 NIL 218906) (-128 217838 218134 218162 "CABMON" 218212 T CABMON (NIL) -9 NIL 218268) (-127 217006 217385 217528 "BYTE" 217715 T BYTE (NIL) -8 NIL NIL) (-126 212954 216953 216987 "BYTEARY" 216992 T BYTEARY (NIL) -8 NIL NIL) (-125 210511 212646 212753 "BTREE" 212880 NIL BTREE (NIL T) -8 NIL NIL) (-124 208009 210159 210281 "BTOURN" 210421 NIL BTOURN (NIL T) -8 NIL NIL) (-123 205428 207481 207522 "BTCAT" 207590 NIL BTCAT (NIL T) -9 NIL 207667) (-122 205095 205175 205324 "BTCAT-" 205329 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 200388 204239 204267 "BTAGG" 204489 T BTAGG (NIL) -9 NIL 204650) (-120 199878 200003 200209 "BTAGG-" 200214 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 196922 199156 199371 "BSTREE" 199695 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196060 196186 196370 "BRILL" 196778 NIL BRILL (NIL T) -7 NIL NIL) (-117 192762 194789 194830 "BRAGG" 195479 NIL BRAGG (NIL T) -9 NIL 195736) (-116 191291 191697 192252 "BRAGG-" 192257 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 184564 190637 190821 "BPADICRT" 191139 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 182914 184501 184546 "BPADIC" 184551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 182614 182644 182757 "BOUNDZRO" 182878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 178129 179220 180087 "BOP" 181767 T BOP (NIL) -8 NIL NIL) (-111 175750 176194 176714 "BOP1" 177642 NIL BOP1 (NIL T) -7 NIL NIL) (-110 174474 175160 175360 "BOOLEAN" 175570 T BOOLEAN (NIL) -8 NIL NIL) (-109 173841 174219 174271 "BMODULE" 174276 NIL BMODULE (NIL T T) -9 NIL 174340) (-108 169671 173639 173712 "BITS" 173788 T BITS (NIL) -8 NIL NIL) (-107 168768 169203 169355 "BINFILE" 169539 T BINFILE (NIL) -8 NIL NIL) (-106 168180 168302 168444 "BINDING" 168646 T BINDING (NIL) -8 NIL NIL) (-105 162079 167624 167789 "BINARY" 168035 T BINARY (NIL) -8 NIL NIL) (-104 159907 161335 161376 "BGAGG" 161636 NIL BGAGG (NIL T) -9 NIL 161773) (-103 159738 159770 159861 "BGAGG-" 159866 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 158836 159122 159327 "BFUNCT" 159553 T BFUNCT (NIL) -8 NIL NIL) (-101 157531 157709 157996 "BEZOUT" 158660 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 154048 156383 156713 "BBTREE" 157234 NIL BBTREE (NIL T) -8 NIL NIL) (-99 153786 153839 153865 "BASTYPE" 153982 T BASTYPE (NIL) -9 NIL NIL) (-98 153641 153670 153740 "BASTYPE-" 153745 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 153079 153155 153305 "BALFACT" 153552 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 151966 152498 152683 "AUTOMOR" 152924 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 151692 151697 151723 "ATTREG" 151728 T ATTREG (NIL) -9 NIL NIL) (-94 149971 150389 150741 "ATTRBUT" 151358 T ATTRBUT (NIL) -8 NIL NIL) (-93 149507 149620 149646 "ATRIG" 149847 T ATRIG (NIL) -9 NIL NIL) (-92 149316 149357 149444 "ATRIG-" 149449 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149042 149185 149211 "ASTCAT" 149216 T ASTCAT (NIL) -9 NIL 149246) (-90 148839 148882 148974 "ASTCAT-" 148979 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147036 148615 148703 "ASTACK" 148782 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145541 145838 146203 "ASSOCEQ" 146718 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144573 145200 145324 "ASP9" 145448 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144337 144521 144560 "ASP8" 144565 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143206 143942 144084 "ASP80" 144226 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142105 142841 142973 "ASP7" 143105 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141059 141782 141900 "ASP78" 142018 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140028 140739 140856 "ASP77" 140973 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 138940 139666 139797 "ASP74" 139928 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137840 138575 138707 "ASP73" 138839 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136795 137517 137635 "ASP6" 137753 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135743 136472 136590 "ASP55" 136708 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134693 135417 135536 "ASP50" 135655 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133781 134394 134504 "ASP4" 134614 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132869 133482 133592 "ASP49" 133702 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131654 132408 132576 "ASP42" 132758 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130431 131187 131357 "ASP41" 131541 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129381 130108 130226 "ASP35" 130344 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129146 129329 129368 "ASP34" 129373 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128883 128950 129026 "ASP33" 129101 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127778 128518 128650 "ASP31" 128782 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127543 127726 127765 "ASP30" 127770 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127278 127347 127423 "ASP29" 127498 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127043 127226 127265 "ASP28" 127270 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126808 126991 127030 "ASP27" 127035 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125892 126506 126617 "ASP24" 126728 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124808 125533 125663 "ASP20" 125793 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123896 124509 124619 "ASP1" 124729 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122840 123570 123689 "ASP19" 123808 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122577 122644 122720 "ASP12" 122795 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121429 122176 122320 "ASP10" 122464 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119328 121273 121364 "ARRAY2" 121369 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115144 118976 119090 "ARRAY1" 119245 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114176 114349 114570 "ARRAY12" 114967 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108536 110407 110482 "ARR2CAT" 113112 NIL ARR2CAT (NIL T T T) -9 NIL 113870) (-54 105970 106714 107668 "ARR2CAT-" 107673 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104722 104874 105179 "APPRULE" 105806 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104375 104423 104541 "APPLYORE" 104668 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103349 103640 103835 "ANY" 104198 T ANY (NIL) -8 NIL NIL) (-50 102627 102750 102907 "ANY1" 103223 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100205 101077 101402 "ANTISYM" 102352 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99720 99909 100006 "ANON" 100126 T ANON (NIL) -8 NIL NIL) (-47 93862 98265 98716 "AN" 99287 T AN (NIL) -8 NIL NIL) (-46 90260 91614 91664 "AMR" 92403 NIL AMR (NIL T T) -9 NIL 93002) (-45 89373 89594 89956 "AMR-" 89961 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73923 89290 89351 "ALIST" 89356 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70760 73517 73686 "ALGSC" 73841 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67316 67870 68477 "ALGPKG" 70200 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66593 66694 66878 "ALGMFACT" 67202 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62342 63023 63677 "ALGMANIP" 66117 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53753 61968 62118 "ALGFF" 62275 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52949 53080 53259 "ALGFACT" 53611 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51984 52550 52588 "ALGEBRA" 52648 NIL ALGEBRA (NIL T) -9 NIL 52706) (-36 51702 51761 51893 "ALGEBRA-" 51898 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33963 49706 49758 "ALAGG" 49894 NIL ALAGG (NIL T T) -9 NIL 50055) (-34 33499 33612 33638 "AHYP" 33839 T AHYP (NIL) -9 NIL NIL) (-33 32430 32678 32704 "AGG" 33203 T AGG (NIL) -9 NIL 33482) (-32 31864 32026 32240 "AGG-" 32245 NIL AGG- (NIL T) -8 NIL NIL) (-31 29551 29969 30386 "AF" 31507 NIL AF (NIL T T) -7 NIL NIL) (-30 28820 29078 29234 "ACPLOT" 29413 T ACPLOT (NIL) -8 NIL NIL) (-29 18349 26233 26284 "ACFS" 26995 NIL ACFS (NIL T) -9 NIL 27234) (-28 16363 16853 17628 "ACFS-" 17633 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14587 14613 "ACF" 15492 T ACF (NIL) -9 NIL 15904) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +((-2330 (((-111) $ $) NIL)) (-1890 (((-1117)) 12)) (-1654 (((-1100) $) 17)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 11) (((-1117) $) 8)) (-2244 (((-111) $ $) 14))) +(((-1196 |#1|) (-13 (-1045) (-579 (-1117)) (-10 -8 (-15 -2341 ((-1117) $)) (-15 -1890 ((-1117))))) (-1117)) (T -1196)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2))) (-1890 (*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2)))) +(-13 (-1045) (-579 (-1117)) (-10 -8 (-15 -2341 ((-1117) $)) (-15 -1890 ((-1117))))) +((-2591 (($ (-731)) 18)) (-2555 (((-649 |#2|) $ $) 40)) (-2259 ((|#2| $) 48)) (-3845 ((|#2| $) 47)) (-3416 ((|#2| $ $) 35)) (-2218 (($ $ $) 44)) (-2329 (($ $) 22) (($ $ $) 28)) (-2318 (($ $ $) 15)) (* (($ (-537) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1197 |#1| |#2|) (-10 -8 (-15 -2259 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -2218 (|#1| |#1| |#1|)) (-15 -2555 ((-649 |#2|) |#1| |#1|)) (-15 -3416 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2591 (|#1| (-731))) (-15 -2318 (|#1| |#1| |#1|))) (-1198 |#2|) (-1154)) (T -1197)) +NIL +(-10 -8 (-15 -2259 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -2218 (|#1| |#1| |#1|)) (-15 -2555 ((-649 |#2|) |#1| |#1|)) (-15 -3416 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-537) |#1|)) (-15 -2329 (|#1| |#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2591 (|#1| (-731))) (-15 -2318 (|#1| |#1| |#1|))) +((-2330 (((-111) $ $) 19 (|has| |#1| (-1045)))) (-2591 (($ (-731)) 112 (|has| |#1| (-23)))) (-1279 (((-1205) $ (-537) (-537)) 40 (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4301))) (($ $) 88 (-12 (|has| |#1| (-807)) (|has| $ (-6 -4301))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) 8)) (-2476 ((|#1| $ (-537) |#1|) 52 (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) 58 (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4300)))) (-3832 (($) 7 T CONST)) (-4146 (($ $) 90 (|has| $ (-6 -4301)))) (-3289 (($ $) 100)) (-3221 (($ $) 78 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2355 (($ |#1| $) 77 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) 53 (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) 51)) (-2299 (((-537) (-1 (-111) |#1|) $) 97) (((-537) |#1| $) 96 (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) 95 (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 30 (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) 105 (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) 69)) (-1642 (((-111) $ (-731)) 9)) (-1659 (((-537) $) 43 (|has| (-537) (-807)))) (-2444 (($ $ $) 87 (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-2187 (((-537) $) 44 (|has| (-537) (-807)))) (-3889 (($ $ $) 86 (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2259 ((|#1| $) 102 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-2489 (((-111) $ (-731)) 10)) (-3845 ((|#1| $) 103 (-12 (|has| |#1| (-998)) (|has| |#1| (-954))))) (-1654 (((-1100) $) 22 (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) 60) (($ $ $ (-537)) 59)) (-1270 (((-606 (-537)) $) 46)) (-1641 (((-111) (-537) $) 47)) (-2528 (((-1064) $) 21 (|has| |#1| (-1045)))) (-3188 ((|#1| $) 42 (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-3040 (($ $ |#1|) 41 (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) 26 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) 25 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) 23 (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) 14)) (-2700 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) 48)) (-2193 (((-111) $) 11)) (-3425 (($) 12)) (-1922 ((|#1| $ (-537) |#1|) 50) ((|#1| $ (-537)) 49) (($ $ (-1167 (-537))) 63)) (-3416 ((|#1| $ $) 106 (|has| |#1| (-998)))) (-1856 (($ $ (-537)) 62) (($ $ (-1167 (-537))) 61)) (-2218 (($ $ $) 104 (|has| |#1| (-998)))) (-2539 (((-731) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4300))) (((-731) |#1| $) 28 (-12 (|has| |#1| (-1045)) (|has| $ (-6 -4300))))) (-1241 (($ $ $ (-537)) 91 (|has| $ (-6 -4301)))) (-2494 (($ $) 13)) (-3996 (((-513) $) 79 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 70)) (-3434 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-606 $)) 65)) (-2341 (((-816) $) 18 (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) 84 (|has| |#1| (-807)))) (-2271 (((-111) $ $) 83 (|has| |#1| (-807)))) (-2244 (((-111) $ $) 20 (|has| |#1| (-1045)))) (-2282 (((-111) $ $) 85 (|has| |#1| (-807)))) (-2263 (((-111) $ $) 82 (|has| |#1| (-807)))) (-2329 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2318 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-537) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-687))) (($ $ |#1|) 107 (|has| |#1| (-687)))) (-2258 (((-731) $) 6 (|has| $ (-6 -4300))))) +(((-1198 |#1|) (-134) (-1154)) (T -1198)) +((-2318 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-25)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1198 *3)) (-4 *3 (-23)) (-4 *3 (-1154)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21)))) (-2329 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) (-3416 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) (-2555 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-998)) (-5 *2 (-649 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) (-4 *2 (-998)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) (-4 *2 (-998))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2318 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2591 ($ (-731))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2329 ($ $)) (-15 -2329 ($ $ $)) (-15 * ($ (-537) $))) |%noBranch|) (IF (|has| |t#1| (-687)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-998)) (PROGN (-15 -3416 (|t#1| $ $)) (-15 -2555 ((-649 |t#1|) $ $)) (-15 -2218 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-954)) (IF (|has| |t#1| (-998)) (PROGN (-15 -3845 (|t#1| $)) (-15 -2259 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-33) . T) ((-100) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-579 (-816)) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807)) (|has| |#1| (-579 (-816)))) ((-145 |#1|) . T) ((-580 (-513)) |has| |#1| (-580 (-513))) ((-270 #0=(-537) |#1|) . T) ((-272 #0# |#1|) . T) ((-293 |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-357 |#1|) . T) ((-471 |#1|) . T) ((-570 #0# |#1|) . T) ((-495 |#1| |#1|) -12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))) ((-612 |#1|) . T) ((-19 |#1|) . T) ((-807) |has| |#1| (-807)) ((-1045) -1533 (|has| |#1| (-1045)) (|has| |#1| (-807))) ((-1154) . T)) +((-2547 (((-1200 |#2|) (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|) 13)) (-3195 ((|#2| (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|) 15)) (-1612 (((-3 (-1200 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1200 |#1|)) 28) (((-1200 |#2|) (-1 |#2| |#1|) (-1200 |#1|)) 18))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -2547 ((-1200 |#2|) (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -1612 ((-1200 |#2|) (-1 |#2| |#1|) (-1200 |#1|))) (-15 -1612 ((-3 (-1200 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1200 |#1|)))) (-1154) (-1154)) (T -1199)) +((-1612 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1200 *6)) (-5 *1 (-1199 *5 *6)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1200 *6)) (-5 *1 (-1199 *5 *6)))) (-3195 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) (-4 *2 (-1154)) (-5 *1 (-1199 *5 *2)))) (-2547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1200 *6)) (-4 *6 (-1154)) (-4 *5 (-1154)) (-5 *2 (-1200 *5)) (-5 *1 (-1199 *6 *5))))) +(-10 -7 (-15 -2547 ((-1200 |#2|) (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -3195 (|#2| (-1 |#2| |#1| |#2|) (-1200 |#1|) |#2|)) (-15 -1612 ((-1200 |#2|) (-1 |#2| |#1|) (-1200 |#1|))) (-15 -1612 ((-3 (-1200 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1200 |#1|)))) +((-2330 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2591 (($ (-731)) NIL (|has| |#1| (-23)))) (-3445 (($ (-606 |#1|)) 9)) (-1279 (((-1205) $ (-537) (-537)) NIL (|has| $ (-6 -4301)))) (-2450 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-807)))) (-1543 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4301))) (($ $) NIL (-12 (|has| $ (-6 -4301)) (|has| |#1| (-807))))) (-1566 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-807)))) (-2506 (((-111) $ (-731)) NIL)) (-2476 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301))) ((|#1| $ (-1167 (-537)) |#1|) NIL (|has| $ (-6 -4301)))) (-1936 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3832 (($) NIL T CONST)) (-4146 (($ $) NIL (|has| $ (-6 -4301)))) (-3289 (($ $) NIL)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2355 (($ |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-3195 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4300))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4300)))) (-4091 ((|#1| $ (-537) |#1|) NIL (|has| $ (-6 -4301)))) (-4030 ((|#1| $ (-537)) NIL)) (-2299 (((-537) (-1 (-111) |#1|) $) NIL) (((-537) |#1| $) NIL (|has| |#1| (-1045))) (((-537) |#1| $ (-537)) NIL (|has| |#1| (-1045)))) (-3661 (((-606 |#1|) $) 15 (|has| $ (-6 -4300)))) (-2555 (((-649 |#1|) $ $) NIL (|has| |#1| (-998)))) (-3157 (($ (-731) |#1|) NIL)) (-1642 (((-111) $ (-731)) NIL)) (-1659 (((-537) $) NIL (|has| (-537) (-807)))) (-2444 (($ $ $) NIL (|has| |#1| (-807)))) (-1470 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-807)))) (-3703 (((-606 |#1|) $) NIL (|has| $ (-6 -4300)))) (-3122 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-2187 (((-537) $) NIL (|has| (-537) (-807)))) (-3889 (($ $ $) NIL (|has| |#1| (-807)))) (-4081 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2259 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-2489 (((-111) $ (-731)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-954)) (|has| |#1| (-998))))) (-1654 (((-1100) $) NIL (|has| |#1| (-1045)))) (-4049 (($ |#1| $ (-537)) NIL) (($ $ $ (-537)) NIL)) (-1270 (((-606 (-537)) $) NIL)) (-1641 (((-111) (-537) $) NIL)) (-2528 (((-1064) $) NIL (|has| |#1| (-1045)))) (-3188 ((|#1| $) NIL (|has| (-537) (-807)))) (-1266 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-3040 (($ $ |#1|) NIL (|has| $ (-6 -4301)))) (-3206 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 (-278 |#1|))) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-278 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045)))) (($ $ (-606 |#1|) (-606 |#1|)) NIL (-12 (|has| |#1| (-293 |#1|)) (|has| |#1| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2700 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-3010 (((-606 |#1|) $) NIL)) (-2193 (((-111) $) NIL)) (-3425 (($) NIL)) (-1922 ((|#1| $ (-537) |#1|) NIL) ((|#1| $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-3416 ((|#1| $ $) NIL (|has| |#1| (-998)))) (-1856 (($ $ (-537)) NIL) (($ $ (-1167 (-537))) NIL)) (-2218 (($ $ $) NIL (|has| |#1| (-998)))) (-2539 (((-731) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300))) (((-731) |#1| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#1| (-1045))))) (-1241 (($ $ $ (-537)) NIL (|has| $ (-6 -4301)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) 19 (|has| |#1| (-580 (-513))))) (-2350 (($ (-606 |#1|)) 8)) (-3434 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-606 $)) NIL)) (-2341 (((-816) $) NIL (|has| |#1| (-579 (-816))))) (-2030 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4300)))) (-2293 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2271 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2244 (((-111) $ $) NIL (|has| |#1| (-1045)))) (-2282 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2263 (((-111) $ $) NIL (|has| |#1| (-807)))) (-2329 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2318 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-537) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-687))) (($ $ |#1|) NIL (|has| |#1| (-687)))) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1200 |#1|) (-13 (-1198 |#1|) (-10 -8 (-15 -3445 ($ (-606 |#1|))))) (-1154)) (T -1200)) +((-3445 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1200 *3))))) +(-13 (-1198 |#1|) (-10 -8 (-15 -3445 ($ (-606 |#1|))))) +((-2330 (((-111) $ $) NIL)) (-2741 (((-1100) $ (-1100)) 90) (((-1100) $ (-1100) (-1100)) 88) (((-1100) $ (-1100) (-606 (-1100))) 87)) (-1256 (($) 59)) (-2239 (((-1205) $ (-451) (-874)) 45)) (-1547 (((-1205) $ (-874) (-1100)) 73) (((-1205) $ (-874) (-827)) 74)) (-1825 (((-1205) $ (-874) (-363) (-363)) 48)) (-1334 (((-1205) $ (-1100)) 69)) (-1402 (((-1205) $ (-874) (-1100)) 78)) (-3190 (((-1205) $ (-874) (-363) (-363)) 49)) (-3918 (((-1205) $ (-874) (-874)) 46)) (-2724 (((-1205) $) 70)) (-3514 (((-1205) $ (-874) (-1100)) 77)) (-1502 (((-1205) $ (-451) (-874)) 31)) (-3732 (((-1205) $ (-874) (-1100)) 76)) (-4266 (((-606 (-247)) $) 23) (($ $ (-606 (-247))) 24)) (-2143 (((-1205) $ (-731) (-731)) 43)) (-3593 (($ $) 60) (($ (-451) (-606 (-247))) 61)) (-1654 (((-1100) $) NIL)) (-2926 (((-537) $) 38)) (-2528 (((-1064) $) NIL)) (-1462 (((-1200 (-3 (-451) "undefined")) $) 37)) (-3046 (((-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537)))) $) 36)) (-3399 (((-1205) $ (-874) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-827) (-537) (-827) (-537)) 68)) (-2690 (((-606 (-896 (-210))) $) NIL)) (-3002 (((-451) $ (-874)) 33)) (-3311 (((-1205) $ (-731) (-731) (-874) (-874)) 40)) (-1425 (((-1205) $ (-1100)) 79)) (-2886 (((-1205) $ (-874) (-1100)) 75)) (-2341 (((-816) $) 85)) (-2337 (((-1205) $) 80)) (-1239 (((-1205) $ (-874) (-1100)) 71) (((-1205) $ (-874) (-827)) 72)) (-2244 (((-111) $ $) NIL))) +(((-1201) (-13 (-1045) (-10 -8 (-15 -2690 ((-606 (-896 (-210))) $)) (-15 -1256 ($)) (-15 -3593 ($ $)) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -3593 ($ (-451) (-606 (-247)))) (-15 -3399 ((-1205) $ (-874) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-827) (-537) (-827) (-537))) (-15 -3046 ((-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537)))) $)) (-15 -1462 ((-1200 (-3 (-451) "undefined")) $)) (-15 -1334 ((-1205) $ (-1100))) (-15 -1502 ((-1205) $ (-451) (-874))) (-15 -3002 ((-451) $ (-874))) (-15 -1239 ((-1205) $ (-874) (-1100))) (-15 -1239 ((-1205) $ (-874) (-827))) (-15 -1547 ((-1205) $ (-874) (-1100))) (-15 -1547 ((-1205) $ (-874) (-827))) (-15 -3732 ((-1205) $ (-874) (-1100))) (-15 -3514 ((-1205) $ (-874) (-1100))) (-15 -2886 ((-1205) $ (-874) (-1100))) (-15 -1425 ((-1205) $ (-1100))) (-15 -2337 ((-1205) $)) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3190 ((-1205) $ (-874) (-363) (-363))) (-15 -1825 ((-1205) $ (-874) (-363) (-363))) (-15 -1402 ((-1205) $ (-874) (-1100))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -2239 ((-1205) $ (-451) (-874))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2724 ((-1205) $)) (-15 -2926 ((-537) $)) (-15 -2341 ((-816) $))))) (T -1201)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1201)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-606 (-896 (-210)))) (-5 *1 (-1201)))) (-1256 (*1 *1) (-5 *1 (-1201))) (-3593 (*1 *1 *1) (-5 *1 (-1201))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) (-3593 (*1 *1 *2 *3) (-12 (-5 *2 (-451)) (-5 *3 (-606 (-247))) (-5 *1 (-1201)))) (-3399 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-874)) (-5 *4 (-210)) (-5 *5 (-537)) (-5 *6 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537))))) (-5 *1 (-1201)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-1200 (-3 (-451) "undefined"))) (-5 *1 (-1201)))) (-1334 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1502 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-874)) (-5 *2 (-451)) (-5 *1 (-1201)))) (-1239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3732 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3514 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2886 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1425 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3311 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3190 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1825 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-1402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-3918 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2741 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) (-2741 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) (-2741 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1201)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1201))))) +(-13 (-1045) (-10 -8 (-15 -2690 ((-606 (-896 (-210))) $)) (-15 -1256 ($)) (-15 -3593 ($ $)) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -3593 ($ (-451) (-606 (-247)))) (-15 -3399 ((-1205) $ (-874) (-210) (-210) (-210) (-210) (-537) (-537) (-537) (-537) (-827) (-537) (-827) (-537))) (-15 -3046 ((-1200 (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) (|:| |axesColor| (-827)) (|:| -1547 (-537)) (|:| |unitsColor| (-827)) (|:| |showing| (-537)))) $)) (-15 -1462 ((-1200 (-3 (-451) "undefined")) $)) (-15 -1334 ((-1205) $ (-1100))) (-15 -1502 ((-1205) $ (-451) (-874))) (-15 -3002 ((-451) $ (-874))) (-15 -1239 ((-1205) $ (-874) (-1100))) (-15 -1239 ((-1205) $ (-874) (-827))) (-15 -1547 ((-1205) $ (-874) (-1100))) (-15 -1547 ((-1205) $ (-874) (-827))) (-15 -3732 ((-1205) $ (-874) (-1100))) (-15 -3514 ((-1205) $ (-874) (-1100))) (-15 -2886 ((-1205) $ (-874) (-1100))) (-15 -1425 ((-1205) $ (-1100))) (-15 -2337 ((-1205) $)) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3190 ((-1205) $ (-874) (-363) (-363))) (-15 -1825 ((-1205) $ (-874) (-363) (-363))) (-15 -1402 ((-1205) $ (-874) (-1100))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -2239 ((-1205) $ (-451) (-874))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2724 ((-1205) $)) (-15 -2926 ((-537) $)) (-15 -2341 ((-816) $)))) +((-2330 (((-111) $ $) NIL)) (-4052 (((-1205) $ (-363)) 140) (((-1205) $ (-363) (-363) (-363)) 141)) (-2741 (((-1100) $ (-1100)) 148) (((-1100) $ (-1100) (-1100)) 146) (((-1100) $ (-1100) (-606 (-1100))) 145)) (-3457 (($) 50)) (-3937 (((-1205) $ (-363) (-363) (-363) (-363) (-363)) 116) (((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) $) 114) (((-1205) $ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) 115) (((-1205) $ (-537) (-537) (-363) (-363) (-363)) 117) (((-1205) $ (-363) (-363)) 118) (((-1205) $ (-363) (-363) (-363)) 125)) (-3163 (((-363)) 97) (((-363) (-363)) 98)) (-4209 (((-363)) 92) (((-363) (-363)) 94)) (-2390 (((-363)) 95) (((-363) (-363)) 96)) (-3009 (((-363)) 101) (((-363) (-363)) 102)) (-1908 (((-363)) 99) (((-363) (-363)) 100)) (-1825 (((-1205) $ (-363) (-363)) 142)) (-1334 (((-1205) $ (-1100)) 126)) (-4108 (((-1077 (-210)) $) 51) (($ $ (-1077 (-210))) 52)) (-2747 (((-1205) $ (-1100)) 154)) (-3536 (((-1205) $ (-1100)) 155)) (-2085 (((-1205) $ (-363) (-363)) 124) (((-1205) $ (-537) (-537)) 139)) (-3918 (((-1205) $ (-874) (-874)) 132)) (-2724 (((-1205) $) 112)) (-2309 (((-1205) $ (-1100)) 153)) (-1971 (((-1205) $ (-1100)) 109)) (-4266 (((-606 (-247)) $) 53) (($ $ (-606 (-247))) 54)) (-2143 (((-1205) $ (-731) (-731)) 131)) (-2090 (((-1205) $ (-731) (-896 (-210))) 160)) (-3372 (($ $) 56) (($ (-1077 (-210)) (-1100)) 57) (($ (-1077 (-210)) (-606 (-247))) 58)) (-1411 (((-1205) $ (-363) (-363) (-363)) 106)) (-1654 (((-1100) $) NIL)) (-2926 (((-537) $) 103)) (-2825 (((-1205) $ (-363)) 143)) (-3479 (((-1205) $ (-363)) 158)) (-2528 (((-1064) $) NIL)) (-3625 (((-1205) $ (-363)) 157)) (-3529 (((-1205) $ (-1100)) 111)) (-3311 (((-1205) $ (-731) (-731) (-874) (-874)) 130)) (-3262 (((-1205) $ (-1100)) 108)) (-1425 (((-1205) $ (-1100)) 110)) (-4092 (((-1205) $ (-149) (-149)) 129)) (-2341 (((-816) $) 137)) (-2337 (((-1205) $) 113)) (-3274 (((-1205) $ (-1100)) 156)) (-1239 (((-1205) $ (-1100)) 107)) (-2244 (((-111) $ $) NIL))) +(((-1202) (-13 (-1045) (-10 -8 (-15 -4209 ((-363))) (-15 -4209 ((-363) (-363))) (-15 -2390 ((-363))) (-15 -2390 ((-363) (-363))) (-15 -3163 ((-363))) (-15 -3163 ((-363) (-363))) (-15 -1908 ((-363))) (-15 -1908 ((-363) (-363))) (-15 -3009 ((-363))) (-15 -3009 ((-363) (-363))) (-15 -3457 ($)) (-15 -3372 ($ $)) (-15 -3372 ($ (-1077 (-210)) (-1100))) (-15 -3372 ($ (-1077 (-210)) (-606 (-247)))) (-15 -4108 ((-1077 (-210)) $)) (-15 -4108 ($ $ (-1077 (-210)))) (-15 -2090 ((-1205) $ (-731) (-896 (-210)))) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -1334 ((-1205) $ (-1100))) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3937 ((-1205) $ (-363) (-363) (-363) (-363) (-363))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) $)) (-15 -3937 ((-1205) $ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -3937 ((-1205) $ (-537) (-537) (-363) (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363) (-363))) (-15 -1425 ((-1205) $ (-1100))) (-15 -1239 ((-1205) $ (-1100))) (-15 -3262 ((-1205) $ (-1100))) (-15 -1971 ((-1205) $ (-1100))) (-15 -3529 ((-1205) $ (-1100))) (-15 -2085 ((-1205) $ (-363) (-363))) (-15 -2085 ((-1205) $ (-537) (-537))) (-15 -4052 ((-1205) $ (-363))) (-15 -4052 ((-1205) $ (-363) (-363) (-363))) (-15 -1825 ((-1205) $ (-363) (-363))) (-15 -2309 ((-1205) $ (-1100))) (-15 -3625 ((-1205) $ (-363))) (-15 -3479 ((-1205) $ (-363))) (-15 -2747 ((-1205) $ (-1100))) (-15 -3536 ((-1205) $ (-1100))) (-15 -3274 ((-1205) $ (-1100))) (-15 -1411 ((-1205) $ (-363) (-363) (-363))) (-15 -2825 ((-1205) $ (-363))) (-15 -2724 ((-1205) $)) (-15 -4092 ((-1205) $ (-149) (-149))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2337 ((-1205) $)) (-15 -2926 ((-537) $))))) (T -1202)) +((-4209 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-4209 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-2390 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3163 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-1908 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3009 (*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) (-3457 (*1 *1) (-5 *1 (-1202))) (-3372 (*1 *1 *1) (-5 *1 (-1202))) (-3372 (*1 *1 *2 *3) (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1100)) (-5 *1 (-1202)))) (-3372 (*1 *1 *2 *3) (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-606 (-247))) (-5 *1 (-1202)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202)))) (-4108 (*1 *1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202)))) (-2090 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-731)) (-5 *4 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202)))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3918 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1334 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3311 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-537)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3937 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1425 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1239 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3262 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4052 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1825 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2309 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3479 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2747 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-3274 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-1411 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202)))) (-4092 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-149)) (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2741 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202)))) (-2741 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202)))) (-2741 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1202)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1202))))) +(-13 (-1045) (-10 -8 (-15 -4209 ((-363))) (-15 -4209 ((-363) (-363))) (-15 -2390 ((-363))) (-15 -2390 ((-363) (-363))) (-15 -3163 ((-363))) (-15 -3163 ((-363) (-363))) (-15 -1908 ((-363))) (-15 -1908 ((-363) (-363))) (-15 -3009 ((-363))) (-15 -3009 ((-363) (-363))) (-15 -3457 ($)) (-15 -3372 ($ $)) (-15 -3372 ($ (-1077 (-210)) (-1100))) (-15 -3372 ($ (-1077 (-210)) (-606 (-247)))) (-15 -4108 ((-1077 (-210)) $)) (-15 -4108 ($ $ (-1077 (-210)))) (-15 -2090 ((-1205) $ (-731) (-896 (-210)))) (-15 -4266 ((-606 (-247)) $)) (-15 -4266 ($ $ (-606 (-247)))) (-15 -2143 ((-1205) $ (-731) (-731))) (-15 -3918 ((-1205) $ (-874) (-874))) (-15 -1334 ((-1205) $ (-1100))) (-15 -3311 ((-1205) $ (-731) (-731) (-874) (-874))) (-15 -3937 ((-1205) $ (-363) (-363) (-363) (-363) (-363))) (-15 -3937 ((-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))) $)) (-15 -3937 ((-1205) $ (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) (|:| |deltaX| (-210)) (|:| |deltaY| (-210))))) (-15 -3937 ((-1205) $ (-537) (-537) (-363) (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363))) (-15 -3937 ((-1205) $ (-363) (-363) (-363))) (-15 -1425 ((-1205) $ (-1100))) (-15 -1239 ((-1205) $ (-1100))) (-15 -3262 ((-1205) $ (-1100))) (-15 -1971 ((-1205) $ (-1100))) (-15 -3529 ((-1205) $ (-1100))) (-15 -2085 ((-1205) $ (-363) (-363))) (-15 -2085 ((-1205) $ (-537) (-537))) (-15 -4052 ((-1205) $ (-363))) (-15 -4052 ((-1205) $ (-363) (-363) (-363))) (-15 -1825 ((-1205) $ (-363) (-363))) (-15 -2309 ((-1205) $ (-1100))) (-15 -3625 ((-1205) $ (-363))) (-15 -3479 ((-1205) $ (-363))) (-15 -2747 ((-1205) $ (-1100))) (-15 -3536 ((-1205) $ (-1100))) (-15 -3274 ((-1205) $ (-1100))) (-15 -1411 ((-1205) $ (-363) (-363) (-363))) (-15 -2825 ((-1205) $ (-363))) (-15 -2724 ((-1205) $)) (-15 -4092 ((-1205) $ (-149) (-149))) (-15 -2741 ((-1100) $ (-1100))) (-15 -2741 ((-1100) $ (-1100) (-1100))) (-15 -2741 ((-1100) $ (-1100) (-606 (-1100)))) (-15 -2337 ((-1205) $)) (-15 -2926 ((-537) $)))) +((-1281 (((-606 (-1100)) (-606 (-1100))) 94) (((-606 (-1100))) 90)) (-2131 (((-606 (-1100))) 88)) (-1278 (((-606 (-874)) (-606 (-874))) 63) (((-606 (-874))) 60)) (-2762 (((-606 (-731)) (-606 (-731))) 57) (((-606 (-731))) 53)) (-2139 (((-1205)) 65)) (-2546 (((-874) (-874)) 81) (((-874)) 80)) (-3487 (((-874) (-874)) 79) (((-874)) 78)) (-3880 (((-827) (-827)) 75) (((-827)) 74)) (-4197 (((-210)) 85) (((-210) (-363)) 87)) (-3347 (((-874)) 82) (((-874) (-874)) 83)) (-4224 (((-874) (-874)) 77) (((-874)) 76)) (-3611 (((-827) (-827)) 69) (((-827)) 67)) (-2373 (((-827) (-827)) 71) (((-827)) 70)) (-3069 (((-827) (-827)) 73) (((-827)) 72))) +(((-1203) (-10 -7 (-15 -3611 ((-827))) (-15 -3611 ((-827) (-827))) (-15 -2373 ((-827))) (-15 -2373 ((-827) (-827))) (-15 -3069 ((-827))) (-15 -3069 ((-827) (-827))) (-15 -3880 ((-827))) (-15 -3880 ((-827) (-827))) (-15 -4224 ((-874))) (-15 -4224 ((-874) (-874))) (-15 -2762 ((-606 (-731)))) (-15 -2762 ((-606 (-731)) (-606 (-731)))) (-15 -1278 ((-606 (-874)))) (-15 -1278 ((-606 (-874)) (-606 (-874)))) (-15 -2139 ((-1205))) (-15 -1281 ((-606 (-1100)))) (-15 -1281 ((-606 (-1100)) (-606 (-1100)))) (-15 -2131 ((-606 (-1100)))) (-15 -3487 ((-874))) (-15 -2546 ((-874))) (-15 -3487 ((-874) (-874))) (-15 -2546 ((-874) (-874))) (-15 -3347 ((-874) (-874))) (-15 -3347 ((-874))) (-15 -4197 ((-210) (-363))) (-15 -4197 ((-210))))) (T -1203)) +((-4197 (*1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1203)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-1203)))) (-3347 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-2546 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3487 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-2131 (*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) (-1281 (*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) (-1281 (*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) (-2139 (*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1203)))) (-1278 (*1 *2 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203)))) (-1278 (*1 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203)))) (-2762 (*1 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203)))) (-4224 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-4224 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3880 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3069 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-2373 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) (-3611 (*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) +(-10 -7 (-15 -3611 ((-827))) (-15 -3611 ((-827) (-827))) (-15 -2373 ((-827))) (-15 -2373 ((-827) (-827))) (-15 -3069 ((-827))) (-15 -3069 ((-827) (-827))) (-15 -3880 ((-827))) (-15 -3880 ((-827) (-827))) (-15 -4224 ((-874))) (-15 -4224 ((-874) (-874))) (-15 -2762 ((-606 (-731)))) (-15 -2762 ((-606 (-731)) (-606 (-731)))) (-15 -1278 ((-606 (-874)))) (-15 -1278 ((-606 (-874)) (-606 (-874)))) (-15 -2139 ((-1205))) (-15 -1281 ((-606 (-1100)))) (-15 -1281 ((-606 (-1100)) (-606 (-1100)))) (-15 -2131 ((-606 (-1100)))) (-15 -3487 ((-874))) (-15 -2546 ((-874))) (-15 -3487 ((-874) (-874))) (-15 -2546 ((-874) (-874))) (-15 -3347 ((-874) (-874))) (-15 -3347 ((-874))) (-15 -4197 ((-210) (-363))) (-15 -4197 ((-210)))) +((-1253 (((-451) (-606 (-606 (-896 (-210)))) (-606 (-247))) 21) (((-451) (-606 (-606 (-896 (-210))))) 20) (((-451) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247))) 19)) (-4027 (((-1201) (-606 (-606 (-896 (-210)))) (-606 (-247))) 27) (((-1201) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247))) 26)) (-2341 (((-1201) (-451)) 38))) +(((-1204) (-10 -7 (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -2341 ((-1201) (-451))))) (T -1204)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-451)) (-5 *2 (-1201)) (-5 *1 (-1204)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-1204)))) (-4027 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-1204)))) (-1253 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) (-5 *2 (-451)) (-5 *1 (-1204)))) (-1253 (*1 *2 *3) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-451)) (-5 *1 (-1204)))) (-1253 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-451)) (-5 *1 (-1204))))) +(-10 -7 (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))))) (-15 -1253 ((-451) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-827) (-827) (-874) (-606 (-247)))) (-15 -4027 ((-1201) (-606 (-606 (-896 (-210)))) (-606 (-247)))) (-15 -2341 ((-1201) (-451)))) +((-1374 (($) 7)) (-2341 (((-816) $) 10))) +(((-1205) (-10 -8 (-15 -1374 ($)) (-15 -2341 ((-816) $)))) (T -1205)) +((-2341 (*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1205)))) (-1374 (*1 *1) (-5 *1 (-1205)))) +(-10 -8 (-15 -1374 ($)) (-15 -2341 ((-816) $))) +((-2340 (($ $ |#2|) 10))) +(((-1206 |#1| |#2|) (-10 -8 (-15 -2340 (|#1| |#1| |#2|))) (-1207 |#2|) (-347)) (T -1206)) +NIL +(-10 -8 (-15 -2340 (|#1| |#1| |#2|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-1839 (((-131)) 28)) (-2341 (((-816) $) 11)) (-2928 (($) 18 T CONST)) (-2244 (((-111) $ $) 6)) (-2340 (($ $ |#1|) 29)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1207 |#1|) (-134) (-347)) (T -1207)) +((-2340 (*1 *1 *1 *2) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-347)))) (-1839 (*1 *2) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-347)) (-5 *2 (-131))))) +(-13 (-678 |t#1|) (-10 -8 (-15 -2340 ($ $ |t#1|)) (-15 -1839 ((-131))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-678 |#1|) . T) ((-1004 |#1|) . T) ((-1045) . T)) +((-2776 (((-606 (-1148 |#1|)) (-1117) (-1148 |#1|)) 74)) (-1941 (((-1098 (-1098 (-905 |#1|))) (-1117) (-1098 (-905 |#1|))) 53)) (-2874 (((-1 (-1098 (-1148 |#1|)) (-1098 (-1148 |#1|))) (-731) (-1148 |#1|) (-1098 (-1148 |#1|))) 64)) (-4227 (((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731)) 55)) (-2035 (((-1 (-1113 (-905 |#1|)) (-905 |#1|)) (-1117)) 29)) (-2592 (((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731)) 54))) +(((-1208 |#1|) (-10 -7 (-15 -4227 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -2592 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -1941 ((-1098 (-1098 (-905 |#1|))) (-1117) (-1098 (-905 |#1|)))) (-15 -2035 ((-1 (-1113 (-905 |#1|)) (-905 |#1|)) (-1117))) (-15 -2776 ((-606 (-1148 |#1|)) (-1117) (-1148 |#1|))) (-15 -2874 ((-1 (-1098 (-1148 |#1|)) (-1098 (-1148 |#1|))) (-731) (-1148 |#1|) (-1098 (-1148 |#1|))))) (-347)) (T -1208)) +((-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-731)) (-4 *6 (-347)) (-5 *4 (-1148 *6)) (-5 *2 (-1 (-1098 *4) (-1098 *4))) (-5 *1 (-1208 *6)) (-5 *5 (-1098 *4)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-606 (-1148 *5))) (-5 *1 (-1208 *5)) (-5 *4 (-1148 *5)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1113 (-905 *4)) (-905 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-347)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-1098 (-1098 (-905 *5)))) (-5 *1 (-1208 *5)) (-5 *4 (-1098 (-905 *5))))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) (-5 *1 (-1208 *4)) (-4 *4 (-347)))) (-4227 (*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) (-5 *1 (-1208 *4)) (-4 *4 (-347))))) +(-10 -7 (-15 -4227 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -2592 ((-1 (-1098 (-905 |#1|)) (-1098 (-905 |#1|))) (-731))) (-15 -1941 ((-1098 (-1098 (-905 |#1|))) (-1117) (-1098 (-905 |#1|)))) (-15 -2035 ((-1 (-1113 (-905 |#1|)) (-905 |#1|)) (-1117))) (-15 -2776 ((-606 (-1148 |#1|)) (-1117) (-1148 |#1|))) (-15 -2874 ((-1 (-1098 (-1148 |#1|)) (-1098 (-1148 |#1|))) (-731) (-1148 |#1|) (-1098 (-1148 |#1|))))) +((-3337 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|) 75)) (-3778 (((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|)))) 74))) +(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|))) (-333) (-1176 |#1|) (-1176 |#2|) (-393 |#2| |#3|)) (T -1209)) +((-3337 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) (-5 *2 (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-649 *3)))) (-5 *1 (-1209 *4 *3 *5 *6)) (-4 *6 (-393 *3 *5)))) (-3778 (*1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) (-5 *2 (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-649 *4)))) (-5 *1 (-1209 *3 *4 *5 *6)) (-4 *6 (-393 *4 *5))))) +(-10 -7 (-15 -3778 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))))) (-15 -3337 ((-2 (|:| -2122 (-649 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-649 |#2|))) |#2|))) +((-2330 (((-111) $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-3441 (((-1122) $) 9)) (-2341 (((-816) $) NIL) (((-1122) $) NIL)) (-2244 (((-111) $ $) NIL))) +(((-1210) (-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $))))) (T -1210)) +((-3441 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1210))))) +(-13 (-1029) (-10 -8 (-15 -3441 ((-1122) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 43)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) NIL)) (-2836 (((-111) $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2341 (((-816) $) 64) (($ (-537)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-163)))) (-3654 (((-731)) NIL)) (-4216 (((-1205) (-731)) 16)) (-2928 (($) 27 T CONST)) (-2943 (($) 67 T CONST)) (-2244 (((-111) $ $) 69)) (-2340 (((-3 $ "failed") $ $) NIL (|has| |#1| (-347)))) (-2329 (($ $) 71) (($ $ $) NIL)) (-2318 (($ $ $) 47)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-163))) (($ $ |#1|) NIL (|has| |#1| (-163))))) +(((-1211 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 (|#4| $)) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2341 ($ |#4|)) (-15 -4216 ((-1205) (-731))))) (-998) (-807) (-753) (-902 |#1| |#3| |#2|) (-606 |#2|) (-606 (-731)) (-731)) (T -1211)) +((-2341 (*1 *2 *1) (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) (-14 *7 (-606 (-731))) (-14 *8 (-731)))) (-2340 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-347)) (-4 *2 (-998)) (-4 *3 (-807)) (-4 *4 (-753)) (-14 *6 (-606 *3)) (-5 *1 (-1211 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-902 *2 *4 *3)) (-14 *7 (-606 (-731))) (-14 *8 (-731)))) (-2341 (*1 *1 *2) (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-902 *3 *5 *4)) (-14 *7 (-606 (-731))) (-14 *8 (-731)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) (-14 *8 (-606 *5)) (-5 *2 (-1205)) (-5 *1 (-1211 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-902 *4 *6 *5)) (-14 *9 (-606 *3)) (-14 *10 *3)))) +(-13 (-998) (-10 -8 (IF (|has| |#1| (-163)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2341 (|#4| $)) (IF (|has| |#1| (-347)) (-15 -2340 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2341 ($ |#4|)) (-15 -4216 ((-1205) (-731))))) +((-2330 (((-111) $ $) NIL)) (-2544 (((-606 (-2 (|:| -2337 $) (|:| -3309 (-606 |#4|)))) (-606 |#4|)) NIL)) (-3448 (((-606 $) (-606 |#4|)) 88)) (-3757 (((-606 |#3|) $) NIL)) (-1409 (((-111) $) NIL)) (-2734 (((-111) $) NIL (|has| |#1| (-529)))) (-1503 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4186 ((|#4| |#4| $) NIL)) (-1566 (((-2 (|:| |under| $) (|:| -3830 $) (|:| |upper| $)) $ |#3|) NIL)) (-2506 (((-111) $ (-731)) NIL)) (-1936 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3832 (($) NIL T CONST)) (-2121 (((-111) $) NIL (|has| |#1| (-529)))) (-2159 (((-111) $ $) NIL (|has| |#1| (-529)))) (-2819 (((-111) $ $) NIL (|has| |#1| (-529)))) (-4002 (((-111) $) NIL (|has| |#1| (-529)))) (-2550 (((-606 |#4|) (-606 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-3801 (((-606 |#4|) (-606 |#4|) $) 25 (|has| |#1| (-529)))) (-3118 (((-606 |#4|) (-606 |#4|) $) NIL (|has| |#1| (-529)))) (-1516 (((-3 $ "failed") (-606 |#4|)) NIL)) (-3958 (($ (-606 |#4|)) NIL)) (-3200 (((-3 $ "failed") $) 70)) (-2627 ((|#4| |#4| $) 75)) (-3221 (($ $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2355 (($ |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-1672 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-1369 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-3946 ((|#4| |#4| $) NIL)) (-3195 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4300))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4300))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2702 (((-2 (|:| -2337 (-606 |#4|)) (|:| -3309 (-606 |#4|))) $) NIL)) (-3661 (((-606 |#4|) $) NIL (|has| $ (-6 -4300)))) (-3201 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1464 ((|#3| $) 76)) (-1642 (((-111) $ (-731)) NIL)) (-3703 (((-606 |#4|) $) 29 (|has| $ (-6 -4300)))) (-3122 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045))))) (-2008 (((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-606 |#4|)) 35)) (-4081 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4301)))) (-1612 (($ (-1 |#4| |#4|) $) NIL)) (-2901 (((-606 |#3|) $) NIL)) (-3726 (((-111) |#3| $) NIL)) (-2489 (((-111) $ (-731)) NIL)) (-1654 (((-1100) $) NIL)) (-2375 (((-3 |#4| "failed") $) NIL)) (-2422 (((-606 |#4|) $) 50)) (-3812 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3787 ((|#4| |#4| $) 74)) (-1981 (((-111) $ $) 85)) (-3875 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-529)))) (-2524 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2021 ((|#4| |#4| $) NIL)) (-2528 (((-1064) $) NIL)) (-3188 (((-3 |#4| "failed") $) 69)) (-1266 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3389 (((-3 $ "failed") $ |#4|) NIL)) (-1540 (($ $ |#4|) NIL)) (-3206 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-4116 (($ $ (-606 |#4|) (-606 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-278 |#4|)) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045)))) (($ $ (-606 (-278 |#4|))) NIL (-12 (|has| |#4| (-293 |#4|)) (|has| |#4| (-1045))))) (-2305 (((-111) $ $) NIL)) (-2193 (((-111) $) 67)) (-3425 (($) 42)) (-2872 (((-731) $) NIL)) (-2539 (((-731) |#4| $) NIL (-12 (|has| $ (-6 -4300)) (|has| |#4| (-1045)))) (((-731) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-2494 (($ $) NIL)) (-3996 (((-513) $) NIL (|has| |#4| (-580 (-513))))) (-2350 (($ (-606 |#4|)) NIL)) (-1713 (($ $ |#3|) NIL)) (-2488 (($ $ |#3|) NIL)) (-2830 (($ $) NIL)) (-1449 (($ $ |#3|) NIL)) (-2341 (((-816) $) NIL) (((-606 |#4|) $) 57)) (-3458 (((-731) $) NIL (|has| |#3| (-352)))) (-3573 (((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-606 |#4|)) 41)) (-3153 (((-606 $) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-606 $) (-606 |#4|)) 66)) (-2895 (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2992 (-606 |#4|))) "failed") (-606 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-3893 (((-111) $ (-1 (-111) |#4| (-606 |#4|))) NIL)) (-2030 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4300)))) (-3194 (((-606 |#3|) $) NIL)) (-3042 (((-111) |#3| $) NIL)) (-2244 (((-111) $ $) NIL)) (-2258 (((-731) $) NIL (|has| $ (-6 -4300))))) +(((-1212 |#1| |#2| |#3| |#4|) (-13 (-1147 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2008 ((-3 $ "failed") (-606 |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|))) (-15 -3153 ((-606 $) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3153 ((-606 $) (-606 |#4|))))) (-529) (-753) (-807) (-1012 |#1| |#2| |#3|)) (T -1212)) +((-2008 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8)))) (-2008 (*1 *1 *2) (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1212 *3 *4 *5 *6)))) (-3573 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8)))) (-3573 (*1 *1 *2) (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1212 *3 *4 *5 *6)))) (-3153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-606 (-1212 *6 *7 *8 *9))) (-5 *1 (-1212 *6 *7 *8 *9)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-1212 *4 *5 *6 *7))) (-5 *1 (-1212 *4 *5 *6 *7))))) +(-13 (-1147 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2008 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2008 ((-3 $ "failed") (-606 |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3573 ((-3 $ "failed") (-606 |#4|))) (-15 -3153 ((-606 $) (-606 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3153 ((-606 $) (-606 |#4|))))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3418 (((-3 $ "failed") $ $) 19)) (-3832 (($) 17 T CONST)) (-3490 (((-3 $ "failed") $) 32)) (-2836 (((-111) $) 30)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#1|) 36)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1213 |#1|) (-134) (-998)) (T -1213)) +((-2341 (*1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-998))))) +(-13 (-998) (-110 |t#1| |t#1|) (-10 -8 (-15 -2341 ($ |t#1|)) (IF (|has| |t#1| (-163)) (-6 (-37 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-163)) ((-100) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 |#1|) |has| |#1| (-163)) ((-687) . T) ((-1004 |#1|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T)) +((-2330 (((-111) $ $) 60)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 45)) (-1233 (($ $ (-731)) 39)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ (-731)) 18 (|has| |#2| (-163))) (($ $ $) 19 (|has| |#2| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ $) 63) (($ $ (-779 |#1|)) 49) (($ $ |#1|) 53)) (-1516 (((-3 (-779 |#1|) "failed") $) NIL)) (-3958 (((-779 |#1|) $) NIL)) (-3940 (($ $) 32)) (-3490 (((-3 $ "failed") $) NIL)) (-1323 (((-111) $) NIL)) (-1414 (($ $) NIL)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 |#1|) |#2|) 31)) (-2177 (($ $) 33)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) 12)) (-4215 (((-779 |#1|) $) NIL)) (-2388 (((-779 |#1|) $) 34)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (($ $ $) 62) (($ $ (-779 |#1|)) 51) (($ $ |#1|) 55)) (-2370 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3901 (((-779 |#1|) $) 28)) (-3912 ((|#2| $) 30)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2872 (((-731) $) 36)) (-2162 (((-111) $) 40)) (-2787 ((|#2| $) NIL)) (-2341 (((-816) $) NIL) (($ (-779 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-537)) NIL)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-779 |#1|)) NIL)) (-3449 ((|#2| $ $) 65) ((|#2| $ (-779 |#1|)) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) 13 T CONST)) (-2943 (($) 15 T CONST)) (-1820 (((-606 (-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2244 (((-111) $ $) 38)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 22)) (** (($ $ (-731)) NIL) (($ $ (-874)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-779 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1214 |#1| |#2|) (-13 (-366 |#2| (-779 |#1|)) (-1220 |#1| |#2|)) (-807) (-998)) (T -1214)) +NIL +(-13 (-366 |#2| (-779 |#1|)) (-1220 |#1| |#2|)) +((-2180 ((|#3| |#3| (-731)) 23)) (-4185 ((|#3| |#3| (-731)) 27)) (-3236 ((|#3| |#3| |#3| (-731)) 28))) +(((-1215 |#1| |#2| |#3|) (-10 -7 (-15 -4185 (|#3| |#3| (-731))) (-15 -2180 (|#3| |#3| (-731))) (-15 -3236 (|#3| |#3| |#3| (-731)))) (-13 (-998) (-678 (-391 (-537)))) (-807) (-1220 |#2| |#1|)) (T -1215)) +((-3236 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) (-4185 (*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4))))) +(-10 -7 (-15 -4185 (|#3| |#3| (-731))) (-15 -2180 (|#3| |#3| (-731))) (-15 -3236 (|#3| |#3| |#3| (-731)))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2163 (((-606 |#1|) $) 38)) (-3418 (((-3 $ "failed") $ $) 19)) (-1275 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-731)) 40 (|has| |#2| (-163)))) (-3832 (($) 17 T CONST)) (-3139 (($ $ |#1|) 52) (($ $ (-779 |#1|)) 51) (($ $ $) 50)) (-1516 (((-3 (-779 |#1|) "failed") $) 62)) (-3958 (((-779 |#1|) $) 61)) (-3490 (((-3 $ "failed") $) 32)) (-1323 (((-111) $) 43)) (-1414 (($ $) 42)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 48)) (-2367 (($ (-779 |#1|) |#2|) 49)) (-2177 (($ $) 47)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) 58)) (-4215 (((-779 |#1|) $) 59)) (-1612 (($ (-1 |#2| |#2|) $) 39)) (-2896 (($ $ |#1|) 55) (($ $ (-779 |#1|)) 54) (($ $ $) 53)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2162 (((-111) $) 45)) (-2787 ((|#2| $) 44)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#2|) 66) (($ (-779 |#1|)) 63) (($ |#1|) 46)) (-3449 ((|#2| $ (-779 |#1|)) 57) ((|#2| $ $) 56)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1216 |#1| |#2|) (-134) (-807) (-998)) (T -1216)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-4215 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-779 *3)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-2 (|:| |k| (-779 *3)) (|:| |c| *4))))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-779 *4)) (-4 *1 (-1216 *4 *2)) (-4 *4 (-807)) (-4 *2 (-998)))) (-3449 (*1 *2 *1 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-2896 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-3139 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2367 (*1 *1 *2 *3) (-12 (-5 *2 (-779 *4)) (-4 *4 (-807)) (-4 *1 (-1216 *4 *3)) (-4 *3 (-998)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-111)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2341 (*1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-2162 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-111)))) (-2787 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-111)))) (-1414 (*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) (-1275 (*1 *1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)) (-4 *3 (-163)))) (-1275 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-4 *4 (-163)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-606 *3))))) +(-13 (-998) (-1213 |t#2|) (-989 (-779 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4215 ((-779 |t#1|) $)) (-15 -2667 ((-2 (|:| |k| (-779 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3449 (|t#2| $ (-779 |t#1|))) (-15 -3449 (|t#2| $ $)) (-15 -2896 ($ $ |t#1|)) (-15 -2896 ($ $ (-779 |t#1|))) (-15 -2896 ($ $ $)) (-15 -3139 ($ $ |t#1|)) (-15 -3139 ($ $ (-779 |t#1|))) (-15 -3139 ($ $ $)) (-15 -2367 ($ (-779 |t#1|) |t#2|)) (-15 -1538 ((-111) $)) (-15 -2177 ($ $)) (-15 -2341 ($ |t#1|)) (-15 -2162 ((-111) $)) (-15 -2787 (|t#2| $)) (-15 -1323 ((-111) $)) (-15 -1414 ($ $)) (IF (|has| |t#2| (-163)) (PROGN (-15 -1275 ($ $ $)) (-15 -1275 ($ $ (-731)))) |%noBranch|) (-15 -1612 ($ (-1 |t#2| |t#2|) $)) (-15 -2163 ((-606 |t#1|) $)) (IF (|has| |t#2| (-6 -4293)) (-6 -4293) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#2|) . T) ((-609 $) . T) ((-678 |#2|) |has| |#2| (-163)) ((-687) . T) ((-989 (-779 |#1|)) . T) ((-1004 |#2|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1213 |#2|) . T)) +((-1276 (((-111) $) 15)) (-3042 (((-111) $) 14)) (-1791 (($ $) 19) (($ $ (-731)) 20))) +(((-1217 |#1| |#2|) (-10 -8 (-15 -1791 (|#1| |#1| (-731))) (-15 -1791 (|#1| |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|))) (-1218 |#2|) (-347)) (T -1217)) +NIL +(-10 -8 (-15 -1791 (|#1| |#1| (-731))) (-15 -1791 (|#1| |#1|)) (-15 -1276 ((-111) |#1|)) (-15 -3042 ((-111) |#1|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-3079 (((-2 (|:| -1397 $) (|:| -4287 $) (|:| |associate| $)) $) 39)) (-3377 (($ $) 38)) (-4017 (((-111) $) 36)) (-1276 (((-111) $) 91)) (-2860 (((-731)) 87)) (-3418 (((-3 $ "failed") $ $) 19)) (-1395 (($ $) 70)) (-2414 (((-402 $) $) 69)) (-4099 (((-111) $ $) 57)) (-3832 (($) 17 T CONST)) (-1516 (((-3 |#1| "failed") $) 98)) (-3958 ((|#1| $) 97)) (-3563 (($ $ $) 53)) (-3490 (((-3 $ "failed") $) 32)) (-3539 (($ $ $) 54)) (-4121 (((-2 (|:| -3449 (-606 $)) (|:| -1524 $)) (-606 $)) 49)) (-2642 (($ $ (-731)) 84 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352)))) (($ $) 83 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2639 (((-111) $) 68)) (-4231 (((-793 (-874)) $) 81 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-2836 (((-111) $) 30)) (-2581 (((-3 (-606 $) "failed") (-606 $) $) 50)) (-2183 (($ $ $) 44) (($ (-606 $)) 43)) (-1654 (((-1100) $) 9)) (-3865 (($ $) 67)) (-2933 (((-111) $) 90)) (-2528 (((-1064) $) 10)) (-2298 (((-1113 $) (-1113 $) (-1113 $)) 42)) (-2211 (($ $ $) 46) (($ (-606 $)) 45)) (-3622 (((-402 $) $) 71)) (-2685 (((-793 (-874))) 88)) (-3663 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1524 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3515 (((-3 $ "failed") $ $) 40)) (-4245 (((-3 (-606 $) "failed") (-606 $) $) 48)) (-1930 (((-731) $) 56)) (-3998 (((-2 (|:| -3413 $) (|:| -1672 $)) $ $) 55)) (-3030 (((-3 (-731) "failed") $ $) 82 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-1839 (((-131)) 96)) (-2872 (((-793 (-874)) $) 89)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ $) 41) (($ (-391 (-537))) 63) (($ |#1|) 99)) (-2644 (((-3 $ "failed") $) 80 (-1533 (|has| |#1| (-139)) (|has| |#1| (-352))))) (-3654 (((-731)) 28)) (-3276 (((-111) $ $) 37)) (-3042 (((-111) $) 92)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-1791 (($ $) 86 (|has| |#1| (-352))) (($ $ (-731)) 85 (|has| |#1| (-352)))) (-2244 (((-111) $ $) 6)) (-2340 (($ $ $) 62) (($ $ |#1|) 95)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31) (($ $ (-537)) 66)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ $ (-391 (-537))) 65) (($ (-391 (-537)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1218 |#1|) (-134) (-347)) (T -1218)) +((-3042 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874))))) (-2685 (*1 *2) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874))))) (-2860 (*1 *2) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-731)))) (-1791 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-347)) (-4 *2 (-352)))) (-1791 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-4 *3 (-352))))) +(-13 (-347) (-989 |t#1|) (-1207 |t#1|) (-10 -8 (IF (|has| |t#1| (-141)) (-6 (-141)) |%noBranch|) (IF (|has| |t#1| (-139)) (-6 (-386)) |%noBranch|) (-15 -3042 ((-111) $)) (-15 -1276 ((-111) $)) (-15 -2933 ((-111) $)) (-15 -2872 ((-793 (-874)) $)) (-15 -2685 ((-793 (-874)))) (-15 -2860 ((-731))) (IF (|has| |t#1| (-352)) (PROGN (-6 (-386)) (-15 -1791 ($ $)) (-15 -1791 ($ $ (-731)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-391 (-537))) . T) ((-37 $) . T) ((-100) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-139) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-141) |has| |#1| (-141)) ((-579 (-816)) . T) ((-163) . T) ((-228) . T) ((-274) . T) ((-291) . T) ((-347) . T) ((-386) -1533 (|has| |#1| (-352)) (|has| |#1| (-139))) ((-435) . T) ((-529) . T) ((-609 #0#) . T) ((-609 |#1|) . T) ((-609 $) . T) ((-678 #0#) . T) ((-678 |#1|) . T) ((-678 $) . T) ((-687) . T) ((-873) . T) ((-989 |#1|) . T) ((-1004 #0#) . T) ((-1004 |#1|) . T) ((-1004 $) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1158) . T) ((-1207 |#1|) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 86)) (-1233 (($ $ (-731)) 89)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ $) NIL (|has| |#2| (-163))) (($ $ (-731)) NIL (|has| |#2| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ |#1|) NIL) (($ $ (-779 |#1|)) NIL) (($ $ $) NIL)) (-1516 (((-3 (-779 |#1|) "failed") $) NIL) (((-3 (-846 |#1|) "failed") $) NIL)) (-3958 (((-779 |#1|) $) NIL) (((-846 |#1|) $) NIL)) (-3940 (($ $) 88)) (-3490 (((-3 $ "failed") $) NIL)) (-1323 (((-111) $) 77)) (-1414 (($ $) 81)) (-3371 (($ $ $ (-731)) 90)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 |#1|) |#2|) NIL) (($ (-846 |#1|) |#2|) 26)) (-2177 (($ $) 103)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4215 (((-779 |#1|) $) NIL)) (-2388 (((-779 |#1|) $) NIL)) (-1612 (($ (-1 |#2| |#2|) $) NIL)) (-2896 (($ $ |#1|) NIL) (($ $ (-779 |#1|)) NIL) (($ $ $) NIL)) (-2180 (($ $ (-731)) 97 (|has| |#2| (-678 (-391 (-537)))))) (-2370 (((-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3901 (((-846 |#1|) $) 70)) (-3912 ((|#2| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-4185 (($ $ (-731)) 94 (|has| |#2| (-678 (-391 (-537)))))) (-2872 (((-731) $) 87)) (-2162 (((-111) $) 71)) (-2787 ((|#2| $) 75)) (-2341 (((-816) $) 57) (($ (-537)) NIL) (($ |#2|) 51) (($ (-779 |#1|)) NIL) (($ |#1|) 59) (($ (-846 |#1|)) NIL) (($ (-625 |#1| |#2|)) 43) (((-1214 |#1| |#2|) $) 64) (((-1223 |#1| |#2|) $) 69)) (-3459 (((-606 |#2|) $) NIL)) (-3500 ((|#2| $ (-846 |#1|)) NIL)) (-3449 ((|#2| $ (-779 |#1|)) NIL) ((|#2| $ $) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) 21 T CONST)) (-2943 (($) 25 T CONST)) (-1820 (((-606 (-2 (|:| |k| (-846 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3836 (((-3 (-625 |#1| |#2|) "failed") $) 102)) (-2244 (((-111) $ $) 65)) (-2329 (($ $) 96) (($ $ $) 95)) (-2318 (($ $ $) 20)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-846 |#1|)) NIL))) +(((-1219 |#1| |#2|) (-13 (-1220 |#1| |#2|) (-366 |#2| (-846 |#1|)) (-10 -8 (-15 -2341 ($ (-625 |#1| |#2|))) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1223 |#1| |#2|) $)) (-15 -3836 ((-3 (-625 |#1| |#2|) "failed") $)) (-15 -3371 ($ $ $ (-731))) (IF (|has| |#2| (-678 (-391 (-537)))) (PROGN (-15 -4185 ($ $ (-731))) (-15 -2180 ($ $ (-731)))) |%noBranch|))) (-807) (-163)) (T -1219)) +((-2341 (*1 *1 *2) (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) (-5 *1 (-1219 *3 *4)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-3836 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-3371 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)))) (-4185 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163))))) +(-13 (-1220 |#1| |#2|) (-366 |#2| (-846 |#1|)) (-10 -8 (-15 -2341 ($ (-625 |#1| |#2|))) (-15 -2341 ((-1214 |#1| |#2|) $)) (-15 -2341 ((-1223 |#1| |#2|) $)) (-15 -3836 ((-3 (-625 |#1| |#2|) "failed") $)) (-15 -3371 ($ $ $ (-731))) (IF (|has| |#2| (-678 (-391 (-537)))) (PROGN (-15 -4185 ($ $ (-731))) (-15 -2180 ($ $ (-731)))) |%noBranch|))) +((-2330 (((-111) $ $) 7)) (-1656 (((-111) $) 16)) (-2163 (((-606 |#1|) $) 38)) (-1233 (($ $ (-731)) 71)) (-3418 (((-3 $ "failed") $ $) 19)) (-1275 (($ $ $) 41 (|has| |#2| (-163))) (($ $ (-731)) 40 (|has| |#2| (-163)))) (-3832 (($) 17 T CONST)) (-3139 (($ $ |#1|) 52) (($ $ (-779 |#1|)) 51) (($ $ $) 50)) (-1516 (((-3 (-779 |#1|) "failed") $) 62)) (-3958 (((-779 |#1|) $) 61)) (-3490 (((-3 $ "failed") $) 32)) (-1323 (((-111) $) 43)) (-1414 (($ $) 42)) (-2836 (((-111) $) 30)) (-1538 (((-111) $) 48)) (-2367 (($ (-779 |#1|) |#2|) 49)) (-2177 (($ $) 47)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) 58)) (-4215 (((-779 |#1|) $) 59)) (-2388 (((-779 |#1|) $) 73)) (-1612 (($ (-1 |#2| |#2|) $) 39)) (-2896 (($ $ |#1|) 55) (($ $ (-779 |#1|)) 54) (($ $ $) 53)) (-1654 (((-1100) $) 9)) (-2528 (((-1064) $) 10)) (-2872 (((-731) $) 72)) (-2162 (((-111) $) 45)) (-2787 ((|#2| $) 44)) (-2341 (((-816) $) 11) (($ (-537)) 27) (($ |#2|) 66) (($ (-779 |#1|)) 63) (($ |#1|) 46)) (-3449 ((|#2| $ (-779 |#1|)) 57) ((|#2| $ $) 56)) (-3654 (((-731)) 28)) (-2928 (($) 18 T CONST)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 6)) (-2329 (($ $) 22) (($ $ $) 21)) (-2318 (($ $ $) 14)) (** (($ $ (-874)) 25) (($ $ (-731)) 31)) (* (($ (-874) $) 13) (($ (-731) $) 15) (($ (-537) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1220 |#1| |#2|) (-134) (-807) (-998)) (T -1220)) +((-2388 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-779 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *2 (-731)))) (-1233 (*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998))))) +(-13 (-1216 |t#1| |t#2|) (-10 -8 (-15 -2388 ((-779 |t#1|) $)) (-15 -2872 ((-731) $)) (-15 -1233 ($ $ (-731))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-163)) ((-100) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-579 (-816)) . T) ((-609 |#2|) . T) ((-609 $) . T) ((-678 |#2|) |has| |#2| (-163)) ((-687) . T) ((-989 (-779 |#1|)) . T) ((-1004 |#2|) . T) ((-998) . T) ((-1005) . T) ((-1057) . T) ((-1045) . T) ((-1213 |#2|) . T) ((-1216 |#1| |#2|) . T)) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-2163 (((-606 (-1117)) $) NIL)) (-1531 (($ (-1214 (-1117) |#1|)) NIL)) (-1233 (($ $ (-731)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ $) NIL (|has| |#1| (-163))) (($ $ (-731)) NIL (|has| |#1| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ (-1117)) NIL) (($ $ (-779 (-1117))) NIL) (($ $ $) NIL)) (-1516 (((-3 (-779 (-1117)) "failed") $) NIL)) (-3958 (((-779 (-1117)) $) NIL)) (-3490 (((-3 $ "failed") $) NIL)) (-1323 (((-111) $) NIL)) (-1414 (($ $) NIL)) (-2836 (((-111) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 (-1117)) |#1|) NIL)) (-2177 (($ $) NIL)) (-2667 (((-2 (|:| |k| (-779 (-1117))) (|:| |c| |#1|)) $) NIL)) (-4215 (((-779 (-1117)) $) NIL)) (-2388 (((-779 (-1117)) $) NIL)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2896 (($ $ (-1117)) NIL) (($ $ (-779 (-1117))) NIL) (($ $ $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1905 (((-1214 (-1117) |#1|) $) NIL)) (-2872 (((-731) $) NIL)) (-2162 (((-111) $) NIL)) (-2787 ((|#1| $) NIL)) (-2341 (((-816) $) NIL) (($ (-537)) NIL) (($ |#1|) NIL) (($ (-779 (-1117))) NIL) (($ (-1117)) NIL)) (-3449 ((|#1| $ (-779 (-1117))) NIL) ((|#1| $ $) NIL)) (-3654 (((-731)) NIL)) (-2928 (($) NIL T CONST)) (-2585 (((-606 (-2 (|:| |k| (-1117)) (|:| |c| $))) $) NIL)) (-2943 (($) NIL T CONST)) (-2244 (((-111) $ $) NIL)) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) NIL)) (** (($ $ (-874)) NIL) (($ $ (-731)) NIL)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1117) $) NIL))) +(((-1221 |#1|) (-13 (-1220 (-1117) |#1|) (-10 -8 (-15 -1905 ((-1214 (-1117) |#1|) $)) (-15 -1531 ($ (-1214 (-1117) |#1|))) (-15 -2585 ((-606 (-2 (|:| |k| (-1117)) (|:| |c| $))) $)))) (-998)) (T -1221)) +((-1905 (*1 *2 *1) (-12 (-5 *2 (-1214 (-1117) *3)) (-5 *1 (-1221 *3)) (-4 *3 (-998)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-1214 (-1117) *3)) (-4 *3 (-998)) (-5 *1 (-1221 *3)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| (-1117)) (|:| |c| (-1221 *3))))) (-5 *1 (-1221 *3)) (-4 *3 (-998))))) +(-13 (-1220 (-1117) |#1|) (-10 -8 (-15 -1905 ((-1214 (-1117) |#1|) $)) (-15 -1531 ($ (-1214 (-1117) |#1|))) (-15 -2585 ((-606 (-2 (|:| |k| (-1117)) (|:| |c| $))) $)))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3832 (($) NIL T CONST)) (-1516 (((-3 |#2| "failed") $) NIL)) (-3958 ((|#2| $) NIL)) (-3940 (($ $) NIL)) (-3490 (((-3 $ "failed") $) 36)) (-1323 (((-111) $) 30)) (-1414 (($ $) 32)) (-2836 (((-111) $) NIL)) (-2668 (((-731) $) NIL)) (-1645 (((-606 $) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ |#2| |#1|) NIL)) (-4215 ((|#2| $) 19)) (-2388 ((|#2| $) 16)) (-1612 (($ (-1 |#1| |#1|) $) NIL)) (-2370 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3901 ((|#2| $) NIL)) (-3912 ((|#1| $) NIL)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-2162 (((-111) $) 27)) (-2787 ((|#1| $) 28)) (-2341 (((-816) $) 55) (($ (-537)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3459 (((-606 |#1|) $) NIL)) (-3500 ((|#1| $ |#2|) NIL)) (-3449 ((|#1| $ |#2|) 24)) (-3654 (((-731)) 14)) (-2928 (($) 25 T CONST)) (-2943 (($) 11 T CONST)) (-1820 (((-606 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2244 (((-111) $ $) 26)) (-2340 (($ $ |#1|) 57 (|has| |#1| (-347)))) (-2329 (($ $) NIL) (($ $ $) NIL)) (-2318 (($ $ $) 44)) (** (($ $ (-874)) NIL) (($ $ (-731)) 46)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2258 (((-731) $) 15))) +(((-1222 |#1| |#2|) (-13 (-998) (-1213 |#1|) (-366 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2258 ((-731) $)) (-15 -2341 ($ |#2|)) (-15 -2388 (|#2| $)) (-15 -4215 (|#2| $)) (-15 -3940 ($ $)) (-15 -3449 (|#1| $ |#2|)) (-15 -2162 ((-111) $)) (-15 -2787 (|#1| $)) (-15 -1323 ((-111) $)) (-15 -1414 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-347)) (-15 -2340 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4293)) (-6 -4293) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) (-998) (-803)) (T -1222)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-1222 *3 *4)) (-4 *4 (-803)))) (-2341 (*1 *1 *2) (-12 (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)) (-4 *2 (-803)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) (-4 *4 (-803)))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)))) (-4215 (*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)))) (-3449 (*1 *2 *1 *3) (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) (-4 *4 (-803)))) (-2787 (*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) (-4 *4 (-803)))) (-1414 (*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803)))) (-2340 (*1 *1 *1 *2) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-347)) (-4 *2 (-998)) (-4 *3 (-803))))) +(-13 (-998) (-1213 |#1|) (-366 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2258 ((-731) $)) (-15 -2341 ($ |#2|)) (-15 -2388 (|#2| $)) (-15 -4215 (|#2| $)) (-15 -3940 ($ $)) (-15 -3449 (|#1| $ |#2|)) (-15 -2162 ((-111) $)) (-15 -2787 (|#1| $)) (-15 -1323 ((-111) $)) (-15 -1414 ($ $)) (-15 -1612 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-347)) (-15 -2340 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4293)) (-6 -4293) |%noBranch|) (IF (|has| |#1| (-6 -4297)) (-6 -4297) |%noBranch|) (IF (|has| |#1| (-6 -4298)) (-6 -4298) |%noBranch|))) +((-2330 (((-111) $ $) 26)) (-1656 (((-111) $) NIL)) (-2163 (((-606 |#1|) $) 120)) (-1531 (($ (-1214 |#1| |#2|)) 44)) (-1233 (($ $ (-731)) 32)) (-3418 (((-3 $ "failed") $ $) NIL)) (-1275 (($ $ $) 48 (|has| |#2| (-163))) (($ $ (-731)) 46 (|has| |#2| (-163)))) (-3832 (($) NIL T CONST)) (-3139 (($ $ |#1|) 102) (($ $ (-779 |#1|)) 103) (($ $ $) 25)) (-1516 (((-3 (-779 |#1|) "failed") $) NIL)) (-3958 (((-779 |#1|) $) NIL)) (-3490 (((-3 $ "failed") $) 110)) (-1323 (((-111) $) 105)) (-1414 (($ $) 106)) (-2836 (((-111) $) NIL)) (-1538 (((-111) $) NIL)) (-2367 (($ (-779 |#1|) |#2|) 19)) (-2177 (($ $) NIL)) (-2667 (((-2 (|:| |k| (-779 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4215 (((-779 |#1|) $) 111)) (-2388 (((-779 |#1|) $) 114)) (-1612 (($ (-1 |#2| |#2|) $) 119)) (-2896 (($ $ |#1|) 100) (($ $ (-779 |#1|)) 101) (($ $ $) 56)) (-1654 (((-1100) $) NIL)) (-2528 (((-1064) $) NIL)) (-1905 (((-1214 |#1| |#2|) $) 84)) (-2872 (((-731) $) 117)) (-2162 (((-111) $) 70)) (-2787 ((|#2| $) 28)) (-2341 (((-816) $) 63) (($ (-537)) 77) (($ |#2|) 74) (($ (-779 |#1|)) 17) (($ |#1|) 73)) (-3449 ((|#2| $ (-779 |#1|)) 104) ((|#2| $ $) 27)) (-3654 (((-731)) 108)) (-2928 (($) 14 T CONST)) (-2585 (((-606 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2943 (($) 29 T CONST)) (-2244 (((-111) $ $) 13)) (-2329 (($ $) 88) (($ $ $) 91)) (-2318 (($ $ $) 55)) (** (($ $ (-874)) NIL) (($ $ (-731)) 49)) (* (($ (-874) $) NIL) (($ (-731) $) 47) (($ (-537) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1223 |#1| |#2|) (-13 (-1220 |#1| |#2|) (-10 -8 (-15 -1905 ((-1214 |#1| |#2|) $)) (-15 -1531 ($ (-1214 |#1| |#2|))) (-15 -2585 ((-606 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-807) (-998)) (T -1223)) +((-1905 (*1 *2 *1) (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)))) (-1531 (*1 *1 *2) (-12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) (-5 *1 (-1223 *3 *4)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-606 (-2 (|:| |k| *3) (|:| |c| (-1223 *3 *4))))) (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998))))) +(-13 (-1220 |#1| |#2|) (-10 -8 (-15 -1905 ((-1214 |#1| |#2|) $)) (-15 -1531 ($ (-1214 |#1| |#2|))) (-15 -2585 ((-606 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4142 (((-606 (-1098 |#1|)) (-1 (-606 (-1098 |#1|)) (-606 (-1098 |#1|))) (-537)) 15) (((-1098 |#1|) (-1 (-1098 |#1|) (-1098 |#1|))) 11))) +(((-1224 |#1|) (-10 -7 (-15 -4142 ((-1098 |#1|) (-1 (-1098 |#1|) (-1098 |#1|)))) (-15 -4142 ((-606 (-1098 |#1|)) (-1 (-606 (-1098 |#1|)) (-606 (-1098 |#1|))) (-537)))) (-1154)) (T -1224)) +((-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-606 (-1098 *5)) (-606 (-1098 *5)))) (-5 *4 (-537)) (-5 *2 (-606 (-1098 *5))) (-5 *1 (-1224 *5)) (-4 *5 (-1154)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-1 (-1098 *4) (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1224 *4)) (-4 *4 (-1154))))) +(-10 -7 (-15 -4142 ((-1098 |#1|) (-1 (-1098 |#1|) (-1098 |#1|)))) (-15 -4142 ((-606 (-1098 |#1|)) (-1 (-606 (-1098 |#1|)) (-606 (-1098 |#1|))) (-537)))) +((-2120 (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|))) 148) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111)) 147) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111)) 146) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111) (-111)) 145) (((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-995 |#1| |#2|)) 130)) (-1490 (((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|))) 72) (((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111)) 71) (((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111) (-111)) 70)) (-2414 (((-606 (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) (-995 |#1| |#2|)) 61)) (-2465 (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|))) 115) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111)) 114) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111)) 113) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111) (-111)) 112) (((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|)) 107)) (-1523 (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|))) 120) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111)) 119) (((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111)) 118) (((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|)) 117)) (-3996 (((-606 (-740 |#1| (-818 |#3|))) (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) 98) (((-1113 (-975 (-391 |#1|))) (-1113 |#1|)) 89) (((-905 (-975 (-391 |#1|))) (-740 |#1| (-818 |#3|))) 96) (((-905 (-975 (-391 |#1|))) (-905 |#1|)) 94) (((-740 |#1| (-818 |#3|)) (-740 |#1| (-818 |#2|))) 33))) +(((-1225 |#1| |#2| |#3|) (-10 -7 (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-995 |#1| |#2|))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -2414 ((-606 (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) (-995 |#1| |#2|))) (-15 -3996 ((-740 |#1| (-818 |#3|)) (-740 |#1| (-818 |#2|)))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-905 |#1|))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-740 |#1| (-818 |#3|)))) (-15 -3996 ((-1113 (-975 (-391 |#1|))) (-1113 |#1|))) (-15 -3996 ((-606 (-740 |#1| (-818 |#3|))) (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))))) (-13 (-805) (-291) (-141) (-973)) (-606 (-1117)) (-606 (-1117))) (T -1225)) +((-3996 (*1 *2 *3) (-12 (-5 *3 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6)))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-740 *4 (-818 *6)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-1113 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-740 *4 (-818 *6))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-740 *4 (-818 *5))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-740 *4 (-818 *6))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-1523 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2465 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2465 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) (-5 *1 (-1225 *4 *5 *6)) (-5 *3 (-606 (-905 *4))) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2120 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2120 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-995 *4 *5))) (-5 *1 (-1225 *4 *5 *6)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) (-1490 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117)))))) +(-10 -7 (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)) (-111))) (-15 -1490 ((-606 (-995 |#1| |#2|)) (-606 (-905 |#1|)))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-995 |#1| |#2|))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)) (-111))) (-15 -2120 ((-606 (-2 (|:| -3019 (-1113 |#1|)) (|:| -1484 (-606 (-905 |#1|))))) (-606 (-905 |#1|)))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -2465 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-995 |#1| |#2|))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)) (-111))) (-15 -1523 ((-606 (-606 (-975 (-391 |#1|)))) (-606 (-905 |#1|)))) (-15 -2414 ((-606 (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))) (-995 |#1| |#2|))) (-15 -3996 ((-740 |#1| (-818 |#3|)) (-740 |#1| (-818 |#2|)))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-905 |#1|))) (-15 -3996 ((-905 (-975 (-391 |#1|))) (-740 |#1| (-818 |#3|)))) (-15 -3996 ((-1113 (-975 (-391 |#1|))) (-1113 |#1|))) (-15 -3996 ((-606 (-740 |#1| (-818 |#3|))) (-1088 |#1| (-509 (-818 |#3|)) (-818 |#3|) (-740 |#1| (-818 |#3|)))))) +((-2606 (((-3 (-1200 (-391 (-537))) "failed") (-1200 |#1|) |#1|) 21)) (-2894 (((-111) (-1200 |#1|)) 12)) (-3682 (((-3 (-1200 (-537)) "failed") (-1200 |#1|)) 16))) +(((-1226 |#1|) (-10 -7 (-15 -2894 ((-111) (-1200 |#1|))) (-15 -3682 ((-3 (-1200 (-537)) "failed") (-1200 |#1|))) (-15 -2606 ((-3 (-1200 (-391 (-537))) "failed") (-1200 |#1|) |#1|))) (-602 (-537))) (T -1226)) +((-2606 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-1200 (-391 (-537)))) (-5 *1 (-1226 *4)))) (-3682 (*1 *2 *3) (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-1200 (-537))) (-5 *1 (-1226 *4)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-111)) (-5 *1 (-1226 *4))))) +(-10 -7 (-15 -2894 ((-111) (-1200 |#1|))) (-15 -3682 ((-3 (-1200 (-537)) "failed") (-1200 |#1|))) (-15 -2606 ((-3 (-1200 (-391 (-537))) "failed") (-1200 |#1|) |#1|))) +((-2330 (((-111) $ $) NIL)) (-1656 (((-111) $) 11)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3151 (((-731)) 8)) (-3832 (($) NIL T CONST)) (-3490 (((-3 $ "failed") $) 43)) (-1618 (($) 36)) (-2836 (((-111) $) NIL)) (-2824 (((-3 $ "failed") $) 29)) (-2334 (((-874) $) 15)) (-1654 (((-1100) $) NIL)) (-3956 (($) 25 T CONST)) (-2009 (($ (-874)) 37)) (-2528 (((-1064) $) NIL)) (-3996 (((-537) $) 13)) (-2341 (((-816) $) 22) (($ (-537)) 19)) (-3654 (((-731)) 9)) (-2928 (($) 23 T CONST)) (-2943 (($) 24 T CONST)) (-2244 (((-111) $ $) 27)) (-2329 (($ $) 38) (($ $ $) 35)) (-2318 (($ $ $) 26)) (** (($ $ (-874)) NIL) (($ $ (-731)) 40)) (* (($ (-874) $) NIL) (($ (-731) $) NIL) (($ (-537) $) 32) (($ $ $) 31))) +(((-1227 |#1|) (-13 (-163) (-352) (-580 (-537)) (-1093)) (-874)) (T -1227)) +NIL +(-13 (-163) (-352) (-580 (-537)) (-1093)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3148249 3148254 3148259 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3148234 3148239 3148244 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3148219 3148224 3148229 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3148204 3148209 3148214 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1227 3147380 3148079 3148156 "ZMOD" 3148161 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1226 3146490 3146654 3146863 "ZLINDEP" 3147212 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1225 3135894 3137639 3139591 "ZDSOLVE" 3144639 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1224 3135140 3135281 3135470 "YSTREAM" 3135740 NIL YSTREAM (NIL T) -7 NIL NIL) (-1223 3132955 3134445 3134648 "XRPOLY" 3134983 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1222 3129463 3130746 3131328 "XPR" 3132419 NIL XPR (NIL T T) -8 NIL NIL) (-1221 3127223 3128798 3129001 "XPOLY" 3129294 NIL XPOLY (NIL T) -8 NIL NIL) (-1220 3125078 3126412 3126466 "XPOLYC" 3126751 NIL XPOLYC (NIL T T) -9 NIL 3126864) (-1219 3121496 3123595 3123983 "XPBWPOLY" 3124736 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1218 3117484 3119732 3119774 "XF" 3120395 NIL XF (NIL T) -9 NIL 3120794) (-1217 3117105 3117193 3117362 "XF-" 3117367 NIL XF- (NIL T T) -8 NIL NIL) (-1216 3112526 3113781 3113835 "XFALG" 3115983 NIL XFALG (NIL T T) -9 NIL 3116770) (-1215 3111663 3111767 3111971 "XEXPPKG" 3112418 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1214 3109808 3111514 3111609 "XDPOLY" 3111614 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1213 3108728 3109294 3109336 "XALG" 3109398 NIL XALG (NIL T) -9 NIL 3109517) (-1212 3102197 3106705 3107199 "WUTSET" 3108320 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1211 3100055 3100816 3101167 "WP" 3101979 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1210 3099701 3099877 3099947 "WHILEAST" 3100007 T WHILEAST (NIL) -8 NIL NIL) (-1209 3098587 3098785 3099080 "WFFINTBS" 3099498 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1208 3096491 3096918 3097380 "WEIER" 3098159 NIL WEIER (NIL T) -7 NIL NIL) (-1207 3095638 3096062 3096104 "VSPACE" 3096240 NIL VSPACE (NIL T) -9 NIL 3096314) (-1206 3095476 3095503 3095594 "VSPACE-" 3095599 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1205 3095222 3095265 3095336 "VOID" 3095427 T VOID (NIL) -8 NIL NIL) (-1204 3093358 3093717 3094123 "VIEW" 3094838 T VIEW (NIL) -7 NIL NIL) (-1203 3089783 3090421 3091158 "VIEWDEF" 3092643 T VIEWDEF (NIL) -7 NIL NIL) (-1202 3079121 3081331 3083504 "VIEW3D" 3087632 T VIEW3D (NIL) -8 NIL NIL) (-1201 3071403 3073032 3074611 "VIEW2D" 3077564 T VIEW2D (NIL) -8 NIL NIL) (-1200 3066812 3071173 3071265 "VECTOR" 3071346 NIL VECTOR (NIL T) -8 NIL NIL) (-1199 3065389 3065648 3065966 "VECTOR2" 3066542 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1198 3058928 3063180 3063223 "VECTCAT" 3064211 NIL VECTCAT (NIL T) -9 NIL 3064795) (-1197 3057942 3058196 3058586 "VECTCAT-" 3058591 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1196 3057423 3057593 3057713 "VARIABLE" 3057857 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1195 3057356 3057361 3057391 "UTYPE" 3057396 T UTYPE (NIL) -9 NIL NIL) (-1194 3056191 3056345 3056606 "UTSODETL" 3057182 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1193 3053631 3054091 3054615 "UTSODE" 3055732 NIL UTSODE (NIL T T) -7 NIL NIL) (-1192 3045521 3051271 3051759 "UTS" 3053200 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1191 3036907 3042226 3042268 "UTSCAT" 3043369 NIL UTSCAT (NIL T) -9 NIL 3044126) (-1190 3034262 3034978 3035966 "UTSCAT-" 3035971 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1189 3033893 3033936 3034067 "UTS2" 3034213 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1188 3028168 3030733 3030776 "URAGG" 3032846 NIL URAGG (NIL T) -9 NIL 3033568) (-1187 3025107 3025970 3027093 "URAGG-" 3027098 NIL URAGG- (NIL T T) -8 NIL NIL) (-1186 3020839 3023724 3024195 "UPXSSING" 3024771 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1185 3012815 3019960 3020240 "UPXS" 3020616 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1184 3005929 3012720 3012791 "UPXSCONS" 3012796 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1183 2996298 3003043 3003104 "UPXSCCA" 3003753 NIL UPXSCCA (NIL T T) -9 NIL 3003994) (-1182 2995937 2996022 2996195 "UPXSCCA-" 2996200 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1181 2986228 2992746 2992788 "UPXSCAT" 2993431 NIL UPXSCAT (NIL T) -9 NIL 2994039) (-1180 2985662 2985741 2985918 "UPXS2" 2986143 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1179 2984316 2984569 2984920 "UPSQFREE" 2985405 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1178 2978248 2981257 2981311 "UPSCAT" 2982460 NIL UPSCAT (NIL T T) -9 NIL 2983234) (-1177 2977453 2977660 2977986 "UPSCAT-" 2977991 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1176 2963580 2971571 2971613 "UPOLYC" 2973691 NIL UPOLYC (NIL T) -9 NIL 2974912) (-1175 2954910 2957335 2960481 "UPOLYC-" 2960486 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1174 2954541 2954584 2954715 "UPOLYC2" 2954861 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1173 2946006 2954110 2954247 "UP" 2954451 NIL UP (NIL NIL T) -8 NIL NIL) (-1172 2945349 2945456 2945619 "UPMP" 2945895 NIL UPMP (NIL T T) -7 NIL NIL) (-1171 2944902 2944983 2945122 "UPDIVP" 2945262 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1170 2943470 2943719 2944035 "UPDECOMP" 2944651 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1169 2942705 2942817 2943002 "UPCDEN" 2943354 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1168 2942228 2942297 2942444 "UP2" 2942630 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1167 2940745 2941432 2941709 "UNISEG" 2941986 NIL UNISEG (NIL T) -8 NIL NIL) (-1166 2939960 2940087 2940292 "UNISEG2" 2940588 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1165 2939020 2939200 2939426 "UNIFACT" 2939776 NIL UNIFACT (NIL T) -7 NIL NIL) (-1164 2923001 2938201 2938451 "ULS" 2938827 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1163 2911051 2922906 2922977 "ULSCONS" 2922982 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1162 2893880 2905808 2905869 "ULSCCAT" 2906581 NIL ULSCCAT (NIL T T) -9 NIL 2906877) (-1161 2892931 2893176 2893563 "ULSCCAT-" 2893568 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1160 2883001 2889433 2889475 "ULSCAT" 2890331 NIL ULSCAT (NIL T) -9 NIL 2891061) (-1159 2882435 2882514 2882691 "ULS2" 2882916 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1158 2880874 2881797 2881827 "UFD" 2882039 T UFD (NIL) -9 NIL 2882153) (-1157 2880668 2880714 2880809 "UFD-" 2880814 NIL UFD- (NIL T) -8 NIL NIL) (-1156 2879750 2879933 2880149 "UDVO" 2880474 T UDVO (NIL) -7 NIL NIL) (-1155 2877566 2877975 2878446 "UDPO" 2879314 NIL UDPO (NIL T) -7 NIL NIL) (-1154 2877499 2877504 2877534 "TYPE" 2877539 T TYPE (NIL) -9 NIL NIL) (-1153 2877153 2877321 2877391 "TYPEAST" 2877451 T TYPEAST (NIL) -8 NIL NIL) (-1152 2876124 2876326 2876566 "TWOFACT" 2876947 NIL TWOFACT (NIL T) -7 NIL NIL) (-1151 2875062 2875399 2875662 "TUPLE" 2875896 NIL TUPLE (NIL T) -8 NIL NIL) (-1150 2872753 2873272 2873811 "TUBETOOL" 2874545 T TUBETOOL (NIL) -7 NIL NIL) (-1149 2871602 2871807 2872048 "TUBE" 2872546 NIL TUBE (NIL T) -8 NIL NIL) (-1148 2866372 2870580 2870862 "TS" 2871354 NIL TS (NIL T) -8 NIL NIL) (-1147 2855039 2859131 2859228 "TSETCAT" 2864497 NIL TSETCAT (NIL T T T T) -9 NIL 2866028) (-1146 2849773 2851371 2853262 "TSETCAT-" 2853267 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1145 2844036 2844882 2845824 "TRMANIP" 2848909 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1144 2843477 2843540 2843703 "TRIMAT" 2843968 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1143 2841283 2841520 2841883 "TRIGMNIP" 2843226 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1142 2840803 2840916 2840946 "TRIGCAT" 2841159 T TRIGCAT (NIL) -9 NIL NIL) (-1141 2840472 2840551 2840692 "TRIGCAT-" 2840697 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1140 2837371 2839332 2839612 "TREE" 2840227 NIL TREE (NIL T) -8 NIL NIL) (-1139 2836645 2837173 2837203 "TRANFUN" 2837238 T TRANFUN (NIL) -9 NIL 2837304) (-1138 2835924 2836115 2836395 "TRANFUN-" 2836400 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1137 2835728 2835760 2835821 "TOPSP" 2835885 T TOPSP (NIL) -7 NIL NIL) (-1136 2835080 2835195 2835348 "TOOLSIGN" 2835609 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1135 2833741 2834257 2834496 "TEXTFILE" 2834863 T TEXTFILE (NIL) -8 NIL NIL) (-1134 2831606 2832120 2832558 "TEX" 2833325 T TEX (NIL) -8 NIL NIL) (-1133 2831387 2831418 2831490 "TEX1" 2831569 NIL TEX1 (NIL T) -7 NIL NIL) (-1132 2831035 2831098 2831188 "TEMUTL" 2831319 T TEMUTL (NIL) -7 NIL NIL) (-1131 2829189 2829469 2829794 "TBCMPPK" 2830758 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1130 2821077 2827349 2827405 "TBAGG" 2827805 NIL TBAGG (NIL T T) -9 NIL 2828016) (-1129 2816147 2817635 2819389 "TBAGG-" 2819394 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1128 2815531 2815638 2815783 "TANEXP" 2816036 NIL TANEXP (NIL T) -7 NIL NIL) (-1127 2809032 2815388 2815481 "TABLE" 2815486 NIL TABLE (NIL T T) -8 NIL NIL) (-1126 2808444 2808543 2808681 "TABLEAU" 2808929 NIL TABLEAU (NIL T) -8 NIL NIL) (-1125 2803052 2804272 2805520 "TABLBUMP" 2807230 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1124 2802480 2802580 2802708 "SYSTEM" 2802946 T SYSTEM (NIL) -7 NIL NIL) (-1123 2798943 2799638 2800421 "SYSSOLP" 2801731 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1122 2795234 2795942 2796676 "SYNTAX" 2798231 T SYNTAX (NIL) -8 NIL NIL) (-1121 2792392 2792994 2793626 "SYMTAB" 2794624 T SYMTAB (NIL) -8 NIL NIL) (-1120 2787641 2788543 2789526 "SYMS" 2791431 T SYMS (NIL) -8 NIL NIL) (-1119 2784920 2787101 2787330 "SYMPOLY" 2787446 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1118 2784440 2784515 2784637 "SYMFUNC" 2784832 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1117 2780417 2781677 2782499 "SYMBOL" 2783640 T SYMBOL (NIL) -8 NIL NIL) (-1116 2773956 2775645 2777365 "SWITCH" 2778719 T SWITCH (NIL) -8 NIL NIL) (-1115 2767232 2772783 2773085 "SUTS" 2773711 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1114 2759207 2766353 2766633 "SUPXS" 2767009 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1113 2750744 2758828 2758953 "SUP" 2759116 NIL SUP (NIL T) -8 NIL NIL) (-1112 2749903 2750030 2750247 "SUPFRACF" 2750612 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1111 2749528 2749587 2749698 "SUP2" 2749838 NIL SUP2 (NIL T T) -7 NIL NIL) (-1110 2747946 2748220 2748582 "SUMRF" 2749227 NIL SUMRF (NIL T) -7 NIL NIL) (-1109 2747263 2747329 2747527 "SUMFS" 2747867 NIL SUMFS (NIL T T) -7 NIL NIL) (-1108 2731284 2746444 2746694 "SULS" 2747070 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1107 2730606 2730809 2730949 "SUCH" 2731192 NIL SUCH (NIL T T) -8 NIL NIL) (-1106 2724533 2725545 2726503 "SUBSPACE" 2729694 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1105 2723963 2724053 2724217 "SUBRESP" 2724421 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1104 2717332 2718628 2719939 "STTF" 2722699 NIL STTF (NIL T) -7 NIL NIL) (-1103 2711505 2712625 2713772 "STTFNC" 2716232 NIL STTFNC (NIL T) -7 NIL NIL) (-1102 2702856 2704723 2706516 "STTAYLOR" 2709746 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1101 2696100 2702720 2702803 "STRTBL" 2702808 NIL STRTBL (NIL T) -8 NIL NIL) (-1100 2691491 2696055 2696086 "STRING" 2696091 T STRING (NIL) -8 NIL NIL) (-1099 2686379 2690864 2690894 "STRICAT" 2690953 T STRICAT (NIL) -9 NIL 2691015) (-1098 2679093 2683902 2684522 "STREAM" 2685794 NIL STREAM (NIL T) -8 NIL NIL) (-1097 2678603 2678680 2678824 "STREAM3" 2679010 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1096 2677585 2677768 2678003 "STREAM2" 2678416 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1095 2677273 2677325 2677418 "STREAM1" 2677527 NIL STREAM1 (NIL T) -7 NIL NIL) (-1094 2676289 2676470 2676701 "STINPROD" 2677089 NIL STINPROD (NIL T) -7 NIL NIL) (-1093 2675867 2676051 2676081 "STEP" 2676161 T STEP (NIL) -9 NIL 2676239) (-1092 2669410 2675766 2675843 "STBL" 2675848 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1091 2664585 2668632 2668675 "STAGG" 2668828 NIL STAGG (NIL T) -9 NIL 2668917) (-1090 2662287 2662889 2663761 "STAGG-" 2663766 NIL STAGG- (NIL T T) -8 NIL NIL) (-1089 2660482 2662057 2662149 "STACK" 2662230 NIL STACK (NIL T) -8 NIL NIL) (-1088 2653207 2658623 2659079 "SREGSET" 2660112 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1087 2645633 2647001 2648514 "SRDCMPK" 2651813 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1086 2638600 2643073 2643103 "SRAGG" 2644406 T SRAGG (NIL) -9 NIL 2645014) (-1085 2637617 2637872 2638251 "SRAGG-" 2638256 NIL SRAGG- (NIL T) -8 NIL NIL) (-1084 2632112 2636536 2636963 "SQMATRIX" 2637236 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1083 2625864 2628832 2629558 "SPLTREE" 2631458 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1082 2621854 2622520 2623166 "SPLNODE" 2625290 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1081 2620901 2621134 2621164 "SPFCAT" 2621608 T SPFCAT (NIL) -9 NIL NIL) (-1080 2619638 2619848 2620112 "SPECOUT" 2620659 T SPECOUT (NIL) -7 NIL NIL) (-1079 2619399 2619439 2619508 "SPADPRSR" 2619591 T SPADPRSR (NIL) -7 NIL NIL) (-1078 2611421 2613168 2613210 "SPACEC" 2617533 NIL SPACEC (NIL T) -9 NIL 2619349) (-1077 2609593 2611354 2611402 "SPACE3" 2611407 NIL SPACE3 (NIL T) -8 NIL NIL) (-1076 2608345 2608516 2608807 "SORTPAK" 2609398 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1075 2606401 2606704 2607122 "SOLVETRA" 2608009 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1074 2605412 2605634 2605908 "SOLVESER" 2606174 NIL SOLVESER (NIL T) -7 NIL NIL) (-1073 2600632 2601513 2602515 "SOLVERAD" 2604464 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1072 2596447 2597056 2597785 "SOLVEFOR" 2599999 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1071 2590744 2595796 2595893 "SNTSCAT" 2595898 NIL SNTSCAT (NIL T T T T) -9 NIL 2595968) (-1070 2584894 2589075 2589465 "SMTS" 2590434 NIL SMTS (NIL T T T) -8 NIL NIL) (-1069 2579350 2584783 2584859 "SMP" 2584864 NIL SMP (NIL T T) -8 NIL NIL) (-1068 2577509 2577810 2578208 "SMITH" 2579047 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1067 2570515 2574665 2574767 "SMATCAT" 2576107 NIL SMATCAT (NIL NIL T T T) -9 NIL 2576657) (-1066 2567456 2568279 2569456 "SMATCAT-" 2569461 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1065 2565169 2566692 2566735 "SKAGG" 2566996 NIL SKAGG (NIL T) -9 NIL 2567131) (-1064 2561273 2564273 2564551 "SINT" 2564913 T SINT (NIL) -8 NIL NIL) (-1063 2561045 2561083 2561149 "SIMPAN" 2561229 T SIMPAN (NIL) -7 NIL NIL) (-1062 2560352 2560580 2560720 "SIG" 2560927 T SIG (NIL) -8 NIL NIL) (-1061 2559190 2559411 2559686 "SIGNRF" 2560111 NIL SIGNRF (NIL T) -7 NIL NIL) (-1060 2557999 2558150 2558440 "SIGNEF" 2559019 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1059 2555689 2556143 2556649 "SHP" 2557540 NIL SHP (NIL T NIL) -7 NIL NIL) (-1058 2549628 2555590 2555666 "SHDP" 2555671 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1057 2549227 2549393 2549423 "SGROUP" 2549516 T SGROUP (NIL) -9 NIL 2549578) (-1056 2549085 2549111 2549184 "SGROUP-" 2549189 NIL SGROUP- (NIL T) -8 NIL NIL) (-1055 2545921 2546618 2547341 "SGCF" 2548384 T SGCF (NIL) -7 NIL NIL) (-1054 2540316 2545368 2545465 "SFRTCAT" 2545470 NIL SFRTCAT (NIL T T T T) -9 NIL 2545509) (-1053 2533740 2534755 2535891 "SFRGCD" 2539299 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1052 2526868 2527939 2529125 "SFQCMPK" 2532673 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1051 2526490 2526579 2526689 "SFORT" 2526809 NIL SFORT (NIL T T) -8 NIL NIL) (-1050 2525635 2526330 2526451 "SEXOF" 2526456 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1049 2524769 2525516 2525584 "SEX" 2525589 T SEX (NIL) -8 NIL NIL) (-1048 2519545 2520234 2520329 "SEXCAT" 2524100 NIL SEXCAT (NIL T T T T T) -9 NIL 2524719) (-1047 2516725 2519479 2519527 "SET" 2519532 NIL SET (NIL T) -8 NIL NIL) (-1046 2514976 2515438 2515743 "SETMN" 2516466 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1045 2514582 2514708 2514738 "SETCAT" 2514855 T SETCAT (NIL) -9 NIL 2514940) (-1044 2514362 2514414 2514513 "SETCAT-" 2514518 NIL SETCAT- (NIL T) -8 NIL NIL) (-1043 2510749 2512823 2512866 "SETAGG" 2513736 NIL SETAGG (NIL T) -9 NIL 2514076) (-1042 2510207 2510323 2510560 "SETAGG-" 2510565 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1041 2509411 2509704 2509765 "SEGXCAT" 2510051 NIL SEGXCAT (NIL T T) -9 NIL 2510171) (-1040 2508467 2509077 2509259 "SEG" 2509264 NIL SEG (NIL T) -8 NIL NIL) (-1039 2507374 2507587 2507630 "SEGCAT" 2508212 NIL SEGCAT (NIL T) -9 NIL 2508450) (-1038 2506423 2506753 2506953 "SEGBIND" 2507209 NIL SEGBIND (NIL T) -8 NIL NIL) (-1037 2506044 2506103 2506216 "SEGBIND2" 2506358 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1036 2505662 2505845 2505922 "SEGAST" 2505989 T SEGAST (NIL) -8 NIL NIL) (-1035 2504881 2505007 2505211 "SEG2" 2505506 NIL SEG2 (NIL T T) -7 NIL NIL) (-1034 2504318 2504816 2504863 "SDVAR" 2504868 NIL SDVAR (NIL T) -8 NIL NIL) (-1033 2496616 2504091 2504219 "SDPOL" 2504224 NIL SDPOL (NIL T) -8 NIL NIL) (-1032 2495209 2495475 2495794 "SCPKG" 2496331 NIL SCPKG (NIL T) -7 NIL NIL) (-1031 2494345 2494525 2494725 "SCOPE" 2495031 T SCOPE (NIL) -8 NIL NIL) (-1030 2493566 2493699 2493878 "SCACHE" 2494200 NIL SCACHE (NIL T) -7 NIL NIL) (-1029 2493292 2493435 2493465 "SASTCAT" 2493470 T SASTCAT (NIL) -9 NIL 2493483) (-1028 2493081 2493126 2493224 "SASTCAT-" 2493229 NIL SASTCAT- (NIL T) -8 NIL NIL) (-1027 2492520 2492841 2492926 "SAOS" 2493018 T SAOS (NIL) -8 NIL NIL) (-1026 2492085 2492120 2492293 "SAERFFC" 2492479 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1025 2486064 2491982 2492062 "SAE" 2492067 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1024 2485657 2485692 2485851 "SAEFACT" 2486023 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1023 2483978 2484292 2484693 "RURPK" 2485323 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1022 2482618 2482897 2483208 "RULESET" 2483812 NIL RULESET (NIL T T T) -8 NIL NIL) (-1021 2479816 2480319 2480782 "RULE" 2482300 NIL RULE (NIL T T T) -8 NIL NIL) (-1020 2479455 2479610 2479693 "RULECOLD" 2479768 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1019 2474304 2475098 2476018 "RSETGCD" 2478654 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1018 2463561 2468613 2468710 "RSETCAT" 2472829 NIL RSETCAT (NIL T T T T) -9 NIL 2473926) (-1017 2461488 2462027 2462851 "RSETCAT-" 2462856 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1016 2453875 2455250 2456770 "RSDCMPK" 2460087 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1015 2451880 2452321 2452395 "RRCC" 2453481 NIL RRCC (NIL T T) -9 NIL 2453825) (-1014 2451231 2451405 2451684 "RRCC-" 2451689 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1013 2450718 2450927 2451028 "RPTAST" 2451152 T RPTAST (NIL) -8 NIL NIL) (-1012 2425043 2434622 2434688 "RPOLCAT" 2445271 NIL RPOLCAT (NIL T T T) -9 NIL 2448429) (-1011 2416544 2418882 2422003 "RPOLCAT-" 2422008 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1010 2407591 2414755 2415237 "ROUTINE" 2416084 T ROUTINE (NIL) -8 NIL NIL) (-1009 2404337 2407142 2407291 "ROMAN" 2407464 T ROMAN (NIL) -8 NIL NIL) (-1008 2402612 2403197 2403457 "ROIRC" 2404142 NIL ROIRC (NIL T T) -8 NIL NIL) (-1007 2399068 2401307 2401337 "RNS" 2401641 T RNS (NIL) -9 NIL 2401911) (-1006 2397577 2397960 2398494 "RNS-" 2398569 NIL RNS- (NIL T) -8 NIL NIL) (-1005 2397026 2397408 2397438 "RNG" 2397443 T RNG (NIL) -9 NIL 2397464) (-1004 2396418 2396780 2396823 "RMODULE" 2396885 NIL RMODULE (NIL T) -9 NIL 2396927) (-1003 2395260 2395354 2395688 "RMCAT2" 2396319 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1002 2391968 2394437 2394761 "RMATRIX" 2394994 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1001 2384936 2387170 2387284 "RMATCAT" 2390618 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2391600) (-1000 2384312 2384459 2384765 "RMATCAT-" 2384770 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-999 2383882 2383957 2384083 "RINTERP" 2384231 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-998 2382974 2383494 2383522 "RING" 2383632 T RING (NIL) -9 NIL 2383727) (-997 2382769 2382813 2382907 "RING-" 2382912 NIL RING- (NIL T) -8 NIL NIL) (-996 2381617 2381854 2382110 "RIDIST" 2382533 T RIDIST (NIL) -7 NIL NIL) (-995 2372937 2381089 2381293 "RGCHAIN" 2381465 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-994 2369942 2370556 2371224 "RF" 2372301 NIL RF (NIL T) -7 NIL NIL) (-993 2369591 2369654 2369755 "RFFACTOR" 2369873 NIL RFFACTOR (NIL T) -7 NIL NIL) (-992 2369319 2369354 2369449 "RFFACT" 2369550 NIL RFFACT (NIL T) -7 NIL NIL) (-991 2367449 2367813 2368193 "RFDIST" 2368959 T RFDIST (NIL) -7 NIL NIL) (-990 2366907 2366999 2367159 "RETSOL" 2367351 NIL RETSOL (NIL T T) -7 NIL NIL) (-989 2366500 2366580 2366621 "RETRACT" 2366811 NIL RETRACT (NIL T) -9 NIL NIL) (-988 2366352 2366377 2366461 "RETRACT-" 2366466 NIL RETRACT- (NIL T T) -8 NIL NIL) (-987 2366001 2366177 2366245 "RETAST" 2366304 T RETAST (NIL) -8 NIL NIL) (-986 2358859 2365658 2365783 "RESULT" 2365896 T RESULT (NIL) -8 NIL NIL) (-985 2357490 2358133 2358330 "RESRING" 2358762 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-984 2357130 2357179 2357275 "RESLATC" 2357427 NIL RESLATC (NIL T) -7 NIL NIL) (-983 2356839 2356873 2356978 "REPSQ" 2357089 NIL REPSQ (NIL T) -7 NIL NIL) (-982 2354270 2354850 2355450 "REP" 2356259 T REP (NIL) -7 NIL NIL) (-981 2353971 2354005 2354114 "REPDB" 2354229 NIL REPDB (NIL T) -7 NIL NIL) (-980 2347916 2349295 2350515 "REP2" 2352783 NIL REP2 (NIL T) -7 NIL NIL) (-979 2344322 2345003 2345808 "REP1" 2347143 NIL REP1 (NIL T) -7 NIL NIL) (-978 2337060 2342475 2342929 "REGSET" 2343952 NIL REGSET (NIL T T T T) -8 NIL NIL) (-977 2335881 2336216 2336464 "REF" 2336845 NIL REF (NIL T) -8 NIL NIL) (-976 2335262 2335365 2335530 "REDORDER" 2335765 NIL REDORDER (NIL T T) -7 NIL NIL) (-975 2331288 2334490 2334713 "RECLOS" 2335091 NIL RECLOS (NIL T) -8 NIL NIL) (-974 2330345 2330526 2330739 "REALSOLV" 2331095 T REALSOLV (NIL) -7 NIL NIL) (-973 2330193 2330234 2330262 "REAL" 2330267 T REAL (NIL) -9 NIL 2330302) (-972 2326684 2327486 2328368 "REAL0Q" 2329358 NIL REAL0Q (NIL T) -7 NIL NIL) (-971 2322295 2323283 2324342 "REAL0" 2325665 NIL REAL0 (NIL T) -7 NIL NIL) (-970 2321703 2321775 2321980 "RDIV" 2322217 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-969 2320776 2320950 2321161 "RDIST" 2321525 NIL RDIST (NIL T) -7 NIL NIL) (-968 2319380 2319667 2320036 "RDETRS" 2320484 NIL RDETRS (NIL T T) -7 NIL NIL) (-967 2317201 2317655 2318190 "RDETR" 2318922 NIL RDETR (NIL T T) -7 NIL NIL) (-966 2315817 2316095 2316496 "RDEEFS" 2316917 NIL RDEEFS (NIL T T) -7 NIL NIL) (-965 2314317 2314623 2315052 "RDEEF" 2315505 NIL RDEEF (NIL T T) -7 NIL NIL) (-964 2308662 2311529 2311557 "RCFIELD" 2312834 T RCFIELD (NIL) -9 NIL 2313564) (-963 2306731 2307235 2307928 "RCFIELD-" 2308001 NIL RCFIELD- (NIL T) -8 NIL NIL) (-962 2303062 2304847 2304888 "RCAGG" 2305959 NIL RCAGG (NIL T) -9 NIL 2306424) (-961 2302693 2302787 2302947 "RCAGG-" 2302952 NIL RCAGG- (NIL T T) -8 NIL NIL) (-960 2302037 2302149 2302311 "RATRET" 2302577 NIL RATRET (NIL T) -7 NIL NIL) (-959 2301594 2301661 2301780 "RATFACT" 2301965 NIL RATFACT (NIL T) -7 NIL NIL) (-958 2300909 2301029 2301179 "RANDSRC" 2301464 T RANDSRC (NIL) -7 NIL NIL) (-957 2300646 2300690 2300761 "RADUTIL" 2300858 T RADUTIL (NIL) -7 NIL NIL) (-956 2293718 2299389 2299706 "RADIX" 2300361 NIL RADIX (NIL NIL) -8 NIL NIL) (-955 2285379 2293562 2293690 "RADFF" 2293695 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-954 2285031 2285106 2285134 "RADCAT" 2285291 T RADCAT (NIL) -9 NIL NIL) (-953 2284816 2284864 2284961 "RADCAT-" 2284966 NIL RADCAT- (NIL T) -8 NIL NIL) (-952 2282967 2284591 2284680 "QUEUE" 2284760 NIL QUEUE (NIL T) -8 NIL NIL) (-951 2279548 2282904 2282949 "QUAT" 2282954 NIL QUAT (NIL T) -8 NIL NIL) (-950 2279186 2279229 2279356 "QUATCT2" 2279499 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-949 2273057 2276353 2276393 "QUATCAT" 2277173 NIL QUATCAT (NIL T) -9 NIL 2277939) (-948 2269201 2270238 2271625 "QUATCAT-" 2271719 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-947 2266721 2268285 2268326 "QUAGG" 2268701 NIL QUAGG (NIL T) -9 NIL 2268876) (-946 2265646 2266119 2266291 "QFORM" 2266593 NIL QFORM (NIL NIL T) -8 NIL NIL) (-945 2257000 2262196 2262236 "QFCAT" 2262894 NIL QFCAT (NIL T) -9 NIL 2263887) (-944 2252572 2253773 2255364 "QFCAT-" 2255458 NIL QFCAT- (NIL T T) -8 NIL NIL) (-943 2252210 2252253 2252380 "QFCAT2" 2252523 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-942 2251670 2251780 2251910 "QEQUAT" 2252100 T QEQUAT (NIL) -8 NIL NIL) (-941 2244818 2245889 2247073 "QCMPACK" 2250603 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-940 2242394 2242815 2243243 "QALGSET" 2244473 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-939 2241639 2241813 2242045 "QALGSET2" 2242214 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-938 2240330 2240553 2240870 "PWFFINTB" 2241412 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-937 2238518 2238686 2239039 "PUSHVAR" 2240144 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-936 2234436 2235490 2235531 "PTRANFN" 2237415 NIL PTRANFN (NIL T) -9 NIL NIL) (-935 2232848 2233139 2233460 "PTPACK" 2234147 NIL PTPACK (NIL T) -7 NIL NIL) (-934 2232484 2232541 2232648 "PTFUNC2" 2232785 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-933 2226960 2231301 2231341 "PTCAT" 2231709 NIL PTCAT (NIL T) -9 NIL 2231871) (-932 2226618 2226653 2226777 "PSQFR" 2226919 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-931 2225213 2225511 2225845 "PSEUDLIN" 2226316 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-930 2211982 2214347 2216671 "PSETPK" 2222973 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-929 2205047 2207761 2207856 "PSETCAT" 2210857 NIL PSETCAT (NIL T T T T) -9 NIL 2211671) (-928 2202884 2203518 2204338 "PSETCAT-" 2204343 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-927 2202233 2202398 2202426 "PSCURVE" 2202694 T PSCURVE (NIL) -9 NIL 2202861) (-926 2198724 2200206 2200270 "PSCAT" 2201106 NIL PSCAT (NIL T T T) -9 NIL 2201346) (-925 2197788 2198004 2198403 "PSCAT-" 2198408 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-924 2196440 2197073 2197287 "PRTITION" 2197594 T PRTITION (NIL) -8 NIL NIL) (-923 2195960 2196161 2196253 "PRTDAST" 2196368 T PRTDAST (NIL) -8 NIL NIL) (-922 2185058 2187264 2189452 "PRS" 2193822 NIL PRS (NIL T T) -7 NIL NIL) (-921 2182916 2184408 2184448 "PRQAGG" 2184631 NIL PRQAGG (NIL T) -9 NIL 2184733) (-920 2182487 2182589 2182617 "PROPLOG" 2182802 T PROPLOG (NIL) -9 NIL NIL) (-919 2179610 2180175 2180702 "PROPFRML" 2181992 NIL PROPFRML (NIL T) -8 NIL NIL) (-918 2179070 2179180 2179310 "PROPERTY" 2179500 T PROPERTY (NIL) -8 NIL NIL) (-917 2173155 2177236 2178056 "PRODUCT" 2178296 NIL PRODUCT (NIL T T) -8 NIL NIL) (-916 2170475 2172615 2172848 "PR" 2172966 NIL PR (NIL T T) -8 NIL NIL) (-915 2170271 2170303 2170362 "PRINT" 2170436 T PRINT (NIL) -7 NIL NIL) (-914 2169611 2169728 2169880 "PRIMES" 2170151 NIL PRIMES (NIL T) -7 NIL NIL) (-913 2167676 2168077 2168543 "PRIMELT" 2169190 NIL PRIMELT (NIL T) -7 NIL NIL) (-912 2167405 2167454 2167482 "PRIMCAT" 2167606 T PRIMCAT (NIL) -9 NIL NIL) (-911 2163566 2167343 2167388 "PRIMARR" 2167393 NIL PRIMARR (NIL T) -8 NIL NIL) (-910 2162573 2162751 2162979 "PRIMARR2" 2163384 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-909 2162216 2162272 2162383 "PREASSOC" 2162511 NIL PREASSOC (NIL T T) -7 NIL NIL) (-908 2161691 2161824 2161852 "PPCURVE" 2162057 T PPCURVE (NIL) -9 NIL 2162193) (-907 2161313 2161486 2161569 "PORTNUM" 2161628 T PORTNUM (NIL) -8 NIL NIL) (-906 2158672 2159071 2159663 "POLYROOT" 2160894 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-905 2152624 2158278 2158437 "POLY" 2158545 NIL POLY (NIL T) -8 NIL NIL) (-904 2152009 2152067 2152300 "POLYLIFT" 2152560 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-903 2148294 2148743 2149371 "POLYCATQ" 2151554 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-902 2135376 2140727 2140791 "POLYCAT" 2144276 NIL POLYCAT (NIL T T T) -9 NIL 2146203) (-901 2128827 2130688 2133071 "POLYCAT-" 2133076 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-900 2128416 2128484 2128603 "POLY2UP" 2128753 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-899 2128052 2128109 2128216 "POLY2" 2128353 NIL POLY2 (NIL T T) -7 NIL NIL) (-898 2126737 2126976 2127252 "POLUTIL" 2127826 NIL POLUTIL (NIL T T) -7 NIL NIL) (-897 2125099 2125376 2125706 "POLTOPOL" 2126459 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-896 2120622 2125036 2125081 "POINT" 2125086 NIL POINT (NIL T) -8 NIL NIL) (-895 2118809 2119166 2119541 "PNTHEORY" 2120267 T PNTHEORY (NIL) -7 NIL NIL) (-894 2117237 2117534 2117943 "PMTOOLS" 2118507 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-893 2116830 2116908 2117025 "PMSYM" 2117153 NIL PMSYM (NIL T) -7 NIL NIL) (-892 2116340 2116409 2116583 "PMQFCAT" 2116755 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-891 2115695 2115805 2115961 "PMPRED" 2116217 NIL PMPRED (NIL T) -7 NIL NIL) (-890 2115091 2115177 2115338 "PMPREDFS" 2115596 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-889 2113737 2113945 2114329 "PMPLCAT" 2114853 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-888 2113269 2113348 2113500 "PMLSAGG" 2113652 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-887 2112746 2112822 2113002 "PMKERNEL" 2113187 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-886 2112363 2112438 2112551 "PMINS" 2112665 NIL PMINS (NIL T) -7 NIL NIL) (-885 2111793 2111862 2112077 "PMFS" 2112288 NIL PMFS (NIL T T T) -7 NIL NIL) (-884 2111024 2111142 2111346 "PMDOWN" 2111670 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-883 2110187 2110346 2110528 "PMASS" 2110862 T PMASS (NIL) -7 NIL NIL) (-882 2109461 2109572 2109735 "PMASSFS" 2110073 NIL PMASSFS (NIL T T) -7 NIL NIL) (-881 2109116 2109184 2109278 "PLOTTOOL" 2109387 T PLOTTOOL (NIL) -7 NIL NIL) (-880 2103738 2104927 2106075 "PLOT" 2107988 T PLOT (NIL) -8 NIL NIL) (-879 2099552 2100586 2101507 "PLOT3D" 2102837 T PLOT3D (NIL) -8 NIL NIL) (-878 2098464 2098641 2098876 "PLOT1" 2099356 NIL PLOT1 (NIL T) -7 NIL NIL) (-877 2073858 2078530 2083381 "PLEQN" 2093730 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-876 2073176 2073298 2073478 "PINTERP" 2073723 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-875 2072869 2072916 2073019 "PINTERPA" 2073123 NIL PINTERPA (NIL T T) -7 NIL NIL) (-874 2072154 2072675 2072762 "PI" 2072802 T PI (NIL) -8 NIL NIL) (-873 2070587 2071528 2071556 "PID" 2071738 T PID (NIL) -9 NIL 2071872) (-872 2070312 2070349 2070437 "PICOERCE" 2070544 NIL PICOERCE (NIL T) -7 NIL NIL) (-871 2069632 2069771 2069947 "PGROEB" 2070168 NIL PGROEB (NIL T) -7 NIL NIL) (-870 2065219 2066033 2066938 "PGE" 2068747 T PGE (NIL) -7 NIL NIL) (-869 2063343 2063589 2063955 "PGCD" 2064936 NIL PGCD (NIL T T T T) -7 NIL NIL) (-868 2062681 2062784 2062945 "PFRPAC" 2063227 NIL PFRPAC (NIL T) -7 NIL NIL) (-867 2059361 2061229 2061582 "PFR" 2062360 NIL PFR (NIL T) -8 NIL NIL) (-866 2057750 2057994 2058319 "PFOTOOLS" 2059108 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-865 2056283 2056522 2056873 "PFOQ" 2057507 NIL PFOQ (NIL T T T) -7 NIL NIL) (-864 2054760 2054972 2055334 "PFO" 2056067 NIL PFO (NIL T T T T T) -7 NIL NIL) (-863 2051348 2054649 2054718 "PF" 2054723 NIL PF (NIL NIL) -8 NIL NIL) (-862 2048818 2050055 2050083 "PFECAT" 2050668 T PFECAT (NIL) -9 NIL 2051052) (-861 2048263 2048417 2048631 "PFECAT-" 2048636 NIL PFECAT- (NIL T) -8 NIL NIL) (-860 2046867 2047118 2047419 "PFBRU" 2048012 NIL PFBRU (NIL T T) -7 NIL NIL) (-859 2044734 2045085 2045517 "PFBR" 2046518 NIL PFBR (NIL T T T T) -7 NIL NIL) (-858 2040650 2042110 2042786 "PERM" 2044091 NIL PERM (NIL T) -8 NIL NIL) (-857 2035916 2036857 2037727 "PERMGRP" 2039813 NIL PERMGRP (NIL T) -8 NIL NIL) (-856 2034048 2034979 2035020 "PERMCAT" 2035466 NIL PERMCAT (NIL T) -9 NIL 2035771) (-855 2033703 2033744 2033867 "PERMAN" 2034001 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-854 2031143 2033272 2033403 "PENDTREE" 2033605 NIL PENDTREE (NIL T) -8 NIL NIL) (-853 2029258 2029992 2030033 "PDRING" 2030690 NIL PDRING (NIL T) -9 NIL 2030975) (-852 2028361 2028579 2028941 "PDRING-" 2028946 NIL PDRING- (NIL T T) -8 NIL NIL) (-851 2025502 2026253 2026944 "PDEPROB" 2027690 T PDEPROB (NIL) -8 NIL NIL) (-850 2023065 2023563 2024114 "PDEPACK" 2024971 T PDEPACK (NIL) -7 NIL NIL) (-849 2021977 2022167 2022418 "PDECOMP" 2022864 NIL PDECOMP (NIL T T) -7 NIL NIL) (-848 2019585 2020401 2020429 "PDECAT" 2021215 T PDECAT (NIL) -9 NIL 2021927) (-847 2019338 2019371 2019460 "PCOMP" 2019546 NIL PCOMP (NIL T T) -7 NIL NIL) (-846 2017545 2018141 2018437 "PBWLB" 2019068 NIL PBWLB (NIL T) -8 NIL NIL) (-845 2010053 2011622 2012958 "PATTERN" 2016230 NIL PATTERN (NIL T) -8 NIL NIL) (-844 2009685 2009742 2009851 "PATTERN2" 2009990 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-843 2007442 2007830 2008287 "PATTERN1" 2009274 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-842 2004837 2005391 2005872 "PATRES" 2007007 NIL PATRES (NIL T T) -8 NIL NIL) (-841 2004401 2004468 2004600 "PATRES2" 2004764 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-840 2002298 2002698 2003103 "PATMATCH" 2004070 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-839 2001834 2002017 2002058 "PATMAB" 2002165 NIL PATMAB (NIL T) -9 NIL 2002248) (-838 2000379 2000688 2000946 "PATLRES" 2001639 NIL PATLRES (NIL T T T) -8 NIL NIL) (-837 1999925 2000048 2000089 "PATAB" 2000094 NIL PATAB (NIL T) -9 NIL 2000266) (-836 1997406 1997938 1998511 "PARTPERM" 1999372 T PARTPERM (NIL) -7 NIL NIL) (-835 1997027 1997090 1997192 "PARSURF" 1997337 NIL PARSURF (NIL T) -8 NIL NIL) (-834 1996659 1996716 1996825 "PARSU2" 1996964 NIL PARSU2 (NIL T T) -7 NIL NIL) (-833 1996423 1996463 1996530 "PARSER" 1996612 T PARSER (NIL) -7 NIL NIL) (-832 1996044 1996107 1996209 "PARSCURV" 1996354 NIL PARSCURV (NIL T) -8 NIL NIL) (-831 1995676 1995733 1995842 "PARSC2" 1995981 NIL PARSC2 (NIL T T) -7 NIL NIL) (-830 1995315 1995373 1995470 "PARPCURV" 1995612 NIL PARPCURV (NIL T) -8 NIL NIL) (-829 1994947 1995004 1995113 "PARPC2" 1995252 NIL PARPC2 (NIL T T) -7 NIL NIL) (-828 1994467 1994553 1994672 "PAN2EXPR" 1994848 T PAN2EXPR (NIL) -7 NIL NIL) (-827 1993273 1993588 1993816 "PALETTE" 1994259 T PALETTE (NIL) -8 NIL NIL) (-826 1991741 1992278 1992638 "PAIR" 1992959 NIL PAIR (NIL T T) -8 NIL NIL) (-825 1985656 1991000 1991194 "PADICRC" 1991596 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-824 1978929 1985002 1985186 "PADICRAT" 1985504 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-823 1977279 1978866 1978911 "PADIC" 1978916 NIL PADIC (NIL NIL) -8 NIL NIL) (-822 1974525 1976055 1976095 "PADICCT" 1976676 NIL PADICCT (NIL NIL) -9 NIL 1976958) (-821 1973482 1973682 1973950 "PADEPAC" 1974312 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-820 1972694 1972827 1973033 "PADE" 1973344 NIL PADE (NIL T T T) -7 NIL NIL) (-819 1970751 1971537 1971852 "OWP" 1972462 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-818 1969860 1970356 1970528 "OVAR" 1970619 NIL OVAR (NIL NIL) -8 NIL NIL) (-817 1969124 1969245 1969406 "OUT" 1969719 T OUT (NIL) -7 NIL NIL) (-816 1958178 1960349 1962519 "OUTFORM" 1966974 T OUTFORM (NIL) -8 NIL NIL) (-815 1957586 1957907 1957996 "OSI" 1958109 T OSI (NIL) -8 NIL NIL) (-814 1957142 1957454 1957482 "OSGROUP" 1957487 T OSGROUP (NIL) -9 NIL 1957509) (-813 1955887 1956114 1956399 "ORTHPOL" 1956889 NIL ORTHPOL (NIL T) -7 NIL NIL) (-812 1953304 1955548 1955686 "OREUP" 1955830 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-811 1950749 1952997 1953123 "ORESUP" 1953246 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-810 1948284 1948784 1949344 "OREPCTO" 1950238 NIL OREPCTO (NIL T T) -7 NIL NIL) (-809 1942235 1944397 1944437 "OREPCAT" 1946758 NIL OREPCAT (NIL T) -9 NIL 1947861) (-808 1939383 1940165 1941222 "OREPCAT-" 1941227 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-807 1938560 1938832 1938860 "ORDSET" 1939169 T ORDSET (NIL) -9 NIL 1939333) (-806 1938079 1938201 1938394 "ORDSET-" 1938399 NIL ORDSET- (NIL T) -8 NIL NIL) (-805 1936735 1937492 1937520 "ORDRING" 1937722 T ORDRING (NIL) -9 NIL 1937846) (-804 1936380 1936474 1936618 "ORDRING-" 1936623 NIL ORDRING- (NIL T) -8 NIL NIL) (-803 1935786 1936223 1936251 "ORDMON" 1936256 T ORDMON (NIL) -9 NIL 1936277) (-802 1934948 1935095 1935290 "ORDFUNS" 1935635 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-801 1934459 1934818 1934846 "ORDFIN" 1934851 T ORDFIN (NIL) -9 NIL 1934872) (-800 1931057 1933045 1933454 "ORDCOMP" 1934083 NIL ORDCOMP (NIL T) -8 NIL NIL) (-799 1930323 1930450 1930636 "ORDCOMP2" 1930917 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-798 1926830 1927713 1928550 "OPTPROB" 1929506 T OPTPROB (NIL) -8 NIL NIL) (-797 1923664 1924295 1924991 "OPTPACK" 1926154 T OPTPACK (NIL) -7 NIL NIL) (-796 1921383 1922121 1922149 "OPTCAT" 1922966 T OPTCAT (NIL) -9 NIL 1923614) (-795 1921151 1921190 1921256 "OPQUERY" 1921337 T OPQUERY (NIL) -7 NIL NIL) (-794 1918333 1919478 1919978 "OP" 1920683 NIL OP (NIL T) -8 NIL NIL) (-793 1915184 1917130 1917499 "ONECOMP" 1917997 NIL ONECOMP (NIL T) -8 NIL NIL) (-792 1914489 1914604 1914778 "ONECOMP2" 1915056 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-791 1913908 1914014 1914144 "OMSERVER" 1914379 T OMSERVER (NIL) -7 NIL NIL) (-790 1910796 1913348 1913388 "OMSAGG" 1913449 NIL OMSAGG (NIL T) -9 NIL 1913513) (-789 1909419 1909682 1909964 "OMPKG" 1910534 T OMPKG (NIL) -7 NIL NIL) (-788 1908849 1908952 1908980 "OM" 1909279 T OM (NIL) -9 NIL NIL) (-787 1907434 1908401 1908569 "OMLO" 1908730 NIL OMLO (NIL T T) -8 NIL NIL) (-786 1906364 1906511 1906737 "OMEXPR" 1907260 NIL OMEXPR (NIL T) -7 NIL NIL) (-785 1905682 1905910 1906046 "OMERR" 1906248 T OMERR (NIL) -8 NIL NIL) (-784 1904860 1905103 1905263 "OMERRK" 1905542 T OMERRK (NIL) -8 NIL NIL) (-783 1904338 1904537 1904645 "OMENC" 1904772 T OMENC (NIL) -8 NIL NIL) (-782 1898233 1899418 1900589 "OMDEV" 1903187 T OMDEV (NIL) -8 NIL NIL) (-781 1897302 1897473 1897667 "OMCONN" 1898059 T OMCONN (NIL) -8 NIL NIL) (-780 1895959 1896901 1896929 "OINTDOM" 1896934 T OINTDOM (NIL) -9 NIL 1896955) (-779 1891767 1892951 1893666 "OFMONOID" 1895276 NIL OFMONOID (NIL T) -8 NIL NIL) (-778 1891205 1891704 1891749 "ODVAR" 1891754 NIL ODVAR (NIL T) -8 NIL NIL) (-777 1888415 1890702 1890887 "ODR" 1891080 NIL ODR (NIL T T NIL) -8 NIL NIL) (-776 1880767 1888194 1888318 "ODPOL" 1888323 NIL ODPOL (NIL T) -8 NIL NIL) (-775 1874676 1880639 1880744 "ODP" 1880749 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-774 1873442 1873657 1873932 "ODETOOLS" 1874450 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-773 1870411 1871067 1871783 "ODESYS" 1872775 NIL ODESYS (NIL T T) -7 NIL NIL) (-772 1865315 1866223 1867246 "ODERTRIC" 1869486 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-771 1864741 1864823 1865017 "ODERED" 1865227 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-770 1861643 1862191 1862866 "ODERAT" 1864164 NIL ODERAT (NIL T T) -7 NIL NIL) (-769 1858611 1859075 1859671 "ODEPRRIC" 1861172 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-768 1856480 1857049 1857558 "ODEPROB" 1858122 T ODEPROB (NIL) -8 NIL NIL) (-767 1853012 1853495 1854141 "ODEPRIM" 1855959 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-766 1852265 1852367 1852625 "ODEPAL" 1852904 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-765 1848459 1849242 1850098 "ODEPACK" 1851429 T ODEPACK (NIL) -7 NIL NIL) (-764 1847496 1847603 1847831 "ODEINT" 1848348 NIL ODEINT (NIL T T) -7 NIL NIL) (-763 1841597 1843022 1844469 "ODEIFTBL" 1846069 T ODEIFTBL (NIL) -8 NIL NIL) (-762 1836941 1837727 1838685 "ODEEF" 1840756 NIL ODEEF (NIL T T) -7 NIL NIL) (-761 1836278 1836367 1836596 "ODECONST" 1836846 NIL ODECONST (NIL T T T) -7 NIL NIL) (-760 1834432 1835066 1835094 "ODECAT" 1835698 T ODECAT (NIL) -9 NIL 1836228) (-759 1831349 1834144 1834263 "OCT" 1834345 NIL OCT (NIL T) -8 NIL NIL) (-758 1830987 1831030 1831157 "OCTCT2" 1831300 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-757 1825859 1828254 1828294 "OC" 1829391 NIL OC (NIL T) -9 NIL 1830249) (-756 1823086 1823834 1824824 "OC-" 1824918 NIL OC- (NIL T T) -8 NIL NIL) (-755 1822464 1822906 1822934 "OCAMON" 1822939 T OCAMON (NIL) -9 NIL 1822960) (-754 1822021 1822336 1822364 "OASGP" 1822369 T OASGP (NIL) -9 NIL 1822389) (-753 1821308 1821771 1821799 "OAMONS" 1821839 T OAMONS (NIL) -9 NIL 1821882) (-752 1820748 1821155 1821183 "OAMON" 1821188 T OAMON (NIL) -9 NIL 1821208) (-751 1820052 1820544 1820572 "OAGROUP" 1820577 T OAGROUP (NIL) -9 NIL 1820597) (-750 1819742 1819792 1819880 "NUMTUBE" 1819996 NIL NUMTUBE (NIL T) -7 NIL NIL) (-749 1813315 1814833 1816369 "NUMQUAD" 1818226 T NUMQUAD (NIL) -7 NIL NIL) (-748 1809071 1810059 1811084 "NUMODE" 1812310 T NUMODE (NIL) -7 NIL NIL) (-747 1806468 1807316 1807344 "NUMINT" 1808263 T NUMINT (NIL) -9 NIL 1809021) (-746 1805416 1805613 1805831 "NUMFMT" 1806270 T NUMFMT (NIL) -7 NIL NIL) (-745 1791795 1794732 1797262 "NUMERIC" 1802925 NIL NUMERIC (NIL T) -7 NIL NIL) (-744 1786192 1791244 1791339 "NTSCAT" 1791344 NIL NTSCAT (NIL T T T T) -9 NIL 1791383) (-743 1785386 1785551 1785744 "NTPOLFN" 1786031 NIL NTPOLFN (NIL T) -7 NIL NIL) (-742 1773248 1782228 1783038 "NSUP" 1784608 NIL NSUP (NIL T) -8 NIL NIL) (-741 1772884 1772941 1773048 "NSUP2" 1773185 NIL NSUP2 (NIL T T) -7 NIL NIL) (-740 1762890 1772661 1772792 "NSMP" 1772797 NIL NSMP (NIL T T) -8 NIL NIL) (-739 1761322 1761623 1761980 "NREP" 1762578 NIL NREP (NIL T) -7 NIL NIL) (-738 1759913 1760165 1760523 "NPCOEF" 1761065 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-737 1758979 1759094 1759310 "NORMRETR" 1759794 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-736 1757020 1757310 1757719 "NORMPK" 1758687 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-735 1756705 1756733 1756857 "NORMMA" 1756986 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-734 1756532 1756662 1756691 "NONE" 1756696 T NONE (NIL) -8 NIL NIL) (-733 1756321 1756350 1756419 "NONE1" 1756496 NIL NONE1 (NIL T) -7 NIL NIL) (-732 1755806 1755868 1756053 "NODE1" 1756253 NIL NODE1 (NIL T T) -7 NIL NIL) (-731 1754146 1754969 1755224 "NNI" 1755571 T NNI (NIL) -8 NIL NIL) (-730 1752566 1752879 1753243 "NLINSOL" 1753814 NIL NLINSOL (NIL T) -7 NIL NIL) (-729 1748733 1749701 1750623 "NIPROB" 1751664 T NIPROB (NIL) -8 NIL NIL) (-728 1747490 1747724 1748026 "NFINTBAS" 1748495 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-727 1746198 1746429 1746710 "NCODIV" 1747258 NIL NCODIV (NIL T T) -7 NIL NIL) (-726 1745960 1745997 1746072 "NCNTFRAC" 1746155 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-725 1744140 1744504 1744924 "NCEP" 1745585 NIL NCEP (NIL T) -7 NIL NIL) (-724 1743051 1743790 1743818 "NASRING" 1743928 T NASRING (NIL) -9 NIL 1744002) (-723 1742846 1742890 1742984 "NASRING-" 1742989 NIL NASRING- (NIL T) -8 NIL NIL) (-722 1741999 1742498 1742526 "NARNG" 1742643 T NARNG (NIL) -9 NIL 1742734) (-721 1741691 1741758 1741892 "NARNG-" 1741897 NIL NARNG- (NIL T) -8 NIL NIL) (-720 1740570 1740777 1741012 "NAGSP" 1741476 T NAGSP (NIL) -7 NIL NIL) (-719 1731994 1733640 1735275 "NAGS" 1738955 T NAGS (NIL) -7 NIL NIL) (-718 1730558 1730862 1731189 "NAGF07" 1731687 T NAGF07 (NIL) -7 NIL NIL) (-717 1725140 1726420 1727716 "NAGF04" 1729282 T NAGF04 (NIL) -7 NIL NIL) (-716 1718172 1719770 1721387 "NAGF02" 1723543 T NAGF02 (NIL) -7 NIL NIL) (-715 1713436 1714526 1715633 "NAGF01" 1717085 T NAGF01 (NIL) -7 NIL NIL) (-714 1707096 1708654 1710231 "NAGE04" 1711879 T NAGE04 (NIL) -7 NIL NIL) (-713 1698337 1700440 1702552 "NAGE02" 1705004 T NAGE02 (NIL) -7 NIL NIL) (-712 1694330 1695267 1696221 "NAGE01" 1697403 T NAGE01 (NIL) -7 NIL NIL) (-711 1692137 1692668 1693223 "NAGD03" 1693795 T NAGD03 (NIL) -7 NIL NIL) (-710 1683923 1685842 1687787 "NAGD02" 1690212 T NAGD02 (NIL) -7 NIL NIL) (-709 1677782 1679195 1680623 "NAGD01" 1682515 T NAGD01 (NIL) -7 NIL NIL) (-708 1674039 1674849 1675674 "NAGC06" 1676977 T NAGC06 (NIL) -7 NIL NIL) (-707 1672516 1672845 1673198 "NAGC05" 1673706 T NAGC05 (NIL) -7 NIL NIL) (-706 1671900 1672017 1672159 "NAGC02" 1672394 T NAGC02 (NIL) -7 NIL NIL) (-705 1670960 1671517 1671557 "NAALG" 1671636 NIL NAALG (NIL T) -9 NIL 1671697) (-704 1670795 1670824 1670914 "NAALG-" 1670919 NIL NAALG- (NIL T T) -8 NIL NIL) (-703 1664745 1665853 1667040 "MULTSQFR" 1669691 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-702 1664064 1664139 1664323 "MULTFACT" 1664657 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-701 1657299 1661164 1661216 "MTSCAT" 1662276 NIL MTSCAT (NIL T T) -9 NIL 1662790) (-700 1657011 1657065 1657157 "MTHING" 1657239 NIL MTHING (NIL T) -7 NIL NIL) (-699 1656803 1656836 1656896 "MSYSCMD" 1656971 T MSYSCMD (NIL) -7 NIL NIL) (-698 1652915 1655558 1655878 "MSET" 1656516 NIL MSET (NIL T) -8 NIL NIL) (-697 1650010 1652476 1652517 "MSETAGG" 1652522 NIL MSETAGG (NIL T) -9 NIL 1652556) (-696 1645912 1647408 1648149 "MRING" 1649313 NIL MRING (NIL T T) -8 NIL NIL) (-695 1645482 1645549 1645678 "MRF2" 1645839 NIL MRF2 (NIL T T T) -7 NIL NIL) (-694 1645100 1645135 1645279 "MRATFAC" 1645441 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-693 1642712 1643007 1643438 "MPRFF" 1644805 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-692 1636778 1642567 1642663 "MPOLY" 1642668 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-691 1636268 1636303 1636511 "MPCPF" 1636737 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-690 1635784 1635827 1636010 "MPC3" 1636219 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-689 1634985 1635066 1635285 "MPC2" 1635699 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-688 1633286 1633623 1634013 "MONOTOOL" 1634645 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-687 1632537 1632828 1632856 "MONOID" 1633075 T MONOID (NIL) -9 NIL 1633222) (-686 1632083 1632202 1632383 "MONOID-" 1632388 NIL MONOID- (NIL T) -8 NIL NIL) (-685 1623144 1629045 1629104 "MONOGEN" 1629778 NIL MONOGEN (NIL T T) -9 NIL 1630234) (-684 1620362 1621097 1622097 "MONOGEN-" 1622216 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-683 1619221 1619641 1619669 "MONADWU" 1620061 T MONADWU (NIL) -9 NIL 1620299) (-682 1618593 1618752 1619000 "MONADWU-" 1619005 NIL MONADWU- (NIL T) -8 NIL NIL) (-681 1617978 1618196 1618224 "MONAD" 1618431 T MONAD (NIL) -9 NIL 1618543) (-680 1617663 1617741 1617873 "MONAD-" 1617878 NIL MONAD- (NIL T) -8 NIL NIL) (-679 1615979 1616576 1616855 "MOEBIUS" 1617416 NIL MOEBIUS (NIL T) -8 NIL NIL) (-678 1615371 1615749 1615789 "MODULE" 1615794 NIL MODULE (NIL T) -9 NIL 1615820) (-677 1614939 1615035 1615225 "MODULE-" 1615230 NIL MODULE- (NIL T T) -8 NIL NIL) (-676 1612656 1613305 1613631 "MODRING" 1614764 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-675 1609658 1610777 1611294 "MODOP" 1612188 NIL MODOP (NIL T T) -8 NIL NIL) (-674 1607845 1608297 1608638 "MODMONOM" 1609457 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-673 1597570 1606049 1606471 "MODMON" 1607473 NIL MODMON (NIL T T) -8 NIL NIL) (-672 1594761 1596414 1596690 "MODFIELD" 1597445 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-671 1593765 1594042 1594232 "MMLFORM" 1594591 T MMLFORM (NIL) -8 NIL NIL) (-670 1593291 1593334 1593513 "MMAP" 1593716 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-669 1591569 1592302 1592342 "MLO" 1592759 NIL MLO (NIL T) -9 NIL 1593000) (-668 1588936 1589451 1590053 "MLIFT" 1591050 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-667 1588327 1588411 1588565 "MKUCFUNC" 1588847 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-666 1587926 1587996 1588119 "MKRECORD" 1588250 NIL MKRECORD (NIL T T) -7 NIL NIL) (-665 1586974 1587135 1587363 "MKFUNC" 1587737 NIL MKFUNC (NIL T) -7 NIL NIL) (-664 1586362 1586466 1586622 "MKFLCFN" 1586857 NIL MKFLCFN (NIL T) -7 NIL NIL) (-663 1585788 1586155 1586244 "MKCHSET" 1586306 NIL MKCHSET (NIL T) -8 NIL NIL) (-662 1585065 1585167 1585352 "MKBCFUNC" 1585681 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-661 1581795 1584619 1584755 "MINT" 1584949 T MINT (NIL) -8 NIL NIL) (-660 1580607 1580850 1581127 "MHROWRED" 1581550 NIL MHROWRED (NIL T) -7 NIL NIL) (-659 1575943 1579052 1579476 "MFLOAT" 1580203 T MFLOAT (NIL) -8 NIL NIL) (-658 1575300 1575376 1575547 "MFINFACT" 1575855 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-657 1571615 1572463 1573347 "MESH" 1574436 T MESH (NIL) -7 NIL NIL) (-656 1570005 1570317 1570670 "MDDFACT" 1571302 NIL MDDFACT (NIL T) -7 NIL NIL) (-655 1566847 1569164 1569205 "MDAGG" 1569460 NIL MDAGG (NIL T) -9 NIL 1569603) (-654 1556630 1566140 1566347 "MCMPLX" 1566660 T MCMPLX (NIL) -8 NIL NIL) (-653 1555771 1555917 1556117 "MCDEN" 1556479 NIL MCDEN (NIL T T) -7 NIL NIL) (-652 1553661 1553931 1554311 "MCALCFN" 1555501 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-651 1552572 1552745 1552986 "MAYBE" 1553459 NIL MAYBE (NIL T) -8 NIL NIL) (-650 1550194 1550717 1551278 "MATSTOR" 1552043 NIL MATSTOR (NIL T) -7 NIL NIL) (-649 1546203 1549569 1549816 "MATRIX" 1549979 NIL MATRIX (NIL T) -8 NIL NIL) (-648 1541972 1542676 1543412 "MATLIN" 1545560 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-647 1532169 1535307 1535383 "MATCAT" 1540221 NIL MATCAT (NIL T T T) -9 NIL 1541638) (-646 1528534 1529547 1530902 "MATCAT-" 1530907 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-645 1527136 1527289 1527620 "MATCAT2" 1528369 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-644 1525248 1525572 1525956 "MAPPKG3" 1526811 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-643 1524229 1524402 1524624 "MAPPKG2" 1525072 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-642 1522728 1523012 1523339 "MAPPKG1" 1523935 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-641 1521851 1522134 1522311 "MAPPAST" 1522571 T MAPPAST (NIL) -8 NIL NIL) (-640 1521462 1521520 1521643 "MAPHACK3" 1521787 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-639 1521054 1521115 1521229 "MAPHACK2" 1521394 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-638 1520492 1520595 1520737 "MAPHACK1" 1520945 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-637 1518600 1519194 1519497 "MAGMA" 1520221 NIL MAGMA (NIL T) -8 NIL NIL) (-636 1515075 1516844 1517304 "M3D" 1518173 NIL M3D (NIL T) -8 NIL NIL) (-635 1509230 1513445 1513486 "LZSTAGG" 1514268 NIL LZSTAGG (NIL T) -9 NIL 1514563) (-634 1505203 1506361 1507818 "LZSTAGG-" 1507823 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-633 1502319 1503096 1503582 "LWORD" 1504749 NIL LWORD (NIL T) -8 NIL NIL) (-632 1501939 1502123 1502198 "LSTAST" 1502264 T LSTAST (NIL) -8 NIL NIL) (-631 1495145 1501710 1501844 "LSQM" 1501849 NIL LSQM (NIL NIL T) -8 NIL NIL) (-630 1494369 1494508 1494736 "LSPP" 1495000 NIL LSPP (NIL T T T T) -7 NIL NIL) (-629 1492181 1492482 1492938 "LSMP" 1494058 NIL LSMP (NIL T T T T) -7 NIL NIL) (-628 1488960 1489634 1490364 "LSMP1" 1491483 NIL LSMP1 (NIL T) -7 NIL NIL) (-627 1482886 1488128 1488169 "LSAGG" 1488231 NIL LSAGG (NIL T) -9 NIL 1488309) (-626 1479581 1480505 1481718 "LSAGG-" 1481723 NIL LSAGG- (NIL T T) -8 NIL NIL) (-625 1477207 1478725 1478974 "LPOLY" 1479376 NIL LPOLY (NIL T T) -8 NIL NIL) (-624 1476789 1476874 1476997 "LPEFRAC" 1477116 NIL LPEFRAC (NIL T) -7 NIL NIL) (-623 1475136 1475883 1476136 "LO" 1476621 NIL LO (NIL T T T) -8 NIL NIL) (-622 1474788 1474900 1474928 "LOGIC" 1475039 T LOGIC (NIL) -9 NIL 1475120) (-621 1474650 1474673 1474744 "LOGIC-" 1474749 NIL LOGIC- (NIL T) -8 NIL NIL) (-620 1473843 1473983 1474176 "LODOOPS" 1474506 NIL LODOOPS (NIL T T) -7 NIL NIL) (-619 1471307 1473760 1473825 "LODO" 1473830 NIL LODO (NIL T NIL) -8 NIL NIL) (-618 1469853 1470088 1470439 "LODOF" 1471054 NIL LODOF (NIL T T) -7 NIL NIL) (-617 1466314 1468706 1468746 "LODOCAT" 1469178 NIL LODOCAT (NIL T) -9 NIL 1469389) (-616 1466048 1466106 1466232 "LODOCAT-" 1466237 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-615 1463408 1465889 1466007 "LODO2" 1466012 NIL LODO2 (NIL T T) -8 NIL NIL) (-614 1460883 1463345 1463390 "LODO1" 1463395 NIL LODO1 (NIL T) -8 NIL NIL) (-613 1459746 1459911 1460222 "LODEEF" 1460706 NIL LODEEF (NIL T T T) -7 NIL NIL) (-612 1455032 1457876 1457917 "LNAGG" 1458864 NIL LNAGG (NIL T) -9 NIL 1459308) (-611 1454179 1454393 1454735 "LNAGG-" 1454740 NIL LNAGG- (NIL T T) -8 NIL NIL) (-610 1450344 1451106 1451744 "LMOPS" 1453595 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-609 1449739 1450101 1450142 "LMODULE" 1450203 NIL LMODULE (NIL T) -9 NIL 1450245) (-608 1446985 1449384 1449507 "LMDICT" 1449649 NIL LMDICT (NIL T) -8 NIL NIL) (-607 1446729 1446893 1446953 "LITERAL" 1446958 NIL LITERAL (NIL T) -8 NIL NIL) (-606 1439956 1445675 1445973 "LIST" 1446464 NIL LIST (NIL T) -8 NIL NIL) (-605 1439481 1439555 1439694 "LIST3" 1439876 NIL LIST3 (NIL T T T) -7 NIL NIL) (-604 1438488 1438666 1438894 "LIST2" 1439299 NIL LIST2 (NIL T T) -7 NIL NIL) (-603 1436622 1436934 1437333 "LIST2MAP" 1438135 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-602 1435377 1436013 1436053 "LINEXP" 1436306 NIL LINEXP (NIL T) -9 NIL 1436454) (-601 1434024 1434284 1434581 "LINDEP" 1435129 NIL LINDEP (NIL T T) -7 NIL NIL) (-600 1430791 1431510 1432287 "LIMITRF" 1433279 NIL LIMITRF (NIL T) -7 NIL NIL) (-599 1429071 1429366 1429781 "LIMITPS" 1430486 NIL LIMITPS (NIL T T) -7 NIL NIL) (-598 1423526 1428582 1428810 "LIE" 1428892 NIL LIE (NIL T T) -8 NIL NIL) (-597 1422575 1423018 1423058 "LIECAT" 1423198 NIL LIECAT (NIL T) -9 NIL 1423349) (-596 1422416 1422443 1422531 "LIECAT-" 1422536 NIL LIECAT- (NIL T T) -8 NIL NIL) (-595 1415028 1421865 1422030 "LIB" 1422271 T LIB (NIL) -8 NIL NIL) (-594 1410665 1411546 1412481 "LGROBP" 1414145 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-593 1408531 1408805 1409167 "LF" 1410386 NIL LF (NIL T T) -7 NIL NIL) (-592 1407371 1408063 1408091 "LFCAT" 1408298 T LFCAT (NIL) -9 NIL 1408437) (-591 1404283 1404909 1405595 "LEXTRIPK" 1406737 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-590 1401054 1401853 1402356 "LEXP" 1403863 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-589 1400574 1400775 1400867 "LETAST" 1400982 T LETAST (NIL) -8 NIL NIL) (-588 1398972 1399285 1399686 "LEADCDET" 1400256 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-587 1398162 1398236 1398465 "LAZM3PK" 1398893 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-586 1393125 1396241 1396778 "LAUPOL" 1397675 NIL LAUPOL (NIL T T) -8 NIL NIL) (-585 1392692 1392736 1392903 "LAPLACE" 1393075 NIL LAPLACE (NIL T T) -7 NIL NIL) (-584 1390666 1391793 1392044 "LA" 1392525 NIL LA (NIL T T T) -8 NIL NIL) (-583 1389771 1390321 1390361 "LALG" 1390422 NIL LALG (NIL T) -9 NIL 1390480) (-582 1389486 1389545 1389680 "LALG-" 1389685 NIL LALG- (NIL T T) -8 NIL NIL) (-581 1388396 1388583 1388880 "KOVACIC" 1389286 NIL KOVACIC (NIL T T) -7 NIL NIL) (-580 1388231 1388255 1388296 "KONVERT" 1388358 NIL KONVERT (NIL T) -9 NIL NIL) (-579 1388066 1388090 1388131 "KOERCE" 1388193 NIL KOERCE (NIL T) -9 NIL NIL) (-578 1385800 1386560 1386953 "KERNEL" 1387705 NIL KERNEL (NIL T) -8 NIL NIL) (-577 1385302 1385383 1385513 "KERNEL2" 1385714 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-576 1379153 1383841 1383895 "KDAGG" 1384272 NIL KDAGG (NIL T T) -9 NIL 1384478) (-575 1378682 1378806 1379011 "KDAGG-" 1379016 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-574 1371857 1378343 1378498 "KAFILE" 1378560 NIL KAFILE (NIL T) -8 NIL NIL) (-573 1366312 1371368 1371596 "JORDAN" 1371678 NIL JORDAN (NIL T T) -8 NIL NIL) (-572 1365736 1365961 1366082 "JOINAST" 1366211 T JOINAST (NIL) -8 NIL NIL) (-571 1365465 1365524 1365611 "JAVACODE" 1365669 T JAVACODE (NIL) -8 NIL NIL) (-570 1361764 1363670 1363724 "IXAGG" 1364653 NIL IXAGG (NIL T T) -9 NIL 1365112) (-569 1360683 1360989 1361408 "IXAGG-" 1361413 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-568 1356268 1360605 1360664 "IVECTOR" 1360669 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-567 1355034 1355271 1355537 "ITUPLE" 1356035 NIL ITUPLE (NIL T) -8 NIL NIL) (-566 1353470 1353647 1353953 "ITRIGMNP" 1354856 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-565 1352215 1352419 1352702 "ITFUN3" 1353246 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-564 1351847 1351904 1352013 "ITFUN2" 1352152 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-563 1349695 1350720 1351017 "ITAYLOR" 1351582 NIL ITAYLOR (NIL T) -8 NIL NIL) (-562 1338729 1343881 1345040 "ISUPS" 1348568 NIL ISUPS (NIL T) -8 NIL NIL) (-561 1337833 1337973 1338209 "ISUMP" 1338576 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-560 1333097 1337634 1337713 "ISTRING" 1337786 NIL ISTRING (NIL NIL) -8 NIL NIL) (-559 1332307 1332388 1332604 "IRURPK" 1333011 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-558 1331243 1331444 1331684 "IRSN" 1332087 T IRSN (NIL) -7 NIL NIL) (-557 1329278 1329633 1330068 "IRRF2F" 1330881 NIL IRRF2F (NIL T) -7 NIL NIL) (-556 1329025 1329063 1329139 "IRREDFFX" 1329234 NIL IRREDFFX (NIL T) -7 NIL NIL) (-555 1327640 1327899 1328198 "IROOT" 1328758 NIL IROOT (NIL T) -7 NIL NIL) (-554 1324278 1325329 1326019 "IR" 1326982 NIL IR (NIL T) -8 NIL NIL) (-553 1321891 1322386 1322952 "IR2" 1323756 NIL IR2 (NIL T T) -7 NIL NIL) (-552 1320967 1321080 1321300 "IR2F" 1321774 NIL IR2F (NIL T T) -7 NIL NIL) (-551 1320758 1320792 1320852 "IPRNTPK" 1320927 T IPRNTPK (NIL) -7 NIL NIL) (-550 1317377 1320647 1320716 "IPF" 1320721 NIL IPF (NIL NIL) -8 NIL NIL) (-549 1315740 1317302 1317359 "IPADIC" 1317364 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-548 1315239 1315297 1315486 "INVLAPLA" 1315676 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-547 1304888 1307241 1309627 "INTTR" 1312903 NIL INTTR (NIL T T) -7 NIL NIL) (-546 1301236 1301977 1302840 "INTTOOLS" 1304074 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-545 1300822 1300913 1301030 "INTSLPE" 1301139 T INTSLPE (NIL) -7 NIL NIL) (-544 1298817 1300745 1300804 "INTRVL" 1300809 NIL INTRVL (NIL T) -8 NIL NIL) (-543 1296424 1296936 1297510 "INTRF" 1298302 NIL INTRF (NIL T) -7 NIL NIL) (-542 1295839 1295936 1296077 "INTRET" 1296322 NIL INTRET (NIL T) -7 NIL NIL) (-541 1293841 1294230 1294699 "INTRAT" 1295447 NIL INTRAT (NIL T T) -7 NIL NIL) (-540 1291074 1291657 1292282 "INTPM" 1293326 NIL INTPM (NIL T T) -7 NIL NIL) (-539 1287783 1288382 1289126 "INTPAF" 1290460 NIL INTPAF (NIL T T T) -7 NIL NIL) (-538 1283014 1283963 1285001 "INTPACK" 1286765 T INTPACK (NIL) -7 NIL NIL) (-537 1279914 1282743 1282870 "INT" 1282907 T INT (NIL) -8 NIL NIL) (-536 1279166 1279318 1279526 "INTHERTR" 1279756 NIL INTHERTR (NIL T T) -7 NIL NIL) (-535 1278605 1278685 1278873 "INTHERAL" 1279080 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-534 1276451 1276894 1277351 "INTHEORY" 1278168 T INTHEORY (NIL) -7 NIL NIL) (-533 1267773 1269394 1271172 "INTG0" 1274803 NIL INTG0 (NIL T T T) -7 NIL NIL) (-532 1248346 1253136 1257946 "INTFTBL" 1262983 T INTFTBL (NIL) -8 NIL NIL) (-531 1247595 1247733 1247906 "INTFACT" 1248205 NIL INTFACT (NIL T) -7 NIL NIL) (-530 1244986 1245432 1245995 "INTEF" 1247149 NIL INTEF (NIL T T) -7 NIL NIL) (-529 1243489 1244194 1244222 "INTDOM" 1244523 T INTDOM (NIL) -9 NIL 1244730) (-528 1242858 1243032 1243274 "INTDOM-" 1243279 NIL INTDOM- (NIL T) -8 NIL NIL) (-527 1239394 1241280 1241334 "INTCAT" 1242133 NIL INTCAT (NIL T) -9 NIL 1242452) (-526 1238867 1238969 1239097 "INTBIT" 1239286 T INTBIT (NIL) -7 NIL NIL) (-525 1237542 1237696 1238009 "INTALG" 1238712 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-524 1236999 1237089 1237259 "INTAF" 1237446 NIL INTAF (NIL T T) -7 NIL NIL) (-523 1230453 1236809 1236949 "INTABL" 1236954 NIL INTABL (NIL T T T) -8 NIL NIL) (-522 1225447 1228130 1228158 "INS" 1229126 T INS (NIL) -9 NIL 1229807) (-521 1222687 1223458 1224432 "INS-" 1224505 NIL INS- (NIL T) -8 NIL NIL) (-520 1221466 1221693 1221990 "INPSIGN" 1222440 NIL INPSIGN (NIL T T) -7 NIL NIL) (-519 1220584 1220701 1220898 "INPRODPF" 1221346 NIL INPRODPF (NIL T T) -7 NIL NIL) (-518 1219478 1219595 1219832 "INPRODFF" 1220464 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-517 1218478 1218630 1218890 "INNMFACT" 1219314 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-516 1217675 1217772 1217960 "INMODGCD" 1218377 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-515 1216184 1216428 1216752 "INFSP" 1217420 NIL INFSP (NIL T T T) -7 NIL NIL) (-514 1215368 1215485 1215668 "INFPROD0" 1216064 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-513 1212379 1213537 1214028 "INFORM" 1214885 T INFORM (NIL) -8 NIL NIL) (-512 1211989 1212049 1212147 "INFORM1" 1212314 NIL INFORM1 (NIL T) -7 NIL NIL) (-511 1211512 1211601 1211715 "INFINITY" 1211895 T INFINITY (NIL) -7 NIL NIL) (-510 1210129 1210378 1210699 "INEP" 1211260 NIL INEP (NIL T T T) -7 NIL NIL) (-509 1209405 1210026 1210091 "INDE" 1210096 NIL INDE (NIL T) -8 NIL NIL) (-508 1208969 1209037 1209154 "INCRMAPS" 1209332 NIL INCRMAPS (NIL T) -7 NIL NIL) (-507 1204280 1205205 1206149 "INBFF" 1208057 NIL INBFF (NIL T) -7 NIL NIL) (-506 1203799 1204001 1204093 "INAST" 1204208 T INAST (NIL) -8 NIL NIL) (-505 1203270 1203478 1203584 "IMPTAST" 1203713 T IMPTAST (NIL) -8 NIL NIL) (-504 1199765 1203115 1203218 "IMATRIX" 1203223 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-503 1198477 1198600 1198915 "IMATQF" 1199621 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-502 1196697 1196924 1197261 "IMATLIN" 1198233 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-501 1191323 1196621 1196679 "ILIST" 1196684 NIL ILIST (NIL T NIL) -8 NIL NIL) (-500 1189276 1191183 1191296 "IIARRAY2" 1191301 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-499 1184709 1189187 1189251 "IFF" 1189256 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-498 1184100 1184326 1184442 "IFAST" 1184613 T IFAST (NIL) -8 NIL NIL) (-497 1179143 1183392 1183580 "IFARRAY" 1183957 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-496 1178350 1179047 1179120 "IFAMON" 1179125 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-495 1177934 1177999 1178053 "IEVALAB" 1178260 NIL IEVALAB (NIL T T) -9 NIL NIL) (-494 1177609 1177677 1177837 "IEVALAB-" 1177842 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-493 1177267 1177523 1177586 "IDPO" 1177591 NIL IDPO (NIL T T) -8 NIL NIL) (-492 1176544 1177156 1177231 "IDPOAMS" 1177236 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-491 1175878 1176433 1176508 "IDPOAM" 1176513 NIL IDPOAM (NIL T T) -8 NIL NIL) (-490 1174963 1175213 1175266 "IDPC" 1175679 NIL IDPC (NIL T T) -9 NIL 1175828) (-489 1174459 1174855 1174928 "IDPAM" 1174933 NIL IDPAM (NIL T T) -8 NIL NIL) (-488 1173862 1174351 1174424 "IDPAG" 1174429 NIL IDPAG (NIL T T) -8 NIL NIL) (-487 1173610 1173777 1173827 "IDENT" 1173832 T IDENT (NIL) -8 NIL NIL) (-486 1169865 1170713 1171608 "IDECOMP" 1172767 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-485 1162738 1163788 1164835 "IDEAL" 1168901 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-484 1161902 1162014 1162213 "ICDEN" 1162622 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-483 1161001 1161382 1161529 "ICARD" 1161775 T ICARD (NIL) -8 NIL NIL) (-482 1159073 1159386 1159789 "IBPTOOLS" 1160678 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-481 1154707 1158693 1158806 "IBITS" 1158992 NIL IBITS (NIL NIL) -8 NIL NIL) (-480 1151430 1152006 1152701 "IBATOOL" 1154124 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-479 1149210 1149671 1150204 "IBACHIN" 1150965 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-478 1147087 1149056 1149159 "IARRAY2" 1149164 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-477 1143240 1147013 1147070 "IARRAY1" 1147075 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-476 1137243 1141658 1142136 "IAN" 1142782 T IAN (NIL) -8 NIL NIL) (-475 1136754 1136811 1136984 "IALGFACT" 1137180 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-474 1136282 1136395 1136423 "HYPCAT" 1136630 T HYPCAT (NIL) -9 NIL NIL) (-473 1135820 1135937 1136123 "HYPCAT-" 1136128 NIL HYPCAT- (NIL T) -8 NIL NIL) (-472 1135442 1135615 1135698 "HOSTNAME" 1135757 T HOSTNAME (NIL) -8 NIL NIL) (-471 1132121 1133452 1133493 "HOAGG" 1134474 NIL HOAGG (NIL T) -9 NIL 1135153) (-470 1130715 1131114 1131640 "HOAGG-" 1131645 NIL HOAGG- (NIL T T) -8 NIL NIL) (-469 1124610 1130156 1130322 "HEXADEC" 1130569 T HEXADEC (NIL) -8 NIL NIL) (-468 1123358 1123580 1123843 "HEUGCD" 1124387 NIL HEUGCD (NIL T) -7 NIL NIL) (-467 1122461 1123195 1123325 "HELLFDIV" 1123330 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-466 1120689 1122238 1122326 "HEAP" 1122405 NIL HEAP (NIL T) -8 NIL NIL) (-465 1119997 1120241 1120375 "HEADAST" 1120575 T HEADAST (NIL) -8 NIL NIL) (-464 1113950 1119912 1119974 "HDP" 1119979 NIL HDP (NIL NIL T) -8 NIL NIL) (-463 1107708 1113587 1113738 "HDMP" 1113851 NIL HDMP (NIL NIL T) -8 NIL NIL) (-462 1107033 1107172 1107336 "HB" 1107564 T HB (NIL) -7 NIL NIL) (-461 1100530 1106879 1106983 "HASHTBL" 1106988 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-460 1098348 1100158 1100337 "HACKPI" 1100371 T HACKPI (NIL) -8 NIL NIL) (-459 1094043 1098201 1098314 "GTSET" 1098319 NIL GTSET (NIL T T T T) -8 NIL NIL) (-458 1087569 1093921 1094019 "GSTBL" 1094024 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-457 1079887 1086605 1086869 "GSERIES" 1087360 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-456 1079054 1079445 1079473 "GROUP" 1079676 T GROUP (NIL) -9 NIL 1079810) (-455 1078420 1078579 1078830 "GROUP-" 1078835 NIL GROUP- (NIL T) -8 NIL NIL) (-454 1076789 1077108 1077495 "GROEBSOL" 1078097 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-453 1075729 1075991 1076042 "GRMOD" 1076571 NIL GRMOD (NIL T T) -9 NIL 1076739) (-452 1075497 1075533 1075661 "GRMOD-" 1075666 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-451 1070822 1071851 1072851 "GRIMAGE" 1074517 T GRIMAGE (NIL) -8 NIL NIL) (-450 1069289 1069549 1069873 "GRDEF" 1070518 T GRDEF (NIL) -7 NIL NIL) (-449 1068733 1068849 1068990 "GRAY" 1069168 T GRAY (NIL) -7 NIL NIL) (-448 1067966 1068346 1068397 "GRALG" 1068550 NIL GRALG (NIL T T) -9 NIL 1068642) (-447 1067627 1067700 1067863 "GRALG-" 1067868 NIL GRALG- (NIL T T T) -8 NIL NIL) (-446 1064433 1067214 1067391 "GPOLSET" 1067534 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-445 1063789 1063846 1064103 "GOSPER" 1064370 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-444 1059548 1060227 1060753 "GMODPOL" 1063488 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-443 1058553 1058737 1058975 "GHENSEL" 1059360 NIL GHENSEL (NIL T T) -7 NIL NIL) (-442 1052619 1053462 1054488 "GENUPS" 1057637 NIL GENUPS (NIL T T) -7 NIL NIL) (-441 1052316 1052367 1052456 "GENUFACT" 1052562 NIL GENUFACT (NIL T) -7 NIL NIL) (-440 1051728 1051805 1051970 "GENPGCD" 1052234 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-439 1051202 1051237 1051450 "GENMFACT" 1051687 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-438 1049770 1050025 1050332 "GENEEZ" 1050945 NIL GENEEZ (NIL T T) -7 NIL NIL) (-437 1043690 1049383 1049544 "GDMP" 1049693 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-436 1033067 1037461 1038567 "GCNAALG" 1042673 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-435 1031530 1032358 1032386 "GCDDOM" 1032641 T GCDDOM (NIL) -9 NIL 1032798) (-434 1031000 1031127 1031342 "GCDDOM-" 1031347 NIL GCDDOM- (NIL T) -8 NIL NIL) (-433 1029672 1029857 1030161 "GB" 1030779 NIL GB (NIL T T T T) -7 NIL NIL) (-432 1018292 1020618 1023010 "GBINTERN" 1027363 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-431 1016129 1016421 1016842 "GBF" 1017967 NIL GBF (NIL T T T T) -7 NIL NIL) (-430 1014910 1015075 1015342 "GBEUCLID" 1015945 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-429 1014259 1014384 1014533 "GAUSSFAC" 1014781 T GAUSSFAC (NIL) -7 NIL NIL) (-428 1012636 1012938 1013251 "GALUTIL" 1013978 NIL GALUTIL (NIL T) -7 NIL NIL) (-427 1010953 1011227 1011550 "GALPOLYU" 1012363 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-426 1008342 1008632 1009037 "GALFACTU" 1010650 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-425 1000148 1001647 1003255 "GALFACT" 1006774 NIL GALFACT (NIL T) -7 NIL NIL) (-424 997536 998194 998222 "FVFUN" 999378 T FVFUN (NIL) -9 NIL 1000098) (-423 996802 996984 997012 "FVC" 997303 T FVC (NIL) -9 NIL 997486) (-422 996444 996599 996680 "FUNCTION" 996754 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-421 994114 994665 995154 "FT" 995975 T FT (NIL) -8 NIL NIL) (-420 992932 993415 993618 "FTEM" 993931 T FTEM (NIL) -8 NIL NIL) (-419 991197 991485 991887 "FSUPFACT" 992624 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-418 989594 989883 990215 "FST" 990885 T FST (NIL) -8 NIL NIL) (-417 988769 988875 989069 "FSRED" 989476 NIL FSRED (NIL T T) -7 NIL NIL) (-416 987448 987703 988057 "FSPRMELT" 988484 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-415 984533 984971 985470 "FSPECF" 987011 NIL FSPECF (NIL T T) -7 NIL NIL) (-414 967057 975459 975499 "FS" 979337 NIL FS (NIL T) -9 NIL 981619) (-413 955707 958697 962753 "FS-" 963050 NIL FS- (NIL T T) -8 NIL NIL) (-412 955223 955277 955453 "FSINT" 955648 NIL FSINT (NIL T T) -7 NIL NIL) (-411 953550 954216 954519 "FSERIES" 955002 NIL FSERIES (NIL T T) -8 NIL NIL) (-410 952568 952684 952914 "FSCINT" 953430 NIL FSCINT (NIL T T) -7 NIL NIL) (-409 948802 951512 951553 "FSAGG" 951923 NIL FSAGG (NIL T) -9 NIL 952182) (-408 946564 947165 947961 "FSAGG-" 948056 NIL FSAGG- (NIL T T) -8 NIL NIL) (-407 945606 945749 945976 "FSAGG2" 946417 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-406 943265 943544 944097 "FS2UPS" 945324 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-405 942851 942894 943047 "FS2" 943216 NIL FS2 (NIL T T T T) -7 NIL NIL) (-404 941711 941882 942190 "FS2EXPXP" 942676 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-403 941137 941252 941404 "FRUTIL" 941591 NIL FRUTIL (NIL T) -7 NIL NIL) (-402 932603 936636 937992 "FR" 939813 NIL FR (NIL T) -8 NIL NIL) (-401 927678 930321 930361 "FRNAALG" 931757 NIL FRNAALG (NIL T) -9 NIL 932364) (-400 923356 924427 925702 "FRNAALG-" 926452 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-399 922994 923037 923164 "FRNAAF2" 923307 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-398 921405 921851 922145 "FRMOD" 922807 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-397 919192 919796 920112 "FRIDEAL" 921196 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-396 918391 918478 918765 "FRIDEAL2" 919099 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-395 917649 918057 918098 "FRETRCT" 918103 NIL FRETRCT (NIL T) -9 NIL 918274) (-394 916761 916992 917343 "FRETRCT-" 917348 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-393 914012 915188 915247 "FRAMALG" 916129 NIL FRAMALG (NIL T T) -9 NIL 916421) (-392 912146 912601 913231 "FRAMALG-" 913454 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-391 906113 911621 911897 "FRAC" 911902 NIL FRAC (NIL T) -8 NIL NIL) (-390 905749 905806 905913 "FRAC2" 906050 NIL FRAC2 (NIL T T) -7 NIL NIL) (-389 905385 905442 905549 "FR2" 905686 NIL FR2 (NIL T T) -7 NIL NIL) (-388 900118 902966 902994 "FPS" 904113 T FPS (NIL) -9 NIL 904670) (-387 899567 899676 899840 "FPS-" 899986 NIL FPS- (NIL T) -8 NIL NIL) (-386 897074 898709 898737 "FPC" 898962 T FPC (NIL) -9 NIL 899104) (-385 896867 896907 897004 "FPC-" 897009 NIL FPC- (NIL T) -8 NIL NIL) (-384 895745 896355 896396 "FPATMAB" 896401 NIL FPATMAB (NIL T) -9 NIL 896553) (-383 893445 893921 894347 "FPARFRAC" 895382 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-382 888838 889337 890019 "FORTRAN" 892877 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-381 886554 887054 887593 "FORT" 888319 T FORT (NIL) -7 NIL NIL) (-380 884230 884792 884820 "FORTFN" 885880 T FORTFN (NIL) -9 NIL 886504) (-379 883994 884044 884072 "FORTCAT" 884131 T FORTCAT (NIL) -9 NIL 884193) (-378 882054 882537 882936 "FORMULA" 883615 T FORMULA (NIL) -8 NIL NIL) (-377 881842 881872 881941 "FORMULA1" 882018 NIL FORMULA1 (NIL T) -7 NIL NIL) (-376 881365 881417 881590 "FORDER" 881784 NIL FORDER (NIL T T T T) -7 NIL NIL) (-375 880461 880625 880818 "FOP" 881192 T FOP (NIL) -7 NIL NIL) (-374 879069 879741 879915 "FNLA" 880343 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-373 877737 878126 878154 "FNCAT" 878726 T FNCAT (NIL) -9 NIL 879019) (-372 877303 877696 877724 "FNAME" 877729 T FNAME (NIL) -8 NIL NIL) (-371 876004 876933 876961 "FMTC" 876966 T FMTC (NIL) -9 NIL 877001) (-370 872368 873529 874157 "FMONOID" 875409 NIL FMONOID (NIL T) -8 NIL NIL) (-369 871588 872111 872259 "FM" 872264 NIL FM (NIL T T) -8 NIL NIL) (-368 869012 869658 869686 "FMFUN" 870830 T FMFUN (NIL) -9 NIL 871538) (-367 868281 868462 868490 "FMC" 868780 T FMC (NIL) -9 NIL 868962) (-366 865509 866343 866396 "FMCAT" 867578 NIL FMCAT (NIL T T) -9 NIL 868072) (-365 864404 865277 865376 "FM1" 865454 NIL FM1 (NIL T T) -8 NIL NIL) (-364 862178 862594 863088 "FLOATRP" 863955 NIL FLOATRP (NIL T) -7 NIL NIL) (-363 855729 859834 860464 "FLOAT" 861568 T FLOAT (NIL) -8 NIL NIL) (-362 853167 853667 854245 "FLOATCP" 855196 NIL FLOATCP (NIL T) -7 NIL NIL) (-361 851998 852802 852842 "FLINEXP" 852847 NIL FLINEXP (NIL T) -9 NIL 852940) (-360 851153 851388 851715 "FLINEXP-" 851720 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-359 850229 850373 850597 "FLASORT" 851005 NIL FLASORT (NIL T T) -7 NIL NIL) (-358 847446 848288 848340 "FLALG" 849567 NIL FLALG (NIL T T) -9 NIL 850034) (-357 841230 844932 844973 "FLAGG" 846235 NIL FLAGG (NIL T) -9 NIL 846887) (-356 839956 840295 840785 "FLAGG-" 840790 NIL FLAGG- (NIL T T) -8 NIL NIL) (-355 838998 839141 839368 "FLAGG2" 839809 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-354 836012 836986 837045 "FINRALG" 838173 NIL FINRALG (NIL T T) -9 NIL 838681) (-353 835172 835401 835740 "FINRALG-" 835745 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-352 834578 834791 834819 "FINITE" 835015 T FINITE (NIL) -9 NIL 835122) (-351 827036 829197 829237 "FINAALG" 832904 NIL FINAALG (NIL T) -9 NIL 834357) (-350 822377 823418 824562 "FINAALG-" 825941 NIL FINAALG- (NIL T T) -8 NIL NIL) (-349 821772 822132 822235 "FILE" 822307 NIL FILE (NIL T) -8 NIL NIL) (-348 820456 820768 820822 "FILECAT" 821506 NIL FILECAT (NIL T T) -9 NIL 821722) (-347 818377 819871 819899 "FIELD" 819939 T FIELD (NIL) -9 NIL 820019) (-346 816997 817382 817893 "FIELD-" 817898 NIL FIELD- (NIL T) -8 NIL NIL) (-345 814877 815634 815980 "FGROUP" 816684 NIL FGROUP (NIL T) -8 NIL NIL) (-344 813967 814131 814351 "FGLMICPK" 814709 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-343 809834 813892 813949 "FFX" 813954 NIL FFX (NIL T NIL) -8 NIL NIL) (-342 809435 809496 809631 "FFSLPE" 809767 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-341 805428 806207 807003 "FFPOLY" 808671 NIL FFPOLY (NIL T) -7 NIL NIL) (-340 804932 804968 805177 "FFPOLY2" 805386 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-339 800818 804851 804914 "FFP" 804919 NIL FFP (NIL T NIL) -8 NIL NIL) (-338 796251 800729 800793 "FF" 800798 NIL FF (NIL NIL NIL) -8 NIL NIL) (-337 791412 795594 795784 "FFNBX" 796105 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-336 786386 790547 790805 "FFNBP" 791266 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-335 781054 785670 785881 "FFNB" 786219 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-334 779886 780084 780399 "FFINTBAS" 780851 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-333 776171 778346 778374 "FFIELDC" 778994 T FFIELDC (NIL) -9 NIL 779370) (-332 774834 775204 775701 "FFIELDC-" 775706 NIL FFIELDC- (NIL T) -8 NIL NIL) (-331 774404 774449 774573 "FFHOM" 774776 NIL FFHOM (NIL T T T) -7 NIL NIL) (-330 772102 772586 773103 "FFF" 773919 NIL FFF (NIL T) -7 NIL NIL) (-329 767755 771844 771945 "FFCGX" 772045 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-328 763422 767487 767594 "FFCGP" 767698 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-327 758640 763149 763257 "FFCG" 763358 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-326 740709 749740 749826 "FFCAT" 754991 NIL FFCAT (NIL T T T) -9 NIL 756442) (-325 735907 736954 738268 "FFCAT-" 739498 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-324 735318 735361 735596 "FFCAT2" 735858 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-323 724564 728308 729525 "FEXPR" 734173 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-322 723564 723999 724040 "FEVALAB" 724124 NIL FEVALAB (NIL T) -9 NIL 724385) (-321 722723 722933 723271 "FEVALAB-" 723276 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-320 721316 722106 722309 "FDIV" 722622 NIL FDIV (NIL T T T T) -8 NIL NIL) (-319 718382 719097 719212 "FDIVCAT" 720780 NIL FDIVCAT (NIL T T T T) -9 NIL 721217) (-318 718144 718171 718341 "FDIVCAT-" 718346 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-317 717364 717451 717728 "FDIV2" 718051 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-316 716050 716309 716598 "FCPAK1" 717095 T FCPAK1 (NIL) -7 NIL NIL) (-315 715178 715550 715691 "FCOMP" 715941 NIL FCOMP (NIL T) -8 NIL NIL) (-314 698813 702227 705788 "FC" 711637 T FC (NIL) -8 NIL NIL) (-313 691469 695450 695490 "FAXF" 697292 NIL FAXF (NIL T) -9 NIL 697983) (-312 688748 689403 690228 "FAXF-" 690693 NIL FAXF- (NIL T T) -8 NIL NIL) (-311 683848 688124 688300 "FARRAY" 688605 NIL FARRAY (NIL T) -8 NIL NIL) (-310 679278 681305 681357 "FAMR" 682369 NIL FAMR (NIL T T) -9 NIL 682829) (-309 678169 678471 678905 "FAMR-" 678910 NIL FAMR- (NIL T T T) -8 NIL NIL) (-308 677365 678091 678144 "FAMONOID" 678149 NIL FAMONOID (NIL T) -8 NIL NIL) (-307 675197 675881 675934 "FAMONC" 676875 NIL FAMONC (NIL T T) -9 NIL 677260) (-306 673889 674951 675088 "FAGROUP" 675093 NIL FAGROUP (NIL T) -8 NIL NIL) (-305 671692 672011 672413 "FACUTIL" 673570 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-304 670791 670976 671198 "FACTFUNC" 671502 NIL FACTFUNC (NIL T) -7 NIL NIL) (-303 663196 670042 670254 "EXPUPXS" 670647 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-302 660679 661219 661805 "EXPRTUBE" 662630 T EXPRTUBE (NIL) -7 NIL NIL) (-301 656873 657465 658202 "EXPRODE" 660018 NIL EXPRODE (NIL T T) -7 NIL NIL) (-300 642309 655532 655958 "EXPR" 656479 NIL EXPR (NIL T) -8 NIL NIL) (-299 636737 637324 638136 "EXPR2UPS" 641607 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-298 636373 636430 636537 "EXPR2" 636674 NIL EXPR2 (NIL T T) -7 NIL NIL) (-297 627792 635510 635805 "EXPEXPAN" 636211 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-296 627619 627749 627778 "EXIT" 627783 T EXIT (NIL) -8 NIL NIL) (-295 627268 627444 627512 "EXITAST" 627571 T EXITAST (NIL) -8 NIL NIL) (-294 626895 626957 627070 "EVALCYC" 627200 NIL EVALCYC (NIL T) -7 NIL NIL) (-293 626436 626554 626595 "EVALAB" 626765 NIL EVALAB (NIL T) -9 NIL 626869) (-292 625917 626039 626260 "EVALAB-" 626265 NIL EVALAB- (NIL T T) -8 NIL NIL) (-291 623421 624689 624717 "EUCDOM" 625272 T EUCDOM (NIL) -9 NIL 625622) (-290 621826 622268 622858 "EUCDOM-" 622863 NIL EUCDOM- (NIL T) -8 NIL NIL) (-289 609404 612152 614892 "ESTOOLS" 619106 T ESTOOLS (NIL) -7 NIL NIL) (-288 609040 609097 609204 "ESTOOLS2" 609341 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-287 608791 608833 608913 "ESTOOLS1" 608992 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-286 602728 604452 604480 "ES" 607244 T ES (NIL) -9 NIL 608650) (-285 597675 598962 600779 "ES-" 600943 NIL ES- (NIL T) -8 NIL NIL) (-284 594050 594810 595590 "ESCONT" 596915 T ESCONT (NIL) -7 NIL NIL) (-283 593795 593827 593909 "ESCONT1" 594012 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-282 593470 593520 593620 "ES2" 593739 NIL ES2 (NIL T T) -7 NIL NIL) (-281 593100 593158 593267 "ES1" 593406 NIL ES1 (NIL T T) -7 NIL NIL) (-280 592316 592445 592621 "ERROR" 592944 T ERROR (NIL) -7 NIL NIL) (-279 585819 592175 592266 "EQTBL" 592271 NIL EQTBL (NIL T T) -8 NIL NIL) (-278 578382 581137 582584 "EQ" 584405 NIL -3809 (NIL T) -8 NIL NIL) (-277 578014 578071 578180 "EQ2" 578319 NIL EQ2 (NIL T T) -7 NIL NIL) (-276 573306 574352 575445 "EP" 576953 NIL EP (NIL T) -7 NIL NIL) (-275 571888 572189 572506 "ENV" 573009 T ENV (NIL) -8 NIL NIL) (-274 571089 571609 571637 "ENTIRER" 571642 T ENTIRER (NIL) -9 NIL 571687) (-273 567591 569044 569414 "EMR" 570888 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-272 566735 566920 566974 "ELTAGG" 567354 NIL ELTAGG (NIL T T) -9 NIL 567565) (-271 566454 566516 566657 "ELTAGG-" 566662 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-270 566243 566272 566326 "ELTAB" 566410 NIL ELTAB (NIL T T) -9 NIL NIL) (-269 565369 565515 565714 "ELFUTS" 566094 NIL ELFUTS (NIL T T) -7 NIL NIL) (-268 565111 565167 565195 "ELEMFUN" 565300 T ELEMFUN (NIL) -9 NIL NIL) (-267 564981 565002 565070 "ELEMFUN-" 565075 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-266 559872 563081 563122 "ELAGG" 564062 NIL ELAGG (NIL T) -9 NIL 564525) (-265 558157 558591 559254 "ELAGG-" 559259 NIL ELAGG- (NIL T T) -8 NIL NIL) (-264 556814 557094 557389 "ELABEXPR" 557882 T ELABEXPR (NIL) -8 NIL NIL) (-263 549680 551481 552308 "EFUPXS" 556090 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-262 543130 544931 545741 "EFULS" 548956 NIL EFULS (NIL T T T) -8 NIL NIL) (-261 540561 540919 541397 "EFSTRUC" 542762 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-260 529633 531198 532758 "EF" 539076 NIL EF (NIL T T) -7 NIL NIL) (-259 528734 529118 529267 "EAB" 529504 T EAB (NIL) -8 NIL NIL) (-258 527945 528693 528721 "E04UCFA" 528726 T E04UCFA (NIL) -8 NIL NIL) (-257 527156 527904 527932 "E04NAFA" 527937 T E04NAFA (NIL) -8 NIL NIL) (-256 526367 527115 527143 "E04MBFA" 527148 T E04MBFA (NIL) -8 NIL NIL) (-255 525578 526326 526354 "E04JAFA" 526359 T E04JAFA (NIL) -8 NIL NIL) (-254 524791 525537 525565 "E04GCFA" 525570 T E04GCFA (NIL) -8 NIL NIL) (-253 524004 524750 524778 "E04FDFA" 524783 T E04FDFA (NIL) -8 NIL NIL) (-252 523215 523963 523991 "E04DGFA" 523996 T E04DGFA (NIL) -8 NIL NIL) (-251 517400 518745 520107 "E04AGNT" 521873 T E04AGNT (NIL) -7 NIL NIL) (-250 516126 516606 516646 "DVARCAT" 517121 NIL DVARCAT (NIL T) -9 NIL 517319) (-249 515330 515542 515856 "DVARCAT-" 515861 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-248 508238 515132 515259 "DSMP" 515264 NIL DSMP (NIL T T T) -8 NIL NIL) (-247 503048 504183 505251 "DROPT" 507190 T DROPT (NIL) -8 NIL NIL) (-246 502713 502772 502870 "DROPT1" 502983 NIL DROPT1 (NIL T) -7 NIL NIL) (-245 497828 498954 500091 "DROPT0" 501596 T DROPT0 (NIL) -7 NIL NIL) (-244 496173 496498 496884 "DRAWPT" 497462 T DRAWPT (NIL) -7 NIL NIL) (-243 490760 491683 492762 "DRAW" 495147 NIL DRAW (NIL T) -7 NIL NIL) (-242 490393 490446 490564 "DRAWHACK" 490701 NIL DRAWHACK (NIL T) -7 NIL NIL) (-241 489124 489393 489684 "DRAWCX" 490122 T DRAWCX (NIL) -7 NIL NIL) (-240 488642 488710 488860 "DRAWCURV" 489050 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-239 479113 481072 483187 "DRAWCFUN" 486547 T DRAWCFUN (NIL) -7 NIL NIL) (-238 475926 477808 477849 "DQAGG" 478478 NIL DQAGG (NIL T) -9 NIL 478751) (-237 464474 471166 471248 "DPOLCAT" 473086 NIL DPOLCAT (NIL T T T T) -9 NIL 473630) (-236 459314 460660 462617 "DPOLCAT-" 462622 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-235 452518 459176 459273 "DPMO" 459278 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-234 445625 452299 452465 "DPMM" 452470 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-233 445045 445248 445362 "DOMAIN" 445531 T DOMAIN (NIL) -8 NIL NIL) (-232 438803 444682 444833 "DMP" 444946 NIL DMP (NIL NIL T) -8 NIL NIL) (-231 438403 438459 438603 "DLP" 438741 NIL DLP (NIL T) -7 NIL NIL) (-230 432047 437504 437731 "DLIST" 438208 NIL DLIST (NIL T) -8 NIL NIL) (-229 428893 430902 430943 "DLAGG" 431493 NIL DLAGG (NIL T) -9 NIL 431722) (-228 427744 428374 428402 "DIVRING" 428494 T DIVRING (NIL) -9 NIL 428577) (-227 426981 427171 427471 "DIVRING-" 427476 NIL DIVRING- (NIL T) -8 NIL NIL) (-226 425083 425440 425846 "DISPLAY" 426595 T DISPLAY (NIL) -7 NIL NIL) (-225 419058 424997 425060 "DIRPROD" 425065 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-224 417906 418109 418374 "DIRPROD2" 418851 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-223 407507 413426 413479 "DIRPCAT" 413887 NIL DIRPCAT (NIL NIL T) -9 NIL 414726) (-222 404833 405475 406356 "DIRPCAT-" 406693 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-221 404120 404280 404466 "DIOSP" 404667 T DIOSP (NIL) -7 NIL NIL) (-220 400822 403032 403073 "DIOPS" 403507 NIL DIOPS (NIL T) -9 NIL 403736) (-219 400371 400485 400676 "DIOPS-" 400681 NIL DIOPS- (NIL T T) -8 NIL NIL) (-218 399285 399879 399907 "DIFRING" 400094 T DIFRING (NIL) -9 NIL 400203) (-217 398931 399008 399160 "DIFRING-" 399165 NIL DIFRING- (NIL T) -8 NIL NIL) (-216 396763 398001 398041 "DIFEXT" 398400 NIL DIFEXT (NIL T) -9 NIL 398693) (-215 395049 395477 396142 "DIFEXT-" 396147 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-214 392371 394581 394622 "DIAGG" 394627 NIL DIAGG (NIL T) -9 NIL 394647) (-213 391755 391912 392164 "DIAGG-" 392169 NIL DIAGG- (NIL T T) -8 NIL NIL) (-212 387220 390714 390991 "DHMATRIX" 391524 NIL DHMATRIX (NIL T) -8 NIL NIL) (-211 382832 383741 384751 "DFSFUN" 386230 T DFSFUN (NIL) -7 NIL NIL) (-210 377683 381546 381911 "DFLOAT" 382487 T DFLOAT (NIL) -8 NIL NIL) (-209 375916 376197 376592 "DFINTTLS" 377391 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-208 372995 373951 374349 "DERHAM" 375583 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-207 370844 372770 372859 "DEQUEUE" 372939 NIL DEQUEUE (NIL T) -8 NIL NIL) (-206 370062 370195 370390 "DEGRED" 370706 NIL DEGRED (NIL T T) -7 NIL NIL) (-205 366462 367207 368059 "DEFINTRF" 369290 NIL DEFINTRF (NIL T) -7 NIL NIL) (-204 363993 364462 365060 "DEFINTEF" 365981 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-203 357888 363434 363600 "DECIMAL" 363847 T DECIMAL (NIL) -8 NIL NIL) (-202 355400 355858 356364 "DDFACT" 357432 NIL DDFACT (NIL T T) -7 NIL NIL) (-201 354996 355039 355190 "DBLRESP" 355351 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-200 352706 353040 353409 "DBASE" 354754 NIL DBASE (NIL T) -8 NIL NIL) (-199 351975 352186 352332 "DATABUF" 352605 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-198 351109 351934 351962 "D03FAFA" 351967 T D03FAFA (NIL) -8 NIL NIL) (-197 350244 351068 351096 "D03EEFA" 351101 T D03EEFA (NIL) -8 NIL NIL) (-196 348194 348660 349149 "D03AGNT" 349775 T D03AGNT (NIL) -7 NIL NIL) (-195 347511 348153 348181 "D02EJFA" 348186 T D02EJFA (NIL) -8 NIL NIL) (-194 346828 347470 347498 "D02CJFA" 347503 T D02CJFA (NIL) -8 NIL NIL) (-193 346145 346787 346815 "D02BHFA" 346820 T D02BHFA (NIL) -8 NIL NIL) (-192 345462 346104 346132 "D02BBFA" 346137 T D02BBFA (NIL) -8 NIL NIL) (-191 338660 340248 341854 "D02AGNT" 343876 T D02AGNT (NIL) -7 NIL NIL) (-190 336429 336951 337497 "D01WGTS" 338134 T D01WGTS (NIL) -7 NIL NIL) (-189 335530 336388 336416 "D01TRNS" 336421 T D01TRNS (NIL) -8 NIL NIL) (-188 334631 335489 335517 "D01GBFA" 335522 T D01GBFA (NIL) -8 NIL NIL) (-187 333732 334590 334618 "D01FCFA" 334623 T D01FCFA (NIL) -8 NIL NIL) (-186 332833 333691 333719 "D01ASFA" 333724 T D01ASFA (NIL) -8 NIL NIL) (-185 331934 332792 332820 "D01AQFA" 332825 T D01AQFA (NIL) -8 NIL NIL) (-184 331035 331893 331921 "D01APFA" 331926 T D01APFA (NIL) -8 NIL NIL) (-183 330136 330994 331022 "D01ANFA" 331027 T D01ANFA (NIL) -8 NIL NIL) (-182 329237 330095 330123 "D01AMFA" 330128 T D01AMFA (NIL) -8 NIL NIL) (-181 328338 329196 329224 "D01ALFA" 329229 T D01ALFA (NIL) -8 NIL NIL) (-180 327439 328297 328325 "D01AKFA" 328330 T D01AKFA (NIL) -8 NIL NIL) (-179 326540 327398 327426 "D01AJFA" 327431 T D01AJFA (NIL) -8 NIL NIL) (-178 319844 321393 322952 "D01AGNT" 325001 T D01AGNT (NIL) -7 NIL NIL) (-177 319181 319309 319461 "CYCLOTOM" 319712 T CYCLOTOM (NIL) -7 NIL NIL) (-176 315916 316629 317356 "CYCLES" 318474 T CYCLES (NIL) -7 NIL NIL) (-175 315228 315362 315533 "CVMP" 315777 NIL CVMP (NIL T) -7 NIL NIL) (-174 313009 313267 313642 "CTRIGMNP" 314956 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-173 312520 312709 312808 "CTORCALL" 312930 T CTORCALL (NIL) -8 NIL NIL) (-172 311894 311993 312146 "CSTTOOLS" 312417 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-171 307693 308350 309108 "CRFP" 311206 NIL CRFP (NIL T T) -7 NIL NIL) (-170 307213 307414 307506 "CRCAST" 307621 T CRCAST (NIL) -8 NIL NIL) (-169 306260 306445 306673 "CRAPACK" 307017 NIL CRAPACK (NIL T) -7 NIL NIL) (-168 305644 305745 305949 "CPMATCH" 306136 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-167 305369 305397 305503 "CPIMA" 305610 NIL CPIMA (NIL T T T) -7 NIL NIL) (-166 301733 302405 303123 "COORDSYS" 304704 NIL COORDSYS (NIL T) -7 NIL NIL) (-165 301117 301246 301396 "CONTOUR" 301603 T CONTOUR (NIL) -8 NIL NIL) (-164 297043 299120 299612 "CONTFRAC" 300657 NIL CONTFRAC (NIL T) -8 NIL NIL) (-163 296238 296758 296786 "COMRING" 296791 T COMRING (NIL) -9 NIL 296842) (-162 295319 295596 295780 "COMPPROP" 296074 T COMPPROP (NIL) -8 NIL NIL) (-161 294980 295015 295143 "COMPLPAT" 295278 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-160 285044 294789 294898 "COMPLEX" 294903 NIL COMPLEX (NIL T) -8 NIL NIL) (-159 284680 284737 284844 "COMPLEX2" 284981 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-158 284398 284433 284531 "COMPFACT" 284639 NIL COMPFACT (NIL T T) -7 NIL NIL) (-157 268807 279018 279058 "COMPCAT" 280062 NIL COMPCAT (NIL T) -9 NIL 281457) (-156 258322 261246 264873 "COMPCAT-" 265229 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-155 258053 258081 258183 "COMMUPC" 258288 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-154 257848 257881 257940 "COMMONOP" 258014 T COMMONOP (NIL) -7 NIL NIL) (-153 257431 257599 257686 "COMM" 257781 T COMM (NIL) -8 NIL NIL) (-152 256680 256874 256902 "COMBOPC" 257240 T COMBOPC (NIL) -9 NIL 257415) (-151 255576 255786 256028 "COMBINAT" 256470 NIL COMBINAT (NIL T) -7 NIL NIL) (-150 251774 252347 252987 "COMBF" 254998 NIL COMBF (NIL T T) -7 NIL NIL) (-149 250560 250890 251125 "COLOR" 251559 T COLOR (NIL) -8 NIL NIL) (-148 250200 250247 250372 "CMPLXRT" 250507 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-147 245702 246730 247810 "CLIP" 249140 T CLIP (NIL) -7 NIL NIL) (-146 244086 244810 245048 "CLIF" 245530 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-145 240308 242232 242273 "CLAGG" 243202 NIL CLAGG (NIL T) -9 NIL 243738) (-144 238730 239187 239770 "CLAGG-" 239775 NIL CLAGG- (NIL T T) -8 NIL NIL) (-143 238274 238359 238499 "CINTSLPE" 238639 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-142 235775 236246 236794 "CHVAR" 237802 NIL CHVAR (NIL T T T) -7 NIL NIL) (-141 235040 235560 235588 "CHARZ" 235593 T CHARZ (NIL) -9 NIL 235607) (-140 234794 234834 234912 "CHARPOL" 234994 NIL CHARPOL (NIL T) -7 NIL NIL) (-139 233943 234496 234524 "CHARNZ" 234571 T CHARNZ (NIL) -9 NIL 234626) (-138 231968 232633 232968 "CHAR" 233628 T CHAR (NIL) -8 NIL NIL) (-137 231694 231755 231783 "CFCAT" 231894 T CFCAT (NIL) -9 NIL NIL) (-136 230939 231050 231232 "CDEN" 231578 NIL CDEN (NIL T T T) -7 NIL NIL) (-135 226931 230092 230372 "CCLASS" 230679 T CCLASS (NIL) -8 NIL NIL) (-134 226850 226876 226911 "CATEGORY" 226916 T -10 (NIL) -8 NIL NIL) (-133 221902 222879 223632 "CARTEN" 226153 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-132 221010 221158 221379 "CARTEN2" 221749 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-131 219354 220162 220418 "CARD" 220774 T CARD (NIL) -8 NIL NIL) (-130 218726 219054 219082 "CACHSET" 219214 T CACHSET (NIL) -9 NIL 219291) (-129 218222 218518 218546 "CABMON" 218596 T CABMON (NIL) -9 NIL 218652) (-128 217390 217769 217912 "BYTE" 218099 T BYTE (NIL) -8 NIL NIL) (-127 213338 217337 217371 "BYTEARY" 217376 T BYTEARY (NIL) -8 NIL NIL) (-126 210895 213030 213137 "BTREE" 213264 NIL BTREE (NIL T) -8 NIL NIL) (-125 208393 210543 210665 "BTOURN" 210805 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205811 207864 207905 "BTCAT" 207973 NIL BTCAT (NIL T) -9 NIL 208050) (-123 205478 205558 205707 "BTCAT-" 205712 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200770 204621 204649 "BTAGG" 204871 T BTAGG (NIL) -9 NIL 205032) (-121 200260 200385 200591 "BTAGG-" 200596 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 197304 199538 199753 "BSTREE" 200077 NIL BSTREE (NIL T) -8 NIL NIL) (-119 196442 196568 196752 "BRILL" 197160 NIL BRILL (NIL T) -7 NIL NIL) (-118 193143 195170 195211 "BRAGG" 195860 NIL BRAGG (NIL T) -9 NIL 196117) (-117 191672 192078 192633 "BRAGG-" 192638 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184945 191018 191202 "BPADICRT" 191520 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 183295 184882 184927 "BPADIC" 184932 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182995 183025 183138 "BOUNDZRO" 183259 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 178510 179601 180468 "BOP" 182148 T BOP (NIL) -8 NIL NIL) (-112 176131 176575 177095 "BOP1" 178023 NIL BOP1 (NIL T) -7 NIL NIL) (-111 174855 175541 175741 "BOOLEAN" 175951 T BOOLEAN (NIL) -8 NIL NIL) (-110 174219 174597 174649 "BMODULE" 174654 NIL BMODULE (NIL T T) -9 NIL 174719) (-109 170049 174017 174090 "BITS" 174166 T BITS (NIL) -8 NIL NIL) (-108 169146 169581 169733 "BINFILE" 169917 T BINFILE (NIL) -8 NIL NIL) (-107 168558 168680 168822 "BINDING" 169024 T BINDING (NIL) -8 NIL NIL) (-106 162457 168002 168167 "BINARY" 168413 T BINARY (NIL) -8 NIL NIL) (-105 160284 161712 161753 "BGAGG" 162013 NIL BGAGG (NIL T) -9 NIL 162150) (-104 160115 160147 160238 "BGAGG-" 160243 NIL BGAGG- (NIL T T) -8 NIL NIL) (-103 159213 159499 159704 "BFUNCT" 159930 T BFUNCT (NIL) -8 NIL NIL) (-102 157908 158086 158373 "BEZOUT" 159037 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-101 154425 156760 157090 "BBTREE" 157611 NIL BBTREE (NIL T) -8 NIL NIL) (-100 154159 154212 154240 "BASTYPE" 154359 T BASTYPE (NIL) -9 NIL NIL) (-99 154013 154042 154113 "BASTYPE-" 154118 NIL BASTYPE- (NIL T) -8 NIL NIL) (-98 153451 153527 153677 "BALFACT" 153924 NIL BALFACT (NIL T T) -7 NIL NIL) (-97 152338 152870 153055 "AUTOMOR" 153296 NIL AUTOMOR (NIL T) -8 NIL NIL) (-96 152064 152069 152095 "ATTREG" 152100 T ATTREG (NIL) -9 NIL NIL) (-95 150343 150761 151113 "ATTRBUT" 151730 T ATTRBUT (NIL) -8 NIL NIL) (-94 149995 150171 150237 "ATTRAST" 150295 T ATTRAST (NIL) -8 NIL NIL) (-93 149531 149644 149670 "ATRIG" 149871 T ATRIG (NIL) -9 NIL NIL) (-92 149340 149381 149468 "ATRIG-" 149473 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149065 149208 149234 "ASTCAT" 149239 T ASTCAT (NIL) -9 NIL 149269) (-90 148862 148905 148997 "ASTCAT-" 149002 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147059 148638 148726 "ASTACK" 148805 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145564 145861 146226 "ASSOCEQ" 146741 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144596 145223 145347 "ASP9" 145471 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144360 144544 144583 "ASP8" 144588 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143229 143965 144107 "ASP80" 144249 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142128 142864 142996 "ASP7" 143128 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141082 141805 141923 "ASP78" 142041 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140051 140762 140879 "ASP77" 140996 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 138963 139689 139820 "ASP74" 139951 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137863 138598 138730 "ASP73" 138862 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136818 137540 137658 "ASP6" 137776 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135766 136495 136613 "ASP55" 136731 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134716 135440 135559 "ASP50" 135678 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133804 134417 134527 "ASP4" 134637 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132892 133505 133615 "ASP49" 133725 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131677 132431 132599 "ASP42" 132781 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130454 131210 131380 "ASP41" 131564 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129404 130131 130249 "ASP35" 130367 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129169 129352 129391 "ASP34" 129396 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128906 128973 129049 "ASP33" 129124 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127801 128541 128673 "ASP31" 128805 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127566 127749 127788 "ASP30" 127793 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127301 127370 127446 "ASP29" 127521 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127066 127249 127288 "ASP28" 127293 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126831 127014 127053 "ASP27" 127058 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125915 126529 126640 "ASP24" 126751 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124831 125556 125686 "ASP20" 125816 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123919 124532 124642 "ASP1" 124752 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122863 123593 123712 "ASP19" 123831 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122600 122667 122743 "ASP12" 122818 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121452 122199 122343 "ASP10" 122487 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119351 121296 121387 "ARRAY2" 121392 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115167 118999 119113 "ARRAY1" 119268 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114199 114372 114593 "ARRAY12" 114990 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108558 110429 110504 "ARR2CAT" 113134 NIL ARR2CAT (NIL T T T) -9 NIL 113892) (-54 105992 106736 107690 "ARR2CAT-" 107695 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104744 104896 105201 "APPRULE" 105828 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104397 104445 104563 "APPLYORE" 104690 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103371 103662 103857 "ANY" 104220 T ANY (NIL) -8 NIL NIL) (-50 102649 102772 102929 "ANY1" 103245 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100227 101099 101424 "ANTISYM" 102374 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99742 99931 100028 "ANON" 100148 T ANON (NIL) -8 NIL NIL) (-47 93884 98287 98738 "AN" 99309 T AN (NIL) -8 NIL NIL) (-46 90277 91631 91681 "AMR" 92420 NIL AMR (NIL T T) -9 NIL 93019) (-45 89390 89611 89973 "AMR-" 89978 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73940 89307 89368 "ALIST" 89373 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70777 73534 73703 "ALGSC" 73858 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67333 67887 68494 "ALGPKG" 70217 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66610 66711 66895 "ALGMFACT" 67219 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62359 63040 63694 "ALGMANIP" 66134 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53770 61985 62135 "ALGFF" 62292 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52966 53097 53276 "ALGFACT" 53628 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51998 52564 52602 "ALGEBRA" 52662 NIL ALGEBRA (NIL T) -9 NIL 52720) (-36 51716 51775 51907 "ALGEBRA-" 51912 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33976 49719 49771 "ALAGG" 49907 NIL ALAGG (NIL T T) -9 NIL 50068) (-34 33512 33625 33651 "AHYP" 33852 T AHYP (NIL) -9 NIL NIL) (-33 32443 32691 32717 "AGG" 33216 T AGG (NIL) -9 NIL 33495) (-32 31877 32039 32253 "AGG-" 32258 NIL AGG- (NIL T) -8 NIL NIL) (-31 29564 29982 30399 "AF" 31520 NIL AF (NIL T T) -7 NIL NIL) (-30 28833 29091 29247 "ACPLOT" 29426 T ACPLOT (NIL) -8 NIL NIL) (-29 18357 26241 26292 "ACFS" 27003 NIL ACFS (NIL T) -9 NIL 27242) (-28 16371 16861 17636 "ACFS-" 17641 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 52415c5d..04ab71d3 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,5948 +1,5356 @@ -(727802 . 3429317351) -(((*1 *1) (-5 *1 (-448)))) +(729449 . 3429568334) (((*1 *2 *1) - (-12 (-4 *3 (-216)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) - (-4 *6 (-743)) (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) - (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-248 *2)) (-4 *2 (-797))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) - ((*1 *1 *1 *1) (-5 *1 (-1049)))) -(((*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-1098 *4))) (-5 *3 (-1098 *4)) - (-4 *4 (-852)) (-5 *1 (-616 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-830 *5 *3 *4)) - (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6)) (-4 *6 (-829 *5)) (-4 *5 (-1030)) - (-5 *2 (-110)) (-5 *1 (-830 *5 *6 *4)) (-4 *4 (-573 (-835 *5)))))) + (-12 (-5 *2 (-606 *4)) (-5 *1 (-1083 *3 *4)) + (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1102)) + (-12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) + (-5 *2 (-111)) (-5 *1 (-601 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) + (-4 *3 (-609 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) + (-4 *3 (-609 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998)))) + ((*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-874)) (-5 *1 (-425 *2)) + (-4 *2 (-1176 (-537))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-874)) (-5 *4 (-731)) (-5 *1 (-425 *2)) + (-4 *2 (-1176 (-537))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *1 (-425 *2)) + (-4 *2 (-1176 (-537))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) + (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-874)) (-5 *4 (-606 (-731))) (-5 *5 (-731)) + (-5 *6 (-111)) (-5 *1 (-425 *2)) (-4 *2 (-1176 (-537))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-402 *2)) (-4 *2 (-1176 *5)) + (-5 *1 (-427 *5 *2)) (-4 *5 (-998))))) +(((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *2) (-12 (-5 *2 (-372)) (-5 *1 (-595))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1201)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-247))) (-5 *1 (-1202))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) + (-4 *7 (-753)) (-5 *2 - (-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) - (|:| |singularities| (-1083 (-208))))) - (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-587))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-508 *4 *2)) - (-4 *2 (-1175 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3))) - (-4 *5 (-1160 *4)) (-4 *6 (-675 *4 *5)) (-5 *1 (-512 *4 *5 *6 *2)) - (-4 *2 (-1175 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3))) - (-5 *1 (-513 *4 *2)) (-4 *2 (-1175 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) - (-5 *1 (-1079 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-721)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) - (-4 *2 (-1160 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) - ((*1 *1 *1 *1) (-5 *1 (-1049)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2)) - (-4 *2 (-609 *4))))) + (-606 + (-2 (|:| -3705 (-731)) + (|:| |eqns| + (-606 + (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) + (|:| |cols| (-606 (-537)))))) + (|:| |fgb| (-606 *8))))) + (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-731))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-4 *4 (-1154)) (-5 *2 (-111)) + (-5 *1 (-1098 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6))))) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-649 *4)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) + ((*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) + (-5 *2 + (-3 (|:| |overq| (-1113 (-391 (-537)))) + (|:| |overan| (-1113 (-47))) (|:| -4053 (-111)))) + (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-598 (-276 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208))) - (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531)))) - (-4 *5 (-829 (-531))) - (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-534 *5 *3)) (-4 *3 (-584)) - (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) + (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) + (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-731)) (-4 *4 (-333)) + (-5 *1 (-507 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816))))) +(((*1 *1 *1) (-4 *1 (-592))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-523)) - (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 (-598 (-864)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5))))) + (|partial| -12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-513) (-606 (-513)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-639 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) + (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5)))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) (((*1 *2 *3) - (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-778) (-797) (-986))) - (-5 *2 (-1085)) (-5 *1 (-776 *4)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 (-363)) (-5 *1 (-191))))) +(((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-649 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-873))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) + (-4 *2 (-1176 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-537) (-210) (-1117) (-1100) (-1122))) + (-5 *1 (-1122))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) + (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-639 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-1010)))) +(((*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1040 *3)) (-4 *3 (-902 *7 *6 *4)) (-4 *6 (-753)) + (-4 *4 (-807)) (-4 *7 (-529)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) + (-5 *1 (-561 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-529)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-537)))) + (-5 *1 (-561 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-152) (-27) (-1139))) + (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1109 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 *5)) (-5 *4 (-110)) - (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1085)) - (-5 *1 (-776 *5)))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) + (-5 *2 (-391 (-905 *5))) (-5 *1 (-1110 *5)) (-5 *3 (-905 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-297 *5)) - (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1189)) - (-5 *1 (-776 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-772)) (-5 *4 (-297 *6)) (-5 *5 (-110)) - (-4 *6 (-13 (-778) (-797) (-986))) (-5 *2 (-1189)) - (-5 *1 (-776 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-778)) (-5 *2 (-1085)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-778)) (-5 *3 (-110)) (-5 *2 (-1085)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *2 (-1189)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *4 (-110)) (-5 *2 (-1189))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1160 *2)) (-4 *2 (-1142)) (-5 *1 (-141 *2 *4 *3)) - (-4 *3 (-1160 (-388 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-807) (-989 (-537)))) + (-5 *2 (-3 (-391 (-905 *5)) (-300 *5))) (-5 *1 (-1110 *5)) + (-5 *3 (-391 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1038 (-905 *5))) (-5 *3 (-905 *5)) + (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-391 *3)) + (-5 *1 (-1110 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1038 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) + (-4 *5 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-3 *3 (-300 *5))) + (-5 *1 (-1110 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-673 *3 *4)) + (-4 *4 (-1176 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-4 *3 (-1160 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-927 *4 *2 *3 *5)) - (-4 *4 (-330)) (-4 *5 (-675 *2 *3))))) -(((*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1182 *3)) (-4 *3 (-23)) (-4 *3 (-1138))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1132 *5 *6 *7 *8)) (-4 *5 (-523)) - (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7))))) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-807) (-529)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) + (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-874)))) + ((*1 *2 *3) + (-12 (-5 *3 (-320 *4 *5 *6 *7)) (-4 *4 (-13 (-352) (-347))) + (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *7 (-326 *4 *5 *6)) + (-5 *2 (-731)) (-5 *1 (-376 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-386)) (-5 *2 (-793 (-874))))) + ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) + ((*1 *2 *1) + (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) + (-4 *4 (-1176 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) + (-4 *3 (-807)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-701 *4 *3)) (-4 *4 (-998)) (-4 *3 (-807)) + (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) + (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) + (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) + (-5 *2 (-731)) (-5 *1 (-864 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) + (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) + (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-731)) + (-5 *1 (-865 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-347)) + (-4 *7 (-1176 *6)) (-4 *4 (-1176 (-391 *7))) (-4 *8 (-326 *6 *7 *4)) + (-4 *9 (-13 (-352) (-347))) (-5 *2 (-731)) + (-5 *1 (-970 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-4 *3 (-529)) (-5 *2 (-731)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) + ((*1 *2 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) + (-4 *4 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731)))) + ((*1 *1 *1) (-4 *1 (-218))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) + (-4 *4 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) + (-4 *3 (-1176 *2)))) + ((*1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) + (-4 *4 (-1045)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *3 (-853 *6)) + (-5 *2 (-649 *3)) (-5 *1 (-652 *6 *3 *7 *4)) (-4 *7 (-357 *3)) + (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-391 (-537))) (-4 *1 (-527 *3)) + (-4 *3 (-13 (-388) (-1139))))) + ((*1 *1 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139)))))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-388 (-531)))) - (-5 *2 (-2 (|:| -2198 (-1083 *4)) (|:| -2210 (-1083 *4)))) - (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-230 *5 *6))) (-4 *6 (-432)) - (-5 *2 (-230 *5 *6)) (-14 *5 (-598 (-1102))) (-5 *1 (-586 *5 *6))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-110)) (-5 *1 (-835 *4)) - (-4 *4 (-1030))))) + (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) + (-5 *1 (-1208 *4)) (-4 *4 (-347))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *4 (-1117)) + (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284))))) (((*1 *2 *1) - (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360))))) + (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-116 *3)) (-14 *3 (-537)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-291)) (-5 *1 (-164 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-164 (-537))) (-5 *1 (-726 *3)) (-4 *3 (-388)))) + ((*1 *2 *1) + (-12 (-5 *2 (-164 (-391 (-537)))) (-5 *1 (-824 *3)) (-14 *3 (-537)))) + ((*1 *2 *1) + (-12 (-14 *3 (-537)) (-5 *2 (-164 (-391 (-537)))) + (-5 *1 (-825 *3 *4)) (-4 *4 (-822 *3))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *5)))) - (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *2 (-598 *5)) - (-5 *1 (-200 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-2 (|:| -2552 *5) (|:| -2012 (-531))))) - (-5 *4 (-531)) (-4 *5 (-1160 *4)) (-5 *2 (-598 *5)) - (-5 *1 (-646 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))) - (-5 *3 (-598 *7)) (-4 *4 (-13 (-289) (-140))) - (-4 *7 (-892 *4 *6 *5)) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-986)) - (-5 *2 (-639 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-598 (-1133 *5))) - (-5 *1 (-1192 *5)) (-5 *4 (-1133 *5))))) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) + (-5 *1 (-1155 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-1045)) (-5 *2 (-1205)) + (-5 *1 (-1155 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) + (-14 *4 *2)))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-598 (-571 *4))) (-4 *4 (-411 *3)) (-4 *3 (-797)) - (-5 *1 (-540 *3 *4)))) + (-12 (-5 *2 (-606 (-578 *4))) (-4 *4 (-414 *3)) (-4 *3 (-807)) + (-5 *1 (-546 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-110)) - (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-110)) (-5 *1 (-1128 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1102))) (-4 *6 (-344)) - (-5 *2 (-598 (-276 (-895 *6)))) (-5 *1 (-509 *5 *6 *7)) - (-4 *5 (-432)) (-4 *7 (-13 (-344) (-795)))))) -(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736))))) + (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-77 LSFUN1)))) + (-5 *2 (-986)) (-5 *1 (-714))))) +(((*1 *1 *1) (-4 *1 (-592))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) +(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) +(((*1 *2 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-819 *4 *5 *6 *7)) + (-4 *4 (-998)) (-14 *5 (-606 (-1117))) (-14 *6 (-606 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) + (-14 *8 (-606 *5)) (-5 *2 (-1205)) + (-5 *1 (-1211 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-902 *4 *6 *5)) + (-14 *9 (-606 *3)) (-14 *10 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3)) - (-4 *3 (-13 (-1124) (-29 *5)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-598 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) - (-5 *1 (-194))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-779 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) + (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 (-111)) (-5 *1 (-877 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-13 (-291) (-141))) + (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-111)) + (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) + (-5 *1 (-857 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *2 (-986)) (-5 *1 (-712))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-724)) (-5 *1 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-344)) (-4 *7 (-1160 *6)) - (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) - (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7))))) + (-12 (-5 *3 (-160 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) + (-5 *1 (-719))))) +(((*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) + (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4)))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) + (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5)) - (-4 *5 (-156 *4)) (-4 *4 (-516)) (-5 *1 (-142 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 *3)) (-4 *3 (-1160 *5)) - (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-1098 (-531)))) (-5 *3 (-1098 (-531))) - (-5 *1 (-539)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-1098 *1))) (-5 *3 (-1098 *1)) - (-4 *1 (-852))))) + (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998))))) +(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)))) + ((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-1203)))) + ((*1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1203))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) + (-4 *3 (-157 *6)) (-4 (-905 *6) (-839 *5)) + (-4 *6 (-13 (-839 *5) (-163))) (-5 *1 (-168 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-842 *4 *1)) (-5 *3 (-845 *4)) (-4 *1 (-839 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) + (-4 *6 (-13 (-1045) (-989 *3))) (-4 *3 (-839 *5)) + (-5 *1 (-884 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) + (-4 *3 (-13 (-414 *6) (-580 *4) (-839 *5) (-989 (-578 $)))) + (-5 *4 (-845 *5)) (-4 *6 (-13 (-529) (-807) (-839 *5))) + (-5 *1 (-885 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 (-537) *3)) (-5 *4 (-845 (-537))) (-4 *3 (-522)) + (-5 *1 (-886 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 *6)) (-5 *3 (-578 *6)) (-4 *5 (-1045)) + (-4 *6 (-13 (-807) (-989 (-578 $)) (-580 *4) (-839 *5))) + (-5 *4 (-845 *5)) (-5 *1 (-887 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-838 *5 *6 *3)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) + (-4 *6 (-839 *5)) (-4 *3 (-627 *6)) (-5 *1 (-888 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-842 *6 *3) *8 (-845 *6) (-842 *6 *3))) + (-4 *8 (-807)) (-5 *2 (-842 *6 *3)) (-5 *4 (-845 *6)) + (-4 *6 (-1045)) (-4 *3 (-13 (-902 *9 *7 *8) (-580 *4))) + (-4 *7 (-753)) (-4 *9 (-13 (-998) (-807) (-839 *6))) + (-5 *1 (-889 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) + (-4 *3 (-13 (-902 *8 *6 *7) (-580 *4))) (-5 *4 (-845 *5)) + (-4 *7 (-839 *5)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *8 (-13 (-998) (-807) (-839 *5))) (-5 *1 (-889 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 *3)) (-4 *5 (-1045)) (-4 *3 (-945 *6)) + (-4 *6 (-13 (-529) (-839 *5) (-580 *4))) (-5 *4 (-845 *5)) + (-5 *1 (-892 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-842 *5 (-1117))) (-5 *3 (-1117)) (-5 *4 (-845 *5)) + (-4 *5 (-1045)) (-5 *1 (-893 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-606 (-845 *7))) (-5 *5 (-1 *9 (-606 *9))) + (-5 *6 (-1 (-842 *7 *9) *9 (-845 *7) (-842 *7 *9))) (-4 *7 (-1045)) + (-4 *9 (-13 (-998) (-580 (-845 *7)) (-989 *8))) (-5 *2 (-842 *7 *9)) + (-5 *3 (-606 *9)) (-4 *8 (-13 (-998) (-807))) + (-5 *1 (-894 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) + (-4 *3 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) + (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) + (-4 *3 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) + (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-388 *6)) (-4 *5 (-1142)) (-4 *6 (-1160 *5)) - (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *6))) - (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-721)) (-4 *7 (-1160 *3))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-996 (-964 *3) (-1098 (-964 *3)))) - (-5 *1 (-964 *3)) (-4 *3 (-13 (-795) (-344) (-962)))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-721)))) - ((*1 *2 *3) - (-12 (-4 *4 (-986)) - (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) - (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) - ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) - (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) + (-12 (-4 *5 (-347)) (-4 *7 (-1176 *5)) (-4 *4 (-685 *5 *7)) + (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) + (-5 *1 (-771 *5 *6 *7 *4 *3)) (-4 *6 (-617 *5)) (-4 *3 (-617 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-5 *2 (-870)) (-5 *1 (-868 *3)) - (-4 *3 (-573 (-507))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-870)))) + (-12 (-5 *3 (-1113 *2)) (-5 *4 (-1117)) (-4 *2 (-414 *5)) + (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-807) (-529))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870))))) -(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-531)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797)) - (-5 *1 (-429 *5 *6 *7 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) - (-4 *2 (-1138))))) -(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-689))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-639 (-388 (-895 (-531))))) - (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971))))) -(((*1 *2 *3) - (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-531)))) - (-5 *1 (-287))))) -(((*1 *1) (-5 *1 (-418)))) + (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-4 *1 (-964)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1113 *1)) (-5 *3 (-874)) (-5 *4 (-816)) + (-4 *1 (-964)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-874)) (-4 *4 (-13 (-805) (-347))) + (-4 *1 (-1015 *4 *2)) (-4 *2 (-1176 *4))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *2 *3) (-12 (-5 *3 (-391 (-537))) (-5 *2 (-210)) (-5 *1 (-289))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) + (-14 *4 (-606 (-1117))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) (-4 *1 (-268))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *2) + (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-5 *1 (-590 *3 *4 *5)) + (-14 *5 (-874)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) + (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) + (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1098 *3))) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998))))) (((*1 *2 *3) - (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) - (-4 *3 (-1160 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) - (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) - (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3)) - (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) - (-4 *3 (-1160 (-531))))) - ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3)) - (-4 *3 (-1160 (-388 (-531)))))) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-606 (-905 *4))))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-606 (-905 *4))) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) + ((*1 *2) + (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-606 (-905 *3))))) + ((*1 *2) + (-12 (-5 *2 (-606 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3))))) ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) + (-12 (-5 *3 (-1200 (-436 *4 *5 *6 *7))) (-5 *2 (-606 (-905 *4))) + (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-529)) (-4 *4 (-163)) + (-14 *5 (-874)) (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) - (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189)) - (-5 *1 (-1003 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) - (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189)) - (-5 *1 (-1072 *5 *6 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-224))))) -(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-367 *4)) (-4 *4 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-23)) (-5 *1 (-602 *4 *2 *5)) - (-4 *4 (-1030)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-769 *4)) (-4 *4 (-797))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916))))) -(((*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-112)) (-4 *4 (-986)) (-5 *1 (-665 *4 *2)) - (-4 *2 (-601 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-784 *2)) (-4 *2 (-986))))) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-4 *4 (-432)) - (-5 *2 (-598 (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4))))) - (-5 *1 (-274 *4))))) + (-12 (-5 *3 (-731)) (-5 *2 (-1113 *4)) (-5 *1 (-507 *4)) + (-4 *4 (-333))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-732 *3)) (|:| |polden| *3) (|:| -3158 (-721)))) - (-5 *1 (-732 *3)) (-4 *3 (-986)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3158 (-721)))) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) - ((*1 *1 *1 *1) (-4 *1 (-453))) - ((*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-826)))) - ((*1 *1 *1) (-5 *1 (-913))) - ((*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523)) - (-5 *2 (-388 (-895 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523)) - (-5 *2 (-388 (-895 *4)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) - (-5 *1 (-699))))) -(((*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-1113 *2)) (-4 *2 (-344))))) + (-12 (-5 *3 (-113)) (-4 *4 (-998)) (-5 *1 (-675 *4 *2)) + (-4 *2 (-609 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-794 *2)) (-4 *2 (-998))))) (((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-5 *2 (-2 (|:| -2259 (-598 *6)) (|:| -1833 (-598 *6))))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208)) - (-5 *2 (-975)) (-5 *1 (-700))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1098 *4)) (-5 *3 (-1 *4 (-537))) (-4 *4 (-998)) + (-5 *1 (-1102 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-606 *2))) (-5 *4 (-606 *5)) + (-4 *5 (-37 (-391 (-537)))) (-4 *2 (-1191 *5)) + (-5 *1 (-1193 *5 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-278 *3))) (-5 *1 (-278 *3)) (-4 *3 (-529)) + (-4 *3 (-1154))))) +(((*1 *2 *1) + (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) + (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) + (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-606 *3)) + (-5 *1 (-559 *5 *6 *7 *8 *3)) (-4 *3 (-1054 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) + (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) + (-14 *6 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-291) (-141))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) + (-5 *1 (-1023 *4 *5)) (-5 *3 (-606 (-905 *4))) + (-14 *5 (-606 (-1117))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) + (-5 *1 (-1023 *5 *6)) (-5 *3 (-606 (-905 *5))) + (-14 *6 (-606 (-1117)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) (((*1 *1 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-777 *2 *3)) (-4 *2 (-659 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) - (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) - (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) - (-5 *1 (-647))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1)))) - (-4 *1 (-348 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-433 *3 *4 *5 *6)) - (|:| -3523 (-598 (-433 *3 *4 *5 *6))))) - (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330))))) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-649 (-537))) (-5 *5 (-111)) (-5 *7 (-649 (-210))) + (-5 *3 (-537)) (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-715))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1) (-5 *1 (-806))) + (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) + (-5 *1 (-871 *4))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1089 *3))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-905 (-537))) (-5 *3 (-1117)) + (-5 *4 (-1040 (-391 (-537)))) (-5 *1 (-30))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-178)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) +(((*1 *1 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-787 *2 *3)) (-4 *2 (-669 *3))))) +(((*1 *1 *1) (-5 *1 (-1010)))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1100)) (-5 *4 (-160 (-210))) (-5 *5 (-537)) + (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) ((*1 *2 *3) - (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-690 *3))))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-111)) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) + (-4 *7 (-805)) + (-4 *8 + (-13 (-1178 *3 *7) (-347) (-1139) + (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) + (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) + (-14 *10 (-1117))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-712))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-4 *2 (-853 *5)) (-5 *1 (-652 *5 *2 *3 *4)) + (-4 *3 (-357 *2)) (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-115 *4)) (-14 *4 *3) - (-5 *3 (-531)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-116 *4)) (-14 *4 *3) + (-5 *3 (-537)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-814 *4)) (-14 *4 *3) - (-5 *3 (-531)))) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-824 *4)) (-14 *4 *3) + (-5 *3 (-537)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-388 (-531))) (-5 *1 (-815 *4 *5)) - (-5 *3 (-531)) (-4 *5 (-812 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-953)) (-5 *2 (-388 (-531))))) + (-12 (-14 *4 *3) (-5 *2 (-391 (-537))) (-5 *1 (-825 *4 *5)) + (-5 *3 (-537)) (-4 *5 (-822 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-964)) (-5 *2 (-391 (-537))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344))) - (-4 *3 (-1160 *2)))) + (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) + (-4 *3 (-1176 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2265 (*2 (-1102)))) - (-4 *2 (-986))))) -(((*1 *1 *1) - (-12 (-4 *2 (-330)) (-4 *2 (-986)) (-5 *1 (-663 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-835 *3)) (|:| |den| (-835 *3)))) - (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110)) - (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-571 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-5 *5 (-1098 *2)) - (-4 *2 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-571 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) - (-5 *5 (-388 (-1098 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-703))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) - (-5 *1 (-429 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2)) - (-4 *4 (-37 (-388 (-531))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1083 *4) (-1083 *4))) (-5 *2 (-1083 *4)) - (-5 *1 (-1207 *4)) (-4 *4 (-1138)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-598 (-1083 *5)) (-598 (-1083 *5)))) (-5 *4 (-531)) - (-5 *2 (-598 (-1083 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1138))))) -(((*1 *1) (-5 *1 (-753)))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124)))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110))))) -(((*1 *2 *3) (-12 (-5 *3 (-598 (-51))) (-5 *2 (-1189)) (-5 *1 (-807))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2341 (*2 (-1117)))) + (-4 *2 (-998))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-707))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) - (-14 *4 (-721)) (-4 *5 (-162))))) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-717))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2) + (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) + (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731))))) +(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1) (-4 *1 (-333))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) + (-4 *4 (-13 (-529) (-807) (-141))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-606 (-1113 *5))) + (|:| |prim| (-1113 *5)))) + (-5 *1 (-416 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-529) (-807) (-141))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1113 *3)) + (|:| |pol2| (-1113 *3)) (|:| |prim| (-1113 *3)))) + (-5 *1 (-416 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-905 *5)) (-5 *4 (-1117)) (-4 *5 (-13 (-347) (-141))) + (-5 *2 + (-2 (|:| |coef1| (-537)) (|:| |coef2| (-537)) + (|:| |prim| (-1113 *5)))) + (-5 *1 (-913 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) + (-4 *5 (-13 (-347) (-141))) + (-5 *2 + (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *5))) + (|:| |prim| (-1113 *5)))) + (-5 *1 (-913 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-5 *5 (-1117)) + (-4 *6 (-13 (-347) (-141))) + (-5 *2 + (-2 (|:| -3449 (-606 (-537))) (|:| |poly| (-606 (-1113 *6))) + (|:| |prim| (-1113 *6)))) + (-5 *1 (-913 *6))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1176 *3)) (-5 *1 (-383 *3 *2)) + (-4 *3 (-13 (-347) (-141)))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-297 (-531)))) - (-5 *1 (-971))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6))))) + (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537)))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) - (-4 *5 (-411 *4)) (-5 *2 (-399 (-1098 (-388 (-531))))) - (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1 (-1098 *4) (-1098 *4))) (-5 *2 (-1098 *4)) + (-5 *1 (-1224 *4)) (-4 *4 (-1154)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-606 (-1098 *5)) (-606 (-1098 *5)))) (-5 *4 (-537)) + (-5 *2 (-606 (-1098 *5))) (-5 *1 (-1224 *5)) (-4 *5 (-1154))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-606 (-1117))) (-4 *2 (-163)) + (-4 *4 (-223 (-2258 *5) (-731))) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *4)) + (-2 (|:| -2009 *3) (|:| -3283 *4)))) + (-5 *1 (-444 *5 *2 *3 *4 *6 *7)) (-4 *3 (-807)) + (-4 *7 (-902 *2 *4 (-818 *5)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-713))))) (((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) - (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) + (-5 *2 (-986)) (-5 *1 (-715))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-769 *3)) (-4 *3 (-797))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))) -(((*1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) - (-5 *2 (-2 (|:| -2005 (-388 *5)) (|:| |poly| *3))) - (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5)))))) -(((*1 *1 *1) (-5 *1 (-507)))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-886 *5)) (-5 *3 (-721)) (-4 *5 (-986)) - (-5 *1 (-1091 *4 *5)) (-14 *4 (-864))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 (-2 (|:| -2351 (-388 *6)) (|:| |coeff| (-388 *6)))) - (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6))))) + (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-4 *2 (-1045)) + (-5 *1 (-842 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) + (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) + (-4 *7 (-807)) (-5 *2 (-111)) (-5 *1 (-930 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-874)) (-4 *5 (-291)) (-4 *3 (-1176 *5)) + (-5 *2 (-2 (|:| |plist| (-606 *3)) (|:| |modulo| *5))) + (-5 *1 (-443 *5 *3)) (-5 *4 (-606 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) + (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-785))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-307 *2 *4)) (-4 *4 (-129)) + (-4 *2 (-1045)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-1045)) (-5 *1 (-610 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *1 (-779 *2)) (-4 *2 (-807))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-731)) (-4 *2 (-1045)) + (-5 *1 (-638 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-165))) (-5 *1 (-1031))))) +(((*1 *2 *3) + (-12 (-4 *1 (-873)) (-5 *2 (-2 (|:| -3449 (-606 *1)) (|:| -1524 *1))) + (-5 *3 (-606 *1))))) +(((*1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) + (-5 *1 (-1125 *4)) (-4 *4 (-807))))) +(((*1 *2 *3) + (-12 (-4 *1 (-796)) + (-5 *3 + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) + (-5 *2 (-986)))) + ((*1 *2 *3) + (-12 (-4 *1 (-796)) + (-5 *3 + (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) + (-5 *2 (-986))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-388 *5)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) - (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1160 *3)))) + (-12 (-5 *3 (-391 *5)) (-4 *4 (-1158)) (-4 *5 (-1176 *4)) + (-5 *1 (-142 *4 *5 *2)) (-4 *2 (-1176 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531))) - (-5 *1 (-174)))) + (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) + (-5 *1 (-176)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-639 (-297 (-208)))) (-5 *3 (-598 (-1102))) - (-5 *4 (-1184 (-297 (-208)))) (-5 *1 (-189)))) + (-12 (-5 *2 (-649 (-300 (-210)))) (-5 *3 (-606 (-1117))) + (-5 *4 (-1200 (-300 (-210)))) (-5 *1 (-191)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1030)) - (-4 *3 (-1138)) (-5 *1 (-276 *3)))) + (-12 (-5 *2 (-606 (-278 *3))) (-4 *3 (-293 *3)) (-4 *3 (-1045)) + (-4 *3 (-1154)) (-5 *1 (-278 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-291 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)) - (-5 *1 (-276 *2)))) + (-12 (-4 *2 (-293 *2)) (-4 *2 (-1045)) (-4 *2 (-1154)) + (-5 *1 (-278 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 (-598 *1)))) - (-4 *1 (-284)))) + (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 (-606 *1)))) + (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284)))) + (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 *1)) (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1 *1 (-606 *1))) (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 (-598 *1)))) - (-4 *1 (-284)))) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 (-606 *1)))) + (-4 *1 (-286)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284)))) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-1 *1 *1))) (-4 *1 (-286)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1030)))) + (-12 (-5 *2 (-606 (-278 *3))) (-4 *1 (-293 *3)) (-4 *3 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1030)))) + (-12 (-5 *2 (-278 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1045)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-531))) (-5 *4 (-1104 (-388 (-531)))) - (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-531)))))) + (-12 (-5 *3 (-1 *2 (-537))) (-5 *4 (-1119 (-391 (-537)))) + (-5 *1 (-294 *2)) (-4 *2 (-37 (-391 (-537)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *1)) (-4 *1 (-355 *4 *5)) - (-4 *4 (-797)) (-4 *5 (-162)))) + (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *1)) (-4 *1 (-358 *4 *5)) + (-4 *4 (-807)) (-4 *5 (-163)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) + (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 (-598 *1))) - (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) + (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *4 (-1 *1 (-606 *1))) + (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-998)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721))) - (-5 *4 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-797)) - (-4 *5 (-986)))) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) + (-5 *4 (-606 (-1 *1 (-606 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-807)) + (-4 *5 (-998)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721))) - (-5 *4 (-598 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-797)) - (-4 *5 (-986)))) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-606 (-731))) + (-5 *4 (-606 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-807)) + (-4 *5 (-998)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 *1)) (-5 *4 (-1102)) - (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-573 (-507))))) + (-12 (-5 *2 (-606 (-113))) (-5 *3 (-606 *1)) (-5 *4 (-1117)) + (-4 *1 (-414 *5)) (-4 *5 (-807)) (-4 *5 (-580 (-513))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1102)) (-4 *1 (-411 *4)) (-4 *4 (-797)) - (-4 *4 (-573 (-507))))) + (-12 (-5 *2 (-113)) (-5 *3 (-1117)) (-4 *1 (-414 *4)) (-4 *4 (-807)) + (-4 *4 (-580 (-513))))) ((*1 *1 *1) - (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-573 (-507))))) + (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-580 (-513))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-1102))) (-4 *1 (-411 *3)) (-4 *3 (-797)) - (-4 *3 (-573 (-507))))) + (-12 (-5 *2 (-606 (-1117))) (-4 *1 (-414 *3)) (-4 *3 (-807)) + (-4 *3 (-580 (-513))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)) - (-4 *3 (-573 (-507))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)) + (-4 *3 (-580 (-513))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-492 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1138)))) + (-12 (-4 *1 (-495 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1154)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *5)) (-4 *1 (-492 *4 *5)) - (-4 *4 (-1030)) (-4 *5 (-1138)))) + (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 *5)) (-4 *1 (-495 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-1154)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-783 *3)) (-4 *3 (-344)) (-5 *1 (-669 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030)))) + (-12 (-5 *2 (-793 *3)) (-4 *3 (-347)) (-5 *1 (-679 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) (-4 *4 (-523)) - (-5 *1 (-982 *4)))) + (-12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) (-4 *4 (-529)) + (-5 *1 (-994 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-598 (-1102))) (-5 *4 (-598 (-388 (-895 *5)))) - (-5 *2 (-388 (-895 *5))) (-4 *5 (-523)) (-5 *1 (-982 *5)))) + (-12 (-5 *3 (-606 (-1117))) (-5 *4 (-606 (-391 (-905 *5)))) + (-5 *2 (-391 (-905 *5))) (-4 *5 (-529)) (-5 *1 (-994 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-276 (-388 (-895 *4)))) (-5 *2 (-388 (-895 *4))) - (-4 *4 (-523)) (-5 *1 (-982 *4)))) + (-12 (-5 *3 (-278 (-391 (-905 *4)))) (-5 *2 (-391 (-905 *4))) + (-4 *4 (-529)) (-5 *1 (-994 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) (-5 *2 (-388 (-895 *4))) - (-4 *4 (-523)) (-5 *1 (-982 *4)))) + (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) (-5 *2 (-391 (-905 *4))) + (-4 *4 (-529)) (-5 *1 (-994 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1083 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) - (-5 *1 (-697))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *7)) (-4 *7 (-797)) - (-4 *8 (-892 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1184 (-388 *8)) "failed")) - (|:| -3523 (-598 (-1184 (-388 *8)))))) - (-5 *1 (-622 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1030)) (-5 *2 (-721))))) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1098 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-797)) - (-4 *5 (-743)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) - (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) - (-5 *1 (-738))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721)))) + (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) + (-4 *2 (-1176 (-160 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-537)))) ((*1 *2 *1) - (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-721))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) +(((*1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-1106 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-462))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-716))))) +(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-241))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-347)) + (-5 *2 + (-2 (|:| A (-649 *5)) + (|:| |eqs| + (-606 + (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5)) (|:| -4113 *6) + (|:| |rh| *5)))))) + (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) + (-4 *6 (-617 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-347)) (-4 *6 (-617 *5)) + (-5 *2 (-2 (|:| -2756 (-649 *6)) (|:| |vec| (-1200 *5)))) + (-5 *1 (-773 *5 *6)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1031))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-531 *2)) (-4 *2 (-522))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) (((*1 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) - (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) + (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) ((*1 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) - (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6))))) + (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) + (-5 *2 (-1113 (-905 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-1171 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) + (-5 *3 (-606 (-537))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) + (-5 *3 (-606 (-537)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1176 *2)) (-4 *2 (-1158)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-1176 (-391 *4)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-149)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) + (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1154))))) +(((*1 *1) (-5 *1 (-275)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) + (-4 *2 (-223 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-606 *1)) (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-1007)) (-4 *3 (-1139)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *3 (-163)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2) + (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) + (-15 -3315 ((-1069 *3 (-578 $)) $)) + (-15 -2341 ($ (-1069 *3 (-578 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) + (-15 -3315 ((-1069 *3 (-578 $)) $)) + (-15 -2341 ($ (-1069 *3 (-578 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *2)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) + (-15 -3315 ((-1069 *4 (-578 $)) $)) + (-15 -2341 ($ (-1069 *4 (-578 $))))))) + (-4 *4 (-529)) (-5 *1 (-40 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-606 (-578 *2))) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) + (-15 -3315 ((-1069 *4 (-578 $)) $)) + (-15 -2341 ($ (-1069 *4 (-578 $))))))) + (-4 *4 (-529)) (-5 *1 (-40 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-781))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-606 + (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *3)) + (|:| |logand| (-1113 *3))))) + (-5 *1 (-554 *3)) (-4 *3 (-347))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4301)) (-4 *1 (-471 *3)) + (-4 *3 (-1154))))) +(((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-347)) (-5 *1 (-849 *2 *3)) + (-4 *2 (-1176 *3))))) +(((*1 *1 *1) (-4 *1 (-522)))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-606 *9)) (-5 *3 (-1 (-111) *9)) + (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) + (-4 *8 (-807)) (-5 *1 (-930 *6 *7 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-4 *4 (-435)) + (-5 *2 (-606 (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4))))) + (-5 *1 (-276 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-138))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) + (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) + (-4 *2 (-647 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-663 *3 *4)) - (-4 *4 (-1160 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-4 *1 (-358 *3 *4)) + (-4 *4 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-136 *3 *4 *2)) + (-4 *2 (-357 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) (-4 *2 (-357 *4)) + (-5 *1 (-484 *4 *5 *2 *3)) (-4 *3 (-357 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) + (-5 *2 (-649 *4)) (-5 *1 (-653 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-529)) (-4 *4 (-945 *3)) (-5 *1 (-1169 *3 *4 *2)) + (-4 *2 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) - ((*1 *1 *1) - (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-797)) - (-4 *3 (-13 (-162) (-668 (-388 (-531))))) (-14 *4 (-864)))) - ((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) + (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991))))) +(((*1 *2 *3) + (-12 (-5 *3 (-391 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-529)) + (-4 *4 (-998)) (-4 *2 (-1191 *4)) (-5 *1 (-1194 *4 *5 *6 *2)) + (-4 *6 (-617 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) + (-5 *6 (-210)) (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 APROD)))) + (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-71 MSOLVE)))) + (-5 *2 (-986)) (-5 *1 (-717))))) +(((*1 *2 *3) + (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210))))) + ((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) +(((*1 *1 *1 *1) (-4 *1 (-920)))) +(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-845 *6))) + (-5 *5 (-1 (-842 *6 *8) *8 (-845 *6) (-842 *6 *8))) (-4 *6 (-1045)) + (-4 *8 (-13 (-998) (-580 (-845 *6)) (-989 *7))) (-5 *2 (-842 *6 *8)) + (-4 *7 (-13 (-998) (-807))) (-5 *1 (-894 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) (((*1 *1) - (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264))) - (-3745 (|has| *1 (-6 -4256))))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797)))) - ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) (-4 *1 (-797))) ((*1 *1) (-5 *1 (-1049)))) -(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137))) - ((*1 *1 *1) (-4 *1 (-1071)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) - (-5 *2 (-598 *4)) (-5 *1 (-1044 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-721))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1030)) (-4 *2 (-843 *4)) (-5 *1 (-642 *4 *2 *5 *3)) - (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4273))))))) -(((*1 *1 *1 *1) (-4 *1 (-516)))) + (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) + (-4 *4 (-627 *3)))) + ((*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) + (-4 *3 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-1040 (-210))))) + ((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-1040 (-210)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-612 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) + (-14 *4 (-731)) (-4 *5 (-163))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *1 *2) + (-12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) + (-5 *1 (-383 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *3 (-598 (-245))) - (-5 *1 (-243)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) - (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-1184 *6)) - (-5 *1 (-586 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-913))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-806)))) - ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-905))))) + (-12 (-4 *4 (-529)) (-5 *2 (-1113 *3)) (-5 *1 (-40 *4 *3)) + (-4 *3 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *4 (-578 $)) $)) + (-15 -3315 ((-1069 *4 (-578 $)) $)) + (-15 -2341 ($ (-1069 *4 (-578 $)))))))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 (-360)) (-5 *1 (-189))))) + (-12 (-5 *3 (-1100)) (-4 *4 (-13 (-291) (-141))) + (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) + (-5 *2 + (-606 + (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) + (|:| |wcond| (-606 (-905 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) + (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-275))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) + (-4 *2 (-163))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-712))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) + (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) + (-4 *2 (-647 *3 *5 *6))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-734)) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) - (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721)))) + (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3119 (-397 *4 (-391 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2559 (-391 *6)) + (|:| |special| (-391 *6)))) + (-5 *1 (-688 *5 *6)) (-5 *3 (-391 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3)) - (-4 *3 (-637 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) - (-5 *2 (-721))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1049)) (-4 *4 (-330)) - (-5 *1 (-501 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) + (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-849 *3 *4)) + (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-731)) (-4 *5 (-347)) + (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-849 *3 *5)) + (-4 *3 (-1176 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) + (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) + (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) + (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-606 *9)) (-5 *3 (-606 *8)) (-5 *4 (-111)) + (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) - (-4 *5 (-523)) (-5 *2 (-598 (-598 (-895 *5)))) (-5 *1 (-1108 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) - (-4 *3 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-702))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *5 (-1142)) (-4 *6 (-1160 *5)) - (-4 *7 (-1160 (-388 *6))) (-5 *2 (-598 (-895 *5))) - (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1045)) (-4 *4 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *5 *4 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) + (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) + (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998))))) +(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333))))) +(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) + (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-1201)) + (-5 *1 (-1204)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) + (-5 *2 (-1201)) (-5 *1 (-1204))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-606 (-2 (|:| |totdeg| (-731)) (|:| -2990 *3)))) + (-5 *4 (-731)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *6 (-753)) + (-4 *7 (-807)) (-5 *1 (-432 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) +(((*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) + (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1036))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) ((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142)) - (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *4 (-344)) - (-5 *2 (-598 (-895 *4)))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) - (-4 *4 (-162)))) - ((*1 *1) (-4 *1 (-677))) ((*1 *1) (-5 *1 (-1102)))) + (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-918 *4 *5 *3 *6)) (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110))))) -(((*1 *1) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1034)) (-5 *3 (-724)) (-5 *1 (-51))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-5 *2 (-111))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-731)) (-5 *1 (-113))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) + (-14 *4 *2)))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-5 *1 (-659)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-649 *5)) (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-347)) (-5 *1 (-931 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-363)) (-5 *1 (-991))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) + ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120))))) (((*1 *2 *3) - (-12 (-5 *3 (-870)) + (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) - (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) - (-5 *1 (-146)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531))) - (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) - (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) - (-5 *1 (-146)))) + (-606 + (-2 (|:| |radval| (-300 (-537))) (|:| |radmult| (-537)) + (|:| |radvect| (-606 (-649 (-300 (-537)))))))) + (-5 *1 (-982))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-578 *4)) (-4 *4 (-807)) (-4 *2 (-807)) + (-5 *1 (-577 *2 *4))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-226))))) +(((*1 *2 *1) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-5 *2 (-111))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-116 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-537)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-824 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-14 *2 (-537)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-537)) (-14 *3 *2) (-5 *1 (-825 *3 *4)) + (-4 *4 (-822 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-537)) (-5 *1 (-825 *2 *3)) (-4 *3 (-822 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-537)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-1191 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1191 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-606 *1)) (|has| *1 (-6 -4301)) (-4 *1 (-962 *3)) + (-4 *3 (-1154))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-291)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-370 *3)) (|:| |rm| (-370 *3)))) + (-5 *1 (-370 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3413 (-731)) (|:| -1672 (-731)))) + (-5 *1 (-731)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-580 *2) (-163))) (-5 *2 (-845 *4)) + (-5 *1 (-161 *4 *5 *3)) (-4 *4 (-1045)) (-4 *3 (-157 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-1040 (-800 (-363))))) + (-5 *2 (-606 (-1040 (-800 (-210))))) (-5 *1 (-289)))) + ((*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-363)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-378)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) + (-4 *4 (-1176 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) + (-5 *2 (-1200 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-402 *1)) (-4 *1 (-414 *3)) (-4 *3 (-529)) + (-4 *3 (-807)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-446 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-513)))) + ((*1 *2 *1) (-12 (-4 *1 (-580 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) + (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009)))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) + (-4 *5 (-580 (-1117))) (-4 *4 (-753)) (-4 *5 (-807)))) + ((*1 *1 *2) + (-1533 + (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) + (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) + (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) + (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) + (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) + (-5 *1 (-1016 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1027)))) + ((*1 *1 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-1045)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *2 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *2 (-1045)) + (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) + (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) + (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) + (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1054 *4 *5 *6 *7)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1100)) + (-5 *1 (-1087 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1122)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-816)) (-5 *3 (-537)) (-5 *1 (-1134)))) + ((*1 *2 *3) + (-12 (-5 *3 (-740 *4 (-818 *5))) + (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *5 (-606 (-1117))) + (-5 *2 (-740 *4 (-818 *6))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *6 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-740 *4 (-818 *6))) + (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) + (-5 *2 (-905 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 *4)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-1113 (-975 (-391 *4)))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117))))) ((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) - (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) - (-5 *1 (-146)) (-5 *3 (-598 (-886 (-208)))))) + (-5 *3 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6)))) + (-4 *4 (-13 (-805) (-291) (-141) (-973))) (-14 *6 (-606 (-1117))) + (-5 *2 (-606 (-740 *4 (-818 *6)))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) + (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) ((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) + (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-291))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-606 + (-2 (|:| -3705 (-731)) + (|:| |eqns| + (-606 + (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) + (|:| |cols| (-606 (-537)))))) + (|:| |fgb| (-606 *7))))) + (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) + (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) + (-5 *1 (-877 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-578 *4)) (-5 *1 (-577 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-807))))) +(((*1 *2 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) - (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) - (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 (-208))))))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-531)) (-5 *1 (-1040)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-598 (-531))) (-5 *4 (-531)) - (-5 *1 (-1040))))) -(((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-1000 *3 *4 *2)) (-4 *2 (-797)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797))))) + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) (((*1 *1 *1) - (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-927))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-402 *3)) (-4 *3 (-529)) (-5 *1 (-403 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) + (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4)))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) + (-4 *2 (-1176 *4))))) +(((*1 *1 *1) (-4 *1 (-1007)))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-347)) (-5 *2 (-606 (-1098 *4))) (-5 *1 (-269 *4 *5)) + (-5 *3 (-1098 *4)) (-4 *5 (-1191 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-31 *3 *4)) + (-4 *4 (-414 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-731)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *4)) + (-4 *4 (-414 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-113)) (-5 *1 (-154)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *4)) + (-4 *4 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-285 *3)) (-4 *3 (-286)))) + ((*1 *2 *2) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *4 (-807)) (-5 *1 (-413 *3 *4)) + (-4 *3 (-414 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *4)) + (-4 *4 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *4)) + (-4 *4 (-13 (-414 *3) (-954) (-1139)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-347)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) + (-5 *1 (-727 *3 *4)) (-4 *3 (-669 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-347)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) + (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) + (-4 *3 (-809 *5))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-578 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) + (-4 *2 (-13 (-414 *5) (-27) (-1139))) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *1 (-539 *5 *2 *6)) (-4 *6 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1113 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1040 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1154)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *4 (-998)) + (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) + (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-1064)) (-5 *2 (-111)) (-5 *1 (-781))))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-165))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-562 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1160 *3)) (-4 *3 (-998)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-537))) (-4 *1 (-1191 *3)) (-4 *3 (-998))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-207 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-238 *3)))) + ((*1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-986)) (-5 *2 (-1184 *4)) - (-5 *1 (-1103 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-5 *2 (-1184 *3)) (-5 *1 (-1103 *3)) - (-4 *3 (-986))))) + (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) + (-5 *2 (-874))))) +(((*1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-975 *3)) + (-4 *3 (-13 (-805) (-347) (-973))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) + (-4 *3 (-1176 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1015 *2 *3)) (-4 *2 (-13 (-805) (-347))) + (-4 *3 (-1176 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-703))))) + (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) + (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) + (-5 *1 (-591 *5 *6))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1169 *4 *5 *6)) - (|:| |%expon| (-300 *4 *5 *6)) - (|:| |%expTerms| - (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4)))))) - (|:| |%type| (-1085)))) - (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) - (-14 *5 (-1102)) (-14 *6 *4)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) - (-4 *5 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-388 (-531))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531))) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6)) - (-4 *6 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531))) - (-4 *7 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531))) - (-4 *3 (-13 (-27) (-1124) (-411 *7))) - (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8)) - (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531))) - (-4 *8 (-13 (-27) (-1124) (-411 *7))) - (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531)))) - (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8))) - (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) + (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) + ((*1 *2 *3) + (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) + (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) + (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998))))) +(((*1 *1 *1) (-5 *1 (-210))) ((*1 *1 *1) (-5 *1 (-363))) + ((*1 *1) (-5 *1 (-363)))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) ((*1 *1 *2) - (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) - (-4 *3 (-986)) (-5 *1 (-556 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-557 *3)))) + (-12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) ((*1 *1 *2) - (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) - (-4 *3 (-986)) (-4 *1 (-1144 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-721)) - (-5 *3 (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4)))) - (-4 *4 (-986)) (-4 *1 (-1165 *4)))) + (-12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) ((*1 *1 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-4 *1 (-1175 *3)))) + (-12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) ((*1 *1 *2) - (-12 (-5 *2 (-1083 (-2 (|:| |k| (-721)) (|:| |c| *3)))) - (-4 *3 (-986)) (-4 *1 (-1175 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-659 *3)) (-5 *1 (-777 *2 *3)) (-4 *3 (-986))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) - (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-795)) (-4 *4 (-344)) (-5 *2 (-721)) - (-5 *1 (-888 *4 *5)) (-4 *5 (-1160 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1) - (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030)) - (-4 *4 (-619 *3)))) - ((*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6))))) + (-12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (-12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (-12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 *2)) + (-14 *4 (-606 *2)) (-4 *5 (-371)))) + ((*1 *1 *2) + (-12 (-5 *2 (-300 *5)) (-4 *5 (-371)) (-5 *1 (-323 *3 *4 *5)) + (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (|:| |mdnia| + (-2 (|:| |fn| (-300 (-210))) + (|:| -2133 (-606 (-1040 (-800 (-210))))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) + (-5 *1 (-729)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *1 (-768)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) + (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-606 (-300 (-210)))) + (|:| -3956 (-606 (-210))))))) + (-5 *1 (-798)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-606 (-300 (-210)))) + (|:| |constraints| + (-606 + (-2 (|:| |start| (-210)) (|:| |finish| (-210)) + (|:| |grid| (-731)) (|:| |boundaryType| (-537)) + (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) + (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) + (|:| |tol| (-210)))) + (-5 *1 (-851)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *1 (-929 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) + (-1533 + (-12 (-5 *2 (-905 *3)) + (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) + (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) + (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) + (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807))))) + ((*1 *1 *2) + (-1533 + (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) + (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) + (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) + (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) + ((*1 *1 *2) + (-12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) + (-4 *2 (-617 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)))) + ((*1 *1) (-4 *1 (-1093)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-578 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) (-5 *5 (-1113 *2)) + (-4 *2 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-578 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1117))) + (-5 *5 (-391 (-1113 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *1 (-533 *6 *2 *7)) (-4 *7 (-1045))))) +(((*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-429)) (-5 *3 (-537))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-160 (-210))) (-5 *6 (-1100)) + (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2)) - (-5 *2 (-360)) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-537)) (-5 *5 (-1100)) (-5 *6 (-649 (-210))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-69 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) +(((*1 *2 *2) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-807)) (-5 *1 (-882 *4 *2)) + (-4 *2 (-414 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) - (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) - (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-1100)) (-5 *2 (-300 (-537))) + (-5 *1 (-883))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-606 (-742 *3))) (-5 *1 (-742 *3)) (-4 *3 (-529)) + (-4 *3 (-998))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-1132))))) +(((*1 *2 *3) + (-12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1176 *5)) + (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) + (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-111)) + (-5 *1 (-864 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) + (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) + (-4 *6 (-326 (-391 (-537)) *4 *5)) (-5 *2 (-111)) + (-5 *1 (-865 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) + (-4 *7 (-1176 (-391 *6))) (-5 *2 (-606 (-905 *5))) + (-5 *1 (-325 *4 *5 *6 *7)) (-4 *4 (-326 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) + (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) (-4 *4 (-347)) + (-5 *2 (-606 (-905 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) + ((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) + ((*1 *1 *1) + (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) + (-14 *3 (-606 (-1117))))) + ((*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045)))) + ((*1 *1 *1) + (-12 (-14 *2 (-606 (-1117))) (-4 *3 (-163)) + (-4 *5 (-223 (-2258 *2) (-731))) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) + (-2 (|:| -2009 *4) (|:| -3283 *5)))) + (-5 *1 (-444 *2 *3 *4 *5 *6 *7)) (-4 *4 (-807)) + (-4 *7 (-902 *3 *5 (-818 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807)))) + ((*1 *1 *1) + (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) + ((*1 *1 *1) + (-12 (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) (-4 *2 (-998)) + (-4 *3 (-687)))) + ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) + (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) + (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) + (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) + (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) + (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) + (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) + (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) + (-5 *1 (-247)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-537)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) + (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) + (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) + (-5 *2 (-1205)) (-5 *1 (-1202)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-210)) (|:| |phi| (-210)) (|:| -3190 (-210)) + (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) (|:| |scaleZ| (-210)) + (|:| |deltaX| (-210)) (|:| |deltaY| (-210)))) + (-5 *1 (-1202)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1013))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-210)) (-5 *1 (-289))))) +(((*1 *1 *2) + (-12 (-5 *2 (-300 *3)) (-4 *3 (-13 (-998) (-807))) + (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-902 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-998)) (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) + (-4 *1 (-1176 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-111)) (-5 *5 (-649 (-160 (-210)))) + (-5 *2 (-986)) (-5 *1 (-716))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-816))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *3 *5 *6 *7)) + (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) + (-4 *7 (-1154)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *3 *5 *6)) + (-4 *3 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-111)) + (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-111)) (-5 *1 (-1143 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) - (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-296)) (-5 *1 (-280)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-280)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-797)) (-4 *5 (-573 *2)) (-5 *2 (-360)) - (-5 *1 (-735 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-604 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110))))) -(((*1 *2 *3) - (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4)))) - (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1160 *9)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-289)) - (-4 *10 (-892 *9 *7 *8)) + (-12 (-5 *4 (-606 (-1100))) (-5 *3 (-1100)) (-5 *2 (-296)) + (-5 *1 (-280))))) +(((*1 *2 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-902 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-210)) + (-5 *7 (-649 (-537))) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-94)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-113)))) + ((*1 *2 *1) + (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-422 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-487)) (-5 *1 (-465)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-918)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1020 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1117)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247)))) + ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) + (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *9 (-1012 *6 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-598 (-1098 *10))) - (|:| |dterm| - (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-598 *6)) (|:| |nlead| (-598 *10)))) - (-5 *1 (-728 *6 *7 *8 *9 *10)) (-5 *3 (-1098 *10)) (-5 *4 (-598 *6)) - (-5 *5 (-598 *10))))) + (-606 + (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) + (-5 *1 (-941 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-606 *10)) (-5 *5 (-111)) (-4 *10 (-1018 *6 *7 *8 *9)) + (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *9 (-1012 *6 *7 *8)) + (-5 *2 + (-606 + (-2 (|:| -4113 (-606 *9)) (|:| -3852 *10) (|:| |ineq| (-606 *9))))) + (-5 *1 (-1052 *6 *7 *8 *9 *10)) (-5 *3 (-606 *9))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-731)) (-4 *4 (-291)) (-4 *6 (-1176 *4)) + (-5 *2 (-1200 (-606 *6))) (-5 *1 (-438 *4 *6)) (-5 *5 (-606 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-649 (-905 *4))) (-5 *1 (-979 *4)) + (-4 *4 (-998))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-807))) + (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) + (-5 *1 (-566 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-954) (-1139)))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1117)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-606 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1139) (-27) (-414 *8))) + (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) + (-5 *3 (-537)) (-5 *2 (-606 *4)) (-5 *1 (-966 *8 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) (-4 *3 (-580 (-363))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (-12 (-5 *4 (-874)) (-5 *2 (-160 (-363))) (-5 *1 (-745 *3)) + (-4 *3 (-580 (-363))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360))) - (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-160 *4)) (-4 *4 (-163)) (-4 *4 (-580 (-363))) + (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (-12 (-5 *3 (-160 *5)) (-5 *4 (-874)) (-4 *5 (-163)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) (-4 *4 (-580 (-363))) + (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (-12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) + (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) - (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) - (-5 *1 (-735 *5)))) + (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 (-363))) + (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) - (-5 *1 (-735 *5)))) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) - (-5 *1 (-735 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) - (-4 *4 (-13 (-797) (-523)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1106)) (-5 *1 (-1105))))) -(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-598 (-112)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-571 *4)) (-5 *6 (-1102)) - (-4 *4 (-13 (-411 *7) (-27) (-1124))) - (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) - (-5 *2 (-975)) (-5 *1 (-700)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) - (-5 *8 (-369)) (-5 *2 (-975)) (-5 *1 (-700))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-549 *2)) (-4 *2 (-516))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-797) (-523))) - (-5 *2 (-806)) (-5 *1 (-31 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910))))) -(((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2968 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) + (-12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -4216 (-388 *6)) - (|:| |special| (-388 *6)))) - (-5 *1 (-678 *5 *6)) (-5 *3 (-388 *6)))) + (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-839 *3 *4)) - (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-721)) (-4 *5 (-344)) - (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-839 *3 *5)) - (-4 *3 (-1160 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) - (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) - (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) - (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) - (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *2 (-1189)) - (-5 *1 (-448)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-886 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) + (-12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) + (-5 *1 (-745 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) + ((*1 *2 *1) + (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) + ((*1 *2 *1) + (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) + (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) + ((*1 *2 *1) + (-12 (-14 *3 (-606 (-1117))) (-4 *5 (-223 (-2258 *3) (-731))) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *4) (|:| -3283 *5)) + (-2 (|:| -2009 *4) (|:| -3283 *5)))) + (-4 *2 (-163)) (-5 *1 (-444 *3 *2 *4 *5 *6 *7)) (-4 *4 (-807)) + (-4 *7 (-902 *2 *5 (-818 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-490 *2 *3)) (-4 *3 (-807)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-998)))) + ((*1 *2 *1) + (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-807)) + (-4 *3 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) + ((*1 *2 *1) + (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *3 (-752)) (-4 *4 (-807)) + (-4 *2 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-886 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)) (-5 *3 (-208))))) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-210)) (-5 *5 (-537)) (-5 *2 (-1149 *3)) + (-5 *1 (-750 *3)) (-4 *3 (-927)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-111)) + (-5 *1 (-1149 *2)) (-4 *2 (-927))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289))))) +(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-391 (-537))) (-5 *1 (-289))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-929 (-388 (-531)) (-808 *3) (-223 *4 (-721)) - (-230 *3 (-388 (-531))))) - (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-928 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) + (-12 (-4 *3 (-1176 (-391 (-537)))) (-5 *1 (-866 *3 *2)) + (-4 *2 (-1176 (-391 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47)))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) - (-5 *2 (-975)) (-5 *1 (-707))))) + (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) + (-4 *3 (-1176 (-391 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162)) - (-5 *2 (-1184 (-639 (-895 *4)))) (-5 *1 (-173 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1124) (-902) (-29 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-311))))) + (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522)))) + ((*1 *1 *1) (-4 *1 (-1007)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) + (-4 *4 (-998))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) + ((*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) + ((*1 *2 *1) + (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) + (-4 *6 (-223 (-2258 *3) (-731))) + (-14 *7 + (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) + (-2 (|:| -2009 *5) (|:| -3283 *6)))) + (-5 *2 (-674 *5 *6 *7)) (-5 *1 (-444 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-807)) (-4 *8 (-902 *4 *6 (-818 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-687)) (-4 *2 (-807)) (-5 *1 (-696 *3 *2)) + (-4 *3 (-998)))) + ((*1 *1 *1) + (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) + (-4 *4 (-807))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-418)) + (-5 *2 + (-606 + (-3 (|:| -3923 (-1117)) + (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537))))))))) + (-5 *1 (-1121))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1010)) (-5 *3 (-1100))))) (((*1 *2 *1) - (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)) - (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))))) + (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-414 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) - (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) + (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) + (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (-5 *2 (-1083 (-2 (|:| |k| *4) (|:| |c| *3))))))) + (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) + (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) + (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) + (-15 -3315 (*7 $)))))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-111) *7 (-606 *7))) (-4 *1 (-1147 *4 *5 *6 *7)) + (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-485 *3 *4 *5 *6))) (-4 *3 (-347)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) + (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) + ((*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807))))) +(((*1 *1) + (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) + (-3679 (|has| *1 (-6 -4283))))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) (-4 *1 (-807))) + ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) + ((*1 *1) (-5 *1 (-1064)))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-714))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) + ((*1 *1 *1) (-4 *1 (-286))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *1 *1) (-5 *1 (-816)))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) + (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-149)))) (((*1 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-754 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1124) (-902)))))) + (-12 (-5 *3 (-606 (-513))) (-5 *2 (-1117)) (-5 *1 (-513))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *2 *2) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) + ((*1 *1 *1 *1) (-4 *1 (-522))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-731))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-402 *4) *4)) (-4 *4 (-529)) (-5 *2 (-402 *4)) + (-5 *1 (-403 *4)))) + ((*1 *1 *1) (-5 *1 (-879))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) + ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) + (-5 *4 (-391 (-537))) (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) + (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) + (-5 *4 (-391 (-537))) (-5 *1 (-972 *3)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) + (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-578 *4)) (-5 *6 (-1113 *4)) + (-4 *4 (-13 (-414 *7) (-27) (-1139))) + (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-578 *4)) (-5 *6 (-391 (-1113 *4))) + (-4 *4 (-13 (-414 *7) (-27) (-1139))) + (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-159 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) - (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-775))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-753))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-886 *4)) (-4 *4 (-986)) (-5 *1 (-1091 *3 *4)) - (-14 *3 (-864))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1006 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) - (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8)) - (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797)) - (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9)))) - (-5 *1 (-1006 *6 *7 *4 *8 *9))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176)))) + (-12 (-5 *3 (-649 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2122 (-606 *6))) + *7 *6)) + (-4 *6 (-347)) (-4 *7 (-617 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1200 *6) "failed")) + (|:| -2122 (-606 (-1200 *6))))) + (-5 *1 (-773 *6 *7)) (-5 *4 (-1200 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1200 *6)) (-5 *4 (-1200 (-537))) (-5 *5 (-537)) + (-4 *6 (-1045)) (-5 *2 (-1 *6)) (-5 *1 (-969 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *2 *3) (-12 (-5 *3 (-606 (-537))) (-5 *2 (-731)) (-5 *1 (-558))))) +(((*1 *2 *1) + (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282)))) + (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) + (-5 *1 (-341 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-107))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4)) - (-4 *4 (-986)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721)))) - ((*1 *1 *1) (-4 *1 (-216))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) - (-4 *4 (-1160 *3)))) + (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-111)) + (-5 *1 (-507 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-800 (-210)))) (-5 *4 (-210)) (-5 *2 (-606 *4)) + (-5 *1 (-251))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) + (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-606 *5) *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) + (-5 *2 (-606 (-2 (|:| -2787 *5) (|:| -4113 *3)))) + (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) + (-4 *7 (-617 (-391 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-88 *4 *5)) + (-5 *3 (-649 *4)) (-4 *5 (-617 *4))))) +(((*1 *1 *1) (-4 *1 (-228))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) - (-4 *3 (-1160 *2)))) - ((*1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4)) - (-4 *4 (-1030)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030)))) + (-12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) + (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154))))) + ((*1 *1 *1) (-4 *1 (-456))) + ((*1 *2 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-347))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-4 *2 (-1045)) (-5 *1 (-640 *5 *6 *2))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-347)) (-4 *7 (-1176 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) + (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) + (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *1 *1) (-5 *1 (-1010)))) +(((*1 *1 *1 *1) (-5 *1 (-153))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-153))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) + (-5 *2 (-2 (|:| -3449 (-391 *5)) (|:| |poly| *3))) + (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) + (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) + (|:| |args| (-606 (-816))))) + (-5 *1 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) + ((*1 *2 *1) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) + (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-291)) (-5 *1 (-169 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-529)) (-4 *4 (-807)) + (-5 *1 (-546 *4 *2)) (-4 *2 (-414 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163))))) +(((*1 *2 *3) + (-12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) + (-5 *2 (-606 *3)) (-5 *1 (-737 *4 *5 *6 *3 *7)) (-4 *3 (-1176 *6)) + (-14 *7 (-874))))) +(((*1 *2) (-12 (-5 *2 (-606 *3)) (-5 *1 (-1030 *3)) (-4 *3 (-130))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-311)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-644))) (-5 *1 (-311)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-651))) (-5 *1 (-311)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311)))) - ((*1 *1) (-5 *1 (-311)))) -(((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-986)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) + (-12 (-5 *3 (-731)) (-4 *1 (-1176 *4)) (-4 *4 (-998)) + (-5 *2 (-1200 *4))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) + (-5 *1 (-717))))) +(((*1 *2 *3) + (-12 (-4 *4 (-998)) + (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) + (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) + ((*1 *1 *1) (-4 *1 (-522))) + ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-4 *1 (-947 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-1151 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) + (-4 *2 (-998))))) +(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1132))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-606 *5)) + (-5 *1 (-843 *4 *5)) (-4 *5 (-1154))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-713))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *1 *1) - (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-797)) - (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-531))) (-5 *1 (-1048)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1138)) - (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *2 *7)) (-4 *6 (-986)) - (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-788)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-787)))) - ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-598 (-360))) (-5 *5 (-598 (-790 (-360)))) - (-5 *6 (-598 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-975)) - (-5 *1 (-787)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) - (-5 *5 (-598 (-790 (-360)))) (-5 *2 (-975)) (-5 *1 (-787)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) - (-5 *1 (-787)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360))) - (-5 *2 (-975)) (-5 *1 (-787))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-531)) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) - (-4 *3 (-986)))) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) + (-4 *5 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-391 (-537))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) + (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) + (-4 *8 (-13 (-27) (-1139) (-414 *7))) + (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) + (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) + (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-769 *4)) (-4 *4 (-797)) (-4 *1 (-1199 *4 *3)) - (-4 *3 (-986))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-399 *3)) (-4 *3 (-523)) (-5 *1 (-400 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) - (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) - (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-110)) - (-5 *1 (-854 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) - (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) - (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-110)) - (-5 *1 (-855 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797))) - (-4 *2 (-13 (-411 *4) (-943) (-1124))) (-5 *1 (-560 *4 *2 *3)) - (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1055 *4 *3 *5))) (-4 *4 (-37 (-388 (-531)))) - (-4 *4 (-986)) (-4 *3 (-797)) (-5 *1 (-1055 *4 *3 *5)) - (-4 *5 (-892 *4 (-503 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1133 *4))) (-5 *3 (-1102)) (-5 *1 (-1133 *4)) - (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-864))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-832 *4 *5)) (-5 *3 (-832 *4 *6)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-619 *5)) (-5 *1 (-828 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *4)) (-4 *4 (-986)) (-5 *1 (-1069 *3 *4)) - (-14 *3 (-721))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-1102)) (-4 *6 (-411 *5)) - (-4 *5 (-797)) (-5 *2 (-598 (-571 *6))) (-5 *1 (-540 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-901 *3)) (-5 *1 (-1090 *4 *3)) + (-12 (-5 *2 (-391 (-537))) (-4 *4 (-998)) (-4 *1 (-1183 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-598 *11)) (-5 *5 (-598 (-1098 *9))) - (-5 *6 (-598 *9)) (-5 *7 (-598 *12)) (-5 *8 (-598 (-721))) - (-4 *11 (-797)) (-4 *9 (-289)) (-4 *12 (-892 *9 *10 *11)) - (-4 *10 (-743)) (-5 *2 (-598 (-1098 *12))) - (-5 *1 (-658 *10 *11 *9 *12)) (-5 *3 (-1098 *12))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-1184 (-297 (-360)))) - (-5 *1 (-287))))) -(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))) -(((*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1160 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 (-606 (-160 *4))) + (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) + (-5 *1 (-625 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-625 *3 *4)) (-5 *1 (-1219 *3 *4)) + (-4 *3 (-807)) (-4 *4 (-163))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770)) - (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) - (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-700))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-459))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817)) - (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-1185)) - (-5 *1 (-1188)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245))) - (-5 *2 (-1185)) (-5 *1 (-1188))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-57 *3)) (-4 *3 (-1138)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-57 *3))))) -(((*1 *1) (-5 *1 (-773)))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))) + (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) + (-5 *2 (-402 *3)) (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-291)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1068 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-734)) (-5 *1 (-51))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) + ((*1 *1) + (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) + (-4 *4 (-163)))) + ((*1 *1) (-4 *1 (-687))) ((*1 *1) (-5 *1 (-1117)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-522)))) + ((*1 *1 *1) (-4 *1 (-1007)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-4 *5 (-344)) - (-4 *5 (-986)) (-5 *2 (-110)) (-5 *1 (-969 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) (-4 *4 (-986)) - (-5 *2 (-110)) (-5 *1 (-969 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) (-4 *7 (-797)) - (-4 *8 (-289)) (-4 *6 (-743)) (-4 *9 (-892 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-598 (-2 (|:| -2552 (-1098 *9)) (|:| -1790 (-531))))))) - (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9))))) + (-12 (-5 *4 (-537)) (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -2872 *4)))) + (-5 *1 (-656 *3)) (-4 *3 (-1176 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-649 *5)) (-4 *5 (-998)) (-5 *1 (-1002 *3 *4 *5)) + (-14 *3 (-731)) (-14 *4 (-731))))) (((*1 *2 *3) - (-12 (-5 *2 (-598 (-598 (-531)))) (-5 *1 (-913)) - (-5 *3 (-598 (-531)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-986)) - (-5 *1 (-800 *5 *2)) (-4 *2 (-799 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-797)) (-5 *1 (-872 *4 *2)) - (-4 *2 (-411 *4)))) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) + (-4 *5 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-1085)) (-5 *2 (-297 (-531))) - (-5 *1 (-873))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531)) - (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-721))))) -(((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) - (-4 *2 - (-13 (-383) - (-10 -7 (-15 -2265 (*2 *4)) (-15 -2211 ((-864) *2)) - (-15 -3523 ((-1184 *2) (-864))) (-15 -2730 (*2 *2))))) - (-5 *1 (-337 *2 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-48))))) -(((*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) - ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) - ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797))) (-5 *2 (-159 *5)) - (-5 *1 (-560 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-943) (-1124))) - (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-579 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110))) - (-531) *4)) - (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *1 (-541 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) - ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) - ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-293)) (-5 *1 (-278)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-1085))) (-5 *3 (-1085)) (-5 *2 (-293)) - (-5 *1 (-278))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1120))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-224)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-531)) (-5 *1 (-224))))) -(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-112)))) + (-12 (-5 *4 (-537)) (-4 *5 (-13 (-435) (-807) (-989 *4) (-602 *4))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-435) (-807) (-989 *5) (-602 *5))) (-5 *5 (-537)) + (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) + (-4 *7 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) + (-4 *3 (-13 (-27) (-1139) (-414 *7))) + (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-537)) (-4 *4 (-998)) (-4 *1 (-1162 *4 *3)) + (-4 *3 (-1191 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-1030)))) - ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-419 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-908)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1007 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1102)))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) - ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-531)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797)) - (-5 *1 (-429 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) - (-4 *4 (-13 (-797) (-523)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *1 *1) (-5 *1 (-110)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) - (-4 *4 (-13 (-523) (-977 (-531)) (-140))) (-5 *1 (-537 *4))))) -(((*1 *2) - (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *2) - (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-264 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (-12 + (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 - (-2 - (|:| -3033 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (|:| -1798 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1083 (-208))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2368 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-526)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-645 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2) + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *2 *2) (-12 (-5 *2 - (-2 - (|:| -3033 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (|:| -1798 - (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) - (|:| |expense| (-360)) (|:| |accuracy| (-360)) - (|:| |intermediateResults| (-360)))))) - (-5 *1 (-753)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-289) (-140))) - (-4 *2 (-892 *4 *6 *5)) (-5 *1 (-867 *4 *5 *6 *2)) - (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743))))) -(((*1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-598 *7) *7 (-1098 *7))) (-5 *5 (-1 (-399 *7) *7)) - (-4 *7 (-1160 *6)) (-4 *6 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-5 *2 (-598 (-2 (|:| |frac| (-388 *7)) (|:| -2723 *3)))) - (-5 *1 (-759 *6 *7 *3 *8)) (-4 *3 (-609 *7)) - (-4 *8 (-609 (-388 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 - (-598 (-2 (|:| |frac| (-388 *6)) (|:| -2723 (-607 *6 (-388 *6)))))) - (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6)))))) + (-940 (-391 (-537)) (-818 *3) (-225 *4 (-731)) + (-232 *3 (-391 (-537))))) + (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-939 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-606 *5)) (-4 *5 (-1176 *3)) (-4 *3 (-291)) + (-5 *2 (-111)) (-5 *1 (-438 *3 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-639 *4)))) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-1200 (-649 *4))))) ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4)) - (-4 *3 (-398 *4)))) - ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-702))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-548 *3) *3 (-1102))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1102))) - (-4 *3 (-266)) (-4 *3 (-584)) (-4 *3 (-977 *4)) (-4 *3 (-411 *7)) - (-5 *4 (-1102)) (-4 *7 (-573 (-835 (-531)))) (-4 *7 (-432)) - (-4 *7 (-829 (-531))) (-4 *7 (-797)) (-5 *2 (-548 *3)) - (-5 *1 (-540 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-4 *4 (-163)) (-5 *2 (-1200 (-649 *4))) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) + ((*1 *2) + (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 (-649 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) + (-5 *2 (-1200 (-649 (-391 (-905 *5))))) (-5 *1 (-1032 *5)) + (-5 *4 (-649 (-391 (-905 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-1117))) (-4 *5 (-347)) + (-5 *2 (-1200 (-649 (-905 *5)))) (-5 *1 (-1032 *5)) + (-5 *4 (-649 (-905 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) + (-5 *2 (-1200 (-649 *4))) (-5 *1 (-1032 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-1 (-1098 (-895 *4)) (-895 *4))) - (-5 *1 (-1192 *4)) (-4 *4 (-344))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-707))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-986)) (-4 *2 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-707))))) -(((*1 *1) (-5 *1 (-134)))) -(((*1 *1 *1) (-5 *1 (-208))) - ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1) (-4 *1 (-1066))) ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *3 (-598 (-531))) - (-5 *1 (-826))))) -(((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-598 (-598 *3))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363)))) + (-5 *1 (-763))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) + ((*1 *1 *1) (|partial| -4 *1 (-683)))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-816) (-816) (-816))) (-5 *4 (-537)) (-5 *2 (-816)) + (-5 *1 (-610 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-816)) (-5 *1 (-811 *3 *4 *5)) (-4 *3 (-998)) + (-14 *4 (-97 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-816)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-816)))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1113 *3)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *4 (-1117)) + (-5 *1 (-1120)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1120)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-421)) (-5 *3 (-1117)) (-5 *1 (-1121)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-421)) (-5 *3 (-606 (-1117))) (-5 *1 (-1121))))) +(((*1 *2 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998)))) + ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) + (-4 *5 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-731)) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-278 *3)) (-5 *5 (-731)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) + (-4 *6 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-731))) + (-4 *7 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-731))) + (-4 *3 (-13 (-27) (-1139) (-414 *7))) + (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-598 (-598 *5))))) + (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-57 *3)) (-4 *3 (-1154)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-57 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-598 *3))) (-5 *1 (-1111 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-162)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-5 *1 (-638 *4 *5 *6 *2)) - (-4 *2 (-637 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6)) - (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6)) - (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2)) - (-4 *4 (-37 (-388 (-531))))))) -(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-531))) (-5 *1 (-287))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208))) - (-5 *5 (-110)) (-5 *2 (-1186)) (-5 *1 (-239))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1175 *4)) - (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-1083 *4))) - (-5 *1 (-1177 *4 *5))))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) - (-5 *1 (-792 *4 *5)) (-14 *4 (-721))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 (-1184 *4))) (-4 *4 (-986)) (-5 *2 (-639 *4)) - (-5 *1 (-969 *4))))) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) + (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) + (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) + (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) + (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) + (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) + (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-251))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) (((*1 *2 *1) - (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) - (-4 *3 (-910))))) + (-12 (-5 *2 (-606 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-554 *3)) (-4 *3 (-347))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) + (-4 *2 (-13 (-807) (-21)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-175)) (-5 *3 (-531)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-162)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-5 *6 (-1098 *3)) - (-4 *3 (-13 (-411 *7) (-27) (-1124))) - (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) - (-5 *6 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1124))) - (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1191 *4)) + (-4 *4 (-37 (-391 (-537)))) + (-5 *2 (-1 (-1098 *4) (-1098 *4) (-1098 *4))) (-5 *1 (-1193 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-233))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) + (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-606 *7)) (|:| -3852 *8))) + (-4 *7 (-1012 *4 *5 *6)) (-4 *8 (-1018 *4 *5 *6 *7)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))) + (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-4 *3 (-529))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) + ((*1 *1 *1) (|partial| -4 *1 (-683)))) (((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3)) - (-4 *3 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3))) - (-4 *3 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030))))) + (-12 (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *2 (-606 *3)) (-5 *1 (-930 *4 *5 *6 *3)) + (-4 *3 (-1012 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2248 *4))) (-5 *1 (-912 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) - (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *1 *1) (-4 *1 (-516)))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) - ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) - ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-797)) (-4 *3 (-1030))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-797)) (-5 *1 (-1110 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-1160 (-388 *3))) (-5 *2 (-864)) - (-5 *1 (-856 *4 *5)) (-4 *5 (-1160 (-388 *4)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-4 *6 (-432)) - (-5 *2 (-598 (-598 *7))) (-5 *1 (-509 *6 *7 *5)) (-4 *7 (-344)) - (-4 *5 (-13 (-344) (-795)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) - (-4 *3 (-13 (-797) (-523)))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-523)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-737)) (-5 *2 (-975)) - (-5 *3 - (-2 (|:| |fn| (-297 (-208))) - (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-737)) (-5 *2 (-975)) - (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208))))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-523)) (-4 *4 (-797)) - (-5 *1 (-540 *4 *2)) (-4 *2 (-411 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-27) (-411 *4))) - (-4 *4 (-13 (-797) (-523) (-977 (-531)))) - (-4 *7 (-1160 (-388 *6))) (-5 *1 (-519 *4 *5 *6 *7 *2)) - (-4 *2 (-323 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-531))) (-5 *4 (-531)) (-5 *2 (-51)) - (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-245)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) - ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523))))) -(((*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) - (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-639 *5))) (-4 *5 (-289)) (-4 *5 (-986)) - (-5 *2 (-1184 (-1184 *5))) (-5 *1 (-969 *5)) (-5 *4 (-1184 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128)) - (-4 *3 (-742))))) -(((*1 *1) (-5 *1 (-418)))) -(((*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-208))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-297 *5))) - (-5 *1 (-1058 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) - (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-297 *5)))) - (-5 *1 (-1058 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(((*1 *2 *3) - (-12 (-4 *4 (-797)) - (-5 *2 - (-2 (|:| |f1| (-598 *4)) (|:| |f2| (-598 (-598 (-598 *4)))) - (|:| |f3| (-598 (-598 *4))) (|:| |f4| (-598 (-598 (-598 *4)))))) - (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 (-598 *4))))))) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-349)) - (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 (-360)) (-5 *1 (-189))))) + (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) + (-4 *3 (-1176 *4)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *5 (-349)) - (-5 *2 (-721))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 *6)) (-4 *6 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-1098 *7)) (-5 *1 (-302 *4 *5 *6 *7)) - (-4 *7 (-892 *6 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-4 *2 (-1045)) (-5 *1 (-917 *2 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) + (-14 *4 (-874))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1083 *3))) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-110)) - (-5 *1 (-1209 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-289) (-140))) - (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7)) - (|:| |wcond| (-598 (-895 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))))) - (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700))))) + (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) + (-4 *5 (-839 (-537))) + (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) + (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1117)) (-5 *4 (-800 *2)) (-4 *2 (-1081)) + (-4 *2 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-580 (-845 (-537)))) (-4 *5 (-839 (-537))) + (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) + (-5 *1 (-540 *5 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *5)) (-4 *5 (-1160 *3)) (-4 *3 (-289)) - (-5 *2 (-110)) (-5 *1 (-435 *3 *5))))) -(((*1 *1) (-5 *1 (-134)))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-598 (-208))) - (-5 *1 (-448))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-5 *1 (-839 *2 *4)) - (-4 *2 (-1160 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110))))) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1117))) (-4 *6 (-347)) + (-5 *2 (-606 (-278 (-905 *6)))) (-5 *1 (-515 *5 *6 *7)) + (-4 *5 (-435)) (-4 *7 (-13 (-347) (-805)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2109 *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2109 *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-986)) (-4 *4 (-162)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)) - (-4 *3 (-162))))) -(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) - (-14 *4 *2)))) + (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) + (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) (((*1 *2 *2) - (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-5 *1 (-930 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-5 *1 (-1037 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-1053 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4))))) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) (((*1 *1 *1) - (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-721))) - (-5 *1 (-510 *3 *2 *4 *5)) (-4 *2 (-1160 *3))))) -(((*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1030))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-262))) (-5 *1 (-262)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) - (-5 *2 (-2 (|:| -3267 *3) (|:| |nconst| *3))) (-5 *1 (-534 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-399 *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-986)) (-5 *2 (-598 *6)) (-5 *1 (-424 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) - (-4 *3 (-910))))) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210))) (-5 *1 (-664 *3)) + (-4 *3 (-580 (-513))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1117)) (-5 *2 (-1 (-210) (-210) (-210))) + (-5 *1 (-664 *3)) (-4 *3 (-580 (-513)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-857 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) (((*1 *2 *3) - (-12 (-4 *4 (-1138)) (-5 *2 (-721)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-626 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-598 (-1085))) (-5 *3 (-531)) (-5 *4 (-1085)) - (-5 *1 (-224)))) - ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) - (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) - (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) - (-5 *1 (-647)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-208))) - (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1 (-886 (-208)) (-208) (-208))) - (-5 *4 (-1025 (-208))) (-5 *5 (-598 (-245))) (-5 *1 (-647))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) - (-5 *1 (-707))))) + (-12 (-4 *4 (-13 (-529) (-807))) + (-4 *2 (-13 (-414 *4) (-954) (-1139))) (-5 *1 (-566 *4 *2 *3)) + (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139)))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-149))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-388 (-531))) (-4 *4 (-977 (-531))) - (-4 *4 (-13 (-797) (-523))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-130))) + (-12 (-5 *3 (-391 (-537))) (-4 *4 (-989 (-537))) + (-4 *4 (-13 (-807) (-529))) (-5 *1 (-31 *4 *2)) (-4 *2 (-414 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-131))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-208))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-531)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-210))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-537)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3)) - (-4 *5 (-1175 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1146 *4 *5)))) + (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) + (-4 *5 (-1191 *4)) (-5 *1 (-262 *4 *5 *2)) (-4 *2 (-1162 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3)) - (-4 *5 (-1144 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1167 *4 *5)) - (-4 *6 (-925 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-266))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-5 *1 (-360))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-367 *2)) (-4 *2 (-1030)))) + (-12 (-5 *3 (-391 (-537))) (-4 *4 (-347)) (-4 *4 (-37 *3)) + (-4 *5 (-1160 *4)) (-5 *1 (-263 *4 *5 *2 *6)) (-4 *2 (-1183 *4 *5)) + (-4 *6 (-936 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-268))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-345 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) (-5 *1 (-363))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-370 *2)) (-4 *2 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-531)))) + (-12 (-5 *2 (-731)) (-4 *1 (-414 *3)) (-4 *3 (-807)) (-4 *3 (-1057)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-456)) (-5 *2 (-537)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) + (-12 (-5 *2 (-731)) (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330)) - (-5 *1 (-501 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-507)))) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) + (-5 *1 (-507 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-513)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-513)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *4 (-1030)) - (-5 *1 (-632 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *4 (-1045)) + (-5 *1 (-642 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344)))) + (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) (-4 *3 (-347)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) + (-12 (-5 *2 (-731)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986)) - (-5 *1 (-640 *4)))) + (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) + (-5 *1 (-650 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)) - (-4 *4 (-601 *3)))) + (-12 (-5 *2 (-537)) (-4 *3 (-998)) (-5 *1 (-675 *3 *4)) + (-4 *4 (-609 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-4 *4 (-986)) - (-5 *1 (-665 *4 *5)) (-4 *5 (-601 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-677)) (-5 *2 (-721)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-784 *3)) (-4 *3 (-986)))) + (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-4 *4 (-998)) + (-5 *1 (-675 *4 *5)) (-4 *5 (-609 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-731)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-794 *3)) (-4 *3 (-998)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-5 *1 (-784 *4)) (-4 *4 (-986)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-388 (-531))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-864)))) + (-12 (-5 *2 (-113)) (-5 *3 (-537)) (-5 *1 (-794 *4)) (-4 *4 (-998)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-391 (-537))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-874)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-1052 *3 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344)))) + (-12 (-5 *2 (-537)) (-4 *1 (-1067 *3 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4)) (-4 *4 (-347)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516)))) - ((*1 *1 *1) (-4 *1 (-995)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-847 *4)) - (-4 *4 (-1030)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-507))))) -(((*1 *1 *1 *1) (-5 *1 (-127)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) - (-5 *2 (-1184 (-531))) (-5 *1 (-1209 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))) -(((*1 *1) (-5 *1 (-1186)))) -(((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045))))) +(((*1 *2) + (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) + (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) + (-5 *2 + (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-649 *3)))) + (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1176 (-537))) + (-5 *2 + (-2 (|:| -2122 (-649 (-537))) (|:| |basisDen| (-537)) + (|:| |basisInv| (-649 (-537))))) + (-5 *1 (-728 *3 *4)) (-4 *4 (-393 (-537) *3)))) + ((*1 *2) + (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) + (-5 *2 + (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-649 *4)))) + (-5 *1 (-938 *3 *4 *5 *6)) (-4 *6 (-685 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-333)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 *4)) + (-5 *2 + (-2 (|:| -2122 (-649 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-649 *4)))) + (-5 *1 (-1209 *3 *4 *5 *6)) (-4 *6 (-393 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 (-363)) (-5 *1 (-191))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) + (-5 *5 (-111)) (-5 *2 (-1202)) (-5 *1 (-241))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) (((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) + (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *5)) (-5 *1 (-838 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *5 (-627 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) + (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) + (-4 *4 (-13 (-347) (-805))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-278 (-391 (-905 (-160 (-537))))))) + (-5 *2 (-606 (-606 (-278 (-905 (-160 *4)))))) (-5 *1 (-362 *4)) + (-4 *4 (-13 (-347) (-805))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 (-160 (-537))))) + (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) + (-4 *4 (-13 (-347) (-805))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-278 (-391 (-905 (-160 (-537)))))) + (-5 *2 (-606 (-278 (-905 (-160 *4))))) (-5 *1 (-362 *4)) + (-4 *4 (-13 (-347) (-805)))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-661))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) - (-4 *4 (-13 (-797) (-523)))))) -(((*1 *1) (-5 *1 (-1185)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3))))) -(((*1 *1) (-5 *1 (-273)))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) - ((*1 *1 *1 *1) (-4 *1 (-743)))) + (-12 (-5 *2 (-402 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-896 *5)) (-5 *3 (-731)) (-4 *5 (-998)) + (-5 *1 (-1106 *4 *5)) (-14 *4 (-874))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-531)) (-5 *1 (-188))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-110))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1102)) - (-4 *5 (-13 (-523) (-977 (-531)) (-140))) - (-5 *2 - (-2 (|:| -2351 (-388 (-895 *5))) (|:| |coeff| (-388 (-895 *5))))) - (-5 *1 (-537 *5)) (-5 *3 (-388 (-895 *5)))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-820 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-822 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-825 *2)) (-4 *2 (-1138))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2)) - (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274)))))) + (-2 (|:| |pde| (-606 (-300 (-210)))) + (|:| |constraints| + (-606 + (-2 (|:| |start| (-210)) (|:| |finish| (-210)) + (|:| |grid| (-731)) (|:| |boundaryType| (-537)) + (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) + (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) + (|:| |tol| (-210)))) + (-5 *2 (-111)) (-5 *1 (-196))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) + (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) + (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) + (-4 *3 (-13 (-347) (-141) (-989 (-537)))) (-5 *1 (-541 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) + (-5 *1 (-120 *3)) (-4 *3 (-807)))) + ((*1 *2 *2) + (-12 (-5 *2 (-554 *4)) (-4 *4 (-13 (-29 *3) (-1139))) + (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *1 (-552 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2)) - (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274))))))) + (-12 (-5 *2 (-554 (-391 (-905 *3)))) + (-4 *3 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *1 (-557 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 (-2 (|:| -2559 *3) (|:| |special| *3))) (-5 *1 (-688 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1200 *5)) (-4 *5 (-347)) (-4 *5 (-998)) + (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) + (-5 *3 (-606 (-649 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1200 (-1200 *5))) (-4 *5 (-347)) (-4 *5 (-998)) + (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) + (-5 *3 (-606 (-649 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-606 *1)) (-4 *1 (-1086)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-606 *1)) (-4 *1 (-1086))))) +(((*1 *2 *3) + (-12 (-4 *4 (-998)) + (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) + (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4))))) (((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *1) (-5 *1 (-773)))) -(((*1 *2 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-580 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *2 (-1039 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 (-598 *6))) (-4 *6 (-892 *3 *5 *4)) - (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102)))) - (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030)) - (-4 *2 (-797))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1030)) - (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) - (-5 *2 (-598 (-1008 *3 *4 *5))) (-5 *1 (-1009 *3 *4 *5)) - (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))))) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) + (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1))))) + (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-111)) + (-5 *1 (-344 *4 *5)) (-14 *5 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-740 *4 (-818 *5)))) (-4 *4 (-435)) + (-14 *5 (-606 (-1117))) (-5 *2 (-111)) (-5 *1 (-591 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) (-5 *2 (-598 (-1102))) (-5 *1 (-194)) - (-5 *3 (-1102)))) + (-12 (-5 *3 (-606 (-537))) (-5 *4 (-858 (-537))) + (-5 *2 (-649 (-537))) (-5 *1 (-558)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) + (-5 *1 (-558)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-208))) (-5 *4 (-721)) (-5 *2 (-598 (-1102))) - (-5 *1 (-249)))) + (-12 (-5 *3 (-606 (-537))) (-5 *4 (-606 (-858 (-537)))) + (-5 *2 (-606 (-649 (-537)))) (-5 *1 (-558))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) + (-5 *2 (-606 (-1117))) (-5 *1 (-251)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-606 *5)) + (-5 *1 (-305 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) - (-5 *2 (-598 *3)))) + (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-323 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-371)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) + (-12 (-4 *1 (-414 *3)) (-4 *3 (-807)) (-5 *2 (-606 (-1117))))) ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-598 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523)) - (-5 *2 (-110)) (-5 *1 (-593 *4 *5))))) + (-12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-606 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) + (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *5)) + (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1047 (-1117))) (-5 *1 (-919 *3)) (-4 *3 (-920)))) + ((*1 *2 *1) + (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) + (-4 *5 (-807)) (-5 *2 (-606 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-5 *2 (-606 (-1117))) + (-5 *1 (-994 *4))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-606 (-487))) (-5 *2 (-487)) (-5 *1 (-465))))) +(((*1 *2 *1) + (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) + (-5 *2 (-397 *4 (-391 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 *6)) (-4 *6 (-13 (-393 *4 *5) (-989 *4))) + (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *3 (-291)) + (-5 *1 (-397 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) + (-5 *2 (-606 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) + (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284))))) (((*1 *2 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)) - (-4 *4 (-330))))) + (-12 (-4 *4 (-333)) + (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *3)))) + (-5 *1 (-202 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-731)) (|:| -2990 *4))) (-5 *5 (-731)) + (-4 *4 (-902 *6 *7 *8)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-432 *6 *7 *8 *4))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-490 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-807))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-111)) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-4 *3 (-13 (-27) (-1139) (-414 *6) (-10 -8 (-15 -2341 ($ *7))))) + (-4 *7 (-805)) + (-4 *8 + (-13 (-1178 *3 *7) (-347) (-1139) + (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) + (-5 *1 (-406 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1100)) (-4 *9 (-936 *8)) + (-14 *10 (-1117))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) - (-5 *1 (-638 *3 *4 *5 *6)) (-4 *6 (-637 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-650 *3)) - (-4 *3 (-289))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-895 (-531)))) (-5 *1 (-418)))) + (-12 (-5 *3 (-606 *2)) (-5 *1 (-169 *2)) (-4 *2 (-291)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-606 (-606 *4))) (-5 *2 (-606 *4)) (-4 *4 (-291)) + (-5 *1 (-169 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 *8)) + (-5 *4 + (-606 + (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-649 *7))))) + (-5 *5 (-731)) (-4 *8 (-1176 *7)) (-4 *7 (-1176 *6)) (-4 *6 (-333)) + (-5 *2 + (-2 (|:| -2122 (-649 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-649 *7)))) + (-5 *1 (-479 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1113 (-391 (-1113 *2)))) (-5 *4 (-578 *2)) + (-4 *2 (-13 (-414 *5) (-27) (-1139))) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1045)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1113 *1)) (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *3 (-807)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1113 *4)) (-4 *4 (-998)) (-4 *1 (-902 *4 *5 *3)) + (-4 *5 (-753)) (-4 *3 (-807)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-208))) (-5 *2 (-1034)) - (-5 *1 (-710)))) + (-12 (-5 *3 (-391 (-1113 *2))) (-4 *5 (-753)) (-4 *4 (-807)) + (-4 *6 (-998)) + (-4 *2 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) + (-5 *1 (-903 *5 *4 *6 *7 *2)) (-4 *7 (-902 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-531))) (-5 *2 (-1034)) - (-5 *1 (-710))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1102)) - (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-542 *4 *2)) - (-4 *2 (-13 (-1124) (-902) (-1066) (-29 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-429 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))) + (-12 (-5 *3 (-391 (-1113 (-391 (-905 *5))))) (-5 *4 (-1117)) + (-5 *2 (-391 (-905 *5))) (-5 *1 (-994 *5)) (-4 *5 (-529))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-1047 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-606 *4))) (-5 *1 (-857 *4)) + (-5 *3 (-606 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1045)) (-5 *2 (-1047 (-1047 *4))) (-5 *1 (-857 *4)) + (-5 *3 (-1047 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1) + (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) + (-4 *4 (-250 *3)) (-4 *5 (-753))))) (((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)))) - ((*1 *1) (-4 *1 (-1078)))) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) - (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7)))) - (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7)))) - (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1037 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-1200 *5)) (-4 *5 (-291)) + (-4 *5 (-998)) (-5 *2 (-649 *5)) (-5 *1 (-980 *5))))) +(((*1 *1 *1) (-5 *1 (-1010)))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-598 (-1008 *4 *5 *2))) (-4 *4 (-1030)) - (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) - (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) - (-5 *1 (-53 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-598 (-1008 *5 *6 *2))) (-5 *4 (-864)) (-4 *5 (-1030)) - (-4 *6 (-13 (-986) (-829 *5) (-797) (-573 (-835 *5)))) - (-4 *2 (-13 (-411 *6) (-829 *5) (-573 (-835 *5)))) - (-5 *1 (-53 *5 *6 *2))))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-273))) - ((*1 *1) (-5 *1 (-806))) - ((*1 *1) - (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) - (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1017))) - ((*1 *1) - (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33))))) - ((*1 *1) (-5 *1 (-1105))) ((*1 *1) (-5 *1 (-1106)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) - (-15 -1853 ((-1054 *3 (-571 $)) $)) - (-15 -2265 ($ (-1054 *3 (-571 $)))))))))) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) + (-5 *1 (-31 *4 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1113 *3)) (-4 *3 (-998)) (-4 *1 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1030) (-977 *5))) - (-4 *5 (-829 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5)) - (-5 *1 (-874 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531)))))) - (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4)) - (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-276 (-388 (-895 (-159 (-531))))))) - (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4)) - (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 (-159 (-531))))) - (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4)) - (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-276 (-388 (-895 (-159 (-531)))))) - (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4)) - (-4 *4 (-13 (-344) (-795)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2)) - (-4 *2 (-1160 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-1134 *3)) - (-4 *3 (-916))))) -(((*1 *2 *1) - (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) - (-5 *2 (-598 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) -(((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-128))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) + (-12 (-5 *3 (-874)) (-5 *1 (-981 *2)) + (-4 *2 (-13 (-1045) (-10 -8 (-15 -2318 ($ $ $)))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *6)) (-5 *5 (-1 (-399 (-1098 *6)) (-1098 *6))) - (-4 *6 (-344)) - (-5 *2 - (-598 - (-2 (|:| |outval| *7) (|:| |outmult| (-531)) - (|:| |outvect| (-598 (-639 *7)))))) - (-5 *1 (-504 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-795)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-13 (-289) (-140))) - (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) - (-5 *2 (-598 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)) - (-4 *7 (-892 *4 *6 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-598 (-1098 *11))) (-5 *3 (-1098 *11)) - (-5 *4 (-598 *10)) (-5 *5 (-598 *8)) (-5 *6 (-598 (-721))) - (-5 *7 (-1184 (-598 (-1098 *8)))) (-4 *10 (-797)) - (-4 *8 (-289)) (-4 *11 (-892 *8 *9 *10)) (-4 *9 (-743)) - (-5 *1 (-658 *9 *10 *8 *11))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-571 *5))) (-4 *4 (-797)) (-5 *2 (-571 *5)) - (-5 *1 (-540 *4 *5)) (-4 *5 (-411 *4))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-598 (-1098 *13))) (-5 *3 (-1098 *13)) - (-5 *4 (-598 *12)) (-5 *5 (-598 *10)) (-5 *6 (-598 *13)) - (-5 *7 (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *13))))) - (-5 *8 (-598 (-721))) (-5 *9 (-1184 (-598 (-1098 *10)))) - (-4 *12 (-797)) (-4 *10 (-289)) (-4 *13 (-892 *10 *11 *12)) - (-4 *11 (-743)) (-5 *1 (-658 *11 *12 *10 *13))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |k| (-1102)) (|:| |c| (-1204 *3))))) - (-5 *1 (-1204 *3)) (-4 *3 (-986)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) - (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))))) -(((*1 *2 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) - ((*1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-701))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2))) - (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5)) - (-4 *3 (-323 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142)) - (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) - (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) - (-5 *1 (-956 *4 *5)) (-5 *3 (-388 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1) (-4 *1 (-910))) ((*1 *1 *1) (-5 *1 (-1049)))) -(((*1 *2 *1) - (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) - (-4 *3 (-910))))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 (-391 (-905 *6)))) + (-5 *3 (-391 (-905 *6))) + (-4 *6 (-13 (-529) (-989 (-537)) (-141))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-543 *6))))) +(((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) - (-4 *2 (-1138))))) + (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1184 (-1102))) (-5 *3 (-1184 (-433 *4 *5 *6 *7))) - (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864)) - (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4))))) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-433 *4 *5 *6 *7))) - (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864)) - (-14 *6 (-598 *2)) (-14 *7 (-1184 (-639 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) - (-14 *6 (-1184 (-639 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-1102))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) - (-14 *6 (-1184 (-639 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1102)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) - (-14 *4 (-864)) (-14 *5 (-598 *2)) (-14 *6 (-1184 (-639 *3))))) - ((*1 *1) - (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-864)) - (-14 *4 (-598 (-1102))) (-14 *5 (-1184 (-639 *2)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1069 *4 *2)) (-14 *4 (-864)) - (-4 *2 (-13 (-986) (-10 -7 (-6 (-4275 "*"))))) (-5 *1 (-845 *4 *2))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473))))) -(((*1 *1 *1) (-5 *1 (-208))) ((*1 *1 *1) (-5 *1 (-360))) - ((*1 *1) (-5 *1 (-360)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) - (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5))))) + (-12 (-5 *3 (-606 (-874))) (-5 *1 (-146 *4 *2 *5)) (-14 *4 (-874)) + (-4 *2 (-347)) (-14 *5 (-946 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-674 *5 *6 *7)) (-4 *5 (-807)) + (-4 *6 (-223 (-2258 *4) (-731))) + (-14 *7 + (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) + (-2 (|:| -2009 *5) (|:| -3283 *6)))) + (-14 *4 (-606 (-1117))) (-4 *2 (-163)) + (-5 *1 (-444 *4 *2 *5 *6 *7 *8)) (-4 *8 (-902 *2 *6 (-818 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-490 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-807)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) + (-4 *4 (-1176 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-696 *2 *3)) (-4 *2 (-998)) (-4 *3 (-687)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) + (-4 *4 (-998)) (-4 *5 (-807)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) + (-4 *2 (-807)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) + (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *2 (-807)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 *5)) (-4 *1 (-926 *4 *5 *6)) + (-4 *4 (-998)) (-4 *5 (-752)) (-4 *6 (-807)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-926 *4 *3 *2)) (-4 *4 (-998)) (-4 *3 (-752)) + (-4 *2 (-807))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6)) - (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 (-460 *3 *4))) (-14 *3 (-598 (-1102))) - (-4 *4 (-432)) (-5 *1 (-586 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-977 *4)) (-4 *3 (-289)) - (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *6 (-390 *4 *5)) - (-14 *7 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1184 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-934 *3)) - (-4 *5 (-1160 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-311))))) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-2 (|:| -3619 *4) (|:| -3073 (-537))))) + (-4 *4 (-1045)) (-5 *2 (-1 *4)) (-5 *1 (-969 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-722)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-929 *4 *5 *3 *6)) (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-391 (-905 *4))) (-5 *3 (-1117)) + (-4 *4 (-13 (-529) (-989 (-537)) (-141))) (-5 *1 (-543 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) + (-5 *1 (-1102 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) + (-14 *4 (-1117)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-986)) (-4 *3 (-1160 *4)) (-4 *2 (-1175 *4)) - (-5 *1 (-1178 *4 *3 *5 *2)) (-4 *5 (-609 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-556 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-986))))) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-1205)) + (-5 *1 (-432 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-721)) (-4 *4 (-330)) - (-5 *1 (-501 *4))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-137))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-598 *2) *2 *2 *2)) (-4 *2 (-1030)) - (-5 *1 (-100 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-100 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) - (-4 *2 (-411 *3))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-27) (-414 *4))) + (-4 *4 (-13 (-807) (-529) (-989 (-537)))) + (-4 *7 (-1176 (-391 *6))) (-5 *1 (-525 *4 *5 *6 *7 *2)) + (-4 *2 (-326 *5 *6 *7))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) - (-5 *1 (-1087 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) - (-14 *4 (-1102)) (-14 *5 *3)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1124) (-29 *4)))))) + (-12 (-5 *2 (-649 (-537))) (-5 *3 (-606 (-537))) (-5 *1 (-1055))))) (((*1 *2 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3))))) -(((*1 *2) - (-12 (-4 *4 (-344)) (-5 *2 (-864)) (-5 *1 (-309 *3 *4)) - (-4 *3 (-310 *4)))) - ((*1 *2) - (-12 (-4 *4 (-344)) (-5 *2 (-783 (-864))) (-5 *1 (-309 *3 *4)) - (-4 *3 (-310 *4)))) - ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864)))) - ((*1 *2) - (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-430 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-430 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-430 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) - (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432)) - (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-100 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) - (-5 *1 (-1087 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) - (-14 *4 (-1102)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-110)) (-5 *5 (-531)) (-4 *6 (-344)) (-4 *6 (-349)) - (-4 *6 (-986)) (-5 *2 (-598 (-598 (-639 *6)))) (-5 *1 (-969 *6)) - (-5 *3 (-598 (-639 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-986)) - (-5 *2 (-598 (-598 (-639 *4)))) (-5 *1 (-969 *4)) - (-5 *3 (-598 (-639 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)) - (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) - (-5 *3 (-598 (-639 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)) - (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) - (-5 *3 (-598 (-639 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531))) - (-5 *1 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) - ((*1 *1 *1 *1) (-4 *1 (-516))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-721))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-721)) (-5 *1 (-528))))) + (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) + (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) + (-15 -3315 ((-1069 *3 (-578 $)) $)) + (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998))))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-606 (-278 *4))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874))))) (((*1 *2 *3) - (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385)) - (-5 *2 (-864))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-110)) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7))))) - (-4 *7 (-795)) - (-4 *8 - (-13 (-1162 *3 *7) (-344) (-1124) - (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) - (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8)) - (-14 *10 (-1102))))) + (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-833))))) (((*1 *2 *3) - (-12 (-5 *3 (-870)) - (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) - (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) - (-5 *1 (-146)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531))) - (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) - (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) - (-5 *1 (-146))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) - (-14 *3 (-531)) (-14 *4 (-721))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1017))) (-5 *1 (-273))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3))))) -(((*1 *1) (-5 *1 (-208))) ((*1 *1) (-5 *1 (-360)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) + (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) + (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) + (-4 *4 (-647 *2 *5 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1070 *4 *3 *5))) (-4 *4 (-37 (-391 (-537)))) + (-4 *4 (-998)) (-4 *3 (-807)) (-5 *1 (-1070 *4 *3 *5)) + (-4 *5 (-902 *4 (-509 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1148 *4))) (-5 *3 (-1117)) (-5 *1 (-1148 *4)) + (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 (-159 (-531))))) (-5 *2 (-598 (-159 *4))) - (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531)))))) - (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 (-159 *5)))) - (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-795)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-998)) (-5 *3 (-1085))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) (((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-864)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-742)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-388 (-531))) (-4 *1 (-1165 *3)) (-4 *3 (-986))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-94))))) -(((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138))))) + (-12 (-4 *3 (-13 (-347) (-805))) (-5 *1 (-171 *3 *2)) + (-4 *2 (-1176 (-160 *3)))))) +(((*1 *1) (-5 *1 (-783)))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782))))) +(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-907))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) - (-4 *7 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) - (|:| |wcond| (-598 (-895 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) - (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-598 (-1102))) (-4 *8 (-892 *5 *7 *6)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) - (-4 *7 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) - (|:| |wcond| (-598 (-895 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) - (-5 *1 (-867 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5)) - (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7)) - (|:| |wcond| (-598 (-895 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))))) - (-5 *1 (-867 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *9)) (-5 *5 (-864)) (-4 *9 (-892 *6 *8 *7)) - (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) - (-4 *8 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9)) - (|:| |wcond| (-598 (-895 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *6)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *6)))))))))) - (-5 *1 (-867 *6 *7 *8 *9)) (-5 *4 (-598 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-864)) - (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) - (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9)) - (|:| |wcond| (-598 (-895 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *6)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *6)))))))))) - (-5 *1 (-867 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-864)) (-4 *8 (-892 *5 *7 *6)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) - (-4 *7 (-743)) - (-5 *2 - (-598 - (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) - (|:| |wcond| (-598 (-895 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) - (-5 *1 (-867 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 *9)) (-5 *5 (-1085)) - (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) - (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) - (-5 *1 (-867 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-1085)) - (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) - (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) - (-5 *1 (-867 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-1085)) (-4 *8 (-892 *5 *7 *6)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) - (-4 *7 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 *10)) (-5 *5 (-864)) - (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) - (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531)) - (-5 *1 (-867 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 (-1102))) (-5 *5 (-864)) - (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) - (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531)) - (-5 *1 (-867 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *9)) (-5 *4 (-864)) (-5 *5 (-1085)) - (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) - (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) - (-5 *1 (-867 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-835 *6))) - (-5 *5 (-1 (-832 *6 *8) *8 (-835 *6) (-832 *6 *8))) (-4 *6 (-1030)) - (-4 *8 (-13 (-986) (-573 (-835 *6)) (-977 *7))) (-5 *2 (-832 *6 *8)) - (-4 *7 (-13 (-986) (-797))) (-5 *1 (-884 *6 *7 *8))))) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-598 (-159 *4))) - (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795)))))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) - (-5 *2 (-975)) (-5 *1 (-707))))) -(((*1 *2 *3) - (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) - (-4 *3 (-1160 *4)) - (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) - (-5 *1 (-313))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) - (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (|has| *4 (-6 (-4275 "*"))) - (-4 *4 (-986)) (-5 *1 (-968 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) - (|has| *4 (-6 (-4275 "*"))) (-4 *4 (-986)) (-5 *1 (-968 *4))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986))))) -(((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7))) - (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) - (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5))))) + (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4)) + (-4 *4 (-37 (-391 (-537)))) (-4 *4 (-998))))) (((*1 *2 *1) - (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-330)) (-4 *6 (-1160 *5)) - (-5 *2 - (-598 - (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-639 *6))))) - (-5 *1 (-476 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-639 *6)))) - (-4 *7 (-1160 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4)) - (-4 *3 (-398 *4)))) + (-12 (-5 *2 (-731)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) + (-14 *4 *2) (-4 *5 (-163)))) ((*1 *2) - (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) - (-5 *2 (-1098 (-895 *3))))) + (-12 (-4 *4 (-163)) (-5 *2 (-874)) (-5 *1 (-156 *3 *4)) + (-4 *3 (-157 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-874)))) ((*1 *2) - (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2))) - (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5)) - (-4 *3 (-323 *4 *2 *5)))) + (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) + (-5 *2 (-874)))) + ((*1 *2 *3) + (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) + (-5 *2 (-731)) (-5 *1 (-628 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-731)) + (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) + (-4 *3 (-647 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) + (-5 *2 (-731))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) + (-4 *3 (-1154))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) + (-5 *2 (-606 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-958))))) +(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-472))))) +(((*1 *2 *1) + (-12 (-4 *2 (-529)) (-5 *1 (-586 *2 *3)) (-4 *3 (-1176 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-649 *4)))) ((*1 *2) - (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142)) - (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-975)) - (-5 *1 (-700))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-344)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) - (-4 *1 (-799 *3))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) - ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) - ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) - (-5 *2 (-598 (-2 (|:| -2259 *1) (|:| -1833 (-598 *7))))) - (-5 *3 (-598 *7)) (-4 *1 (-1132 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1124)))) - ((*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-571 *3)) (-4 *3 (-797))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-864)) (-5 *4 (-208)) (-5 *5 (-531)) (-5 *6 (-817)) - (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) + (-12 (-4 *4 (-163)) (-5 *2 (-649 *4)) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) + ((*1 *2) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1154))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-61 LSFUN2)))) + (-5 *2 (-986)) (-5 *1 (-714))))) (((*1 *2) - (-12 (-4 *3 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-1189)) - (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975)) - (-5 *1 (-705))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779))))) + (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) + (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) + (-4 *7 (-1045)) (-5 *2 (-606 *1)) (-4 *1 (-1048 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) + (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 (-2 (|:| -3121 (-391 *6)) (|:| |coeff| (-391 *6)))) + (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1153))) (-5 *3 (-1153)) (-5 *1 (-641))))) (((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) (((*1 *2 *1) - (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110)) - (-5 *1 (-338 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-110)) - (-5 *1 (-501 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-986)) - (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) - (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4))))) -(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-721))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *1) (-4 *1 (-812 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) - (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7))))) + (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) + (-4 *4 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) (((*1 *2 *3) - (-12 (-4 *1 (-330)) (-5 *3 (-531)) (-5 *2 (-1112 (-864) (-721)))))) -(((*1 *1) (-5 *1 (-273)))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) - (-4 *3 (-1030))))) + (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) + (-5 *2 (-1200 (-537))) (-5 *1 (-1226 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) + (-4 *7 (-807)) (-4 *8 (-291)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) + (-5 *2 + (-2 (|:| |upol| (-1113 *8)) (|:| |Lval| (-606 *8)) + (|:| |Lfact| + (-606 (-2 (|:| -3622 (-1113 *8)) (|:| -3283 (-537))))) + (|:| |ctpol| *8))) + (-5 *1 (-703 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1098 *7)) (-4 *5 (-986)) - (-4 *7 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-479 *5 *2 *6 *7)) - (-4 *6 (-1160 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986)) - (-4 *4 (-1160 *5)) (-5 *2 (-1098 *7)) (-5 *1 (-479 *5 *4 *6 *7)) - (-4 *6 (-1160 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 + (-2 (|:| |solns| (-606 *5)) + (|:| |maps| (-606 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1072 *3 *5)) (-4 *3 (-1176 *5))))) +(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1) (-4 *1 (-920))) ((*1 *1 *1) (-5 *1 (-1064)))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-606 (-1200 *4))) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) + (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) + (-5 *2 (-606 (-1200 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 (-463 *3 *4))) (-14 *3 (-606 (-1117))) + (-4 *4 (-435)) (-5 *1 (-594 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1191 *4)) + (-4 *4 (-37 (-391 (-537)))) (-5 *2 (-1 (-1098 *4) (-1098 *4))) + (-5 *1 (-1193 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2211 *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) + (-4 *2 (-1176 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 (-360)) (-5 *1 (-189))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *2 (-606 (-210))) (-5 *1 (-289))))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) + (-5 *1 (-1102 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1154)) (-4 *1 (-223 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) + (-5 *1 (-316))))) +(((*1 *2) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-1160 *4)) (-5 *2 (-1 *6 (-598 *6))) - (-5 *1 (-1178 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-1175 *4))))) + (-12 (-5 *3 (-1126 (-606 *4))) (-4 *4 (-807)) + (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4))))) +(((*1 *1) (-5 *1 (-149)))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-291)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) + (-4 *1 (-291))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1030)) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1030))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) + (-12 (-4 *3 (-1176 (-391 (-537)))) + (-5 *2 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537)))) + (-5 *1 (-866 *3 *4)) (-4 *4 (-1176 (-391 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *3)) + (-4 *3 (-1176 (-391 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-300 *3 *4 *5)) - (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) - (-5 *1 (-699))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-1175 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257))))) -(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-721))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-833 *4 *3)) - (-4 *3 (-1138)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-249))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1102)) (-5 *6 (-110)) - (-4 *7 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-4 *3 (-13 (-1124) (-902) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-202 *7 *3)) (-5 *5 (-790 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-864)) (-4 *3 (-344)) - (-14 *4 (-935 *2 *3)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-606 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) + (-5 *2 (-606 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-731)) (-4 *5 (-163)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) + (-4 *4 (-163)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *2 *4)) (-4 *2 (-357 *3)) + (-4 *4 (-357 *3)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *1 *1) (|partial| -4 *1 (-673))) - ((*1 *1 *1) (|partial| -4 *1 (-677))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344))) - (-4 *2 (-1160 *3)))) + (-12 (-5 *1 (-1084 *2 *3)) (-14 *2 (-731)) (-4 *3 (-998))))) +(((*1 *1 *2) (-12 (-5 *2 (-173)) (-5 *1 (-233))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) +(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) + (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-598 (-245))) (-5 *1 (-1186)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1085)) (-5 *1 (-1186)))) - ((*1 *1 *1) (-5 *1 (-1186)))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-769 *3)) (|:| |rm| (-769 *3)))) - (-5 *1 (-769 *3)) (-4 *3 (-797)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1105)) (-5 *3 (-1102))))) -(((*1 *2 *1) - (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) - (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-864)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) - (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) - (-5 *2 (-721)) (-5 *1 (-373 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-783 (-864))))) - ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-347)) (-4 *4 (-529)) (-4 *5 (-1176 *4)) + (-5 *2 (-2 (|:| -4144 (-586 *4 *5)) (|:| -2660 (-391 *5)))) + (-5 *1 (-586 *4 *5)) (-5 *3 (-391 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4)) - (-4 *4 (-1160 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) - (-4 *3 (-797)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) (-4 *3 (-797)) - (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) - (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) - (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) - (-5 *2 (-721)) (-5 *1 (-854 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) - (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) - (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-721)) - (-5 *1 (-855 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) - (-4 *7 (-1160 *6)) (-4 *4 (-1160 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) - (-4 *9 (-13 (-349) (-344))) (-5 *2 (-721)) - (-5 *1 (-959 *6 *7 *4 *8 *9)))) + (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) + (-14 *3 (-874)) (-4 *4 (-998)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)) (-5 *2 (-721)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) - (-4 *2 (-1030)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-367 *2)) (-4 *2 (-1030)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-1030)) (-5 *1 (-602 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-769 *2)) (-4 *2 (-797))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) - (-4 *4 (-162))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) - (-4 *2 (-523)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-523))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) - (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-523)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-721))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523)) - (-5 *1 (-912 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986)) - (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-523)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-977 (-531))) (-4 *3 (-13 (-797) (-523))) - (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3)))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-1098 *4)) (-5 *1 (-155 *3 *4)) - (-4 *3 (-156 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-986)) (-4 *1 (-284)))) - ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3)))) - ((*1 *2) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344))) - (-4 *2 (-1160 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *1) (-5 *1 (-1014)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) + (-12 (-4 *3 (-435)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1176 *3))))) (((*1 *2) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-598 *11)) - (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11)))))) - (-5 *6 (-721)) - (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11)))) - (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9)) - (-4 *11 (-1005 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743)) - (-4 *9 (-797)) (-5 *1 (-1003 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-598 *11)) - (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11)))))) - (-5 *6 (-721)) - (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11)))) - (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9)) - (-4 *11 (-1039 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743)) - (-4 *9 (-797)) (-5 *1 (-1072 *7 *8 *9 *10 *11))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) - (-4 *3 (-344))))) -(((*1 *2 *1) - (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721)) - (-14 *4 (-721)) (-4 *5 (-162))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)) - (-4 *4 (-986))))) + (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-156 *3 *4)) + (-4 *3 (-157 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) + (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-807)) (-5 *2 (-731)) (-5 *1 (-413 *3 *4)) + (-4 *3 (-414 *4)))) + ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-521 *3)) (-4 *3 (-522)))) + ((*1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-731)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-756 *3 *4)) + (-4 *3 (-757 *4)))) + ((*1 *2) + (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-944 *3 *4)) + (-4 *3 (-945 *4)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-731)) (-5 *1 (-948 *3 *4)) + (-4 *3 (-949 *4)))) + ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) + ((*1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-731)))) + ((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-1006 *3)) (-4 *3 (-1007))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-2 (|:| |den| (-537)) (|:| |gcdnum| (-537))))) + (-4 *4 (-1176 (-391 *2))) (-5 *2 (-537)) (-5 *1 (-866 *4 *5)) + (-4 *5 (-1176 (-391 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) (-4 *2 (-1154))))) +(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-731)) (-4 *4 (-13 (-529) (-141))) + (-5 *1 (-1170 *4 *2)) (-4 *2 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-110)) - (-5 *1 (-341 *4 *5)) (-14 *5 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-730 *4 (-808 *5)))) (-4 *4 (-432)) - (-14 *5 (-598 (-1102))) (-5 *2 (-110)) (-5 *1 (-583 *4 *5))))) + (-12 (-5 *3 (-880)) + (-5 *2 + (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) + (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-5 *1 (-147)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) + (-5 *2 + (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) + (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-5 *1 (-147))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2248 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *5 (-1160 *4)) (-5 *2 (-1098 (-388 *5))) (-5 *1 (-574 *4 *5)) - (-5 *3 (-388 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-1098 (-388 *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-388 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) - (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142)) - (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) - (-5 *2 (-2 (|:| |num| (-639 *5)) (|:| |den| *5)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523))))) + (-12 (-4 *4 (-435)) (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-5 *2 (-300 *4)) + (-5 *1 (-174 *4 *3)) (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-115 *3)) (-14 *3 (-531)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-163 (-531))) (-5 *1 (-716 *3)) (-4 *3 (-385)))) - ((*1 *2 *1) - (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-814 *3)) (-14 *3 (-531)))) + (-12 (-4 *4 (-1045)) (-5 *2 (-111)) (-5 *1 (-838 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *5 (-627 *4)))) ((*1 *2 *1) - (-12 (-14 *3 (-531)) (-5 *2 (-163 (-388 (-531)))) - (-5 *1 (-815 *3 *4)) (-4 *4 (-812 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140))) - (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-51)) (-5 *1 (-781))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-531)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2)) - (-4 *3 (-977 *4)) (-4 *3 (-13 (-797) (-523)))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-719)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) - (-5 *1 (-532)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-719)) (-5 *4 (-998)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) - (-5 *1 (-532)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-737)) (-5 *3 (-998)) - (-5 *4 - (-2 (|:| |fn| (-297 (-208))) - (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) - (|:| |extra| (-975)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-737)) (-5 *3 (-998)) - (-5 *4 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) - (|:| |extra| (-975)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-750)) (-5 *3 (-998)) - (-5 *4 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-758)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *1 (-755)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-758)) (-5 *4 (-998)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *1 (-755)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-786)) (-5 *3 (-998)) - (-5 *4 - (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) - (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-786)) (-5 *3 (-998)) - (-5 *4 - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) - (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-788)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *1 (-787)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-788)) (-5 *4 (-998)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *1 (-787)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-838)) (-5 *3 (-998)) - (-5 *4 - (-2 (|:| |pde| (-598 (-297 (-208)))) - (|:| |constraints| - (-598 - (-2 (|:| |start| (-208)) (|:| |finish| (-208)) - (|:| |grid| (-721)) (|:| |boundaryType| (-531)) - (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) - (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) - (|:| |tol| (-208)))) - (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-841)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-841)) (-5 *4 (-998)) - (-5 *2 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *1 (-840))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-51)) (-5 *1 (-779))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-984))))) -(((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) - ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) - ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162))))) + (-12 (-5 *2 (-111)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33)))))) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1) (-5 *1 (-1010)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-734)) (-5 *1 (-51))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) + (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-1205)) (-5 *1 (-791))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-391 *2)) (-4 *2 (-1176 *5)) + (-5 *1 (-767 *5 *2 *3 *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *3 (-617 *2)) (-4 *6 (-617 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-391 *2))) (-4 *2 (-1176 *5)) + (-5 *1 (-767 *5 *2 *3 *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) + (-4 *6 (-617 (-391 *2)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) + (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) + (-5 *1 (-330 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-703))))) -(((*1 *2 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-809 *4 *5 *6 *7)) - (-4 *4 (-986)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 *3)) - (-14 *7 *3))) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-954))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-964)))) + ((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-4 *1 (-964)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-874)))) + ((*1 *1 *1) (-4 *1 (-964)))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) - (-14 *8 (-598 *5)) (-5 *2 (-1189)) - (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-892 *4 *6 *5)) - (-14 *9 (-598 *3)) (-14 *10 *3)))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208)) - (-5 *2 (-975)) (-5 *1 (-700))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102))))) - (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034)) - (-5 *1 (-378)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102))))) - (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034)) - (-5 *1 (-378)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-598 (-1102))) (-5 *5 (-1105)) (-5 *3 (-1102)) - (-5 *2 (-1034)) (-5 *1 (-378))))) -(((*1 *2) - (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) + (-12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) + (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) + (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)) (-4 *2 (-291)))) ((*1 *2 *2) - (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) - (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) + (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) + (-4 *2 (-647 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1001 *2 *3 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *2 *4)) (-4 *4 (-291))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))))) - (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *5)) - (-4 *5 (-1160 (-388 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) - (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *2 (-721)) - (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5)) - (-14 *4 (-864)) (-4 *5 (-986)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986)) - (-5 *1 (-1091 *4 *5)) (-14 *4 (-864))))) -(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-598 (-908))) (-5 *1 (-273))))) + (-12 (-5 *2 (-111)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) + (-5 *2 (-606 (-606 (-232 *5 *6)))) (-5 *1 (-454 *5 *6 *7)) + (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-716)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-372)) + (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-529)) (-4 *2 (-902 *3 *5 *4)) + (-5 *1 (-693 *5 *4 *6 *2)) (-5 *3 (-391 (-905 *6))) (-4 *5 (-753)) + (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) - (-5 *2 (-360)) (-5 *1 (-249)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) - (-12 (-5 *3 (-388 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-523)) - (-4 *4 (-986)) (-4 *2 (-1175 *4)) (-5 *1 (-1178 *4 *5 *6 *2)) - (-4 *6 (-609 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) -(((*1 *2 *1 *1) - (-12 + (-2 (|:| -2756 (-649 (-391 (-905 *4)))) + (|:| |vec| (-606 (-391 (-905 *4)))) (|:| -3705 (-731)) + (|:| |rows| (-606 (-537))) (|:| |cols| (-606 (-537))))) + (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 - (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)) (|:| |coef2| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))) -(((*1 *2 *1) - (-12 (-4 *1 (-645 *3)) (-4 *3 (-1030)) - (-5 *2 (-598 (-2 (|:| -1798 *3) (|:| -2539 (-721)))))))) + (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) + (-5 *1 (-877 *4 *5 *6 *7)) (-4 *7 (-902 *4 *6 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-743)) (-4 *2 (-892 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2)) - (-4 *4 (-432)) (-4 *6 (-797))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3157 *7) (|:| |sol?| (-110))) - (-531) *7)) - (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7)) - (-5 *3 (-388 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-541 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1032 (-1032 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51)))) - (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523)) - (-5 *2 (-1184 *4)) (-5 *1 (-593 *4 *5))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-482 (-388 (-531)) (-223 *4 (-721)) (-808 *3) - (-230 *3 (-388 (-531))))) - (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-483 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-388 (-895 *6)) (-1092 (-1102) (-895 *6)))) - (-5 *5 (-721)) (-4 *6 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *6))))) - (-5 *1 (-274 *6)) (-5 *4 (-639 (-388 (-895 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5)))) - (|:| |eigmult| (-721)) (|:| |eigvec| (-598 *4)))) - (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5))))) - (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5))))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3887 *1) (|:| -4260 *1) (|:| |associate| *1))) - (-4 *1 (-523))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-598 (-531))) (-5 *3 (-639 (-531))) (-5 *1 (-1040))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) - (-5 *4 (-1 (-208) (-208) (-208) (-208))) - (-5 *2 (-1 (-886 (-208)) (-208) (-208))) (-5 *1 (-647))))) -(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1025 *3)) (-4 *3 (-892 *7 *6 *4)) (-4 *6 (-743)) - (-4 *4 (-797)) (-4 *7 (-523)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531)))) - (-5 *1 (-555 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-523)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531)))) - (-5 *1 (-555 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124))) - (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1094 *4 *2)))) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)) + (-5 *1 (-392 *3 *4 *5)) (-4 *3 (-393 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) + (-5 *2 (-649 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-47))) (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) + (-4 *3 (-1176 (-47))))) + ((*1 *2 *3) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1176 (-47))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) - (-5 *2 (-388 (-895 *5))) (-5 *1 (-1095 *5)) (-5 *3 (-895 *5)))) + (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) + (-5 *2 (-402 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-902 (-47) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) - (-5 *2 (-3 (-388 (-895 *5)) (-297 *5))) (-5 *1 (-1095 *5)) - (-5 *3 (-388 (-895 *5))))) + (-12 (-5 *4 (-606 (-47))) (-4 *5 (-807)) (-4 *6 (-753)) + (-4 *7 (-902 (-47) *6 *5)) (-5 *2 (-402 (-1113 *7))) + (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1113 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-158 *4 *3)) + (-4 *3 (-1176 (-160 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1023 (-895 *5))) (-5 *3 (-895 *5)) - (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-388 *3)) - (-5 *1 (-1095 *5)))) + (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) + (-4 *3 (-1176 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1023 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) - (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-3 *3 (-297 *5))) - (-5 *1 (-1095 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *3 *5 *6 *7)) - (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)) - (-4 *7 (-1138)))) + (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) + (-4 *3 (-1176 (-537))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *3 *5 *6)) - (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138))))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-287)))) - ((*1 *2 *3) (-12 (-5 *3 (-598 (-975))) (-5 *2 (-975)) (-5 *1 (-287)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *1) (-5 *1 (-998))) + (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) + (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) + (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) + (-4 *3 (-1176 (-537))))) ((*1 *2 *3) - (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1080 *4)) - (-4 *4 (-1138)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-735 *3)) (-4 *3 (-573 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-5 *2 (-360)) (-5 *1 (-735 *3)) - (-4 *3 (-573 *2)))) + (-12 (-5 *2 (-402 (-160 (-537)))) (-5 *1 (-429)) + (-5 *3 (-160 (-537))))) ((*1 *2 *3) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2)) - (-5 *2 (-360)) (-5 *1 (-735 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) - (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) + (-12 + (-4 *4 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-4 *5 (-753)) (-4 *7 (-529)) (-5 *2 (-402 *3)) + (-5 *1 (-439 *4 *5 *6 *7 *3)) (-4 *6 (-529)) + (-4 *3 (-902 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-291)) (-5 *2 (-402 (-1113 *4))) (-5 *1 (-441 *4)) + (-5 *3 (-1113 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) + (-4 *7 (-13 (-347) (-141) (-685 *5 *6))) (-5 *2 (-402 *3)) + (-5 *1 (-475 *5 *6 *7 *3)) (-4 *3 (-1176 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) + (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) + (-5 *2 (-402 *3)) (-5 *1 (-517 *5 *6 *7 *3)) + (-4 *3 (-902 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-402 (-1113 *7)) (-1113 *7))) + (-4 *7 (-13 (-291) (-141))) (-4 *5 (-807)) (-4 *6 (-753)) + (-4 *8 (-902 *7 *6 *5)) (-5 *2 (-402 (-1113 *8))) + (-5 *1 (-517 *5 *6 *7 *8)) (-5 *3 (-1113 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-606 *5) *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *6 (-1176 *5)) (-5 *2 (-606 (-614 (-391 *6)))) + (-5 *1 (-618 *5 *6)) (-5 *3 (-614 (-391 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *5 (-1176 *4)) (-5 *2 (-606 (-614 (-391 *5)))) + (-5 *1 (-618 *4 *5)) (-5 *3 (-614 (-391 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 *2)) - (-5 *2 (-360)) (-5 *1 (-735 *4)))) + (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-633 *4))) + (-5 *1 (-633 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) + (-12 (-5 *4 (-537)) (-5 *2 (-606 *3)) (-5 *1 (-656 *3)) + (-4 *3 (-1176 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) (-5 *2 (-402 *3)) + (-5 *1 (-658 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-333)) + (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) + (-5 *1 (-658 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) + (-4 *5 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-4 *6 (-291)) (-5 *2 (-402 *3)) (-5 *1 (-691 *4 *5 *6 *3)) + (-4 *3 (-902 (-905 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) + (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) + (-5 *2 (-402 *3)) (-5 *1 (-693 *4 *5 *6 *3)) + (-4 *3 (-902 (-391 (-905 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-13 (-291) (-141))) + (-5 *2 (-402 *3)) (-5 *1 (-694 *4 *5 *6 *3)) + (-4 *3 (-902 (-391 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) + (-5 *2 (-402 *3)) (-5 *1 (-702 *4 *5 *6 *3)) + (-4 *3 (-902 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-13 (-291) (-141))) + (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-402 (-1113 *7))) + (-5 *1 (-702 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) + (-4 *3 (-1176 (-391 (-537)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-992 *3)) + (-4 *3 (-1176 (-391 (-905 (-537))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1176 (-391 (-537)))) + (-4 *5 (-13 (-347) (-141) (-685 (-391 (-537)) *4))) + (-5 *2 (-402 *3)) (-5 *1 (-1024 *4 *5 *3)) (-4 *3 (-1176 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) - (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) + (-12 (-4 *4 (-1176 (-391 (-905 (-537))))) + (-4 *5 (-13 (-347) (-141) (-685 (-391 (-905 (-537))) *4))) + (-5 *2 (-402 *3)) (-5 *1 (-1026 *4 *5 *3)) (-4 *3 (-1176 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) + (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) + (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158)))) + ((*1 *2 *3) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-37 (-391 (-537)))) + (-4 *2 (-163))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1100)) (-5 *2 (-200 (-483))) (-5 *1 (-795))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-815)))) + ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-918)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-942)))) + ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *2 *3)) + (-4 *3 (-13 (-1045) (-33)))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) + ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-606 *5))) (-4 *5 (-1191 *4)) + (-4 *4 (-37 (-391 (-537)))) + (-5 *2 (-1 (-1098 *4) (-606 (-1098 *4)))) (-5 *1 (-1193 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-606 (-210))) + (-5 *1 (-451))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) + (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) - (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5))))) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) + (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) +(((*1 *1) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) - (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2) - (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852)) - (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-892 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852)) - (-5 *1 (-849 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-852)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1160 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385)) - (-5 *2 (-864))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) - (-4 *3 (-13 (-797) (-523)))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) + (-4 *4 (-37 (-391 (-537))))))) (((*1 *2 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4)))) - (-5 *1 (-1192 *4)) (-4 *4 (-344))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3)) - (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2)) - (-4 *2 (-637 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-808 *3)) (-14 *3 (-598 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-931)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1023 *3)) (-4 *3 (-1138)))) + (-12 (-5 *3 (-606 (-874))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) + (-5 *2 (-111)) (-5 *1 (-940 *3 *4 *5 *6)) + (-4 *6 (-902 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (-5 *2 (-1102)))) - ((*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2)))) + (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1184 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289)) - (-4 *3 (-523)) (-5 *1 (-42 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-864)) (-4 *4 (-344)) (-5 *2 (-1184 *1)) - (-4 *1 (-310 *4)))) - ((*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1184 *1)) (-4 *1 (-310 *3)))) - ((*1 *2) - (-12 (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *1)) - (-4 *1 (-390 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) - (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *6 (-13 (-390 *4 *5) (-977 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) - (-5 *2 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)) - (-4 *6 (-390 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-398 *3)))) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *1 (-587 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *2 (-1054 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) ((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-501 *4)) - (-4 *4 (-330))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) - (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-639 *3)) - (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) - (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) - (-14 *6 (-1102)) (-14 *7 *3)))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-259))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) + (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-716))))) (((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4)))))) + (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *2) + (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) + (-5 *1 (-709))))) +(((*1 *1 *1) + (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) + (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-513))) (-5 *1 (-513))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-537)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) +(((*1 *1 *1) + (-12 (-4 *2 (-291)) (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) + (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3)))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-1010))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030))))) + (-12 (-5 *2 (-111)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-451)) (-5 *3 (-606 (-247))) (-5 *1 (-1201)))) + ((*1 *1 *1) (-5 *1 (-1201)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247))))) (((*1 *2 *1) - (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) - (-5 *2 (-721)))) + (-12 (-4 *1 (-1176 *3)) (-4 *3 (-998)) (-5 *2 (-1113 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-414 *4)) (-4 *4 (-807)) + (-4 *4 (-529)) (-5 *2 (-391 (-1113 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-1113 (-391 (-1113 *3)))) (-5 *1 (-533 *6 *3 *7)) + (-5 *5 (-1113 *3)) (-4 *7 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1196 *5)) (-14 *5 (-1117)) (-4 *6 (-998)) + (-5 *2 (-1173 *5 (-905 *6))) (-5 *1 (-900 *5 *6)) (-5 *3 (-905 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-677))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) (-4 *5 (-344)) - (-4 *5 (-523)) (-5 *2 (-1184 *5)) (-5 *1 (-593 *5 *4)))) + (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-1113 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) (-5 *2 (-1113 *1)) + (-4 *1 (-902 *4 *5 *3)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) - (-3745 (-4 *5 (-344))) (-4 *5 (-523)) (-5 *2 (-1184 (-388 *5))) - (-5 *1 (-593 *5 *4))))) -(((*1 *2) - (-12 + (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) + (-4 *7 (-902 *6 *5 *4)) (-5 *2 (-391 (-1113 *3))) + (-5 *1 (-903 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1113 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) (-15 -3315 (*7 $))))) + (-4 *7 (-902 *6 *5 *4)) (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-998)) + (-5 *1 (-903 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-529)) + (-5 *2 (-391 (-1113 (-391 (-905 *5))))) (-5 *1 (-994 *5)) + (-5 *3 (-391 (-905 *5)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-731)) (-5 *3 (-896 *5)) (-4 *5 (-998)) + (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) + (-14 *4 (-874)) (-4 *5 (-998)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) + (-5 *1 (-1106 *4 *5)) (-14 *4 (-874))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 - (-1184 (-598 (-2 (|:| -3482 (-853 *3)) (|:| -1889 (-1049)))))) - (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) - ((*1 *2) - (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))) - (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))) - (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1184 (-598 *3))) (-4 *4 (-289)) - (-5 *2 (-598 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-4 *6 (-829 *5)) (-5 *2 (-828 *5 *6 (-598 *6))) - (-5 *1 (-830 *5 *6 *4)) (-5 *3 (-598 *6)) (-4 *4 (-573 (-835 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 *3))) (-5 *1 (-830 *5 *3 *4)) - (-4 *3 (-977 (-1102))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 (-895 *3)))) - (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-986)) - (-3745 (-4 *3 (-977 (-1102)))) (-4 *3 (-829 *5)) - (-4 *4 (-573 (-835 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-5 *2 (-832 *5 *3)) (-5 *1 (-830 *5 *3 *4)) - (-3745 (-4 *3 (-977 (-1102)))) (-3745 (-4 *3 (-986))) - (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1 *1) (-4 *1 (-584))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943) (-1124)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *6)))) - (-5 *4 (-966 (-790 (-531)))) (-5 *5 (-1102)) (-5 *7 (-388 (-531))) - (-4 *6 (-986)) (-5 *2 (-806)) (-5 *1 (-556 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505))))) +(((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-606 *3))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1117)) (-5 *6 (-111)) + (-4 *7 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-4 *3 (-13 (-1139) (-912) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-204 *7 *3)) (-5 *5 (-800 *3))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1176 *4)) (-5 *1 (-769 *4 *2 *3 *5)) + (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) + (-4 *5 (-617 (-391 *2)))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) + ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-659))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) + (-5 *1 (-176))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-578 *1))) (-4 *1 (-286))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *1 *1) (-5 *1 (-816))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) - (-14 *3 (-864)) (-4 *4 (-986)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *6 (-573 (-1102))) - (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *2 (-1092 (-598 (-895 *4)) (-598 (-276 (-895 *4))))) - (-5 *1 (-482 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-870))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284)))) - ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208)))) - (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-463 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (-4 *4 (-986)) - (-5 *1 (-968 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) (-4 *4 (-986)) - (-5 *1 (-968 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-524 *6 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245))))) -(((*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) - (-14 *3 (-864)) (-4 *4 (-986))))) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) + ((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) + (-5 *1 (-707))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) + (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-1212 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-129)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-345 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-370 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-610 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *1) - (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *2)) - (-2 (|:| -1889 *5) (|:| -1790 *2)))) - (-4 *2 (-221 (-2167 *3) (-721))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-797)) (-4 *7 (-892 *4 *2 (-808 *3)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-721)))) - ((*1 *1 *1) (-4 *1 (-383)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1138)) - (-4 *5 (-354 *4)) (-4 *3 (-354 *4))))) + (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) (((*1 *2) - (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1)))) - (-4 *1 (-348 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-433 *3 *4 *5 *6)) - (|:| -3523 (-598 (-433 *3 *4 *5 *6))))) - (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432)) - (-5 *1 (-861 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1160 (-388 *2))) - (-4 *2 (-1160 *5)) (-5 *1 (-199 *5 *2 *6 *3)) - (-4 *3 (-323 *5 *2 *6))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) - (-4 *4 (-162)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) - (-4 *2 (-411 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) - (-5 *1 (-149 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-162))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) - (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) - (-5 *1 (-647))))) -(((*1 *2 *3) - (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) - (-4 *3 (-1160 *4)) - (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1106))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-805)))) - ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-908)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-931)))) - ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *2 *3)) - (-4 *3 (-13 (-1030) (-33)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-673)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-677)) (-5 *2 (-110))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-639 (-895 *4))) (-5 *1 (-968 *4)) - (-4 *4 (-986))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 - (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) - (|:| |expense| (-360)) (|:| |accuracy| (-360)) - (|:| |intermediateResults| (-360)))) - (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) + (-12 (-4 *1 (-333)) + (-5 *2 (-606 (-2 (|:| -3622 (-537)) (|:| -3283 (-537)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-817)))) + ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-817)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1098 *4)) + (-4 *4 (-1045)) (-4 *4 (-1154))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1157 *4 *5)) (-5 *3 (-598 *5)) (-14 *4 (-1102)) - (-4 *5 (-344)) (-5 *1 (-866 *4 *5)))) + (-12 (-5 *2 (-1173 *4 *5)) (-5 *3 (-606 *5)) (-14 *4 (-1117)) + (-4 *5 (-347)) (-5 *1 (-876 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-344)) (-5 *2 (-1098 *5)) - (-5 *1 (-866 *4 *5)) (-14 *4 (-1102)))) + (-12 (-5 *3 (-606 *5)) (-4 *5 (-347)) (-5 *2 (-1113 *5)) + (-5 *1 (-876 *4 *5)) (-14 *4 (-1117)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-721)) (-4 *6 (-344)) - (-5 *2 (-388 (-895 *6))) (-5 *1 (-987 *5 *6)) (-14 *5 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-772))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) - (-5 *1 (-556 *3)) (-4 *3 (-986))))) -(((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-112)) (-5 *4 (-721)) (-4 *5 (-432)) (-4 *5 (-797)) - (-4 *5 (-977 (-531))) (-4 *5 (-523)) (-5 *1 (-40 *5 *2)) - (-4 *2 (-411 *5)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *5 (-571 $)) $)) - (-15 -1853 ((-1054 *5 (-571 $)) $)) - (-15 -2265 ($ (-1054 *5 (-571 $)))))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-743)) (-4 *5 (-986)) (-4 *6 (-892 *5 *4 *2)) - (-4 *2 (-797)) (-5 *1 (-893 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *6)) (-15 -1840 (*6 $)) - (-15 -1853 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) - (-5 *2 (-1102)) (-5 *1 (-982 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-388 (-531))) (-4 *1 (-521 *3)) - (-4 *3 (-13 (-385) (-1124))))) - ((*1 *1 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-4 *2 (-843 *5)) (-5 *1 (-642 *5 *2 *3 *4)) - (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273))))))) -(((*1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-102))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-5 *2 (-1098 *3)) (-5 *1 (-1113 *3)) - (-4 *3 (-344))))) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-731)) (-4 *6 (-347)) + (-5 *2 (-391 (-905 *6))) (-5 *1 (-999 *5 *6)) (-14 *5 (-1117))))) (((*1 *2 *3 *2) - (-12 - (-5 *2 - (-598 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-721)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-743)) (-4 *6 (-892 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-797)) - (-5 *1 (-429 *4 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1102))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 *4)) (-4 *4 (-986)) (-4 *2 (-1160 *4)) - (-5 *1 (-424 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-388 (-1098 (-297 *5)))) (-5 *3 (-1184 (-297 *5))) - (-5 *4 (-531)) (-4 *5 (-13 (-523) (-797))) (-5 *1 (-1059 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-344)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) - (-4 *1 (-799 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-531)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) - (-4 *3 (-1160 *4)) (-5 *2 (-531)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) - (-5 *2 (-531)) (-5 *1 (-1045 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) - (-5 *2 (-531)) (-5 *1 (-1045 *6 *3)))) + (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-606 (-1117))) + (-4 *2 (-13 (-414 (-160 *5)) (-954) (-1139))) + (-4 *5 (-13 (-529) (-807))) (-5 *1 (-566 *5 *6 *2)) + (-4 *6 (-13 (-414 *5) (-954) (-1139)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) (-4 *2 (-635 *3))))) +(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) +(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1 *1) (-5 *1 (-731))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1121))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-278 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) + (-4 *5 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) + (-5 *1 (-301 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-1085)) - (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) - (-5 *2 (-531)) (-5 *1 (-1045 *6 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-531)) - (-5 *1 (-1046 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 (-388 (-895 *6)))) - (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-531)) - (-5 *1 (-1046 *6)))) + (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-606 *7)) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) + (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) + (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-606 (-278 *8))) (-5 *4 (-606 (-113))) (-5 *5 (-278 *8)) + (-5 *6 (-606 *8)) (-4 *8 (-414 *7)) + (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) + (-5 *1 (-301 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) (-5 *5 (-278 *7)) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-807) (-529) (-580 (-513)))) + (-5 *2 (-51)) (-5 *1 (-301 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 (-113))) (-5 *6 (-606 (-278 *8))) + (-4 *8 (-414 *7)) (-5 *5 (-278 *8)) + (-4 *7 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) + (-5 *1 (-301 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1102)) - (-5 *5 (-1085)) (-4 *6 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986))))) -(((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) - (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6)) - (-4 *6 (-323 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417))))) -(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))) -(((*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417))))) -(((*1 *2 *1) - (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-5 *2 (-1085))))) + (-12 (-5 *3 (-278 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) + (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) + (-5 *1 (-301 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) + (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) + (-5 *1 (-301 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-4 *3 (-414 *6)) + (-4 *6 (-13 (-807) (-529) (-580 (-513)))) (-5 *2 (-51)) + (-5 *1 (-301 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-113)) (-5 *5 (-278 *3)) (-5 *6 (-606 *3)) + (-4 *3 (-414 *7)) (-4 *7 (-13 (-807) (-529) (-580 (-513)))) + (-5 *2 (-51)) (-5 *1 (-301 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) + (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) + (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) + (-4 *3 (-809 *5))))) +(((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816)))))) +(((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) + (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *2)) (-4 *2 (-902 *3 *5 *4))))) +(((*1 *1) (-4 *1 (-333)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) + (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-1045))))) +(((*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) - (-5 *2 - (-2 (|:| |contp| (-531)) - (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) - (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *9 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) + (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1016 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *9)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *9 (-1054 *5 *6 *7 *8)) (-4 *5 (-435)) (-4 *6 (-753)) + (-4 *7 (-807)) (-5 *2 (-731)) (-5 *1 (-1087 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-210)) (-5 *3 (-731)) (-5 *1 (-211)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-160 (-210))) (-5 *3 (-731)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-649 *3)) + (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) + (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |contp| (-531)) - (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) - (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531)))))) + (-606 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) + (-5 *1 (-432 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) + (-5 *2 (-606 (-606 *4))) (-5 *1 (-325 *3 *4 *5 *6)) + (-4 *3 (-326 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-4 *3 (-352)) (-5 *2 (-606 (-606 *3)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *5 *6)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-432 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241))))) +(((*1 *2 *1) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) + (-14 *3 (-537)) (-14 *4 (-731))))) +(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1 *1) (-5 *1 (-731))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) + (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) + (-4 *4 (-435)) (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-930 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-986)) - (-5 *1 (-969 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) - (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-986)) (-4 *4 (-797)) - (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) - (-4 *1 (-411 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-112)) (-4 *4 (-986)) (-4 *4 (-797)) - (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) - (-4 *1 (-411 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) - (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) - (-4 *1 (-411 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-721)))) - (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-721)))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *1) (-4 *1 (-822 *2)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-1200 *5))) (-5 *4 (-537)) (-5 *2 (-1200 *5)) + (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1113 *6)) (-4 *6 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-1113 *7)) (-5 *1 (-305 *4 *5 *6 *7)) + (-4 *7 (-902 *6 *4 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-779 *3)) (|:| |rm| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-807)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) + (-5 *2 (-986)) (-5 *1 (-717))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) + (-5 *2 (-986)) (-5 *1 (-706))))) +(((*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) - (-4 *7 (-892 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-531)))) - (-5 *1 (-893 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) - (-15 -1853 (*7 $)))))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) - (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) - (-5 *4 (-297 (-360))) (-5 *1 (-311)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) - (-5 *4 (-297 (-531))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-159 (-360))))) - (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-360)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-531)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-159 (-360))))) - (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-360)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-531)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-360))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-531))) (-5 *1 (-311)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) - (-5 *4 (-297 (-644))) (-5 *1 (-311)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) - (-5 *4 (-297 (-649))) (-5 *1 (-311)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) - (-5 *4 (-297 (-651))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-644)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-649)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-651)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-644)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-649)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-651)))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-644))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-649))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-651))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-644))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-649))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-651))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-644))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-649))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-651))) (-5 *1 (-311)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-311)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3)))) - ((*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) + (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) + (-4 *4 (-333))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-160 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) + (-4 *4 (-13 (-529) (-807))) + (-4 *2 (-13 (-414 (-160 *4)) (-954) (-1139))) + (-5 *1 (-566 *4 *5 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-842 *4 *5)) (-5 *3 (-842 *4 *6)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-627 *5)) (-5 *1 (-838 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-411 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) - (-4 *3 (-1030)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) - (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3)) - (-5 *1 (-893 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) - (-15 -1853 (*7 $)))))))) + (-12 (-5 *2 (-1200 (-1200 (-537)))) (-5 *3 (-874)) (-5 *1 (-449))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *5 (-1176 *4)) (-5 *2 (-1113 (-391 *5))) (-5 *1 (-581 *4 *5)) + (-5 *3 (-391 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-141) (-27) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-1113 (-391 *6))) (-5 *1 (-581 *5 *6)) (-5 *3 (-391 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-363)) (-5 *1 (-178))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) + (-4 *2 (-529)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-529))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) + (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-529)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-731))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-529)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) + (-5 *1 (-922 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) + (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-529)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) (((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) - ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3 *4) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-1049)) (-5 *1 (-275))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-5 *1 (-941 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-5 *1 (-1052 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-649 (-391 (-905 (-537))))) + (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982))))) +(((*1 *1 *2) (-12 - (-5 *3 - (-598 - (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) - (|:| |wcond| (-598 (-895 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) - (-5 *4 (-1085)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-892 *5 *7 *6)) - (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-531)) - (-5 *1 (-867 *5 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) - ((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) (-4 *1 (-812 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742)) - (-4 *4 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-846 *3))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1140))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239))))) + (-5 *2 + (-606 + (-2 + (|:| -2926 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) + (|:| |yinit| (-606 (-210))) (|:| |intvals| (-606 (-210))) + (|:| |g| (-300 (-210))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (|:| -2140 + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363))))))) + (-5 *1 (-763))))) +(((*1 *1) (-5 *1 (-763)))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-952 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 (-606 *6))) (-4 *6 (-902 *3 *5 *4)) + (-4 *3 (-13 (-291) (-141))) (-4 *4 (-13 (-807) (-580 (-1117)))) + (-4 *5 (-753)) (-5 *1 (-877 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2909 (-537)) (|:| -3415 (-606 *3)))) + (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-986)) (-5 *1 (-709))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1138)) - (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) + (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-998)) (-5 *1 (-49 *2 *3)) (-14 *3 (-606 (-1117))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *7 *2)) (-4 *6 (-986)) - (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *5 (-864)) - (-5 *2 (-1189)) (-5 *1 (-448)))) + (-12 (-5 *3 (-606 (-874))) (-4 *2 (-347)) (-5 *1 (-146 *4 *2 *5)) + (-14 *4 (-874)) (-14 *5 (-946 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-300 *3)) (-5 *1 (-208 *3 *4)) + (-4 *3 (-13 (-998) (-807))) (-14 *4 (-606 (-1117))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-817)) (-5 *5 (-864)) - (-5 *2 (-1189)) (-5 *1 (-448))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1142)) (-4 *5 (-1160 *3)) (-4 *6 (-1160 (-388 *5))) - (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *1) (-4 *1 (-910)))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102))) - (-4 *5 (-432)) (-5 *2 (-598 (-230 *4 *5))) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1030) (-33))) - (-5 *2 (-110)) (-5 *1 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-297 (-208)))) + (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1045)) (-4 *2 (-998)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-529)) (-5 *1 (-586 *2 *4)) + (-4 *4 (-1176 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-669 *2)) (-4 *2 (-998)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-998)) (-5 *1 (-696 *2 *3)) (-4 *3 (-687)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 *5)) (-5 *3 (-606 (-731))) (-4 *1 (-701 *4 *5)) + (-4 *4 (-998)) (-4 *5 (-807)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *2)) (-4 *4 (-998)) + (-4 *2 (-807)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-4 *1 (-809 *2)) (-4 *2 (-998)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 *6)) (-5 *3 (-606 (-731))) (-4 *1 (-902 *4 *5 *6)) + (-4 *4 (-998)) (-4 *5 (-753)) (-4 *6 (-807)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-902 *4 *5 *2)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *2 (-807)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-4 *2 (-902 *4 (-509 *5) *5)) + (-5 *1 (-1070 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-807)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-905 *4)) (-5 *1 (-1148 *4)) + (-4 *4 (-998))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-266 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) - (-5 *1 (-189))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721))))) -(((*1 *2 *3) - (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-531))) (-5 *1 (-287))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-360))) (-5 *2 (-360)) (-5 *1 (-189))))) -(((*1 *2 *3) + (-2 + (|:| -2926 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (|:| -2140 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1098 (-210))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2133 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-532)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-655 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) - (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) + (-5 *2 + (-2 + (|:| -2926 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (|:| -2140 + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363)))))) + (-5 *1 (-763)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1083 *7))) (-4 *6 (-797)) - (-4 *7 (-892 *5 (-503 *6) *6)) (-4 *5 (-986)) - (-5 *2 (-1 (-1083 *7) *7)) (-5 *1 (-1055 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721)) - (-14 *4 (-721)) (-4 *5 (-162))))) -(((*1 *2 *1) - (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) - (-5 *2 (-1098 *3))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) + (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-1045)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-547 *5 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *1 *2) + (-12 (-5 *2 (-874)) (-4 *1 (-223 *3 *4)) (-4 *4 (-998)) + (-4 *4 (-1154)))) + ((*1 *1 *2) + (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) + (-4 *5 (-223 (-2258 *3) (-731))) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) + (-2 (|:| -2009 *2) (|:| -3283 *5)))) + (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) (-4 *2 (-807)) + (-4 *7 (-902 *4 *5 (-818 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-146 *2 *3 *4)) (-14 *2 (-874)) (-4 *3 (-347)) + (-14 *4 (-946 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-163)) (-4 *2 (-529)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *1 *1) (|partial| -4 *1 (-683))) + ((*1 *1 *1) (|partial| -4 *1 (-687))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) + (-4 *2 (-1176 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-782))))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) + ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-649 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-649 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-598 (-571 *3))) - (|:| |vals| (-598 *3)))) - (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) -(((*1 *1) (-5 *1 (-110)))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-598 (-808 *4))) - (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) - (-4 *6 (-432))))) + (-606 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-753)) (-4 *3 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) + (-5 *1 (-432 *4 *5 *6 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) + (-4 *2 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) + (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) + (-4 *2 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) + (-5 *1 (-1094 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) (((*1 *2 *1) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) - (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-731)) (-4 *4 (-333)) (-5 *1 (-202 *4 *2)) + (-4 *2 (-1176 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-639 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-198 *4)) - (-4 *4 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) - (-15 -3403 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3)) - (-4 *3 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) - (-15 -3403 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480))))) + (-12 (-5 *3 (-896 *5)) (-4 *5 (-998)) (-5 *2 (-731)) + (-5 *1 (-1106 *4 *5)) (-14 *4 (-874)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-731))) (-5 *3 (-731)) (-5 *1 (-1106 *4 *5)) + (-14 *4 (-874)) (-4 *5 (-998)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-731))) (-5 *3 (-896 *5)) (-4 *5 (-998)) + (-5 *1 (-1106 *4 *5)) (-14 *4 (-874))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4))) - (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) - (-230 *4 (-388 (-531))))) - (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) - (-5 *1 (-483 *4 *5))))) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4086 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *1) (-5 *1 (-1010)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) - (-4 *3 (-13 (-411 *4) (-943)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138))))) -(((*1 *1 *2) - (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-986) (-797))) - (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102)))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) + (-12 (-5 *3 (-554 *2)) (-4 *2 (-13 (-29 *4) (-1139))) + (-5 *1 (-552 *4 *2)) + (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-554 (-391 (-905 *4)))) + (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *2 (-300 *4)) (-5 *1 (-557 *4))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498))))) (((*1 *2 *2) - (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) - (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) - (-15 -1853 ((-1054 *3 (-571 $)) $)) - (-15 -2265 ($ (-1054 *3 (-571 $)))))))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) -(((*1 *1) (-5 *1 (-773)))) -(((*1 *2 *1) - (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-995)) (-4 *3 (-1124)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) + (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537))))) (((*1 *2 *3) (-12 (-5 *3 - (-598 - (-2 (|:| -2277 (-721)) - (|:| |eqns| - (-598 - (-2 (|:| |det| *7) (|:| |rows| (-598 (-531))) - (|:| |cols| (-598 (-531)))))) - (|:| |fgb| (-598 *7))))) - (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) - (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721)) - (-5 *1 (-867 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-148)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) - (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) - (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *8))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) - (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5)) - (-4 *5 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) - (-5 *1 (-298 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-598 *7)) - (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) - (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7)) - (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) - (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-598 (-276 *8))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *8)) - (-5 *6 (-598 *8)) (-4 *8 (-411 *7)) - (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) - (-5 *1 (-298 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7)) - (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) - (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-112))) (-5 *6 (-598 (-276 *8))) - (-4 *8 (-411 *7)) (-5 *5 (-276 *8)) - (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) - (-5 *1 (-298 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6)) - (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) - (-5 *1 (-298 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) - (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) - (-5 *1 (-298 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) - (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) - (-5 *1 (-298 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-598 *3)) - (-4 *3 (-411 *7)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) - (-5 *2 (-51)) (-5 *1 (-298 *7 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) - (-4 *5 (-797)) (-5 *2 (-895 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) - (-4 *5 (-797)) (-5 *2 (-895 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986)) - (-5 *2 (-895 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986)) - (-5 *2 (-895 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2))))) + (-2 (|:| |stiffness| (-363)) (|:| |stability| (-363)) + (|:| |expense| (-363)) (|:| |accuracy| (-363)) + (|:| |intermediateResults| (-363)))) + (-5 *2 (-986)) (-5 *1 (-289))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) - (-4 *1 (-675 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1160 *5)) - (-5 *2 (-639 *5))))) + (|partial| -12 (-5 *4 (-1117)) (-4 *5 (-580 (-845 (-537)))) + (-4 *5 (-839 (-537))) + (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-540 *5 *3)) (-4 *3 (-592)) + (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-902 *4 *6 *5)) (-4 *4 (-435)) + (-4 *5 (-807)) (-4 *6 (-753)) (-5 *1 (-940 *4 *5 *6 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) - (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986)))) + (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (-5 *2 (-606 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-523)) (-5 *2 (-110)) (-5 *1 (-579 *3 *4)) - (-4 *4 (-1160 *3)))) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) + (-5 *2 (-606 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-677)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-110))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-516)) (-5 *1 (-150 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-774)) (-5 *3 (-598 (-1102))) (-5 *1 (-775))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1085)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *4 (-1000 *6 *7 *8)) (-5 *2 (-1189)) - (-5 *1 (-726 *6 *7 *8 *4 *5)) (-4 *5 (-1005 *6 *7 *8 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-571 *3)) (-5 *5 (-1 (-1098 *3) (-1098 *3))) - (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-797) (-523))) - (-5 *2 (-548 *3)) (-5 *1 (-518 *6 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-698))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-639 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-162)) (-4 *2 (-1160 *4)) (-5 *1 (-166 *4 *2 *3)) - (-4 *3 (-675 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-388 (-895 *5)))) (-5 *4 (-1102)) - (-5 *2 (-895 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-5 *2 (-895 *4)) - (-5 *1 (-274 *4)) (-4 *4 (-432)))) + (-12 (-5 *2 (-606 *3)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-606 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-159 (-388 (-531))))) - (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *4)) - (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *4 (-1102)) - (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *5)) - (-4 *5 (-13 (-344) (-795))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-895 (-388 (-531)))) - (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *4 (-1102)) - (-5 *2 (-895 (-388 (-531)))) (-5 *1 (-729 *5)) - (-4 *5 (-13 (-344) (-795)))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3)) - (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2)) - (-4 *2 (-637 *3 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-5 *4 (-721)) (-4 *8 (-892 *5 *7 *6)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) - (-4 *7 (-743)) - (-5 *2 - (-598 - (-2 (|:| |det| *8) (|:| |rows| (-598 (-531))) - (|:| |cols| (-598 (-531)))))) - (-5 *1 (-867 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-598 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797)) - (-5 *1 (-429 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1100 *4 *5 *6)) - (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1176 *4 *5 *6)) - (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-4 *3 (-523))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-5 *2 (-531)) - (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1160 *5)) - (-4 *6 (-13 (-385) (-977 *5) (-344) (-1124) (-266))))) - ((*1 *2 *3) - (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) - (-4 *3 (-1160 *4)) - (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))))) -(((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-1083 *3)) (-4 *3 (-1030)) - (-4 *3 (-1138))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-159 (-208)))) - (-5 *2 (-975)) (-5 *1 (-706))))) + (-12 (-4 *1 (-1191 *3)) (-4 *3 (-998)) (-5 *2 (-1098 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-548 *3)) (-4 *3 (-344))))) -(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-469))))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *5 (-352)) + (-5 *2 (-731))))) +(((*1 *1) (-5 *1 (-1202)))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4)) - (-4 *4 (-986)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-731)) (-4 *1 (-216 *4)) + (-4 *4 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721)))) - ((*1 *1 *1) (-4 *1 (-216))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-248 *3)) (-4 *3 (-797)))) - ((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-216 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-218)) (-5 *2 (-731)))) + ((*1 *1 *1) (-4 *1 (-218))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-250 *3)) (-4 *3 (-807)))) + ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) - (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) + (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) - (-4 *4 (-1160 *3)))) + (-12 (-5 *2 (-731)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)) + (-4 *4 (-1176 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) - (-4 *3 (-1160 *2)))) + (-12 (-4 *2 (-13 (-347) (-141))) (-5 *1 (-383 *2 *3)) + (-4 *3 (-1176 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-344)) (-4 *2 (-843 *3)) (-5 *1 (-548 *2)) - (-5 *3 (-1102)))) + (-12 (-4 *2 (-347)) (-4 *2 (-853 *3)) (-5 *1 (-554 *2)) + (-5 *3 (-1117)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-548 *2)) (-4 *2 (-344)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-554 *2)) (-4 *2 (-347)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4)) - (-4 *4 (-1030)))) + (-12 (-5 *2 (-606 *4)) (-5 *3 (-606 (-731))) (-4 *1 (-853 *4)) + (-4 *4 (-1045)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030)))) + (-12 (-5 *3 (-731)) (-4 *1 (-853 *2)) (-4 *2 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030)))) + (-12 (-5 *2 (-606 *3)) (-4 *1 (-853 *3)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1045)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) - (-4 *2 (-1175 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) - (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) - (-4 *2 (-1175 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) - (-5 *1 (-1079 *3))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) - (-5 *2 (-975)) (-5 *1 (-707))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) - (-5 *2 (-639 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1184 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-639 *4)))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-708))))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) + (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731)))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-107))) (-5 *1 (-165))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-1158)) + (-4 *6 (-1176 (-391 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-326 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1223 *4 *2)) (-4 *1 (-358 *4 *2)) (-4 *4 (-807)) + (-4 *2 (-163)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-1184 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) - (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) + (-12 (-5 *3 (-779 *4)) (-4 *1 (-1216 *4 *2)) (-4 *4 (-807)) + (-4 *2 (-998)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) - (-4 *5 (-1160 *4)) (-5 *2 (-1184 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162)) - (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) - (-5 *2 (-1184 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162)) - (-5 *2 (-639 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3)))) + (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *10)) + (-5 *1 (-587 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1018 *5 *6 *7 *8)) + (-4 *10 (-1054 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-639 *5))) (-5 *3 (-639 *5)) (-4 *5 (-344)) - (-5 *2 (-1184 *5)) (-5 *1 (-1018 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4)) - (-4 *4 (-1160 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-598 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208))))) - (-5 *1 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-5 *2 (-598 *3)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) + (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) + (-5 *1 (-591 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) + (-14 *6 (-606 (-1117))) (-5 *2 - (-598 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208))))) - (-5 *1 (-753))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) - (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) + (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) + (-5 *1 (-591 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) + (-14 *6 (-606 (-1117))) (-5 *2 (-606 (-995 *5 *6))) + (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) - (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) - (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8))))) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1147 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-4 *1 (-313 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) + (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) + (-4 *1 (-351 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1200 *1)) (-4 *4 (-163)) + (-4 *1 (-354 *4 *5)) (-4 *5 (-1176 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-393 *3 *4)) + (-4 *4 (-1176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-163)) (-4 *1 (-401 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1031))) (-5 *1 (-275))))) (((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1184 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))) -(((*1 *2 *3) (-12 (-5 *3 (-507)) (-5 *1 (-506 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-507))))) -(((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1200 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) (-12 (-5 *3 (-513)) (-5 *1 (-512 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-513))))) (((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-498)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1045) (-33))) (-5 *1 (-1082 *3 *2)) + (-4 *3 (-13 (-1045) (-33))))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1210))))) +(((*1 *2 *2) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-5 *1 (-849 *2 *4)) + (-4 *2 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1030)) (-5 *2 (-110)) - (-5 *1 (-1139 *3))))) + (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) + (-5 *2 (-1200 (-649 (-905 *4)))) (-5 *1 (-175 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-901 (-1049))) - (-5 *1 (-327 *4))))) + (-12 (-5 *3 (-1200 (-1200 *4))) (-4 *4 (-998)) (-5 *2 (-649 *4)) + (-5 *1 (-980 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) + (-4 *3 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-986)) (-5 *1 (-289)))) + ((*1 *2 *3) (-12 (-5 *3 (-606 (-986))) (-5 *2 (-986)) (-5 *1 (-289)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *1) (-5 *1 (-1010))) + ((*1 *2 *3) + (-12 (-5 *3 (-1098 (-1098 *4))) (-5 *2 (-1098 *4)) (-5 *1 (-1095 *4)) + (-4 *4 (-1154)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))) + (-4 *3 (-1045)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-610 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-1111 *3))))) + (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-13 (-347) (-807))) + (-14 *4 (-1117)) (-14 *5 *3) (-5 *1 (-303 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363))))) (((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) - (-5 *2 (-598 (-721))) (-5 *1 (-728 *3 *4 *5 *6 *7)) - (-4 *3 (-1160 *6)) (-4 *7 (-892 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245))))) -(((*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-721)) (-5 *1 (-552))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) - (-4 *3 (-13 (-344) (-140) (-977 (-531)))) (-5 *1 (-535 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) - ((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) - (-4 *4 (-330))))) -(((*1 *1 *1 *2) + (-12 (-5 *3 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))) + (-5 *2 (-391 (-537))) (-5 *1 (-971 *4)) (-4 *4 (-1176 (-537)))))) +(((*1 *2 *3 *4) (-12 - (-5 *2 - (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) - (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) - (|:| |args| (-598 (-806))))) - (-5 *1 (-1102)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-1102))))) + (-5 *3 + (-606 + (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) + (|:| |wcond| (-606 (-905 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) + (-5 *4 (-1100)) (-4 *5 (-13 (-291) (-141))) (-4 *8 (-902 *5 *7 *6)) + (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-537)) + (-5 *1 (-877 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) + (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-606 (-300 (-210)))) + (|:| -3956 (-606 (-210))))))) + (-5 *2 (-606 (-1100))) (-5 *1 (-251))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) + (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))) + (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1077 (-210))) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) + (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) + (-5 *1 (-243 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) + (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) + (-5 *1 (-243 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) + (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) + (-4 *3 (-13 (-580 (-513)) (-1045))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1077 (-210))) (-5 *1 (-243 *3)) + (-4 *3 (-13 (-580 (-513)) (-1045))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) + (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) + (-5 *1 (-243 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) + (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1077 (-210))) + (-5 *1 (-243 *5))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-275))) + ((*1 *1) (-5 *1 (-816))) + ((*1 *1) + (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) + (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1031))) + ((*1 *1) + (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33))))) + ((*1 *1) (-5 *1 (-1120))) ((*1 *1) (-5 *1 (-1121)))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25)))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-807)) (-5 *3 (-606 *6)) (-5 *5 (-606 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-606 *5)) (|:| |f3| *5) + (|:| |f4| (-606 *5)))) + (-5 *1 (-1125 *6)) (-5 *4 (-606 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-649 *4)) (-4 *4 (-998)) (-5 *1 (-1084 *3 *4)) + (-14 *3 (-731))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) - (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-573 *2) (-162))) (-5 *2 (-835 *4)) - (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1030)) (-4 *3 (-156 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-1025 (-790 (-360))))) - (-5 *2 (-598 (-1025 (-790 (-208))))) (-5 *1 (-287)))) - ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-375)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) - (-4 *4 (-1160 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) - (-5 *2 (-1184 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-523)) - (-4 *3 (-797)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-443 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-507)))) - ((*1 *2 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997)))) - ((*1 *1 *2) - (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) - (-4 *5 (-573 (-1102))) (-4 *4 (-743)) (-4 *5 (-797)))) - ((*1 *1 *2) - (-1435 - (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) - (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) - (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) - (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) - ((*1 *1 *2) - (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) - (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085)) - (-5 *1 (-1003 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1014)))) - ((*1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *2 (-1030)) (-4 *6 (-1030)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *2 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *2 (-1030)) - (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) - (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) - (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) - (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1039 *4 *5 *6 *7)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085)) - (-5 *1 (-1072 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1107)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119)))) - ((*1 *2 *3) - (-12 (-5 *3 (-730 *4 (-808 *5))) - (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) - (-5 *2 (-730 *4 (-808 *6))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *6 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-730 *4 (-808 *6))) - (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102))) - (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1098 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-1098 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6)))) - (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102))) - (-5 *2 (-598 (-730 *4 (-808 *6)))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) + (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-1117)) (-4 *6 (-414 *5)) + (-4 *5 (-807)) (-5 *2 (-606 (-578 *6))) (-5 *1 (-546 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-68 APROD)))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-717))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-721))) (-5 *3 (-161)) (-5 *1 (-1091 *4 *5)) - (-14 *4 (-864)) (-4 *5 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-975)) (-5 *1 (-699))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-289)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-940 *3)) (-4 *3 (-162)) (-5 *1 (-749 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-598 *3)) (-5 *1 (-904 *3)) (-4 *3 (-516))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-372))))) -(((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-178))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-998)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) + ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-896 (-210))) (-5 *2 (-210)) (-5 *1 (-1150)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998))))) (((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *6)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) + (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-537))))) + (-5 *1 (-345 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-96 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 *6)) (-5 *3 (-531)) (-4 *6 (-289)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1138)) (-5 *1 (-816 *3 *2)) (-4 *3 (-1138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-947))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-5 *2 (-1098 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) + (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) + (-5 *1 (-370 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| -3622 *3) (|:| -3283 (-537))))) + (-5 *1 (-402 *3)) (-4 *3 (-529)))) + ((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 (-731))))) + (-5 *1 (-779 *3)) (-4 *3 (-807))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) + (-5 *1 (-675 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) + (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-529)) (-4 *5 (-998)) + (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) + (-4 *3 (-809 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1120)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) + (-5 *1 (-1120)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1205)) + (-5 *1 (-1120))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) - (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) - (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-869)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-869)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870)))) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-402 *3)) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-4 *1 (-856 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 (-2 (|:| -2559 (-402 *3)) (|:| |special| (-402 *3)))) + (-5 *1 (-688 *5 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1205)) (-5 *1 (-200 *4)) + (-4 *4 + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) + (-15 -3404 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) + (-4 *3 + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) + (-15 -3404 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-141))) (-5 *2 (-606 *3)) + (-5 *1 (-1170 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-879)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870)))) + (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-879)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870))))) -(((*1 *2 *1) - (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 *4))))) + (-12 (-5 *2 (-1 (-896 (-210)) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880))))) +(((*1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) (-12 (-5 *1 (-1167 *2)) (-4 *2 (-1154))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030))))) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-874)) (-5 *4 (-210)) (-5 *5 (-537)) (-5 *6 (-827)) + (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-344)) (-5 *1 (-839 *2 *3)) - (-4 *2 (-1160 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) - (-5 *1 (-706))))) + (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) - ((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-998))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-797)) - (-4 *3 (-1030))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef2| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) ((*1 *1) (-4 *1 (-516))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) - ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-1113 *2)) (-4 *2 (-344))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-148)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1083 *4)) (-4 *4 (-37 *3)) (-4 *4 (-986)) - (-5 *3 (-388 (-531))) (-5 *1 (-1087 *4))))) + (-12 (-4 *4 (-998)) + (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) + (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-874)) (-4 *5 (-998)) + (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) + (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) - (-5 *2 - (-2 (|:| |dpolys| (-598 (-230 *5 *6))) - (|:| |coords| (-598 (-531))))) - (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432))))) + (-12 (-5 *3 (-391 (-537))) (-5 *4 (-537)) (-5 *2 (-51)) + (-5 *1 (-957))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-633 *4 *3)) (-4 *4 (-1030)) - (-4 *3 (-1030))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) - (-5 *2 - (-2 (|:| -1943 (-721)) (|:| |curves| (-721)) - (|:| |polygons| (-721)) (|:| |constructs| (-721))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-986)) (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) - (-4 *5 (-221 *3 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) - ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) - ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-742)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-598 (-1102))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531)) - (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162)) - (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) - (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-986) (-797))) - (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721)) - (-4 *6 (-1138)) (-4 *7 (-1138)) (-5 *2 (-223 *5 *7)) - (-5 *1 (-222 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-874)) + (-5 *2 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) + (-5 *1 (-330 *4)) (-4 *4 (-333))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-276 *3)))) + (-12 (-5 *3 (-1 (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1201)) (-5 *1 (-239)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1085)) (-5 *5 (-571 *6)) - (-4 *6 (-284)) (-4 *2 (-1138)) (-5 *1 (-279 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-571 *5)) (-4 *5 (-284)) - (-4 *2 (-284)) (-5 *1 (-280 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-571 *1)) (-4 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-986)) - (-4 *6 (-986)) (-5 *2 (-639 *6)) (-5 *1 (-286 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-797)) - (-4 *6 (-797)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6)))) + (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1201)) (-5 *1 (-239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344)) - (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) - (-4 *9 (-344)) (-4 *10 (-1160 *9)) (-4 *11 (-1160 (-388 *10))) - (-5 *2 (-317 *9 *10 *11 *12)) - (-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-323 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1030)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1142)) (-4 *8 (-1142)) - (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *9 (-1160 *8)) - (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1160 (-388 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) - (-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-1030)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-523)) - (-4 *6 (-523)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-523)) - (-4 *6 (-523)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) - (-4 *6 (-934 *5)) (-4 *7 (-1160 *6)) - (-4 *8 (-13 (-390 *6 *7) (-977 *6))) (-4 *9 (-289)) - (-4 *10 (-934 *9)) (-4 *11 (-1160 *10)) - (-5 *2 (-394 *9 *10 *11 *12)) - (-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-390 *10 *11) (-977 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) - (-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-523)) (-5 *1 (-399 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-986) (-797))) - (-4 *6 (-13 (-986) (-797))) (-4 *2 (-411 *6)) - (-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) - (-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1138)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-548 *5)) (-4 *5 (-344)) - (-4 *6 (-344)) (-5 *2 (-548 *6)) (-5 *1 (-547 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2351 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-344)) (-4 *6 (-344)) - (-5 *2 (-2 (|:| -2351 *6) (|:| |coeff| *6))) - (-5 *1 (-547 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-547 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-344)) (-4 *6 (-344)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-547 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-561 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-561 *6)) (-5 *1 (-558 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-561 *7)) - (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-561 *8)) - (-5 *1 (-559 *6 *7 *8)))) + (-12 (-5 *3 (-830 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1201)) (-5 *1 (-239)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-561 *7)) - (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) - (-5 *1 (-559 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-1083 *7)) - (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) - (-5 *1 (-559 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) + (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) + (-12 (-5 *3 (-832 (-1 (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1202)) (-5 *1 (-239)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) - (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-598 *8)) - (-5 *1 (-597 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-986)) (-4 *8 (-986)) - (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-637 *8 *9 *10)) - (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-637 *5 *6 *7)) - (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-986)) - (-4 *8 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) - (-4 *2 (-637 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-637 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-523)) (-4 *7 (-523)) - (-4 *6 (-1160 *5)) (-4 *2 (-1160 (-388 *8))) - (-5 *1 (-660 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1160 (-388 *6))) - (-4 *8 (-1160 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-986)) (-4 *9 (-986)) (-4 *5 (-797)) - (-4 *6 (-743)) (-4 *2 (-892 *9 *7 *5)) - (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743)) - (-4 *4 (-892 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-797)) (-4 *6 (-797)) (-4 *7 (-743)) - (-4 *9 (-986)) (-4 *2 (-892 *9 *8 *6)) - (-5 *1 (-680 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-743)) - (-4 *4 (-892 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-686 *5 *7)) (-4 *5 (-986)) - (-4 *6 (-986)) (-4 *7 (-677)) (-5 *2 (-686 *6 *7)) - (-5 *1 (-685 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-686 *3 *4)) - (-4 *4 (-677)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5)) (-4 *5 (-986)) - (-4 *6 (-986)) (-5 *2 (-732 *6)) (-5 *1 (-731 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) - (-4 *2 (-747 *6)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *4 (-747 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-783 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-782 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-790 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-789 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-822 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-822 *6)) (-5 *1 (-821 *5 *6)))) + (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-832 *5 *6)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-832 *5 *7)) - (-5 *1 (-831 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-986)) - (-4 *6 (-986)) (-5 *2 (-895 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 (-896 (-210)) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *5 (-606 (-247))) (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-835 (-1 (-210) (-210) (-210)))) (-5 *4 (-1040 (-363))) + (-5 *2 (-1202)) (-5 *1 (-239)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-278 *7)) (-5 *4 (-1117)) (-5 *5 (-606 (-247))) + (-4 *7 (-414 *6)) (-4 *6 (-13 (-529) (-807) (-989 (-537)))) + (-5 *2 (-1201)) (-5 *1 (-240 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-797)) - (-4 *8 (-986)) (-4 *6 (-743)) - (-4 *2 - (-13 (-1030) - (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721)))))) - (-5 *1 (-894 *6 *7 *8 *5 *2)) (-4 *5 (-892 *8 *6 *7)))) + (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1201)) + (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-986)) - (-4 *6 (-986)) (-5 *2 (-886 *6)) (-5 *1 (-923 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-895 *4))) (-4 *4 (-986)) - (-4 *2 (-892 (-895 *4) *5 *6)) (-4 *5 (-743)) - (-4 *6 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-5 *1 (-926 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-523)) (-4 *6 (-523)) - (-4 *2 (-934 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-934 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) - (-4 *2 (-938 *6)) (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) - (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-986)) (-4 *10 (-986)) - (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7)) - (-4 *9 (-221 *5 *7)) (-4 *2 (-989 *5 *6 *10 *11 *12)) - (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) - (-4 *12 (-221 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-1025 *6)) (-5 *1 (-1021 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-795)) - (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-598 *6)) - (-5 *1 (-1021 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1023 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-1023 *6)) (-5 *1 (-1022 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795)) - (-4 *2 (-1076 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6)))) + (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1201)) (-5 *1 (-243 *3)) + (-4 *3 (-13 (-580 (-513)) (-1045))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-1083 *7)) - (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) - (-5 *1 (-1082 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-986)) - (-4 *6 (-986)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1115 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5 *7 *9)) (-4 *5 (-986)) - (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1148 *6 *8 *10)) (-5 *1 (-1143 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1102)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-1151 *6)) (-5 *1 (-1150 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-795)) - (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1083 *6)) - (-5 *1 (-1150 *5 *6)))) + (-12 (-5 *3 (-830 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) + (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) + (-5 *1 (-243 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1157 *5 *6)) (-14 *5 (-1102)) - (-4 *6 (-986)) (-4 *8 (-986)) (-5 *2 (-1157 *7 *8)) - (-5 *1 (-1152 *5 *6 *7 *8)) (-14 *7 (-1102)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986)) - (-4 *2 (-1160 *6)) (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1160 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5 *7 *9)) (-4 *5 (-986)) - (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1169 *6 *8 *10)) (-5 *1 (-1164 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1102)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986)) - (-4 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6 *4 *2)) (-4 *4 (-1175 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) - (-4 *6 (-1138)) (-5 *2 (-1184 *6)) (-5 *1 (-1183 *5 *6)))) + (-12 (-5 *3 (-830 *5)) (-5 *4 (-1038 (-363))) + (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1201)) + (-5 *1 (-243 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-832 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) + (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) + (-5 *1 (-243 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1184 *5)) - (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1184 *6)) - (-5 *1 (-1183 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-986)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-1205 *3 *4)) - (-4 *4 (-793))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) - (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *3 (-843 *6)) - (-5 *2 (-639 *3)) (-5 *1 (-642 *6 *3 *7 *4)) (-4 *7 (-354 *3)) - (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273))))))) -(((*1 *1 *1) (-4 *1 (-523)))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3) - (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-14 *5 (-598 (-1102))) - (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) - (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) + (-12 (-5 *3 (-832 *5)) (-5 *4 (-1038 (-363))) + (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) + (-5 *1 (-243 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) (-5 *2 (-1202)) + (-5 *1 (-243 *3)) (-4 *3 (-13 (-580 (-513)) (-1045))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) - (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) - (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) - (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-598 (-895 *4))) - (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-411 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *1 (-112)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-112)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *4)) - (-4 *4 (-411 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-153)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *4)) - (-4 *4 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284)))) - ((*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *4 (-797)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *4)) - (-4 *4 (-411 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *4)) - (-4 *4 (-13 (-411 *3) (-943) (-1124)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344)) - (-5 *1 (-498 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) - (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) - ((*1 *2 *3) - (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) - (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) - (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-598 *3)) (|:| |image| (-598 *3)))) - (-5 *1 (-848 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) - (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-1049)) (-5 *2 (-110)) (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-344)) (-4 *7 (-1160 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) - (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) - (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-598 (-297 (-208)))) - (|:| |constraints| - (-598 - (-2 (|:| |start| (-208)) (|:| |finish| (-208)) - (|:| |grid| (-721)) (|:| |boundaryType| (-531)) - (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) - (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) - (|:| |tol| (-208)))) - (-5 *2 (-110)) (-5 *1 (-194))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *4 (-523)) (-4 *5 (-1160 *4)) - (-5 *2 (-2 (|:| -1994 (-579 *4 *5)) (|:| -1764 (-388 *5)))) - (-5 *1 (-579 *4 *5)) (-5 *3 (-388 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) - (-14 *3 (-864)) (-4 *4 (-986)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-432)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1160 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) - (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6)) - (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2)) - (-4 *2 (-609 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-617 *4 *5))) - (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-162) (-668 (-388 (-531))))) - (-14 *6 (-864))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1)))) - (-4 *1 (-1005 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1142))) - ((*1 *2 *2) - (-12 (-4 *3 (-523)) (-5 *1 (-1163 *3 *2)) - (-4 *2 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $)))))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *2 (-975)) (-5 *1 (-702))))) -(((*1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *2 (-1189)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1160 (-388 *5))) (-14 *7 *6)))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-523) (-140))) - (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-1154 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-721)) (-5 *3 (-886 *4)) (-4 *1 (-1063 *4)) - (-4 *4 (-986)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-721)) (-5 *4 (-886 (-208))) (-5 *2 (-1189)) - (-5 *1 (-1186))))) -(((*1 *2 *3) - (-12 (-5 *2 (-598 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-516)))) -(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))) -(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-344)) (-5 *1 (-541 *4 *2)) (-4 *2 (-1160 *4))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) - ((*1 *1 *1) (-5 *1 (-806))) + (-12 (-5 *4 (-1038 (-363))) (-5 *2 (-1202)) (-5 *1 (-243 *3)) + (-4 *3 (-13 (-580 (-513)) (-1045))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-835 *6)) (-5 *4 (-1038 (-363))) (-5 *5 (-606 (-247))) + (-4 *6 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) + (-5 *1 (-243 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-835 *5)) (-5 *4 (-1038 (-363))) + (-4 *5 (-13 (-580 (-513)) (-1045))) (-5 *2 (-1202)) + (-5 *1 (-243 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-886 (-208))) (-5 *2 (-208)) (-5 *1 (-1135)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 *1)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-639 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-986)) (-4 *1 (-1052 *3 *4 *5 *6)) - (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3176 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) - (-5 *2 (-531)) (-5 *1 (-1044 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-721)) (-5 *1 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-399 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2109 *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *1 *1 *1) (-4 *1 (-712)))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) - (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-708))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) - (-5 *4 (-598 (-864))) (-5 *5 (-598 (-245))) (-5 *1 (-448)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) - (-5 *4 (-598 (-864))) (-5 *1 (-448)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) - ((*1 *1 *1) (-5 *1 (-448)))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) - (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *4 *5 *6 *7)))) + (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1201)) (-5 *1 (-244)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1201)) + (-5 *1 (-244)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-289) (-140))) - (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-110)) - (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779))))) -(((*1 *2 *3) - (-12 (-4 *4 (-432)) - (-5 *2 - (-598 - (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))) - (|:| |geneigvec| (-598 (-639 (-388 (-895 *4)))))))) - (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4))))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-790 *4)) (-5 *3 (-571 *4)) (-5 *5 (-110)) - (-4 *4 (-13 (-1124) (-29 *6))) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-207 *6 *4))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-60 *3)) (-14 *3 (-1102)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-67 *3)) (-14 *3 (-1102)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-70 *3)) (-14 *3 (-1102)))) - ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1189)))) - ((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-378)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) - ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531)))) - (-5 *1 (-1040))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1138)) - (-4 *5 (-1138)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-721)) - (-4 *7 (-1138)) (-4 *5 (-1138)) (-5 *2 (-223 *6 *5)) - (-5 *1 (-222 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1138)) (-4 *5 (-1138)) - (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1030)) (-4 *5 (-1030)) - (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-598 *6)) (-4 *6 (-1138)) - (-4 *5 (-1138)) (-5 *2 (-598 *5)) (-5 *1 (-596 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-901 *6)) (-4 *6 (-1138)) - (-4 *5 (-1138)) (-5 *2 (-901 *5)) (-5 *1 (-900 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1083 *6)) (-4 *6 (-1138)) - (-4 *3 (-1138)) (-5 *2 (-1083 *3)) (-5 *1 (-1081 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1184 *6)) (-4 *6 (-1138)) - (-4 *5 (-1138)) (-5 *2 (-1184 *5)) (-5 *1 (-1183 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-797)) (-5 *2 (-110)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138)) - (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) - ((*1 *2 *1) - (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742)) - (-4 *5 (-797)) (-5 *2 (-110))))) -(((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) - (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6)) - (-4 *6 (-323 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-743)) - (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523)) - (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *3 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *6)) - (-4 *6 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2)) - (-4 *2 (-892 (-895 *4) *5 *6))))) + (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *2 (-1201)) (-5 *1 (-244)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-606 (-247))) + (-5 *2 (-1201)) (-5 *1 (-244)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1202)) (-5 *1 (-244)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-606 (-210))) (-5 *4 (-606 (-247))) (-5 *2 (-1202)) + (-5 *1 (-244))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3121 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) + (-5 *3 (-391 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-547 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1205)) (-5 *1 (-782))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *2 (-523)) (-5 *1 (-912 *2 *4)) - (-4 *4 (-1160 *2))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-1083 (-208))) (-5 *1 (-176)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102))) - (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102))) - (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-372))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2))))) + (-12 (-5 *2 (-731)) + (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-556 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1144 *3)) (-4 *3 (-986)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1175 *3)) (-4 *3 (-986))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-1160 *4)) (-4 *4 (-986)) - (-5 *2 (-1184 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| -3482 *4) (|:| -3449 (-531))))) - (-4 *4 (-1030)) (-5 *2 (-1 *4)) (-5 *1 (-958 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-598 *5))) (-4 *5 (-1175 *4)) - (-4 *4 (-37 (-388 (-531)))) - (-5 *2 (-1 (-1083 *4) (-598 (-1083 *4)))) (-5 *1 (-1177 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-598 (-864))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) - (-14 *4 (-864)) (-14 *5 (-935 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) - (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4)) - (-4 *4 (-1160 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-677)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5)) - (-4 *4 (-986)) (-4 *5 (-797)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986)) - (-4 *2 (-797)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6)) - (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *2 (-797)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *2 (-892 *4 (-503 *5) *5)) - (-5 *1 (-1055 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-797)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-895 *4)) (-5 *1 (-1133 *4)) - (-4 *4 (-986))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1102)) (-5 *3 (-415)) (-4 *5 (-797)) - (-5 *1 (-1036 *5 *4)) (-4 *4 (-411 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531)) - (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162)) - (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *9)) (-4 *9 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) - (-4 *8 (-986)) (-4 *2 (-892 *9 *7 *5)) - (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743)) - (-4 *4 (-892 *8 *6 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1138)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-571 *1))) (-5 *3 (-598 *1)) (-4 *1 (-284)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *1))) (-4 *1 (-284)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-627 (-208))) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-701))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) - (-4 *2 (-1160 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) - (-15 -1853 ((-1054 *3 (-571 $)) $)) - (-15 -2265 ($ (-1054 *3 (-571 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) - (-15 -1853 ((-1054 *3 (-571 $)) $)) - (-15 -2265 ($ (-1054 *3 (-571 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) - (-15 -1853 ((-1054 *4 (-571 $)) $)) - (-15 -2265 ($ (-1054 *4 (-571 $))))))) - (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-571 *2))) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) - (-15 -1853 ((-1054 *4 (-571 $)) $)) - (-15 -2265 ($ (-1054 *4 (-571 $))))))) - (-4 *4 (-523)) (-5 *1 (-40 *4 *2))))) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-113)) (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-807)) + (-5 *1 (-578 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-1064)) (-4 *4 (-333)) + (-5 *1 (-507 *4))))) +(((*1 *1 *1) (-4 *1 (-529)))) (((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-5 *2 (-110))))) -(((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-372)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-372))))) -(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1160 *2)) - (-4 *2 (-162)))) - ((*1 *2) - (-12 (-4 *4 (-1160 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4)) - (-4 *3 (-390 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) - ((*1 *2) - (-12 (-4 *3 (-1160 *2)) (-5 *2 (-531)) (-5 *1 (-718 *3 *4)) - (-4 *4 (-390 *2 *3)))) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *3 (-162)))) - ((*1 *2 *3) - (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) - (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) - (-14 *4 (-721)) (-4 *5 (-162))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-4 *7 (-797)) - (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-4 *8 (-289)) - (-5 *2 (-598 (-721))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *5 (-721))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-89 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 (-1 *6 (-598 *6)))) - (-4 *5 (-37 (-388 (-531)))) (-4 *6 (-1175 *5)) (-5 *2 (-598 *6)) - (-5 *1 (-1177 *5 *6))))) + (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-278 *2)) (-4 *2 (-687)) (-4 *2 (-1154))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-606 (-247))) (-5 *1 (-1202)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1100)) (-5 *1 (-1202)))) + ((*1 *1 *1) (-5 *1 (-1202)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) + (-4 *4 (-163)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) + (-4 *2 (-414 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) + (-5 *1 (-150 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-163))))) (((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4)))) + (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) + (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807)))) ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) - (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) - (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-943))))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284)))) - ((*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) - (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-148)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3276 *3) (|:| -1790 (-721)))) (-5 *1 (-549 *3)) - (-4 *3 (-516))))) -(((*1 *2 *1) + (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *1 *2) (-12 (-5 *2 - (-598 + (-606 (-2 - (|:| -3033 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (|:| -1798 + (|:| -2926 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -5955,10 +5363,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1083 (-208))) + (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2368 + (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -5966,1939 +5374,1831 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-526)))) - ((*1 *2 *1) - (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) - (-5 *2 (-598 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) + (-5 *1 (-532))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *2 (-986)) (-5 *1 (-712))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) + (-5 *1 (-344 *3 *4)) (-14 *4 (-606 (-1117))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) + (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-391 (-1113 (-300 *3)))) (-4 *3 (-13 (-529) (-807))) + (-5 *1 (-1074 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1117)) + (|:| |arrayIndex| (-606 (-905 (-537)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1117)) (|:| |rand| (-816)) + (|:| |ints2Floats?| (-111)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1116)) (|:| |thenClause| (-314)) + (|:| |elseClause| (-314)))) + (|:| |returnBranch| + (-2 (|:| -2193 (-111)) + (|:| -3619 + (-2 (|:| |ints2Floats?| (-111)) (|:| -1845 (-816)))))) + (|:| |blockBranch| (-606 (-314))) + (|:| |commentBranch| (-606 (-1100))) (|:| |callBranch| (-1100)) + (|:| |forBranch| + (-2 (|:| -2133 (-1038 (-905 (-537)))) + (|:| |span| (-905 (-537))) (|:| -3936 (-314)))) + (|:| |labelBranch| (-1064)) + (|:| |loopBranch| (-2 (|:| |switch| (-1116)) (|:| -3936 (-314)))) + (|:| |commonBranch| + (-2 (|:| -3923 (-1117)) (|:| |contents| (-606 (-1117))))) + (|:| |printBranch| (-606 (-816))))) + (-5 *1 (-314))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-5 *1 (-421))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-226)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-537)) (-5 *1 (-226))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-978 *5 *6 *7 *3))) (-5 *1 (-978 *5 *6 *7 *3)) + (-4 *3 (-1012 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-606 *6)) (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-435)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-1088 *5 *6 *7 *3))) (-5 *1 (-1088 *5 *6 *7 *3)) + (-4 *3 (-1012 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-1098 *7))) (-4 *6 (-807)) + (-4 *7 (-902 *5 (-509 *6) *6)) (-4 *5 (-998)) + (-5 *2 (-1 (-1098 *7) *7)) (-5 *1 (-1070 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-82 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-210)) + (-5 *2 (-986)) (-5 *1 (-710))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-537))) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-529)) (-4 *8 (-902 *7 *5 *6)) + (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *9) (|:| |radicand| *9))) + (-5 *1 (-906 *5 *6 *7 *8 *9)) (-5 *4 (-731)) + (-4 *9 + (-13 (-347) + (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8)))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-847 *2 *3)) (-4 *2 (-1176 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1102)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-598 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1124) (-27) (-411 *8))) - (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3))) - (-5 *3 (-531)) (-5 *2 (-598 *4)) (-5 *1 (-955 *8 *4))))) -(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-148))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986)) - (-5 *1 (-1087 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5)) - (-4 *4 (-1030)) (-4 *5 (-1030))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) - (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360))))) + (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-463 *4 *5)) + (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) - (-14 *3 (-598 *2)) (-14 *4 (-598 *2)) (-4 *5 (-368)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368)) - (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-531))) (-4 *1 (-377)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-360))) (-4 *1 (-377)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-531))) (-4 *1 (-377)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5)) - (-5 *2 (-1098 (-1098 *4))) (-5 *1 (-727 *4 *5 *6 *3 *7)) - (-4 *3 (-1160 *6)) (-14 *7 (-864)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *1 (-918 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (|partial| -1435 - (-12 (-5 *2 (-895 *3)) - (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) - (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797))) - (-12 (-5 *2 (-895 *3)) - (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531))))) - (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797))) - (-12 (-5 *2 (-895 *3)) - (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531)))) - (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797))))) - ((*1 *1 *2) - (|partial| -1435 - (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) - (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) - (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) - (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797))))) -(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))) - (-5 *1 (-1106))))) -(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) -(((*1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *1) - (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1084)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1102))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-4 *4 (-1138)) (-5 *2 (-110)) - (-5 *1 (-1083 *4))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-703))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) + (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-391 (-537)))) + (-5 *1 (-289))))) +(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-606 (-113)))))) +(((*1 *2) (-12 (-5 *2 (-793 (-537))) (-5 *1 (-511)))) + ((*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1045))))) (((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-5 *2 (-110))))) -(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-795))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2721 (-399 *3)))) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-977 (-388 *2)))) (-5 *2 (-531)) - (-5 *1 (-113 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1138)) (-5 *2 (-1189))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) - (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-892 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) - (-5 *1 (-341 *3 *4)) (-14 *4 (-598 (-1102))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432)) - (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 (-531)))) (-5 *1 (-446))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) - (-4 *3 (-1160 (-159 *2)))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) + ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-911 *3)) (-5 *1 (-1105 *4 *3)) + (-4 *3 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-639 *4)) - (-5 *1 (-764 *4 *5)) (-4 *5 (-609 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-344)) - (-5 *2 (-639 *5)) (-5 *1 (-764 *5 *6)) (-4 *6 (-609 *5))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110)) - (-5 *2 (-975)) (-5 *1 (-696))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) - (-14 *4 *2)))) + (-12 (-5 *3 (-537)) (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-1150))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) + (-4 *3 (-13 (-807) (-529))))) + ((*1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1) (-5 *1 (-460))) ((*1 *1) (-4 *1 (-1139)))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176)))) + (-12 (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) + (-5 *2 + (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-649 *3)))) + (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282)))) + (-12 (-5 *3 (-537)) (-4 *4 (-1176 *3)) + (-5 *2 + (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-649 *3)))) + (-5 *1 (-728 *4 *5)) (-4 *5 (-393 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 (-360)) (-5 *1 (-189))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1138)) (-5 *2 (-721))))) -(((*1 *2 *3 *2) + (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) + (-5 *2 + (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-649 *3)))) + (-5 *1 (-938 *4 *3 *5 *6)) (-4 *6 (-685 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-333)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 *3)) + (-5 *2 + (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-649 *3)))) + (-5 *1 (-1209 *4 *3 *5 *6)) (-4 *6 (-393 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-606 (-162))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-731)) (-5 *5 (-606 *3)) (-4 *3 (-291)) (-4 *6 (-807)) + (-4 *7 (-753)) (-5 *2 (-111)) (-5 *1 (-588 *6 *7 *3 *8)) + (-4 *8 (-902 *3 *7 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) + (-4 *3 (-13 (-1139) (-29 *5)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 - (-598 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-743)) (-4 *3 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) - (-5 *1 (-429 *4 *5 *6 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-996 (-964 *4) (-1098 (-964 *4)))) (-5 *3 (-806)) - (-5 *1 (-964 *4)) (-4 *4 (-13 (-795) (-344) (-962)))))) + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) + (-5 *1 (-251))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-1113 *4))) (-5 *3 (-1113 *4)) + (-4 *4 (-862)) (-5 *1 (-624 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) + (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-178)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-300 (-210))) (-5 *4 (-1117)) + (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-606 (-210))) (-5 *1 (-284))))) +(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) (((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) + (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) + (-4 *1 (-351 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-436 *3 *4 *5 *6)) + (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) + (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-60 *3)) (-14 *3 (-1117)))) + ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-67 *3)) (-14 *3 (-1117)))) + ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-70 *3)) (-14 *3 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-1205)))) + ((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-381)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) + ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-1080)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-816))) (-5 *2 (-1205)) (-5 *1 (-1080))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))) + (-4 *2 (-13 (-807) (-21)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-780)) (-14 *5 (-1117)) (-5 *2 (-606 (-1173 *5 *4))) + (-5 *1 (-1059 *4 *5)) (-5 *3 (-1173 *5 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *1) (-4 *1 (-920)))) +(((*1 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-372)) (-5 *1 (-420))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) +(((*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247))))) +(((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-945 *2)) (-4 *4 (-1176 *3)) (-4 *2 (-291)) + (-5 *1 (-397 *2 *3 *4 *5)) (-4 *5 (-13 (-393 *3 *4) (-989 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) + ((*1 *2 *1) + (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) + (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-163)) (-4 *2 (|SubsetCategory| (-687) *4)) + (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-731)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1202))))) (((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))) -(((*1 *1 *2) - (-12 + (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-940 *3 *4 *5 *2)) + (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1100)) (-4 *1 (-348 *2 *4)) (-4 *2 (-1045)) + (-4 *4 (-1045)))) + ((*1 *1 *2) + (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-375))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-326 *4 *5 *6)) (-4 *4 (-1158)) + (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) + (-5 *2 (-2 (|:| |num| (-649 *5)) (|:| |den| *5)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) + (-5 *2 (-2 (|:| |ans| (-391 *5)) (|:| |nosol| (-111)))) + (-5 *1 (-967 *4 *5)) (-5 *3 (-391 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 - (-2 (|:| |mval| (-639 *3)) (|:| |invmval| (-639 *3)) - (|:| |genIdeal| (-482 *3 *4 *5 *6)))) - (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))) + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572))))) +(((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) + (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) + (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-998)) (-4 *3 (-807)) (-5 *2 (-1069 *3 (-578 *1))) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) + ((*1 *2 *1) + (-12 (-4 *3 (-163)) (-4 *2 (-37 *3)) (-5 *1 (-584 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-687) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-163)) (-4 *2 (-678 *3)) (-5 *1 (-623 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-687) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) +(((*1 *1) (-5 *1 (-111)))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-816)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1084 *3 *4)) (-5 *1 (-946 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-347)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 *5))) (-4 *5 (-998)) + (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *6 (-223 *4 *5)) + (-4 *7 (-223 *3 *5))))) +(((*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-435) (-141))) (-5 *2 (-402 *3)) + (-5 *1 (-98 *4 *3)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-13 (-435) (-141))) + (-5 *2 (-402 *3)) (-5 *1 (-98 *5 *3))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-864)) (-5 *1 (-422 *2)) - (-4 *2 (-1160 (-531))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-864)) (-5 *4 (-721)) (-5 *1 (-422 *2)) - (-4 *2 (-1160 (-531))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *1 (-422 *2)) - (-4 *2 (-1160 (-531))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721)) - (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721)) - (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) + (-12 (-5 *2 (-1098 *4)) (-4 *4 (-37 *3)) (-4 *4 (-998)) + (-5 *3 (-391 (-537))) (-5 *1 (-1102 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-580 (-845 *3))) (-4 *3 (-839 *3)) + (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-580 (-845 *3))) (-4 *2 (-839 *3)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-391 (-905 *6)) (-1107 (-1117) (-905 *6)))) + (-5 *5 (-731)) (-4 *6 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *6))))) + (-5 *1 (-276 *6)) (-5 *4 (-649 (-391 (-905 *6)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-399 *2)) (-4 *2 (-1160 *5)) - (-5 *1 (-424 *5 *2)) (-4 *5 (-986))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *3 (-162)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531)))) - (-5 *1 (-174))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2))))) -(((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-598 - (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *2)) - (|:| |logand| (-1098 *2))))) - (-5 *4 (-598 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-344)) (-5 *1 (-548 *2))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1160 *6)) - (-4 *6 (-13 (-344) (-140) (-977 *4))) (-5 *4 (-531)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) - (|:| -2723 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-956 *6 *3))))) -(((*1 *1 *1) (-4 *1 (-516)))) + (-2 (|:| |eigval| (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) + (|:| |eigmult| (-731)) (|:| |eigvec| (-606 *4)))) + (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) + (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| -3449 *4) (|:| -3413 *3) (|:| -1672 *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1012 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| -3449 *3) (|:| -3413 *1) (|:| -1672 *1))) + (-4 *1 (-1176 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-760 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-388 *6))) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5)))) - (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-347) (-805))) + (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *5)))) + (-5 *1 (-171 *5 *3)) (-4 *3 (-1176 (-160 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-347) (-805))) + (-5 *2 (-606 (-2 (|:| -3415 (-606 *3)) (|:| -3927 *4)))) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) + (-4 *3 (-902 *7 *5 *6)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-760 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6 (-388 *6))) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5)))) - (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6)))))) -(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) + (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| (-606 *3)))) + (-5 *1 (-906 *5 *6 *7 *3 *8)) (-5 *4 (-731)) + (-4 *8 + (-13 (-347) + (-10 -8 (-15 -3301 (*3 $)) (-15 -3315 (*3 $)) (-15 -2341 ($ *3)))))))) +(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)))) + ((*1 *2 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) - (-4 *5 (-221 (-2167 *3) (-721))) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5)) - (-2 (|:| -1889 *2) (|:| -1790 *5)))) - (-4 *2 (-797)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-892 *4 *5 (-808 *3)))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-598 (-208))) (-5 *1 (-188))))) + (-12 (-5 *2 (-606 (-896 *4))) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1082 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) + (-5 *2 (-111)) (-5 *1 (-1083 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-622))) ((*1 *1 *1) (-5 *1 (-1064)))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-161))))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102))))) - (-5 *1 (-1140))))) + (-12 (-5 *2 (-1185 *3 *4 *5)) (-5 *1 (-303 *3 *4 *5)) + (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-388)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-659)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-674 *3 *2 *4)) (-4 *3 (-807)) + (-14 *4 + (-1 (-111) (-2 (|:| -2009 *3) (|:| -3283 *2)) + (-2 (|:| -2009 *3) (|:| -3283 *2))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-266 *3)) (-4 *3 (-1154))))) (((*1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) - ((*1 *2 *2) - (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-417))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-721))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-806))))) + (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) + (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) - (-4 *4 (-13 (-797) (-523)))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1045)) (-4 *6 (-1045)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-1045))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-107))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) + (-4 *3 (-1176 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-1064))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) + (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) + (-5 *2 (-232 *4 *5)) (-5 *1 (-897 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-529)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-531)) (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -2012 *4)))) - (-5 *1 (-646 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 (-388 (-895 *6)))) - (-5 *3 (-388 (-895 *6))) - (-4 *6 (-13 (-523) (-977 (-531)) (-140))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-537 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986)) - (-5 *1 (-665 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)) - (-4 *2 (-1030))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-606 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1155 *2)) + (-4 *2 (-1045)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-807)) + (-5 *1 (-1155 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *3 (-111)) (-5 *1 (-109)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) + ((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154))))) +(((*1 *1) (-5 *1 (-210))) ((*1 *1) (-5 *1 (-363)))) +(((*1 *1 *1) (-5 *1 (-1010)))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-578 *4)) (-5 *6 (-1117)) + (-4 *4 (-13 (-414 *7) (-27) (-1139))) + (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140))) - (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5))))) - (-5 *1 (-1058 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140))) - (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5))))) - (-5 *1 (-1058 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-539 *7 *4 *3)) (-4 *3 (-617 *4)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) ((*1 *2 *1) - (-12 (-5 *2 (-1184 (-3 (-448) "undefined"))) (-5 *1 (-1185))))) -(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))) - ((*1 *1 *1 *1) (-5 *1 (-1049)))) -(((*1 *2 *3) - (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5)) - (-5 *1 (-833 *4 *5)) (-4 *5 (-1138))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-531) (-531))) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-721) (-721))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030))))) -(((*1 *1) (-5 *1 (-418)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(((*1 *1 *1 *1) (-4 *1 (-910)))) + (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) + (-4 *4 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3)) - (|:| |coef2| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1030))))) + (-12 (-5 *2 (-111)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *1)) (-5 *4 (-1184 *1)) (-4 *1 (-594 *5)) - (-4 *5 (-986)) - (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *1)) (-4 *1 (-594 *4)) (-4 *4 (-986)) - (-5 *2 (-639 *4))))) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-554 *3)) (-5 *1 (-530 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) (((*1 *2 *3) - (-12 (-14 *4 (-598 (-1102))) (-4 *5 (-432)) - (-5 *2 - (-2 (|:| |glbase| (-598 (-230 *4 *5))) (|:| |glval| (-598 (-531))))) - (-5 *1 (-586 *4 *5)) (-5 *3 (-598 (-230 *4 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *3 (-531)) (-4 *1 (-812 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) + (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 (-537)))) (-5 *1 (-449))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *3 (-606 (-537))) + (-5 *1 (-836))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) + ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958))))) +(((*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347))))) +(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) + (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) + (-5 *1 (-381)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-606 (-606 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-606 (-3 (|:| |array| (-606 *3)) (|:| |scalar| (-1117))))) + (-5 *6 (-606 (-1117))) (-5 *3 (-1117)) (-5 *2 (-1049)) + (-5 *1 (-381)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-606 (-1117))) (-5 *5 (-1120)) (-5 *3 (-1117)) + (-5 *2 (-1049)) (-5 *1 (-381))))) +(((*1 *1) (-5 *1 (-149)))) (((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-886 (-208)))) (-5 *1 (-1185))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) - (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-721)) (-5 *3 (-886 *5)) (-4 *5 (-986)) - (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5)) - (-14 *4 (-864)) (-4 *5 (-986)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986)) - (-5 *1 (-1091 *4 *5)) (-14 *4 (-864))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) - (-5 *2 (-110))))) + (-12 (-5 *2 (-1200 (-731))) (-5 *1 (-636 *3)) (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-537)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-402 *2)) (-4 *2 (-529))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *5)) (-4 *5 (-752)) (-5 *2 (-111)) + (-5 *1 (-802 *4 *5)) (-14 *4 (-731))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-986)) (-4 *3 (-797)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1790 (-531)))) (-4 *1 (-411 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-835 *3)))) - (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) - (-4 *7 (-892 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1790 (-531)))) - (-5 *1 (-893 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) - (-15 -1853 (*7 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *5)) (-4 *5 (-344)) (-5 *2 (-598 *6)) - (-5 *1 (-504 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795)))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33)))))) -(((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1 *1) (-4 *1 (-910)))) -(((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-507))) ((*1 *1) (-4 *1 (-673))) - ((*1 *1) (-4 *1 (-677))) - ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) - ((*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-176)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) + (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) + (-14 *4 (-731)) (-4 *5 (-163))))) +(((*1 *2) + (-12 (-4 *1 (-333)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-606 *11)) (-5 *5 (-606 (-1113 *9))) + (-5 *6 (-606 *9)) (-5 *7 (-606 *12)) (-5 *8 (-606 (-731))) + (-4 *11 (-807)) (-4 *9 (-291)) (-4 *12 (-902 *9 *10 *11)) + (-4 *10 (-753)) (-5 *2 (-606 (-1113 *12))) + (-5 *1 (-668 *10 *11 *9 *12)) (-5 *3 (-1113 *12))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-708))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) + (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) - (-5 *2 - (-2 (|:| |mval| (-639 *4)) (|:| |invmval| (-639 *4)) - (|:| |genIdeal| (-482 *4 *5 *6 *7)))) - (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-459))))) + (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1115 *4 *5 *6)) + (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1173 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) + (-4 *4 (-998)) (-14 *5 (-1117)) (-14 *6 *4)))) (((*1 *2 *1) - (-12 (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) (-4 *3 (-797)) - (-4 *2 (-1138)))) - ((*1 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) - ((*1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1138)) (-5 *1 (-816 *2 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1) (-12 (-5 *2 (-624 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-1083 (-1083 (-895 *5)))) - (-5 *1 (-1192 *5)) (-5 *4 (-1083 (-895 *5)))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105)))) - ((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-2 (|:| |k| (-769 *3)) (|:| |c| *4)))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-289))))) -(((*1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) (((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-507))) - ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1186))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) + (-12 + (-5 *2 (-2 (|:| -1687 (-606 (-1117))) (|:| -3039 (-606 (-1117))))) + (-5 *1 (-1156))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 + (-2 (|:| |ir| (-554 (-391 *6))) (|:| |specpart| (-391 *6)) + (|:| |polypart| *6))) + (-5 *1 (-547 *5 *6)) (-5 *3 (-391 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-807)) (-4 *5 (-753)) + (-4 *6 (-529)) (-4 *7 (-902 *6 *5 *3)) + (-5 *1 (-445 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-989 (-391 (-537))) (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) + (-15 -3315 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-537)) + (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-545))))) -(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-986)))) - ((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) -(((*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1117))))) + (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-979 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-606 (-649 *3))) (-4 *3 (-998)) (-5 *1 (-979 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1064)) (-5 *2 (-111)) (-5 *1 (-781))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-823))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1473)) (-5 *2 (-110)) (-5 *1 (-641 *4)) - (-4 *4 (-572 (-806))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-572 (-806))) (-5 *2 (-110)) - (-5 *1 (-641 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-110)) (-5 *1 (-1107)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-110)) (-5 *1 (-1107)))) + (-12 (-4 *4 (-333)) (-5 *2 (-111)) (-5 *1 (-202 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) + (-4 *2 (-1045))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-138))) (-5 *1 (-135)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-135))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-731)) (-5 *2 (-1205))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-816))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *1) + (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-5 *2 (-1100))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1107)))) + (-12 (-5 *3 (-1117)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-110)) (-5 *1 (-1107))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) + (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-578 *4)) (-4 *4 (-807)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-5 *2 (-111)) (-5 *1 (-840 *5 *3 *4)) + (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *6)) (-4 *6 (-839 *5)) (-4 *5 (-1045)) + (-5 *2 (-111)) (-5 *1 (-840 *5 *6 *4)) (-4 *4 (-580 (-845 *5)))))) +(((*1 *1) (-5 *1 (-314)))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-388 (-895 (-531))))) - (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) - (-4 *3 (-1160 *4)) (-5 *2 (-110))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869))))) + (-12 (-4 *4 (-807)) (-5 *2 (-1126 (-606 *4))) (-5 *1 (-1125 *4)) + (-5 *3 (-606 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-722)))) +(((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-720))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) + (-4 *4 (-1154)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) - (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3))))) + (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) + (-4 *3 (-920))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-291)) (-5 *1 (-660 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-598 *2))) (-5 *4 (-598 *5)) - (-4 *5 (-37 (-388 (-531)))) (-4 *2 (-1175 *5)) - (-5 *1 (-1177 *5 *2))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-516)))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-793))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 (-297 (-208)))) - (-5 *2 - (-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) - (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531)))) - (-5 *1 (-287))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-721)) (-4 *3 (-1138)) (-4 *1 (-55 *3 *4 *5)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1) (-5 *1 (-161))) - ((*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-864)) (-4 *3 (-1030)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))) - ((*1 *1) (-5 *1 (-375))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) - ((*1 *1) - (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030)) - (-4 *4 (-619 *3)))) - ((*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) - ((*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) - ((*1 *1 *1) (-5 *1 (-1102))) ((*1 *1) (-5 *1 (-1102))) - ((*1 *1) (-5 *1 (-1119)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1138))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) + (-5 *2 (-1 *5)) (-5 *1 (-643 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27)) - (-5 *2 (-598 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721)) - (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)) - (-5 *2 (-721)))) - ((*1 *2) - (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4)) - (-4 *3 (-310 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) - ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) - ((*1 *2) - (-12 (-4 *4 (-1030)) (-5 *2 (-721)) (-5 *1 (-405 *3 *4)) - (-4 *3 (-406 *4)))) + (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-4 *2 (-1176 *5)) + (-5 *1 (-1194 *5 *2 *6 *3)) (-4 *6 (-617 *2)) (-4 *3 (-1191 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-721)) - (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-675 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) - ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) + (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-874)) (-4 *4 (-352)) (-4 *4 (-347)) (-5 *2 (-1113 *1)) + (-4 *1 (-313 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) - ((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *3 (-797)) (-5 *2 (-721))))) + (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *3 (-347)) + (-4 *2 (-1176 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) + (-5 *1 (-507 *4))))) +(((*1 *2) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) + (-4 *3 (-13 (-807) (-529)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1119 (-391 (-537)))) (-5 *2 (-391 (-537))) + (-5 *1 (-176))))) +(((*1 *1 *1) (-5 *1 (-47))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) + (-4 *2 (-1154)) (-5 *1 (-56 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (|has| *1 (-6 -4300)) + (-4 *1 (-145 *2)) (-4 *2 (-1154)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) + (-4 *2 (-1154)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) + (-4 *2 (-1154)))) + ((*1 *2 *3) + (-12 (-4 *4 (-998)) + (-5 *2 (-2 (|:| -2990 (-1113 *4)) (|:| |deg| (-874)))) + (-5 *1 (-206 *4 *5)) (-5 *3 (-1113 *4)) (-4 *5 (-13 (-529) (-807))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) + (-4 *6 (-1154)) (-4 *2 (-1154)) (-5 *1 (-224 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-163)) (-5 *1 (-273 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1176 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-529)) (-4 *2 (-807)))) + ((*1 *1 *1) + (-12 (-4 *1 (-319 *2 *3 *4 *5)) (-4 *2 (-347)) (-4 *3 (-1176 *2)) + (-4 *4 (-1176 (-391 *3))) (-4 *5 (-326 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1154)) (-4 *2 (-1154)) + (-5 *1 (-355 *5 *4 *2 *6)) (-4 *4 (-357 *5)) (-4 *6 (-357 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) + (-5 *1 (-407 *5 *4 *2 *6)) (-4 *4 (-409 *5)) (-4 *6 (-409 *2)))) + ((*1 *1 *1) (-5 *1 (-476))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) + (-4 *2 (-1154)) (-5 *1 (-604 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-998)) (-4 *2 (-998)) + (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *8 (-357 *2)) + (-4 *9 (-357 *2)) (-5 *1 (-645 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-647 *5 *6 *7)) (-4 *10 (-647 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-391 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-347)) + (-4 *3 (-163)) (-4 *1 (-685 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-163)) (-4 *1 (-685 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) + (-4 *2 (-1154)) (-5 *1 (-910 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) + (-14 *6 (-606 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-998)) (-4 *2 (-998)) + (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) + (-4 *9 (-223 *5 *7)) (-4 *10 (-223 *6 *2)) (-4 *11 (-223 *5 *2)) + (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *12 (-1001 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) + (-4 *2 (-1154)) (-5 *1 (-1096 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) + (-4 *1 (-1147 *5 *6 *7 *2)) (-4 *5 (-529)) (-4 *6 (-753)) + (-4 *7 (-807)) (-4 *2 (-1012 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) + (-4 *2 (-1154)) (-5 *1 (-1199 *5 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523)))) - ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291))))) +(((*1 *1 *1) (-4 *1 (-592))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *1 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 *1)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 *3)) (-4 *3 (-998)) (-5 *1 (-649 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *4)) (-4 *4 (-998)) (-4 *1 (-1067 *3 *4 *5 *6)) + (-4 *5 (-223 *3 *4)) (-4 *6 (-223 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) (-4 *3 (-807)) + (-4 *2 (-1154)))) + ((*1 *2 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) + ((*1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) + (-12 (-4 *2 (-1154)) (-5 *1 (-826 *2 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) + (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-644 *4 *5 *6))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-578 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1139))) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-1113 (-391 (-1113 *6)))) (-5 *1 (-533 *5 *6 *7)) + (-5 *3 (-1113 *6)) (-4 *7 (-1045)))) ((*1 *2 *1) - (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-949 *3)) (-4 *3 (-977 (-388 (-531))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef2| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-2 (|:| -2109 *1) (|:| |coef2| *1))) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4274)) (-4 *4 (-344)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-498 *4 *5 *6 *3)) - (-4 *3 (-637 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4274)) (-4 *4 (-523)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *8 (-354 *7)) - (-4 *9 (-354 *7)) (-5 *2 (-598 *6)) - (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-637 *4 *5 *6)) - (-4 *10 (-637 *7 *8 *9)))) + (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) ((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-598 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-638 *4 *5 *6 *3)) - (-4 *3 (-637 *4 *5 *6)))) + (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1113 *11)) (-5 *6 (-606 *10)) + (-5 *7 (-606 (-731))) (-5 *8 (-606 *11)) (-4 *10 (-807)) + (-4 *11 (-291)) (-4 *9 (-753)) (-4 *5 (-902 *11 *9 *10)) + (-5 *2 (-606 (-1113 *5))) (-5 *1 (-703 *9 *10 *11 *5)) + (-5 *3 (-1113 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) - (-5 *2 (-598 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-550 *4)) - (-4 *4 (-330))))) -(((*1 *1) (-5 *1 (-773)))) -(((*1 *1) (-5 *1 (-418)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-721))) (-5 *3 (-110)) (-5 *1 (-1091 *4 *5)) - (-14 *4 (-864)) (-4 *5 (-986))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-2 (|:| -3033 *3) (|:| -1798 *4)))) - (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *1 (-1115 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1115 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-721)) (-4 *5 (-162)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-721)) (-4 *5 (-162)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) - (-230 *4 (-388 (-531))))) - (-5 *3 (-598 (-808 *4))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) - (-5 *1 (-483 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-432)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *5 (-852)) (-5 *1 (-437 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-852))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *2 (-975)) (-5 *1 (-702))))) + (-12 (-4 *2 (-902 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *2 *6)) + (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-14 *6 (-606 *2))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) + (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *2 (-1149 (-879))) + (-5 *1 (-302)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) + (-5 *5 (-1040 (-210))) (-5 *6 (-537)) (-5 *7 (-1100)) + (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) + (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) + (-5 *2 (-1149 (-879))) (-5 *1 (-302)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) + (-5 *5 (-1040 (-210))) (-5 *6 (-210)) (-5 *7 (-537)) (-5 *8 (-1100)) + (-5 *2 (-1149 (-879))) (-5 *1 (-302))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-649 *7)) (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) + (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-548 *3)) (-5 *1 (-524 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-289)) - (-5 *2 (-721)) (-5 *1 (-435 *5 *3))))) -(((*1 *1) (-5 *1 (-1189)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) + (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) + (-4 *5 (-529)) (-5 *2 (-606 (-606 (-905 *5)))) (-5 *1 (-1123 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3)) - (-4 *3 (-13 (-1124) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-977 (-531)) (-140))) - (-5 *2 (-548 (-388 (-895 *5)))) (-5 *1 (-537 *5)) - (-5 *3 (-388 (-895 *5)))))) -(((*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105))))) -(((*1 *2 *1) - (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) - (-4 *3 (-1160 *4)) (-5 *2 (-110))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-721)) (-4 *4 (-289)) (-4 *6 (-1160 *4)) - (-5 *2 (-1184 (-598 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-598 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) - (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) - (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) - (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) - (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) - (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) - (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8))))) + (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-739 *4)) + (-4 *4 (-13 (-347) (-805)))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-601 *5)) (-4 *5 (-986)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-799 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-639 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-986)) - (-5 *1 (-800 *2 *3)) (-4 *3 (-799 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138))))) + (-12 (-4 *2 (-141)) (-4 *2 (-291)) (-4 *2 (-435)) (-4 *3 (-807)) + (-4 *4 (-753)) (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-300 (-537))) (-5 *1 (-1063)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *4 *5 *6)) - (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *1 (-548 *2)) (-4 *2 (-977 *3)) - (-4 *2 (-344)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2)) - (-4 *2 (-13 (-411 *4) (-943) (-1124))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-943) (-1124))) - (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-902)) (-5 *2 (-1102)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-902))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *4 (-606 (-818 *5))) (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-531)))) - (-4 *4 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $))))) - (-4 *3 (-523)) (-5 *1 (-1163 *3 *4))))) + (-2 (|:| |dpolys| (-606 (-232 *5 *6))) + (|:| |coords| (-606 (-537))))) + (-5 *1 (-454 *5 *6 *7)) (-5 *3 (-606 (-232 *5 *6))) (-4 *7 (-435))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-874)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-752)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-391 (-537))) (-4 *1 (-1181 *3)) (-4 *3 (-998))))) +(((*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-210)) (-5 *1 (-289))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-639 (-1098 *8))) (-4 *5 (-986)) (-4 *8 (-986)) - (-4 *6 (-1160 *5)) (-5 *2 (-639 *6)) (-5 *1 (-479 *5 *6 *7 *8)) - (-4 *7 (-1160 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-1176 *5)) (-4 *5 (-291)) + (-5 *2 (-731)) (-5 *1 (-438 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-731)) (-5 *4 (-1200 *2)) (-4 *5 (-291)) + (-4 *6 (-945 *5)) (-4 *2 (-13 (-393 *6 *7) (-989 *6))) + (-5 *1 (-397 *5 *6 *7 *2)) (-4 *7 (-1176 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-1205)) + (-5 *1 (-417 *3 *4)) (-4 *4 (-414 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3))))) + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-230 *4 *5)) - (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102)))))) -(((*1 *2 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138))))) -(((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208)))) - (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) - (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2)) - (-4 *4 (-637 *2 *5 *6))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986)) - (-4 *3 (-523)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5)))) - (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5))))) - (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5))))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) - (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274))))))) -(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))) - ((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) - (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) - (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 *7))) - (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-432)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-399 *1)) (-4 *1 (-892 *3 *4 *5)))) + (-12 (-4 *4 (-333)) (-5 *2 (-402 *3)) (-5 *1 (-202 *4 *3)) + (-4 *3 (-1176 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-432)) (-5 *2 (-399 *3)) - (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432)) - (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7)))) - (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142)))) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) + (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-731))) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) + (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-606 (-731))) (-5 *5 (-731)) (-5 *2 (-402 *3)) + (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-731)) (-5 *2 (-402 *3)) (-5 *1 (-425 *3)) + (-4 *3 (-1176 (-537))))) ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-1163 *4 *3)) - (-4 *3 (-13 (-1160 *4) (-523) (-10 -8 (-15 -2109 ($ $ $))))))) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-959 *3)) + (-4 *3 (-1176 (-391 (-537)))))) ((*1 *2 *3) - (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-14 *5 (-598 (-1102))) - (-5 *2 - (-598 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102)))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-531)) (-5 *2 (-110))))) -(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1085)) (-5 *1 (-51))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-4 *1 (-385)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-385)))) + (-12 (-5 *2 (-402 *3)) (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-991))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-731)) (-4 *3 (-1154)) (-4 *1 (-55 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1) (-5 *1 (-162))) + ((*1 *1) (-12 (-5 *1 (-199 *2 *3)) (-14 *2 (-874)) (-4 *3 (-1045)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) + ((*1 *1) (-5 *1 (-378))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) + ((*1 *1) + (-12 (-4 *3 (-1045)) (-5 *1 (-838 *2 *3 *4)) (-4 *2 (-1045)) + (-4 *4 (-627 *3)))) + ((*1 *1) (-12 (-5 *1 (-842 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045)))) + ((*1 *1) (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998)))) + ((*1 *1 *1) (-5 *1 (-1117))) ((*1 *1) (-5 *1 (-1117))) + ((*1 *1) (-5 *1 (-1134)))) +(((*1 *2 *1) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-606 (-606 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) - (-5 *2 (-110)) (-5 *1 (-930 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-606 (-606 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-606 (-606 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-300 (-537))) (-5 *4 (-1 (-210) (-210))) + (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) + (-5 *1 (-657))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) + (-5 *1 (-316))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-1212 *4 *5 *6 *7))) + (-5 *1 (-1212 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 *9)) (-5 *4 (-1 (-111) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) + (-4 *7 (-753)) (-4 *8 (-807)) (-5 *2 (-606 (-1212 *6 *7 *8 *9))) + (-5 *1 (-1212 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1154)) (-5 *2 (-731)) + (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) + (-5 *2 (-731)))) + ((*1 *2) + (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) + (-4 *3 (-313 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) + ((*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) + ((*1 *2) + (-12 (-4 *4 (-1045)) (-5 *2 (-731)) (-5 *1 (-408 *3 *4)) + (-4 *3 (-409 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-4 *5 (-1176 *4)) (-5 *2 (-731)) + (-5 *1 (-684 *3 *4 *5)) (-4 *3 (-685 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) + ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-2 (|:| |deg| (-731)) (|:| -1277 *5)))) + (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *2 (-606 *5)) + (-5 *1 (-202 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) - (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) - (-5 *2 (-110)) (-5 *1 (-1037 *5 *6 *7 *8 *3))))) + (-12 (-5 *3 (-606 (-2 (|:| -3622 *5) (|:| -2872 (-537))))) + (-5 *4 (-537)) (-4 *5 (-1176 *4)) (-5 *2 (-606 *5)) + (-5 *1 (-656 *5))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-742 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-916 *3 *2)) (-4 *2 (-129)) (-4 *3 (-529)) + (-4 *3 (-998)) (-4 *2 (-752)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-1113 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-924)) (-4 *2 (-129)) (-5 *1 (-1119 *3)) (-4 *3 (-529)) + (-4 *3 (-998)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-1173 *4 *3)) (-14 *4 (-1117)) + (-4 *3 (-998))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-606 (-1117))) (-4 *2 (-163)) + (-4 *3 (-223 (-2258 *4) (-731))) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *3)) + (-2 (|:| -2009 *5) (|:| -3283 *3)))) + (-5 *1 (-444 *4 *2 *5 *3 *6 *7)) (-4 *5 (-807)) + (-4 *7 (-902 *2 *3 (-818 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-606 *2)) (-5 *1 (-112 *2)) + (-4 *2 (-1045)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-606 *4))) (-4 *4 (-1045)) + (-5 *1 (-112 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) + (-5 *1 (-112 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-606 *4))) + (-5 *1 (-112 *4)) (-4 *4 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-609 *3)) (-4 *3 (-998)) + (-5 *1 (-675 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-794 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-806))))) -(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516)))) - ((*1 *1 *1) (-4 *1 (-995)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) - (-5 *1 (-1087 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) - (-14 *4 (-1102)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *5 (-743)) (-4 *2 (-248 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1751 (-639 (-388 (-895 *4)))) - (|:| |vec| (-598 (-388 (-895 *4)))) (|:| -2277 (-721)) - (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) - (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) - (-5 *2 - (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))) - (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5))))) + (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) + (-4 *3 (-1176 (-160 *2)))))) (((*1 *1 *2) - (-12 - (-5 *2 - (-598 - (-2 - (|:| -3033 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) - (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) - (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (|:| -1798 - (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) - (|:| |expense| (-360)) (|:| |accuracy| (-360)) - (|:| |intermediateResults| (-360))))))) - (-5 *1 (-753))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) - (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))) + (-12 (-5 *2 (-606 (-2 (|:| -2926 *3) (|:| -2140 *4)))) + (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *1 (-1130 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1130 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-864)) - (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) - (-5 *1 (-327 *4)) (-4 *4 (-330))))) -(((*1 *2 *3) - (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) - (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) - (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *2 (-1134 (-869))) - (-5 *1 (-299)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) - (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *7 (-1085)) - (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) - (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) - (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) - (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) (-5 *8 (-1085)) - (-5 *2 (-1134 (-869))) (-5 *1 (-299))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-164)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-1017))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-344)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986)) - (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) - (-4 *3 (-799 *5))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-2 (|:| -4157 (-113)) (|:| |w| (-210)))) (-5 *1 (-190))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-162)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) + (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-163)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) + (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-986)))) + (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-998)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) - (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1573 (-598 *7)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) + (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-864)) (-4 *5 (-523)) (-5 *2 (-639 *5)) - (-5 *1 (-899 *5 *3)) (-4 *3 (-609 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-598 (-159 *4))) (-5 *1 (-147 *3 *4)) - (-4 *3 (-1160 (-159 (-531)))) (-4 *4 (-13 (-344) (-795))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4))) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4))) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))) + (-12 (-5 *2 (-2 (|:| -1605 *3) (|:| -3283 (-731)))) (-5 *1 (-555 *3)) + (-4 *3 (-522))))) +(((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) (((*1 *2 *3) - (-12 (-4 *1 (-786)) - (-5 *3 - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) - (-5 *2 (-975)))) - ((*1 *2 *3) - (-12 (-4 *1 (-786)) - (-5 *3 - (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) - (-5 *2 (-975))))) -(((*1 *2 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) - (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))))) + (|partial| -12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-459 *4 *5 *6 *7)) (|:| -2992 (-606 *7)))) + (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *3))))) + (-12 (-4 *4 (-13 (-805) (-347))) (-5 *2 (-111)) (-5 *1 (-1008 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-537)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) + (-5 *1 (-432 *5 *6 *7 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *3) + (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-609 *5)) (-4 *5 (-998)) + (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-809 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-649 *3)) (-4 *1 (-401 *3)) (-4 *3 (-163)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-97 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-998)) + (-5 *1 (-810 *2 *3)) (-4 *3 (-809 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-541 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330))))) -(((*1 *2 *3) - (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4)))) - (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-537)))) ((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) - (-14 *4 (-531))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-742)) (-4 *3 (-162))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) - (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33)))))) -(((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) (((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-137)))) - ((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-137))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721)) - (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-1017)))) -(((*1 *2 *3) - (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1)) - (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797)))) - ((*1 *2 *3) - (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1109))))) -(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) - ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) - ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) - ((*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-1083 (-531)))))) + (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *2) + (-12 (-5 *2 (-874)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-165)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-107)) (-5 *1 (-1031))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 (-895 *6))) (-4 *6 (-523)) - (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) - (-4 *5 (-743)) - (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)))))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) + (-4 *3 (-1045)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) + (-5 *1 (-857 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-874)) (-5 *2 (-111)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2))))) +(((*1 *2 *2) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-606 *6)) (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-4 *3 (-529))))) (((*1 *2 *2) - (-12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) - (-4 *2 (-637 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138))))) + (-12 (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) + (-15 -3315 ((-1069 *3 (-578 $)) $)) + (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) - (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2)) - (-4 *4 (-637 *2 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) - (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) - (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-598 *5) *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-606 (-388 *7))) (-5 *4 (-1 (-598 *6) *7)) - (-5 *5 (-1 (-399 *7) *7)) - (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-598 *5) *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-607 *7 (-388 *7))) (-5 *4 (-1 (-598 *6) *7)) - (-5 *5 (-1 (-399 *7) *7)) - (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-606 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) - (-4 *6 (-1160 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *5 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) - (-4 *6 (-1160 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-531)) - (-5 *6 - (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360)))) - (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) - (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) - (-5 *1 (-738)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-531)) - (-5 *6 - (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360)))) - (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) - (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) - (-5 *1 (-738))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1030)) - (-4 *2 (-128))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-162)))) + (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537)))) + ((*1 *2 *2) + (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-229 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-986))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-639 (-531))) (-5 *5 (-110)) (-5 *7 (-639 (-208))) - (-5 *3 (-531)) (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986)) - (-5 *1 (-640 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2721 (-598 (-2 (|:| |irr| *10) (|:| -2460 (-531))))))) - (-5 *6 (-598 *3)) (-5 *7 (-598 *8)) (-4 *8 (-797)) (-4 *3 (-289)) - (-4 *10 (-892 *3 *9 *8)) (-4 *9 (-743)) - (-5 *2 - (-2 (|:| |polfac| (-598 *10)) (|:| |correct| *3) - (|:| |corrfact| (-598 (-1098 *3))))) - (-5 *1 (-581 *8 *9 *3 *10)) (-5 *4 (-598 (-1098 *3)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030))))) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) +(((*1 *2) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) + (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) + (-5 *2 (-1113 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1192 *2 *3 *4)) (-4 *2 (-998)) (-14 *3 (-1117)) + (-14 *4 *2)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986))))) -(((*1 *2 *3) - (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287))))) -(((*1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) (-4 *5 (-1030)) - (-4 *6 (-1138)) (-5 *2 (-1 *6 *5)) (-5 *1 (-595 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030)) - (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 *5)) (-4 *6 (-1030)) - (-4 *5 (-1138)) (-5 *2 (-1 *5 *6)) (-5 *1 (-595 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030)) - (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) - (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *1 (-595 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-721))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-110)) - (-5 *1 (-832 *4 *5)) (-4 *5 (-1030)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-5 *2 (-110)) - (-5 *1 (-833 *5 *3)) (-4 *3 (-1138)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) - (-4 *6 (-1138)) (-5 *2 (-110)) (-5 *1 (-833 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979))))) + (-12 (-4 *2 (-998)) (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) + (-4 *5 (-223 *3 *2))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) + (-5 *2 (-986)) (-5 *1 (-710)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-85 BDYVAL)))) + (-5 *8 (-372)) (-5 *2 (-986)) (-5 *1 (-710))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-2 (|:| -4155 (-112)) (|:| |w| (-208)))) (-5 *1 (-188))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-975)) - (-5 *1 (-697))))) -(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-4 *7 (-892 *4 *6 *5)) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) (-5 *2 - (-2 (|:| |sysok| (-110)) (|:| |z0| (-598 *7)) (|:| |n0| (-598 *7)))) - (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112))))) + (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) + (-5 *1 (-191))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-178))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 *4)) (-5 *1 (-1068 *3 *4)) - (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33)))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-289)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) - (-4 *1 (-289))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986)) - (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) - (-4 *3 (-799 *5))))) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) + (-5 *2 (-606 (-606 (-896 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) (-4 *4 (-998)) + (-4 *1 (-1078 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 (-896 *3)))) (-4 *3 (-998)) + (-4 *1 (-1078 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-111)) + (-4 *1 (-1078 *4)) (-4 *4 (-998)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-606 (-606 (-896 *4)))) (-5 *3 (-111)) + (-4 *1 (-1078 *4)) (-4 *4 (-998)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-606 (-162))) + (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-606 (-606 (-896 *5)))) (-5 *3 (-606 (-162))) + (-5 *4 (-162)) (-4 *1 (-1078 *5)) (-4 *5 (-998))))) +(((*1 *1) (-5 *1 (-532)))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1117))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) + (-5 *1 (-709))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *10)) - (-5 *1 (-580 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1005 *5 *6 *7 *8)) - (-4 *10 (-1039 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) - (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) - (-5 *1 (-583 *5 *6)))) + (-12 (-5 *3 (-614 *4)) (-4 *4 (-326 *5 *6 *7)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-766 *5 *6 *7 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) + (-232 *4 (-391 (-537))))) + (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) + (-5 *1 (-486 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1047 *4)) (-4 *4 (-1045)) (-5 *2 (-1 *4)) + (-5 *1 (-969 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1040 (-537))) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *2 (-529)) (-5 *1 (-922 *2 *4)) + (-4 *4 (-1176 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *1) (-5 *1 (-149)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1038 (-800 *3))) (-4 *3 (-13 (-1139) (-912) (-29 *5))) + (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-204 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1038 (-800 *3))) (-5 *5 (-1100)) + (-4 *3 (-13 (-1139) (-912) (-29 *6))) + (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-3 (|:| |f1| (-800 *3)) (|:| |f2| (-606 (-800 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-204 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) - (-14 *6 (-598 (-1102))) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1038 (-800 (-300 *5)))) + (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 - (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6))))) - (-5 *1 (-583 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) - (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) - (-5 *1 (-983 *5 *6)))) + (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-205 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1038 (-800 (-300 *6)))) + (-5 *5 (-1100)) + (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-205 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1132 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-344)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-430 *4 *5 *6 *2)))) + (-12 (-5 *4 (-1038 (-800 (-391 (-905 *5))))) (-5 *3 (-391 (-905 *5))) + (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-3 (|:| |f1| (-800 (-300 *5))) (|:| |f2| (-606 (-800 (-300 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-205 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) + (-12 (-5 *4 (-1038 (-800 (-391 (-905 *6))))) (-5 *5 (-1100)) + (-5 *3 (-391 (-905 *6))) + (-4 *6 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) (-5 *2 - (-2 (|:| R (-639 *6)) (|:| A (-639 *6)) (|:| |Ainv| (-639 *6)))) - (-5 *1 (-920 *6)) (-5 *3 (-639 *6))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) - (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33))) - (-5 *2 (-110)) (-5 *1 (-1067 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1102)) - (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *1 (-1105))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531)))) - (-4 *2 (-162))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-721) *2)) (-5 *4 (-721)) (-4 *2 (-1030)) - (-5 *1 (-629 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-721) *3)) (-4 *3 (-1030)) (-5 *1 (-632 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 (-835 *3))))) - (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-835 *4))) - (-5 *1 (-835 *4)) (-4 *4 (-1030))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-520))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1120))))) -(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-523)))) - ((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-797))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-276 (-783 *3))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-783 *3)) (-5 *1 (-591 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 (-783 (-895 *5)))) (-4 *5 (-432)) - (-5 *2 (-783 (-388 (-895 *5)))) (-5 *1 (-592 *5)) - (-5 *3 (-388 (-895 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) - (-4 *5 (-432)) (-5 *2 (-783 *3)) (-5 *1 (-592 *5))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-710))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-630 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *2 (-388 (-895 *4))) (-5 *1 (-867 *4 *5 *6 *3)) - (-4 *3 (-892 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5)) - (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *2 (-639 (-388 (-895 *4)))) - (-5 *1 (-867 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) - (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *2 (-598 (-388 (-895 *4)))) - (-5 *1 (-867 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *3 (-208)) - (-5 *2 (-975)) (-5 *1 (-699))))) -(((*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) - ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2)) - (-4 *2 (-1160 (-159 *3)))))) -(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-721)) - (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) - ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) - ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-630 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(((*1 *2) - (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-324 *3 *4)) (-14 *3 (-864)) - (-14 *4 (-864)))) - ((*1 *2) - (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330)) - (-14 *4 (-1098 *3)))) - ((*1 *2) - (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330)) - (-14 *4 (-864))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) - (-4 *2 (-221 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) - (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5)) - (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-289))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) - (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274))))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) + (-3 (|:| |f1| (-800 (-300 *6))) (|:| |f2| (-606 (-800 (-300 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-205 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-3 *3 (-606 *3))) (-5 *1 (-412 *5 *3)) + (-4 *3 (-13 (-1139) (-912) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) + (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3) (-12 (-5 *3 (-729)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) + (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) + (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-1040 (-800 (-363)))) + (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) + (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) + (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) + (-5 *5 (-363)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-1040 (-800 (-363))))) + (-5 *5 (-363)) (-5 *6 (-1010)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) + (-5 *5 (-1100)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-300 (-363))) (-5 *4 (-1038 (-800 (-363)))) + (-5 *5 (-1117)) (-5 *2 (-986)) (-5 *1 (-538)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) (-4 *5 (-1176 *4)) + (-5 *2 (-554 (-391 *5))) (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *2 (-3 (-300 *5) (-606 (-300 *5)))) (-5 *1 (-557 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-701 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807)) + (-4 *3 (-37 (-391 (-537)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-905 *3)) (-4 *3 (-37 (-391 (-537)))) + (-4 *3 (-998)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-4 *2 (-807)) + (-5 *1 (-1070 *3 *2 *4)) (-4 *4 (-902 *3 (-509 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) + (-5 *1 (-1102 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-37 (-391 (-537)))) + (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-1533 + (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) + (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) + (-4 *3 (-37 (-391 (-537)))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-1160 *3)) (-4 *3 (-998)) + (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) + (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1160 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) + ((*1 *1 *1 *2) + (-1533 + (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) + (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) + (-4 *3 (-37 (-391 (-537)))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-1181 *3)) (-4 *3 (-998)) + (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) + (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1181 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-1533 + (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) + (-12 (-4 *3 (-29 (-537))) (-4 *3 (-912)) (-4 *3 (-1139)) + (-4 *3 (-37 (-391 (-537)))))) + (-12 (-5 *2 (-1117)) (-4 *1 (-1191 *3)) (-4 *3 (-998)) + (-12 (|has| *3 (-15 -3757 ((-606 *2) *3))) + (|has| *3 (-15 -3092 (*3 *3 *2))) (-4 *3 (-37 (-391 (-537)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998)) (-4 *2 (-37 (-391 (-537)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *3 (-998)) (-14 *5 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162))))) -(((*1 *1 *1) (-4 *1 (-1071)))) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) +(((*1 *1 *1) (-4 *1 (-522)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) + (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) + (-12 (-4 *4 (-435)) (-5 *2 - (-3 (|:| |overq| (-1098 (-388 (-531)))) - (|:| |overan| (-1098 (-47))) (|:| -4062 (-110)))) - (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5))))) + (-606 + (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) + (|:| |eigmult| (-731)) + (|:| |eigvec| (-606 (-649 (-391 (-905 *4)))))))) + (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))) -(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137))))) + (-12 (-5 *3 (-649 *4)) (-4 *4 (-347)) (-5 *2 (-1113 *4)) + (-5 *1 (-510 *4 *5 *6)) (-4 *5 (-347)) (-4 *6 (-13 (-347) (-805)))))) +(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100))))) (((*1 *2 *3) - (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) - (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1017))))) + (-12 (-5 *3 (-1117)) + (-5 *2 + (-2 (|:| |zeros| (-1098 (-210))) (|:| |ones| (-1098 (-210))) + (|:| |singularities| (-1098 (-210))))) + (-5 *1 (-103))))) (((*1 *2 *3) - (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-135 *2 *4 *3)) - (-4 *3 (-354 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-481 *2 *4 *5 *3)) - (-4 *5 (-354 *2)) (-4 *3 (-354 *4)))) + (-12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) + (-5 *2 (-160 (-300 *4))) (-5 *1 (-174 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 (-160 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-934 *2)) (-4 *2 (-523)) - (-5 *1 (-643 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-1153 *2 *4 *3)) - (-4 *3 (-1160 *4))))) + (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-160 *3)) (-5 *1 (-1143 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1397 *1) (|:| -4287 *1) (|:| |associate| *1))) + (-4 *1 (-529))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-291)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-430 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) + (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-430 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) + (-4 *4 (-291)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-430 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-347)) (-4 *3 (-998)) + (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *2)) (-4 *4 (-1160 *2)) - (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4)))) + (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-347)) + (-5 *1 (-502 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) - (-4 *5 (-221 *3 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8)) - (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) - (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-110)) - (-5 *1 (-867 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) - (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) + (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998)))) ((*1 *2 *3) - (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) - (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) + (-12 (-4 *4 (-357 *2)) (-4 *5 (-357 *2)) (-4 *2 (-163)) + (-5 *1 (-648 *2 *4 *5 *3)) (-4 *3 (-647 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) - (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) - (-5 *1 (-617 *3 *4)))) + (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) + (-4 *5 (-223 *3 *2)) (|has| *2 (-6 (-4302 "*"))) (-4 *2 (-998))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) + (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-617 *3 *4)) (-5 *1 (-1202 *3 *4)) - (-4 *3 (-797)) (-4 *4 (-162))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-712)))) -(((*1 *2 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) - (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9)) - (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6)) - (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)) (-4 *2 (-289)))) - ((*1 *2 *2) - (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) - (-4 *2 (-637 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-989 *2 *3 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110)) - (-5 *2 (-975)) (-5 *1 (-696))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) (-4 *1 (-266))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-5 *1 (-582 *3 *4 *5)) - (-14 *5 (-864)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) - (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) - (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) - (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *1) (-4 *1 (-995))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))) + (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-250 *3)) (-4 *3 (-807)) (-5 *2 (-731))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-529)) (-5 *1 (-922 *4 *2)) + (-4 *2 (-1176 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) + (-4 *3 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-606 (-2 (|:| -3622 (-1113 *6)) (|:| -3283 (-537))))) + (-4 *6 (-291)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-649 *4)) + (-5 *1 (-774 *4 *5)) (-4 *5 (-617 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-731)) (-4 *5 (-347)) + (-5 *2 (-649 *5)) (-5 *1 (-774 *5 *6)) (-4 *6 (-617 *5))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-679 *2)) (-4 *2 (-347))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1067 *3 *2)) (-4 *3 (-13 (-1030) (-33))) - (-4 *2 (-13 (-1030) (-33)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7)) - (-4 *7 (-892 *5 *6 *4)) (-4 *5 (-852)) (-4 *6 (-743)) - (-4 *4 (-797)) (-5 *1 (-849 *5 *6 *4 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) - (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274))))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) - (-4 *3 (-156 *6)) (-4 (-895 *6) (-829 *5)) - (-4 *6 (-13 (-829 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-832 *4 *1)) (-5 *3 (-835 *4)) (-4 *1 (-829 *4)) - (-4 *4 (-1030)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) - (-4 *6 (-13 (-1030) (-977 *3))) (-4 *3 (-829 *5)) - (-5 *1 (-874 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) - (-4 *3 (-13 (-411 *6) (-573 *4) (-829 *5) (-977 (-571 $)))) - (-5 *4 (-835 *5)) (-4 *6 (-13 (-523) (-797) (-829 *5))) - (-5 *1 (-875 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 (-531) *3)) (-5 *4 (-835 (-531))) (-4 *3 (-516)) - (-5 *1 (-876 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 *6)) (-5 *3 (-571 *6)) (-4 *5 (-1030)) - (-4 *6 (-13 (-797) (-977 (-571 $)) (-573 *4) (-829 *5))) - (-5 *4 (-835 *5)) (-5 *1 (-877 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-828 *5 *6 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) - (-4 *6 (-829 *5)) (-4 *3 (-619 *6)) (-5 *1 (-878 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-832 *6 *3) *8 (-835 *6) (-832 *6 *3))) - (-4 *8 (-797)) (-5 *2 (-832 *6 *3)) (-5 *4 (-835 *6)) - (-4 *6 (-1030)) (-4 *3 (-13 (-892 *9 *7 *8) (-573 *4))) - (-4 *7 (-743)) (-4 *9 (-13 (-986) (-797) (-829 *6))) - (-5 *1 (-879 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) - (-4 *3 (-13 (-892 *8 *6 *7) (-573 *4))) (-5 *4 (-835 *5)) - (-4 *7 (-829 *5)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *8 (-13 (-986) (-797) (-829 *5))) (-5 *1 (-879 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-934 *6)) - (-4 *6 (-13 (-523) (-829 *5) (-573 *4))) (-5 *4 (-835 *5)) - (-5 *1 (-882 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-832 *5 (-1102))) (-5 *3 (-1102)) (-5 *4 (-835 *5)) - (-4 *5 (-1030)) (-5 *1 (-883 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-598 (-835 *7))) (-5 *5 (-1 *9 (-598 *9))) - (-5 *6 (-1 (-832 *7 *9) *9 (-835 *7) (-832 *7 *9))) (-4 *7 (-1030)) - (-4 *9 (-13 (-986) (-573 (-835 *7)) (-977 *8))) (-5 *2 (-832 *7 *9)) - (-5 *3 (-598 *9)) (-4 *8 (-13 (-986) (-797))) - (-5 *1 (-884 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-706))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) + (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) + (-5 *1 (-709))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731))))) +(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) + (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-942)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1040 *4)) (-4 *4 (-1154)) + (-5 *1 (-1038 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-1200 (-300 (-363)))) + (-5 *1 (-289))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-702))))) -(((*1 *1 *1) - (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) - (-14 *3 (-598 (-1102)))))) -(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) + (-12 (-5 *4 (-111)) + (-5 *2 + (-2 (|:| |contp| (-537)) + (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) + (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) + (-5 *2 + (-2 (|:| |contp| (-537)) + (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) + (-5 *1 (-1165 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-149)))) + ((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-79 FCN)))) (-5 *2 (-986)) + (-5 *1 (-707))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-95))))) +(((*1 *2 *3) + (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) + (-4 *3 (-1176 *4)) + (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-930 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-606 (-111))) (-5 *7 (-649 (-210))) + (-5 *8 (-649 (-537))) (-5 *3 (-537)) (-5 *4 (-210)) (-5 *5 (-111)) + (-5 *2 (-986)) (-5 *1 (-715))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) - (|:| |c2| (-388 *5)) (|:| |deg| (-721)))) - (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5)))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-702))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-775))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-986)) (-4 *4 (-1160 *3)) (-5 *1 (-154 *3 *4 *2)) - (-4 *2 (-1160 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *3 (-531)) - (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703))))) + (-1200 + (-2 (|:| |scaleX| (-210)) (|:| |scaleY| (-210)) + (|:| |deltaX| (-210)) (|:| |deltaY| (-210)) (|:| -3732 (-537)) + (|:| -2886 (-537)) (|:| |spline| (-537)) (|:| -1239 (-537)) + (|:| |axesColor| (-827)) (|:| -1547 (-537)) + (|:| |unitsColor| (-827)) (|:| |showing| (-537))))) + (-5 *1 (-1201))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-715))))) +(((*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522))))) +(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-781))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1147 *4 *5 *3 *6)) (-4 *4 (-529)) (-4 *5 (-753)) + (-4 *3 (-807)) (-4 *6 (-1012 *4 *5 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-537)) (-4 *4 (-163)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-5 *1 (-648 *4 *5 *6 *2)) + (-4 *2 (-647 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1154)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) + (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *1 *1) (-4 *1 (-1086)))) +(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) +(((*1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045)))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-1099)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1117))))) (((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-537))) (-4 *3 (-998)) (-5 *1 (-97 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-97 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33))) + (-4 *5 (-13 (-1045) (-33))) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) + (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-731)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-386)) (-5 *2 (-731))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 *3 (-606 *1))) + (-4 *1 (-1018 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-220 *3)) + (-4 *3 (-1045)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-220 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) + (-5 *1 (-698 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388)))) + ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-387 *3)) (-4 *3 (-388)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) + ((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) + ((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-1098 (-537)))))) +(((*1 *2 *3) (-12 (-5 *3 (-606 (-51))) (-5 *2 (-1205)) (-5 *1 (-817))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-700 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-606 (-578 *3))) + (|:| |vals| (-606 *3)))) + (-5 *1 (-261 *5 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-874)) (-4 *5 (-529)) (-5 *2 (-649 *5)) + (-5 *1 (-909 *5 *3)) (-4 *3 (-617 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 (-160 (-537))))) (-5 *2 (-606 (-160 *4))) + (-5 *1 (-362 *4)) (-4 *4 (-13 (-347) (-805))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 (-391 (-905 (-160 (-537)))))) + (-5 *4 (-606 (-1117))) (-5 *2 (-606 (-606 (-160 *5)))) + (-5 *1 (-362 *5)) (-4 *5 (-13 (-347) (-805)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-649 *2)) (-4 *4 (-1176 *2)) + (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-5 *1 (-480 *2 *4 *5)) (-4 *5 (-393 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) + (-4 *5 (-223 *3 *2)) (-4 *2 (-998))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-555 *2)) (-4 *2 (-522))))) +(((*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-1140 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-606 (-1140 *2))) (-5 *1 (-1140 *2)) (-4 *2 (-1045))))) +(((*1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-1137))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-807) (-529)))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-420))))) +(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1100)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 - (-598 + (-606 (-2 - (|:| -3033 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (|:| -1798 + (|:| -2926 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (|:| -2140 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -7911,10 +7211,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1083 (-208))) + (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2368 + (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -7922,4402 +7222,4960 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-526))))) + (-5 *1 (-532)))) + ((*1 *2 *1) + (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) + (-5 *2 (-606 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1139 *2)) - (-4 *2 (-1030)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-797)) - (-5 *1 (-1139 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |k| (-624 *3)) (|:| |c| *4)))) - (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-5 *1 (-649)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-639 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-344)) (-5 *1 (-920 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3))))) -(((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *1) (-5 *1 (-134)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-598 (-1102))) - (-4 *2 (-13 (-411 (-159 *5)) (-943) (-1124))) - (-4 *5 (-13 (-523) (-797))) (-5 *1 (-560 *5 *6 *2)) - (-4 *6 (-13 (-411 *5) (-943) (-1124)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142)) - (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162)) - (-4 *1 (-348 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162)) - (-4 *1 (-351 *4 *5)) (-4 *5 (-1160 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) - (-4 *4 (-1160 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3))))) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-554 *3)) (-5 *1 (-410 *5 *3)) + (-4 *3 (-13 (-1139) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) (-4 *5 (-13 (-529) (-989 (-537)) (-141))) + (-5 *2 (-554 (-391 (-905 *5)))) (-5 *1 (-543 *5)) + (-5 *3 (-391 (-905 *5)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) (-5 *1 (-514 *4 *2)) + (-4 *2 (-1191 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) + (-4 *5 (-1176 *4)) (-4 *6 (-685 *4 *5)) (-5 *1 (-518 *4 *5 *6 *2)) + (-4 *2 (-1191 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-537)) (-4 *4 (-13 (-347) (-352) (-580 *3))) + (-5 *1 (-519 *4 *2)) (-4 *2 (-1191 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-13 (-529) (-141))) + (-5 *1 (-1094 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-874)) (-5 *2 (-451)) (-5 *1 (-1201))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-606 (-537))) (-5 *3 (-649 (-537))) (-5 *1 (-1055))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-606 *11)) + (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) + (-5 *6 (-731)) + (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) + (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) + (-4 *11 (-1018 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) + (-4 *9 (-807)) (-5 *1 (-1016 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-606 *11)) + (|:| |todo| (-606 (-2 (|:| |val| *3) (|:| -3852 *11)))))) + (-5 *6 (-731)) + (-5 *2 (-606 (-2 (|:| |val| (-606 *10)) (|:| -3852 *11)))) + (-5 *3 (-606 *10)) (-5 *4 (-606 *11)) (-4 *10 (-1012 *7 *8 *9)) + (-4 *11 (-1054 *7 *8 *9 *10)) (-4 *7 (-435)) (-4 *8 (-753)) + (-4 *9 (-807)) (-5 *1 (-1087 *7 *8 *9 *10 *11))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-347)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-809 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-97 *5)) (-4 *5 (-347)) (-4 *5 (-998)) + (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-810 *5 *3)) + (-4 *3 (-809 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-606 (-2 (|:| |func| *2) (|:| |pole| (-111))))) + (-4 *2 (-13 (-414 *4) (-954))) (-4 *4 (-13 (-807) (-529))) + (-5 *1 (-260 *4 *2))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-1113 *4)) + (-5 *1 (-507 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-807)) (-4 *5 (-862)) (-4 *6 (-753)) + (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-402 (-1113 *8))) + (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-1113 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) + (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) + (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) + (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) + (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1117)) (-4 *4 (-998)) (-4 *4 (-807)) + (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) + (-4 *1 (-414 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-998)) (-4 *4 (-807)) + (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) + (-4 *1 (-414 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-807)) + (-5 *2 (-2 (|:| |var| (-578 *1)) (|:| -3283 (-537)))) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-731)))) + (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-731)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))) -(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311))))) + (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) + (-4 *7 (-902 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-537)))) + (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) + (-15 -3315 (*7 $)))))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-347)) (-5 *1 (-976 *3 *2)) (-4 *2 (-617 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-347)) (-5 *2 (-2 (|:| -4113 *3) (|:| -4157 (-606 *5)))) + (-5 *1 (-976 *5 *3)) (-5 *4 (-606 *5)) (-4 *3 (-617 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-118 *2)) (-4 *2 (-1154))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1030)) (-4 *2 (-797)) - (-5 *1 (-111 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *7 (-1160 *5)) (-4 *4 (-675 *5 *7)) - (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5)))) - (-5 *1 (-761 *5 *6 *7 *4 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110))))) + (-12 (-5 *3 (-1100)) (-5 *2 (-606 (-1122))) (-5 *1 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1091 3 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) - ((*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) + (-12 (-5 *2 (-731)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1030)) (-4 *5 (-1030)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-633 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-531)) (-4 *5 (-330)) (-5 *2 (-399 (-1098 (-1098 *5)))) - (-5 *1 (-1137 *5)) (-5 *3 (-1098 (-1098 *5)))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) + (-12 + (-5 *3 + (-606 + (-2 (|:| -3705 (-731)) + (|:| |eqns| + (-606 + (-2 (|:| |det| *7) (|:| |rows| (-606 (-537))) + (|:| |cols| (-606 (-537)))))) + (|:| |fgb| (-606 *7))))) + (-4 *7 (-902 *4 *6 *5)) (-4 *4 (-13 (-291) (-141))) + (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) (-5 *2 (-731)) + (-5 *1 (-877 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-111)) + (-5 *1 (-341 *4))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1205)) (-5 *1 (-1156))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) (-5 *1 (-260 *4 *3)) + (-4 *3 (-13 (-414 *4) (-954)))))) +(((*1 *1 *1 *1) (-4 *1 (-137))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) + (-4 *2 (-1191 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) + (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) + (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) + (-4 *2 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-110)) (-5 *3 (-895 *6)) (-5 *4 (-1102)) - (-5 *5 (-790 *7)) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-4 *7 (-13 (-1124) (-29 *6))) (-5 *1 (-207 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1098 *6)) (-5 *4 (-790 *6)) - (-4 *6 (-13 (-1124) (-29 *5))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-207 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1074 *3))))) -(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-330))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-852))))) -(((*1 *2 *1) - (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) - (-4 *3 (-910))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *1 *1) (-5 *1 (-360))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) - (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) - (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-198 (-480))) (-5 *1 (-785))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-531)) (-5 *1 (-360))))) -(((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 *7)) (-5 *3 (-531)) (-4 *7 (-892 *6 *4 *5)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) - (-5 *1 (-302 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-388 (-531)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) + (-5 *1 (-1094 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1154)) + (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *2 *7)) (-4 *6 (-998)) + (-4 *7 (-223 *4 *6)) (-4 *2 (-223 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-551))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-598 - (-2 (|:| |outval| *4) (|:| |outmult| (-531)) - (|:| |outvect| (-598 (-639 *4)))))) - (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523))))) + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-111)) + (-5 *2 (-986)) (-5 *1 (-706))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-347)) + (-5 *2 (-111)) (-5 *1 (-628 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *2)) (-5 *4 (-1102)) (-4 *2 (-411 *5)) - (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-797) (-523))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-4 *1 (-953)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-5 *4 (-806)) - (-4 *1 (-953)))) + (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 (-111)) + (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1200 (-1117))) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) + (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) + (-14 *6 (-606 (-1117))) (-14 *7 (-1200 (-649 *4))))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-864)) (-4 *4 (-13 (-795) (-344))) - (-4 *1 (-1002 *4 *2)) (-4 *2 (-1160 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-742))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-721)) (-4 *2 (-1030)) - (-5 *1 (-629 *2))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998))))) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-436 *4 *5 *6 *7))) + (-5 *1 (-436 *4 *5 *6 *7)) (-4 *4 (-163)) (-14 *5 (-874)) + (-14 *6 (-606 *2)) (-14 *7 (-1200 (-649 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 (-436 *3 *4 *5 *6))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) + (-14 *6 (-1200 (-649 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 (-1117))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-163)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))) + (-14 *6 (-1200 (-649 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-874)) (-14 *5 (-606 *2)) (-14 *6 (-1200 (-649 *3))))) + ((*1 *1) + (-12 (-5 *1 (-436 *2 *3 *4 *5)) (-4 *2 (-163)) (-14 *3 (-874)) + (-14 *4 (-606 (-1117))) (-14 *5 (-1200 (-649 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-571 *5)) (-4 *5 (-411 *4)) (-4 *4 (-977 (-531))) - (-4 *4 (-13 (-797) (-523))) (-5 *2 (-1098 *5)) (-5 *1 (-31 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-571 *1)) (-4 *1 (-986)) (-4 *1 (-284)) - (-5 *2 (-1098 *1))))) -(((*1 *2) - (-12 (-5 *2 (-1184 (-1031 *3 *4))) (-5 *1 (-1031 *3 *4)) - (-14 *3 (-864)) (-14 *4 (-864))))) -(((*1 *1) (-5 *1 (-1017)))) -(((*1 *2 *2) - (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1160 *4)) - (-5 *1 (-727 *3 *4 *5 *2 *6)) (-4 *2 (-1160 *5)) (-14 *6 (-864)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) - ((*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-344)) (-4 *2 (-349))))) + (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) + (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-731)) (-4 *5 (-529)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-800 *3)) (-4 *3 (-1045))))) (((*1 *2 *1) - (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-598 *6)) - (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4))))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-731)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731))))) (((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))))) - ((*1 *1 *1) - (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) - (-14 *3 (-598 (-1102)))))) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *1) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-513))) ((*1 *1) (-4 *1 (-683))) + ((*1 *1) (-4 *1 (-687))) + ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) + ((*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807))))) (((*1 *2 *1) - (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) - (-5 *2 (-388 (-531))))) - ((*1 *2 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516)) - (-4 *3 (-523)))) - ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-388 (-531))))) - ((*1 *2 *1) - (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) - (-5 *2 (-388 (-531))))) - ((*1 *2 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516)) - (-4 *3 (-1030)))) - ((*1 *2 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516)) - (-4 *3 (-1030)))) - ((*1 *2 *1) - (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) - (-5 *2 (-388 (-531))))) - ((*1 *2 *3) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) (-4 *3 (-977 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *1) (-4 *1 (-910)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721))) - (-5 *1 (-847 *4))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-731)) + (-4 *3 (-13 (-687) (-352) (-10 -7 (-15 ** (*3 *3 (-537)))))) + (-5 *1 (-231 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) + (-4 *2 (-414 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117)))) + ((*1 *1 *1) (-4 *1 (-152)))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-649 *2)) (-5 *4 (-731)) + (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-606 *4)) (-4 *4 (-347)) (-5 *2 (-1200 *4)) + (-5 *1 (-774 *4 *3)) (-4 *3 (-617 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 (-391 (-905 *4))) (-5 *1 (-877 *4 *5 *6 *3)) + (-4 *3 (-902 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) + (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 (-649 (-391 (-905 *4)))) + (-5 *1 (-877 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *6 *5)) + (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 (-606 (-391 (-905 *4)))) + (-5 *1 (-877 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) + ((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) + (-14 *4 (-537))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-531))))) - (-5 *1 (-342 *3)) (-4 *3 (-1030)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-731)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721))))) - (-5 *1 (-367 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -1790 (-531))))) - (-5 *1 (-399 *3)) (-4 *3 (-523)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721))))) - (-5 *1 (-769 *3)) (-4 *3 (-797))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) - (-5 *2 - (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-639 *3)))) - (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-1160 *3)) - (-5 *2 - (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-639 *3)))) - (-5 *1 (-718 *4 *5)) (-4 *5 (-390 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3)) - (-5 *2 - (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-639 *3)))) - (-5 *1 (-927 *4 *3 *5 *6)) (-4 *6 (-675 *3 *5)))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-731))))) +(((*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537)))) ((*1 *2 *3) - (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3)) - (-5 *2 - (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-639 *3)))) - (-5 *1 (-1193 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5))))) + (-12 (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-895)) (-5 *3 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-513))) + ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045))))) +(((*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1202))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-160 (-210)))) (-5 *2 (-986)) + (-5 *1 (-715))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-713))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-718))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-1176 *4)) (-4 *4 (-1158)) + (-4 *1 (-326 *4 *3 *5)) (-4 *5 (-1176 (-391 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-173))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-74 G JACOBG JACGEP)))) + (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-710))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) + (-4 *6 (-13 (-27) (-414 *5))) + (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) + (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) + (-4 *3 (-326 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1120))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) + (-4 *4 (-1176 (-537))) (-5 *2 (-698 (-731))) (-5 *1 (-425 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-402 *5)) (-4 *5 (-1176 *4)) (-4 *4 (-998)) + (-5 *2 (-698 (-731))) (-5 *1 (-427 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3557)) (-5 *2 (-111)) (-5 *1 (-651 *4)) + (-4 *4 (-579 (-816))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-579 (-816))) (-5 *2 (-111)) + (-5 *1 (-651 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1100))) (-5 *2 (-111)) (-5 *1 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-111)) (-5 *1 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-210))) (-5 *2 (-111)) (-5 *1 (-1122)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-111)) (-5 *1 (-1122))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1045))))) (((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-795) (-344))) (-5 *2 (-110)) (-5 *1 (-996 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3)) - (-4 *3 (-1030)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-218 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030)) - (-5 *1 (-688 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4))))) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3)))) ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-771))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-598 *1)) (|has| *1 (-6 -4274)) (-4 *1 (-951 *3)) - (-4 *3 (-1138))))) -(((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-731))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-816)))) + ((*1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1113 *6)) (-5 *3 (-537)) (-4 *6 (-291)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *7 (-902 *6 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-654 *3)) - (-4 *3 (-573 (-507))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208) (-208))) - (-5 *1 (-654 *3)) (-4 *3 (-573 (-507)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1160 (-388 (-531)))) - (-5 *2 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))) - (-5 *1 (-856 *3 *4)) (-4 *4 (-1160 (-388 *3))))) + (-12 (-5 *2 (-606 (-160 *4))) (-5 *1 (-148 *3 *4)) + (-4 *3 (-1176 (-160 (-537)))) (-4 *4 (-13 (-347) (-805))))) ((*1 *2 *3) - (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3)) - (-4 *3 (-1160 (-388 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) - (-5 *2 (-598 (-598 *4))) (-5 *1 (-322 *3 *4 *5 *6)) - (-4 *3 (-323 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-598 (-598 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (-5 *2 (-598 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) - (-5 *2 (-598 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 *3)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-677)))) - ((*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-598 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-5 *2 (-1083 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-598 (-110))) (-5 *5 (-639 (-208))) - (-5 *6 (-639 (-531))) (-5 *7 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) - (-5 *1 (-705))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-598 (-598 (-208)))) (-5 *4 (-208)) - (-5 *2 (-598 (-886 *4))) (-5 *1 (-1135)) (-5 *3 (-886 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) - ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1030))))) + (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-347) (-805))) (-5 *2 (-606 (-160 *4))) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-131))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102))) - (-4 *5 (-432)) - (-5 *2 - (-2 (|:| |gblist| (-598 (-230 *4 *5))) - (|:| |gvlist| (-598 (-531))))) - (-5 *1 (-586 *4 *5))))) + (-12 (-5 *3 (-606 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-807) (-529))) + (-5 *2 (-816)) (-5 *1 (-31 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-998)) (-5 *2 (-111)) (-5 *1 (-427 *4 *3)) + (-4 *3 (-1176 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-606 *3)) (-4 *3 (-1154))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-769 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986))))) -(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-230 *3 *4)) - (-14 *3 (-598 (-1102))) (-4 *4 (-986)))) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) + ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363))))) +(((*1 *1 *1) + (-12 (-4 *2 (-333)) (-4 *2 (-998)) (-5 *1 (-673 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3449 *3) (|:| |gap| (-731)) (|:| -3413 (-742 *3)) + (|:| -1672 (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-998)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) + (-5 *2 + (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) + (|:| -1672 *1))) + (-4 *1 (-1012 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 + (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -3413 *1) + (|:| -1672 *1))) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1223 *3 *4)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-163)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-14 *3 (-598 (-1102))) - (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-986)) - (-4 *5 (-221 (-2167 *3) (-721))))) + (-12 (-5 *2 (-779 *3)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-460 *3 *4)) - (-14 *3 (-598 (-1102))) (-4 *4 (-986))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-360)) (-5 *1 (-998))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-148)))) - ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) - ((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) + (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) + (-4 *9 (-1012 *6 *7 *8)) (-4 *6 (-529)) (-4 *7 (-753)) + (-4 *8 (-807)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *9)))) + (-5 *3 (-606 *9)) (-4 *1 (-1147 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2992 (-606 *8)))) + (-5 *3 (-606 *8)) (-4 *1 (-1147 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) (-5 *2 (-111)) + (-5 *1 (-1226 *4))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) + (-5 *4 (-300 (-160 (-363)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) + (-5 *4 (-300 (-363))) (-5 *1 (-314)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) + (-5 *4 (-300 (-537))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-160 (-363))))) + (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-363)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-537)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-160 (-363))))) + (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-363)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-537)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-160 (-363)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-363))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-537))) (-5 *1 (-314)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) + (-5 *4 (-300 (-654))) (-5 *1 (-314)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) + (-5 *4 (-300 (-659))) (-5 *1 (-314)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-905 (-537)))) + (-5 *4 (-300 (-661))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-654)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-659)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-300 (-661)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-654)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-659)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-300 (-661)))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-654))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-659))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-1200 (-661))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-654))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-659))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-649 (-661))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-654))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-659))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-300 (-661))) (-5 *1 (-314)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1100)) (-5 *1 (-314)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1113 (-905 *6))) (-4 *6 (-529)) + (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) (-5 *1 (-693 *5 *4 *6 *2)) + (-4 *5 (-753)) + (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $)))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-537)) (-4 *4 (-333)) + (-5 *1 (-507 *4))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-649 (-210))) (-5 *6 (-111)) (-5 *7 (-649 (-537))) + (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-63 QPHESS)))) + (-5 *3 (-537)) (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714))))) (((*1 *2 *3) - (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-531)) (-5 *1 (-885))))) + (-12 (-5 *3 (-210)) (-5 *2 (-111)) (-5 *1 (-283 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1040 (-800 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) + (-5 *1 (-289)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-606 *3)) (|:| |image| (-606 *3)))) + (-5 *1 (-858 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) + (-4 *2 (-647 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) - (-5 *2 (-598 (-1102))) (-5 *1 (-249)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-1098 (-210))) (-5 *1 (-178)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-300 (-210))) (-5 *4 (-606 (-1117))) + (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) + (-5 *5 (-1040 (-800 (-210)))) (-5 *2 (-1098 (-210))) (-5 *1 (-284))))) +(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1045)) + (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) + (-5 *1 (-1021 *3 *4 *2)) + (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-731)) (-4 *5 (-998)) (-5 *2 (-537)) + (-5 *1 (-426 *5 *3 *6)) (-4 *3 (-1176 *5)) + (-4 *6 (-13 (-388) (-989 *5) (-347) (-1139) (-268))))) ((*1 *2 *3) - (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-598 *5)) - (-5 *1 (-302 *4 *5 *6 *7)))) + (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) + (-4 *3 (-1176 *4)) + (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) + (-5 *4 (-1 (-210) (-210) (-210) (-210))) + (-5 *2 (-1 (-896 (-210)) (-210) (-210))) (-5 *1 (-657))))) +(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-314))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-731)) (-4 *6 (-347)) (-5 *4 (-1148 *6)) + (-5 *2 (-1 (-1098 *4) (-1098 *4))) (-5 *1 (-1208 *6)) + (-5 *5 (-1098 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 (-606 *3)) (-5 *1 (-877 *4 *5 *6 *3)) + (-4 *3 (-902 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-368)))) + (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) + (-14 *4 (-606 (-1117))))) ((*1 *2 *1) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-598 (-1102))))) + (-12 (-5 *2 (-537)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) + (-14 *4 (-606 (-1117))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) + (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-259)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1113 *8)) (-5 *4 (-606 *6)) (-4 *6 (-807)) + (-4 *8 (-902 *7 *5 *6)) (-4 *5 (-753)) (-4 *7 (-998)) + (-5 *2 (-606 (-731))) (-5 *1 (-305 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) + (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-453 *3 *2)) (-4 *3 (-163)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-598 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) - (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *5)) - (-5 *1 (-893 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) + (-12 (-4 *3 (-529)) (-5 *2 (-537)) (-5 *1 (-586 *3 *4)) + (-4 *4 (-1176 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *3 (-807)) (-5 *2 (-731)))) ((*1 *2 *1) - (-12 (-5 *2 (-1032 (-1102))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) + (-12 (-4 *1 (-926 *3 *2 *4)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *2 (-752)))) ((*1 *2 *1) - (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742)) - (-4 *5 (-797)) (-5 *2 (-598 *5)))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-731)))) ((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-1102))) - (-5 *1 (-982 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1191 *3)) + (-5 *2 (-537)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) + (-5 *2 (-391 (-537))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-731))))) +(((*1 *1 *1) (-4 *1 (-137))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) +(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-589)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1045)) + (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) + (-5 *1 (-1021 *3 *4 *2)) + (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1045)) (-5 *1 (-1107 *2 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-998)))) + ((*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *2 *2 *3) (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-598 (-531))) - (|:| |cols| (-598 (-531))))) - (-5 *4 (-639 *12)) (-5 *5 (-598 (-388 (-895 *9)))) - (-5 *6 (-598 (-598 *12))) (-5 *7 (-721)) (-5 *8 (-531)) - (-4 *9 (-13 (-289) (-140))) (-4 *12 (-892 *9 *11 *10)) - (-4 *10 (-13 (-797) (-573 (-1102)))) (-4 *11 (-743)) (-5 *2 - (-2 (|:| |eqzro| (-598 *12)) (|:| |neqzro| (-598 *12)) - (|:| |wcond| (-598 (-895 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *9)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *9))))))))) - (-5 *1 (-867 *9 *10 *11 *12))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) - (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) - (-4 *2 (-1138))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) - ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986)) - (-5 *3 (-531))))) -(((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360))) - (-5 *2 (-975)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531))))) - (-4 *4 (-1160 (-531))) (-5 *2 (-721)) (-5 *1 (-422 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-171))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-598 *3)) - (-5 *1 (-1154 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-795))) - (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *5)))) - (-5 *1 (-169 *5 *3)) (-4 *3 (-1160 (-159 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-344) (-795))) - (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *4)))) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1098 (-388 (-1098 *2)))) (-5 *4 (-571 *2)) - (-4 *2 (-13 (-411 *5) (-27) (-1124))) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1030)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1098 *1)) (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *3 (-797)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1098 *4)) (-4 *4 (-986)) (-4 *1 (-892 *4 *5 *3)) - (-4 *5 (-743)) (-4 *3 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-1098 *2))) (-4 *5 (-743)) (-4 *4 (-797)) - (-4 *6 (-986)) - (-4 *2 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))) - (-5 *1 (-893 *5 *4 *6 *7 *2)) (-4 *7 (-892 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-1098 (-388 (-895 *5))))) (-5 *4 (-1102)) - (-5 *2 (-388 (-895 *5))) (-5 *1 (-982 *5)) (-4 *5 (-523))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4274)) (-4 *1 (-468 *3)) - (-4 *3 (-1138))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-112)) (-5 *4 (-598 *2)) (-5 *1 (-111 *2)) - (-4 *2 (-1030)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-598 *4))) (-4 *4 (-1030)) - (-5 *1 (-111 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030)) - (-5 *1 (-111 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-598 *4))) - (-5 *1 (-111 *4)) (-4 *4 (-1030)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986)) - (-5 *1 (-665 *3 *4)))) + (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *4))))))) + (-5 *3 (-606 *7)) (-4 *4 (-13 (-291) (-141))) + (-4 *7 (-902 *4 *6 *5)) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *1 (-877 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) + (-5 *1 (-485 *4 *5 *6 *2)) (-4 *2 (-902 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-148)))) - ((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *2) - (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4)) - (-4 *3 (-310 *4)))) - ((*1 *2) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-721))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1030)) - (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) - (-5 *2 (-598 (-1102))) (-5 *1 (-1008 *3 *4 *5)) - (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))))) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-485 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208)))))) -(((*1 *2) - (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) - (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) + (-12 (-5 *3 (-649 *8)) (-4 *8 (-902 *5 *7 *6)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) + (-4 *7 (-753)) (-5 *2 - (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-639 *3)))) - (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1160 (-531))) - (-5 *2 - (-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) - (|:| |basisInv| (-639 (-531))))) - (-5 *1 (-718 *3 *4)) (-4 *4 (-390 (-531) *3)))) - ((*1 *2) - (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4)) - (-5 *2 - (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-639 *4)))) - (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-675 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4)) - (-5 *2 - (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-639 *4)))) - (-5 *1 (-1193 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-598 (-864))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-864)) - (-4 *2 (-344)) (-14 *5 (-935 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-664 *5 *6 *7)) (-4 *5 (-797)) - (-4 *6 (-221 (-2167 *4) (-721))) - (-14 *7 - (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) - (-2 (|:| -1889 *5) (|:| -1790 *6)))) - (-14 *4 (-598 (-1102))) (-4 *2 (-162)) - (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-892 *2 *6 (-808 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4)) - (-4 *4 (-1160 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-686 *2 *3)) (-4 *2 (-986)) (-4 *3 (-677)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5)) - (-4 *4 (-986)) (-4 *5 (-797)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986)) - (-4 *2 (-797)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6)) - (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *2 (-797)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 *5)) (-4 *1 (-915 *4 *5 *6)) - (-4 *4 (-986)) (-4 *5 (-742)) (-4 *6 (-797)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-915 *4 *3 *2)) (-4 *4 (-986)) (-4 *3 (-742)) - (-4 *2 (-797))))) -(((*1 *1) (-5 *1 (-148)))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) - (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-1195 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4))) - (-4 *4 (-797)) (-5 *1 (-1110 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-5 *1 (-311))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) - (-4 *4 (-13 (-797) (-523)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-598 *4)) (-4 *4 (-797)) - (-5 *1 (-1110 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) - (-4 *3 (-601 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) - (-4 *3 (-601 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) - ((*1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) - (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-598 *3)) - (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-1039 *5 *6 *7 *8)))) + (-606 + (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) + (|:| |wcond| (-606 (-905 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) + (-5 *1 (-877 *5 *6 *7 *8)) (-5 *4 (-606 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) + (-12 (-5 *3 (-649 *8)) (-5 *4 (-606 (-1117))) (-4 *8 (-902 *5 *7 *6)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) + (-4 *7 (-753)) (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) - (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5))) - (-14 *6 (-598 (-1102))))) + (-606 + (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) + (|:| |wcond| (-606 (-905 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) + (-5 *1 (-877 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-289) (-140))) - (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) - (-5 *1 (-1010 *4 *5)) (-5 *3 (-598 (-895 *4))) - (-14 *5 (-598 (-1102))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) + (-12 (-5 *3 (-649 *7)) (-4 *7 (-902 *4 *6 *5)) + (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 - (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) - (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5))) - (-14 *6 (-598 (-1102)))))) -(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208))))) - ((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-276 (-790 *3))) (-4 *3 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) + (-606 + (-2 (|:| |eqzro| (-606 *7)) (|:| |neqzro| (-606 *7)) + (|:| |wcond| (-606 (-905 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *4)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *4)))))))))) + (-5 *1 (-877 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-649 *9)) (-5 *5 (-874)) (-4 *9 (-902 *6 *8 *7)) + (-4 *6 (-13 (-291) (-141))) (-4 *7 (-13 (-807) (-580 (-1117)))) + (-4 *8 (-753)) (-5 *2 - (-3 (-790 *3) - (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed")) - (|:| |rightHandLimit| (-3 (-790 *3) "failed"))) - "failed")) - (-5 *1 (-591 *5 *3)))) + (-606 + (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) + (|:| |wcond| (-606 (-905 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) + (-5 *1 (-877 *6 *7 *8 *9)) (-5 *4 (-606 *9)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1085)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-790 *3)) (-5 *1 (-591 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 (-790 (-895 *5)))) (-4 *5 (-432)) + (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) + (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) + (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 - (-3 (-790 (-388 (-895 *5))) - (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-790 (-388 (-895 *5))) "failed"))) - "failed")) - (-5 *1 (-592 *5)) (-5 *3 (-388 (-895 *5))))) + (-606 + (-2 (|:| |eqzro| (-606 *9)) (|:| |neqzro| (-606 *9)) + (|:| |wcond| (-606 (-905 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *6)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *6)))))))))) + (-5 *1 (-877 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) - (-4 *5 (-432)) + (-12 (-5 *3 (-649 *8)) (-5 *4 (-874)) (-4 *8 (-902 *5 *7 *6)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) + (-4 *7 (-753)) (-5 *2 - (-3 (-790 *3) - (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed")) - (|:| |rightHandLimit| (-3 (-790 *3) "failed"))) - "failed")) - (-5 *1 (-592 *5)))) + (-606 + (-2 (|:| |eqzro| (-606 *8)) (|:| |neqzro| (-606 *8)) + (|:| |wcond| (-606 (-905 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *5)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *5)))))))))) + (-5 *1 (-877 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-276 (-388 (-895 *6)))) (-5 *5 (-1085)) - (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-790 *3)) - (-5 *1 (-592 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-161)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417))))) + (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 *9)) (-5 *5 (-1100)) + (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) + (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) + (-5 *1 (-877 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-649 *9)) (-5 *4 (-606 (-1117))) (-5 *5 (-1100)) + (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) + (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) + (-5 *1 (-877 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *8)) (-5 *4 (-1100)) (-4 *8 (-902 *5 *7 *6)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) + (-4 *7 (-753)) (-5 *2 (-537)) (-5 *1 (-877 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 *10)) (-5 *5 (-874)) + (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) + (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) + (-5 *1 (-877 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-649 *10)) (-5 *4 (-606 (-1117))) (-5 *5 (-874)) + (-5 *6 (-1100)) (-4 *10 (-902 *7 *9 *8)) (-4 *7 (-13 (-291) (-141))) + (-4 *8 (-13 (-807) (-580 (-1117)))) (-4 *9 (-753)) (-5 *2 (-537)) + (-5 *1 (-877 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-649 *9)) (-5 *4 (-874)) (-5 *5 (-1100)) + (-4 *9 (-902 *6 *8 *7)) (-4 *6 (-13 (-291) (-141))) + (-4 *7 (-13 (-807) (-580 (-1117)))) (-4 *8 (-753)) (-5 *2 (-537)) + (-5 *1 (-877 *6 *7 *8 *9))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 *5 *6 *7 *8)) (-4 *5 (-414 *4)) + (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) + (-4 *8 (-326 *5 *6 *7)) (-4 *4 (-13 (-807) (-529) (-989 (-537)))) + (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *8))) + (-5 *1 (-864 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 (-391 (-537)) *4 *5 *6)) + (-4 *4 (-1176 (-391 (-537)))) (-4 *5 (-1176 (-391 *4))) + (-4 *6 (-326 (-391 (-537)) *4 *5)) + (-5 *2 (-2 (|:| -4231 (-731)) (|:| -2066 *6))) + (-5 *1 (-865 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-347)) (-5 *2 (-731)) (-5 *1 (-312 *3 *4)) + (-4 *3 (-313 *4)))) + ((*1 *2) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-731))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-576 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-210)) + (-5 *2 + (-2 (|:| |brans| (-606 (-606 (-896 *4)))) + (|:| |xValues| (-1040 *4)) (|:| |yValues| (-1040 *4)))) + (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 *4))))))) (((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-930 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *2 (-160 *4)) (-5 *1 (-171 *4 *3)) + (-4 *4 (-13 (-347) (-805))) (-4 *3 (-1176 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-534)) (-5 *3 (-537))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-874)) (-4 *1 (-388)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-537)) (-4 *1 (-388)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *2 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) (((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *3 (-598 (-245))) - (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1030)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-633 *4 *5)) (-4 *4 (-1030)))) - ((*1 *2 *2) - (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) + (-12 (-5 *3 (-463 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) + (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1084 *4 *2)) (-14 *4 (-874)) + (-4 *2 (-13 (-998) (-10 -7 (-6 (-4302 "*"))))) (-5 *1 (-855 *4 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-606 (-391 *7))) + (-4 *7 (-1176 *6)) (-5 *3 (-391 *7)) (-4 *6 (-347)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-547 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) ((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) - ((*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) - ((*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793))))) -(((*1 *2 *2) - (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) - (-4 *3 (-601 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986))))) -(((*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-941 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-1018 *5 *6 *7 *8)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-1052 *5 *6 *7 *8 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| |k| (-633 *3)) (|:| |c| *4)))) + (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1113 *3)) (-4 *3 (-352)) (-4 *1 (-313 *3)) + (-4 *3 (-347))))) +(((*1 *2 *1) + (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) - (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *1)))) - (-4 *1 (-1005 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208))))) - ((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208)))))) + (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) + (-4 *3 (-1176 *4)) (-5 *2 (-111))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-683)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-687)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-864)) (-5 *1 (-972 *2)) - (-4 *2 (-13 (-1030) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-425 *3)) (-4 *3 (-986))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2 *2) - (-12 (-4 *3 (-573 (-835 *3))) (-4 *3 (-829 *3)) - (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-573 (-835 *3))) (-4 *2 (-829 *3)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913))))) + (-12 (-5 *3 (-1117)) (-4 *4 (-435)) (-4 *4 (-807)) + (-5 *1 (-546 *4 *2)) (-4 *2 (-268)) (-4 *2 (-414 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-998)) + (-5 *1 (-980 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1147 *2 *3 *4 *5)) (-4 *2 (-529)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *5 (-1012 *2 *3 *4))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-51)) (-5 *1 (-789))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-606 (-818 *4))) + (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-454 *4 *5 *6)) + (-4 *6 (-435))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-864)) (-5 *2 (-448)) (-5 *1 (-1185))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) - (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4073 *6))) - (-5 *1 (-957 *5 *6)) (-5 *3 (-388 *6))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *1 *1) (|partial| -4 *1 (-1093)))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1098 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-598 *5) *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) - (-5 *2 (-598 (-2 (|:| -2651 *5) (|:| -2723 *3)))) - (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6)) - (-4 *7 (-609 (-388 *6)))))) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-347)) (-4 *2 (-1176 *4)) + (-5 *1 (-875 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-531))) (-5 *4 (-848 (-531))) - (-5 *2 (-639 (-531))) (-5 *1 (-552)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531)))) - (-5 *1 (-552)))) + (-12 (-5 *3 (-1113 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) + (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-531))) (-5 *4 (-598 (-848 (-531)))) - (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-552))))) -(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102)))) - (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *2)) (-4 *2 (-892 *3 *5 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-698))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531))))) -(((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) - (-4 *5 (-354 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) - (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-598 (-1102))) (-4 *2 (-162)) - (-4 *3 (-221 (-2167 *4) (-721))) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *3)) - (-2 (|:| -1889 *5) (|:| -1790 *3)))) - (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-797)) - (-4 *7 (-892 *2 *3 (-808 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4)))) - (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) - (-4 *7 (-1030)) (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516))))) -(((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))) - (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) - (-4 *2 (-411 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) - ((*1 *1 *1) (-4 *1 (-151)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-721)) (-4 *6 (-344)) (-5 *4 (-1133 *6)) - (-5 *2 (-1 (-1083 *4) (-1083 *4))) (-5 *1 (-1192 *6)) - (-5 *5 (-1083 *4))))) + (-12 (-5 *3 (-905 *5)) (-4 *5 (-435)) (-5 *2 (-606 *6)) + (-5 *1 (-515 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805)))))) (((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-1098 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) - (-15 -1853 ((-1054 *4 (-571 $)) $)) - (-15 -2265 ($ (-1054 *4 (-571 $)))))))))) + (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1045) (-989 *5))) + (-4 *5 (-839 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-884 *4 *5 *6))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-964 *3)) - (-4 *3 (-13 (-795) (-344) (-962))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) - (-4 *3 (-1160 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344))) - (-4 *3 (-1160 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162))))) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-4 *3 (-529)) + (-5 *2 (-1113 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1098 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) - (-5 *1 (-31 *4 *2))))) + (-12 (-4 *1 (-747)) (-5 *2 (-986)) + (-5 *3 + (-2 (|:| |fn| (-300 (-210))) + (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-747)) (-5 *2 (-986)) + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210))))))) +(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-138)))) + ((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-138))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) + (-5 *1 (-709))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-111)) + (-5 *2 (-986)) (-5 *1 (-714))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1124))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-649 (-391 (-905 (-537))))) + (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982))))) (((*1 *2 *1) - (-12 (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-828 *3 *4 *5)) - (-4 *3 (-1030)) (-4 *5 (-619 *4)))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-3 (-111) (-606 *1))) + (-4 *1 (-1018 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-977 (-800 (-537)))) + (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *4)))) (-4 *4 (-998)) + (-5 *1 (-562 *4))))) +(((*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *3) - (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) - (-5 *2 (-460 *4 *5)) (-5 *1 (-887 *4 *5))))) + (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) + (-14 *3 (-874)) (-4 *4 (-998))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-1200 *3)) + (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |h| *6) + (|:| |c1| (-391 *6)) (|:| |c2| (-391 *6)) (|:| -4065 *6))) + (-5 *1 (-968 *5 *6)) (-5 *3 (-391 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-5 *2 (-1189)) (-5 *1 (-1105)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) - (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) - (-5 *1 (-1105)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1102)) - (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) - (-5 *1 (-1105))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) - (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-983 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736))))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) - ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1138)) (-4 *1 (-221 *3 *4))))) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-807) (-529)))))) (((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6)) - (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523))))) -(((*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-795)) (-5 *1 (-285 *3))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-779))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-391 *6)) (|:| |c| (-391 *6)) + (|:| -4065 *6))) + (-5 *1 (-967 *5 *6)) (-5 *3 (-391 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-119 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))) + (-12 (-4 *3 (-1045)) + (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) + (-5 *2 (-606 (-1117))) (-5 *1 (-1021 *3 *4 *5)) + (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-731)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) + (-4 *2 (-1176 *3))))) +(((*1 *2) + (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-537)) (-5 *3 (-731)) (-5 *1 (-534))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) (((*1 *2 *3) - (-12 (-5 *3 (-790 (-360))) (-5 *2 (-790 (-208))) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4)) - (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))) -(((*1 *1 *1 *1) (-4 *1 (-136))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)) - (-5 *3 (-531))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2351 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7)) - (-5 *3 (-388 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-541 *7 *8))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110))))) + (-12 (-4 *4 (-333)) (-5 *2 (-911 (-1113 *4))) (-5 *1 (-341 *4)) + (-5 *3 (-1113 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-729 *4)) - (-4 *4 (-13 (-344) (-795)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721))))) -(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-835 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1030)) - (-4 *5 (-1138)) (-5 *1 (-833 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-835 *4)) (-5 *3 (-598 (-1 (-110) *5))) (-4 *4 (-1030)) - (-4 *5 (-1138)) (-5 *1 (-833 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-835 *5)) (-5 *3 (-598 (-1102))) - (-5 *4 (-1 (-110) (-598 *6))) (-4 *5 (-1030)) (-4 *6 (-1138)) - (-5 *1 (-833 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1138)) (-4 *4 (-797)) - (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) (-4 *4 (-797)) - (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1138)) - (-5 *2 (-297 (-531))) (-5 *1 (-881 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) - (-5 *2 (-297 (-531))) (-5 *1 (-881 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1 (-110) (-598 *6))) - (-4 *6 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) (-4 *4 (-1030)) - (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) - (-5 *1 (-1008 *4 *5 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-115 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-531)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-814 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-14 *2 (-531)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-531)) (-14 *3 *2) (-5 *1 (-815 *3 *4)) - (-4 *4 (-812 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-531)) (-5 *1 (-815 *2 *3)) (-4 *3 (-812 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-531)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-1175 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1146 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1175 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4)) - (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) + (-12 (-5 *4 (-606 (-606 *8))) (-5 *3 (-606 *8)) + (-4 *8 (-902 *5 *7 *6)) (-4 *5 (-13 (-291) (-141))) + (-4 *6 (-13 (-807) (-580 (-1117)))) (-4 *7 (-753)) (-5 *2 (-111)) + (-5 *1 (-877 *5 *6 *7 *8))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-476))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1098 *2)) (-4 *2 (-291)) (-5 *1 (-164 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1045)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-643 *4 *5)) (-4 *4 (-1045)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-1189)) (-5 *1 (-781))))) + (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883)))) + ((*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) + ((*1 *2 *1) (-12 (-4 *2 (-998)) (-5 *1 (-1222 *2 *3)) (-4 *3 (-803))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-296)) (-5 *1 (-789))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-606 *5) *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *6 (-1176 *5)) + (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 *3)))) + (-5 *1 (-769 *5 *6 *3 *7)) (-4 *3 (-617 *6)) + (-4 *7 (-617 (-391 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-606 *5) *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *6 (-1176 *5)) + (-5 *2 (-606 (-2 (|:| |poly| *6) (|:| -4113 (-615 *6 (-391 *6)))))) + (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6)))))) +(((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-360)) (-5 *1 (-176))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *2 (-606 (-391 (-537)))) (-5 *1 (-971 *4)) + (-4 *4 (-1176 (-537)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-606 *6)) + (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *2 (-986)) + (-5 *1 (-710))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) + (-4 *3 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138))))) + (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-606 (-1148 *5))) + (-5 *1 (-1208 *5)) (-5 *4 (-1148 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-918))) (-5 *1 (-275))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-843 *4 *3)) + (-4 *3 (-1154)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *4 (-721)) - (-5 *2 (-639 (-208))) (-5 *1 (-249))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-598 (-895 *4))))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-598 (-895 *4))) (-5 *1 (-397 *3 *4)) - (-4 *3 (-398 *4)))) - ((*1 *2) - (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-598 (-895 *3))))) - ((*1 *2) - (-12 (-5 *2 (-598 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *2 (-598 (-895 *4))) - (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *4 (-162)) - (-14 *5 (-864)) (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-5 *3 (-606 (-1 (-111) *8))) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-2 (|:| |goodPols| (-606 *8)) (|:| |badPols| (-606 *8)))) + (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-606 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-537)) (-4 *5 (-805)) (-4 *5 (-347)) + (-5 *2 (-731)) (-5 *1 (-898 *5 *6)) (-4 *6 (-1176 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-649 (-391 (-905 (-537))))) + (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982)) + (-5 *3 (-300 (-537)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-632 *2)) (-4 *2 (-1030)))) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1))) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-237 *4 *3 *5 *6)) (-4 *4 (-998)) (-4 *3 (-807)) + (-4 *5 (-250 *3)) (-4 *6 (-753)) (-5 *2 (-606 (-731))))) + ((*1 *2 *1) + (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-606 (-731)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-286))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) + (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1016 *7 *8 *9 *3 *4)) (-4 *4 (-1018 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-598 *5) (-598 *5))) (-5 *4 (-531)) - (-5 *2 (-598 *5)) (-5 *1 (-632 *5)) (-4 *5 (-1030))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102))))) -(((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) - ((*1 *1 *1) (-4 *1 (-943))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-953)))) - ((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-953)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-864)))) - ((*1 *1 *1) (-4 *1 (-953)))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186))))) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-731)) (-5 *6 (-111)) (-4 *7 (-435)) (-4 *8 (-753)) + (-4 *9 (-807)) (-4 *3 (-1012 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1087 *7 *8 *9 *3 *4)) (-4 *4 (-1054 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531))))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-1055))))) +(((*1 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-606 (-731))) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-782))))) +(((*1 *2 *1) + (-12 (-5 *2 (-816)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 (-731)) + (-14 *4 (-731)) (-4 *5 (-163))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-1055)) (-5 *3 (-537))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) + ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) + ((*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) - (-4 *6 (-13 (-523) (-977 *5))) (-4 *5 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *6)))))) (-5 *1 (-978 *5 *6))))) -(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137))) - ((*1 *1 *1) (-4 *1 (-1071)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986))))) -(((*1 *1 *1 *1) (-4 *1 (-136))) + (-12 (-5 *3 (-606 (-210))) (-5 *4 (-731)) (-5 *2 (-649 (-210))) + (-5 *1 (-289))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-978 *5 *6 *7 *8))) (-5 *1 (-978 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-111)) (-4 *8 (-1012 *5 *6 *7)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-606 (-1088 *5 *6 *7 *8))) (-5 *1 (-1088 *5 *6 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-105 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-608 *3)) (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-314)))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) + (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120))))) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-606 *7) (-606 *7))) (-5 *2 (-606 *7)) + (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) (-4 *5 (-753)) + (-4 *6 (-807)) (-5 *1 (-930 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-303 *3 *4 *5)) + (-4 *3 (-13 (-347) (-807))) (-14 *4 (-1117)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1191 *4)) (-5 *1 (-1193 *4 *2)) + (-4 *4 (-37 (-391 (-537))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-391 (-537)))) + (-5 *2 (-2 (|:| -1378 (-1098 *4)) (|:| -1389 (-1098 *4)))) + (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4))))) (((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-516 *4 *2 *5 *6)) + (-4 *4 (-291)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-731)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3))))) +(((*1 *2) + (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) + (-5 *2 (-111)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *2 (-598 (-388 (-531)))) (-5 *1 (-960 *4)) - (-4 *4 (-1160 (-531)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1160 (-47))))) - ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) + (-2 (|:| |det| *12) (|:| |rows| (-606 (-537))) + (|:| |cols| (-606 (-537))))) + (-5 *4 (-649 *12)) (-5 *5 (-606 (-391 (-905 *9)))) + (-5 *6 (-606 (-606 *12))) (-5 *7 (-731)) (-5 *8 (-537)) + (-4 *9 (-13 (-291) (-141))) (-4 *12 (-902 *9 *11 *10)) + (-4 *10 (-13 (-807) (-580 (-1117)))) (-4 *11 (-753)) + (-5 *2 + (-2 (|:| |eqzro| (-606 *12)) (|:| |neqzro| (-606 *12)) + (|:| |wcond| (-606 (-905 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *9)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *9))))))))) + (-5 *1 (-877 *9 *10 *11 *12))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1201)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1201)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1100)) (-5 *1 (-1202)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1202))))) +(((*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-251))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-4 *7 (-902 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-111)) (|:| |z0| (-606 *7)) (|:| |n0| (-606 *7)))) + (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-845 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1045)) + (-4 *5 (-1154)) (-5 *1 (-843 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-845 *4)) (-5 *3 (-606 (-1 (-111) *5))) (-4 *4 (-1045)) + (-4 *5 (-1154)) (-5 *1 (-843 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-845 *5)) (-5 *3 (-606 (-1117))) + (-5 *4 (-1 (-111) (-606 *6))) (-4 *5 (-1045)) (-4 *6 (-1154)) + (-5 *1 (-843 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1154)) (-4 *4 (-807)) + (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) (-4 *4 (-807)) + (-5 *1 (-890 *4 *2 *5)) (-4 *2 (-414 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743)) - (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-892 (-47) *6 *5)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1154)) + (-5 *2 (-300 (-537))) (-5 *1 (-891 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743)) - (-4 *7 (-892 (-47) *6 *5)) (-5 *2 (-399 (-1098 *7))) - (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1098 *7)))) + (-12 (-5 *3 (-1117)) (-5 *4 (-606 (-1 (-111) *5))) (-4 *5 (-1154)) + (-5 *2 (-300 (-537))) (-5 *1 (-891 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1 (-111) (-606 *6))) + (-4 *6 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) (-4 *4 (-1045)) + (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) + (-5 *1 (-1021 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-930 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-649 *2)) (-4 *2 (-163)) (-5 *1 (-140 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3)) - (-4 *3 (-1160 (-159 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) + (-12 (-4 *4 (-163)) (-4 *2 (-1176 *4)) (-5 *1 (-167 *4 *2 *3)) + (-4 *3 (-685 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) - (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) + (-12 (-5 *3 (-649 (-391 (-905 *5)))) (-5 *4 (-1117)) + (-5 *2 (-905 *5)) (-5 *1 (-276 *5)) (-4 *5 (-435)))) ((*1 *2 *3) - (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) - (-4 *3 (-1160 *4)))) + (-12 (-5 *3 (-649 (-391 (-905 *4)))) (-5 *2 (-905 *4)) + (-5 *1 (-276 *4)) (-4 *4 (-435)))) + ((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) + (-12 (-5 *3 (-649 (-160 (-391 (-537))))) + (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *4)) + (-4 *4 (-13 (-347) (-805))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) - (-4 *3 (-1160 (-531))))) + (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *4 (-1117)) + (-5 *2 (-905 (-160 (-391 (-537))))) (-5 *1 (-725 *5)) + (-4 *5 (-13 (-347) (-805))))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *2 (-905 (-391 (-537)))) + (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) - (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3)) - (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) - (-4 *3 (-1160 (-531))))) + (-12 (-5 *3 (-649 (-391 (-537)))) (-5 *4 (-1117)) + (-5 *2 (-905 (-391 (-537)))) (-5 *1 (-739 *5)) + (-4 *5 (-13 (-347) (-805)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-606 (-264))) (-5 *1 (-264)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122))))) +(((*1 *2 *1) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-5 *2 (-111))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-717))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-578 *5))) (-4 *4 (-807)) (-5 *2 (-578 *5)) + (-5 *1 (-546 *4 *5)) (-4 *5 (-414 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1) + (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *2)) + (-2 (|:| -2009 *5) (|:| -3283 *2)))) + (-4 *2 (-223 (-2258 *3) (-731))) (-5 *1 (-444 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-807)) (-4 *7 (-902 *4 *2 (-818 *3)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) + (-5 *2 (-1113 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) + (-5 *2 (-1113 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) + (-4 *3 (-529)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) + (-4 *5 (-1176 *4)) (-5 *2 (-606 (-391 *5))) (-5 *1 (-968 *4 *5)) + (-5 *3 (-391 *5))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *3 (-210)) + (-5 *2 (-986)) (-5 *1 (-709))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *1 *1) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) + (-5 *2 (-2 (|:| |radicand| (-391 *5)) (|:| |deg| (-731)))) + (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1154)) + (-4 *3 (-357 *4)) (-4 *5 (-357 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-712))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-178)))) ((*1 *2 *3) - (-12 (-5 *2 (-399 (-159 (-531)))) (-5 *1 (-426)) - (-5 *3 (-159 (-531))))) + (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-284)))) ((*1 *2 *3) + (-12 (-5 *3 (-1098 (-210))) (-5 *2 (-606 (-1100))) (-5 *1 (-289))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *3 (-783)) (-5 *1 (-782))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) + (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-333)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) + (-5 *1 (-202 *5 *3)) (-4 *3 (-1176 *5))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-905 *6)) (-5 *4 (-1117)) + (-5 *5 (-800 *7)) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-4 *7 (-13 (-1139) (-29 *6))) (-5 *1 (-209 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1113 *6)) (-5 *4 (-800 *6)) + (-4 *6 (-13 (-1139) (-29 *5))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-209 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-1021 *3 *4 *5))) (-4 *3 (-1045)) + (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) + (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3)))) + (-5 *1 (-1022 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1191 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) + (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) + (-4 *6 (-435)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-463 *5 *6))) (-5 *4 (-818 *5)) + (-14 *5 (-606 (-1117))) (-5 *2 (-463 *5 *6)) (-5 *1 (-594 *5 *6)) + (-4 *6 (-435))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *2) + (-12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2211 (-742 *3)) (|:| |coef2| (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-2 (|:| -2211 *1) (|:| |coef2| *1))) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2 *3) (-12 - (-4 *4 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-4 *5 (-743)) (-4 *7 (-523)) (-5 *2 (-399 *3)) - (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-523)) - (-4 *3 (-892 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1098 *4))) (-5 *1 (-438 *4)) - (-5 *3 (-1098 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) - (-4 *7 (-13 (-344) (-140) (-675 *5 *6))) (-5 *2 (-399 *3)) - (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1160 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7))) - (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743)) - (-5 *2 (-399 *3)) (-5 *1 (-511 *5 *6 *7 *3)) - (-4 *3 (-892 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7))) - (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743)) - (-4 *8 (-892 *7 *6 *5)) (-5 *2 (-399 (-1098 *8))) - (-5 *1 (-511 *5 *6 *7 *8)) (-5 *3 (-1098 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-598 *5) *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *6 (-1160 *5)) (-5 *2 (-598 (-606 (-388 *6)))) - (-5 *1 (-610 *5 *6)) (-5 *3 (-606 (-388 *6))))) + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-111)) (-5 *1 (-284))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-530 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-347)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) + (-4 *1 (-809 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-402 *3)) (-4 *3 (-529))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-5 *2 (-2 (|:| -2337 (-606 *6)) (|:| -3309 (-606 *6))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-649 (-300 (-210)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-363)) (|:| |stabilityFactor| (-363)))) + (-5 *1 (-191))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-570 *4 *3)) (-4 *4 (-1045)) + (-4 *3 (-1154)) (-4 *3 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-14 *4 (-606 (-1117))) (-14 *5 (-731)) + (-5 *2 + (-606 + (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) + (-232 *4 (-391 (-537)))))) + (-5 *1 (-486 *4 *5)) + (-5 *3 + (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) + (-232 *4 (-391 (-537)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) +(((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-998)) (-14 *3 (-606 (-1117))))) + ((*1 *1 *1) + (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) + (-14 *3 (-606 (-1117)))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1176 *6)) + (-4 *6 (-13 (-347) (-141) (-989 *4))) (-5 *4 (-537)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) + (|:| -4113 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-967 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-740 *5 (-818 *6)))) (-5 *4 (-111)) (-4 *5 (-435)) + (-14 *6 (-606 (-1117))) + (-5 *2 + (-606 (-1088 *5 (-509 (-818 *6)) (-818 *6) (-740 *5 (-818 *6))))) + (-5 *1 (-591 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *4)) (-4 *4 (-998)) (-4 *2 (-1176 *4)) + (-5 *1 (-427 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-391 (-1113 (-300 *5)))) (-5 *3 (-1200 (-300 *5))) + (-5 *4 (-537)) (-4 *5 (-13 (-529) (-807))) (-5 *1 (-1074 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-291)) + (-5 *2 (-391 (-402 (-905 *4)))) (-5 *1 (-993 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-896 (-210)))) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-173))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 *1)) (-4 *1 (-414 *4)) + (-4 *4 (-807)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1117)) (-4 *1 (-414 *3)) (-4 *3 (-807))))) +(((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1009)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1009))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-529) (-807))) (-5 *2 (-160 *5)) + (-5 *1 (-566 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-954) (-1139))) + (-4 *3 (-13 (-414 (-160 *4)) (-954) (-1139)))))) +(((*1 *2) + (-12 (-4 *4 (-347)) (-5 *2 (-874)) (-5 *1 (-312 *3 *4)) + (-4 *3 (-313 *4)))) + ((*1 *2) + (-12 (-4 *4 (-347)) (-5 *2 (-793 (-874))) (-5 *1 (-312 *3 *4)) + (-4 *3 (-313 *4)))) + ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-874)))) + ((*1 *2) + (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-793 (-874)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1047 (-1047 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-951 *3)) (-4 *3 (-163)) (-5 *1 (-759 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) + (-4 *6 (-13 (-529) (-989 *5))) (-4 *5 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *6)))))) (-5 *1 (-990 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *1) (-4 *1 (-920)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-779 *3)) (-4 *3 (-807))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-715))))) +(((*1 *2 *2) + (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5)))) - (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) + (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1082 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) + (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) + (-5 *1 (-1083 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-606 (-1082 *3 *4))) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-432 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *2) (-12 (-5 *2 (-1089 (-1100))) (-5 *1 (-375))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-731)) (-5 *4 (-537)) (-5 *1 (-428 *2)) (-4 *2 (-998))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-226)))) ((*1 *2 *3) - (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-624 *4))) - (-5 *1 (-624 *4)))) + (-12 (-5 *3 (-606 (-1100))) (-5 *2 (-1205)) (-5 *1 (-226))))) +(((*1 *2 *3) + (-12 (-4 *4 (-807)) + (-5 *2 + (-2 (|:| |f1| (-606 *4)) (|:| |f2| (-606 (-606 (-606 *4)))) + (|:| |f3| (-606 (-606 *4))) (|:| |f4| (-606 (-606 (-606 *4)))))) + (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 (-606 *4))))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-712))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 -1393)))) (-5 *2 (-986)) + (-5 *1 (-709))))) +(((*1 *2 *1) + (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (-5 *2 (-731)))) + ((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) + (-5 *2 (-731)))) + ((*1 *2 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-687))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-2 (|:| |k| (-779 *3)) (|:| |c| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(((*1 *2 *3) + (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789)) (-5 *3 (-1100))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) + (-5 *2 (-649 *3))))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-347) (-141))) + (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) + (-5 *1 (-383 *3 *4)) (-4 *4 (-1176 *3))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-537)) (-4 *3 (-163)) (-4 *5 (-357 *3)) + (-4 *6 (-357 *3)) (-5 *1 (-648 *3 *5 *6 *2)) + (-4 *2 (-647 *3 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *3 (-606 (-247))) + (-5 *1 (-245)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-531)) (-5 *2 (-598 *3)) (-5 *1 (-646 *3)) - (-4 *3 (-1160 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) (-5 *2 (-399 *3)) - (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) - (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7))) - (-5 *1 (-648 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-743)) - (-4 *5 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3)) - (-4 *3 (-892 (-895 *6) *4 *5)))) + (-12 (-5 *4 (-606 (-463 *5 *6))) (-5 *3 (-463 *5 *6)) + (-14 *5 (-606 (-1117))) (-4 *6 (-435)) (-5 *2 (-1200 *6)) + (-5 *1 (-594 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-807) (-989 (-537)) (-435) (-602 (-537)))) + (-5 *2 (-2 (|:| -2228 *3) (|:| |nconst| *3))) (-5 *1 (-540 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-807)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-606 (-1113 *13))) (-5 *3 (-1113 *13)) + (-5 *4 (-606 *12)) (-5 *5 (-606 *10)) (-5 *6 (-606 *13)) + (-5 *7 (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *13))))) + (-5 *8 (-606 (-731))) (-5 *9 (-1200 (-606 (-1113 *10)))) + (-4 *12 (-807)) (-4 *10 (-291)) (-4 *13 (-902 *10 *11 *12)) + (-4 *11 (-753)) (-5 *1 (-668 *11 *12 *10 *13))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1113 *1)) (-5 *3 (-1117)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1117)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-807) (-529))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-807) (-529)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1055))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-345 (-113))) (-4 *2 (-998)) (-5 *1 (-675 *2 *4)) + (-4 *4 (-609 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-345 (-113))) (-5 *1 (-794 *2)) (-4 *2 (-998))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-391 (-905 *5)) (-1107 (-1117) (-905 *5)))) + (-4 *5 (-435)) (-5 *2 (-606 (-649 (-391 (-905 *5))))) + (-5 *1 (-276 *5)) (-5 *4 (-649 (-391 (-905 *5))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-4 *7 (-807)) + (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) (-4 *8 (-291)) + (-5 *2 (-606 (-731))) (-5 *1 (-703 *6 *7 *8 *9)) (-5 *5 (-731))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-606 (-731)))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *1) (-5 *1 (-135)))) +(((*1 *1 *1) (|partial| -4 *1 (-139))) ((*1 *1 *1) (-4 *1 (-333))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-139)) (-4 *1 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-386)) (-5 *2 (-731)))) + ((*1 *1 *1) (-4 *1 (-386)))) +(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-924)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-160 (-537))) (-5 *2 (-111)) (-5 *1 (-429)))) ((*1 *2 *3) - (-12 (-4 *4 (-743)) - (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)) - (-5 *2 (-399 *3)) (-5 *1 (-683 *4 *5 *6 *3)) - (-4 *3 (-892 (-388 (-895 *6)) *4 *5)))) + (-12 + (-5 *3 + (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) + (-232 *4 (-391 (-537))))) + (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) + (-5 *1 (-486 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-914 *3)) (-4 *3 (-522)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537))))) +(((*1 *1 *1) (-4 *1 (-592))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-830 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-832 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-731)) (-5 *1 (-835 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *2 (-347)) (-4 *2 (-805)) (-5 *1 (-898 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) + ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) + ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4301)) (-4 *4 (-347)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-502 *4 *5 *6 *3)) + (-4 *3 (-647 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4301)) (-4 *4 (-529)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-4 *7 (-945 *4)) (-4 *8 (-357 *7)) + (-4 *9 (-357 *7)) (-5 *2 (-606 *6)) + (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-647 *4 *5 *6)) + (-4 *10 (-647 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-606 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-13 (-289) (-140))) - (-5 *2 (-399 *3)) (-5 *1 (-684 *4 *5 *6 *3)) - (-4 *3 (-892 (-388 *6) *4 *5)))) + (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-5 *2 (-606 *6)) (-5 *1 (-648 *4 *5 *6 *3)) + (-4 *3 (-647 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) + (-5 *2 (-606 *7))))) +(((*1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163))))) +(((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) + (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140))) - (-5 *2 (-399 *3)) (-5 *1 (-692 *4 *5 *6 *3)) - (-4 *3 (-892 *6 *5 *4)))) + (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) + (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) + ((*1 *1 *1) (-5 *1 (-1064)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-770 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-614 (-391 *6))) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) + (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-391 *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-770 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-615 *6 (-391 *6))) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-2 (|:| -2122 (-606 (-391 *6))) (|:| -2756 (-649 *5)))) + (-5 *1 (-770 *5 *6)) (-5 *4 (-606 (-391 *6)))))) +(((*1 *2 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-163))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-120 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) + (-5 *2 (-363)) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) + (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140))) - (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7))) - (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) + (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) + (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3)) - (-4 *3 (-1160 (-388 (-531)))))) + (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) + (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-807)) (-4 *5 (-580 *2)) (-5 *2 (-363)) + (-5 *1 (-745 *5))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-1167 (-537)))))) +(((*1 *2 *3) (-12 (-5 *3 (-905 (-210))) (-5 *2 (-210)) (-5 *1 (-289))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) + ((*1 *1 *1 *1) (-5 *1 (-1064)))) +(((*1 *2 *1) + (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) + (-5 *2 (-391 (-537))))) + ((*1 *2 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) + (-4 *3 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) + ((*1 *2 *1) + (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) + (-5 *2 (-391 (-537))))) + ((*1 *2 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) + (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) + (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) + (-5 *2 (-391 (-537))))) ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-980 *3)) - (-4 *3 (-1160 (-388 (-895 (-531))))))) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) (-4 *3 (-989 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) + (-14 *4 (-606 (-1117))))) ((*1 *2 *3) - (-12 (-4 *4 (-1160 (-388 (-531)))) - (-4 *5 (-13 (-344) (-140) (-675 (-388 (-531)) *4))) - (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1160 *5)))) + (-12 (-5 *3 (-51)) (-5 *2 (-111)) (-5 *1 (-50 *4)) (-4 *4 (-1154)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) + (-14 *4 (-606 (-1117))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-846 *3)) (-4 *3 (-807))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-731)) (-5 *1 (-555 *2)) (-4 *2 (-522))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-108))))) +(((*1 *1 *1 *1) (-5 *1 (-210))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991)))) + ((*1 *1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-347)) (-4 *3 (-998)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1524 *1))) + (-4 *1 (-809 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) (-4 *5 (-347)) + (-4 *5 (-529)) (-5 *2 (-1200 *5)) (-5 *1 (-601 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 *5)) + (-3679 (-4 *5 (-347))) (-4 *5 (-529)) (-5 *2 (-1200 (-391 *5))) + (-5 *1 (-601 *5 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-481 *2)) (-14 *2 (-537)))) + ((*1 *1 *1 *1) (-5 *1 (-1064)))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) ((*1 *2 *3) - (-12 (-4 *4 (-1160 (-388 (-895 (-531))))) - (-4 *5 (-13 (-344) (-140) (-675 (-388 (-895 (-531))) *4))) - (-5 *2 (-399 *3)) (-5 *1 (-1013 *4 *5 *3)) (-4 *3 (-1160 *5)))) + (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) ((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432)) - (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7)))) - (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142)))) + (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) ((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-1184 (-639 *4))))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-397 *3 *4)) - (-4 *3 (-398 *4)))) - ((*1 *2) - (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 (-639 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344)) - (-5 *2 (-1184 (-639 (-388 (-895 *5))))) (-5 *1 (-1018 *5)) - (-5 *4 (-639 (-388 (-895 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344)) - (-5 *2 (-1184 (-639 (-895 *5)))) (-5 *1 (-1018 *5)) - (-5 *4 (-639 (-895 *5))))) + (-12 (-5 *3 (-1113 (-391 (-537)))) (-5 *2 (-606 *1)) (-4 *1 (-964)))) + ((*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-964)) (-5 *2 (-606 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) - (-5 *2 (-1184 (-639 *4))) (-5 *1 (-1018 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-998))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-388 (-1098 (-297 *3)))) (-4 *3 (-13 (-523) (-797))) - (-5 *1 (-1059 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-1008 *3 *4 *5))) (-4 *3 (-1030)) - (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) - (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) - (-5 *1 (-1009 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-218 *3)))) - ((*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) - (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2)) - (-4 *2 (-1160 (-159 *3)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) - (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-919 *3 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-805) (-347))) (-4 *3 (-1176 *4)) (-5 *2 (-606 *1)) + (-4 *1 (-1015 *4 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1200 *4)) (-4 *4 (-602 (-537))) + (-5 *2 (-1200 (-391 (-537)))) (-5 *1 (-1226 *4))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) - (-4 *3 (-1030)) (-5 *2 (-721)))) + (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) - (-4 *4 (-1138)) (-5 *2 (-721))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) - (-5 *2 (-531)) (-5 *1 (-1044 *4 *5))))) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) + (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *1)))) + (-4 *1 (-1018 *4 *5 *6 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-807)) (-5 *1 (-1125 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-598 (-571 *5))) (-5 *3 (-1102)) (-4 *5 (-411 *4)) - (-4 *4 (-797)) (-5 *1 (-540 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531)))) - (-4 *2 (-162))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-344)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) - (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-344)) (-4 *4 (-1160 *2)) - (-4 *5 (-1160 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6)) - (-4 *6 (-323 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-344)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))) - (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) - (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) - (-4 *1 (-316 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-159 (-531))) (-5 *2 (-110)) (-5 *1 (-426)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) - (-230 *4 (-388 (-531))))) - (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) - (-5 *1 (-483 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142)) (-5 *2 (-110))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *2 (-975)) (-5 *1 (-702))))) + (|partial| -12 (-5 *2 (-586 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111))) + (-537) *4)) + (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *1 (-547 *4 *5))))) +(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) + ((*1 *1 *1) (-4 *1 (-1086)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *2)) (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) - (-5 *1 (-683 *5 *4 *6 *2)) (-4 *5 (-743)) - (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) - (-4 *6 (-523))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1176 *6)) + (-4 *6 (-13 (-27) (-414 *5))) + (-4 *5 (-13 (-807) (-529) (-989 (-537)))) (-4 *8 (-1176 (-391 *7))) + (-5 *2 (-554 *3)) (-5 *1 (-525 *5 *6 *7 *8 *3)) + (-4 *3 (-326 *6 *7 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-150 *4 *2)) + (-4 *2 (-414 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1038 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-807) (-529))) + (-5 *1 (-150 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-152)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-152)) (-5 *2 (-1117))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1084 *3 *4)) (-14 *3 (-874)) (-4 *4 (-347)) + (-5 *1 (-946 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-208)))) - ((*1 *1 *1) (-4 *1 (-516))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-554 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1049))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))) + (-12 (-5 *2 (-606 (-905 *3))) (-4 *3 (-435)) (-5 *1 (-344 *3 *4)) + (-14 *4 (-606 (-1117))))) + ((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-433 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-433 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-1100)) (-4 *7 (-902 *4 *5 *6)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-433 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) + (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-606 (-740 *3 (-818 *4)))) (-4 *3 (-435)) + (-14 *4 (-606 (-1117))) (-5 *1 (-591 *3 *4))))) +(((*1 *2) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-708))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-135)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-138))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *3 (-529))))) +(((*1 *2 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1 (-1098 (-905 *4)) (-1098 (-905 *4)))) + (-5 *1 (-1208 *4)) (-4 *4 (-347))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-731)) (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *5)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1198 *3)) (-4 *3 (-23)) (-4 *3 (-1154))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-402 *5)) (-4 *5 (-529)) + (-5 *2 + (-2 (|:| -3283 (-731)) (|:| -3449 *5) (|:| |radicand| (-606 *5)))) + (-5 *1 (-304 *5)) (-5 *4 (-731)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-537))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-924))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-606 *3)) (-5 *1 (-914 *3)) (-4 *3 (-522))))) +(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-314))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-531)))) + (-12 (-5 *2 (-606 (-2 (|:| |k| (-1117)) (|:| |c| (-1221 *3))))) + (-5 *1 (-1221 *3)) (-4 *3 (-998)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531))))) + (-12 (-5 *2 (-606 (-2 (|:| |k| *3) (|:| |c| (-1223 *3 *4))))) + (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) + *6)) + (-4 *6 (-347)) (-4 *7 (-1176 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-391 *7)) (|:| |a0| *6)) + (-2 (|:| -3121 (-391 *7)) (|:| |coeff| (-391 *7))) "failed")) + (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) + (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) + (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-797)) (-4 *5 (-852)) (-4 *6 (-743)) - (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-399 (-1098 *8))) - (-5 *1 (-849 *5 *6 *7 *8)) (-5 *4 (-1098 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) - (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-104 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (-12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5)) - (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 *2)) - (-14 *4 (-598 *2)) (-4 *5 (-368)))) - ((*1 *1 *2) - (-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) - (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-895 (-360))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *3 (-649 *8)) (-5 *4 (-731)) (-4 *8 (-902 *5 *7 *6)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-13 (-807) (-580 (-1117)))) + (-4 *7 (-753)) (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (|:| |mdnia| - (-2 (|:| |fn| (-297 (-208))) - (|:| -2368 (-598 (-1025 (-790 (-208))))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) - (-5 *1 (-719)))) + (-606 + (-2 (|:| |det| *8) (|:| |rows| (-606 (-537))) + (|:| |cols| (-606 (-537)))))) + (-5 *1 (-877 *5 *6 *7 *8))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-606 *1)) (-4 *1 (-291))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-785))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-526))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-450))))) +(((*1 *2 *1) + (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) + (-4 *3 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-746))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-537)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1154)) + (-4 *5 (-357 *4)) (-4 *3 (-357 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-958))))) +(((*1 *2 *1) (-12 (-4 *3 (-1154)) (-5 *2 (-606 *1)) (-4 *1 (-962 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-402 *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-998)) (-5 *2 (-606 *6)) (-5 *1 (-427 *5 *6))))) +(((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-351 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1040 (-800 (-210)))) (-5 *1 (-289))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-414 *3)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *1 (-758)))) + (|partial| -12 (-5 *2 (-606 (-845 *3))) (-5 *1 (-845 *3)) + (-4 *3 (-1045)))) ((*1 *2 *1) + (|partial| -12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-606 *1)) (-4 *1 (-902 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) + (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-606 *3)) + (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) + (-15 -3315 (*7 $)))))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-347)) (-5 *1 (-547 *4 *2)) (-4 *2 (-1176 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) + (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) + (-15 -3315 ((-1069 *3 (-578 $)) $)) + (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-537)) (-5 *1 (-468 *4)) + (-4 *4 (-1176 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-537))) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-363))) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-654))) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-661))) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-300 (-659))) (-5 *1 (-314)))) + ((*1 *1) (-5 *1 (-314)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-421))))) +(((*1 *2 *2) (-12 (-5 *2 (-300 (-210))) (-5 *1 (-196))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-363))) (-5 *1 (-991)) (-5 *3 (-363))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-111)) (-5 *6 (-210)) + (-5 *7 (-649 (-537))) + (-5 *8 (-3 (|:| |fn| (-372)) (|:| |fp| (-78 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) + (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-714))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) + (-5 *2 (-57 (-606 (-633 *5)))) (-5 *1 (-633 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-998)) + (-5 *2 (-649 *3))))) +(((*1 *1) (-5 *1 (-1120)))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) - (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-598 (-297 (-208)))) - (|:| -3788 (-598 (-208))))))) - (-5 *1 (-788)))) + (-606 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-537))))) + (-5 *1 (-402 *3)) (-4 *3 (-529)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-731)) (-4 *3 (-333)) (-4 *5 (-1176 *3)) + (-5 *2 (-606 (-1113 *3))) (-5 *1 (-479 *3 *5 *6)) + (-4 *6 (-1176 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-300 (-363))) (-5 *1 (-289))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-606 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1147 *5 *6 *7 *8)) (-4 *5 (-529)) + (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-1012 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537))))) +(((*1 *2 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-556 *4)) + (-4 *4 (-333))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1154)) + (-4 *5 (-1154)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-225 *6 *7)) (-14 *6 (-731)) + (-4 *7 (-1154)) (-4 *5 (-1154)) (-5 *2 (-225 *6 *5)) + (-5 *1 (-224 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1154)) (-4 *5 (-1154)) + (-4 *2 (-357 *5)) (-5 *1 (-355 *6 *4 *5 *2)) (-4 *4 (-357 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1045)) (-4 *5 (-1045)) + (-4 *2 (-409 *5)) (-5 *1 (-407 *6 *4 *5 *2)) (-4 *4 (-409 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-606 *6)) (-4 *6 (-1154)) + (-4 *5 (-1154)) (-5 *2 (-606 *5)) (-5 *1 (-604 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-911 *6)) (-4 *6 (-1154)) + (-4 *5 (-1154)) (-5 *2 (-911 *5)) (-5 *1 (-910 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1098 *6)) (-4 *6 (-1154)) + (-4 *3 (-1154)) (-5 *2 (-1098 *3)) (-5 *1 (-1096 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1200 *6)) (-4 *6 (-1154)) + (-4 *5 (-1154)) (-5 *2 (-1200 *5)) (-5 *1 (-1199 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *3)) (-4 *3 (-1154)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-731)))) + ((*1 *2 *3) + (-12 (-4 *4 (-998)) + (-4 *2 (-13 (-388) (-989 *4) (-347) (-1139) (-268))) + (-5 *1 (-426 *4 *3 *2)) (-4 *3 (-1176 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-578 *3)) (-4 *3 (-807)))) + ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) + (-5 *2 (-606 (-2 (|:| -2337 *1) (|:| -3309 (-606 *7))))) + (-5 *3 (-606 *7)) (-4 *1 (-1147 *4 *5 *6 *7))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-649 *3)) (-4 *3 (-998)) (-5 *1 (-650 *3))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-87 G)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-84 FCN)))) (-5 *3 (-210)) + (-5 *2 (-986)) (-5 *1 (-710))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-874)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-683)) (-5 *2 (-731))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) + (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1018 *5 *6 *7 *8)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) + (-5 *1 (-1016 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) + (-5 *4 (-731)) (-4 *8 (-1012 *5 *6 *7)) (-4 *9 (-1054 *5 *6 *7 *8)) + (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) (-5 *2 (-1205)) + (-5 *1 (-1087 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-471 *3)) (-4 *3 (-1154)) + (-4 *3 (-1045)) (-5 *2 (-731)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) + (-4 *4 (-1154)) (-5 *2 (-731))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-89 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-805)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) + (-4 *3 (-1176 *4)) (-5 *2 (-537)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) + (-5 *2 (-537)) (-5 *1 (-1060 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) + (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-1100)) + (-4 *6 (-13 (-529) (-807) (-989 *2) (-602 *2) (-435))) + (-5 *2 (-537)) (-5 *1 (-1060 *6 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-435)) (-5 *2 (-537)) + (-5 *1 (-1061 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-800 (-391 (-905 *6)))) + (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-537)) + (-5 *1 (-1061 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-391 (-905 *6))) (-5 *4 (-1117)) + (-5 *5 (-1100)) (-4 *6 (-435)) (-5 *2 (-537)) (-5 *1 (-1061 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-435)) (-4 *3 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-432 *4 *3 *5 *6)) (-4 *6 (-902 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-919 *3)) (-4 *3 (-920))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *2 *1) + (-12 (-4 *4 (-1045)) (-5 *2 (-842 *3 *4)) (-5 *1 (-838 *3 *4 *5)) + (-4 *3 (-1045)) (-4 *5 (-627 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671))))) +(((*1 *2 *3) + (-12 (-5 *3 (-300 (-210))) (-5 *2 (-391 (-537))) (-5 *1 (-289))))) +(((*1 *2 *2) + (-12 (-4 *3 (-989 (-537))) (-4 *3 (-13 (-807) (-529))) + (-5 *1 (-31 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-1113 *4)) (-5 *1 (-156 *3 *4)) + (-4 *3 (-157 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-998)) (-4 *1 (-286)))) + ((*1 *2) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1113 *3)))) + ((*1 *2) (-12 (-4 *1 (-685 *3 *2)) (-4 *3 (-163)) (-4 *2 (-1176 *3)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-598 (-297 (-208)))) - (|:| |constraints| - (-598 - (-2 (|:| |start| (-208)) (|:| |finish| (-208)) - (|:| |grid| (-721)) (|:| |boundaryType| (-531)) - (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) - (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) - (|:| |tol| (-208)))) - (-5 *1 (-841)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *1 (-918 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) - (-1435 - (-12 (-5 *2 (-895 *3)) - (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) - (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797))) - (-12 (-5 *2 (-895 *3)) - (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531))))) - (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797))) - (-12 (-5 *2 (-895 *3)) - (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531)))) - (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797))))) - ((*1 *1 *2) - (-1435 - (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) - (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) - (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) - (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) - (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) - ((*1 *1 *2) - (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-523)) (-5 *2 (-399 *4)) - (-5 *1 (-400 *4)))) - ((*1 *1 *1) (-5 *1 (-869))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) - ((*1 *1 *1) (-5 *1 (-870))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) - (-5 *4 (-388 (-531))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) - (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) - (-5 *4 (-388 (-531))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) - (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) - (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) - (-5 *1 (-327 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986)) - (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) - (-4 *3 (-799 *5))))) + (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-13 (-805) (-347))) + (-4 *2 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) + ((*1 *1 *1) (-4 *1 (-522))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-560 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1064))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-699))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-347)) + (-5 *2 (-606 (-2 (|:| C (-649 *5)) (|:| |g| (-1200 *5))))) + (-5 *1 (-931 *5)) (-5 *3 (-649 *5)) (-5 *4 (-1200 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-571 *1)) (-4 *1 (-411 *4)) (-4 *4 (-797)) - (-4 *4 (-523)) (-5 *2 (-388 (-1098 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-1098 (-388 (-1098 *3)))) (-5 *1 (-527 *6 *3 *7)) - (-5 *5 (-1098 *3)) (-4 *7 (-1030)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1180 *5)) (-14 *5 (-1102)) (-4 *6 (-986)) - (-5 *2 (-1157 *5 (-895 *6))) (-5 *1 (-890 *5 *6)) (-5 *3 (-895 *6)))) + (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-1098 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-1098 *1)) - (-4 *1 (-892 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) - (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-388 (-1098 *3))) - (-5 *1 (-893 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1098 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))) - (-4 *7 (-892 *6 *5 *4)) (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) - (-5 *1 (-893 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-4 *5 (-523)) - (-5 *2 (-388 (-1098 (-388 (-895 *5))))) (-5 *1 (-982 *5)) - (-5 *3 (-388 (-895 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))) - (-4 *2 (-13 (-797) (-21)))))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) + (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) + (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) + (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) +(((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) + ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-874)) (-5 *1 (-983 *2)) + (-4 *2 (-13 (-1045) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-793))))) -(((*1 *1) (-5 *1 (-998)))) + (-12 (-5 *2 (-2 (|:| |var| (-606 (-1117))) (|:| |pred| (-51)))) + (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *2 (-986)) (-5 *1 (-712))))) +(((*1 *2 *1) + (-12 (-4 *1 (-237 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *5 (-250 *4)) (-4 *6 (-753)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4))) - (-5 *1 (-1110 *4)) (-4 *4 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-998)) + (-4 *2 (-1191 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) (((*1 *2) - (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) - (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) + (-12 + (-5 *2 + (-1200 (-606 (-2 (|:| -3619 (-863 *3)) (|:| -2009 (-1064)))))) + (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) (-14 *4 (-874)))) ((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 *8)) - (-4 *7 (-797)) (-4 *8 (-986)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) - (-5 *2 (-1098 *8)) (-5 *1 (-302 *6 *7 *8 *9))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 *1)) (-4 *1 (-411 *4)) - (-4 *4 (-797)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797))))) -(((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2) - (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) - (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) + (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) + (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) (-14 *4 (-3 (-1113 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064)))))) + (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) (-14 *4 (-874))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) - (-5 *3 (-598 (-531)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) - ((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))))) - ((*1 *1 *1) - (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) - (-14 *3 (-598 (-1102))))) - ((*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030)))) - ((*1 *1 *1) - (-12 (-14 *2 (-598 (-1102))) (-4 *3 (-162)) - (-4 *5 (-221 (-2167 *2) (-721))) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5)) - (-2 (|:| -1889 *4) (|:| -1790 *5)))) - (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-797)) - (-4 *7 (-892 *3 *5 (-808 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797)))) - ((*1 *1 *1) - (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986)))) - ((*1 *1 *1) - (-12 (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) (-4 *2 (-986)) - (-4 *3 (-677)))) - ((*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)))) - ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817)) - (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-448)) (-5 *1 (-1188)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-448)) - (-5 *1 (-1188)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245))) - (-5 *2 (-448)) (-5 *1 (-1188))))) -(((*1 *1) (-4 *1 (-330)))) + (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *3)) (-4 *3 (-1018 *4 *5 *6 *7))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) - (|:| -4073 *6))) - (-5 *1 (-956 *5 *6)) (-5 *3 (-388 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-289)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-427 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) - (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-427 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) - (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-427 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-790 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) - (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) - (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) - (-5 *1 (-738))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) - (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-162)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-986)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))) -(((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-892 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-224)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1189)) (-5 *1 (-224))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27)) - (-5 *2 (-598 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102))) - (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) (((*1 *2 *3) - (-12 (-5 *3 (-1111 (-598 *4))) (-4 *4 (-797)) - (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-128)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-342 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-367 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-602 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *5 (-1176 *4)) + (-5 *2 (-606 (-2 (|:| |deg| (-731)) (|:| -4113 *5)))) + (-5 *1 (-769 *4 *5 *3 *6)) (-4 *3 (-617 *5)) + (-4 *6 (-617 (-391 *5)))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) + (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) + (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) + (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) + (-5 *1 (-1053 *6 *7 *4 *8 *9))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-731)) (-5 *1 (-101 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-731))) (-5 *3 (-111)) (-5 *1 (-1106 *4 *5)) + (-14 *4 (-874)) (-4 *5 (-998))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) + (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) + (-5 *1 (-748)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) + (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) + (-5 *1 (-748))))) +(((*1 *1 *2) (-12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *2)) (-4 *2 (-163)))) + ((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-400 *3 *2)) (-4 *3 (-401 *2)))) + ((*1 *2) (-12 (-4 *1 (-401 *2)) (-4 *2 (-163))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-797)) (-5 *4 (-598 *6)) - (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-598 *4)))) - (-5 *1 (-1110 *6)) (-5 *5 (-598 *4))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112))) - ((*1 *1 *1) (-5 *1 (-161))) ((*1 *1 *1) (-4 *1 (-516))) - ((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33)))))) + (-12 (-5 *3 (-606 (-896 *4))) (-4 *1 (-1078 *4)) (-4 *4 (-998)) + (-5 *2 (-731))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-707))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *2 (-598 (-598 (-531)))) - (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *6 *5))))) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435))))) (((*1 *2 *3) - (-12 (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) (-4 *3 (-573 (-360))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) - (-4 *3 (-573 (-360))))) - ((*1 *2 *3) - (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-573 (-360))) - (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-159 *5)) (-5 *4 (-864)) (-4 *5 (-162)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-573 (-360))) - (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) + (-5 *3 (-537))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-905 (-160 *4))) (-4 *4 (-163)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (|partial| -12 (-5 *3 (-905 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-163)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360))) - (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 (-363))) + (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (|partial| -12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) - (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (|partial| -12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (|partial| -12 (-5 *3 (-391 (-905 (-160 *4)))) (-4 *4 (-529)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (|partial| -12 (-5 *3 (-391 (-905 (-160 *5)))) (-5 *4 (-874)) + (-4 *5 (-529)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) + (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (|partial| -12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) - (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) + (|partial| -12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) + (-5 *1 (-745 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797)) - (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) + (|partial| -12 (-5 *3 (-300 (-160 *4))) (-4 *4 (-529)) (-4 *4 (-807)) + (-4 *4 (-580 (-363))) (-5 *2 (-160 (-363))) (-5 *1 (-745 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523)) - (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) - (-5 *1 (-735 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) - ((*1 *2 *1) - (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102))))) + (|partial| -12 (-5 *3 (-300 (-160 *5))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-807)) (-4 *5 (-580 (-363))) (-5 *2 (-160 (-363))) + (-5 *1 (-745 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-289)))) ((*1 *2 *1) - (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) - (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986)))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-845 *3)) (|:| |den| (-845 *3)))) + (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-529)) (-4 *2 (-435)) (-5 *1 (-922 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-113))) + ((*1 *1 *1) (-5 *1 (-162))) ((*1 *1 *1) (-4 *1 (-522))) + ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) + (-4 *3 (-920))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 (-363)) (-5 *1 (-191))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1045)) (-5 *2 (-111)) + (-5 *1 (-1155 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-537)))) ((*1 *2 *1) - (-12 (-14 *3 (-598 (-1102))) (-4 *5 (-221 (-2167 *3) (-721))) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5)) - (-2 (|:| -1889 *4) (|:| -1790 *5)))) - (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-797)) - (-4 *7 (-892 *2 *5 (-808 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1030)))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) + (-5 *2 (-391 (-537))))) ((*1 *2 *1) - (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986)))) + (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-402 *3)) (-4 *3 (-522)) + (-4 *3 (-529)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-522)) (-5 *2 (-391 (-537))))) ((*1 *2 *1) - (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) - (-4 *3 (-677)))) - ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) + (|partial| -12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) + (-5 *2 (-391 (-537))))) ((*1 *2 *1) - (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *3 (-742)) (-4 *4 (-797)) - (-4 *2 (-986)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) - (-4 *4 (-13 (-797) (-523)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-110)) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7))))) - (-4 *7 (-795)) - (-4 *8 - (-13 (-1162 *3 *7) (-344) (-1124) - (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) - (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8)) - (-14 *10 (-1102))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33)))))) -(((*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-528)) (-5 *3 (-531))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *3 *5)) - (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) - (-4 *5 (-609 (-388 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *5 *3)) - (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-609 *2)) - (-4 *3 (-609 (-388 *2)))))) -(((*1 *1 *1 *1) (-4 *1 (-516)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) - (-5 *2 (-1184 (-388 (-531)))) (-5 *1 (-1209 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030)))) + (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-793 *3)) (-4 *3 (-522)) + (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) - (-4 *6 (-221 (-2167 *3) (-721))) - (-14 *7 - (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) - (-2 (|:| -1889 *5) (|:| -1790 *6)))) - (-5 *2 (-664 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-797)) (-4 *8 (-892 *4 *6 (-808 *3))))) + (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-800 *3)) (-4 *3 (-522)) + (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-4 *2 (-677)) (-4 *2 (-797)) (-5 *1 (-686 *3 *2)) - (-4 *3 (-986)))) - ((*1 *1 *1) - (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742)) - (-4 *4 (-797))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *5 (-1160 *4)) - (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -2723 *5)))) - (-5 *1 (-759 *4 *5 *3 *6)) (-4 *3 (-609 *5)) - (-4 *6 (-609 (-388 *5)))))) + (|partial| -12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) + (-5 *2 (-391 (-537))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-391 (-537))) (-5 *1 (-960 *3)) + (-4 *3 (-989 *2))))) (((*1 *2) - (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4)) - (-4 *4 (-1160 *3))))) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-286)) (-5 *3 (-1117)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) + (-12 (-5 *3 (-537)) (-4 *4 (-1176 (-391 *3))) (-5 *2 (-874)) + (-5 *1 (-866 *4 *5)) (-4 *5 (-1176 (-391 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154))))) (((*1 *2 *1) - (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-929 *3 *4 *5 *2)) - (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-507))) (-5 *2 (-1102)) (-5 *1 (-507))))) + (-12 (-4 *1 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998)))) + ((*1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *1 *1) (-5 *1 (-363))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-736 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) - (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) + (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3)) - (-4 *3 (-1138)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) + (-4 *3 (-1154)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3)) - (-4 *3 (-1138)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4301)) (-4 *1 (-118 *3)) + (-4 *3 (-1154)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-721)) (-5 *1 (-197 *4 *2)) (-14 *4 (-864)) - (-4 *2 (-1030)))) + (-12 (-5 *3 (-731)) (-5 *1 (-199 *4 *2)) (-14 *4 (-874)) + (-4 *2 (-1045)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) - (-4 *2 (-1138)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1102)) (-5 *1 (-587)))) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) + (-4 *2 (-1154)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1117)) (-5 *1 (-595)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1151 (-531))) (|has| *1 (-6 -4274)) (-4 *1 (-604 *2)) - (-4 *2 (-1138)))) + (-12 (-5 *3 (-1167 (-537))) (|has| *1 (-6 -4301)) (-4 *1 (-612 *2)) + (-4 *2 (-1154)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) + (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) - (-4 *2 (-1138)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4301)) (-4 *1 (-962 *2)) + (-4 *2 (-1154)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) + (-12 (-4 *1 (-1130 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) - (-4 *2 (-1138)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) + (-4 *2 (-1154)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3)) - (-4 *3 (-1138)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *3)) + (-4 *3 (-1154)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) - (-4 *2 (-1138))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) + (-4 *2 (-1154))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-731)) (-4 *5 (-529)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-513)) (-5 *1 (-512 *4)) + (-4 *4 (-1154))))) (((*1 *2) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) - (-5 *1 (-699))))) + (|partial| -12 (-4 *3 (-529)) (-4 *3 (-163)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2122 (-606 *1)))) + (-4 *1 (-351 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-436 *3 *4 *5 *6)) + (|:| -2122 (-606 (-436 *3 *4 *5 *6))))) + (-5 *1 (-436 *3 *4 *5 *6)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-381))))) +(((*1 *2 *3) + (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-435)) + (-5 *2 (-463 *4 *5)) (-5 *1 (-594 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-649 (-863 *3))) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) + (-14 *4 (-874)))) + ((*1 *2) + (-12 (-5 *2 (-649 *3)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) + (-14 *4 + (-3 (-1113 *3) + (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064))))))))) + ((*1 *2) + (-12 (-5 *2 (-649 *3)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) + (-14 *4 (-874))))) (((*1 *2 *3) - (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4)) - (-5 *1 (-501 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-639 (-208))) (-5 *6 (-110)) (-5 *7 (-639 (-531))) - (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) - (-5 *3 (-531)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-1117))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) - (-5 *2 (-598 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245))))) -(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) - (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) - (|:| |args| (-598 (-806))))) - (-5 *1 (-1102))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2))))) -(((*1 *1) (-5 *1 (-418)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1154 *3 *2)) - (-4 *2 (-1160 *3))))) -(((*1 *2 *3 *1) - (-12 + (-12 (-5 *3 (-278 (-905 (-537)))) (-5 *2 - (-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721)))) - (-5 *1 (-1083 *4)) (-4 *4 (-1138)) (-5 *3 (-721))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) - (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-110))))) + (-2 (|:| |varOrder| (-606 (-1117))) + (|:| |inhom| (-3 (-606 (-1200 (-731))) "failed")) + (|:| |hom| (-606 (-1200 (-731)))))) + (-5 *1 (-221))))) +(((*1 *1 *1) (-5 *1 (-1010)))) (((*1 *2 *3) - (-12 (-4 *1 (-863)) (-5 *2 (-2 (|:| -2005 (-598 *1)) (|:| -1861 *1))) - (-5 *3 (-598 *1))))) -(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330))))) + (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-333)) (-5 *2 (-1200 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-649 *1)) (-4 *1 (-139)) (-4 *1 (-862)) + (-5 *2 (-1200 *1))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-606 (-1117))) + (-5 *2 (-606 (-606 (-363)))) (-5 *1 (-974)) (-5 *5 (-363)))) + ((*1 *2 *3) + (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) + (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-905 *4))) + (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-813 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-347)) (-5 *1 (-269 *3 *2)) (-4 *2 (-1191 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-5 *1 (-1193 *3 *2)) + (-4 *2 (-1191 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) + (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-347)) (-4 *5 (-529)) + (-5 *2 + (-2 (|:| |minor| (-606 (-874))) (|:| -4113 *3) + (|:| |minors| (-606 (-606 (-874)))) (|:| |ops| (-606 *3)))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5))))) +(((*1 *1 *1) (-5 *1 (-513)))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) + (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-941 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-986)) - (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) - (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) - ((*1 *1 *1) (-4 *1 (-516))) - ((*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1136 *3)) (-4 *3 (-1138)))) + (-12 (-5 *2 (-606 (-2 (|:| |val| (-606 *6)) (|:| -3852 *7)))) + (-4 *6 (-1012 *3 *4 *5)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-1052 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-537)))) ((*1 *2 *1) - (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943)) - (-4 *2 (-986))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-537))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-375))))) +(((*1 *1) (-5 *1 (-783)))) (((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-1121 *4)) - (-4 *4 (-986))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) - (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) - (-4 *2 (-411 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) - (-5 *1 (-149 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102))))) -(((*1 *1 *1) (-4 *1 (-226))) - ((*1 *1 *1) - (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138))) - (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138))))) - ((*1 *1 *1) (-4 *1 (-453))) - ((*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-344))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-807)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-360)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1083 *3))) (-5 *1 (-1083 *3)) (-4 *3 (-1138))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) + (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1139)))) + ((*1 *2 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-578 *3)) (-4 *3 (-807))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-264))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-191)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-606 (-363))) (-5 *2 (-363)) (-5 *1 (-191))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1030)) (-4 *5 (-1030)) - (-5 *2 (-1 *5)) (-5 *1 (-633 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94))))) -(((*1 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) -(((*1 *2 *3) - (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-1151 (-531)))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-5 *2 (-110))))) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 (-1 *6 (-606 *6)))) + (-4 *5 (-37 (-391 (-537)))) (-4 *6 (-1191 *5)) (-5 *2 (-606 *6)) + (-5 *1 (-1193 *5 *6))))) +(((*1 *1) + (-12 (-4 *1 (-388)) (-3679 (|has| *1 (-6 -4291))) + (-3679 (|has| *1 (-6 -4283))))) + ((*1 *2 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-807)))) + ((*1 *2 *1) (-12 (-4 *1 (-790 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) (-4 *1 (-807))) ((*1 *1) (-5 *1 (-1064)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) - (-230 *4 (-388 (-531))))) - (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) - (-5 *1 (-483 *4 *5))))) + (-12 (-5 *3 (-874)) + (-5 *2 + (-3 (-1113 *4) + (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064))))))) + (-5 *1 (-330 *4)) (-4 *4 (-333))))) +(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-178)))) + ((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-284)))) + ((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1100)) (-5 *1 (-289))))) +(((*1 *2 *1) + (-12 (-4 *3 (-218)) (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-250 *4)) + (-4 *6 (-753)) (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-998)) (-4 *3 (-807)) (-4 *5 (-250 *3)) (-4 *6 (-753)) + (-5 *2 (-1 *1 (-731))) (-4 *1 (-237 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-731)) (-4 *1 (-250 *2)) (-4 *2 (-807))))) +(((*1 *2 *3) + (-12 (-5 *3 (-800 (-363))) (-5 *2 (-800 (-210))) (-5 *1 (-289))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) + (-5 *1 (-1102 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) + (-14 *4 (-1117)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *6 (-210)) (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-391 (-537)))) + (-5 *2 (-2 (|:| -4270 (-1098 *4)) (|:| -1234 (-1098 *4)))) + (-5 *1 (-1104 *4)) (-5 *3 (-1098 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) + (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-529) (-807) (-989 (-537)))) + (-5 *1 (-174 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 (-160 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3))))) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1200 (-606 *3))) (-4 *4 (-291)) + (-5 *2 (-606 *3)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-606 (-537))) (-5 *3 (-111)) (-5 *1 (-1055))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) +(((*1 *2) + (-12 (-4 *3 (-998)) (-5 *2 (-911 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) + (-4 *4 (-1176 *3))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-428 *3)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) + (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) + (-4 *6 (-326 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-807) (-529)))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) - (-4 *3 (-1160 (-159 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) - (-4 *3 (-1160 (-159 *2)))))) + (-12 (-5 *2 (-363)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247))))) (((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) - (-5 *2 (-598 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |k| (-836 *3)) (|:| |c| *4)))) - (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-624 *3))) (-5 *1 (-836 *3)) (-4 *3 (-797))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1138)) - (-4 *3 (-354 *4)) (-4 *5 (-354 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) - (-4 *5 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-388 (-531))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531))) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8)) - (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531))) - (-4 *8 (-13 (-27) (-1124) (-411 *7))) - (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531)))) - (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8))) - (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-388 (-531))) (-4 *4 (-986)) (-4 *1 (-1167 *4 *3)) - (-4 *3 (-1144 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1040))))) -(((*1 *2 *2) - (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) - (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) - (-15 -1853 ((-1054 *3 (-571 $)) $)) - (-15 -2265 ($ (-1054 *3 (-571 $)))))))))) + (-12 (-4 *2 (-13 (-805) (-347))) (-5 *1 (-1008 *2 *3)) + (-4 *3 (-1176 *2))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-715))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-531)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531))))) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-606 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-110)) - (-5 *1 (-624 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-516)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-5 *1 (-418))))) -(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) - (-5 *1 (-699))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-639 *2)) (-5 *4 (-721)) - (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) - (-4 *5 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-531)) (-4 *5 (-13 (-432) (-797) (-977 *4) (-594 *4))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-432) (-797) (-977 *5) (-594 *5))) (-5 *5 (-531)) - (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531))) - (-4 *7 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531))) - (-4 *3 (-13 (-27) (-1124) (-411 *7))) - (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-531)) (-4 *4 (-986)) (-4 *1 (-1146 *4 *3)) - (-4 *3 (-1175 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-892 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) - (-4 *1 (-1160 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))) - (-4 *2 (-13 (-797) (-21)))))) + (-12 (-5 *3 (-537)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *2 (-1205)) (-5 *1 (-432 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1113 *2)) (-4 *2 (-902 (-391 (-905 *6)) *5 *4)) + (-5 *1 (-693 *5 *4 *6 *2)) (-4 *5 (-753)) + (-4 *4 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) + (-4 *6 (-529))))) +(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) + (-5 *2 (-986)) (-5 *1 (-797))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-698 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045)))) + ((*1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)) - (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986))))) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)) + (-5 *1 (-432 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3) (-12 (-5 *2 (-402 *3)) (-5 *1 (-531 *3)) (-4 *3 (-522)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) + (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) + (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 *7))) + (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-435)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-402 *1)) (-4 *1 (-902 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-807)) (-4 *5 (-753)) (-4 *6 (-435)) (-5 *2 (-402 *3)) + (-5 *1 (-932 *4 *5 *6 *3)) (-4 *3 (-902 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-435)) + (-4 *7 (-902 *6 *4 *5)) (-5 *2 (-402 (-1113 (-391 *7)))) + (-5 *1 (-1112 *4 *5 *6 *7)) (-5 *3 (-1113 (-391 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1158)))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-402 *3)) (-5 *1 (-1179 *4 *3)) + (-4 *3 (-13 (-1176 *4) (-529) (-10 -8 (-15 -2211 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-14 *5 (-606 (-1117))) + (-5 *2 + (-606 (-1088 *4 (-509 (-818 *6)) (-818 *6) (-740 *4 (-818 *6))))) + (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-448)) (-5 *3 (-598 (-245))) (-5 *1 (-1185)))) - ((*1 *1 *1) (-5 *1 (-1185)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-516)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138)) - (-4 *2 (-797)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4274)) - (-4 *1 (-354 *3)) (-4 *3 (-1138))))) -(((*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) - (-4 *5 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) + (-12 (-4 *3 (-998)) (-4 *4 (-1176 *3)) (-5 *1 (-155 *3 *4 *2)) + (-4 *2 (-1176 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-753)) + (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) + (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *3 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *6)) + (-4 *6 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) + (-4 *2 (-902 (-905 *4) *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *5)) + (-4 *5 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *4 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-391 (-537))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-276 *3)) (-5 *5 (-721)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6)) - (-4 *6 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) + (-12 (-5 *4 (-278 *3)) (-5 *5 (-391 (-537))) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-299 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-537))) (-5 *4 (-278 *6)) + (-4 *6 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-721))) - (-4 *7 (-13 (-27) (-1124) (-411 *6))) - (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-537))) (-5 *4 (-278 *7)) (-5 *5 (-1167 (-537))) + (-4 *7 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-721))) - (-4 *3 (-13 (-27) (-1124) (-411 *7))) - (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 (-598 *4)))) - (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 *4)))))) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-537))) + (-4 *3 (-13 (-27) (-1139) (-414 *7))) + (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-391 (-537)))) (-5 *4 (-278 *8)) + (-5 *5 (-1167 (-391 (-537)))) (-5 *6 (-391 (-537))) + (-4 *8 (-13 (-27) (-1139) (-414 *7))) + (-4 *7 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1117)) (-5 *5 (-278 *3)) (-5 *6 (-1167 (-391 (-537)))) + (-5 *7 (-391 (-537))) (-4 *3 (-13 (-27) (-1139) (-414 *8))) + (-4 *8 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-51)) (-5 *1 (-442 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) + (-4 *3 (-998)) (-5 *1 (-562 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-563 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) + (-4 *3 (-998)) (-4 *1 (-1160 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-731)) + (-5 *3 (-1098 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))) + (-4 *4 (-998)) (-4 *1 (-1181 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-4 *1 (-1191 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1098 (-2 (|:| |k| (-731)) (|:| |c| *3)))) + (-4 *3 (-998)) (-4 *1 (-1191 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-711))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5)))) - (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5)))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-598 (-1102))) (-4 *2 (-162)) - (-4 *4 (-221 (-2167 *5) (-721))) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *4)) - (-2 (|:| -1889 *3) (|:| -1790 *4)))) - (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-797)) - (-4 *7 (-892 *2 *4 (-808 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-360)))) (-5 *2 (-1025 (-790 (-208)))) - (-5 *1 (-287))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-388 (-531))))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245))))) + (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) (-5 *2 (-911 (-1064))) + (-5 *1 (-330 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-598 (-1 *4 (-598 *4)))) (-4 *4 (-1030)) - (-5 *1 (-111 *4)))) + (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030)) - (-5 *1 (-111 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-1 *4 (-598 *4)))) - (-5 *1 (-111 *4)) (-4 *4 (-1030))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1))) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-702))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6)) - (-4 *6 (-13 (-27) (-411 *5))) - (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7))) - (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) - (-4 *3 (-323 *6 *7 *8))))) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) - (-5 *2 (-598 (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5))))) - (-5 *1 (-920 *5)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5))))) + (-12 (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-529)) + (-4 *7 (-902 *3 *5 *6)) + (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *8) (|:| |radicand| *8))) + (-5 *1 (-906 *5 *6 *3 *7 *8)) (-5 *4 (-731)) + (-4 *8 + (-13 (-347) + (-10 -8 (-15 -3301 (*7 $)) (-15 -3315 (*7 $)) (-15 -2341 ($ *7)))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-606 (-905 *4))) (-5 *3 (-606 (-1117))) (-4 *4 (-435)) + (-5 *1 (-871 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-998)) + (-5 *2 (-2 (|:| -3413 *1) (|:| -1672 *1))) (-4 *1 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-864)) - (-5 *2 - (-3 (-1098 *4) - (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))) - (-5 *1 (-327 *4)) (-4 *4 (-330))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-531))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *5)) (-5 *1 (-828 *3 *4 *5)) - (-4 *3 (-1030)) (-4 *5 (-619 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661))))) + (-12 (-4 *4 (-1154)) (-5 *2 (-731)) (-5 *1 (-172 *4 *3)) + (-4 *3 (-635 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-998)) (-4 *2 (-647 *4 *5 *6)) + (-5 *1 (-102 *4 *3 *2 *5 *6)) (-4 *3 (-1176 *4)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-410 *4 *2)) (-4 *2 (-13 (-1139) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) (-4 *5 (-141)) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *2 (-300 *5)) (-5 *1 (-557 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-1135))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-698))))) -(((*1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344))))) -(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-721)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-721))))) -(((*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *4 (-1102)) - (-5 *1 (-1105)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1106)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *1 (-1106))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) + (-12 (-5 *3 (-606 (-210))) (-5 *2 (-1200 (-659))) (-5 *1 (-289))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) + (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-779 *4)) (-4 *4 (-807)) (-5 *2 (-111)) + (-5 *1 (-633 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-513))) (-5 *1 (-513))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-51)) (-5 *1 (-845 *4)) + (-4 *4 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) - (-4 *2 (-637 *3 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) + (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-807)) (-4 *2 (-529)))) + ((*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-314))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-562 *2)) (-4 *2 (-998))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *1) (-4 *1 (-471))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *1 *1) (|partial| -4 *1 (-1078)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-571 *4)) (-4 *4 (-797)) (-4 *2 (-797)) - (-5 *1 (-570 *2 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-4 *3 (-523))))) -(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-897))))) -(((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-257))))) -(((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-707))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-953)) (-5 *2 (-806))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208))))) -(((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *1) (-5 *1 (-783)))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) +(((*1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) + (-12 (-5 *2 (-731)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) (((*1 *2 *1) - (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030)) - (-4 *2 (-797))))) -(((*1 *1) (-5 *1 (-418)))) + (-12 (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-779 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-803)) (-5 *1 (-1222 *3 *2)) (-4 *3 (-998))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-388 (-531))) - (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-571 *3)) (-4 *3 (-411 *5)) - (-4 *5 (-13 (-797) (-523) (-977 (-531)))) - (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-414 *5 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) - (-4 *5 (-1160 *4)) - (-5 *2 (-2 (|:| -2351 (-388 *5)) (|:| |coeff| (-388 *5)))) - (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))) - ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))) - ((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) - ((*1 *2 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) - ((*1 *1 *1) (-4 *1 (-995)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(((*1 *1 *1) - (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797)) - (-4 *4 (-248 *3)) (-4 *5 (-743))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) + (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) + (-4 *4 (-333)) (-5 *2 (-649 *4)) (-5 *1 (-330 *4))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *2 (-1205)) + (-5 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-998)) (-4 *1 (-933 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-896 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-896 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-896 *3)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)) (-5 *3 (-210))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1176 *9)) (-4 *7 (-753)) (-4 *8 (-807)) (-4 *9 (-291)) + (-4 *10 (-902 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-606 (-1113 *10))) + (|:| |dterm| + (-606 (-606 (-2 (|:| -2521 (-731)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-606 *6)) (|:| |nlead| (-606 *10)))) + (-5 *1 (-738 *6 *7 *8 *9 *10)) (-5 *3 (-1113 *10)) (-5 *4 (-606 *6)) + (-5 *5 (-606 *10))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-5 *2 (-2 (|:| -3033 *3) (|:| -1798 *4)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110))))) -(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-507)) (-5 *1 (-506 *4)) - (-4 *4 (-1138))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) - (-4 *4 (-330)) (-5 *2 (-639 *4)) (-5 *1 (-327 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-721)) (-5 *2 (-1189))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) + (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-5 *2 (-2 (|:| -2926 *3) (|:| -2140 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) (-4 *7 (-529)) + (-4 *8 (-902 *7 *5 *6)) + (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *3))) + (-5 *1 (-906 *5 *6 *7 *8 *3)) (-5 *4 (-731)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -3301 (*8 $)) (-15 -3315 (*8 $)) (-15 -2341 ($ *8)))))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-1045)) (-5 *2 (-606 (-731))) + (-5 *1 (-857 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-606 (-463 *4 *5))) (-5 *3 (-818 *4)) + (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-1195 *4 *5 *6 *7))) - (-5 *1 (-1195 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 *9)) (-5 *4 (-1 (-110) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) - (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-598 (-1195 *6 *7 *8 *9))) - (-5 *1 (-1195 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) - (-4 *3 (-1030))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112))))) + (-12 (-5 *2 (-731)) (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-827)) (-5 *1 (-1203))))) +(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-639 (-388 (-895 (-531))))) - (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)) - (-5 *3 (-297 (-531)))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-571 *4)) (-5 *6 (-1098 *4)) - (-4 *4 (-13 (-411 *7) (-27) (-1124))) - (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-571 *4)) (-5 *6 (-388 (-1098 *4))) - (-4 *4 (-13 (-411 *7) (-27) (-1124))) - (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1175 *4)) - (-4 *4 (-37 (-388 (-531)))) - (-5 *2 (-1 (-1083 *4) (-1083 *4) (-1083 *4))) (-5 *1 (-1177 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3)) - (-4 *3 (-1138))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) - (-5 *1 (-699))))) + (-12 (-5 *3 (-798)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-797)))) + ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-986)) (-5 *1 (-797)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-606 (-363))) (-5 *5 (-606 (-800 (-363)))) + (-5 *6 (-606 (-300 (-363)))) (-5 *3 (-300 (-363))) (-5 *2 (-986)) + (-5 *1 (-797)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) + (-5 *5 (-606 (-800 (-363)))) (-5 *2 (-986)) (-5 *1 (-797)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 (-363))) (-5 *4 (-606 (-363))) (-5 *2 (-986)) + (-5 *1 (-797)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-300 (-363)))) (-5 *4 (-606 (-363))) + (-5 *2 (-986)) (-5 *1 (-797))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) + (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) + (-4 *5 (-223 (-2258 *3) (-731))) + (-14 *6 + (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *5)) + (-2 (|:| -2009 *2) (|:| -3283 *5)))) + (-4 *2 (-807)) (-5 *1 (-444 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-902 *4 *5 (-818 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-537)) (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) + (-4 *3 (-998)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-779 *4)) (-4 *4 (-807)) (-4 *1 (-1216 *4 *3)) + (-4 *3 (-998))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-4 *3 (-853 *5)) (-5 *2 (-649 *3)) + (-5 *1 (-652 *5 *3 *6 *4)) (-4 *6 (-357 *3)) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-606 (-1021 *4 *5 *2))) (-4 *4 (-1045)) + (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) + (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))) + (-5 *1 (-53 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-606 (-1021 *5 *6 *2))) (-5 *4 (-874)) (-4 *5 (-1045)) + (-4 *6 (-13 (-998) (-839 *5) (-807) (-580 (-845 *5)))) + (-4 *2 (-13 (-414 *6) (-839 *5) (-580 (-845 *5)))) + (-5 *1 (-53 *5 *6 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-962 *3)) (-4 *3 (-1154)) (-5 *2 (-537))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) + ((*1 *2 *1) + (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-752)) + (-4 *5 (-807)) (-5 *2 (-111))))) (((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) - (-4 *2 (-1160 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1105)))) + (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *1 *1 *1) (-4 *1 (-137))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-151 *2)) (-4 *2 (-522)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189)) - (-5 *1 (-1105)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189)) - (-5 *1 (-1105))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) - (-4 *4 (-1138)) (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) - ((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) - (-14 *4 (-598 (-1102))) (-4 *5 (-368))))) -(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-208))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *1 *1) (-5 *1 (-360))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-344)) (-5 *1 (-965 *3 *2)) (-4 *2 (-609 *3)))) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996)) + (-5 *3 (-537))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-111)) (-5 *5 (-537)) (-4 *6 (-347)) (-4 *6 (-352)) + (-4 *6 (-998)) (-5 *2 (-606 (-606 (-649 *6)))) (-5 *1 (-980 *6)) + (-5 *3 (-606 (-649 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-347)) (-4 *4 (-352)) (-4 *4 (-998)) + (-5 *2 (-606 (-606 (-649 *4)))) (-5 *1 (-980 *4)) + (-5 *3 (-606 (-649 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2723 *3) (|:| -4155 (-598 *5)))) - (-5 *1 (-965 *5 *3)) (-5 *4 (-598 *5)) (-4 *3 (-609 *5))))) + (-12 (-5 *4 (-111)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) + (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) + (-5 *3 (-606 (-649 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-874)) (-4 *5 (-347)) (-4 *5 (-352)) (-4 *5 (-998)) + (-5 *2 (-606 (-606 (-649 *5)))) (-5 *1 (-980 *5)) + (-5 *3 (-606 (-649 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *2 (-598 *3)) (-5 *1 (-867 *4 *5 *6 *3)) - (-4 *3 (-892 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-806))) (-5 *1 (-112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112)))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1122)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-606 (-1122))) (-5 *1 (-1122))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-816))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112)))) + (|partial| -12 (-5 *2 (-1 (-816) (-606 (-816)))) (-5 *1 (-113)))) ((*1 *2 *1) - (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3)) + (-12 (-5 *2 (-1205)) (-5 *1 (-200 *3)) (-4 *3 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) - (-15 -3403 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-375)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-375)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-661)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1119)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1119))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-155 *3 *4)) - (-4 *3 (-156 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721)) - (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-797)) (-5 *2 (-721)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-515 *3)) (-4 *3 (-516)))) - ((*1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-721)))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-746 *3 *4)) - (-4 *3 (-747 *4)))) - ((*1 *2) - (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-933 *3 *4)) - (-4 *3 (-934 *4)))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-937 *3 *4)) - (-4 *3 (-938 *4)))) - ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-952 *3)) (-4 *3 (-953)))) - ((*1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-721)))) - ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-994 *3)) (-4 *3 (-995))))) + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 (*2 $)) + (-15 -3404 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-378)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-483)))) + ((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-671)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1134)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1134))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)) - (-4 *2 (-1030)))) + (-12 (|has| *1 (-6 -4300)) (-4 *1 (-145 *2)) (-4 *2 (-1154)) + (-4 *2 (-1045)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3)) - (-4 *3 (-1138)))) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) + (-4 *3 (-1154)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030)) - (-5 *1 (-688 *4)))) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-537)) (-4 *4 (-1045)) + (-5 *1 (-698 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030)))) + (-12 (-5 *3 (-537)) (-5 *1 (-698 *2)) (-4 *2 (-1045)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *3) - (-12 (-5 *3 (-606 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-760 *4 *2)) - (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-607 *2 (-388 *2))) (-4 *2 (-1160 *4)) - (-5 *1 (-760 *4 *2)) - (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4)) - (-4 *3 (-398 *4)))) - ((*1 *2) - (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) - (-5 *2 (-1098 (-895 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105))))) -(((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) - (-14 *4 *2) (-4 *5 (-162)))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-864)) (-5 *1 (-155 *3 *4)) - (-4 *3 (-156 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-864)))) - ((*1 *2) - (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) - (-5 *2 (-864)))) - ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) - (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344)) - (-5 *2 (-721)) (-5 *1 (-620 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) - (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-721)) - (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3)) - (-4 *3 (-637 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) - (-5 *2 (-721))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-415)) + (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *1) (-12 (-4 *1 (-989 (-537))) (-4 *1 (-286)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-731)) (-4 *5 (-163)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-537)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-731)) (-4 *5 (-163)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 - (-598 - (-3 (|:| -3955 (-1102)) - (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) - (-5 *1 (-1106))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) - (-5 *1 (-792 *4 *5)) (-14 *4 (-721))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-144 *3)))) + (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) + (-232 *4 (-391 (-537))))) + (-5 *3 (-606 (-818 *4))) (-14 *4 (-606 (-1117))) (-14 *5 (-731)) + (-5 *1 (-486 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) + (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-4 *1 (-145 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4)))) - (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) + (-5 *2 (-606 (-2 (|:| -3283 (-731)) (|:| -2184 *4) (|:| |num| *4)))) + (-4 *4 (-1176 *3)) (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-110)) (-5 *1 (-418)))) + (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-5 *3 (-606 (-905 (-537)))) (-5 *4 (-111)) (-5 *1 (-421)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-5 *3 (-598 (-1102))) (-5 *4 (-110)) (-5 *1 (-418)))) + (-12 (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-5 *3 (-606 (-1117))) (-5 *4 (-111)) (-5 *1 (-421)))) ((*1 *2 *1) - (-12 (-5 *2 (-1083 *3)) (-5 *1 (-561 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)))) + (-12 (-5 *2 (-1098 *3)) (-5 *1 (-567 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) - (-4 *4 (-162)))) + (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) + (-4 *4 (-163)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) - (-4 *4 (-162)))) + (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) + (-4 *4 (-163)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) - (-4 *4 (-162)))) + (-12 (-5 *2 (-633 *3)) (-4 *3 (-807)) (-5 *1 (-625 *3 *4)) + (-4 *4 (-163)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 (-598 *3)))) (-4 *3 (-1030)) - (-5 *1 (-627 *3)))) + (-12 (-5 *2 (-606 (-606 (-606 *3)))) (-4 *3 (-1045)) + (-5 *1 (-636 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-664 *2 *3 *4)) (-4 *2 (-797)) (-4 *3 (-1030)) + (-12 (-5 *1 (-674 *2 *3 *4)) (-4 *2 (-807)) (-4 *3 (-1045)) (-14 *4 - (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3)) - (-2 (|:| -1889 *2) (|:| -1790 *3)))))) + (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) + (-2 (|:| -2009 *2) (|:| -3283 *3)))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138)))) + (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4)))) - (-4 *4 (-1030)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)))) + (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 *4)))) + (-4 *4 (-1045)) (-5 *1 (-842 *3 *4)) (-4 *3 (-1045)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *5)) (-4 *5 (-13 (-1030) (-33))) - (-5 *2 (-598 (-1067 *3 *5))) (-5 *1 (-1067 *3 *5)) - (-4 *3 (-13 (-1030) (-33))))) + (-12 (-5 *4 (-606 *5)) (-4 *5 (-13 (-1045) (-33))) + (-5 *2 (-606 (-1082 *3 *5))) (-5 *1 (-1082 *3 *5)) + (-4 *3 (-13 (-1045) (-33))))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| |val| *4) (|:| -2410 *5)))) - (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) - (-5 *2 (-598 (-1067 *4 *5))) (-5 *1 (-1067 *4 *5)))) + (-12 (-5 *3 (-606 (-2 (|:| |val| *4) (|:| -3852 *5)))) + (-4 *4 (-13 (-1045) (-33))) (-4 *5 (-13 (-1045) (-33))) + (-5 *2 (-606 (-1082 *4 *5))) (-5 *1 (-1082 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2410 *4))) - (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) - (-5 *1 (-1067 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3852 *4))) + (-4 *3 (-13 (-1045) (-33))) (-4 *4 (-13 (-1045) (-33))) + (-5 *1 (-1082 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33))))) + (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33))))) + (-12 (-5 *4 (-111)) (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-1030) (-33))) - (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))))) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-13 (-1045) (-33))) + (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-598 (-1067 *2 *3))) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33))) (-5 *1 (-1068 *2 *3)))) + (-12 (-5 *4 (-606 (-1082 *2 *3))) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33))) (-5 *1 (-1083 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-598 (-1068 *2 *3))) (-5 *1 (-1068 *2 *3)) - (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) + (-12 (-5 *4 (-606 (-1083 *2 *3))) (-5 *1 (-1083 *2 *3)) + (-4 *2 (-13 (-1045) (-33))) (-4 *3 (-13 (-1045) (-33))))) ((*1 *1 *2) - (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) + (-12 (-5 *2 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33))) (-5 *1 (-1083 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1092 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-598 (-1184 *4))) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) - (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) - (-5 *2 (-598 (-1184 *3)))))) -(((*1 *2) - (-12 (-4 *1 (-330)) - (-5 *2 (-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531)))))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-639 *11)) (-5 *4 (-598 (-388 (-895 *8)))) - (-5 *5 (-721)) (-5 *6 (-1085)) (-4 *8 (-13 (-289) (-140))) - (-4 *11 (-892 *8 *10 *9)) (-4 *9 (-13 (-797) (-573 (-1102)))) - (-4 *10 (-743)) - (-5 *2 - (-2 - (|:| |rgl| - (-598 - (-2 (|:| |eqzro| (-598 *11)) (|:| |neqzro| (-598 *11)) - (|:| |wcond| (-598 (-895 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1184 (-388 (-895 *8)))) - (|:| -3523 (-598 (-1184 (-388 (-895 *8)))))))))) - (|:| |rgsz| (-531)))) - (-5 *1 (-867 *8 *9 *10 *11)) (-5 *7 (-531))))) -(((*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *2 (-1000 *4 *5 *6)) (-5 *1 (-726 *4 *5 *6 *2 *3)) - (-4 *3 (-1005 *4 *5 *6 *2))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3))))) + (-12 (-5 *1 (-1107 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4086 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1200 *5)) (-4 *5 (-602 *4)) (-4 *4 (-529)) + (-5 *2 (-1200 *4)) (-5 *1 (-601 *4 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 (-232 *5 *6))) (-4 *6 (-435)) + (-5 *2 (-232 *5 *6)) (-14 *5 (-606 (-1117))) (-5 *1 (-594 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-110)) - (-5 *1 (-245))))) -(((*1 *1 *1) (-4 *1 (-93))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3))))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))) + (|partial| -12 (-5 *4 (-606 (-391 *6))) (-5 *3 (-391 *6)) + (-4 *6 (-1176 *5)) (-4 *5 (-13 (-347) (-141) (-989 (-537)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-541 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-1126 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1098 *3))) (-5 *1 (-1098 *3)) (-4 *3 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *4 (-347)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-5 *2 (-731)) (-5 *1 (-502 *4 *5 *6 *3)) (-4 *3 (-647 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-4 *3 (-529)) (-5 *2 (-731)))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *4 (-163)) (-4 *5 (-357 *4)) + (-4 *6 (-357 *4)) (-5 *2 (-731)) (-5 *1 (-648 *4 *5 *6 *3)) + (-4 *3 (-647 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-4 *5 (-529)) + (-5 *2 (-731))))) +(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-163)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-14 *6 (-1184 (-639 *3))) - (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))))) - ((*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1138)))) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-347)) (-14 *6 (-1200 (-649 *3))) + (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-874)) (-14 *5 (-606 (-1117))))) + ((*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1154)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'JINT 'X 'ELAM) (-2274) (-649)))) - (-5 *1 (-59 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'JINT 'X 'ELAM) (-2350) (-659)))) + (-5 *1 (-59 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'XC) (-649)))) - (-5 *1 (-61 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'XC) (-659)))) + (-5 *1 (-61 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-320 (-2274 'X) (-2274) (-649))) (-5 *1 (-62 *3)) - (-14 *3 (-1102)))) + (-12 (-5 *2 (-323 (-2350 'X) (-2350) (-659))) (-5 *1 (-62 *3)) + (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-639 (-320 (-2274) (-2274 'X 'HESS) (-649)))) - (-5 *1 (-63 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-649 (-323 (-2350) (-2350 'X 'HESS) (-659)))) + (-5 *1 (-63 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-320 (-2274) (-2274 'XC) (-649))) (-5 *1 (-64 *3)) - (-14 *3 (-1102)))) + (-12 (-5 *2 (-323 (-2350) (-2350 'XC) (-659))) (-5 *1 (-64 *3)) + (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'X) (-2274 '-4139) (-649)))) - (-5 *1 (-69 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'X) (-2350 '-4142) (-659)))) + (-5 *1 (-69 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'X) (-649)))) - (-5 *1 (-72 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'X) (-659)))) + (-5 *1 (-72 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'X 'EPS) (-2274 '-4139) (-649)))) - (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102)) - (-14 *5 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'X 'EPS) (-2350 '-4142) (-659)))) + (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) + (-14 *5 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'EPS) (-2274 'YA 'YB) (-649)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102)) - (-14 *5 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'EPS) (-2350 'YA 'YB) (-659)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1117)) (-14 *4 (-1117)) + (-14 *5 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-320 (-2274) (-2274 'X) (-649))) (-5 *1 (-75 *3)) - (-14 *3 (-1102)))) + (-12 (-5 *2 (-323 (-2350) (-2350 'X) (-659))) (-5 *1 (-75 *3)) + (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-320 (-2274) (-2274 'X) (-649))) (-5 *1 (-76 *3)) - (-14 *3 (-1102)))) + (-12 (-5 *2 (-323 (-2350) (-2350 'X) (-659))) (-5 *1 (-76 *3)) + (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'XC) (-649)))) - (-5 *1 (-77 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'XC) (-659)))) + (-5 *1 (-77 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'X) (-649)))) - (-5 *1 (-78 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'X) (-659)))) + (-5 *1 (-78 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'X) (-649)))) - (-5 *1 (-79 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350) (-2350 'X) (-659)))) + (-5 *1 (-79 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'X '-4139) (-2274) (-649)))) - (-5 *1 (-80 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'X '-4142) (-2350) (-659)))) + (-5 *1 (-80 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-639 (-320 (-2274 'X '-4139) (-2274) (-649)))) - (-5 *1 (-81 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-649 (-323 (-2350 'X '-4142) (-2350) (-659)))) + (-5 *1 (-81 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-639 (-320 (-2274 'X) (-2274) (-649)))) (-5 *1 (-82 *3)) - (-14 *3 (-1102)))) + (-12 (-5 *2 (-649 (-323 (-2350 'X) (-2350) (-659)))) (-5 *1 (-82 *3)) + (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'X) (-2274) (-649)))) - (-5 *1 (-83 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'X) (-2350) (-659)))) + (-5 *1 (-83 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-320 (-2274 'X) (-2274 '-4139) (-649)))) - (-5 *1 (-84 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-1200 (-323 (-2350 'X) (-2350 '-4142) (-659)))) + (-5 *1 (-84 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-639 (-320 (-2274 'XL 'XR 'ELAM) (-2274) (-649)))) - (-5 *1 (-85 *3)) (-14 *3 (-1102)))) + (-12 (-5 *2 (-649 (-323 (-2350 'XL 'XR 'ELAM) (-2350) (-659)))) + (-5 *1 (-85 *3)) (-14 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-320 (-2274 'X) (-2274 '-4139) (-649))) (-5 *1 (-87 *3)) - (-14 *3 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-945 2)) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) - ((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127)))) + (-12 (-5 *2 (-323 (-2350 'X) (-2350 '-4142) (-659))) (-5 *1 (-87 *3)) + (-14 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-956 2)) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) + ((*1 *1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-128)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) - (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) + (-12 (-5 *2 (-606 (-133 *3 *4 *5))) (-5 *1 (-133 *3 *4 *5)) + (-14 *3 (-537)) (-14 *4 (-731)) (-4 *5 (-163)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) - (-14 *3 (-531)) (-14 *4 (-721)))) + (-12 (-5 *2 (-606 *5)) (-4 *5 (-163)) (-5 *1 (-133 *3 *4 *5)) + (-14 *3 (-537)) (-14 *4 (-731)))) ((*1 *1 *2) - (-12 (-5 *2 (-1069 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162)) - (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)))) + (-12 (-5 *2 (-1084 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) + (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) ((*1 *1 *2) - (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162)) - (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)))) + (-12 (-5 *2 (-225 *4 *5)) (-14 *4 (-731)) (-4 *5 (-163)) + (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)))) ((*1 *2 *3) - (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162)) - (-5 *2 (-1184 (-639 (-388 (-895 *4))))) (-5 *1 (-173 *4)))) + (-12 (-5 *3 (-1200 (-649 *4))) (-4 *4 (-163)) + (-5 *2 (-1200 (-649 (-391 (-905 *4))))) (-5 *1 (-175 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) + (-12 (-5 *2 (-606 *3)) (-4 *3 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) - (-15 -3403 ((-1189) $))))) - (-5 *1 (-198 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-945 10)) (-5 *1 (-201)))) - ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-228 *3)) (-4 *3 (-797)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1023 (-297 *4))) - (-4 *4 (-13 (-797) (-523) (-573 (-360)))) (-5 *2 (-1023 (-360))) - (-5 *1 (-240 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257)))) + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) + (-15 -3404 ((-1205) $))))) + (-5 *1 (-200 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-956 10)) (-5 *1 (-203)))) + ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-230 *3)) (-4 *3 (-807)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1038 (-300 *4))) + (-4 *4 (-13 (-807) (-529) (-580 (-363)))) (-5 *2 (-1038 (-363))) + (-5 *1 (-242 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-259)))) ((*1 *2 *1) - (-12 (-4 *2 (-1160 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1176 *3)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-163)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) - (-14 *5 (-1102)) (-14 *6 *4) - (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) - (-5 *1 (-294 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-311)))) + (-12 (-5 *2 (-1185 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) + (-14 *5 (-1117)) (-14 *6 *4) + (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) + (-5 *1 (-297 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-314)))) ((*1 *2 *1) - (-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5)) - (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) + (-12 (-5 *2 (-300 *5)) (-5 *1 (-323 *3 *4 *5)) + (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) ((*1 *2 *3) - (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2)) - (-4 *3 (-310 *4)))) + (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *3 *4 *2)) + (-4 *3 (-313 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3)) - (-4 *3 (-310 *4)))) + (-12 (-4 *4 (-333)) (-4 *2 (-313 *4)) (-5 *1 (-331 *2 *4 *3)) + (-4 *3 (-313 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) - (-5 *2 (-1206 *3 *4)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) + (-5 *2 (-1223 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) - (-5 *2 (-1197 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) + (-5 *2 (-1214 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) - (-4 *1 (-364)))) - ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-364)))) - ((*1 *1 *2) (-12 (-5 *2 (-639 (-649))) (-4 *1 (-364)))) + (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) + (-4 *1 (-367)))) + ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-367)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-367)))) + ((*1 *1 *2) (-12 (-5 *2 (-649 (-659))) (-4 *1 (-367)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) - (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-365)))) - ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))) - ((*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1030)))) - ((*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-375)))) + (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) + (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-4 *1 (-373)))) + ((*1 *2 *3) (-12 (-5 *2 (-378)) (-5 *1 (-377 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-378)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) - (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-377)))) + (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) + (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-380)))) ((*1 *1 *2) - (-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-278 (-300 (-160 (-363))))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-278 (-300 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-276 (-297 (-531)))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-278 (-300 (-537)))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-300 (-160 (-363)))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-300 (-363))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-531))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-300 (-537))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-276 (-297 (-644)))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-278 (-300 (-654)))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-278 (-300 (-659)))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-276 (-297 (-651)))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-278 (-300 (-661)))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-644))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-300 (-654))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-300 (-659))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-651))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-300 (-661))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) - (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) - (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) + (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) - (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-606 (-314))) (-5 *1 (-382 *3 *4 *5 *6)) + (-14 *3 (-1117)) (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) - (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) - (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) + (-12 (-5 *2 (-314)) (-5 *1 (-382 *3 *4 *5 *6)) (-14 *3 (-1117)) + (-14 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-14 *5 (-606 (-1117))) (-14 *6 (-1121)))) ((*1 *1 *2) - (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-797) (-21))) - (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))))) + (-12 (-5 *2 (-315 *4)) (-4 *4 (-13 (-807) (-21))) + (-5 *1 (-411 *3 *4)) (-4 *3 (-13 (-163) (-37 (-391 (-537))))))) ((*1 *1 *2) - (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-531))))) - (-4 *3 (-13 (-797) (-21))))) + (-12 (-5 *1 (-411 *2 *3)) (-4 *2 (-13 (-163) (-37 (-391 (-537))))) + (-4 *3 (-13 (-807) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-388 (-895 (-388 *3)))) (-4 *3 (-523)) (-4 *3 (-797)) - (-4 *1 (-411 *3)))) + (-12 (-5 *2 (-391 (-905 (-391 *3)))) (-4 *3 (-529)) (-4 *3 (-807)) + (-4 *1 (-414 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-895 (-388 *3))) (-4 *3 (-523)) (-4 *3 (-797)) - (-4 *1 (-411 *3)))) + (-12 (-5 *2 (-905 (-391 *3))) (-4 *3 (-529)) (-4 *3 (-807)) + (-4 *1 (-414 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-388 *3)) (-4 *3 (-523)) (-4 *3 (-797)) - (-4 *1 (-411 *3)))) + (-12 (-5 *2 (-391 *3)) (-4 *3 (-529)) (-4 *3 (-807)) + (-4 *1 (-414 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-986)) (-4 *3 (-797)) - (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-415)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-415)))) - ((*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-418)))) + (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-998)) (-4 *3 (-807)) + (-4 *1 (-414 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-418)))) + ((*1 *1 *2) (-12 (-5 *2 (-418)) (-5 *1 (-421)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-421)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) - (-4 *1 (-420)))) - ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-420)))) - ((*1 *1 *2) (-12 (-5 *2 (-1184 (-649))) (-4 *1 (-420)))) + (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) + (-4 *1 (-423)))) + ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-423)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-423)))) + ((*1 *1 *2) (-12 (-5 *2 (-1200 (-659))) (-4 *1 (-423)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) - (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-421)))) + (-5 *2 (-2 (|:| |localSymbols| (-1121)) (|:| -3360 (-606 (-314))))) + (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-314)) (-4 *1 (-424)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-4 *1 (-424)))) ((*1 *1 *2) - (-12 (-5 *2 (-1184 (-388 (-895 *3)))) (-4 *3 (-162)) - (-14 *6 (-1184 (-639 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-14 *4 (-864)) (-14 *5 (-598 (-1102))))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-448)))) + (-12 (-5 *2 (-1200 (-391 (-905 *3)))) (-4 *3 (-163)) + (-14 *6 (-1200 (-649 *3))) (-5 *1 (-436 *3 *4 *5 *6)) + (-14 *4 (-874)) (-14 *5 (-606 (-1117))))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-451)))) ((*1 *1 *2) - (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) - (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) + (-12 (-5 *2 (-1185 *3 *4 *5)) (-4 *3 (-998)) (-14 *4 (-1117)) + (-14 *5 *3) (-5 *1 (-457 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-945 16)) (-5 *1 (-466)))) - ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))) - ((*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-480)))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-457 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-956 16)) (-5 *1 (-469)))) + ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) + ((*1 *1 *2) (-12 (-5 *2 (-1069 (-537) (-578 (-476)))) (-5 *1 (-476)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-483)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-565)))) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-505)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-571)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-572)))) ((*1 *1 *2) - (-12 (-4 *3 (-162)) (-5 *1 (-566 *3 *2)) (-4 *2 (-695 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-986)))) + (-12 (-4 *3 (-163)) (-5 *1 (-573 *3 *2)) (-4 *2 (-705 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-998)))) ((*1 *2 *1) - (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) + (-12 (-5 *2 (-1219 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) ((*1 *2 *1) - (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) + (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) ((*1 *1 *2) - (-12 (-4 *3 (-162)) (-5 *1 (-590 *3 *2)) (-4 *2 (-695 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-628 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) + (-12 (-4 *3 (-163)) (-5 *1 (-598 *3 *2)) (-4 *2 (-705 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-637 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) ((*1 *2 *1) - (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-5 *1 (-627 *3)) - (-4 *3 (-1030)))) + (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-5 *1 (-636 *3)) + (-4 *3 (-1045)))) ((*1 *1 *2) - (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-4 *3 (-1030)) - (-5 *1 (-627 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030)))) + (-12 (-5 *2 (-911 (-911 (-911 *3)))) (-4 *3 (-1045)) + (-5 *1 (-636 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) + ((*1 *1 *2) (-12 (-5 *2 (-1062)) (-5 *1 (-641)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-642 *3)) (-4 *3 (-1045)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *2)) (-4 *4 (-354 *3)) - (-4 *2 (-354 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) - ((*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) - ((*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-651))) (-5 *1 (-644)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-644)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-531))) (-5 *1 (-644)))) - ((*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644)))) - ((*1 *1 *2) (-12 (-5 *2 (-651)) (-5 *1 (-649)))) - ((*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-649)))) - ((*1 *2 *3) - (-12 (-5 *3 (-297 (-531))) (-5 *2 (-297 (-651))) (-5 *1 (-651)))) - ((*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1030)))) - ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) + (-12 (-4 *3 (-998)) (-4 *1 (-647 *3 *4 *2)) (-4 *4 (-357 *3)) + (-4 *2 (-357 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) + ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-579 (-816))))) + ((*1 *2 *1) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654)))) + ((*1 *1 *2) (-12 (-5 *2 (-160 (-661))) (-5 *1 (-654)))) + ((*1 *1 *2) (-12 (-5 *2 (-160 (-659))) (-5 *1 (-654)))) + ((*1 *1 *2) (-12 (-5 *2 (-160 (-537))) (-5 *1 (-654)))) + ((*1 *1 *2) (-12 (-5 *2 (-160 (-363))) (-5 *1 (-654)))) + ((*1 *1 *2) (-12 (-5 *2 (-661)) (-5 *1 (-659)))) + ((*1 *2 *1) (-12 (-5 *2 (-363)) (-5 *1 (-659)))) + ((*1 *2 *3) + (-12 (-5 *3 (-300 (-537))) (-5 *2 (-300 (-661))) (-5 *1 (-661)))) + ((*1 *1 *2) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1045)))) + ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671)))) ((*1 *2 *1) - (-12 (-4 *2 (-162)) (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-163)) (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) + (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) - (-5 *1 (-664 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-1030)) - (-14 *5 (-1 (-110) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) + (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-807)) (-4 *4 (-1045)) + (-14 *5 (-1 (-111) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) (-4 *3 (-797)) - (-4 *4 (-1030)) (-5 *1 (-664 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -2009 *3) (|:| -3283 *4))) (-4 *3 (-807)) + (-4 *4 (-1045)) (-5 *1 (-674 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-162)) (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-163)) (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) (-4 *3 (-986)) - (-4 *4 (-677)) (-5 *1 (-686 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-714)))) + (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) (-4 *3 (-998)) + (-4 *4 (-687)) (-5 *1 (-696 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-724)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) (|:| |mdnia| - (-2 (|:| |fn| (-297 (-208))) - (|:| -2368 (-598 (-1025 (-790 (-208))))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) - (-5 *1 (-719)))) + (-2 (|:| |fn| (-300 (-210))) + (|:| -2133 (-606 (-1040 (-800 (-210))))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))))) + (-5 *1 (-729)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-297 (-208))) - (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *1 (-719)))) + (-2 (|:| |fn| (-300 (-210))) + (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *1 (-729)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *1 (-719)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-719)))) - ((*1 *2 *3) (-12 (-5 *2 (-724)) (-5 *1 (-723 *3)) (-4 *3 (-1138)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *1 (-729)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-729)))) + ((*1 *2 *3) (-12 (-5 *2 (-734)) (-5 *1 (-733 *3)) (-4 *3 (-1154)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *1 (-758)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-758)))) + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *1 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-768)))) ((*1 *2 *1) - (-12 (-4 *2 (-843 *3)) (-5 *1 (-767 *3 *2 *4)) (-4 *3 (-1030)) + (-12 (-4 *2 (-853 *3)) (-5 *1 (-777 *3 *2 *4)) (-4 *3 (-1045)) (-14 *4 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-1030)) (-14 *4 *3) (-5 *1 (-767 *3 *2 *4)) - (-4 *2 (-843 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-774)))) + (-12 (-4 *3 (-1045)) (-14 *4 *3) (-5 *1 (-777 *3 *2 *4)) + (-4 *2 (-853 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-784)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) - (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) + (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) (|:| |lsa| - (-2 (|:| |lfn| (-598 (-297 (-208)))) - (|:| -3788 (-598 (-208))))))) - (-5 *1 (-788)))) + (-2 (|:| |lfn| (-606 (-300 (-210)))) + (|:| -3956 (-606 (-210))))))) + (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) - (-5 *1 (-788)))) + (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) + (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) - (-5 *1 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-788)))) + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) + (-5 *1 (-798)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-798)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-802 *3 *4 *5 *6)) - (-4 *4 (-986)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-805)))) + (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-812 *3 *4 *5 *6)) + (-4 *4 (-998)) (-14 *5 (-97 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-815)))) ((*1 *1 *2) - (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-809 *3 *4 *5 *6)) - (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721)))) + (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-819 *3 *4 *5 *6)) + (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) ((*1 *2 *1) - (-12 (-5 *2 (-895 *3)) (-5 *1 (-809 *3 *4 *5 *6)) (-4 *3 (-986)) - (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721)))) - ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) + (-12 (-5 *2 (-905 *3)) (-5 *1 (-819 *3 *4 *5 *6)) (-4 *3 (-998)) + (-14 *4 (-606 (-1117))) (-14 *5 (-606 (-731))) (-14 *6 (-731)))) + ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) ((*1 *2 *3) - (-12 (-5 *3 (-895 (-47))) (-5 *2 (-297 (-531))) (-5 *1 (-818)))) + (-12 (-5 *3 (-905 (-47))) (-5 *2 (-300 (-537))) (-5 *1 (-828)))) ((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 (-47)))) (-5 *2 (-297 (-531))) - (-5 *1 (-818)))) - ((*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) + (-12 (-5 *3 (-391 (-905 (-47)))) (-5 *2 (-300 (-537))) + (-5 *1 (-828)))) + ((*1 *1 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-779 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-598 (-297 (-208)))) + (-2 (|:| |pde| (-606 (-300 (-210)))) (|:| |constraints| - (-598 - (-2 (|:| |start| (-208)) (|:| |finish| (-208)) - (|:| |grid| (-721)) (|:| |boundaryType| (-531)) - (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) - (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) - (|:| |tol| (-208)))) - (-5 *1 (-841)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-841)))) + (-606 + (-2 (|:| |start| (-210)) (|:| |finish| (-210)) + (|:| |grid| (-731)) (|:| |boundaryType| (-537)) + (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) + (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) + (|:| |tol| (-210)))) + (-5 *1 (-851)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-851)))) ((*1 *2 *1) - (-12 (-5 *2 (-1125 *3)) (-5 *1 (-844 *3)) (-4 *3 (-1030)))) + (-12 (-5 *2 (-1140 *3)) (-5 *1 (-854 *3)) (-4 *3 (-1045)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3)))) + (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) + (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *3 (-1045)) (-5 *1 (-858 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-857 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) - ((*1 *2 *3) - (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-862 *4)) - (-4 *4 (-13 (-797) (-523))))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) - ((*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913)))) + (-12 (-5 *2 (-391 (-402 *3))) (-4 *3 (-291)) (-5 *1 (-867 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-391 *3)) (-5 *1 (-867 *3)) (-4 *3 (-291)))) + ((*1 *2 *3) + (-12 (-5 *3 (-460)) (-5 *2 (-300 *4)) (-5 *1 (-872 *4)) + (-4 *4 (-13 (-807) (-529))))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) + ((*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-920)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-924)))) ((*1 *2 *1) - (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) - ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-973 *3)) (-4 *3 (-1138)))) - ((*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-973 *2)) (-4 *2 (-1138)))) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) + ((*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-984 *3)) (-4 *3 (-1154)))) + ((*1 *2 *3) (-12 (-5 *3 (-296)) (-5 *1 (-984 *2)) (-4 *2 (-1154)))) ((*1 *1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5)) - (-14 *6 (-598 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-985 *3 *4 *5 *2 *6)) (-4 *2 (-902 *3 *4 *5)) + (-14 *6 (-606 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) ((*1 *2 *3) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-982 *3)) (-4 *3 (-523)))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-986)))) + (-12 (-5 *2 (-391 (-905 *3))) (-5 *1 (-994 *3)) (-4 *3 (-529)))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-998)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 *5)) (-5 *1 (-990 *3 *4 *5)) (-14 *3 (-721)) - (-14 *4 (-721)) (-4 *5 (-986)))) + (-12 (-5 *2 (-649 *5)) (-5 *1 (-1002 *3 *4 *5)) (-14 *3 (-731)) + (-14 *4 (-731)) (-4 *5 (-998)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2)) - (-4 *2 (-892 *3 (-503 *4) *4)))) + (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) + (-4 *2 (-902 *3 (-509 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *2 (-797)) (-5 *1 (-1055 *3 *2 *4)) - (-4 *4 (-892 *3 (-503 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-806)))) + (-12 (-4 *3 (-998)) (-4 *2 (-807)) (-5 *1 (-1070 *3 *2 *4)) + (-4 *4 (-902 *3 (-509 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-816)))) ((*1 *2 *1) - (-12 (-5 *2 (-639 *4)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-721)) - (-4 *4 (-986)))) - ((*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1071)))) + (-12 (-5 *2 (-649 *4)) (-5 *1 (-1084 *3 *4)) (-14 *3 (-731)) + (-4 *4 (-998)))) + ((*1 *1 *2) (-12 (-5 *2 (-138)) (-4 *1 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) + (-12 (-5 *2 (-1098 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-998)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1108 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1114 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1115 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102)) - (-14 *5 *3) (-5 *1 (-1100 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1101)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112 (-1102) (-418))) (-5 *1 (-1106)))) - ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) - ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1111 *3)) (-4 *3 (-1030)))) - ((*1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *1 (-1118 *3)) (-4 *3 (-1030)))) - ((*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1119)))) - ((*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-1133 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-986)))) + (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) + (-14 *5 *3) (-5 *1 (-1115 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1116)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127 (-1117) (-421))) (-5 *1 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-210)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1126 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *1 (-1133 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2) (-12 (-5 *2 (-816)) (-5 *1 (-1134)))) + ((*1 *1 *2) (-12 (-5 *2 (-905 *3)) (-4 *3 (-998)) (-5 *1 (-1148 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1148 *3)) (-4 *3 (-998)))) ((*1 *1 *2) - (-12 (-5 *2 (-901 *3)) (-4 *3 (-1138)) (-5 *1 (-1136 *3)))) + (-12 (-5 *2 (-911 *3)) (-4 *3 (-1154)) (-5 *1 (-1151 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-1153)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *1 (-1146 *3 *2)) (-4 *2 (-1175 *3)))) + (-12 (-4 *3 (-998)) (-4 *1 (-1162 *3 *2)) (-4 *2 (-1191 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1164 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1025 *3)) (-4 *3 (-1138)) (-5 *1 (-1151 *3)))) + (-12 (-5 *2 (-1040 *3)) (-4 *3 (-1154)) (-5 *1 (-1167 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-1157 *3 *4)) - (-4 *4 (-986)))) + (-12 (-5 *2 (-1196 *3)) (-14 *3 (-1117)) (-5 *1 (-1173 *3 *4)) + (-4 *4 (-998)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *1 (-1167 *3 *2)) (-4 *2 (-1144 *3)))) + (-12 (-4 *3 (-998)) (-4 *1 (-1183 *3 *2)) (-4 *2 (-1160 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1185 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-986)) (-14 *5 *3))) + (-12 (-5 *2 (-1196 *4)) (-14 *4 (-1117)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-998)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102)) - (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1185)))) - ((*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1185)) (-5 *1 (-1188)))) - ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1189)))) + (-12 (-5 *2 (-1173 *4 *3)) (-4 *3 (-998)) (-14 *4 (-1117)) + (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1201)))) + ((*1 *2 *3) (-12 (-5 *3 (-451)) (-5 *2 (-1201)) (-5 *1 (-1204)))) + ((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-1205)))) ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4)) - (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-892 *3 *5 *4)) - (-14 *7 (-598 (-721))) (-14 *8 (-721)))) + (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) + (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-902 *3 *5 *4)) + (-14 *7 (-606 (-731))) (-14 *8 (-731)))) ((*1 *2 *1) - (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4)) - (-14 *7 (-598 (-721))) (-14 *8 (-721)))) - ((*1 *1 *2) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-986)))) - ((*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) + (-12 (-4 *2 (-902 *3 *5 *4)) (-5 *1 (-1211 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-998)) (-4 *4 (-807)) (-4 *5 (-753)) (-14 *6 (-606 *4)) + (-14 *7 (-606 (-731))) (-14 *8 (-731)))) + ((*1 *1 *2) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-998)))) + ((*1 *1 *2) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) ((*1 *2 *1) - (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-162)))) + (-12 (-5 *2 (-1223 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-163)))) ((*1 *2 *1) - (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-162)))) + (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-163)))) ((*1 *1 *2) - (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) - (-5 *1 (-1202 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)) (-4 *2 (-793))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-639 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3))))) + (-12 (-5 *2 (-625 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) + (-5 *1 (-1219 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1222 *3 *2)) (-4 *3 (-998)) (-4 *2 (-803))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) - (-4 *2 (-344)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-208)))) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) + (-4 *2 (-347)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-210)))) ((*1 *1 *1 *1) - (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138))) - (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138))))) - ((*1 *1 *1 *1) (-4 *1 (-344))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) + (-1533 (-12 (-5 *1 (-278 *2)) (-4 *2 (-347)) (-4 *2 (-1154))) + (-12 (-5 *1 (-278 *2)) (-4 *2 (-456)) (-4 *2 (-1154))))) + ((*1 *1 *1 *1) (-4 *1 (-347))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-363)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-523)) (-4 *3 (-797)) - (-4 *1 (-411 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-453))) + (-12 (-5 *2 (-1069 *3 (-578 *1))) (-4 *3 (-529)) (-4 *3 (-807)) + (-4 *1 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-507))) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-513))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-162)) (-5 *1 (-577 *2 *4 *3)) (-4 *2 (-37 *4)) - (-4 *3 (|SubsetCategory| (-677) *4)))) + (-12 (-4 *4 (-163)) (-5 *1 (-584 *2 *4 *3)) (-4 *2 (-37 *4)) + (-4 *3 (|SubsetCategory| (-687) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-162)) (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4)) - (-4 *2 (|SubsetCategory| (-677) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)) (-4 *2 (-344)))) + (-12 (-4 *4 (-163)) (-5 *1 (-584 *3 *4 *2)) (-4 *3 (-37 *4)) + (-4 *2 (|SubsetCategory| (-687) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-163)) (-4 *2 (-347)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-162)) (-5 *1 (-615 *2 *4 *3)) (-4 *2 (-668 *4)) - (-4 *3 (|SubsetCategory| (-677) *4)))) + (-12 (-4 *4 (-163)) (-5 *1 (-623 *2 *4 *3)) (-4 *2 (-678 *4)) + (-4 *3 (|SubsetCategory| (-687) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-162)) (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4)) - (-4 *2 (|SubsetCategory| (-677) *4)))) + (-12 (-4 *4 (-163)) (-5 *1 (-623 *3 *4 *2)) (-4 *3 (-678 *4)) + (-4 *2 (|SubsetCategory| (-687) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)) (-4 *2 (-344)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)) (-4 *2 (-347)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-809 *2 *3 *4 *5)) (-4 *2 (-344)) - (-4 *2 (-986)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-721))) - (-14 *5 (-721)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) + (|partial| -12 (-5 *1 (-819 *2 *3 *4 *5)) (-4 *2 (-347)) + (-4 *2 (-998)) (-14 *3 (-606 (-1117))) (-14 *4 (-606 (-731))) + (-14 *5 (-731)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986)) - (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) + (-12 (-4 *1 (-1001 *3 *4 *2 *5 *6)) (-4 *2 (-998)) + (-4 *5 (-223 *4 *2)) (-4 *6 (-223 *3 *2)) (-4 *2 (-347)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-344)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-347)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-344)) (-4 *2 (-986)) (-4 *3 (-797)) - (-4 *4 (-743)) (-14 *6 (-598 *3)) - (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-892 *2 *4 *3)) - (-14 *7 (-598 (-721))) (-14 *8 (-721)))) + (|partial| -12 (-4 *2 (-347)) (-4 *2 (-998)) (-4 *3 (-807)) + (-4 *4 (-753)) (-14 *6 (-606 *3)) + (-5 *1 (-1211 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-902 *2 *4 *3)) + (-14 *7 (-606 (-731))) (-14 *8 (-731)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-344)) (-4 *2 (-986)) - (-4 *3 (-793))))) -(((*1 *2) - (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) - (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-986)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-864)) (-5 *1 (-970 *2)) - (-4 *2 (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-531)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-289)) - (-4 *9 (-892 *8 *6 *7)) - (-5 *2 (-2 (|:| -2451 (-1098 *9)) (|:| |polval| (-1098 *8)))) - (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)) (-5 *4 (-1098 *8))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-523)) (-4 *2 (-986)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1)))) - (-4 *1 (-1005 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) - ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360))))) + (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-347)) (-4 *2 (-998)) + (-4 *3 (-803))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) + (-12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-514 *3 *2)) + (-4 *2 (-1191 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) + (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-4 *4 (-1176 *3)) + (-4 *5 (-685 *3 *4)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-1191 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) + (-12 (-4 *3 (-13 (-347) (-352) (-580 (-537)))) (-5 *1 (-519 *3 *2)) + (-4 *2 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1) (-4 *1 (-1127)))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-388 (-531)))) - (-5 *2 (-2 (|:| -2343 (-1083 *4)) (|:| -2356 (-1083 *4)))) - (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-529) (-141))) + (-5 *1 (-1094 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-606 (-649 (-300 (-537))))) (-5 *1 (-982))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) + (-5 *1 (-31 *4 *5)) (-4 *5 (-414 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) + (-5 *1 (-150 *4 *5)) (-4 *5 (-414 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) + (-5 *1 (-260 *4 *5)) (-4 *5 (-13 (-414 *4) (-954))))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-285 *4)) (-4 *4 (-286)))) + ((*1 *2 *3) (-12 (-4 *1 (-286)) (-5 *3 (-113)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) + (-5 *1 (-415 *4 *5)) (-4 *5 (-414 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-111)) + (-5 *1 (-593 *4 *5)) (-4 *5 (-13 (-414 *4) (-954) (-1139)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176))))) +(((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-874)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1200 *4)) (-4 *4 (-333)) (-5 *2 (-874)) + (-5 *1 (-507 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-402 *3)) (-4 *3 (-529)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-2 (|:| -3622 *4) (|:| -2872 (-537))))) + (-4 *4 (-1176 (-537))) (-5 *2 (-731)) (-5 *1 (-425 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *3 (-1176 *4)) (-5 *1 (-769 *4 *3 *2 *5)) (-4 *2 (-617 *3)) + (-4 *5 (-617 (-391 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-391 *5)) + (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-1176 *4)) + (-5 *1 (-769 *4 *5 *2 *6)) (-4 *2 (-617 *5)) (-4 *6 (-617 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1135)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1135))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-130))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-131))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-198 *2)) + (-12 (-5 *1 (-200 *2)) (-4 *2 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) - (-15 -3403 ((-1189) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) + (-15 -3404 ((-1205) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-21)) (-4 *2 (-1154)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) + (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) - ((*1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-399 *5)) (-4 *5 (-523)) - (-5 *2 - (-2 (|:| -1790 (-721)) (|:| -2005 *5) (|:| |radicand| (-598 *5)))) - (-5 *1 (-301 *5)) (-5 *4 (-721)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-531))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-523)) (-4 *2 (-432)) (-5 *1 (-912 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-523)) - (-4 *7 (-892 *3 *5 *6)) - (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *8) (|:| |radicand| *8))) - (-5 *1 (-896 *5 *6 *3 *7 *8)) (-5 *4 (-721)) - (-4 *8 - (-13 (-344) - (-10 -8 (-15 -1840 (*7 $)) (-15 -1853 (*7 $)) (-15 -2265 ($ *7)))))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3)) - (-4 *3 (-1030)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138))))) -(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) - ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-110)) (-5 *1 (-771))))) -(((*1 *1) (-5 *1 (-526)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-21))))) +(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1) (-4 *1 (-1127)))) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-97 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-998)) + (-5 *1 (-810 *5 *2)) (-4 *2 (-809 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) (-5 *3 (-537)) + (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-606 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-537))))) + (-4 *2 (-529)) (-5 *1 (-402 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-537)) + (|:| -3415 (-606 (-2 (|:| |irr| *4) (|:| -2430 (-537))))))) + (-4 *4 (-1176 (-537))) (-5 *2 (-402 *4)) (-5 *1 (-425 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) + (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) + (-4 *3 (-326 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) + (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-656 *3 *4)) (-4 *3 (-1138)) (-4 *4 (-1138))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-148))) + (-12 (-4 *5 (-1045)) (-4 *6 (-839 *5)) (-5 *2 (-838 *5 *6 (-606 *6))) + (-5 *1 (-840 *5 *6 *4)) (-5 *3 (-606 *6)) (-4 *4 (-580 (-845 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 *3))) (-5 *1 (-840 *5 *3 *4)) + (-4 *3 (-989 (-1117))) (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-5 *2 (-606 (-278 (-905 *3)))) + (-5 *1 (-840 *5 *3 *4)) (-4 *3 (-998)) + (-3679 (-4 *3 (-989 (-1117)))) (-4 *3 (-839 *5)) + (-4 *4 (-580 (-845 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-5 *2 (-842 *5 *3)) (-5 *1 (-840 *5 *3 *4)) + (-3679 (-4 *3 (-989 (-1117)))) (-3679 (-4 *3 (-998))) + (-4 *3 (-839 *5)) (-4 *4 (-580 (-845 *5)))))) +(((*1 *1) (-5 *1 (-1031)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-149))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-198 *2)) + (-12 (-5 *1 (-200 *2)) (-4 *2 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) - (-15 -3403 ((-1189) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138)))) + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) + (-15 -3404 ((-1205) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-25)) (-4 *2 (-1154)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128)))) + (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) - (-4 *2 (-1160 *3)))) + (-12 (-4 *3 (-13 (-347) (-141))) (-5 *1 (-383 *3 *2)) + (-4 *2 (-1176 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) + (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) - (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-507))) + (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) + (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-513))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-25))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-598 (-732 *3))) (-5 *1 (-732 *3)) (-4 *3 (-523)) - (-4 *3 (-986))))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-25))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *1) (-5 *1 (-1027)))) +(((*1 *2 *1) + (-12 (-4 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-347)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1200 *5)) (-5 *3 (-731)) (-5 *4 (-1064)) (-4 *5 (-333)) + (-5 *1 (-507 *5))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) - ((*1 *1 *1) (|partial| -4 *1 (-673)))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-606 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-731)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-753)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-435)) (-4 *5 (-807)) + (-5 *1 (-432 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-347)) (-4 *6 (-1176 (-391 *2))) + (-4 *2 (-1176 *5)) (-5 *1 (-201 *5 *2 *6 *3)) + (-4 *3 (-326 *5 *2 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *1) (-5 *1 (-138))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-1077 (-210))) (-5 *1 (-247))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) - ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649))))) + (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-537) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1030 *2))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1121)) (-5 *1 (-1120))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *3)) + (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *4 (-606 (-1117))) + (-5 *2 (-649 (-300 (-210)))) (-5 *1 (-191)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1045)) (-4 *6 (-853 *5)) (-5 *2 (-649 *6)) + (-5 *1 (-652 *5 *6 *3 *4)) (-4 *3 (-357 *6)) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4300))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-874)) (-4 *5 (-807)) + (-5 *2 (-606 (-633 *5))) (-5 *1 (-633 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-874)) (|has| *1 (-6 -4291)) (-4 *1 (-388)))) + ((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) + ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659))))) +(((*1 *2 *1) (-12 (-5 *2 (-1064)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-731)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-357 *3)) (-4 *3 (-1154)) + (-4 *3 (-1045)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-357 *3)) (-4 *3 (-1154)) (-4 *3 (-1045)) + (-5 *2 (-537)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-357 *4)) (-4 *4 (-1154)) + (-5 *2 (-537)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537)) (-5 *3 (-135)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1086)) (-5 *2 (-537))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-435)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *5 (-862)) (-5 *1 (-440 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-862))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) - (|:| |expense| (-360)) (|:| |accuracy| (-360)) - (|:| |intermediateResults| (-360)))) - (-5 *2 (-975)) (-5 *1 (-287))))) + (-12 (-5 *2 (-537)) (-5 *1 (-428 *3)) (-4 *3 (-388)) (-4 *3 (-998))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) + (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-902 *6 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) + (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) + (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) + (-5 *1 (-657))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-998)) (-4 *2 (-1045))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-578 *3)) (-4 *3 (-807))))) +(((*1 *1 *1) (-5 *1 (-111)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529))))) +(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211))))) +(((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) + (-5 *2 (-1200 *6)) (-5 *1 (-320 *3 *4 *5 *6)) + (-4 *6 (-326 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-1054 *5 *6 *7 *8)) + (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *8 (-1012 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-559 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-347)) (-4 *5 (-1176 *4)) (-5 *2 (-1205)) + (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1176 (-391 *5))) (-14 *7 *6)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-731)) (-4 *6 (-1045)) (-4 *7 (-853 *6)) + (-5 *2 (-649 *7)) (-5 *1 (-652 *6 *7 *3 *4)) (-4 *3 (-357 *7)) + (-4 *4 (-13 (-357 *6) (-10 -7 (-6 -4300))))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-315 *3)) (-4 *3 (-807))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-606 (-210))) (-5 *1 (-190))))) +(((*1 *2 *3) + (-12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-291)) + (-5 *2 (-606 (-731))) (-5 *1 (-738 *3 *4 *5 *6 *7)) + (-4 *3 (-1176 *6)) (-4 *7 (-902 *6 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-989 (-47))) + (-4 *4 (-13 (-529) (-807) (-989 (-537)))) (-4 *5 (-414 *4)) + (-5 *2 (-402 (-1113 (-47)))) (-5 *1 (-419 *4 *5 *3)) + (-4 *3 (-1176 *5))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-314)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-314))))) +(((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-402 (-1113 *7))) + (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-1113 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-1176 *4)) (-5 *2 (-402 (-1113 *5))) + (-5 *1 (-860 *4 *5)) (-5 *3 (-1113 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-291)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) + (-5 *1 (-648 *3 *4 *5 *6)) (-4 *6 (-647 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3413 *3) (|:| -1672 *3))) (-5 *1 (-660 *3)) + (-4 *3 (-291))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *6)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-230 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-432 *3 *4 *5 *2)) (-4 *2 (-902 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-807)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1045)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-954)) + (-4 *2 (-998))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4300)) (-4 *1 (-33)) (-5 *2 (-731)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-537)))) + ((*1 *2 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-803))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1113 *7)) (-4 *5 (-998)) + (-4 *7 (-998)) (-4 *2 (-1176 *5)) (-5 *1 (-482 *5 *2 *6 *7)) + (-4 *6 (-1176 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) + (-4 *4 (-1176 *5)) (-5 *2 (-1113 *7)) (-5 *1 (-482 *5 *4 *6 *7)) + (-4 *6 (-1176 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-537)) (-5 *1 (-1136 *3)) (-4 *3 (-998))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-606 (-731))) (-5 *1 (-922 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1117)) (-5 *1 (-636 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-713))))) +(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51))))) +(((*1 *1 *1) (-5 *1 (-210))) + ((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1) (-4 *1 (-1127)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1081))) ((*1 *1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-111)) (-5 *1 (-789))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-598 *3)))) + (-2 (|:| |mval| (-649 *4)) (|:| |invmval| (-649 *4)) + (|:| |genIdeal| (-485 *4 *5 *6 *7)))) + (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-100)) (-5 *2 (-111)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-278 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-977 *3)) (-4 *3 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-632)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) - (-5 *2 (-598 *3))))) + (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1046 *3 *4)) (-14 *3 (-874)) + (-14 *4 (-874))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-111)) (-5 *1 (-845 *4)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-210) (-210) (-210))) + (-5 *4 (-3 (-1 (-210) (-210) (-210) (-210)) "undefined")) + (-5 *5 (-1040 (-210))) (-5 *6 (-606 (-247))) (-5 *2 (-1077 (-210))) + (-5 *1 (-657)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-896 (-210)) (-210) (-210))) (-5 *4 (-1040 (-210))) + (-5 *5 (-606 (-247))) (-5 *2 (-1077 (-210))) (-5 *1 (-657)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1077 (-210))) (-5 *3 (-1 (-896 (-210)) (-210) (-210))) + (-5 *4 (-1040 (-210))) (-5 *5 (-606 (-247))) (-5 *1 (-657))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-111)) + (-5 *1 (-842 *4 *5)) (-4 *5 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-845 *5)) (-4 *5 (-1045)) (-5 *2 (-111)) + (-5 *1 (-843 *5 *3)) (-4 *3 (-1154)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) + (-4 *6 (-1154)) (-5 *2 (-111)) (-5 *1 (-843 *5 *6))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) (((*1 *1 *1) - (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) - (-4 *2 (-432)))) - ((*1 *1 *1) - (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2)) - (-4 *4 (-1160 (-388 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *3 (-432)))) - ((*1 *1 *1) - (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-1090 *3 *2)) - (-4 *2 (-1160 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-864)) (-4 *5 (-289)) (-4 *3 (-1160 *5)) - (-5 *2 (-2 (|:| |plist| (-598 *3)) (|:| |modulo| *5))) - (-5 *1 (-440 *5 *3)) (-5 *4 (-598 *3))))) -(((*1 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3))))) + (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986)) - (-5 *3 (-531))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1102)) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-4 *4 (-13 (-29 *6) (-1124) (-902))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4)))) - (-5 *1 (-751 *6 *4 *3)) (-4 *3 (-609 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-388 (-531))) - (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))))) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-649 *4)) (-5 *3 (-731)) (-4 *4 (-998)) + (-5 *1 (-650 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1040 (-800 (-363)))) (-5 *2 (-1040 (-800 (-210)))) + (-5 *1 (-289))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-643 *4 *3)) (-4 *4 (-1045)) + (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-731))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -1737 (-606 (-816))) (|:| -2169 (-606 (-816))) + (|:| |presup| (-606 (-816))) (|:| -3838 (-606 (-816))) + (|:| |args| (-606 (-816))))) + (-5 *1 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-606 (-816)))) (-5 *1 (-1117))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-554 *3) *3 (-1117))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1117))) + (-4 *3 (-268)) (-4 *3 (-592)) (-4 *3 (-989 *4)) (-4 *3 (-414 *7)) + (-5 *4 (-1117)) (-4 *7 (-580 (-845 (-537)))) (-4 *7 (-435)) + (-4 *7 (-839 (-537))) (-4 *7 (-807)) (-5 *2 (-554 *3)) + (-5 *1 (-546 *7 *3))))) +(((*1 *1) (-5 *1 (-111)))) +(((*1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-103))))) +(((*1 *2 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-522))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-998)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-896 (-210))) (-5 *1 (-1150)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-998))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-466 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-529)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 *5)) (-4 *5 (-998)) (-5 *2 (-232 *4 *5)) + (-5 *1 (-897 *4 *5)) (-14 *4 (-606 (-1117)))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) + (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-862)) (-4 *5 (-753)) + (-4 *6 (-807)) (-5 *1 (-859 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) + (-4 *5 (-1176 *4)) (-4 *4 (-862)) (-5 *1 (-860 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) + ((*1 *1 *1 *1) (-4 *1 (-435))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-5 *1 (-468 *2)) (-4 *2 (-1176 (-537))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-537)) (-5 *1 (-656 *2)) (-4 *2 (-1176 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-731))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *5 (-291)) + (-5 *1 (-869 *3 *4 *5 *2)) (-4 *2 (-902 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *6 *4 *5)) + (-5 *1 (-869 *4 *5 *6 *2)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-291)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1113 *6)) (-4 *6 (-902 *5 *3 *4)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *5 (-291)) (-5 *1 (-869 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-1113 *7))) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-291)) (-5 *2 (-1113 *7)) (-5 *1 (-869 *4 *5 *6 *7)) + (-4 *7 (-902 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-435)) (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) + (-4 *2 (-1176 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-753)) + (-4 *3 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *5 (-529)) + (-5 *1 (-693 *4 *3 *5 *2)) (-4 *2 (-902 (-391 (-905 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *3 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-5 *1 (-937 *4 *5 *3 *2)) (-4 *2 (-902 (-905 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *6)) + (-4 *6 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-4 *4 (-998)) (-4 *5 (-753)) (-5 *1 (-937 *4 *5 *6 *2)) + (-4 *2 (-902 (-905 *4) *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) + ((*1 *1 *1) (-4 *1 (-805))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)) (-4 *2 (-1007)))) + ((*1 *1 *1) (-4 *1 (-1007))) ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-905 (-537)))) (-5 *1 (-421)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-210))) (-5 *2 (-1049)) + (-5 *1 (-720)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-649 (-537))) (-5 *2 (-1049)) + (-5 *1 (-720))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-5 *1 (-941 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1) (-4 *1 (-1127)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-598 (-571 *6))) (-5 *4 (-1102)) (-5 *2 (-571 *6)) - (-4 *6 (-411 *5)) (-4 *5 (-797)) (-5 *1 (-540 *5 *6))))) + (-12 (-5 *2 (-606 *7)) (-4 *7 (-1018 *3 *4 *5 *6)) (-4 *3 (-435)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) + (-5 *1 (-1052 *3 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-763))))) +(((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-232 *3 *4)) + (-14 *3 (-606 (-1117))) (-4 *4 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-14 *3 (-606 (-1117))) + (-5 *1 (-437 *3 *4 *5)) (-4 *4 (-998)) + (-4 *5 (-223 (-2258 *3) (-731))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-5 *1 (-463 *3 *4)) + (-14 *3 (-606 (-1117))) (-4 *4 (-998))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-784)) (-5 *3 (-606 (-1117))) (-5 *1 (-785))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-752))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1154)) + (-4 *5 (-357 *4)) (-4 *2 (-357 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *6 *7 *2)) (-4 *6 (-998)) + (-4 *7 (-223 *5 *6)) (-4 *2 (-223 *4 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-816))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-278 (-793 *3))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-793 *3)) (-5 *1 (-599 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-793 (-905 *5)))) (-4 *5 (-435)) + (-5 *2 (-793 (-391 (-905 *5)))) (-5 *1 (-600 *5)) + (-5 *3 (-391 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) + (-4 *5 (-435)) (-5 *2 (-793 *3)) (-5 *1 (-600 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *3 (-435)) (-4 *4 (-807)) (-4 *5 (-753)) (-5 *2 (-111)) + (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) + (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) + (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *9)) (-4 *9 (-998)) (-4 *5 (-807)) (-4 *6 (-753)) + (-4 *8 (-998)) (-4 *2 (-902 *9 *7 *5)) + (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) + (-4 *4 (-902 *8 *6 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-129))))) +(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1) (-4 *1 (-286)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-110)) (-5 *1 (-282))))) -(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))) -(((*1 *2 *2) (-12 (-5 *2 (-1025 (-790 (-208)))) (-5 *1 (-287))))) + (|partial| -12 (-4 *4 (-13 (-529) (-141))) + (-5 *2 (-2 (|:| -3267 *3) (|:| -3278 *3))) (-5 *1 (-1170 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) (-5 *3 (-537))))) (((*1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-688 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030)))) - ((*1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-864)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-864)) - (-5 *1 (-501 *4))))) + (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) + (-4 *2 (-807))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-606 (-905 *6))) (-5 *4 (-606 (-1117))) (-4 *6 (-435)) + (-5 *2 (-606 (-606 *7))) (-5 *1 (-515 *6 *7 *5)) (-4 *7 (-347)) + (-4 *5 (-13 (-347) (-805)))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1100)) (-5 *3 (-537)) (-5 *1 (-226)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-606 (-1100))) (-5 *3 (-537)) (-5 *4 (-1100)) + (-5 *1 (-226)))) + ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + ((*1 *2 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-435)))) + ((*1 *1 *1 *1) (-4 *1 (-435)))) +(((*1 *2 *3) + (-12 (-4 *4 (-435)) + (-5 *2 + (-606 + (-2 (|:| |eigval| (-3 (-391 (-905 *4)) (-1107 (-1117) (-905 *4)))) + (|:| |geneigvec| (-606 (-649 (-391 (-905 *4)))))))) + (-5 *1 (-276 *4)) (-5 *3 (-649 (-391 (-905 *4))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) (-4 *1 (-268))) + ((*1 *2 *3) + (-12 (-5 *3 (-402 *4)) (-4 *4 (-529)) + (-5 *2 (-606 (-2 (|:| -3449 (-731)) (|:| |logand| *4)))) + (-5 *1 (-304 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *2 *1) + (-12 (-5 *2 (-625 *3 *4)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1) (-4 *1 (-1127)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-13 (-998) (-678 (-391 (-537))))) + (-4 *5 (-807)) (-5 *1 (-1215 *4 *5 *2)) (-4 *2 (-1220 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) - (-5 *1 (-249))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-531)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-399 *2)) (-4 *2 (-523))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) + (-12 (-5 *2 (-731)) (-5 *1 (-1219 *3 *4)) + (-4 *4 (-678 (-391 (-537)))) (-4 *3 (-807)) (-4 *4 (-163))))) (((*1 *2 *3) - (-12 (-4 *4 (-330)) - (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *3)))) - (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) - (|:| |lb| (-598 (-790 (-208)))) - (|:| |cf| (-598 (-297 (-208)))) - (|:| |ub| (-598 (-790 (-208)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-598 (-297 (-208)))) - (|:| -3788 (-598 (-208))))))) - (-5 *2 (-598 (-1085))) (-5 *1 (-249))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-806)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1069 *3 *4)) (-5 *1 (-935 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-344)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *5))) (-4 *5 (-986)) - (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) - (-4 *7 (-221 *3 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) + (-12 (-5 *3 (-649 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-191))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 *5)) (-5 *1 (-133 *3 *4 *5)) (-14 *3 (-537)) + (-14 *4 (-731)) (-4 *5 (-163))))) +(((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-807)) (-4 *3 (-163)))) ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) + (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-807)) + (-4 *3 (-13 (-163) (-678 (-391 (-537))))) (-14 *4 (-874)))) + ((*1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) (-4 *2 (-1160 *3))))) +(((*1 *1 *1) (-4 *1 (-592))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *1 *1) (-4 *1 (-1127)))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1184 *4)) (-5 *3 (-639 *4)) (-4 *4 (-344)) - (-5 *1 (-620 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-344)) - (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4274)))) - (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))) - (-5 *1 (-621 *4 *5 *2 *3)) (-4 *3 (-637 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-598 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) - (-5 *1 (-764 *2 *3)) (-4 *3 (-609 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3115 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-537) "failed") *5)) (-4 *5 (-998)) + (-5 *2 (-537)) (-5 *1 (-520 *5 *3)) (-4 *3 (-1176 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) + (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-537) "failed") *4)) (-4 *4 (-998)) + (-5 *2 (-537)) (-5 *1 (-520 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-513))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) + (-5 *1 (-451))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) +(((*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) + ((*1 *1 *1 *1) (-4 *1 (-753)))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-537)) (-5 *2 (-111)) (-5 *1 (-462))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1030 *3)) (-4 *3 (-130))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-800 *3))) (-4 *3 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-3 (-800 *3) + (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) + (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) + "failed")) + (-5 *1 (-599 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-278 *3)) (-5 *5 (-1100)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-800 *3)) (-5 *1 (-599 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-800 (-905 *5)))) (-4 *5 (-435)) + (-5 *2 + (-3 (-800 (-391 (-905 *5))) + (-2 (|:| |leftHandLimit| (-3 (-800 (-391 (-905 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-800 (-391 (-905 *5))) "failed"))) + "failed")) + (-5 *1 (-600 *5)) (-5 *3 (-391 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-278 (-391 (-905 *5)))) (-5 *3 (-391 (-905 *5))) + (-4 *5 (-435)) + (-5 *2 + (-3 (-800 *3) + (-2 (|:| |leftHandLimit| (-3 (-800 *3) "failed")) + (|:| |rightHandLimit| (-3 (-800 *3) "failed"))) + "failed")) + (-5 *1 (-600 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-278 (-391 (-905 *6)))) (-5 *5 (-1100)) + (-5 *3 (-391 (-905 *6))) (-4 *6 (-435)) (-5 *2 (-800 *3)) + (-5 *1 (-600 *6))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1083 *4)) (-5 *3 (-1 *4 (-531))) (-4 *4 (-986)) - (-5 *1 (-1087 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))) + (-12 (-5 *2 (-827)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531) - *6)) - (-4 *6 (-344)) (-4 *7 (-1160 *6)) - (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) - (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7))))) -(((*1 *2) - (-12 (-14 *4 (-721)) (-4 *5 (-1138)) (-5 *2 (-130)) - (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) - (-4 *3 (-310 *4)))) - ((*1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-162)))) + (-12 (-5 *4 (-731)) (-5 *2 (-606 (-1117))) (-5 *1 (-196)) + (-5 *3 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 (-210))) (-5 *4 (-731)) (-5 *2 (-606 (-1117))) + (-5 *1 (-251)))) ((*1 *2 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) - (-5 *2 (-531)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-986)) (-5 *2 (-864)))) - ((*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-344)) (-5 *2 (-130))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1) (-4 *1 (-1066)))) -(((*1 *1 *1) (-4 *1 (-584))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943) (-1124)))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418))))) -(((*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-378))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-639 *3)) - (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3)) - (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) - (-5 *2 (-110)) (-5 *1 (-929 *3 *4 *5 *6)) - (-4 *6 (-892 *3 *5 *4)))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) (-4 *4 (-163)) + (-5 *2 (-606 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) - (-5 *1 (-448))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3)) - (-4 *3 (-1138)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1132 *4 *5 *3 *2)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *3 (-797)) (-4 *2 (-1000 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *1 (-1136 *2)) (-4 *2 (-1138))))) + (-12 (-5 *2 (-606 *3)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-633 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-637 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-779 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-846 *3)) (-4 *3 (-807)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-606 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-803))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-708))))) -(((*1 *2 *3) - (-12 (-4 *4 (-330)) (-5 *2 (-901 (-1098 *4))) (-5 *1 (-338 *4)) - (-5 *3 (-1098 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772))))) -(((*1 *1 *2) - (-12 (-5 *2 (-639 *5)) (-4 *5 (-986)) (-5 *1 (-990 *3 *4 *5)) - (-14 *3 (-721)) (-14 *4 (-721))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2122 (-649 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-649 *3)))) + (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110))))) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-4 *1 (-848)) + (-5 *3 + (-2 (|:| |pde| (-606 (-300 (-210)))) + (|:| |constraints| + (-606 + (-2 (|:| |start| (-210)) (|:| |finish| (-210)) + (|:| |grid| (-731)) (|:| |boundaryType| (-537)) + (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) + (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) + (|:| |tol| (-210)))) + (-5 *2 (-986))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-1119 (-391 (-537)))) + (-5 *1 (-176))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-606 *2) *2 *2 *2)) (-4 *2 (-1045)) + (-5 *1 (-101 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-101 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-531))) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-523)) (-4 *8 (-892 *7 *5 *6)) - (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *9) (|:| |radicand| *9))) - (-5 *1 (-896 *5 *6 *7 *8 *9)) (-5 *4 (-721)) - (-4 *9 - (-13 (-344) - (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8)))))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-33)) (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-531)))) + (-12 (-4 *3 (-1045)) + (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) + (-5 *2 (-606 (-1021 *3 *4 *5))) (-5 *1 (-1022 *3 *4 *5)) + (-4 *5 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) + (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1045)) (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 *2))) + (-5 *2 (-845 *3)) (-5 *1 (-1021 *3 *4 *5)) + (-4 *5 (-13 (-414 *4) (-839 *3) (-580 *2)))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1185 *4 *5 *6)) + (|:| |%expon| (-303 *4 *5 *6)) + (|:| |%expTerms| + (-606 (-2 (|:| |k| (-391 (-537))) (|:| |c| *4)))))) + (|:| |%type| (-1100)))) + (-5 *1 (-1186 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1139) (-414 *3))) + (-14 *5 (-1117)) (-14 *6 *4)))) +(((*1 *2 *1) + (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1045))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1047 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) ((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-793))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-507))) (-5 *1 (-507))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-354 *3)) - (-4 *3 (-1138))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-163 *6)) - (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-771)) (-5 *4 (-51)) (-5 *2 (-1189)) (-5 *1 (-781))))) -(((*1 *2 *2) - (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) - (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) - (-4 *2 - (-13 (-344) (-284) - (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) - (-15 -1853 ((-1054 *3 (-571 $)) $)) - (-15 -2265 ($ (-1054 *3 (-571 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1151 *3)) (-4 *3 (-1138))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))) -(((*1 *1 *1) (-4 *1 (-584))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943) (-1124)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124)))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-908))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-966 *3)) (-4 *3 (-1138))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) + (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-867 *3)) (-4 *3 (-291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) - (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9)) - (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6)) - (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) - (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) + (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289))))) +(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) - (-4 *2 (-637 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-639 *2)) (-4 *2 (-344)) (-4 *2 (-986)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1052 *2 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) - ((*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-1110 *3))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1081)))) (((*1 *2 *3) - (-12 (-4 *1 (-750)) - (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 (-975))))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) + (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) + (-5 *1 (-1021 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1045)) + (-4 *4 (-13 (-998) (-839 *3) (-807) (-580 (-845 *3)))) + (-5 *1 (-1021 *3 *4 *2)) + (-4 *2 (-13 (-414 *4) (-839 *3) (-580 (-845 *3))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2211 (-742 *3)) (|:| |coef1| (-742 *3)) + (|:| |coef2| (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-529)) (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-2 (|:| -2211 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1012 *3 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12330,2128 +12188,2079 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1083 (-208))) + (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2368 + (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-975)) (-5 *1 (-287))))) + (-5 *1 (-532))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1203))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-314))))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-917 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-391 (-537))))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-649 (-391 (-905 (-537))))) (-5 *2 (-606 (-300 (-537)))) + (-5 *1 (-982))))) +(((*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) - (-5 *1 (-693 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330))))) -(((*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))) + (-12 (-5 *3 (-391 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1176 *5)) + (-5 *1 (-688 *5 *2)) (-4 *5 (-347))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) +(((*1 *1 *1) (-4 *1 (-592))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-593 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954) (-1139)))))) +(((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-4 *6 (-13 (-523) (-797))) - (-5 *2 (-598 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6)) - (-4 *5 (-986)))) - ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) - ((*1 *2 *3) - (-12 (-5 *3 (-548 *5)) (-4 *5 (-13 (-29 *4) (-1124))) - (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *2 (-598 *5)) (-5 *1 (-546 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-548 (-388 (-895 *4)))) - (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *2 (-598 (-297 *4))) (-5 *1 (-551 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *2)) (-4 *3 (-795)) (-4 *2 (-1076 *3)))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1200 *4)) (-4 *4 (-401 *3)) (-4 *3 (-291)) + (-4 *3 (-529)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795)) - (-4 *2 (-1076 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124))))) + (-12 (-5 *3 (-874)) (-4 *4 (-347)) (-5 *2 (-1200 *1)) + (-4 *1 (-313 *4)))) + ((*1 *2) (-12 (-4 *3 (-347)) (-5 *2 (-1200 *1)) (-4 *1 (-313 *3)))) + ((*1 *2) + (-12 (-4 *3 (-163)) (-4 *4 (-1176 *3)) (-5 *2 (-1200 *1)) + (-4 *1 (-393 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1197 (-1102) *3)) (-5 *1 (-1204 *3)) (-4 *3 (-986)))) + (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) + (-5 *2 (-1200 *6)) (-5 *1 (-397 *3 *4 *5 *6)) + (-4 *6 (-13 (-393 *4 *5) (-989 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-986))))) -(((*1 *2 *3) - (-12 (-5 *3 (-548 *2)) (-4 *2 (-13 (-29 *4) (-1124))) - (-5 *1 (-546 *4 *2)) - (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-548 (-388 (-895 *4)))) - (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *2 (-297 *4)) (-5 *1 (-551 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-110)) (-5 *1 (-108)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) - ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-634 *4 *5 *6))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) + (-12 (-4 *3 (-291)) (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) + (-5 *2 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7)) + (-4 *6 (-393 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-163)) (-5 *2 (-1200 *1)) (-4 *1 (-401 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *2 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311))))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030))))) -(((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-807)))) - ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-807)))) + (-12 (-5 *3 (-874)) (-5 *2 (-1200 (-1200 *4))) (-5 *1 (-507 *4)) + (-4 *4 (-333))))) +(((*1 *2 *1) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-14 *5 (-606 (-1117))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) + (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) + (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) + (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-807)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1083 *4)) - (-4 *4 (-1030)) (-4 *4 (-1138))))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *5)) (|:| -1484 (-606 (-905 *5)))))) + (-5 *1 (-1225 *5 *6 *7)) (-5 *3 (-606 (-905 *5))) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 + (-606 (-2 (|:| -3019 (-1113 *4)) (|:| -1484 (-606 (-905 *4)))))) + (-5 *1 (-1225 *4 *5 *6)) (-5 *3 (-606 (-905 *4))) + (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25)))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-273))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-128)))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1117)) + (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-548 *4 *2)) + (-4 *2 (-13 (-1139) (-912) (-1081) (-29 *4)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-731))) (-5 *3 (-162)) (-5 *1 (-1106 *4 *5)) + (-14 *4 (-874)) (-4 *5 (-998))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-896 (-210))) (-5 *4 (-827)) (-5 *5 (-874)) + (-5 *2 (-1205)) (-5 *1 (-451)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-896 (-210))) (-5 *2 (-1205)) (-5 *1 (-451)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-606 (-896 (-210)))) (-5 *4 (-827)) (-5 *5 (-874)) + (-5 *2 (-1205)) (-5 *1 (-451))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) - (-5 *2 (-598 (-598 (-598 (-721)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-598 (-598 (-886 (-208))))))) - ((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-598 (-598 (-886 (-208)))))))) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3121 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-347)) (-4 *7 (-1176 *6)) + (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) + (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1100)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *4 (-1012 *6 *7 *8)) (-5 *2 (-1205)) + (-5 *1 (-736 *6 *7 *8 *4 *5)) (-4 *5 (-1018 *6 *7 *8 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1132 *5 *6 *7 *3)) - (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110))))) + (-12 (-5 *3 (-537)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-402 *4)) (-4 *4 (-529))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-731)) (-5 *1 (-1046 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1117)) (-5 *3 (-418)) (-4 *5 (-807)) + (-5 *1 (-1051 *5 *4)) (-4 *4 (-414 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 (-858 *3))) (-4 *3 (-1045)) (-5 *1 (-857 *3))))) +(((*1 *2) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) - (-5 *2 (-2 (|:| -2005 (-531)) (|:| |var| (-571 *1)))) - (-4 *1 (-411 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-388 (-531))) (-5 *2 (-208)) (-5 *1 (-287))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1) (-5 *1 (-110)))) + (-12 (-4 *2 (-1045)) (-5 *1 (-917 *3 *2)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1100))))) +(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-138))) + ((*1 *1 *1) (-4 *1 (-1086)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *5 (-1100)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-80 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-986)) + (-5 *1 (-711))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-1102)) - (-4 *2 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *5 *2))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137))))) -(((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110))))) -(((*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) - (-4 *5 (-1160 *4)) (-5 *2 (-598 (-388 *5))) (-5 *1 (-957 *4 *5)) - (-5 *3 (-388 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-913)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-523)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-51)) (-5 *1 (-835 *4)) - (-4 *4 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432)))) - ((*1 *1 *1 *1) (-4 *1 (-432))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-721))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) - (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5)) - (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-289)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-1098 *7))) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-289)) (-5 *2 (-1098 *7)) (-5 *1 (-859 *4 *5 *6 *7)) - (-4 *7 (-892 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-864))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-432)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) - (-4 *2 (-1160 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432))))) -(((*1 *1) (-5 *1 (-137))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-245))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1184 (-598 (-531)))) (-5 *1 (-459)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) - (-4 *3 (-1000 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-598 *6)) (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-1073 *5 *6 *7 *3))) (-5 *1 (-1073 *5 *6 *7 *3)) - (-4 *3 (-1000 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-1184 *4)) - (-5 *1 (-764 *4 *3)) (-4 *3 (-609 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-432)) (-4 *4 (-797)) - (-5 *1 (-540 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-289)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) - (-5 *1 (-367 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2937 (-721)) (|:| -4124 (-721)))) - (-5 *1 (-721)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))) + (|partial| -12 (-5 *3 (-606 (-578 *2))) (-5 *4 (-1117)) + (-4 *2 (-13 (-27) (-1139) (-414 *5))) + (-4 *5 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *5 *2))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-578 *3)) (-5 *5 (-1113 *3)) + (-4 *3 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-578 *3)) (-5 *5 (-391 (-1113 *3))) + (-4 *3 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-554 *3)) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-781))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1139))) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-554 *3)) (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1106 3 *3)) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) + ((*1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998))))) (((*1 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) - (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) + (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-4 *6 (-1176 (-391 *5))) + (-5 *2 (-731)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *3 (-326 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) - (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-721)) (-4 *5 (-162)))) - ((*1 *1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) - (-4 *4 (-162)))) - ((*1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *2 *4)) (-4 *2 (-354 *3)) - (-4 *4 (-354 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-721)) (-4 *3 (-986))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) - (-5 *1 (-699))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-731))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-731)) (-5 *3 (-896 *4)) (-4 *1 (-1078 *4)) + (-4 *4 (-998)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-731)) (-5 *4 (-896 (-210))) (-5 *2 (-1205)) + (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537))))) (((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3))))) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-162)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-606 *3)) (-5 *5 (-874)) (-4 *3 (-1176 *4)) + (-4 *4 (-291)) (-5 *1 (-443 *4 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-5 *2 (-1205)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *1) + (-12 (-4 *3 (-163)) (-4 *2 (-23)) (-5 *1 (-273 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1176 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-672 *3 *2 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1176 *3)) (-5 *1 (-673 *3 *2)) (-4 *3 (-998)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-676 *3 *2 *4 *5 *6)) (-4 *3 (-163)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 (-537)) (-5 *1 (-190))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-606 + (-606 + (-3 (|:| -3923 (-1117)) + (|:| -4015 (-606 (-3 (|:| S (-1117)) (|:| P (-905 (-537)))))))))) + (-5 *1 (-1121))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (-4 *4 (-998)) + (-5 *1 (-979 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) (-4 *4 (-998)) + (-5 *1 (-979 *4))))) (((*1 *2 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-606 *7)) (-5 *3 (-111)) (-4 *7 (-1012 *4 *5 *6)) + (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-930 *4 *5 *6 *7))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135))))) +(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-639 *3)))) - (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-314))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-642 *2)) (-4 *2 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-606 *5) (-606 *5))) (-5 *4 (-537)) + (-5 *2 (-606 *5)) (-5 *1 (-642 *5)) (-4 *5 (-1045))))) (((*1 *2 *3) (-12 (-5 *2 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))))) ((*1 *2 *3 *4) (-12 (-5 *2 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) - (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) + (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) ((*1 *2 *3 *4) (-12 (-5 *2 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-388 (-531))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *1 (-971 *3)) (-4 *3 (-1176 (-537))) (-5 *4 (-391 (-537))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-388 (-531))) - (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-960 *3)) - (-4 *3 (-1160 (-531))) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5))))) + (-12 (-5 *5 (-391 (-537))) + (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-971 *3)) + (-4 *3 (-1176 (-537))) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5))))) ((*1 *2 *3) (-12 (-5 *2 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))))) ((*1 *2 *3 *4) (-12 (-5 *2 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))) - (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) + (-606 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537)))))) + (-5 *1 (-972 *3)) (-4 *3 (-1176 (-391 (-537)))) + (-5 *4 (-2 (|:| -3267 (-391 (-537))) (|:| -3278 (-391 (-537))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-388 (-531))) - (-5 *2 (-598 (-2 (|:| -3144 *4) (|:| -3157 *4)))) (-5 *1 (-961 *3)) - (-4 *3 (-1160 *4)))) + (-12 (-5 *4 (-391 (-537))) + (-5 *2 (-606 (-2 (|:| -3267 *4) (|:| -3278 *4)))) (-5 *1 (-972 *3)) + (-4 *3 (-1176 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-388 (-531))) - (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-961 *3)) - (-4 *3 (-1160 *5)) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-695 *3)) (-4 *3 (-162))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-639 *2)) (-5 *4 (-531)) - (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-524 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7))) - (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) - (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432)))) - ((*1 *1 *1 *1) (-4 *1 (-432)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-411 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) - (-4 *3 (-1030)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) - (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3)) - (-5 *1 (-893 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) - (-15 -1853 (*7 $)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) - (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) - (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) - ((*1 *1 *1) (-4 *1 (-266))) - ((*1 *2 *3) - (-12 (-5 *3 (-399 *4)) (-4 *4 (-523)) - (-5 *2 (-598 (-2 (|:| -2005 (-721)) (|:| |logand| *4)))) - (-5 *1 (-301 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *2 *1) - (-12 (-5 *2 (-617 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) - (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1088 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) - (-5 *1 (-1089 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) - (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) - (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162))))) + (-12 (-5 *5 (-391 (-537))) + (-5 *2 (-606 (-2 (|:| -3267 *5) (|:| -3278 *5)))) (-5 *1 (-972 *3)) + (-4 *3 (-1176 *5)) (-5 *4 (-2 (|:| -3267 *5) (|:| -3278 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-649 *5))) (-4 *5 (-291)) (-4 *5 (-998)) + (-5 *2 (-1200 (-1200 *5))) (-5 *1 (-980 *5)) (-5 *4 (-1200 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-276 (-895 (-531)))) - (-5 *2 - (-2 (|:| |varOrder| (-598 (-1102))) - (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) - (|:| |hom| (-598 (-1184 (-721)))))) - (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)))) - ((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 *3 (-598 *1))) - (-4 *1 (-1005 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) - (-5 *1 (-699))))) -(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531)) - (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-399 *4)) (-4 *4 (-523))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) - (-4 *4 (-1138)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-817)))) - ((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-110)) (-5 *5 (-1032 (-721))) (-5 *6 (-721)) - (-5 *2 - (-2 (|:| |contp| (-531)) - (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) - (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-418)) (-5 *1 (-1106))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743)) - (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1003 *7 *8 *9 *3 *4)) (-4 *4 (-1005 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743)) - (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1039 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) + (-12 + (-5 *3 + (-485 (-391 (-537)) (-225 *5 (-731)) (-818 *4) + (-232 *4 (-391 (-537))))) + (-14 *4 (-606 (-1117))) (-14 *5 (-731)) (-5 *2 (-111)) + (-5 *1 (-486 *4 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-731)) (-4 *5 (-333)) (-4 *6 (-1176 *5)) (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) + (-606 + (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-649 *6))))) + (-5 *1 (-479 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2122 (-649 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-649 *6)))) + (-4 *7 (-1176 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |done| (-598 *4)) - (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) - (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-997)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997))))) -(((*1 *2 *3) - (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) - ((*1 *2 *3) - (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) - ((*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) + (-2 (|:| |polnum| (-742 *3)) (|:| |polden| *3) (|:| -3669 (-731)))) + (-5 *1 (-742 *3)) (-4 *3 (-998)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3669 (-731)))) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2) (-12 (-4 *2 (-163)) (-5 *1 (-156 *3 *2)) (-4 *3 (-157 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1098 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) - ((*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1)))) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *2 *4)) (-4 *4 (-1176 *2)) + (-4 *2 (-163)))) + ((*1 *2) + (-12 (-4 *4 (-1176 *2)) (-4 *2 (-163)) (-5 *1 (-392 *3 *2 *4)) + (-4 *3 (-393 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) + ((*1 *2) + (-12 (-4 *3 (-1176 *2)) (-5 *2 (-537)) (-5 *1 (-728 *3 *4)) + (-4 *4 (-393 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *3 (-163)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-598 *1)) - (-4 *1 (-1002 *4 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *4)) (-5 *1 (-828 *3 *4 *5)) - (-4 *3 (-1030)) (-4 *5 (-619 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 *2))) - (-5 *2 (-835 *3)) (-5 *1 (-1008 *3 *4 *5)) - (-4 *5 (-13 (-411 *4) (-829 *3) (-573 *2)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262))))) -(((*1 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-4 *1 (-846 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3) - (-12 (-4 *4 (-797)) (-5 *2 (-1111 (-598 *4))) (-5 *1 (-1110 *4)) - (-5 *3 (-598 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) - (-5 *2 (-598 (-598 (-886 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) (-4 *4 (-986)) - (-4 *1 (-1063 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 (-598 (-886 *3)))) (-4 *3 (-986)) - (-4 *1 (-1063 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-110)) - (-4 *1 (-1063 *4)) (-4 *4 (-986)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) - (-4 *1 (-1063 *4)) (-4 *4 (-986)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-598 (-161))) - (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-598 (-598 (-886 *5)))) (-5 *3 (-598 (-161))) - (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330)) - (-5 *1 (-501 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-4 *1 (-355 *3 *4)) - (-4 *4 (-162))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-571 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) - (-4 *2 (-13 (-411 *5) (-27) (-1124))) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1030))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-790 (-208)))) (-5 *4 (-208)) (-5 *2 (-598 *4)) - (-5 *1 (-249))))) -(((*1 *2 *3) - (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) - (-5 *1 (-119 *3)) (-4 *3 (-797)))) - ((*1 *2 *2) - (-12 (-5 *2 (-548 *4)) (-4 *4 (-13 (-29 *3) (-1124))) - (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *1 (-546 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-548 (-388 (-895 *3)))) - (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *1 (-551 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 (-2 (|:| -4216 *3) (|:| |special| *3))) (-5 *1 (-678 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-4 *5 (-986)) - (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) - (-5 *3 (-598 (-639 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1184 (-1184 *5))) (-4 *5 (-344)) (-4 *5 (-986)) - (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) - (-5 *3 (-598 (-639 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-598 *1)) (-4 *1 (-1071)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-598 *1)) (-4 *1 (-1071))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))) -(((*1 *2 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-986)) - (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-892 *2 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1102)) (-5 *6 (-598 (-571 *3))) - (-5 *5 (-571 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *7))) - (-4 *7 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) - (-5 *1 (-524 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986))))) -(((*1 *1 *1 *1) (-4 *1 (-516)))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3)) - (-4 *3 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) - (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3))) - (-4 *3 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) - (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-516))))) -(((*1 *2 *3) - (-12 (-5 *3 (-639 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1124))) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-548 *3)) (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030))))) + (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-163))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1117))) (-5 *3 (-1117)) (-5 *1 (-513)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1117)) (-5 *1 (-665 *3)) (-4 *3 (-580 (-513))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-606 (-1117))) (-5 *2 (-1117)) (-5 *1 (-665 *3)) + (-4 *3 (-580 (-513)))))) (((*1 *2 *3) - (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) - (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))) - (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *4 *2))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-699))))) + (-12 (-5 *3 (-1200 (-300 (-210)))) + (-5 *2 + (-2 (|:| |additions| (-537)) (|:| |multiplications| (-537)) + (|:| |exponentiations| (-537)) (|:| |functionCalls| (-537)))) + (-5 *1 (-289))))) +(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-800 *4)) (-5 *3 (-578 *4)) (-5 *5 (-111)) + (-4 *4 (-13 (-1139) (-29 *6))) + (-4 *6 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-209 *6 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-529)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1176 *2))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) - (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-721)))) - (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-598 (-721)))) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) -(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-348 *3))))) + (-12 (-5 *3 (-300 (-210))) (-5 *2 (-300 (-363))) (-5 *1 (-289))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1184 (-649))) (-5 *1 (-287))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *3 *2)) - (-4 *3 (-13 (-1030) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1030)) (-4 *6 (-1030)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *5 (-1030))))) -(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249))))) + (-12 (-5 *2 (-896 *4)) (-4 *4 (-998)) (-5 *1 (-1106 *3 *4)) + (-14 *3 (-874))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-720))))) (((*1 *2 *3) - (-12 (-5 *3 (-1032 *4)) (-4 *4 (-1030)) (-5 *2 (-1 *4)) - (-5 *1 (-958 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-47)))) (-5 *1 (-47)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-47))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-606 (-578 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1113 (-47))) (-5 *3 (-578 (-47))) (-5 *1 (-47)))) + ((*1 *2 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) ((*1 *2 *3) - (-12 (-5 *3 (-1025 (-531))) (-5 *2 (-1 (-531))) (-5 *1 (-984))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-598 (-2 (|:| |func| *2) (|:| |pole| (-110))))) - (-4 *2 (-13 (-411 *4) (-943))) (-4 *4 (-13 (-797) (-523))) - (-5 *1 (-258 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) - ((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *1) - (-12 (-5 *2 (-531)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) - (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-257)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1098 *8)) (-5 *4 (-598 *6)) (-4 *6 (-797)) - (-4 *8 (-892 *7 *5 *6)) (-4 *5 (-743)) (-4 *7 (-986)) - (-5 *2 (-598 (-721))) (-5 *1 (-302 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864)))) - ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) - (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4)) - (-4 *4 (-1160 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *3 (-797)) (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-915 *3 *2 *4)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *2 (-742)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1175 *3)) - (-5 *2 (-531)))) + (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) + (-4 *3 (-1176 (-160 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) + ((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) ((*1 *2 *1) - (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3)) - (-5 *2 (-388 (-531))))) + (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864))))) + (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) (-5 *1 (-397 *3 *2 *4 *5)) + (-4 *3 (-291)) (-4 *5 (-13 (-393 *2 *4) (-989 *2))))) ((*1 *2 *1) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-721))))) + (-12 (-4 *4 (-1176 *2)) (-4 *2 (-945 *3)) + (-5 *1 (-398 *3 *2 *4 *5 *6)) (-4 *3 (-291)) (-4 *5 (-393 *2 *4)) + (-14 *6 (-1200 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-874)) (-4 *5 (-998)) + (-4 *2 (-13 (-388) (-989 *5) (-347) (-1139) (-268))) + (-5 *1 (-426 *5 *3 *2)) (-4 *3 (-1176 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-578 (-476)))) (-5 *1 (-476)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-476))) (-5 *1 (-476)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-606 (-578 (-476)))) + (-5 *1 (-476)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1113 (-476))) (-5 *3 (-578 (-476))) (-5 *1 (-476)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) + (-5 *1 (-507 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-685 *4 *2)) (-4 *2 (-1176 *4)) + (-5 *1 (-735 *4 *2 *5 *3)) (-4 *3 (-1176 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163)))) + ((*1 *1 *1) (-4 *1 (-1007)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1030)) (-4 *4 (-1030)) - (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *5 *4 *6))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) - (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) - (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) - (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) - (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) - (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) - (-5 *1 (-245)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-531)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) - ((*1 *2 *1 *3) + (-12 (-5 *3 (-649 *1)) (-5 *4 (-1200 *1)) (-4 *1 (-602 *5)) + (-4 *5 (-998)) + (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 *1)) (-4 *1 (-602 *4)) (-4 *4 (-998)) + (-5 *2 (-649 *4))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-164 *6)) + (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) +(((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-163)) (-5 *1 (-273 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1176 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-672 *2 *3 *4 *5 *6)) (-4 *2 (-163)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-676 *2 *3 *4 *5 *6)) (-4 *2 (-163)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) + (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) - (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) - (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) - (-5 *2 (-1189)) (-5 *1 (-1186)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) - (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) - (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) - (-5 *1 (-1186)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-273))))) -(((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 (-363)) (-5 *1 (-191))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-797)) - (-4 *2 (-162)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-769 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-797)) - (-4 *2 (-986)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-523))))) -(((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) - (-5 *2 (-394 *4 (-388 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1184 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))) - (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *3 (-289)) - (-5 *1 (-394 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-639 *3)) - (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) - (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736))))) -(((*1 *2) - (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-531)) (-5 *1 (-1083 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-523)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-863))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1160 *3)) (-5 *1 (-380 *3 *2)) - (-4 *3 (-13 (-344) (-140)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110))))) + (-12 (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *4 *5 *6 *3)) (-4 *3 (-902 *4 *5 *6))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-649 (-210))) (-5 *4 (-537)) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-1039 *3)) (-4 *3 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) + (-12 (-5 *3 (-578 *5)) (-4 *5 (-414 *4)) (-4 *4 (-989 (-537))) + (-4 *4 (-13 (-807) (-529))) (-5 *2 (-1113 *5)) (-5 *1 (-31 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-578 *1)) (-4 *1 (-998)) (-4 *1 (-286)) + (-5 *2 (-1113 *1))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-826 *2 *3)) (-4 *2 (-1154)) (-4 *3 (-1154))))) (((*1 *2 *1) - (-12 (-5 *2 (-966 (-790 (-531)))) (-5 *1 (-556 *3)) (-4 *3 (-986))))) -(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *8 (-1000 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-598 *8)) (|:| |towers| (-598 (-967 *5 *6 *7 *8))))) - (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *8 (-1000 *5 *6 *7)) + (-12 (-5 *2 (-2 (|:| |cd| (-1100)) (|:| -3923 (-1100)))) + (-5 *1 (-782))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1100)) (-5 *1 (-289))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-1 (-1113 (-905 *4)) (-905 *4))) + (-5 *1 (-1208 *4)) (-4 *4 (-347))))) +(((*1 *2) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-649 *3)) + (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-649 *3)) + (-4 *3 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *4 (-1176 *3)) (-5 *1 (-480 *3 *4 *5)) (-4 *5 (-393 *3 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1154)) (-5 *1 (-172 *3 *2)) + (-4 *2 (-635 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-578 *3)) (-5 *5 (-1 (-1113 *3) (-1113 *3))) + (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-807) (-529))) + (-5 *2 (-554 *3)) (-5 *1 (-524 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4300)) (-4 *1 (-471 *4)) + (-4 *4 (-1154)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-291)) (-4 *6 (-357 *5)) (-4 *4 (-357 *5)) (-5 *2 - (-2 (|:| |val| (-598 *8)) - (|:| |towers| (-598 (-1073 *5 *6 *7 *8))))) - (-5 *1 (-1073 *5 *6 *7 *8)) (-5 *3 (-598 *8))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-311)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) - (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) - (-5 *1 (-241 *6)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-1068 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-807) (-529) (-989 (-537)))) (-5 *2 (-391 (-537))) + (-5 *1 (-417 *4 *3)) (-4 *3 (-414 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360))) - (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) - (-5 *1 (-241 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) - (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3)) - (-4 *3 (-13 (-573 (-507)) (-1030))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3)) - (-4 *3 (-13 (-573 (-507)) (-1030))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) - (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) - (-5 *1 (-241 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360))) - (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) - (-5 *1 (-241 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))) + (-12 (-5 *4 (-578 *3)) (-4 *3 (-414 *5)) + (-4 *5 (-13 (-807) (-529) (-989 (-537)))) + (-5 *2 (-1113 (-391 (-537)))) (-5 *1 (-417 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-5 *2 (-110))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) - (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) + (|partial| -12 + (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) + (-5 *2 (-800 *4)) (-5 *1 (-297 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) - (-5 *2 (-639 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) + (|partial| -12 + (-4 *3 (-13 (-807) (-989 (-537)) (-602 (-537)) (-435))) + (-5 *2 (-800 *4)) (-5 *1 (-1186 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1139) (-414 *3))) (-14 *5 (-1117)) + (-14 *6 *4)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) + (-5 *1 (-246 *2)) (-4 *2 (-1154)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-51)) + (-5 *1 (-247))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-363)) (-5 *1 (-1010))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3415 (-606 (-2 (|:| |irr| *10) (|:| -2430 (-537))))))) + (-5 *6 (-606 *3)) (-5 *7 (-606 *8)) (-4 *8 (-807)) (-4 *3 (-291)) + (-4 *10 (-902 *3 *9 *8)) (-4 *9 (-753)) + (-5 *2 + (-2 (|:| |polfac| (-606 *10)) (|:| |correct| *3) + (|:| |corrfact| (-606 (-1113 *3))))) + (-5 *1 (-588 *8 *9 *3 *10)) (-5 *4 (-606 (-1113 *3)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-435)) (-4 *4 (-780)) + (-14 *5 (-1117)) (-5 *2 (-537)) (-5 *1 (-1059 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-1113 *5))) (-5 *3 (-1113 *5)) + (-4 *5 (-157 *4)) (-4 *4 (-522)) (-5 *1 (-143 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 *3)) (-4 *3 (-1176 *5)) + (-4 *5 (-1176 *4)) (-4 *4 (-333)) (-5 *1 (-342 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-1113 (-537)))) (-5 *3 (-1113 (-537))) + (-5 *1 (-545)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-606 (-1113 *1))) (-5 *3 (-1113 *1)) + (-4 *1 (-862))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-712))))) +(((*1 *2) (-12 (-5 *2 (-731)) (-5 *1 (-428 *3)) (-4 *3 (-998))))) (((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3176 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-721)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-354 *3)) (-4 *3 (-1138)) - (-4 *3 (-1030)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) - (-5 *2 (-531)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138)) - (-5 *2 (-531)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)) (-5 *3 (-134)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1067 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) - (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33))) - (-5 *2 (-110)) (-5 *1 (-1068 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1138)) (-5 *2 (-531))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110)) - (-5 *1 (-338 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-426)) (-5 *3 (-531))))) + (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1160 *3)) + (-5 *2 (-391 (-537)))))) (((*1 *2 *3) - (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-598 *5)) - (-5 *1 (-833 *4 *5)) (-4 *5 (-1138))))) -(((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112))))) + (-12 (-5 *2 (-1098 (-537))) (-5 *1 (-1102 *4)) (-4 *4 (-998)) + (-5 *3 (-537))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-649 *6)) (-5 *5 (-1 (-402 (-1113 *6)) (-1113 *6))) + (-4 *6 (-347)) + (-5 *2 + (-606 + (-2 (|:| |outval| *7) (|:| |outmult| (-537)) + (|:| |outvect| (-606 (-649 *7)))))) + (-5 *1 (-510 *6 *7 *4)) (-4 *7 (-347)) (-4 *4 (-13 (-347) (-805)))))) (((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064)) (-5 *1 (-108)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-349 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-1135))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1173 *5 *4)) (-4 *4 (-780)) (-14 *5 (-1117)) + (-5 *2 (-606 *4)) (-5 *1 (-1059 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-352)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) + (-4 *4 (-333)))) + ((*1 *2 *1) + (-12 (-4 *2 (-807)) (-5 *1 (-674 *2 *3 *4)) (-4 *3 (-1045)) + (-14 *4 + (-1 (-111) (-2 (|:| -2009 *2) (|:| -3283 *3)) + (-2 (|:| -2009 *2) (|:| -3283 *3))))))) (((*1 *1 *2) - (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))) - (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-602 *3 *4 *5))))) + (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) + (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-1212 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-606 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1012 *5 *6 *7)) (-4 *5 (-529)) + (-4 *6 (-753)) (-4 *7 (-807)) (-5 *1 (-1212 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-420))))) +(((*1 *2 *3) + (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) + (-5 *2 (-905 *5)) (-5 *1 (-897 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-902 *4 *5 *6)) (-5 *2 (-606 (-606 *7))) + (-5 *1 (-431 *4 *5 *6 *7)) (-5 *3 (-606 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-291) (-141))) (-4 *6 (-753)) + (-4 *7 (-807)) (-4 *8 (-902 *5 *6 *7)) (-5 *2 (-606 (-606 *8))) + (-5 *1 (-431 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-731)) (-5 *2 (-111)) (-5 *1 (-555 *3)) (-4 *3 (-522))))) (((*1 *2 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) - (-5 *1 (-165 *3))))) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-529)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-998))))) (((*1 *2 *3) - (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-460 *4 *5)) - (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1184 (-721))) (-5 *1 (-627 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33))) - (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1068 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1102)) (-5 *1 (-507)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-655 *3)) - (-4 *3 (-573 (-507)))))) + (-12 (-5 *2 (-606 (-1113 (-537)))) (-5 *1 (-177)) (-5 *3 (-537))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3) + (-12 (-4 *1 (-326 *4 *3 *5)) (-4 *4 (-1158)) (-4 *3 (-1176 *4)) + (-4 *5 (-1176 (-391 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-435)) (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-922 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *1) (-5 *1 (-275)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6)) - (-4 *6 (-13 (-27) (-411 *5))) - (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7))) - (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) - (-4 *3 (-323 *6 *7 *8))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4)))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-666 *3 *4)) (-4 *3 (-1154)) (-4 *4 (-1154))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-150 *3 *2)) + (-4 *2 (-414 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1122))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *3 (-905 (-537))) + (-5 *1 (-314)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 (-905 (-537)))) (-5 *1 (-314))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1117)) + (-4 *5 (-13 (-529) (-989 (-537)) (-141))) + (-5 *2 + (-2 (|:| -3121 (-391 (-905 *5))) (|:| |coeff| (-391 (-905 *5))))) + (-5 *1 (-543 *5)) (-5 *3 (-391 (-905 *5)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-208)) (-5 *5 (-531)) (-5 *2 (-1134 *3)) - (-5 *1 (-740 *3)) (-4 *3 (-916)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-110)) - (-5 *1 (-1134 *2)) (-4 *2 (-916))))) -(((*1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) - (-5 *2 (-639 *4)))) - ((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4)) - (-4 *3 (-398 *4)))) - ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-289)) (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) - (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112))))) + (-12 (-5 *3 (-1113 *9)) (-5 *4 (-606 *7)) (-5 *5 (-606 *8)) + (-4 *7 (-807)) (-4 *8 (-998)) (-4 *9 (-902 *8 *6 *7)) (-4 *6 (-753)) + (-5 *2 (-1113 *8)) (-5 *1 (-305 *6 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1176 (-537))) (-5 *1 (-468 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-402 *2)) (-4 *2 (-529))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1) + (-12 (-5 *2 (-977 (-800 (-537)))) (-5 *1 (-562 *3)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) (((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-606 (-649 (-537)))) + (-5 *1 (-1055))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-523)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-886 (-208)) (-208) (-208))) - (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1185)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1185)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) - (-5 *2 (-1186)) (-5 *1 (-237)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-276 *7)) (-5 *4 (-1102)) (-5 *5 (-598 (-245))) - (-4 *7 (-411 *6)) (-4 *6 (-13 (-523) (-797) (-977 (-531)))) - (-5 *2 (-1185)) (-5 *1 (-238 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) - (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1185)) (-5 *1 (-241 *3)) - (-4 *3 (-13 (-573 (-507)) (-1030))))) + (-12 (-4 *2 (-669 *3)) (-5 *1 (-787 *2 *3)) (-4 *3 (-998))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) + (-5 *1 (-941 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) + (-5 *1 (-1052 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-820 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) - (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185)) - (-5 *1 (-241 *6)))) + (-12 (-5 *3 (-606 (-2 (|:| |val| (-606 *8)) (|:| -3852 *9)))) + (-5 *5 (-111)) (-4 *8 (-1012 *6 *7 *4)) (-4 *9 (-1018 *6 *7 *4 *8)) + (-4 *6 (-435)) (-4 *7 (-753)) (-4 *4 (-807)) + (-5 *2 (-606 (-2 (|:| |val| *8) (|:| -3852 *9)))) + (-5 *1 (-1019 *6 *7 *4 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-157 *2)) (-4 *2 (-163)))) + ((*1 *1 *1 *1) (-4 *1 (-456))) + ((*1 *1 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *2 *2) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-836)))) + ((*1 *1 *1) (-5 *1 (-924))) + ((*1 *1 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) +(((*1 *2 *2) (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1113 *1)) (-5 *4 (-1117)) (-4 *1 (-27)) + (-5 *2 (-606 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1113 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-905 *1)) (-4 *1 (-27)) (-5 *2 (-606 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *2 (-606 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *2 (-606 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-402 *2)) (-4 *2 (-291)) (-5 *1 (-867 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-820 *5)) (-5 *4 (-1023 (-360))) - (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185)) - (-5 *1 (-241 *5)))) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) - (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) - (-5 *1 (-241 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360))) - (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) - (-5 *1 (-241 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) - (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1186)) (-5 *1 (-241 *3)) - (-4 *3 (-13 (-573 (-507)) (-1030))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) - (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) - (-5 *1 (-241 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360))) - (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) - (-5 *1 (-241 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1185)) (-5 *1 (-242)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) - (-5 *1 (-242)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *2 (-1185)) (-5 *1 (-242)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-598 (-245))) - (-5 *2 (-1185)) (-5 *1 (-242)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1186)) (-5 *1 (-242)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1186)) - (-5 *1 (-242))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-37 (-388 (-531)))) - (-4 *2 (-162))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1658 (-531)) (|:| -2721 (-598 *3)))) - (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) - ((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-536 *3)) (-4 *3 (-977 (-531))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5)) - (-4 *4 (-1030)) (-4 *5 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986))))) -(((*1 *2 *3) - (-12 (-4 *1 (-838)) - (-5 *3 - (-2 (|:| |pde| (-598 (-297 (-208)))) - (|:| |constraints| - (-598 - (-2 (|:| |start| (-208)) (|:| |finish| (-208)) - (|:| |grid| (-721)) (|:| |boundaryType| (-531)) - (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) - (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) - (|:| |tol| (-208)))) - (-5 *2 (-975))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-112)) (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-797)) - (-5 *1 (-571 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-1024 *3)) (-4 *3 (-1138))))) + (-12 (-5 *4 (-402 (-905 *6))) (-5 *5 (-1117)) (-5 *3 (-905 *6)) + (-4 *6 (-13 (-291) (-141))) (-5 *2 (-51)) (-5 *1 (-868 *6))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *1 *1) (-5 *1 (-210))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *1) (-5 *1 (-363))) ((*1 *1) (-5 *1 (-363)))) +(((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))))) - (-5 *2 (-975)) (-5 *1 (-287)))) + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *2 (-986)) (-5 *1 (-289)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) - (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) - (-5 *2 (-975)) (-5 *1 (-287))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) + (-5 *2 (-986)) (-5 *1 (-289))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-731) *2)) (-5 *4 (-731)) (-4 *2 (-1045)) + (-5 *1 (-638 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-731) *3)) (-4 *3 (-1045)) (-5 *1 (-642 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203))))) +(((*1 *2 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-1176 *4)) (-5 *2 (-1 *6 (-606 *6))) + (-5 *1 (-1194 *4 *5 *3 *6)) (-4 *3 (-617 *5)) (-4 *6 (-1191 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-531)) (-5 *4 (-399 *2)) (-4 *2 (-892 *7 *5 *6)) - (-5 *1 (-693 *5 *6 *7 *2)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-289))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-531)) (-4 *5 (-795)) (-4 *5 (-344)) - (-5 *2 (-721)) (-5 *1 (-888 *5 *6)) (-4 *6 (-1160 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))) -(((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1138)))) - ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-836 *3)) (-4 *3 (-797))))) -(((*1 *2 *1) - (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-110))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-598 (-531))) (-5 *3 (-110)) (-5 *1 (-1040))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) + (-12 (-5 *4 (-874)) (-5 *2 (-1113 *3)) (-5 *1 (-1128 *3)) + (-4 *3 (-347))))) +(((*1 *2 *3) + (-12 (-14 *4 (-606 (-1117))) (-4 *5 (-435)) + (-5 *2 + (-2 (|:| |glbase| (-606 (-232 *4 *5))) (|:| |glval| (-606 (-537))))) + (-5 *1 (-594 *4 *5)) (-5 *3 (-606 (-232 *4 *5)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-129)) + (-4 *3 (-752))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1081)))) (((*1 *2) - (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4)) - (-4 *4 (-1160 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) - (-5 *1 (-313))))) -(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(((*1 *2 *1) + (-12 (-5 *2 (-1200 (-1046 *3 *4))) (-5 *1 (-1046 *3 *4)) + (-14 *3 (-874)) (-14 *4 (-874))))) +(((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-598 - (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *3)) - (|:| |logand| (-1098 *3))))) - (-5 *1 (-548 *3)) (-4 *3 (-344))))) + (-2 (|:| -4086 *3) (|:| |coef1| (-742 *3)) (|:| |coef2| (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-160 (-210))) (-5 *5 (-537)) (-5 *6 (-1100)) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3278 *6) (|:| |sol?| (-111))) (-537) + *6)) + (-4 *6 (-347)) (-4 *7 (-1176 *6)) + (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) + (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1117)) (-5 *3 (-363)) (-5 *1 (-1010))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-606 (-1 *4 (-606 *4)))) (-4 *4 (-1045)) + (-5 *1 (-112 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1045)) + (-5 *1 (-112 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-1 *4 (-606 *4)))) + (-5 *1 (-112 *4)) (-4 *4 (-1045))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-529) (-807) (-989 (-537)))) + (-4 *5 (-414 *4)) (-5 *2 (-402 (-1113 (-391 (-537))))) + (-5 *1 (-419 *4 *5 *3)) (-4 *3 (-1176 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *2 (-111)) (-5 *1 (-251)))) + ((*1 *2 *3) (-12 (-5 *3 (-300 (-210))) (-5 *2 (-111)) (-5 *1 (-251)))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)) + (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-1012 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-827)))) + ((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) - (-5 *1 (-717 *3 *4)) (-4 *3 (-659 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-344)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986)) - (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) - (-4 *3 (-799 *5))))) + (-12 (-4 *3 (-1158)) (-4 *5 (-1176 *3)) (-4 *6 (-1176 (-391 *5))) + (-5 *2 (-111)) (-5 *1 (-325 *4 *3 *5 *6)) (-4 *4 (-326 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1098 (-391 *3))) (-5 *1 (-164 *3)) (-4 *3 (-291))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) - (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1113 *7)) + (-4 *5 (-998)) (-4 *7 (-998)) (-4 *2 (-1176 *5)) + (-5 *1 (-482 *5 *2 *6 *7)) (-4 *6 (-1176 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-523)) (-4 *2 (-892 *3 *5 *4)) - (-5 *1 (-683 *5 *4 *6 *2)) (-5 *3 (-388 (-895 *6))) (-4 *5 (-743)) - (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)))))))) + (-12 (-5 *3 (-781)) (-5 *4 (-51)) (-5 *2 (-1205)) (-5 *1 (-791))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) - (-5 *1 (-244 *2)) (-4 *2 (-1138)))) + (-12 (-5 *3 (-1117)) (-4 *5 (-347)) (-5 *2 (-1098 (-1098 (-905 *5)))) + (-5 *1 (-1208 *5)) (-5 *4 (-1098 (-905 *5)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-537)) (-4 *6 (-753)) (-4 *7 (-807)) (-4 *8 (-291)) + (-4 *9 (-902 *8 *6 *7)) + (-5 *2 (-2 (|:| -2990 (-1113 *9)) (|:| |polval| (-1113 *8)))) + (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9)) (-5 *4 (-1113 *8))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-72 FCN)))) (-5 *2 (-986)) + (-5 *1 (-707))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1113 *7)) (-4 *7 (-902 *6 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-998)) (-5 *2 (-1113 *6)) + (-5 *1 (-305 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4300)) (-4 *1 (-145 *3)) + (-4 *3 (-1154)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1147 *4 *5 *3 *2)) (-4 *4 (-529)) + (-4 *5 (-753)) (-4 *3 (-807)) (-4 *2 (-1012 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-5 *1 (-1151 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-13 (-291) (-141))) + (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753)) + (-5 *2 (-606 (-391 (-905 *4)))) (-5 *1 (-877 *4 *5 *6 *7)) + (-4 *7 (-902 *4 *6 *5))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-606 (-649 *6))) (-5 *4 (-111)) (-5 *5 (-537)) + (-5 *2 (-649 *6)) (-5 *1 (-980 *6)) (-4 *6 (-347)) (-4 *6 (-998)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-606 (-649 *4))) (-5 *2 (-649 *4)) (-5 *1 (-980 *4)) + (-4 *4 (-347)) (-4 *4 (-998)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-5 *2 (-649 *5)) + (-5 *1 (-980 *5)) (-4 *5 (-347)) (-4 *5 (-998))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-718))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 (-391 (-905 (-537))))) (-5 *4 (-606 (-1117))) + (-5 *2 (-606 (-606 *5))) (-5 *1 (-364 *5)) + (-4 *5 (-13 (-805) (-347))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-51)) - (-5 *1 (-245))))) + (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 *4)) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-805) (-347)))))) +(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-731))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1098 *4)) (-5 *3 (-537)) (-4 *4 (-998)) + (-5 *1 (-1102 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-537)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-998)) + (-14 *4 (-1117)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-5 *1 (-208 *2 *3)) (-4 *2 (-13 (-998) (-807))) + (-14 *3 (-606 (-1117)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1117)) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-4 *4 (-13 (-29 *6) (-1139) (-912))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) + (-5 *1 (-761 *6 *4 *3)) (-4 *3 (-617 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1045))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1154)) + (-4 *4 (-357 *2)) (-4 *5 (-357 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-357 *2)) + (-4 *5 (-357 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-606 (-537))) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) + (-14 *4 (-537)) (-14 *5 (-731)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-731)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-731)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-731)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-163)) (-5 *1 (-133 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-731)))) + ((*1 *2 *1) + (-12 (-4 *2 (-163)) (-5 *1 (-133 *3 *4 *2)) (-14 *3 (-537)) + (-14 *4 (-731)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-4 *2 (-1045)) (-5 *1 (-199 *4 *2)) + (-14 *4 (-874)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-230 (-1100))) (-5 *1 (-200 *4)) + (-4 *4 + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ *3)) (-15 -2356 ((-1205) $)) + (-15 -3404 ((-1205) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-942)) (-5 *1 (-200 *3)) + (-4 *3 + (-13 (-807) + (-10 -8 (-15 -1922 ((-1100) $ (-1117))) (-15 -2356 ((-1205) $)) + (-15 -3404 ((-1205) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-731)) (-5 *1 (-230 *4)) (-4 *4 (-807)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-230 *3)) (-4 *3 (-807)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-230 *3)) (-4 *3 (-807)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-272 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1154)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-163)) (-5 *1 (-273 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1176 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-606 *1)) (-4 *1 (-286)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-113)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) + (-4 *4 (-1176 (-391 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-537)) (-4 *1 (-401 *2)) (-4 *2 (-163)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1100)) (-5 *1 (-483)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-51)) (-5 *1 (-595)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-731)) (-5 *1 (-636 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-606 (-537))) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-606 (-845 *4))) (-5 *1 (-845 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) + (-4 *4 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-225 *4 *2)) (-14 *4 (-874)) (-4 *2 (-347)) + (-5 *1 (-946 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-962 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) (-4 *2 (-998)) + (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-1001 *4 *5 *2 *6 *7)) + (-4 *6 (-223 *5 *2)) (-4 *7 (-223 *4 *2)) (-4 *2 (-998)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-874)) (-4 *4 (-1045)) + (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) + (-5 *1 (-1021 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-874)) (-4 *4 (-1045)) + (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) + (-5 *1 (-1022 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-537))) (-4 *1 (-1048 *3 *4 *5 *6 *7)) + (-4 *3 (-1045)) (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) + (-4 *7 (-1045)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) + (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)))) + ((*1 *1 *1 *1) (-4 *1 (-1086))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-391 *1)) (-4 *1 (-1176 *2)) (-4 *2 (-998)) + (-4 *2 (-347)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-391 *1)) (-4 *1 (-1176 *3)) (-4 *3 (-998)) + (-4 *3 (-529)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1188 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1188 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *6))) + (-4 *6 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-530 *6 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314))))) (((*1 *2 *2) - (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-5 *1 (-930 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) - (-5 *1 (-1037 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-598 (-886 (-208))))) - (-5 *2 (-598 (-1025 (-208)))) (-5 *1 (-871))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) - ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793))))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210) (-210))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-247))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-848 (-531))) (-5 *4 (-531)) (-5 *2 (-639 *4)) - (-5 *1 (-968 *5)) (-4 *5 (-986)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-968 *4)) - (-4 *4 (-986)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-848 (-531)))) (-5 *4 (-531)) - (-5 *2 (-598 (-639 *4))) (-5 *1 (-968 *5)) (-4 *5 (-986)))) + (-12 (-5 *3 (-391 *6)) (-4 *5 (-1158)) (-4 *6 (-1176 *5)) + (-5 *2 (-2 (|:| -3283 (-731)) (|:| -3449 *3) (|:| |radicand| *6))) + (-5 *1 (-142 *5 *6 *7)) (-5 *4 (-731)) (-4 *7 (-1176 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) + (-4 *3 (-1176 (-160 *2))))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-598 (-531)))) (-5 *2 (-598 (-639 (-531)))) - (-5 *1 (-968 *4)) (-4 *4 (-986))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-523)) - (-4 *3 (-1138))))) + (-12 (-4 *2 (-13 (-347) (-805))) (-5 *1 (-171 *2 *3)) + (-4 *3 (-1176 (-160 *2)))))) +(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202)))) + ((*1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-1202))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-617 *3)) (-4 *3 (-998)) (-4 *3 (-347)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-731)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) + (-5 *1 (-620 *5 *2)) (-4 *2 (-617 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-571 (-47))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-598 (-571 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-571 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) - (-4 *3 (-1160 (-159 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) - ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-874)) (-4 *6 (-13 (-529) (-807))) + (-5 *2 (-606 (-300 *6))) (-5 *1 (-206 *5 *6)) (-5 *3 (-300 *6)) + (-4 *5 (-998)))) + ((*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529)))) + ((*1 *2 *3) + (-12 (-5 *3 (-554 *5)) (-4 *5 (-13 (-29 *4) (-1139))) + (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *2 (-606 *5)) (-5 *1 (-552 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-554 (-391 (-905 *4)))) + (-4 *4 (-13 (-435) (-989 (-537)) (-807) (-602 (-537)))) + (-5 *2 (-606 (-300 *4))) (-5 *1 (-557 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) + (-12 (-4 *1 (-1041 *3 *2)) (-4 *3 (-805)) (-4 *2 (-1091 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *1)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) + (-4 *2 (-1091 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139))))) ((*1 *2 *1) - (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) (-5 *1 (-394 *3 *2 *4 *5)) - (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-977 *2))))) + (-12 (-5 *2 (-1214 (-1117) *3)) (-5 *1 (-1221 *3)) (-4 *3 (-998)))) ((*1 *2 *1) - (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) - (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4)) - (-14 *6 (-1184 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-4 *5 (-986)) - (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266))) - (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-473)))) (-5 *1 (-473)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-571 (-473))) (-5 *1 (-473)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-598 (-571 (-473)))) - (-5 *1 (-473)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-571 (-473))) (-5 *1 (-473)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330)) - (-5 *1 (-501 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-675 *4 *2)) (-4 *2 (-1160 *4)) - (-5 *1 (-725 *4 *2 *5 *3)) (-4 *3 (-1160 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) - ((*1 *1 *1) (-4 *1 (-995)))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208))) - (-5 *2 (-1186)) (-5 *1 (-239))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2) (-12 (-5 *2 (-783 (-531))) (-5 *1 (-505)))) - ((*1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531) - *6)) - (-4 *6 (-344)) (-4 *7 (-1160 *6)) + (-12 (-5 *2 (-1214 *3 *4)) (-5 *1 (-1223 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-998))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) (-5 *2 - (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) - (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) - (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) - (-4 *2 (-1175 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-176)))) - ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-282)))) - ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-287))))) -(((*1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-349)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) - (-4 *4 (-330)))) - ((*1 *2 *1) - (-12 (-4 *2 (-797)) (-5 *1 (-664 *2 *3 *4)) (-4 *3 (-1030)) - (-14 *4 - (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3)) - (-2 (|:| -1889 *2) (|:| -1790 *3))))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1184 *5)) (-5 *3 (-721)) (-5 *4 (-1049)) (-4 *5 (-330)) - (-5 *1 (-501 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-106))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) - (-4 *3 (-1030)) (-5 *2 (-110)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-110)) - (-5 *1 (-847 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-864)) (-5 *2 (-110)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-311 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1154)) (-5 *1 (-497 *3 *4)) + (-14 *4 (-537))))) +(((*1 *1 *1) (-5 *1 (-1010)))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1013))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) - (-4 *3 (-13 (-344) (-1124) (-943)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) + (-12 (-5 *2 (-111)) (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) - (-4 *3 (-13 (-797) (-523))))) - ((*1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1) (-5 *1 (-457))) ((*1 *1) (-4 *1 (-1124)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797))))) -(((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-124 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) - (-5 *2 - (-2 (|:| A (-639 *5)) - (|:| |eqs| - (-598 - (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5)) (|:| -2723 *6) - (|:| |rh| *5)))))) - (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) - (-4 *6 (-609 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *6 (-609 *5)) - (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5)))) - (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) - (-5 *2 (-790 *4)) (-5 *1 (-294 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) - (-5 *2 (-790 *4)) (-5 *1 (-1170 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) - (-14 *6 *4)))) + (-12 (-4 *4 (-163)) (-5 *2 (-1113 (-905 *4))) (-5 *1 (-400 *3 *4)) + (-4 *3 (-401 *4)))) + ((*1 *2) + (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-4 *3 (-347)) + (-5 *2 (-1113 (-905 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1100)) (-4 *1 (-348 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) + (-5 *2 (-391 (-905 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-1160 *4)) (-4 *4 (-998)) (-4 *4 (-529)) + (-5 *2 (-391 (-905 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-160 (-210)))) + (-5 *2 (-986)) (-5 *1 (-715))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-388 (-895 (-531))))) - (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4)) - (-4 *4 (-13 (-795) (-344))))) + (-12 (-5 *3 (-606 (-391 (-905 (-537))))) + (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-805) (-347))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-276 (-388 (-895 (-531)))))) - (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4)) - (-4 *4 (-13 (-795) (-344))))) + (-12 (-5 *3 (-606 (-278 (-391 (-905 (-537)))))) + (-5 *2 (-606 (-606 (-278 (-905 *4))))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-805) (-347))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 (-276 (-895 *4)))) - (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) + (-12 (-5 *3 (-391 (-905 (-537)))) (-5 *2 (-606 (-278 (-905 *4)))) + (-5 *1 (-364 *4)) (-4 *4 (-13 (-805) (-347))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-276 (-388 (-895 (-531))))) - (-5 *2 (-598 (-276 (-895 *4)))) (-5 *1 (-361 *4)) - (-4 *4 (-13 (-795) (-344))))) + (-12 (-5 *3 (-278 (-391 (-905 (-537))))) + (-5 *2 (-606 (-278 (-905 *4)))) (-5 *1 (-364 *4)) + (-4 *4 (-13 (-805) (-347))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1102)) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-4 *4 (-13 (-29 *6) (-1124) (-902))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4)))) - (-5 *1 (-605 *6 *4 *3)) (-4 *3 (-609 *4)))) + (|partial| -12 (-5 *5 (-1117)) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-4 *4 (-13 (-29 *6) (-1139) (-912))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2122 (-606 *4)))) + (-5 *1 (-613 *6 *4 *3)) (-4 *3 (-617 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *2)) - (-4 *2 (-13 (-29 *6) (-1124) (-902))) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *1 (-605 *6 *2 *3)) (-4 *3 (-609 *2)))) + (|partial| -12 (-5 *4 (-1117)) (-5 *5 (-606 *2)) + (-4 *2 (-13 (-29 *6) (-1139) (-912))) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *1 (-613 *6 *2 *3)) (-4 *3 (-617 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-344)) + (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 - (-2 (|:| |particular| (-3 (-1184 *5) "failed")) - (|:| -3523 (-598 (-1184 *5))))) - (-5 *1 (-620 *5)) (-5 *4 (-1184 *5)))) + (-2 (|:| |particular| (-3 (-1200 *5) "failed")) + (|:| -2122 (-606 (-1200 *5))))) + (-5 *1 (-628 *5)) (-5 *4 (-1200 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344)) + (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) (-5 *2 - (-2 (|:| |particular| (-3 (-1184 *5) "failed")) - (|:| -3523 (-598 (-1184 *5))))) - (-5 *1 (-620 *5)) (-5 *4 (-1184 *5)))) + (-2 (|:| |particular| (-3 (-1200 *5) "failed")) + (|:| -2122 (-606 (-1200 *5))))) + (-5 *1 (-628 *5)) (-5 *4 (-1200 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-344)) + (-12 (-5 *3 (-649 *5)) (-4 *5 (-347)) (-5 *2 - (-598 - (-2 (|:| |particular| (-3 (-1184 *5) "failed")) - (|:| -3523 (-598 (-1184 *5)))))) - (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5))))) + (-606 + (-2 (|:| |particular| (-3 (-1200 *5) "failed")) + (|:| -2122 (-606 (-1200 *5)))))) + (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344)) + (-12 (-5 *3 (-606 (-606 *5))) (-4 *5 (-347)) (-5 *2 - (-598 - (-2 (|:| |particular| (-3 (-1184 *5) "failed")) - (|:| -3523 (-598 (-1184 *5)))))) - (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5))))) + (-606 + (-2 (|:| |particular| (-3 (-1200 *5) "failed")) + (|:| -2122 (-606 (-1200 *5)))))) + (-5 *1 (-628 *5)) (-5 *4 (-606 (-1200 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) - (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) + (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) + (-4 *4 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2122 (-606 *4)))) + (-5 *1 (-629 *5 *6 *4 *3)) (-4 *3 (-647 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) - (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4274)))) + (-12 (-4 *5 (-347)) (-4 *6 (-13 (-357 *5) (-10 -7 (-6 -4301)))) + (-4 *7 (-13 (-357 *5) (-10 -7 (-6 -4301)))) (-5 *2 - (-598 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3523 (-598 *7))))) - (-5 *1 (-621 *5 *6 *7 *3)) (-5 *4 (-598 *7)) - (-4 *3 (-637 *5 *6 *7)))) + (-606 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2122 (-606 *7))))) + (-5 *1 (-629 *5 *6 *7 *3)) (-5 *4 (-606 *7)) + (-4 *3 (-647 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5)))) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-606 (-1117))) (-4 *5 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-730 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4)))) + (-12 (-5 *3 (-606 (-905 *4))) (-4 *4 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-730 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1102)) - (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *1 (-722 *5 *2)) (-4 *2 (-13 (-29 *5) (-1124) (-902))))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1117)) + (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *1 (-732 *5 *2)) (-4 *2 (-13 (-29 *5) (-1139) (-912))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-639 *7)) (-5 *5 (-1102)) - (-4 *7 (-13 (-29 *6) (-1124) (-902))) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) + (|partial| -12 (-5 *3 (-649 *7)) (-5 *5 (-1117)) + (-4 *7 (-13 (-29 *6) (-1139) (-912))) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 - (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) - (-5 *1 (-752 *6 *7)) (-5 *4 (-1184 *7)))) + (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) + (-5 *1 (-762 *6 *7)) (-5 *4 (-1200 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-639 *6)) (-5 *4 (-1102)) - (-4 *6 (-13 (-29 *5) (-1124) (-902))) - (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-598 (-1184 *6))) (-5 *1 (-752 *5 *6)))) + (|partial| -12 (-5 *3 (-649 *6)) (-5 *4 (-1117)) + (-4 *6 (-13 (-29 *5) (-1139) (-912))) + (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-606 (-1200 *6))) (-5 *1 (-762 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) - (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) + (|partial| -12 (-5 *3 (-606 (-278 *7))) (-5 *4 (-606 (-113))) + (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 - (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) - (-5 *1 (-752 *6 *7)))) + (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) + (-5 *1 (-762 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) - (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) + (|partial| -12 (-5 *3 (-606 *7)) (-5 *4 (-606 (-113))) + (-5 *5 (-1117)) (-4 *7 (-13 (-29 *6) (-1139) (-912))) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 - (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) - (-5 *1 (-752 *6 *7)))) + (-2 (|:| |particular| (-1200 *7)) (|:| -2122 (-606 (-1200 *7))))) + (-5 *1 (-762 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1102)) - (-4 *7 (-13 (-29 *6) (-1124) (-902))) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) + (-12 (-5 *3 (-278 *7)) (-5 *4 (-113)) (-5 *5 (-1117)) + (-4 *7 (-13 (-29 *6) (-1139) (-912))) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3523 (-598 *7))) *7 "failed")) - (-5 *1 (-752 *6 *7)))) + (-3 (-2 (|:| |particular| *7) (|:| -2122 (-606 *7))) *7 "failed")) + (-5 *1 (-762 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-1102)) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) + (-12 (-5 *4 (-113)) (-5 *5 (-1117)) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3523 (-598 *3))) *3 "failed")) - (-5 *1 (-752 *6 *3)) (-4 *3 (-13 (-29 *6) (-1124) (-902))))) + (-3 (-2 (|:| |particular| *3) (|:| -2122 (-606 *3))) *3 "failed")) + (-5 *1 (-762 *6 *3)) (-4 *3 (-13 (-29 *6) (-1139) (-912))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-598 *2)) - (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-5 *1 (-752 *6 *2)) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))))) + (|partial| -12 (-5 *3 (-278 *2)) (-5 *4 (-113)) (-5 *5 (-606 *2)) + (-4 *2 (-13 (-29 *6) (-1139) (-912))) (-5 *1 (-762 *6 *2)) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-598 *2)) - (-4 *2 (-13 (-29 *6) (-1124) (-902))) - (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *1 (-752 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-975)) (-5 *1 (-755)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-278 *2)) (-5 *5 (-606 *2)) + (-4 *2 (-13 (-29 *6) (-1139) (-912))) + (-4 *6 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *1 (-762 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-758)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-768)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) - (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) + (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) - (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) + (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) - (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) + (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) - (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-1200 (-300 (-363)))) (-5 *4 (-363)) (-5 *5 (-606 *4)) + (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) - (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) + (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) - (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) + (-12 (-5 *3 (-1200 (-300 *4))) (-5 *5 (-606 (-363))) + (-5 *6 (-300 (-363))) (-5 *4 (-363)) (-5 *2 (-986)) (-5 *1 (-765)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3523 (-598 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -2122 (-606 *6))) "failed") *7 *6)) - (-4 *6 (-344)) (-4 *7 (-609 *6)) - (-5 *2 (-2 (|:| |particular| (-1184 *6)) (|:| -3523 (-639 *6)))) - (-5 *1 (-763 *6 *7)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-975)) (-5 *1 (-840)))) + (-4 *6 (-347)) (-4 *7 (-617 *6)) + (-5 *2 (-2 (|:| |particular| (-1200 *6)) (|:| -2122 (-649 *6)))) + (-5 *1 (-773 *6 *7)) (-5 *3 (-649 *6)) (-5 *4 (-1200 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-986)) (-5 *1 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-841)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-840)))) + (-12 (-5 *3 (-851)) (-5 *4 (-1010)) (-5 *2 (-986)) (-5 *1 (-850)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085)) - (-5 *8 (-208)) (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) - (-5 *2 (-975)) (-5 *1 (-840)))) + (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) + (-5 *8 (-210)) (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) + (-5 *2 (-986)) (-5 *1 (-850)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085)) - (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-975)) - (-5 *1 (-840)))) + (-12 (-5 *4 (-731)) (-5 *6 (-606 (-606 (-300 *3)))) (-5 *7 (-1100)) + (-5 *5 (-606 (-300 (-363)))) (-5 *3 (-363)) (-5 *2 (-986)) + (-5 *1 (-850)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 (-360))) - (-5 *1 (-963)) (-5 *4 (-360)))) + (-12 (-5 *3 (-905 (-391 (-537)))) (-5 *2 (-606 (-363))) + (-5 *1 (-974)) (-5 *4 (-363)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 (-360))) (-5 *1 (-963)) - (-5 *4 (-360)))) + (-12 (-5 *3 (-905 (-537))) (-5 *2 (-606 (-363))) (-5 *1 (-974)) + (-5 *4 (-363)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) + (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4)) - (-5 *3 (-297 *4)))) + (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) + (-5 *3 (-300 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4)) - (-5 *3 (-276 (-297 *4))))) + (-12 (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1075 *4)) + (-5 *3 (-278 (-300 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5)) - (-5 *3 (-276 (-297 *5))))) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) + (-5 *3 (-278 (-300 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5)) - (-5 *3 (-297 *5)))) + (-12 (-5 *4 (-1117)) + (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-606 (-278 (-300 *5)))) (-5 *1 (-1075 *5)) + (-5 *3 (-300 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-1102))) - (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1060 *5)) - (-5 *3 (-598 (-276 (-297 *5)))))) + (-12 (-5 *4 (-606 (-1117))) + (-4 *5 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1075 *5)) + (-5 *3 (-606 (-278 (-300 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) - (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) - (-5 *1 (-1108 *5)))) + (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) + (-4 *5 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) + (-5 *1 (-1123 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-1102))) (-4 *5 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-1108 *5)) - (-5 *3 (-598 (-276 (-388 (-895 *5))))))) + (-12 (-5 *4 (-606 (-1117))) (-4 *5 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *5)))))) (-5 *1 (-1123 *5)) + (-5 *3 (-606 (-278 (-391 (-905 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-388 (-895 *4)))) (-4 *4 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-1108 *4)))) + (-12 (-5 *3 (-606 (-391 (-905 *4)))) (-4 *4 (-529)) + (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) (-5 *1 (-1123 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) - (-5 *1 (-1108 *4)) (-5 *3 (-598 (-276 (-388 (-895 *4))))))) + (-12 (-4 *4 (-529)) (-5 *2 (-606 (-606 (-278 (-391 (-905 *4)))))) + (-5 *1 (-1123 *4)) (-5 *3 (-606 (-278 (-391 (-905 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-4 *5 (-523)) - (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5)) - (-5 *3 (-388 (-895 *5))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-529)) + (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) + (-5 *3 (-391 (-905 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) (-4 *5 (-523)) - (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5)) - (-5 *3 (-276 (-388 (-895 *5)))))) + (-12 (-5 *4 (-1117)) (-4 *5 (-529)) + (-5 *2 (-606 (-278 (-391 (-905 *5))))) (-5 *1 (-1123 *5)) + (-5 *3 (-278 (-391 (-905 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4))))) - (-5 *1 (-1108 *4)) (-5 *3 (-388 (-895 *4))))) + (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) + (-5 *1 (-1123 *4)) (-5 *3 (-391 (-905 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4))))) - (-5 *1 (-1108 *4)) (-5 *3 (-276 (-388 (-895 *4))))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-507))))) -(((*1 *1 *1 *1) (-4 *1 (-614))) ((*1 *1 *1 *1) (-5 *1 (-1049)))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030)) - (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) - (-5 *1 (-1008 *4 *5 *2)) - (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1030)) - (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) - (-5 *1 (-1008 *3 *4 *2)) - (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344))))) -(((*1 *2) (-12 (-5 *2 (-598 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-129))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *3 (-1000 *6 *7 *8)) - (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) - (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8)) - (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797)) - (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9)))) - (-5 *1 (-1038 *6 *7 *4 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-743)) - (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523)) - (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) - (-4 *3 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *6)) - (-4 *6 - (-13 (-797) - (-10 -8 (-15 -3318 ((-1102) $)) - (-15 -3524 ((-3 $ "failed") (-1102)))))) - (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2)) - (-4 *2 (-892 (-895 *4) *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-531) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) - (-14 *4 (-598 (-1102))))) + (-12 (-4 *4 (-529)) (-5 *2 (-606 (-278 (-391 (-905 *4))))) + (-5 *1 (-1123 *4)) (-5 *3 (-278 (-391 (-905 *4))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-508 *3)) (-4 *3 (-13 (-687) (-25)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) + (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-874)) (-4 *1 (-705 *3)) (-4 *3 (-163))))) +(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-807)))) ((*1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) - (-14 *4 (-598 (-1102))))) - ((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) + (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-818 *3)) (-14 *3 (-606 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-919 *3)) (-4 *3 (-920)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-942)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1038 *3)) (-4 *3 (-1154)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344)) - (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) - (-4 *2 (-323 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-162)))) - ((*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-675 *2 *3)) (-4 *3 (-1160 *2))))) -(((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-137))) (-5 *1 (-134)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-134))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-606 *4)) (-4 *4 (-323 *5 *6 *7)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (-5 *2 (-1117)))) + ((*1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1196 *3)) (-14 *3 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-1113 *3))))) +(((*1 *1) (-5 *1 (-1031)))) +(((*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-805)) (-5 *1 (-287 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-606 (-578 *5))) (-5 *3 (-1117)) (-4 *5 (-414 *4)) + (-4 *4 (-807)) (-5 *1 (-546 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) + ((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-998)) (-5 *2 (-731)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 (-731))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-902 *4 *5 *3)) (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *3 (-807)) (-5 *2 (-731))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) - (-5 *1 (-756 *5 *6 *7 *4))))) + (-485 (-391 (-537)) (-225 *4 (-731)) (-818 *3) + (-232 *3 (-391 (-537))))) + (-14 *3 (-606 (-1117))) (-14 *4 (-731)) (-5 *1 (-486 *3 *4))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-731)) (-4 *5 (-347)) (-5 *2 (-391 *6)) + (-5 *1 (-820 *5 *4 *6)) (-4 *4 (-1191 *5)) (-4 *6 (-1176 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) + (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) + (-5 *1 (-821 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-731)) (-5 *4 (-1192 *5 *6 *7)) (-4 *5 (-347)) + (-14 *6 (-1117)) (-14 *7 *5) (-5 *2 (-391 (-1173 *6 *5))) + (-5 *1 (-821 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-606 *3)) (-4 *3 (-902 *5 *6 *7)) (-4 *5 (-435)) + (-4 *6 (-753)) (-4 *7 (-807)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-432 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) + (-4 *5 (-435)) (-5 *2 (-606 (-232 *4 *5))) (-5 *1 (-594 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) + ((*1 *2 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-291)))) + ((*1 *2 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007)) (-5 *2 (-537))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1200 (-606 (-537)))) (-5 *1 (-462)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1154)) (-5 *1 (-1098 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-598 - (-2 (|:| -2277 (-721)) - (|:| |eqns| - (-598 - (-2 (|:| |det| *7) (|:| |rows| (-598 (-531))) - (|:| |cols| (-598 (-531)))))) - (|:| |fgb| (-598 *7))))) - (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) - (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721)) - (-5 *1 (-867 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) -(((*1 *2) - (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) - (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *1 *1 *1) (-4 *1 (-614))) ((*1 *1 *1 *1) (-5 *1 (-1049)))) -(((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) (-4 *2 (-289)) - (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1))) - (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) - ((*1 *2 *1) - (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4)) - (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4)) - (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-537))) (-5 *1 (-996))))) +(((*1 *2 *3) (-12 (-5 *2 (-363)) (-5 *1 (-745 *3)) (-4 *3 (-580 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-874)) (-5 *2 (-363)) (-5 *1 (-745 *3)) + (-4 *3 (-580 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-998)) (-4 *4 (-580 *2)) + (-5 *2 (-363)) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905 *5)) (-5 *4 (-874)) (-4 *5 (-998)) + (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) (-4 *4 (-580 *2)) + (-5 *2 (-363)) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-874)) (-4 *5 (-529)) + (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-300 *4)) (-4 *4 (-529)) (-4 *4 (-807)) + (-4 *4 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 *5)) (-5 *4 (-874)) (-4 *5 (-529)) (-4 *5 (-807)) + (-4 *5 (-580 *2)) (-5 *2 (-363)) (-5 *1 (-745 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-111)) (-5 *5 (-1047 (-731))) (-5 *6 (-731)) + (-5 *2 + (-2 (|:| |contp| (-537)) + (|:| -3415 (-606 (-2 (|:| |irr| *3) (|:| -2430 (-537))))))) + (-5 *1 (-425 *3)) (-4 *3 (-1176 (-537)))))) (((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-639 *4)) (-4 *5 (-609 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-724)) (-5 *1 (-51))))) + (-12 (-5 *3 (-1113 *4)) (-4 *4 (-333)) + (-4 *2 + (-13 (-386) + (-10 -7 (-15 -2341 (*2 *4)) (-15 -2334 ((-874) *2)) + (-15 -2122 ((-1200 *2) (-874))) (-15 -1791 (*2 *2))))) + (-5 *1 (-340 *2 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-655 *3)) (-4 *3 (-1045)) + (-5 *2 (-606 (-2 (|:| -2140 *3) (|:| -2539 (-731)))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-598 (-598 *4))) (-5 *2 (-598 *4)) (-4 *4 (-289)) - (-5 *1 (-168 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 *8)) - (-5 *4 - (-598 - (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-639 *7))))) - (-5 *5 (-721)) (-4 *8 (-1160 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-330)) + (|partial| -12 (-4 *4 (-13 (-347) (-141) (-989 (-537)))) + (-4 *5 (-1176 *4)) + (-5 *2 (-2 (|:| -3121 (-391 *5)) (|:| |coeff| (-391 *5)))) + (-5 *1 (-541 *4 *5)) (-5 *3 (-391 *5))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1083 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-529) (-807) (-989 (-537)))) (-5 *1 (-174 *3 *2)) + (-4 *2 (-13 (-27) (-1139) (-414 (-160 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *3)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1045)) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1045))))) +(((*1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1113 (-537))) (-5 *3 (-537)) (-4 *1 (-822 *4))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1167 (-537))) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-612 *3)) (-4 *3 (-1154))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) + (-4 *7 (-1176 (-391 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -4082 *3))) + (-5 *1 (-535 *5 *6 *7 *3)) (-4 *3 (-326 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1176 *5)) (-4 *5 (-347)) + (-5 *2 + (-2 (|:| |answer| (-391 *6)) (|:| -4082 (-391 *6)) + (|:| |specpart| (-391 *6)) (|:| |polypart| *6))) + (-5 *1 (-536 *5 *6)) (-5 *3 (-391 *6))))) +(((*1 *2) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-506))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 (-1117))) (-4 *4 (-1045)) + (-4 *5 (-13 (-998) (-839 *4) (-807) (-580 (-845 *4)))) + (-5 *1 (-53 *4 *5 *2)) + (-4 *2 (-13 (-414 *5) (-839 *4) (-580 (-845 *4))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-807)) (-5 *1 (-882 *3 *2)) (-4 *2 (-414 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-300 (-537))) (-5 *1 (-883))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-986))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-639 *7)))) - (-5 *1 (-476 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) + (-606 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-731)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-753)) (-4 *6 (-902 *4 *3 *5)) (-4 *4 (-435)) (-4 *5 (-807)) + (-5 *1 (-432 *4 *3 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) - (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) + (-12 (-5 *3 (-1100)) (-5 *2 (-537)) (-5 *1 (-1136 *4)) + (-4 *4 (-998))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *2)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-1010))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1120)))) + ((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-529)) (-4 *2 (-998)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) + (-4 *1 (-1018 *4 *5 *6 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-998)) (-4 *2 (-529))))) +(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(((*1 *2) + (-12 (-14 *4 (-731)) (-4 *5 (-1154)) (-5 *2 (-131)) + (-5 *1 (-222 *3 *4 *5)) (-4 *3 (-223 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)) - (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5)))) + (-12 (-4 *4 (-347)) (-5 *2 (-131)) (-5 *1 (-312 *3 *4)) + (-4 *3 (-313 *4)))) ((*1 *2) - (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) - (-5 *2 (-639 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-941 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 (-2 (|:| -4216 (-399 *3)) (|:| |special| (-399 *3)))) - (-5 *1 (-678 *5 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-691 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-797)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *1 (-922 *3)) (-4 *3 (-986)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) + (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-163)))) + ((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-537)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) + (-5 *2 (-537)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-998)) (-5 *2 (-874)))) + ((*1 *2) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-347)) (-5 *2 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-506))))) +(((*1 *2 *2) (-12 (-5 *2 (-649 (-300 (-537)))) (-5 *1 (-982))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-160 (-210)) (-160 (-210)))) (-5 *4 (-1040 (-210))) + (-5 *2 (-1202)) (-5 *1 (-241))))) +(((*1 *2 *1) + (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-752)) (-4 *2 (-998)) + (-4 *2 (-435)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-1176 (-537))) (-5 *2 (-606 (-537))) + (-5 *1 (-468 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))) -(((*1 *1 *1 *1) (-5 *1 (-127)))) -(((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) - ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1106))))) + (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *3 (-435))))) (((*1 *2 *1) - (-12 (-5 *2 (-886 *4)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721))) - (-5 *1 (-847 *4))))) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-1100)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-708))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1045)) (-4 *2 (-853 *4)) (-5 *1 (-652 *4 *2 *5 *3)) + (-4 *5 (-357 *2)) (-4 *3 (-13 (-357 *4) (-10 -7 (-6 -4300))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-1091 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) - (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6)) - (-4 *6 (-13 (-390 *4 *5) (-977 *4))))) + (-12 (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1))) - (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-64 FUNCT1)))) + (-5 *2 (-986)) (-5 *1 (-714))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-896 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-896 *3))) (-4 *3 (-998)) (-4 *1 (-1078 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-606 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 (-896 *3))) (-4 *1 (-1078 *3)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-149)))) + ((*1 *2 *1) (-12 (-5 *2 (-149)) (-5 *1 (-827)))) + ((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-363)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) + (-4 *5 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 + (-3 (|:| |%expansion| (-297 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1100)) (|:| |prob| (-1100)))))) + (-5 *1 (-404 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1139) (-414 *5))) + (-14 *6 (-1117)) (-14 *7 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-435)) (-4 *3 (-807)) (-4 *3 (-989 (-537))) + (-4 *3 (-529)) (-5 *1 (-40 *3 *2)) (-4 *2 (-414 *3)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *3 (-578 $)) $)) + (-15 -3315 ((-1069 *3 (-578 $)) $)) + (-15 -2341 ($ (-1069 *3 (-578 $)))))))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-286)))) + ((*1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) (-12 (-4 *1 (-757 *2)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-163))))) +(((*1 *2 *1) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) + (-5 *2 (-606 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-577 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-677) *3)))) + (-12 (-5 *2 (-606 (-2 (|:| |k| (-846 *3)) (|:| |c| *4)))) + (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-807)) + (-4 *4 (-13 (-163) (-678 (-391 (-537))))) (-14 *5 (-874)))) ((*1 *2 *1) - (-12 (-4 *3 (-162)) (-4 *2 (-668 *3)) (-5 *1 (-615 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-677) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523))))) -(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-360)) (-5 *1 (-979))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *2 (-606 (-633 *3))) (-5 *1 (-846 *3)) (-4 *3 (-807))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *8 (-1012 *5 *6 *7)) (-5 *2 - (-598 - (-598 - (-3 (|:| -3955 (-1102)) - (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))))) - (-5 *1 (-1106))))) -(((*1 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) - (-5 *1 (-930 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) - (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) - (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109))))) -(((*1 *1 *1) (-5 *1 (-208))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *1 *1) (-5 *1 (-360))) ((*1 *1) (-5 *1 (-360)))) + (-2 (|:| |val| (-606 *8)) (|:| |towers| (-606 (-978 *5 *6 *7 *8))))) + (-5 *1 (-978 *5 *6 *7 *8)) (-5 *3 (-606 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *8 (-1012 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-606 *8)) + (|:| |towers| (-606 (-1088 *5 *6 *7 *8))))) + (-5 *1 (-1088 *5 *6 *7 *8)) (-5 *3 (-606 *8))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-291)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-291)) (-5 *1 (-443 *3 *2)) (-4 *2 (-1176 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-291)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-731))) + (-5 *1 (-516 *3 *2 *4 *5)) (-4 *2 (-1176 *3))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-716))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-717))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4))) + (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *4 *2))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-918))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-44 (-1100) (-734))) (-5 *1 (-113))))) (((*1 *2 *1) - (-12 (-5 *2 (-806)) (-5 *1 (-1083 *3)) (-4 *3 (-1030)) - (-4 *3 (-1138))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1085)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1030)) - (-4 *4 (-1030)))) - ((*1 *1 *2) - (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) + (|partial| -12 (-5 *2 (-1008 (-975 *3) (-1113 (-975 *3)))) + (-5 *1 (-975 *3)) (-4 *3 (-13 (-805) (-347) (-973)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-874)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-247))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-435)) (-4 *3 (-807)) (-4 *4 (-753)) + (-5 *1 (-940 *2 *3 *4 *5)) (-4 *5 (-902 *2 *4 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *6 (-3 (|:| |fn| (-372)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-986)) (-5 *1 (-709))))) (((*1 *2 *1) - (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) - (-5 *2 (-1098 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-703))))) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-606 (-300 (-210)))) (-5 *1 (-251))))) (((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *4 *5 *6 *7)) - (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)) - (-4 *7 (-1138))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1045)) (-4 *5 (-1045)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-643 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4302 "*"))) (-4 *5 (-357 *2)) (-4 *6 (-357 *2)) + (-4 *2 (-998)) (-5 *1 (-102 *2 *3 *4 *5 *6)) (-4 *3 (-1176 *2)) + (-4 *4 (-647 *2 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1) + (-12 (-4 *1 (-157 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-402 *3)) (-4 *3 (-522)) (-4 *3 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-757 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-793 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-800 *3)) (-4 *3 (-522)) (-4 *3 (-1045)))) + ((*1 *2 *1) + (-12 (-4 *1 (-949 *3)) (-4 *3 (-163)) (-4 *3 (-522)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-960 *3)) (-4 *3 (-989 (-391 (-537))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-641)))) + ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-923)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-1062))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-649 *2)) (-5 *4 (-537)) + (-4 *2 (-13 (-291) (-10 -8 (-15 -2414 ((-402 $) $))))) + (-4 *5 (-1176 *2)) (-5 *1 (-480 *2 *5 *6)) (-4 *6 (-393 *2 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)))) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-404 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1139) (-414 *3))) + (-14 *4 (-1117)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-598 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *5 *6)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *1 (-429 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) - (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-598 *7) (-598 *7))) (-5 *2 (-598 *7)) - (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) - (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1016 *3)) (-4 *3 (-129))))) + (-12 (-4 *3 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-4 *2 (-13 (-27) (-1139) (-414 *3) (-10 -8 (-15 -2341 ($ *4))))) + (-4 *4 (-805)) + (-4 *5 + (-13 (-1178 *2 *4) (-347) (-1139) + (-10 -8 (-15 -3456 ($ $)) (-15 -3092 ($ $))))) + (-5 *1 (-406 *3 *2 *4 *5 *6 *7)) (-4 *6 (-936 *5)) (-14 *7 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-51)) (-5 *1 (-791))))) +(((*1 *2 *3) + (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)) (-5 *3 (-1100)))) + ((*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-226)))) + ((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) - (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) - (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-912 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) - (-14 *4 (-864))))) -(((*1 *1) (-5 *1 (-137)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-797)) (-4 *5 (-743)) - (-4 *6 (-523)) (-4 *7 (-892 *6 *5 *3)) - (-5 *1 (-442 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-977 (-388 (-531))) (-344) - (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) - (-15 -1853 (*7 $)))))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)))) + (-12 (-4 *3 (-333)) (-4 *4 (-313 *3)) (-4 *5 (-1176 *4)) + (-5 *1 (-737 *3 *4 *5 *2 *6)) (-4 *2 (-1176 *5)) (-14 *6 (-874)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) + (-12 (-5 *2 (-731)) (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) + ((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-347)) (-4 *2 (-352))))) +(((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-203)))) + ((*1 *2 *1) (-12 (-5 *2 (-391 (-537))) (-5 *1 (-469)))) + ((*1 *1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-529)) (-4 *2 (-291)))) + ((*1 *2 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-956 *3)) (-14 *3 (-537)))) + ((*1 *1 *1) (-4 *1 (-1007)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) + (-5 *1 (-709))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1176 *2)) (-4 *2 (-1176 *4)) (-5 *1 (-938 *4 *2 *3 *5)) + (-4 *4 (-333)) (-4 *5 (-685 *2 *3))))) (((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-732 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-906 *3 *2)) (-4 *2 (-128)) (-4 *3 (-523)) - (-4 *3 (-986)) (-4 *2 (-742)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-1098 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-913)) (-4 *2 (-128)) (-5 *1 (-1104 *3)) (-4 *3 (-523)) - (-4 *3 (-986)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-1157 *4 *3)) (-14 *4 (-1102)) - (-4 *3 (-986))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) - ((*1 *2 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) - (-14 *4 (-531))))) -(((*1 *1 *1) (-4 *1 (-614))) ((*1 *1 *1) (-5 *1 (-1049)))) -(((*1 *2 *3) - (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) - (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953))))) -(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162))))) -(((*1 *1) (-4 *1 (-330))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) - (-4 *4 (-13 (-523) (-797) (-140))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-598 (-1098 *5))) - (|:| |prim| (-1098 *5)))) - (-5 *1 (-413 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-140))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1098 *3)) - (|:| |pol2| (-1098 *3)) (|:| |prim| (-1098 *3)))) - (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1102)) (-4 *5 (-13 (-344) (-140))) - (-5 *2 - (-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) - (|:| |prim| (-1098 *5)))) - (-5 *1 (-903 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) - (-4 *5 (-13 (-344) (-140))) - (-5 *2 - (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *5))) - (|:| |prim| (-1098 *5)))) - (-5 *1 (-903 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-5 *5 (-1102)) - (-4 *6 (-13 (-344) (-140))) - (-5 *2 - (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *6))) - (|:| |prim| (-1098 *6)))) - (-5 *1 (-903 *6))))) -(((*1 *1 *1) (-4 *1 (-584))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943) (-1124)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1160 *5)) - (-5 *1 (-678 *5 *2)) (-4 *5 (-344))))) + (|partial| -12 (-4 *4 (-1158)) (-4 *5 (-1176 (-391 *2))) + (-4 *2 (-1176 *4)) (-5 *1 (-325 *3 *4 *2 *5)) + (-4 *3 (-326 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-326 *3 *2 *4)) (-4 *3 (-1158)) + (-4 *4 (-1176 (-391 *2))) (-4 *2 (-1176 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139))))) + ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-816)))) + ((*1 *2 *1) (-12 (-5 *2 (-537)) (-5 *1 (-816))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-805)) (-4 *4 (-347)) (-5 *2 (-731)) + (-5 *1 (-898 *4 *5)) (-4 *5 (-1176 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-391 (-537))) + (-4 *4 (-13 (-529) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-261 *4 *2)) (-4 *2 (-13 (-27) (-1139) (-414 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1085)) (|:| -3955 (-1085)))) - (-5 *1 (-772))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94))))) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) + (-5 *2 (-2 (|:| |num| (-1200 *4)) (|:| |den| *4)))))) +(((*1 *2) + (-12 (-4 *3 (-1158)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) + (-5 *2 (-1200 *1)) (-4 *1 (-326 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) - (-4 *7 (-1160 (-388 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1913 *3))) - (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 - (-2 (|:| |answer| (-388 *6)) (|:| -1913 (-388 *6)) - (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) - (-5 *1 (-530 *5 *6)) (-5 *3 (-388 *6))))) + (-12 (-5 *3 (-537)) (-5 *4 (-402 *2)) (-4 *2 (-902 *7 *5 *6)) + (-5 *1 (-703 *5 *6 *7 *2)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1100)) (-5 *1 (-746))))) +(((*1 *2 *3) (-12 (-5 *2 (-606 (-537))) (-5 *1 (-534)) (-5 *3 (-537))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 (-232 *4 *5))) (-5 *2 (-232 *4 *5)) + (-14 *4 (-606 (-1117))) (-4 *5 (-435)) (-5 *1 (-594 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) + (-5 *1 (-316)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-1038 (-905 (-537)))) (-5 *2 (-314)) + (-5 *1 (-316)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-636 *3)) (-4 *3 (-998)) (-4 *3 (-1045))))) +(((*1 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-141)) + (-4 *3 (-291)) (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-816)) (-5 *1 (-1098 *3)) (-4 *3 (-1045)) + (-4 *3 (-1154))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1117)) (-5 *2 (-421)) (-5 *1 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) + (-5 *1 (-767 *4 *5 *3 *6)) (-4 *3 (-617 *5)) + (-4 *6 (-617 (-391 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) + (-5 *1 (-767 *5 *4 *3 *6)) (-4 *3 (-617 *4)) + (-4 *6 (-617 (-391 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *5 (-1176 *4)) (-5 *2 (-606 (-2 (|:| -2184 *5) (|:| -3056 *5)))) + (-5 *1 (-767 *4 *5 *6 *3)) (-4 *6 (-617 *5)) + (-4 *3 (-617 (-391 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *4 (-1176 *5)) (-5 *2 (-606 (-2 (|:| -2184 *4) (|:| -3056 *4)))) + (-5 *1 (-767 *5 *4 *6 *3)) (-4 *6 (-617 *4)) + (-4 *3 (-617 (-391 *4)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-753)) (-4 *2 (-902 *4 *5 *6)) (-5 *1 (-432 *4 *5 *6 *2)) + (-4 *4 (-435)) (-4 *6 (-807))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-37 (-391 (-537)))) + (-4 *2 (-163))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1117))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-1117))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-432 *4 *5 *6 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-532))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-162))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) - (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) + (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 - (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9)))) - (-5 *1 (-930 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9)) - (-4 *4 (-1005 *6 *7 *8 *9)))) + (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) + (-5 *1 (-941 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) + (-4 *4 (-1018 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) - (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-435)) (-4 *7 (-753)) + (-4 *8 (-807)) (-4 *9 (-1012 *6 *7 *8)) (-5 *2 - (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9)))) - (-5 *1 (-1037 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9)) - (-4 *4 (-1005 *6 *7 *8 *9))))) + (-2 (|:| -4113 (-606 *9)) (|:| -3852 *4) (|:| |ineq| (-606 *9)))) + (-5 *1 (-1052 *6 *7 *8 *9 *4)) (-5 *3 (-606 *9)) + (-4 *4 (-1018 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-537)) (-5 *1 (-1128 *2)) (-4 *2 (-347))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-264))))) +(((*1 *1) + (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) + (-4 *4 (-163))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-879))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-210))))) +(((*1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *2 *3) (-12 (-5 *3 (-731)) (-5 *2 (-1205)) (-5 *1 (-363)))) + ((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-363))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *3 (-606 (-247))) + (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-451))))) +(((*1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-352)) (-4 *2 (-1045))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) - (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -14464,2340 +14273,2029 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1083 (-208))) + (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2368 + (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-526))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6)) - (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721)))))) + (-5 *2 (-986)) (-5 *1 (-289))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1122))) (-5 *3 (-1122)) (-5 *1 (-1062))))) (((*1 *2 *3) - (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)) (-5 *3 (-1085))))) -(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-311))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-598 (-886 *4))) (-4 *1 (-1063 *4)) (-4 *4 (-986)) - (-5 *2 (-721))))) + (-12 (-5 *3 (-1113 (-537))) (-5 *2 (-537)) (-5 *1 (-895))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1153))) (-5 *1 (-641)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-1122))) (-5 *1 (-1062))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1167 *3)) (-4 *3 (-1154))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) + (-5 *2 (-986)) (-5 *1 (-715))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-998)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-101 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-101 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522))))) (((*1 *2 *3) - (-12 (-5 *3 (-531)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) - (-4 *2 (-1175 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) - (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) - (-4 *2 (-1175 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) - (-5 *1 (-1079 *3))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1102)) (-5 *1 (-627 *3)) (-4 *3 (-1030))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1169 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) - (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1030)) (-5 *1 (-664 *3 *2 *4)) (-4 *3 (-797)) - (-14 *4 - (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *2)) - (-2 (|:| -1889 *3) (|:| -1790 *2))))))) + (-12 (-5 *3 (-1100)) + (-4 *4 (-13 (-435) (-807) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-111)) (-5 *1 (-209 *4 *5)) (-4 *5 (-13 (-1139) (-29 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-709))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378))))) (((*1 *2) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4)))))) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-649 (-391 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1023 (-790 *3))) (-4 *3 (-13 (-1124) (-902) (-29 *5))) - (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-202 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1023 (-790 *3))) (-5 *5 (-1085)) - (-4 *3 (-13 (-1124) (-902) (-29 *6))) - (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-202 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1023 (-790 (-297 *5)))) - (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-203 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1023 (-790 (-297 *6)))) - (-5 *5 (-1085)) - (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-203 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1023 (-790 (-388 (-895 *5))))) (-5 *3 (-388 (-895 *5))) - (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-203 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1023 (-790 (-388 (-895 *6))))) (-5 *5 (-1085)) - (-5 *3 (-388 (-895 *6))) - (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 - (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-203 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-3 *3 (-598 *3))) (-5 *1 (-409 *5 *3)) - (-4 *3 (-13 (-1124) (-902) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) - (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) - (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) - (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) - (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) - (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) - (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) - (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) - (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360)))) - (-5 *5 (-1085)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360)))) - (-5 *5 (-1102)) (-5 *2 (-975)) (-5 *1 (-532)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) - (-5 *2 (-548 (-388 *5))) (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140)) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *2 (-3 (-297 *5) (-598 (-297 *5)))) (-5 *1 (-551 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-691 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797)) - (-4 *3 (-37 (-388 (-531)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1102)) (-5 *1 (-895 *3)) (-4 *3 (-37 (-388 (-531)))) - (-4 *3 (-986)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-4 *2 (-797)) - (-5 *1 (-1055 *3 *2 *4)) (-4 *4 (-892 *3 (-503 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) - (-5 *1 (-1087 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-37 (-388 (-531)))) - (-4 *3 (-986)))) - ((*1 *1 *1 *2) - (-1435 - (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986)) - (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) - (-4 *3 (-37 (-388 (-531)))))) - (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986)) - (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) - (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1144 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) - ((*1 *1 *1 *2) - (-1435 - (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986)) - (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) - (-4 *3 (-37 (-388 (-531)))))) - (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986)) - (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) - (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1165 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-1435 - (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986)) - (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) - (-4 *3 (-37 (-388 (-531)))))) - (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986)) - (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) - (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) - (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) - (-4 *5 (-354 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-598 (-531))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) - (-14 *4 (-531)) (-14 *5 (-721)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-721)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-721)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-721)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-721)))) - ((*1 *2 *1) - (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-531)) - (-14 *4 (-721)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-4 *2 (-1030)) (-5 *1 (-197 *4 *2)) - (-14 *4 (-864)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-228 (-1085))) (-5 *1 (-198 *4)) - (-4 *4 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ *3)) (-15 -2286 ((-1189) $)) - (-15 -3403 ((-1189) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-931)) (-5 *1 (-198 *3)) - (-4 *3 - (-13 (-797) - (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) - (-15 -3403 ((-1189) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-721)) (-5 *1 (-228 *4)) (-4 *4 (-797)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-797)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-797)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1160 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2)) - (-4 *4 (-1160 (-388 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-398 *2)) (-4 *2 (-162)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1085)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-51)) (-5 *1 (-587)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *3 (-598 (-835 *4))) (-5 *1 (-835 *4)) - (-4 *4 (-1030)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4)) - (-4 *4 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-864)) (-4 *2 (-344)) - (-5 *1 (-935 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-951 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *2 (-986)) - (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) - (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-864)) (-4 *4 (-1030)) - (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) - (-5 *1 (-1008 *4 *5 *2)) - (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-864)) (-4 *4 (-1030)) - (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) - (-5 *1 (-1009 *4 *5 *2)) - (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-598 (-531))) (-4 *1 (-1033 *3 *4 *5 *6 *7)) - (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) - (-4 *7 (-1030)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-531)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) - (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))) - ((*1 *1 *1 *1) (-4 *1 (-1071))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-388 *1)) (-4 *1 (-1160 *2)) (-4 *2 (-986)) - (-4 *2 (-344)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986)) - (-4 *3 (-523)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1172 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-721)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) - (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797))) - (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124))) - (-5 *1 (-560 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-943) (-1124)))))) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 (-606 (-2 (|:| |val| (-111)) (|:| -3852 *4)))) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531)))) - (-4 *5 (-829 (-531))) - (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-534 *5 *3)) (-4 *3 (-584)) - (-4 *3 (-13 (-27) (-1124) (-411 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1102)) (-5 *4 (-790 *2)) (-4 *2 (-1066)) - (-4 *2 (-13 (-27) (-1124) (-411 *5))) - (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) - (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) - (-5 *1 (-534 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531)))) - (-5 *1 (-174))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) - (-5 *1 (-706))))) -(((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) - (-14 *4 (-598 (-1102))))) - ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) - (-14 *4 (-598 (-1102)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-531))) (-5 *5 (-1 (-1083 *4))) (-4 *4 (-344)) - (-4 *4 (-986)) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-4 *1 (-284)))) -(((*1 *2 *1) - (-12 (-4 *2 (-1030)) (-5 *1 (-907 *3 *2)) (-4 *3 (-1030))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770)) - (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-598 (-639 *6))) (-5 *4 (-110)) (-5 *5 (-531)) - (-5 *2 (-639 *6)) (-5 *1 (-969 *6)) (-4 *6 (-344)) (-4 *6 (-986)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-5 *1 (-969 *4)) - (-4 *4 (-344)) (-4 *4 (-986)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-5 *2 (-639 *5)) - (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-986))))) -(((*1 *2 *1) - (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)) - (-4 *2 (-432)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-1160 (-531))) (-5 *2 (-598 (-531))) - (-5 *1 (-465 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *2 (-797)) (-4 *3 (-432))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) - (-4 *3 (-1030))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-344) (-140))) - (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4)))) - (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3))))) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-606 *4)) + (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-606 (-1113 *11))) (-5 *3 (-1113 *11)) + (-5 *4 (-606 *10)) (-5 *5 (-606 *8)) (-5 *6 (-606 (-731))) + (-5 *7 (-1200 (-606 (-1113 *8)))) (-4 *10 (-807)) + (-4 *8 (-291)) (-4 *11 (-902 *8 *9 *10)) (-4 *9 (-753)) + (-5 *1 (-668 *9 *10 *8 *11))))) (((*1 *2 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4)))) - (-5 *1 (-1192 *4)) (-4 *4 (-344))))) -(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2))))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1138)) - (-4 *2 (-1138)) (-5 *1 (-56 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (|has| *1 (-6 -4273)) - (-4 *1 (-144 *2)) (-4 *2 (-1138)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) - (-4 *2 (-1138)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) - (-4 *2 (-1138)))) - ((*1 *2 *3) - (-12 (-4 *4 (-986)) - (-5 *2 (-2 (|:| -2451 (-1098 *4)) (|:| |deg| (-864)))) - (-5 *1 (-204 *4 *5)) (-5 *3 (-1098 *4)) (-4 *5 (-13 (-523) (-797))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721)) - (-4 *6 (-1138)) (-4 *2 (-1138)) (-5 *1 (-222 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1160 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-523)) (-4 *2 (-797)))) - ((*1 *1 *1) - (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1160 *2)) - (-4 *4 (-1160 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1138)) (-4 *2 (-1138)) - (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1030)) (-4 *2 (-1030)) - (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2)))) - ((*1 *1 *1) (-5 *1 (-473))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-598 *5)) (-4 *5 (-1138)) - (-4 *2 (-1138)) (-5 *1 (-596 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-986)) (-4 *2 (-986)) - (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2)) - (-4 *9 (-354 *2)) (-5 *1 (-635 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-637 *5 *6 *7)) (-4 *10 (-637 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-344)) - (-4 *3 (-162)) (-4 *1 (-675 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-901 *5)) (-4 *5 (-1138)) - (-4 *2 (-1138)) (-5 *1 (-900 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5)) - (-14 *6 (-598 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-986)) (-4 *2 (-986)) - (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7)) - (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) - (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *12 (-989 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1083 *5)) (-4 *5 (-1138)) - (-4 *2 (-1138)) (-5 *1 (-1081 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) - (-4 *1 (-1132 *5 *6 *7 *2)) (-4 *5 (-523)) (-4 *6 (-743)) - (-4 *7 (-797)) (-4 *2 (-1000 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) - (-4 *2 (-1138)) (-5 *1 (-1183 *5 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-4 *2 (-1030)) (-5 *1 (-631 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *3 (-1160 *4)) (-5 *1 (-759 *4 *3 *2 *5)) (-4 *2 (-609 *3)) - (-4 *5 (-609 (-388 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-388 *5)) - (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) - (-5 *1 (-759 *4 *5 *2 *6)) (-4 *2 (-609 *5)) (-4 *6 (-609 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2))))) + (-12 (-5 *3 (-300 (-363))) (-5 *2 (-300 (-210))) (-5 *1 (-289))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) - (-4 *3 (-892 *7 *5 *6)) + (-12 (-5 *4 (-537)) (-4 *5 (-333)) (-5 *2 (-402 (-1113 (-1113 *5)))) + (-5 *1 (-1152 *5)) (-5 *3 (-1113 (-1113 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-720))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-210)) (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-606 (-247))) (-5 *1 (-245))))) +(((*1 *2 *3) + (-12 (-4 *1 (-760)) + (-5 *3 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 (-986))))) +(((*1 *1 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1158)) (-4 *5 (-1176 *4)) (-5 *2 - (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| (-598 *3)))) - (-5 *1 (-896 *5 *6 *7 *3 *8)) (-5 *4 (-721)) - (-4 *8 - (-13 (-344) - (-10 -8 (-15 -1840 (*3 $)) (-15 -1853 (*3 $)) (-15 -2265 ($ *3)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-721)) (-5 *4 (-1184 *2)) (-4 *5 (-289)) - (-4 *6 (-934 *5)) (-4 *2 (-13 (-390 *6 *7) (-977 *6))) - (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1160 *6))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2)) - (-4 *2 (-1160 *4))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-391 *5)) + (|:| |c2| (-391 *5)) (|:| |deg| (-731)))) + (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-1176 (-391 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344)) - (-5 *2 (-110)) (-5 *1 (-620 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) - (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-110)) - (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-208))) (-5 *4 (-721)) (-5 *2 (-639 (-208))) - (-5 *1 (-287))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9)) - (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *9 (-1000 *6 *7 *8)) - (-5 *2 - (-598 - (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9))))) - (-5 *1 (-930 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9)) - (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) - (-4 *9 (-1000 *6 *7 *8)) + (-12 (-5 *3 (-649 (-160 (-391 (-537))))) (-5 *2 - (-598 - (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9))))) - (-5 *1 (-1037 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-571 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1124))) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-1098 (-388 (-1098 *6)))) (-5 *1 (-527 *5 *6 *7)) - (-5 *3 (-1098 *6)) (-4 *7 (-1030)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986)))) - ((*1 *2 *1) - (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1098 *11)) (-5 *6 (-598 *10)) - (-5 *7 (-598 (-721))) (-5 *8 (-598 *11)) (-4 *10 (-797)) - (-4 *11 (-289)) (-4 *9 (-743)) (-4 *5 (-892 *11 *9 *10)) - (-5 *2 (-598 (-1098 *5))) (-5 *1 (-693 *9 *10 *11 *5)) - (-5 *3 (-1098 *5)))) + (-606 + (-2 (|:| |outval| (-160 *4)) (|:| |outmult| (-537)) + (|:| |outvect| (-606 (-649 (-160 *4))))))) + (-5 *1 (-725 *4)) (-4 *4 (-13 (-347) (-805)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *3) (-12 (-5 *2 (-537)) (-5 *1 (-542 *3)) (-4 *3 (-989 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-892 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) - (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-14 *6 (-598 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) - (-4 *3 (-1000 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-311))))) -(((*1 *2 *3) - (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1085)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) - (-4 *4 (-1030))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-598 *5) *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) - (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 *3)))) - (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6)) - (-4 *7 (-609 (-388 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-598 *5) *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) - (-4 *6 (-1160 *5)) - (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 (-607 *6 (-388 *6)))))) - (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5)) - (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6)) - (-4 *6 (-432)))) + (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) + (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5)) - (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6)) - (-4 *6 (-432))))) -(((*1 *2 *3) - (-12 (-4 *2 (-344)) (-4 *2 (-795)) (-5 *1 (-888 *2 *3)) - (-4 *3 (-1160 *2))))) -(((*1 *1) (-5 *1 (-1105)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-330)) (-5 *2 (-1184 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-138)) (-4 *1 (-852)) - (-5 *2 (-1184 *1))))) -(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))) -(((*1 *2 *2) - (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) - (-5 *1 (-792 *4 *5)) (-14 *4 (-721))))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-710))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) - (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) - ((*1 *2 *3) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142)) - (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3)))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1160 (-388 (-531)))) (-5 *1 (-856 *3 *2)) - (-4 *2 (-1160 (-388 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) - (-5 *1 (-1068 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))) + (-12 (-5 *4 (-1117)) (-5 *2 (-880)) (-5 *1 (-878 *3)) + (-4 *3 (-580 (-513))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-880)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1160 *4)) (-5 *1 (-759 *4 *2 *3 *5)) - (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) - (-4 *5 (-609 (-388 *2)))))) -(((*1 *1) (-5 *1 (-998)))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797))))) -(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-649)) (-5 *1 (-287))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) - (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1))) - (-4 *1 (-1000 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1))) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-531) (-208) (-1102) (-1085) (-1107))) - (-5 *1 (-1107))))) + (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8)) - (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) - (-4 *7 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *5 *6 *7 *8))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7)) - (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-852)) (-4 *5 (-743)) - (-4 *6 (-797)) (-5 *1 (-849 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5)) - (-4 *5 (-1160 *4)) (-4 *4 (-852)) (-5 *1 (-850 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-5 *3 (-606 *8)) (-5 *4 (-606 *7)) (-4 *7 (-807)) + (-4 *8 (-902 *5 *6 *7)) (-4 *5 (-529)) (-4 *6 (-753)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1200 (-391 *8)) "failed")) + (|:| -2122 (-606 (-1200 (-391 *8)))))) + (-5 *1 (-630 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-606 *2)) (-5 *1 (-1128 *2)) (-4 *2 (-347))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1116)) (-5 *1 (-314))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) + ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) + ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) (((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) - (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-705))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) - (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) - (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-977 (-47))) - (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) - (-5 *2 (-399 (-1098 (-47)))) (-5 *1 (-416 *4 *5 *3)) - (-4 *3 (-1160 *5))))) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) -(((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) + (-4 *5 (-807)) (-5 *2 (-905 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-701 *4 *5)) (-4 *4 (-998)) + (-4 *5 (-807)) (-5 *2 (-905 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) + (-5 *2 (-905 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-4 *1 (-1191 *4)) (-4 *4 (-998)) + (-5 *2 (-905 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-295)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-923)))) + ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-987))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-606 (-578 *6))) (-5 *4 (-1117)) (-5 *2 (-578 *6)) + (-4 *6 (-414 *5)) (-4 *5 (-807)) (-5 *1 (-546 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-537)) (-5 *1 (-300 *3)) (-4 *3 (-529)) (-4 *3 (-807))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-649 *11)) (-5 *4 (-606 (-391 (-905 *8)))) + (-5 *5 (-731)) (-5 *6 (-1100)) (-4 *8 (-13 (-291) (-141))) + (-4 *11 (-902 *8 *10 *9)) (-4 *9 (-13 (-807) (-580 (-1117)))) + (-4 *10 (-753)) + (-5 *2 + (-2 + (|:| |rgl| + (-606 + (-2 (|:| |eqzro| (-606 *11)) (|:| |neqzro| (-606 *11)) + (|:| |wcond| (-606 (-905 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1200 (-391 (-905 *8)))) + (|:| -2122 (-606 (-1200 (-391 (-905 *8)))))))))) + (|:| |rgsz| (-537)))) + (-5 *1 (-877 *8 *9 *10 *11)) (-5 *7 (-537))))) +(((*1 *1) (-5 *1 (-783)))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1045) (-33))) + (-5 *2 (-111)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-13 (-1045) (-33)))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) - (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) - (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) - (|:| |abserr| (-208)) (|:| |relerr| (-208)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) - (-5 *1 (-189))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1132 *4 *5 *3 *6)) (-4 *4 (-523)) (-4 *5 (-743)) - (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110))))) + (-606 + (-2 (|:| |scalar| (-391 (-537))) (|:| |coeff| (-1113 *2)) + (|:| |logand| (-1113 *2))))) + (-5 *4 (-606 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-347)) (-5 *1 (-554 *2))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -4157 (-113)) (|:| |arg| (-606 (-845 *3))))) + (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-606 (-845 *4))) + (-5 *1 (-845 *4)) (-4 *4 (-1045))))) +(((*1 *1 *1) + (-12 (-4 *1 (-237 *2 *3 *4 *5)) (-4 *2 (-998)) (-4 *3 (-807)) + (-4 *4 (-250 *3)) (-4 *5 (-753))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531))))) - (-4 *4 (-1160 (-531))) (-5 *2 (-688 (-721))) (-5 *1 (-422 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-399 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-986)) - (-5 *2 (-688 (-721))) (-5 *1 (-424 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))) -(((*1 *1 *1) (-4 *1 (-995)))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975)) - (-5 *1 (-707))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-1184 *5)) (-4 *5 (-289)) - (-4 *5 (-986)) (-5 *2 (-639 *5)) (-5 *1 (-969 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-721)) (-5 *1 (-209)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-159 (-208))) (-5 *3 (-721)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-1142)) - (-4 *6 (-1160 (-388 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-323 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) - (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902)))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1138))))) + (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 *4))) (-5 *1 (-1125 *4)) + (-5 *3 (-606 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797))))) -(((*1 *1 *2) - (-12 (-5 *2 (-864)) (-4 *1 (-221 *3 *4)) (-4 *4 (-986)) - (-4 *4 (-1138)))) - ((*1 *1 *2) - (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) - (-4 *5 (-221 (-2167 *3) (-721))) - (-14 *6 - (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5)) - (-2 (|:| -1889 *2) (|:| -1790 *5)))) - (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-797)) - (-4 *7 (-892 *4 *5 (-808 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249))))) -(((*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) - (-4 *3 (-354 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523)) - (-5 *2 (-2 (|:| |num| (-639 *4)) (|:| |den| *4))) - (-5 *1 (-643 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *6 (-1160 *5)) - (-5 *2 (-2 (|:| -2723 *7) (|:| |rh| (-598 (-388 *6))))) - (-5 *1 (-757 *5 *6 *7 *3)) (-5 *4 (-598 (-388 *6))) - (-4 *7 (-609 *6)) (-4 *3 (-609 (-388 *6))))) + (-12 (-4 *1 (-1048 *3 *2 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1045))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3) + (-12 (-5 *3 (-614 (-391 *2))) (-4 *2 (-1176 *4)) (-5 *1 (-770 *4 *2)) + (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))))) ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1153 *4 *5 *3)) - (-4 *3 (-1160 *5))))) + (-12 (-5 *3 (-615 *2 (-391 *2))) (-4 *2 (-1176 *4)) + (-5 *1 (-770 *4 *2)) + (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537)))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-998)) (-4 *2 (-347)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-347)) (-5 *1 (-620 *4 *2)) + (-4 *2 (-617 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-347)) (-5 *1 (-727 *2 *3)) (-4 *2 (-669 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-347))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) - (-5 *1 (-1058 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-13 (-289) (-797) (-140))) - (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1058 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) - (-5 *1 (-1058 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-276 (-388 (-895 *4)))) - (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) - (-5 *1 (-1058 *4)))) + (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *3 *5)) + (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *3 (-617 *2)) + (-4 *5 (-617 (-391 *2))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) - (-4 *5 (-13 (-289) (-797) (-140))) - (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-388 (-895 *4)))) - (-4 *4 (-13 (-289) (-797) (-140))) - (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-276 (-388 (-895 *5))))) (-5 *4 (-598 (-1102))) - (-4 *5 (-13 (-289) (-797) (-140))) - (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) - (-4 *4 (-13 (-289) (-797) (-140))) - (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1000 *3 *4 *5))))) + (-12 (-4 *2 (-1176 *4)) (-5 *1 (-767 *4 *2 *5 *3)) + (-4 *4 (-13 (-347) (-141) (-989 (-391 (-537))))) (-4 *5 (-617 *2)) + (-4 *3 (-617 (-391 *2)))))) (((*1 *2 *1) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-1155 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *1) (-4 *1 (-584))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943) (-1124)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-1085)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-975)) - (-5 *1 (-701))))) -(((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-975)) - (-5 *1 (-697))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030)) - (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) - (-5 *1 (-53 *4 *5 *2)) - (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5)))) - (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-609 *5)) - (-4 *6 (-609 (-388 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4)))) - (-5 *1 (-757 *5 *4 *3 *6)) (-4 *3 (-609 *4)) - (-4 *6 (-609 (-388 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5)))) - (-5 *1 (-757 *4 *5 *6 *3)) (-4 *6 (-609 *5)) - (-4 *3 (-609 (-388 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4)))) - (-5 *1 (-757 *5 *4 *6 *3)) (-4 *6 (-609 *4)) - (-4 *3 (-609 (-388 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1047))))) -(((*1 *2 *3) - (-12 (-4 *4 (-743)) - (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)) - (-5 *2 (-2 (|:| -3818 (-895 *6)) (|:| -4137 (-895 *6)))) - (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-892 (-388 (-895 *6)) *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) - (-14 *6 (-598 (-1102))) + (-12 (-5 *2 - (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6))))) - (-5 *1 (-583 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162))))) -(((*1 *2 *3) - (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)) (-5 *3 (-1085)))) - ((*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)))) - ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-531)))) + (-606 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210))))) + (-5 *1 (-532)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-808 *4)) - (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *7 (-843 *6)) - (-5 *2 (-639 *7)) (-5 *1 (-642 *6 *7 *3 *4)) (-4 *3 (-354 *7)) - (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-721)) (-5 *5 (-598 *3)) (-4 *3 (-289)) (-4 *6 (-797)) - (-4 *7 (-743)) (-5 *2 (-110)) (-5 *1 (-581 *6 *7 *3 *8)) - (-4 *8 (-892 *3 *7 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) - (-5 *2 - (-2 (|:| |ir| (-548 (-388 *6))) (|:| |specpart| (-388 *6)) - (|:| |polypart| *6))) - (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) + (-12 (-4 *1 (-576 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-5 *2 (-606 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *1 *1) (-4 *1 (-1071)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) - ((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) - (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1030)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1030))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) - (-4 *7 (-797)) (-4 *8 (-289)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) + (-12 (-5 *2 - (-2 (|:| |upol| (-1098 *8)) (|:| |Lval| (-598 *8)) - (|:| |Lfact| - (-598 (-2 (|:| -2552 (-1098 *8)) (|:| -1790 (-531))))) - (|:| |ctpol| *8))) - (-5 *1 (-693 *6 *7 *8 *9))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *1) (-4 *1 (-516)))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) - (-5 *2 (-2 (|:| -2005 *4) (|:| -2937 *3) (|:| -4124 *3))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-523)) (-4 *3 (-986)) - (-5 *2 (-2 (|:| -2005 *3) (|:| -2937 *1) (|:| -4124 *1))) - (-4 *1 (-1160 *3))))) + (-606 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210))))) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) + (-4 *4 (-333)) (-5 *2 (-1205)) (-5 *1 (-507 *4))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3039 (-606 *3)) (|:| -1687 (-606 *3)))) + (-5 *1 (-1155 *3)) (-4 *3 (-1045))))) +(((*1 *2) + (-12 (-4 *4 (-163)) (-5 *2 (-111)) (-5 *1 (-350 *3 *4)) + (-4 *3 (-351 *4)))) + ((*1 *2) (-12 (-4 *1 (-351 *3)) (-4 *3 (-163)) (-5 *2 (-111))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1098 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *4)) (-5 *1 (-1072 *3 *4)) (-4 *3 (-1176 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *2 (-606 *3)) (-5 *1 (-1072 *4 *3)) (-4 *4 (-1176 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986)) - (-5 *1 (-1087 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))) -(((*1 *1 *2) - (-12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) - (-5 *1 (-380 *3 *4))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) - (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523))))) -(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-702))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-537)) (-4 *2 (-414 *3)) (-5 *1 (-31 *3 *2)) + (-4 *3 (-989 *4)) (-4 *3 (-13 (-807) (-529)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *4 (-1030))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-1156 *4 *2)) - (-4 *2 (-1160 *4))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) - (-4 *2 (-1144 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208)) - (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-702))))) + (-12 (-5 *3 (-232 *4 *5)) (-14 *4 (-606 (-1117))) (-4 *5 (-998)) + (-5 *2 (-463 *4 *5)) (-5 *1 (-897 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-712))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(((*1 *2 *3) + (-12 (-4 *4 (-753)) + (-4 *5 (-13 (-807) (-10 -8 (-15 -3996 ((-1117) $))))) (-4 *6 (-529)) + (-5 *2 (-2 (|:| -2169 (-905 *6)) (|:| -3406 (-905 *6)))) + (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-902 (-391 (-905 *6)) *4 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-721)) (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-1039 *5 *6 *7 *8)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) - (-5 *1 (-553 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-598 *6) "failed") (-531) *6 *6)) (-4 *6 (-344)) - (-4 *7 (-1160 *6)) - (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) - (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) - (-4 *3 (-13 (-411 *6) (-27) (-1124))) - (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1030))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085))))) -(((*1 *2 *1) - (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-262))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-931)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-1025 *4)) (-4 *4 (-1138)) - (-5 *1 (-1023 *4))))) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-291)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *1 (-430 *4 *5 *6 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-456))) ((*1 *1 *1 *1) (-4 *1 (-722)))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189)) - (-5 *1 (-1139 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189)) - (-5 *1 (-1139 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) -(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) - ((*1 *1 *1) - (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) - (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) - ((*1 *1 *1) (-4 *1 (-795))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) - ((*1 *1 *1) (-4 *1 (-995))) ((*1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1047))))) + (-12 (-5 *3 (-537)) (-4 *4 (-753)) (-4 *5 (-807)) (-4 *2 (-998)) + (-5 *1 (-305 *4 *5 *2 *6)) (-4 *6 (-902 *2 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-929 *4 *5 *6 *3)) (-4 *4 (-998)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-4 *4 (-529)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) + (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)) + (-5 *2 (-1113 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-107)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1030)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-388 (-895 (-531))))) (-5 *4 (-598 (-1102))) - (-5 *2 (-598 (-598 *5))) (-5 *1 (-361 *5)) - (-4 *5 (-13 (-795) (-344))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-13 (-795) (-344)))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) - ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) + (-5 *2 (-986)) (-5 *1 (-717))))) +(((*1 *2 *2) + (-12 (-4 *2 (-163)) (-4 *2 (-998)) (-5 *1 (-675 *2 *3)) + (-4 *3 (-609 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-794 *2)) (-4 *2 (-163)) (-4 *2 (-998))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3278 *7) (|:| |sol?| (-111))) + (-537) *7)) + (-5 *6 (-606 (-391 *8))) (-4 *7 (-347)) (-4 *8 (-1176 *7)) + (-5 *3 (-391 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-547 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-789))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-1184 *3)) - (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3)) - (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273))))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) - (-5 *2 (-1098 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) - (-5 *2 (-1098 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-342 (-112))) (-4 *2 (-986)) (-5 *1 (-665 *2 *4)) - (-4 *4 (-601 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-342 (-112))) (-5 *1 (-784 *2)) (-4 *2 (-986))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-554 *3)) (-4 *3 (-347))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-753)) (-4 *4 (-807)) (-4 *6 (-291)) (-5 *2 (-402 *3)) + (-5 *1 (-703 *5 *4 *6 *3)) (-4 *3 (-902 *6 *5 *4))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) - (-5 *2 (-388 (-531))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516)) - (-4 *3 (-523)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-516)) (-5 *2 (-388 (-531))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) - (-5 *2 (-388 (-531))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516)) - (-4 *3 (-1030)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516)) - (-4 *3 (-1030)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) - (-5 *2 (-388 (-531))))) + (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-300 *5))) + (-5 *1 (-1073 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) + (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-606 (-300 *5)))) + (-5 *1 (-1073 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-418)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) - (-4 *3 (-977 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-507))) (-5 *1 (-507))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102)) - (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-176)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102)) - (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282))))) -(((*1 *1 *1 *1) (-4 *1 (-712)))) -(((*1 *1) (-5 *1 (-148)))) + (-12 (-5 *2 (-111)) (-5 *1 (-542 *3)) (-4 *3 (-989 (-537))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *3 (-1045)) (-4 *4 (-1045)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) + (-12 (-4 *1 (-570 *2 *3)) (-4 *3 (-1154)) (-4 *2 (-1045)) + (-4 *2 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4))) - (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *1) - (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) - (-4 *3 (-1160 *4)) (-5 *2 (-110))))) -(((*1 *2 *1) - (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4)) - (-4 *4 (-1160 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245))))) + (-12 (-4 *1 (-1015 *4 *3)) (-4 *4 (-13 (-805) (-347))) + (-4 *3 (-1176 *4)) (-5 *2 (-111))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1100)) (-5 *1 (-671))))) +(((*1 *2 *1) (-12 (-4 *1 (-1045)) (-5 *2 (-1100))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-845 *4)) (-4 *4 (-1045)) (-5 *1 (-842 *4 *3)) + (-4 *3 (-1045))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-649 *5))) (-5 *4 (-537)) (-4 *5 (-347)) + (-4 *5 (-998)) (-5 *2 (-111)) (-5 *1 (-980 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-649 *4))) (-4 *4 (-347)) (-4 *4 (-998)) + (-5 *2 (-111)) (-5 *1 (-980 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6)) - (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721)))))) -(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-349))))) -(((*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-1125 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-598 (-1125 *2))) (-5 *1 (-1125 *2)) (-4 *2 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-772))))) + (-12 (-4 *4 (-529)) (-5 *2 (-731)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) - (-4 *4 (-330)) (-5 *2 (-721)) (-5 *1 (-327 *4)))) - ((*1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) - (-14 *4 (-864)))) - ((*1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) - (-14 *4 - (-3 (-1098 *3) - (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))))) - ((*1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) - (-14 *4 (-864))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *4 (-1102)) - (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-164))) (-5 *1 (-1017))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-110)) - (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) + (-12 (-5 *2 (-402 (-1113 *1))) (-5 *1 (-300 *4)) (-5 *3 (-1113 *1)) + (-4 *4 (-435)) (-4 *4 (-529)) (-4 *4 (-807)))) + ((*1 *2 *3) + (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-300 (-210))) (-5 *1 (-251))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1154)) (-5 *1 (-826 *3 *2)) (-4 *3 (-1154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-266 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807))))) +(((*1 *2 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-1045)) (-5 *2 (-606 *1)) + (-4 *1 (-366 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33)))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *3 (-895 (-531))) - (-5 *1 (-311)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *1 (-311))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1124) (-411 *3))) - (-14 *4 (-1102)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-4 *2 (-13 (-27) (-1124) (-411 *3) (-10 -8 (-15 -2265 ($ *4))))) - (-4 *4 (-795)) - (-4 *5 - (-13 (-1162 *2 *4) (-344) (-1124) - (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) - (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-925 *5)) (-14 *7 (-1102))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) - (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-598 (-721))))) + (-12 (-5 *2 (-606 (-696 *3 *4))) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-687)))) ((*1 *2 *1) - (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) - (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 (-721)))))) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-902 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-289)) - (-5 *2 (-388 (-399 (-895 *4)))) (-5 *1 (-981 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) - (-5 *7 (-639 (-531))) - (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) - (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-704))))) -(((*1 *2 *3) - (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) - (-5 *2 (-460 *4 *5)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1124) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140)) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) - (-5 *2 (-297 *5)) (-5 *1 (-551 *5))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-598 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-531))))) - (-4 *2 (-523)) (-5 *1 (-399 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-531)) - (|:| -2721 (-598 (-2 (|:| |irr| *4) (|:| -2460 (-531))))))) - (-4 *4 (-1160 (-531))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-869)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-869)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) - (-5 *1 (-870))))) -(((*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245)))) - ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138))))) -(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523))))) -(((*1 *1 *1) (-4 *1 (-136))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 (-110) (-598 *1))) - (-4 *1 (-1005 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-571 *4)) (-5 *1 (-570 *3 *4)) (-4 *3 (-797)) - (-4 *4 (-797))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1083 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1184 *6)) (-5 *4 (-1184 (-531))) (-5 *5 (-531)) - (-4 *6 (-1030)) (-5 *2 (-1 *6)) (-5 *1 (-958 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) - (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) + (-12 (-5 *3 (-880)) + (-5 *2 + (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) + (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-5 *1 (-147)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-880)) (-5 *4 (-391 (-537))) + (-5 *2 + (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) + (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-5 *1 (-147)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1098 *7)) - (-4 *5 (-986)) (-4 *7 (-986)) (-4 *2 (-1160 *5)) - (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1160 *2))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-706))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) - (-4 *4 (-330)) (-5 *2 (-1189)) (-5 *1 (-501 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721))))) -(((*1 *1) (-5 *1 (-134)))) -(((*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-1107))) (-5 *1 (-1107))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-598 (-721))) (-5 *1 (-912 *4 *3)) - (-4 *3 (-1160 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138))))) -(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) - ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 - (-1184 - (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) - (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) - (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) - (|:| |axesColor| (-817)) (|:| -1247 (-531)) - (|:| |unitsColor| (-817)) (|:| |showing| (-531))))) - (-5 *1 (-1185))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-721)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721))))) -(((*1 *2 *1 *1) + (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) + (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-5 *1 (-147)) (-5 *3 (-606 (-896 (-210)))))) + ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| -2005 *3) (|:| |gap| (-721)) (|:| -2937 (-732 *3)) - (|:| -4124 (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-986)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) - (-5 *2 - (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1) - (|:| -4124 *1))) - (-4 *1 (-1000 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *2 - (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1) - (|:| -4124 *1))) - (-4 *1 (-1000 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4273)) (-4 *1 (-564 *4 *3)) (-4 *4 (-1030)) - (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231))))) + (-2 (|:| |brans| (-606 (-606 (-896 (-210))))) + (|:| |xValues| (-1040 (-210))) (|:| |yValues| (-1040 (-210))))) + (-5 *1 (-147)) (-5 *3 (-606 (-606 (-896 (-210))))))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-1040 (-363)))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-247))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 - (-2 (|:| |solns| (-598 *5)) - (|:| |maps| (-598 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1057 *3 *5)) (-4 *3 (-1160 *5))))) -(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-106))) (-5 *1 (-164))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) - (-5 *2 - (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) - (|:| |success| (-110)))) - (-5 *1 (-739)) (-5 *5 (-531))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1102)) - (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *5)))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-176))))) -(((*1 *2 *3) - (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531)))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-895 (-531))) (-5 *3 (-1102)) - (-5 *4 (-1025 (-388 (-531)))) (-5 *1 (-30))))) -(((*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-531)) (-5 *5 (-159 (-208))) (-5 *6 (-1085)) - (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) - (-4 *2 (-626 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-708))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3))))) -(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-531)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-721)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-864)))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-731)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-1155 *3)) (-4 *3 (-807)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) + (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 (-606 (-606 *4)))) (-5 *2 (-606 (-606 *4))) + (-4 *4 (-807)) (-5 *1 (-1125 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1008 (-975 *4) (-1113 (-975 *4)))) (-5 *3 (-816)) + (-5 *1 (-975 *4)) (-4 *4 (-13 (-805) (-347) (-973)))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-537)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-731)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-874)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) - (-4 *4 (-162)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-148)))) + (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) + (-4 *4 (-163)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-149)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-149)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124))) - (-5 *1 (-210 *3)))) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139))) + (-5 *1 (-212 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) + (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) + (-12 (-4 *1 (-223 *3 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138)))) + (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138)))) + (-12 (-5 *1 (-278 *2)) (-4 *2 (-1057)) (-4 *2 (-1154)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030)))) + (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-1045)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797)))) + (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-998)) (-4 *2 (-807)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) + (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-998)) (-4 *3 (-1045)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-370 *2)) (-4 *2 (-1045)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) - (-4 *6 (-221 (-2167 *3) (-721))) + (-12 (-14 *3 (-606 (-1117))) (-4 *4 (-163)) + (-4 *6 (-223 (-2258 *3) (-731))) (-14 *7 - (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) - (-2 (|:| -1889 *5) (|:| -1790 *6)))) - (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-797)) - (-4 *2 (-892 *4 *6 (-808 *3))))) + (-1 (-111) (-2 (|:| -2009 *5) (|:| -3283 *6)) + (-2 (|:| -2009 *5) (|:| -3283 *6)))) + (-5 *1 (-444 *3 *4 *5 *6 *7 *2)) (-4 *5 (-807)) + (-4 *2 (-902 *4 *6 (-818 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) + (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) + (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-163)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) - (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) + (-12 (-4 *2 (-347)) (-4 *3 (-753)) (-4 *4 (-807)) + (-5 *1 (-485 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-507))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-993)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-634 *5 *6 *7)))) + (-12 (-5 *2 (-1200 *3)) (-4 *3 (-333)) (-5 *1 (-507 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-513))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-563 *3)) (-4 *3 (-998)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-563 *2)) (-4 *2 (-998)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-637 *2)) (-4 *2 (-807)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-644 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-637 *3 *2 *4)) (-4 *3 (-986)) (-4 *2 (-354 *3)) - (-4 *4 (-354 *3)))) + (-12 (-4 *1 (-647 *3 *2 *4)) (-4 *3 (-998)) (-4 *2 (-357 *3)) + (-4 *4 (-357 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-637 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *2 (-354 *3)))) + (-12 (-4 *1 (-647 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-357 *3)) + (-4 *2 (-357 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) - (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) + (-12 (-5 *2 (-537)) (-4 *1 (-647 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) - (-4 *4 (-354 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-671))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) (-5 *1 (-806))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) + (-12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-357 *2)) + (-4 *4 (-357 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-681))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1045)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523)) - (-5 *1 (-912 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-993)))) - ((*1 *1 *1 *1) (-4 *1 (-1042))) + (-12 (-5 *2 (-1200 *4)) (-4 *4 (-1176 *3)) (-4 *3 (-529)) + (-5 *1 (-922 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1005)))) + ((*1 *1 *1 *1) (-4 *1 (-1057))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *2 (-221 *3 *4)) - (-4 *5 (-221 *3 *4)))) + (-12 (-4 *1 (-1067 *3 *4 *2 *5)) (-4 *4 (-998)) (-4 *2 (-223 *3 *4)) + (-4 *5 (-223 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1052 *3 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) - (-4 *2 (-221 *3 *4)))) + (-12 (-4 *1 (-1067 *3 *4 *5 *2)) (-4 *4 (-998)) (-4 *5 (-223 *3 *4)) + (-4 *2 (-223 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2)) - (-4 *2 (-892 *3 (-503 *4) *4)))) + (-12 (-4 *3 (-998)) (-4 *4 (-807)) (-5 *1 (-1070 *3 *4 *2)) + (-4 *2 (-902 *3 (-509 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-886 (-208))) (-5 *3 (-208)) (-5 *1 (-1135)))) + (-12 (-5 *2 (-896 (-210))) (-5 *3 (-210)) (-5 *1 (-1150)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) + (-12 (-4 *1 (-1198 *2)) (-4 *2 (-1154)) (-4 *2 (-687)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-531)) (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-21)))) + (-12 (-5 *2 (-537)) (-4 *1 (-1198 *3)) (-4 *3 (-1154)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) + (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) + (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-807)) (-4 *2 (-998)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-161)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208)))) + (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-347)) (-4 *3 (-1176 *4)) (-4 *5 (-1176 (-391 *3))) + (-4 *1 (-319 *4 *3 *5 *2)) (-4 *2 (-326 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-537)) (-4 *2 (-347)) (-4 *4 (-1176 *2)) + (-4 *5 (-1176 (-391 *4))) (-4 *1 (-319 *2 *4 *5 *6)) + (-4 *6 (-326 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-347)) (-4 *3 (-1176 *2)) (-4 *4 (-1176 (-391 *3))) + (-4 *1 (-319 *2 *3 *4 *5)) (-4 *5 (-326 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-347)) (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) + (-4 *1 (-319 *3 *4 *5 *2)) (-4 *2 (-326 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-397 *4 (-391 *4) *5 *6)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-4 *6 (-326 *3 *4 *5)) (-4 *3 (-347)) + (-4 *1 (-319 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) + (-5 *2 (-606 (-1040 (-210)))) (-5 *1 (-881))))) +(((*1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-1124))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-527 *2)) (-4 *2 (-13 (-388) (-1139)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1200 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-347)) + (-4 *1 (-685 *5 *6)) (-4 *5 (-163)) (-4 *6 (-1176 *5)) + (-5 *2 (-649 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-347)) (-5 *2 (-606 *3)) (-5 *1 (-898 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360)))) + (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-370 *4)) (-4 *4 (-1045)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360))))) -(((*1 *1 *1) - (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797)) - (-4 *4 (-248 *3)) (-4 *5 (-743))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1030))))) -(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1085))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531))))) - (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531)) - (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) - (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-892 *4 *6 *5)) (-4 *4 (-432)) - (-4 *5 (-797)) (-4 *6 (-743)) (-5 *1 (-929 *4 *5 *6 *3))))) + (-12 (-5 *3 (-537)) (-4 *2 (-23)) (-5 *1 (-610 *4 *2 *5)) + (-4 *4 (-1045)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-5 *2 (-731)) (-5 *1 (-779 *4)) (-4 *4 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-409 *3)) (-4 *3 (-1045)) (-5 *2 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-513))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-614 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) + (-5 *5 (-1 (-402 *7) *7)) + (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-606 *5) *6)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *6 (-1176 *5)) (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-615 *7 (-391 *7))) (-5 *4 (-1 (-606 *6) *7)) + (-5 *5 (-1 (-402 *7) *7)) + (-4 *6 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-4 *7 (-1176 *6)) (-5 *2 (-606 (-391 *7))) (-5 *1 (-772 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-614 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-614 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) + (-4 *6 (-1176 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-615 *5 (-391 *5))) (-4 *5 (-1176 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-606 (-391 *5))) (-5 *1 (-772 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-615 *6 (-391 *6))) (-5 *4 (-1 (-402 *6) *6)) + (-4 *6 (-1176 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 (-606 (-391 *6))) (-5 *1 (-772 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-886 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *2) - (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))) + (-12 (-5 *2 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *3)))) + (-5 *1 (-562 *3)) (-4 *3 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333))))) +(((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1154)) (-5 *2 (-537))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-1045))))) (((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) + (-12 (-5 *2 (-1205)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-807)) (-5 *4 (-606 *6)) + (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-606 *4)))) + (-5 *1 (-1125 *6)) (-5 *5 (-606 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-432)) - (-5 *2 - (-598 - (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))) - (|:| |eigmult| (-721)) - (|:| |eigvec| (-598 (-639 (-388 (-895 *4)))))))) - (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138))))) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333)))) + ((*1 *1) (-4 *1 (-352))) + ((*1 *2 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1200 *4)) (-5 *1 (-507 *4)) + (-4 *4 (-333)))) + ((*1 *1 *1) (-4 *1 (-522))) ((*1 *1) (-4 *1 (-522))) + ((*1 *1 *1) (-5 *1 (-537))) ((*1 *1 *1) (-5 *1 (-731))) + ((*1 *2 *1) (-12 (-5 *2 (-858 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-5 *2 (-858 *4)) (-5 *1 (-857 *4)) + (-4 *4 (-1045)))) + ((*1 *1) (-12 (-4 *1 (-945 *2)) (-4 *2 (-522)) (-4 *2 (-529))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) - (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) - (-4 *8 (-797)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *9)))) - (-5 *3 (-598 *9)) (-4 *1 (-1132 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *8)))) - (-5 *3 (-598 *8)) (-4 *1 (-1132 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) - (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) - (-4 *2 (-1160 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523)) - (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4)))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-606 *6) "failed") (-537) *6 *6)) (-4 *6 (-347)) + (-4 *7 (-1176 *6)) + (-5 *2 (-2 (|:| |answer| (-554 (-391 *7))) (|:| |a0| *6))) + (-5 *1 (-547 *6 *7)) (-5 *3 (-391 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) + (-5 *2 (-606 (-606 (-606 (-896 *3)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-264))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-807))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-752)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-49 *3 *4)) + (-14 *4 (-606 (-1117))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1154)) + (-4 *4 (-357 *3)) (-4 *5 (-357 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-133 *5 *6 *7)) (-14 *5 (-537)) + (-14 *6 (-731)) (-4 *7 (-163)) (-4 *8 (-163)) + (-5 *2 (-133 *5 *6 *8)) (-5 *1 (-132 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-160 *5)) (-4 *5 (-163)) + (-4 *6 (-163)) (-5 *2 (-160 *6)) (-5 *1 (-159 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-300 *3) (-300 *3))) (-4 *3 (-13 (-998) (-807))) + (-5 *1 (-208 *3 *4)) (-14 *4 (-606 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-225 *5 *6)) (-14 *5 (-731)) + (-4 *6 (-1154)) (-4 *7 (-1154)) (-5 *2 (-225 *5 *7)) + (-5 *1 (-224 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-278 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-278 *6)) (-5 *1 (-277 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-278 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-639 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3523 (-598 *6))) - *7 *6)) - (-4 *6 (-344)) (-4 *7 (-609 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1184 *6) "failed")) - (|:| -3523 (-598 (-1184 *6))))) - (-5 *1 (-763 *6 *7)) (-5 *4 (-1184 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) - (-5 *1 (-313))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) - (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1100)) (-5 *5 (-578 *6)) + (-4 *6 (-286)) (-4 *2 (-1154)) (-5 *1 (-281 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) - (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) - (-5 *3 (-598 (-531))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) - (-5 *3 (-598 (-531)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-531) "failed") *5)) (-4 *5 (-986)) - (-5 *2 (-531)) (-5 *1 (-514 *5 *3)) (-4 *3 (-1160 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986)) - (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-578 *5)) (-4 *5 (-286)) + (-4 *2 (-286)) (-5 *1 (-282 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-578 *1)) (-4 *1 (-286)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-998)) + (-4 *6 (-998)) (-5 *2 (-649 *6)) (-5 *1 (-288 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-807)) + (-4 *6 (-807)) (-5 *2 (-300 *6)) (-5 *1 (-298 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-320 *5 *6 *7 *8)) (-4 *5 (-347)) + (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *8 (-326 *5 *6 *7)) + (-4 *9 (-347)) (-4 *10 (-1176 *9)) (-4 *11 (-1176 (-391 *10))) + (-5 *2 (-320 *9 *10 *11 *12)) + (-5 *1 (-317 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-326 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-322 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1158)) (-4 *8 (-1158)) + (-4 *6 (-1176 *5)) (-4 *7 (-1176 (-391 *6))) (-4 *9 (-1176 *8)) + (-4 *2 (-326 *8 *9 *10)) (-5 *1 (-324 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-326 *5 *6 *7)) (-4 *10 (-1176 (-391 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1154)) (-4 *6 (-1154)) + (-4 *2 (-357 *6)) (-5 *1 (-355 *5 *4 *6 *2)) (-4 *4 (-357 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-529)) + (-4 *6 (-529)) (-5 *2 (-402 *6)) (-5 *1 (-389 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-391 *5)) (-4 *5 (-529)) + (-4 *6 (-529)) (-5 *2 (-391 *6)) (-5 *1 (-390 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-397 *5 *6 *7 *8)) (-4 *5 (-291)) + (-4 *6 (-945 *5)) (-4 *7 (-1176 *6)) + (-4 *8 (-13 (-393 *6 *7) (-989 *6))) (-4 *9 (-291)) + (-4 *10 (-945 *9)) (-4 *11 (-1176 *10)) + (-5 *2 (-397 *9 *10 *11 *12)) + (-5 *1 (-396 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-393 *10 *11) (-989 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) + (-4 *2 (-401 *6)) (-5 *1 (-399 *4 *5 *2 *6)) (-4 *4 (-401 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-529)) (-5 *1 (-402 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-998) (-807))) + (-4 *6 (-13 (-998) (-807))) (-4 *2 (-414 *6)) + (-5 *1 (-405 *5 *4 *6 *2)) (-4 *4 (-414 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) + (-4 *2 (-409 *6)) (-5 *1 (-407 *5 *4 *6 *2)) (-4 *4 (-409 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3)) (-4 *3 (-1154)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-490 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-807)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-554 *5)) (-4 *5 (-347)) + (-4 *6 (-347)) (-5 *2 (-554 *6)) (-5 *1 (-553 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -3121 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-347)) (-4 *6 (-347)) + (-5 *2 (-2 (|:| -3121 *6) (|:| |coeff| *6))) + (-5 *1 (-553 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-347)) (-4 *2 (-347)) (-5 *1 (-553 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-347)) (-4 *6 (-347)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-553 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-567 *6)) (-5 *1 (-564 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986)) - (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-4 *1 (-609 *3)) (-4 *3 (-986)) (-4 *3 (-344)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-721)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) - (-5 *1 (-612 *5 *2)) (-4 *2 (-609 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) - (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) -(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1030)) - (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) - (-5 *1 (-1008 *3 *4 *2)) - (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-567 *7)) + (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-567 *8)) + (-5 *1 (-565 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-567 *7)) + (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) + (-5 *1 (-565 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-567 *6)) (-5 *5 (-1098 *7)) + (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) + (-5 *1 (-565 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1154)) (-5 *1 (-567 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-606 *6)) (-5 *1 (-604 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) + (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-606 *8)) + (-5 *1 (-605 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-612 *3)) (-4 *3 (-1154)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-998)) (-4 *8 (-998)) + (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) (-4 *2 (-647 *8 *9 *10)) + (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-647 *5 *6 *7)) + (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-998)) + (-4 *8 (-998)) (-4 *6 (-357 *5)) (-4 *7 (-357 *5)) + (-4 *2 (-647 *8 *9 *10)) (-5 *1 (-645 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-647 *5 *6 *7)) (-4 *9 (-357 *8)) (-4 *10 (-357 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-529)) (-4 *7 (-529)) + (-4 *6 (-1176 *5)) (-4 *2 (-1176 (-391 *8))) + (-5 *1 (-670 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1176 (-391 *6))) + (-4 *8 (-1176 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-998)) (-4 *9 (-998)) (-4 *5 (-807)) + (-4 *6 (-753)) (-4 *2 (-902 *9 *7 *5)) + (-5 *1 (-689 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-753)) + (-4 *4 (-902 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-807)) (-4 *6 (-807)) (-4 *7 (-753)) + (-4 *9 (-998)) (-4 *2 (-902 *9 *8 *6)) + (-5 *1 (-690 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-753)) + (-4 *4 (-902 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-696 *5 *7)) (-4 *5 (-998)) + (-4 *6 (-998)) (-4 *7 (-687)) (-5 *2 (-696 *6 *7)) + (-5 *1 (-695 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-696 *3 *4)) + (-4 *4 (-687)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-742 *5)) (-4 *5 (-998)) + (-4 *6 (-998)) (-5 *2 (-742 *6)) (-5 *1 (-741 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) + (-4 *2 (-757 *6)) (-5 *1 (-758 *4 *5 *2 *6)) (-4 *4 (-757 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-793 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-792 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-800 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) + (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *1 (-799 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-832 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-832 *6)) (-5 *1 (-831 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-842 *5 *6)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-4 *7 (-1045)) (-5 *2 (-842 *5 *7)) + (-5 *1 (-841 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1045)) + (-4 *6 (-1045)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-998)) + (-4 *6 (-998)) (-5 *2 (-905 *6)) (-5 *1 (-899 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-807)) + (-4 *8 (-998)) (-4 *6 (-753)) + (-4 *2 + (-13 (-1045) + (-10 -8 (-15 -2318 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-731)))))) + (-5 *1 (-904 *6 *7 *8 *5 *2)) (-4 *5 (-902 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-998)) + (-4 *6 (-998)) (-5 *2 (-896 *6)) (-5 *1 (-934 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-905 *4))) (-4 *4 (-998)) + (-4 *2 (-902 (-905 *4) *5 *6)) (-4 *5 (-753)) + (-4 *6 + (-13 (-807) + (-10 -8 (-15 -3996 ((-1117) $)) + (-15 -1890 ((-3 $ "failed") (-1117)))))) + (-5 *1 (-937 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-529)) (-4 *6 (-529)) + (-4 *2 (-945 *6)) (-5 *1 (-943 *5 *6 *4 *2)) (-4 *4 (-945 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-163)) (-4 *6 (-163)) + (-4 *2 (-949 *6)) (-5 *1 (-950 *4 *5 *2 *6)) (-4 *4 (-949 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) + (-4 *5 (-998)) (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1001 *3 *4 *5 *6 *7)) (-4 *5 (-998)) + (-4 *6 (-223 *4 *5)) (-4 *7 (-223 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-998)) (-4 *10 (-998)) + (-14 *5 (-731)) (-14 *6 (-731)) (-4 *8 (-223 *6 *7)) + (-4 *9 (-223 *5 *7)) (-4 *2 (-1001 *5 *6 *10 *11 *12)) + (-5 *1 (-1003 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1001 *5 *6 *7 *8 *9)) (-4 *11 (-223 *6 *10)) + (-4 *12 (-223 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-1040 *6)) (-5 *1 (-1035 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1040 *5)) (-4 *5 (-805)) + (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-606 *6)) + (-5 *1 (-1035 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1038 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-1038 *6)) (-5 *1 (-1037 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1041 *4 *2)) (-4 *4 (-805)) + (-4 *2 (-1091 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1098 *6)) (-5 *5 (-1098 *7)) + (-4 *6 (-1154)) (-4 *7 (-1154)) (-4 *8 (-1154)) (-5 *2 (-1098 *8)) + (-5 *1 (-1097 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-998)) + (-4 *6 (-998)) (-5 *2 (-1113 *6)) (-5 *1 (-1111 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1130 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5 *7 *9)) (-4 *5 (-998)) + (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1164 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-1167 *6)) (-5 *1 (-1166 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1167 *5)) (-4 *5 (-805)) + (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1098 *6)) + (-5 *1 (-1166 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1173 *5 *6)) (-14 *5 (-1117)) + (-4 *6 (-998)) (-4 *8 (-998)) (-5 *2 (-1173 *7 *8)) + (-5 *1 (-1168 *5 *6 *7 *8)) (-14 *7 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) + (-4 *2 (-1176 *6)) (-5 *1 (-1174 *5 *4 *6 *2)) (-4 *4 (-1176 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5 *7 *9)) (-4 *5 (-998)) + (-4 *6 (-998)) (-14 *7 (-1117)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1185 *6 *8 *10)) (-5 *1 (-1180 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-998)) (-4 *6 (-998)) + (-4 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6 *4 *2)) (-4 *4 (-1191 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1200 *5)) (-4 *5 (-1154)) + (-4 *6 (-1154)) (-5 *2 (-1200 *6)) (-5 *1 (-1199 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1200 *5)) + (-4 *5 (-1154)) (-4 *6 (-1154)) (-5 *2 (-1200 *6)) + (-5 *1 (-1199 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-998)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-998)) (-5 *1 (-1222 *3 *4)) + (-4 *4 (-803))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) + (-14 *4 (-606 (-1117))))) ((*1 *2 *1) - (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *3 *2)) (-4 *3 (-1030))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) + (-12 (-5 *2 (-111)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) + (-14 *4 (-606 (-1117)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-347) (-805))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3415 (-402 *3)))) + (-5 *1 (-171 *4 *3)) (-4 *3 (-1176 (-160 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1154))))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-902 *3 *4 *5)) (-4 *3 (-347)) + (-4 *4 (-753)) (-4 *5 (-807)) (-5 *1 (-485 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1016 *6 *7 *8 *3 *4)) (-4 *4 (-1018 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1016 *5 *6 *7 *3 *4)) (-4 *4 (-1018 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-731)) (-4 *6 (-435)) (-4 *7 (-753)) (-4 *8 (-807)) + (-4 *3 (-1012 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1087 *6 *7 *8 *3 *4)) (-4 *4 (-1054 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-435)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-606 *4)) + (|:| |todo| (-606 (-2 (|:| |val| (-606 *3)) (|:| -3852 *4)))))) + (-5 *1 (-1087 *5 *6 *7 *3 *4)) (-4 *4 (-1054 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-667 *4 *5 *6)) + (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154))))) +(((*1 *2) (-12 (-4 *1 (-388)) (-5 *2 (-874)))) ((*1 *1) (-4 *1 (-522))) + ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) + ((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-659)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-857 *3)) (-4 *3 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-333)) (-5 *1 (-341 *3))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-874)) (-5 *1 (-1046 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *3 (-537)) + (-5 *2 (-986)) (-5 *1 (-717))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-606 (-111))) (-5 *5 (-649 (-210))) + (-5 *6 (-649 (-537))) (-5 *7 (-210)) (-5 *3 (-537)) (-5 *2 (-986)) + (-5 *1 (-715))))) (((*1 *2 *1) - (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) - (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) - (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) + (-12 (-4 *1 (-326 *3 *4 *5)) (-4 *3 (-1158)) (-4 *4 (-1176 *3)) + (-4 *5 (-1176 (-391 *4))) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-105 *2)) (-4 *2 (-1154))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-807)) (-5 *2 (-606 (-625 *4 *5))) + (-5 *1 (-590 *4 *5 *6)) (-4 *5 (-13 (-163) (-678 (-391 (-537))))) + (-14 *6 (-874))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-537)) (-5 *1 (-363))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *1 (-764 *4 *2)) (-4 *2 (-13 (-29 *4) (-1139) (-912)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-291) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-1139) (-912) (-29 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) + (-5 *2 + (-2 (|:| -3732 (-731)) (|:| |curves| (-731)) + (|:| |polygons| (-731)) (|:| |constructs| (-731))))))) +(((*1 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-415 *3 *2)) + (-4 *2 (-414 *3)))) + ((*1 *1 *1) (-4 *1 (-1081)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-784))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-178)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-598 (-1102))) - (-5 *2 (-598 (-598 (-360)))) (-5 *1 (-963)) (-5 *5 (-360)))) + (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-284)))) ((*1 *2 *3) - (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) - (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102)))))) + (-12 (-5 *3 (-1040 (-800 (-210)))) (-5 *2 (-210)) (-5 *1 (-289))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-5 *1 (-858 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *2 (-769 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102))) - (-5 *2 (-639 (-297 (-208)))) (-5 *1 (-189)))) + (-12 (-5 *2 (-606 (-1140 *3))) (-5 *1 (-1140 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) + (-5 *2 (-1205)) (-5 *1 (-1120)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1030)) (-4 *6 (-843 *5)) (-5 *2 (-639 *6)) - (-5 *1 (-642 *5 *6 *3 *4)) (-4 *3 (-354 *6)) - (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273))))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))) -(((*1 *2) - (-12 (-4 *1 (-330)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1030)) - (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) - (-5 *1 (-1008 *3 *4 *2)) - (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-703))))) -(((*1 *2 *1) - (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) - (-5 *2 (-1098 *3))))) + (-12 (-5 *3 (-1117)) + (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) + (-5 *1 (-1120)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1117)) + (-5 *4 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *2 (-1205)) + (-5 *1 (-1120))))) +(((*1 *1 *1) (-4 *1 (-1007))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-964)) (-5 *2 (-816))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-996))))) +(((*1 *1 *1) (-12 (-4 *1 (-409 *2)) (-4 *2 (-1045)) (-4 *2 (-352))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-131))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1098 (-606 (-537)))) (-5 *1 (-836)) + (-5 *3 (-606 (-537)))))) (((*1 *2 *3) - (-12 (-4 *4 (-986)) - (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) - (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) - (-5 *2 (-110))))) -(((*1 *2 *1) (-12 (-4 *1 (-487 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-797))))) + (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1131 *4 *5)) + (-4 *4 (-1045)) (-4 *5 (-1045))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-435)) (-4 *4 (-807)) + (-4 *5 (-753)) (-5 *1 (-940 *3 *4 *5 *6)) (-4 *6 (-902 *3 *5 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-164 *2)) (-4 *2 (-291)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) + ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1154)))) + ((*1 *1 *1) (-4 *1 (-822 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-752)) + (-4 *4 (-807))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-527 *3)) (-4 *3 (-13 (-388) (-1139))) (-5 *2 (-111))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140))) - (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-1184 *5))) (-5 *4 (-531)) (-5 *2 (-1184 *5)) - (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-797)) (-5 *3 (-598 *6)) (-5 *5 (-598 *3)) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-902 *4 *5 *6)) (-4 *4 (-347)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *1 (-433 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-97 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-347)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-598 *5)) (|:| |f3| *5) - (|:| |f4| (-598 *5)))) - (-5 *1 (-1110 *6)) (-5 *4 (-598 *5))))) -(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806)))))) + (-2 (|:| R (-649 *6)) (|:| A (-649 *6)) (|:| |Ainv| (-649 *6)))) + (-5 *1 (-931 *6)) (-5 *3 (-649 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) - (-5 *1 (-698))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *2 (-975)) (-5 *1 (-703))))) + (-12 (-4 *3 (-291)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-1068 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6)) - (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) - (-4 *7 (-743)) - (-5 *2 - (-598 - (-2 (|:| -2277 (-721)) - (|:| |eqns| - (-598 - (-2 (|:| |det| *8) (|:| |rows| (-598 (-531))) - (|:| |cols| (-598 (-531)))))) - (|:| |fgb| (-598 *8))))) - (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-721))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432)) - (-5 *1 (-861 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-998)) (-4 *7 (-998)) + (-4 *6 (-1176 *5)) (-5 *2 (-1113 (-1113 *7))) + (-5 *1 (-482 *5 *6 *4 *7)) (-4 *4 (-1176 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-713))))) (((*1 *2 *1) - (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) + (|partial| -12 (-4 *3 (-998)) (-4 *3 (-807)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3283 (-537)))) (-4 *1 (-414 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))) -(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-772))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-857 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) - (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-399 (-895 *6))) (-5 *5 (-1102)) (-5 *3 (-895 *6)) - (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) - ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) - ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-388 *6)) - (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344)) - (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5))) - (-5 *1 (-811 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344)) - (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5))) - (-5 *1 (-811 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) - (-4 *5 (-1160 (-388 *4))) - (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)) - (-5 *3 (-598 *4))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-845 *3)) (|:| -3283 (-845 *3)))) + (-5 *1 (-845 *3)) (-4 *3 (-1045)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) + (-4 *7 (-902 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3283 (-537)))) + (-5 *1 (-903 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *7)) (-15 -3301 (*7 $)) + (-15 -3315 (*7 $)))))))) (((*1 *2 *3) - (-12 (-14 *4 (-598 (-1102))) (-14 *5 (-721)) - (-5 *2 - (-598 - (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) - (-230 *4 (-388 (-531)))))) - (-5 *1 (-483 *4 *5)) - (-5 *3 - (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) - (-230 *4 (-388 (-531)))))))) -(((*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505)))) - ((*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030))))) -(((*1 *2 *3) (-12 (-5 *3 (-895 (-208))) (-5 *2 (-208)) (-5 *1 (-287))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910))))) + (-12 (-4 *4 (-998)) (-5 *2 (-537)) (-5 *1 (-426 *4 *3 *5)) + (-4 *3 (-1176 *4)) + (-4 *5 (-13 (-388) (-989 *4) (-347) (-1139) (-268)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) + (-5 *2 (-606 (-606 (-606 (-731)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-977 *2)) (-4 *2 (-1154))))) +(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) + ((*1 *2 *2) + (-12 (-5 *2 (-606 (-858 *3))) (-5 *1 (-858 *3)) (-4 *3 (-1045)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) + (-4 *6 (-1012 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3830 *1) (|:| |upper| *1))) + (-4 *1 (-929 *4 *5 *3 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-826 (-919 *3) (-919 *3))) (-5 *1 (-919 *3)) + (-4 *3 (-920))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-537)) (-5 *1 (-1055)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1200 (-537))) (-5 *3 (-606 (-537))) (-5 *4 (-537)) + (-5 *1 (-1055))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1100)) (-5 *5 (-649 (-210))) (-5 *6 (-649 (-537))) + (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-718))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-344)) (-4 *5 (-523)) - (-5 *2 - (-2 (|:| |minor| (-598 (-864))) (|:| -2723 *3) - (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5))))) -(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) - ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))) + (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141))) + (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) + (-5 *1 (-1073 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141))) + (-5 *2 (-1107 (-606 (-300 *5)) (-606 (-278 (-300 *5))))) + (-5 *1 (-1073 *5))))) +(((*1 *1 *1) (-4 *1 (-1086)))) +(((*1 *2 *3) + (-12 (-4 *4 (-333)) (-5 *2 (-402 (-1113 (-1113 *4)))) + (-5 *1 (-1152 *4)) (-5 *3 (-1113 (-1113 *4)))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1098 (-2 (|:| |k| (-537)) (|:| |c| *6)))) + (-5 *4 (-977 (-800 (-537)))) (-5 *5 (-1117)) (-5 *7 (-391 (-537))) + (-4 *6 (-998)) (-5 *2 (-816)) (-5 *1 (-562 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-1076 *4 *2)) + (-4 *2 (-13 (-570 (-537) *4) (-10 -7 (-6 -4300) (-6 -4301)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-807)) (-4 *3 (-1154)) (-5 *1 (-1076 *3 *2)) + (-4 *2 (-13 (-570 (-537) *3) (-10 -7 (-6 -4300) (-6 -4301))))))) +(((*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) + ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) (-4 *3 (-435)) + (-4 *3 (-529)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-930 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-397 *3 *4 *5 *6)) (-4 *6 (-989 *4)) (-4 *3 (-291)) + (-4 *4 (-945 *3)) (-4 *5 (-1176 *4)) (-4 *6 (-393 *4 *5)) + (-14 *7 (-1200 *6)) (-5 *1 (-398 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1200 *6)) (-4 *6 (-393 *4 *5)) (-4 *4 (-945 *3)) + (-4 *5 (-1176 *4)) (-4 *3 (-291)) (-5 *1 (-398 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-879))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) - (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-516))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) - (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-731)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-753)) (-4 *7 (-902 *4 *5 *6)) (-4 *4 (-435)) (-4 *6 (-807)) + (-5 *2 (-111)) (-5 *1 (-432 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-606 *7)) (-5 *5 (-606 (-606 *8))) (-4 *7 (-807)) + (-4 *8 (-291)) (-4 *6 (-753)) (-4 *9 (-902 *8 *6 *7)) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-176))))) -(((*1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1122))))) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-606 (-2 (|:| -3622 (-1113 *9)) (|:| -3283 (-537))))))) + (-5 *1 (-703 *6 *7 *8 *9)) (-5 *3 (-1113 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-526))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1149 *3)) (-4 *3 (-927))))) +(((*1 *2) (-12 (-5 *2 (-800 (-537))) (-5 *1 (-511)))) + ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-606 (-363))) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-451)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-314))) (-5 *1 (-314))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-357 *2)) (-4 *2 (-1154)) + (-4 *2 (-807)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4301)) + (-4 *1 (-357 *3)) (-4 *3 (-1154))))) (((*1 *2 *3) - (-12 (-4 *4 (-986)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) - (-4 *3 (-1160 *4)))) + (-12 (-5 *2 (-1 (-896 *3) (-896 *3))) (-5 *1 (-166 *3)) + (-4 *3 (-13 (-347) (-1139) (-954)))))) +(((*1 *2) + (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) + (-5 *1 (-440 *3 *4 *2 *5)) (-4 *5 (-902 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-753)) (-4 *4 (-807)) (-4 *2 (-862)) + (-5 *1 (-859 *2 *3 *4 *5)) (-4 *5 (-902 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-862)) (-5 *1 (-860 *2 *3)) (-4 *3 (-1176 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-164 *3)) (-4 *3 (-291)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-537)) (-4 *1 (-635 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-701 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-807)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *3)) (-5 *2 (-537)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *1 (-933 *3)) (-4 *3 (-998)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *1)) (-5 *3 (-606 *7)) (-4 *1 (-1018 *4 *5 *6 *7)) + (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-1012 *4 *5 *6)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-606 *1)) (-4 *1 (-1018 *4 *5 *6 *3)) (-4 *4 (-435)) + (-4 *5 (-753)) (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-606 *1)) + (-4 *1 (-1018 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1147 *3 *4 *5 *2)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *2 (-1012 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-998)) (-4 *2 (-752))))) +(((*1 *2 *3) (-12 (-5 *3 (-372)) (-5 *2 (-1205)) (-5 *1 (-375)))) + ((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-375))))) +(((*1 *2 *1) + (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110))))) -(((*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505)))) - ((*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-966 (-790 (-531)))) - (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *4)))) (-4 *4 (-986)) - (-5 *1 (-556 *4))))) + (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-998)) (-4 *4 (-1045)) + (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-562 *3)) (-4 *3 (-998)))) + ((*1 *2 *1) + (-12 (-4 *3 (-529)) (-5 *2 (-111)) (-5 *1 (-586 *3 *4)) + (-4 *4 (-1176 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-687)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-111))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-731)) (-4 *4 (-998)) (-5 *1 (-1172 *4 *2)) + (-4 *2 (-1176 *4))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-537)) (-5 *1 (-1098 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-1188 *2)) (-4 *2 (-1154))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-435))) (-5 *1 (-1145 *3 *2)) + (-4 *2 (-13 (-414 *3) (-1139)))))) +(((*1 *1) + (-12 (-5 *1 (-133 *2 *3 *4)) (-14 *2 (-537)) (-14 *3 (-731)) + (-4 *4 (-163))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *1 *1 *1) (-5 *1 (-152))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-152))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) - (-5 *2 (-598 (-598 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) - (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102))))) + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1214 (-1117) *3)) (-4 *3 (-998)) (-5 *1 (-1221 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1214 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *1 (-1223 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-210)) (-5 *2 (-659)) (-5 *1 (-289))))) +(((*1 *1) (-5 *1 (-421)))) +(((*1 *2 *2) (-12 (-5 *1 (-914 *2)) (-4 *2 (-522))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1045))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *2 (-1012 *4 *5 *6)) (-5 *1 (-736 *4 *5 *6 *2 *3)) + (-4 *3 (-1018 *4 *5 *6 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-110)))) + (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-129)) + (-5 *2 (-606 (-2 (|:| |gen| *3) (|:| -4185 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| -3449 *3) (|:| -2367 *4)))) + (-5 *1 (-696 *3 *4)) (-4 *3 (-998)) (-4 *4 (-687)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-998)) (-4 *4 (-752)) + (-5 *2 (-1098 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-49 *3 *4)) (-4 *3 (-998)) + (-14 *4 (-606 (-1117))))) + ((*1 *1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-208 *3 *4)) (-4 *3 (-13 (-998) (-807))) + (-14 *4 (-606 (-1117))))) + ((*1 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-352)) (-4 *2 (-347)))) ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110))))) + (|partial| -12 (-4 *1 (-319 *3 *4 *5 *2)) (-4 *3 (-347)) + (-4 *4 (-1176 *3)) (-4 *5 (-1176 (-391 *4))) + (-4 *2 (-326 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-374 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-163)))) + ((*1 *1) (-12 (-4 *2 (-163)) (-4 *1 (-685 *2 *3)) (-4 *3 (-1176 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) - (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) + (-12 (-5 *3 (-995 *4 *5)) (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-14 *5 (-606 (-1117))) (-5 *2 (-606 (-606 (-975 (-391 *4))))) + (-5 *1 (-1225 *4 *5 *6)) (-14 *6 (-606 (-1117))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) - (-4 *5 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) - (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-895 *4))) - (-4 *4 (-13 (-795) (-289) (-140) (-962))) - (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) - (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102)))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-526))))) -(((*1 *1 *2 *2) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *5))))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-905 *4))) + (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-606 (-975 (-391 *4))))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *1 *1) (-5 *1 (-1116))) + ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1067 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) - (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) - (-5 *1 (-1068 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-598 (-1067 *3 *4))) (-4 *3 (-13 (-1030) (-33))) - (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4))))) + (-3 (|:| I (-300 (-537))) (|:| -1393 (-300 (-363))) + (|:| CF (-300 (-160 (-363)))) (|:| |switch| (-1116)))) + (-5 *1 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-487))) (-5 *1 (-465))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-278 *2)) (-4 *2 (-286)) (-4 *2 (-1154)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-606 (-578 *1))) (-5 *3 (-606 *1)) (-4 *1 (-286)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-278 *1))) (-4 *1 (-286)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-278 *1)) (-4 *1 (-286))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-896 *3)) (-4 *3 (-13 (-347) (-1139) (-954))) + (-5 *1 (-166 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-905 (-363))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-300 (-363))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-363))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-905 (-537))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-300 (-537))) (-5 *1 (-323 *3 *4 *5)) + (-4 *5 (-989 (-537))) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1117)) (-5 *1 (-323 *3 *4 *5)) + (-14 *3 (-606 *2)) (-14 *4 (-606 *2)) (-4 *5 (-371)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-300 *5)) (-4 *5 (-371)) + (-5 *1 (-323 *3 *4 *5)) (-14 *3 (-606 (-1117))) + (-14 *4 (-606 (-1117))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-649 (-391 (-905 (-537))))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-649 (-391 (-905 (-363))))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-649 (-905 (-537)))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-649 (-905 (-363)))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-649 (-300 (-537)))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-649 (-300 (-363)))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-391 (-905 (-537)))) (-4 *1 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-391 (-905 (-363)))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-537))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-905 (-363))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-537))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-300 (-363))) (-4 *1 (-380)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-537))))) (-4 *1 (-424)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1200 (-391 (-905 (-363))))) (-4 *1 (-424)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1200 (-905 (-537)))) (-4 *1 (-424)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1200 (-905 (-363)))) (-4 *1 (-424)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1200 (-300 (-537)))) (-4 *1 (-424)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1200 (-300 (-363)))) (-4 *1 (-424)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-333)) (-4 *5 (-313 *4)) (-4 *6 (-1176 *5)) + (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-737 *4 *5 *6 *3 *7)) + (-4 *3 (-1176 *6)) (-14 *7 (-874)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-606 *6)) (-4 *6 (-1012 *3 *4 *5)) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *1 (-929 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-989 *2)) (-4 *2 (-1154)))) + ((*1 *1 *2) + (|partial| -1533 + (-12 (-5 *2 (-905 *3)) + (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) + (-3679 (-4 *3 (-37 (-537)))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3679 (-4 *3 (-522))) (-3679 (-4 *3 (-37 (-391 (-537))))) + (-4 *3 (-37 (-537))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807))) + (-12 (-5 *2 (-905 *3)) + (-12 (-3679 (-4 *3 (-945 (-537)))) (-4 *3 (-37 (-391 (-537)))) + (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *1 (-1012 *3 *4 *5)) (-4 *4 (-753)) + (-4 *5 (-807))))) + ((*1 *1 *2) + (|partial| -1533 + (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) + (-12 (-3679 (-4 *3 (-37 (-391 (-537))))) (-4 *3 (-37 (-537))) + (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))) + (-12 (-5 *2 (-905 (-537))) (-4 *1 (-1012 *3 *4 *5)) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117)))) + (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-905 (-391 (-537)))) (-4 *1 (-1012 *3 *4 *5)) + (-4 *3 (-37 (-391 (-537)))) (-4 *5 (-580 (-1117))) (-4 *3 (-998)) + (-4 *4 (-753)) (-4 *5 (-807))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) (((*1 *1 *2) - (-12 (-5 *2 (-1069 *3 *4)) (-14 *3 (-864)) (-4 *4 (-344)) - (-5 *1 (-935 *3 *4))))) -(((*1 *2) - (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) - (-4 *3 (-348 *4)))) - ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-598 (-388 *6))) (-5 *3 (-388 *6)) - (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) + (-12 (-5 *2 (-606 (-2 (|:| -2926 (-1117)) (|:| -2140 (-421))))) + (-5 *1 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) + ((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-450)))) + ((*1 *2) (-12 (-5 *2 (-537)) (-5 *1 (-880))))) +(((*1 *1 *1 *1) (-4 *1 (-622))) ((*1 *1 *1 *1) (-5 *1 (-1064)))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816)))) + ((*1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) + (-4 *3 (-13 (-414 *6) (-27) (-1139))) + (-4 *6 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-535 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372))))) + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-539 *6 *3 *7)) (-4 *7 (-1045))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *1 (-554 *2)) (-4 *2 (-989 *3)) + (-4 *2 (-347)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-554 *2)) (-4 *2 (-347)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117)) (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)) + (-4 *2 (-13 (-414 *4) (-954) (-1139))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1038 *2)) (-4 *2 (-13 (-414 *4) (-954) (-1139))) + (-4 *4 (-13 (-807) (-529))) (-5 *1 (-593 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-912)) (-5 *2 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1038 *1)) (-4 *1 (-912))))) +(((*1 *2) + (-12 (-4 *3 (-529)) (-5 *2 (-606 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *2 (-110)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) + (|partial| -12 (-5 *3 (-1100)) (-5 *2 (-734)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1117)) (-5 *3 (-1049)) (-5 *1 (-918))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-537)) (-5 *5 (-649 (-210))) (-5 *6 (-636 (-210))) + (-5 *3 (-210)) (-5 *2 (-986)) (-5 *1 (-711))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-13 (-291) (-141))) + (-4 *2 (-902 *4 *6 *5)) (-5 *1 (-877 *4 *5 *6 *2)) + (-4 *5 (-13 (-807) (-580 (-1117)))) (-4 *6 (-753))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1147 *3 *4 *5 *6)) (-4 *3 (-529)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) - (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *1 *1) (-5 *1 (-1101))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) - (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) - (-5 *1 (-1101))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-598 (-1107))) (-5 *3 (-1107)) (-5 *1 (-1047))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-311))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110)) - (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) - (-5 *2 (-975)) (-5 *1 (-707))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-205 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-236 *3)))) - ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) - ((*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-721)) (|:| -2451 *4))) (-5 *5 (-721)) - (-4 *4 (-892 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) + (-12 (-4 *1 (-1147 *4 *5 *6 *3)) (-4 *4 (-529)) (-4 *5 (-753)) + (-4 *6 (-807)) (-4 *3 (-1012 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-451)) (-5 *4 (-874)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *1 *1 *1) (-4 *1 (-622))) ((*1 *1 *1 *1) (-5 *1 (-1064)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-731)) (-4 *5 (-529)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-429 *6 *7 *8 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) - (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124))) - (-4 *4 (-13 (-523) (-797))) - (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124))) - (-5 *1 (-560 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-344))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986)) - (-4 *6 (-1160 *5)) (-5 *2 (-1098 (-1098 *7))) - (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1160 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-869))))) -(((*1 *1 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1) (-5 *1 (-587)))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943)) - (-4 *2 (-986))))) -(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1160 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-662 *3 *2 *4 *5 *6)) (-4 *3 (-162)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-666 *3 *2 *4 *5 *6)) (-4 *3 (-162)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-308 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-494 *3 *4)) - (-14 *4 (-531))))) -(((*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-639 (-159 (-388 (-531))))) - (-5 *2 - (-598 - (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-531)) - (|:| |outvect| (-598 (-639 (-159 *4))))))) - (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795)))))) + (-12 (-5 *2 (-1113 (-391 (-905 *3)))) (-5 *1 (-436 *3 *4 *5 *6)) + (-4 *3 (-529)) (-4 *3 (-163)) (-14 *4 (-874)) + (-14 *5 (-606 (-1117))) (-14 *6 (-1200 (-649 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1082 *3 *2)) (-4 *3 (-13 (-1045) (-33))) + (-4 *2 (-13 (-1045) (-33)))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-856 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-110)) (-4 *5 (-330)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) - (-5 *1 (-200 *5 *3)) (-4 *3 (-1160 *5))))) -(((*1 *1 *1) (-4 *1 (-584))) + (-12 (-4 *5 (-529)) + (-5 *2 (-2 (|:| -2756 (-649 *5)) (|:| |vec| (-1200 (-606 (-874)))))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-874)) (-4 *3 (-617 *5))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943) (-1124)))))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-606 (-606 (-210)))) (-5 *4 (-210)) + (-5 *2 (-606 (-896 *4))) (-5 *1 (-1150)) (-5 *3 (-896 *4))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-537)) + (-5 *6 + (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) + (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) + (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) + (-5 *1 (-748)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-537)) + (-5 *6 + (-2 (|:| |try| (-363)) (|:| |did| (-363)) (|:| -2480 (-363)))) + (-5 *7 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) + (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) + (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1154)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797)) - (-5 *2 (-57 (-598 (-624 *5)))) (-5 *1 (-624 *5))))) -(((*1 *2) - (-12 (-5 *2 (-639 (-853 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) - (-14 *4 (-864)))) - ((*1 *2) - (-12 (-5 *2 (-639 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) - (-14 *4 - (-3 (-1098 *3) - (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))))) - ((*1 *2) - (-12 (-5 *2 (-639 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) - (-14 *4 (-864))))) -(((*1 *2 *2) - (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-905 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-995 *5 *6))) (-5 *1 (-1225 *5 *6 *7)) + (-14 *6 (-606 (-1117))) (-14 *7 (-606 (-1117))))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-905 *4))) + (-4 *4 (-13 (-805) (-291) (-141) (-973))) + (-5 *2 (-606 (-995 *4 *5))) (-5 *1 (-1225 *4 *5 *6)) + (-14 *5 (-606 (-1117))) (-14 *6 (-606 (-1117)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) + (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) + (-5 *1 (-748))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-639 *7)) (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) - (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) - (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7))))) + (-12 (-4 *4 (-529)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2211 *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 *4)) (-4 *4 (-344)) (-5 *2 (-1098 *4)) - (-5 *1 (-504 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-795)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) - (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) - (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-208)) - (-5 *2 - (-2 (|:| |brans| (-598 (-598 (-886 *4)))) - (|:| |xValues| (-1025 *4)) (|:| |yValues| (-1025 *4)))) - (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 *4))))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 *3)))) - (-5 *4 (-721)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) - (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) - ((*1 *1 *1) (|partial| -4 *1 (-673)))) -(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130))))) -(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *1 (-302)) (-5 *3 (-210))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-378)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1134))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-896 (-210)) (-896 (-210)))) (-5 *1 (-247)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-975)) (-5 *1 (-699))))) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-313 *4)) (-4 *4 (-347)) + (-5 *2 (-649 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-313 *3)) (-4 *3 (-347)) (-5 *2 (-1200 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-649 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-351 *4)) (-4 *4 (-163)) + (-5 *2 (-1200 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-354 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1176 *4)) (-5 *2 (-1200 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-393 *4 *5)) (-4 *4 (-163)) + (-4 *5 (-1176 *4)) (-5 *2 (-649 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-163)) (-4 *4 (-1176 *3)) + (-5 *2 (-1200 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1200 *1)) (-4 *1 (-401 *4)) (-4 *4 (-163)) + (-5 *2 (-649 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-401 *3)) (-4 *3 (-163)) (-5 *2 (-1200 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-606 (-649 *5))) (-5 *3 (-649 *5)) (-4 *5 (-347)) + (-5 *2 (-1200 *5)) (-5 *1 (-1032 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1117)) (-5 *6 (-606 (-578 *3))) + (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1139) (-414 *7))) + (-4 *7 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) + (-5 *1 (-530 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) + (-5 *1 (-709))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1117)) + (-4 *5 (-13 (-435) (-807) (-141) (-989 (-537)) (-602 (-537)))) + (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) (-5 *1 (-530 *5 *3)) + (-4 *3 (-13 (-27) (-1139) (-414 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1113 *5)) (-4 *5 (-347)) (-5 *2 (-606 *6)) + (-5 *1 (-510 *5 *6 *4)) (-4 *6 (-347)) (-4 *4 (-13 (-347) (-805)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1117)) (-5 *4 (-905 (-537))) (-5 *2 (-314)) + (-5 *1 (-316))))) (((*1 *2 *3) - (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1)) - (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797)))) + (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-136 *4 *5 *3)) + (-4 *3 (-357 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2)) - (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274)))))) + (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-484 *4 *5 *6 *3)) (-4 *6 (-357 *4)) (-4 *3 (-357 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 *5)) (-4 *5 (-945 *4)) (-4 *4 (-529)) + (-5 *2 (-2 (|:| |num| (-649 *4)) (|:| |den| *4))) + (-5 *1 (-653 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-4 *6 (-1176 *5)) + (-5 *2 (-2 (|:| -4113 *7) (|:| |rh| (-606 (-391 *6))))) + (-5 *1 (-767 *5 *6 *7 *3)) (-5 *4 (-606 (-391 *6))) + (-4 *7 (-617 *6)) (-4 *3 (-617 (-391 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-945 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1169 *4 *5 *3)) + (-4 *3 (-1176 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-908)) (-5 *2 (-606 (-606 (-896 (-210))))))) + ((*1 *2 *1) (-12 (-4 *1 (-927)) (-5 *2 (-606 (-606 (-896 (-210)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2)) - (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274))))))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-606 (-606 (-210)))) (-5 *1 (-879))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-363) (-363))) (-5 *4 (-363)) + (-5 *2 + (-2 (|:| -3619 *4) (|:| -3927 *4) (|:| |totalpts| (-537)) + (|:| |success| (-111)))) + (-5 *1 (-749)) (-5 *5 (-537))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-708))))) +(((*1 *1 *2) (-12 (-5 *2 (-149)) (-5 *1 (-827))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1154)) (-4 *2 (-807)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-357 *3)) (-4 *3 (-1154)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-807)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1078 *2)) (-4 *2 (-998)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 *1)) (-4 *1 (-1078 *3)) (-4 *3 (-998)))) + ((*1 *1 *2) + (-12 (-5 *2 (-606 (-1106 *3 *4))) (-5 *1 (-1106 *3 *4)) + (-14 *3 (-874)) (-4 *4 (-998)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1106 *2 *3)) (-14 *2 (-874)) (-4 *3 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330)))) - ((*1 *1) (-4 *1 (-349))) - ((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) - (-4 *4 (-330)))) - ((*1 *1 *1) (-4 *1 (-516))) ((*1 *1) (-4 *1 (-516))) - ((*1 *1 *1) (-5 *1 (-531))) ((*1 *1 *1) (-5 *1 (-721))) - ((*1 *2 *1) (-12 (-5 *2 (-848 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4)) - (-4 *4 (-1030)))) - ((*1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-516)) (-4 *2 (-523))))) + (-12 (-4 *4 (-998)) (-4 *3 (-1176 *4)) (-4 *2 (-1191 *4)) + (-5 *1 (-1194 *4 *3 *5 *2)) (-4 *5 (-617 *3))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-708))))) -(((*1 *1) (-5 *1 (-311)))) -(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))) -(((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) - (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1100)) (-5 *4 (-537)) (-5 *5 (-649 (-210))) + (-5 *2 (-986)) (-5 *1 (-718))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-125 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-1012 *3 *4 *2)) (-4 *2 (-807)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1012 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807))))) +(((*1 *2 *1) (-12 (-5 *2 (-210)) (-5 *1 (-782))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) - (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287))))) + (-12 (-5 *2 (-1119 (-391 (-537)))) (-5 *1 (-176)) (-5 *3 (-537)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1200 (-3 (-451) "undefined"))) (-5 *1 (-1201))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-606 (-300 (-210)))) (-5 *3 (-210)) (-5 *2 (-111)) + (-5 *1 (-196))))) +(((*1 *2 *3) (-12 (-5 *3 (-896 *2)) (-5 *1 (-935 *2)) (-4 *2 (-998))))) (((*1 *2 *3) - (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) - (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5))))) + (-12 (-5 *2 (-606 (-606 (-537)))) (-5 *1 (-924)) + (-5 *3 (-606 (-537)))))) +(((*1 *1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) (-12 (-4 *3 (-998)) (-5 *2 (-606 *1)) (-4 *1 (-1078 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-807) (-529)))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1045) (-33))) (-4 *6 (-13 (-1045) (-33))) + (-5 *2 (-111)) (-5 *1 (-1082 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-522)))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1176 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) - (-14 *4 (-864))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1185)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1186)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *6)) (-4 *6 (-807)) (-4 *4 (-347)) (-4 *5 (-753)) + (-5 *2 (-111)) (-5 *1 (-485 *4 *5 *6 *7)) (-4 *7 (-902 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)) - (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-598 (-110))) (-5 *7 (-639 (-208))) - (-5 *8 (-639 (-531))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *5 (-110)) - (-5 *2 (-975)) (-5 *1 (-705))))) -(((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-919 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-110) *7 (-598 *7))) (-4 *1 (-1132 *4 *5 *6 *7)) - (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-806) (-806) (-806))) (-5 *4 (-531)) (-5 *2 (-806)) - (-5 *1 (-602 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-806)) (-5 *1 (-801 *3 *4 *5)) (-4 *3 (-986)) - (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-806)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806)))) - ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-806)))) - ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1098 *3)) (-4 *3 (-986))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-929 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *5 (-1012 *3 *4 *2))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4086 *3) (|:| |coef2| (-742 *3)))) + (-5 *1 (-742 *3)) (-4 *3 (-529)) (-4 *3 (-998))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1183 *3 *2)) (-4 *3 (-998)) + (-4 *2 (-1160 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-311 *3)) (-4 *3 (-1154)))) + ((*1 *2 *1) + (-12 (-5 *2 (-731)) (-5 *1 (-497 *3 *4)) (-4 *3 (-1154)) + (-14 *4 (-537))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-731)) (-4 *5 (-529)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-922 *5 *3)) (-4 *3 (-1176 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-111)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5))))) (((*1 *2 *3) + (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-177)) (-5 *3 (-537)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-731)) (-5 *1 (-743 *2)) (-4 *2 (-163)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1113 (-537))) (-5 *1 (-895)) (-5 *3 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) (-4 *1 (-474))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-716))))) +(((*1 *1 *2) (-12 (-5 *2 (-827)) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-247))))) +(((*1 *1 *1) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1045))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) + ((*1 *1 *1 *1) (-5 *1 (-1064)))) +(((*1 *2 *3) + (-12 (-5 *3 (-845 *4)) (-4 *4 (-1045)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-843 *4 *5)) (-4 *5 (-1154))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) - (-5 *2 (-598 (-208))) (-5 *1 (-287))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) (-4 *2 (-626 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208)) - (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-703))))) -(((*1 *2 *3) - (-12 (-4 *4 (-986)) - (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) - (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-864)) (-4 *5 (-986)) - (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266))) - (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) - (-5 *2 (-388 (-531))) (-5 *1 (-960 *4)) (-4 *4 (-1160 (-531)))))) + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-537)))) + (-4 *4 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $))))) + (-4 *3 (-529)) (-5 *1 (-1179 *3 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-717))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1200 *4)) (-5 *3 (-649 *4)) (-4 *4 (-347)) + (-5 *1 (-628 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-347)) + (-4 *5 (-13 (-357 *4) (-10 -7 (-6 -4301)))) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301)))) + (-5 *1 (-629 *4 *5 *2 *3)) (-4 *3 (-647 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-606 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-347)) + (-5 *1 (-774 *2 *3)) (-4 *3 (-617 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-347) (-10 -8 (-15 ** ($ $ (-391 (-537))))))) + (-5 *1 (-1072 *3 *2)) (-4 *3 (-1176 *2))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-537)) (-5 *5 (-649 (-210))) (-5 *4 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-531)) - (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) (-4 *1 (-474))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) - ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) + (-12 (-5 *2 (-874)) (-4 *1 (-313 *3)) (-4 *3 (-347)) (-4 *3 (-352)))) + ((*1 *2 *1) (-12 (-4 *1 (-313 *2)) (-4 *2 (-347)))) ((*1 *2 *1) - (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) + (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1176 *2)) (-4 *2 (-163)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330)) - (-5 *1 (-501 *4)))) + (-12 (-5 *2 (-1200 *4)) (-5 *3 (-874)) (-4 *4 (-333)) + (-5 *1 (-507 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) - (-4 *5 (-221 *3 *2)) (-4 *2 (-986))))) + (-12 (-4 *1 (-1067 *3 *2 *4 *5)) (-4 *4 (-223 *3 *2)) + (-4 *5 (-223 *3 *2)) (-4 *2 (-998))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-779 *3)) (-4 *3 (-807)) (-5 *1 (-633 *3))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -16811,1369 +16309,1905 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1083 (-208))) + (-3 (|:| |str| (-1098 (-210))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2368 + (|:| -2133 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-526))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-721)) - (-4 *3 (-13 (-677) (-349) (-10 -7 (-15 ** (*3 *3 (-531)))))) - (-5 *1 (-229 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) - (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) - (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) - (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *8))) - (-5 *1 (-854 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) - (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) - (-4 *6 (-323 (-388 (-531)) *4 *5)) - (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *6))) - (-5 *1 (-855 *4 *5 *6))))) + (-5 *1 (-532))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-1154))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-529) (-141))) (-5 *1 (-1170 *3 *2)) + (-4 *2 (-1176 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120)))) + ((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-1121))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1078 *3)) (-4 *3 (-998)) (-5 *2 (-606 (-162)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1113 *7)) (-5 *3 (-537)) (-4 *7 (-902 *6 *4 *5)) + (-4 *4 (-753)) (-4 *5 (-807)) (-4 *6 (-998)) + (-5 *1 (-305 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-522)) (-5 *1 (-151 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-51))) (-5 *1 (-845 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1117)) (-5 *2 (-606 (-918))) (-5 *1 (-275))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) + (-5 *5 (-3 (|:| |fn| (-372)) (|:| |fp| (-62 G)))) (-5 *2 (-986)) + (-5 *1 (-709))))) (((*1 *2 *2) - (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-135 *3 *4 *2)) - (-4 *2 (-354 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-4 *2 (-354 *4)) - (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523)) - (-5 *2 (-639 *4)) (-5 *1 (-643 *4 *5)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) ((*1 *2 *2) - (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-1153 *3 *4 *2)) - (-4 *2 (-1160 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) - (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) - (-5 *1 (-583 *5 *6))))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) (-4 *1 (-474))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)))) + ((*1 *1 *1) (-12 (-5 *1 (-1222 *2 *3)) (-4 *2 (-998)) (-4 *3 (-803))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-113)) (-5 *4 (-731)) (-4 *5 (-435)) (-4 *5 (-807)) + (-4 *5 (-989 (-537))) (-4 *5 (-529)) (-5 *1 (-40 *5 *2)) + (-4 *2 (-414 *5)) + (-4 *2 + (-13 (-347) (-286) + (-10 -8 (-15 -3301 ((-1069 *5 (-578 $)) $)) + (-15 -3315 ((-1069 *5 (-578 $)) $)) + (-15 -2341 ($ (-1069 *5 (-578 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-606 *7)) (|:| |badPols| (-606 *7)))) + (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-606 *7))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-363)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-537)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-731)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-753)) (-4 *4 (-902 *5 *6 *7)) (-4 *5 (-435)) (-4 *7 (-807)) + (-5 *1 (-432 *5 *6 *7 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1025 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1138)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) - ((*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138))))) -(((*1 *2 *3) - (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5)) - (-5 *2 (-598 *3)) (-5 *1 (-727 *4 *5 *6 *3 *7)) (-4 *3 (-1160 *6)) - (-14 *7 (-864))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) - (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) - (-5 *1 (-1195 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) - (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8))))) + (-12 (-4 *1 (-929 *3 *4 *5 *6)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *1 *1 *1) (-4 *1 (-920)))) +(((*1 *2) (-12 (-5 *2 (-1205)) (-5 *1 (-1156))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-896 (-210)) (-210) (-210))) + (-5 *3 (-1 (-210) (-210) (-210) (-210))) (-5 *1 (-239))))) (((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) - (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) - (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-721)) (-5 *4 (-531)) (-5 *1 (-425 *2)) (-4 *2 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-273))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) - (-4 *2 (-13 (-411 *3) (-1124)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *1) (-12 (-5 *2 (-816)) (-5 *1 (-51))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-231))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-1 (-110) *5 *5)) - (-5 *4 (-598 *5)) (-4 *5 (-797)) (-5 *1 (-1110 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) ((*1 *2 *2) - (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) - (-4 *6 (-1000 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2943 *1) (|:| |upper| *1))) - (-4 *1 (-918 *4 *5 *3 *6))))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *1) (-4 *1 (-474))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-233))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-639 (-531))) (-5 *3 (-598 (-531))) (-5 *1 (-1040))))) + (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-1149 *3)) + (-4 *3 (-927))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-578 *3)) + (-4 *3 (-13 (-414 *5) (-27) (-1139))) + (-4 *5 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 (-2 (|:| -3121 *3) (|:| |coeff| *3))) + (-5 *1 (-539 *5 *3 *6)) (-4 *6 (-1045))))) +(((*1 *2 *3) + (-12 (-5 *3 (-537)) (|has| *1 (-6 -4291)) (-4 *1 (-388)) + (-5 *2 (-874))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 (-363))) (-5 *1 (-247)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-351 *2)) (-4 *2 (-529)) (-4 *2 (-163)))) + ((*1 *2 *1) (-12 (-5 *1 (-402 *2)) (-4 *2 (-529))))) (((*1 *2 *3) - (-12 (-5 *3 (-895 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287))))) + (-12 (-4 *4 (-13 (-347) (-989 (-391 *2)))) (-5 *2 (-537)) + (-5 *1 (-114 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *3 (-1012 *4 *5 *6)) + (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *1)))) + (-4 *1 (-1018 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1158))) + ((*1 *2 *2) + (-12 (-4 *3 (-529)) (-5 *1 (-1179 *3 *2)) + (-4 *2 (-13 (-1176 *3) (-529) (-10 -8 (-15 -2211 ($ $ $)))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *6)) (-4 *1 (-902 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-731)))) + ((*1 *2 *1) + (-12 (-4 *1 (-902 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-731))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-1 (-363))) (-5 *1 (-991))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779))))) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2211 *3))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1176 (-537)))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-363)) (-5 *3 (-1100)) (-5 *1 (-95))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *1) (-4 *1 (-474))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-998))))) +(((*1 *2 *3) + (-12 (-4 *1 (-333)) (-5 *3 (-537)) (-5 *2 (-1127 (-874) (-731)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) + (-12 (-5 *3 (-606 *2)) (-4 *2 (-414 *4)) (-5 *1 (-150 *4 *2)) + (-4 *4 (-13 (-807) (-529)))))) +(((*1 *2 *1) (-12 (-5 *2 (-731)) (-5 *1 (-858 *3)) (-4 *3 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-1120))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-731)) (-4 *1 (-1176 *3)) (-4 *3 (-998))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-391 (-905 *5))) (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) + (-5 *1 (-1073 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) + (-12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-13 (-291) (-807) (-141))) + (-5 *2 (-606 (-278 (-300 *4)))) (-5 *1 (-1073 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-278 (-391 (-905 *5)))) (-5 *4 (-1117)) + (-4 *5 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *5)))) + (-5 *1 (-1073 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-278 (-391 (-905 *4)))) + (-4 *4 (-13 (-291) (-807) (-141))) (-5 *2 (-606 (-278 (-300 *4)))) + (-5 *1 (-1073 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-391 (-905 *5)))) (-5 *4 (-606 (-1117))) + (-4 *5 (-13 (-291) (-807) (-141))) + (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287))))) + (-12 (-5 *3 (-606 (-391 (-905 *4)))) + (-4 *4 (-13 (-291) (-807) (-141))) + (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-278 (-391 (-905 *5))))) (-5 *4 (-606 (-1117))) + (-4 *5 (-13 (-291) (-807) (-141))) + (-5 *2 (-606 (-606 (-278 (-300 *5))))) (-5 *1 (-1073 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-278 (-391 (-905 *4))))) + (-4 *4 (-13 (-291) (-807) (-141))) + (-5 *2 (-606 (-606 (-278 (-300 *4))))) (-5 *1 (-1073 *4))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-606 (-1113 *7))) (-5 *3 (-1113 *7)) + (-4 *7 (-902 *5 *6 *4)) (-4 *5 (-862)) (-4 *6 (-753)) + (-4 *4 (-807)) (-5 *1 (-859 *5 *6 *4 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-300 *4)) (-4 *4 (-13 (-788) (-807) (-998))) + (-5 *2 (-1100)) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-300 *5)) (-5 *4 (-111)) + (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1100)) + (-5 *1 (-786 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-782)) (-5 *4 (-300 *5)) + (-4 *5 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) + (-5 *1 (-786 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-782)) (-5 *4 (-300 *6)) (-5 *5 (-111)) + (-4 *6 (-13 (-788) (-807) (-998))) (-5 *2 (-1205)) + (-5 *1 (-786 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-788)) (-5 *2 (-1100)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-788)) (-5 *3 (-111)) (-5 *2 (-1100)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *2 (-1205)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-788)) (-5 *3 (-782)) (-5 *4 (-111)) (-5 *2 (-1205))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) - (-4 *2 (-13 (-411 *3) (-943)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-4 *2 (-1030)) - (-5 *1 (-832 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531))))) - (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) - (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) - (-5 *1 (-738)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) - (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) - (-5 *1 (-738))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *1) (-4 *1 (-474))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-606 *7) *7 (-1113 *7))) (-5 *5 (-1 (-402 *7) *7)) + (-4 *7 (-1176 *6)) (-4 *6 (-13 (-347) (-141) (-989 (-391 (-537))))) + (-5 *2 (-606 (-2 (|:| |frac| (-391 *7)) (|:| -4113 *3)))) + (-5 *1 (-769 *6 *7 *3 *8)) (-4 *3 (-617 *7)) + (-4 *8 (-617 (-391 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-402 *6) *6)) (-4 *6 (-1176 *5)) + (-4 *5 (-13 (-347) (-141) (-989 (-537)) (-989 (-391 (-537))))) + (-5 *2 + (-606 (-2 (|:| |frac| (-391 *6)) (|:| -4113 (-615 *6 (-391 *6)))))) + (-5 *1 (-772 *5 *6)) (-5 *3 (-615 *6 (-391 *6)))))) +(((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-1154)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-12 (-4 *1 (-655 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1045)) (-4 *2 (-807)) + (-5 *1 (-112 *2))))) +(((*1 *1) (-5 *1 (-1205)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1102)) - (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3)) - (-5 *2 (-388 (-531)))))) -(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) - ((*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) - ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-531))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6)) - (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4)) - (-4 *6 (-354 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797)) - (-5 *2 (-598 (-624 *5))) (-5 *1 (-624 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1102)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-598 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1124) (-27) (-411 *8))) - (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3))) - (-5 *3 (-531)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110)))) - (-5 *1 (-954 *8 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-208))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-411 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) - ((*1 *1 *1 *1) (-4 *1 (-1066)))) -(((*1 *2 *1) - (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1098 *3)) (-4 *3 (-986)) (-4 *1 (-1160 *3))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) - (-5 *2 (-975)) (-5 *1 (-706)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) - (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) - (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706))))) -(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870))))) -(((*1 *1 *2) - (-12 (-5 *2 (-864)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-344)) (-14 *5 (-935 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-598 *9)) (-5 *3 (-1 (-110) *9)) - (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) - (-4 *8 (-797)) (-5 *1 (-919 *6 *7 *8 *9))))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) (((*1 *2 *3) - (-12 (-5 *3 (-639 (-388 (-895 (-531))))) + (-12 (-5 *3 (-729)) (-5 *2 - (-598 - (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) - (|:| |radvect| (-598 (-639 (-297 (-531)))))))) - (-5 *1 (-971))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-598 (-388 *7))) - (-4 *7 (-1160 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-541 *6 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-571 *1)) (-4 *1 (-284))))) + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) + (-5 *1 (-538)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-729)) (-5 *4 (-1010)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))) (|:| |extra| (-986)))) + (-5 *1 (-538)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-747)) (-5 *3 (-1010)) + (-5 *4 + (-2 (|:| |fn| (-300 (-210))) + (|:| -2133 (-606 (-1040 (-800 (-210))))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) + (|:| |extra| (-986)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-747)) (-5 *3 (-1010)) + (-5 *4 + (-2 (|:| |var| (-1117)) (|:| |fn| (-300 (-210))) + (|:| -2133 (-1040 (-800 (-210)))) (|:| |abserr| (-210)) + (|:| |relerr| (-210)))) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)) + (|:| |extra| (-986)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-760)) (-5 *3 (-1010)) + (-5 *4 + (-2 (|:| |xinit| (-210)) (|:| |xend| (-210)) + (|:| |fn| (-1200 (-300 (-210)))) (|:| |yinit| (-606 (-210))) + (|:| |intvals| (-606 (-210))) (|:| |g| (-300 (-210))) + (|:| |abserr| (-210)) (|:| |relerr| (-210)))) + (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-768)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *1 (-765)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-1010)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *1 (-765)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-796)) (-5 *3 (-1010)) + (-5 *4 + (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) + (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-796)) (-5 *3 (-1010)) + (-5 *4 + (-2 (|:| |fn| (-300 (-210))) (|:| -3956 (-606 (-210))) + (|:| |lb| (-606 (-800 (-210)))) (|:| |cf| (-606 (-300 (-210)))) + (|:| |ub| (-606 (-800 (-210)))))) + (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-798)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *1 (-797)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-798)) (-5 *4 (-1010)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *1 (-797)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-848)) (-5 *3 (-1010)) + (-5 *4 + (-2 (|:| |pde| (-606 (-300 (-210)))) + (|:| |constraints| + (-606 + (-2 (|:| |start| (-210)) (|:| |finish| (-210)) + (|:| |grid| (-731)) (|:| |boundaryType| (-537)) + (|:| |dStart| (-649 (-210))) (|:| |dFinish| (-649 (-210)))))) + (|:| |f| (-606 (-606 (-300 (-210))))) (|:| |st| (-1100)) + (|:| |tol| (-210)))) + (-5 *2 (-2 (|:| -1372 (-363)) (|:| |explanations| (-1100)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-851)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *1 (-850)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-851)) (-5 *4 (-1010)) + (-5 *2 + (-2 (|:| -1372 (-363)) (|:| -3923 (-1100)) + (|:| |explanations| (-606 (-1100))))) + (-5 *1 (-850))))) +(((*1 *2 *1) + (-12 (-5 *2 (-606 (-2 (|:| |val| *3) (|:| -3852 *4)))) + (-5 *1 (-1083 *3 *4)) (-4 *3 (-13 (-1045) (-33))) + (-4 *4 (-13 (-1045) (-33)))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-537)) (-5 *5 (-111)) (-5 *6 (-649 (-210))) + (-5 *7 (-3 (|:| |fn| (-372)) (|:| |fp| (-75 OBJFUN)))) + (-5 *4 (-210)) (-5 *2 (-986)) (-5 *1 (-714))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-606 *1)) (-4 *1 (-1012 *4 *5 *6)) (-4 *4 (-998)) + (-4 *5 (-753)) (-4 *6 (-807)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1012 *3 *4 *5)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *5 (-807)) (-5 *2 (-111)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1147 *5 *6 *7 *3)) + (-4 *5 (-529)) (-4 *6 (-753)) (-4 *7 (-807)) + (-4 *3 (-1012 *5 *6 *7)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *7)) (-4 *7 (-902 *4 *5 *6)) (-4 *6 (-580 (-1117))) + (-4 *4 (-347)) (-4 *5 (-753)) (-4 *6 (-807)) + (-5 *2 (-1107 (-606 (-905 *4)) (-606 (-278 (-905 *4))))) + (-5 *1 (-485 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-1064)) (-5 *1 (-314))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) (((*1 *1 *2) - (-12 (-5 *2 (-598 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-743)) - (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) - (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) - (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) - (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) - (-4 *1 (-1005 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) -(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651)))) - ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523))))) + (-12 (-5 *2 (-874)) (-5 *1 (-146 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-347)) (-14 *5 (-946 *3 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-574 *2)) (-4 *2 (-1045)))) + ((*1 *1 *1) (-5 *1 (-595)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-537)) (-4 *1 (-307 *4 *2)) (-4 *4 (-1045)) + (-4 *2 (-129))))) +(((*1 *2 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-401 *4))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-986)) (-5 *3 (-1117)) (-5 *1 (-178))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-662 *4 *5 *6 *7)) + (-4 *4 (-580 (-513))) (-4 *5 (-1154)) (-4 *6 (-1154)) + (-4 *7 (-1154))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-241))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-363)) (-5 *1 (-95))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-606 (-606 (-606 *4)))) (-5 *3 (-606 *4)) (-4 *4 (-807)) + (-5 *1 (-1125 *4))))) +(((*1 *1 *2) (-12 (-5 *1 (-212 *2)) (-4 *2 (-13 (-347) (-1139)))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1120)) (-5 *3 (-1117))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-998)) (-4 *3 (-752)) + (-4 *2 (-435)))) + ((*1 *1 *1) + (-12 (-4 *1 (-326 *2 *3 *4)) (-4 *2 (-1158)) (-4 *3 (-1176 *2)) + (-4 *4 (-1176 (-391 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-998)) (-4 *2 (-435)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)) (-4 *3 (-435)))) + ((*1 *1 *1) + (-12 (-4 *1 (-902 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-435)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-291)) (-4 *3 (-529)) (-5 *1 (-1105 *3 *2)) + (-4 *2 (-1176 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-998)) (-5 *1 (-673 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *5 (-210)) + (-5 *2 (-986)) (-5 *1 (-713))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) (((*1 *2 *1) - (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) - (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) + (-12 (-5 *2 (-1047 *3)) (-5 *1 (-858 *3)) (-4 *3 (-352)) + (-4 *3 (-1045))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-649 (-210))) (-5 *5 (-649 (-537))) (-5 *6 (-210)) + (-5 *3 (-537)) (-5 *2 (-986)) (-5 *1 (-712))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-310 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-752)) (-4 *3 (-163))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) -(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-171))))) -(((*1 *1 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030))))) -(((*1 *1) (-5 *1 (-418)))) -(((*1 *2 *1) + (-12 (-5 *2 (-391 (-537))) (-5 *1 (-562 *3)) (-4 *3 (-37 *2)) + (-4 *3 (-998))))) +(((*1 *1 *2) (-12 (-5 *2 - (-598 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-531))))) - (-5 *1 (-399 *3)) (-4 *3 (-523)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-721)) (-4 *3 (-330)) (-4 *5 (-1160 *3)) - (-5 *2 (-598 (-1098 *3))) (-5 *1 (-476 *3 *5 *6)) - (-4 *6 (-1160 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) - (-4 *8 (-892 *7 *5 *6)) - (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *3))) - (-5 *1 (-896 *5 *6 *7 *8 *3)) (-5 *4 (-721)) - (-4 *3 - (-13 (-344) - (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8)))))))) + (-2 (|:| |mval| (-649 *3)) (|:| |invmval| (-649 *3)) + (|:| |genIdeal| (-485 *3 *4 *5 *6)))) + (-4 *3 (-347)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *1 (-485 *3 *4 *5 *6)) (-4 *6 (-902 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1086)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-220 *3)))) + ((*1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1045))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1102)) - (|:| |arrayIndex| (-598 (-895 (-531)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) - (|:| |ints2Floats?| (-110)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1101)) (|:| |thenClause| (-311)) - (|:| |elseClause| (-311)))) - (|:| |returnBranch| - (-2 (|:| -1589 (-110)) - (|:| -3482 - (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) - (|:| |blockBranch| (-598 (-311))) - (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) - (|:| |forBranch| - (-2 (|:| -2368 (-1023 (-895 (-531)))) - (|:| |span| (-895 (-531))) (|:| -3964 (-311)))) - (|:| |labelBranch| (-1049)) - (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 (-311)))) - (|:| |commonBranch| - (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) - (|:| |printBranch| (-598 (-806))))) - (-5 *1 (-311))))) -(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3)) - (-5 *1 (-97 *4 *3)) (-4 *3 (-1160 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-13 (-432) (-140))) - (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3))))) + (-12 (-4 *3 (-998)) (-5 *2 (-1200 *3)) (-5 *1 (-673 *3 *4)) + (-4 *4 (-1176 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1045))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-4 *2 (-1160 *5)) - (-5 *1 (-1178 *5 *2 *6 *3)) (-4 *6 (-609 *2)) (-4 *3 (-1175 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) - (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) - (-5 *2 (-159 *3)) (-5 *1 (-1128 *4 *3)) - (-4 *3 (-13 (-27) (-1124) (-411 *4)))))) + (-12 (-5 *3 (-210)) (-5 *4 (-537)) (-5 *2 (-986)) (-5 *1 (-719))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-606 (-816))) (-5 *1 (-816))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) - (-4 *2 (-1175 *3)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1100)) (-5 *3 (-606 (-247))) (-5 *1 (-245)))) + ((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *1 *1) (-5 *1 (-1010)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-291) (-141))) (-4 *5 (-13 (-807) (-580 (-1117)))) + (-4 *6 (-753)) (-5 *2 (-606 (-606 (-537)))) + (-5 *1 (-877 *4 *5 *6 *7)) (-5 *3 (-537)) (-4 *7 (-902 *4 *6 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-210)) (-5 *1 (-211)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-160 (-210))) (-5 *1 (-211))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-857 (-537))) (-5 *1 (-870)))) + ((*1 *2) (-12 (-5 *2 (-857 (-537))) (-5 *1 (-870))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-164 *3)) (-4 *3 (-291))))) +(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-210))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) - (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) - (-4 *2 (-1175 *3)))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) - (-5 *1 (-1079 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))) -(((*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289))))) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *1 *1 *1) (-5 *1 (-363))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3)) - (-4 *3 (-1160 (-388 *4)))))) + (-12 (-4 *4 (-807)) (-5 *2 (-606 (-606 (-606 *4)))) + (-5 *1 (-1125 *4)) (-5 *3 (-606 (-606 *4)))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-1045)) (-4 *2 (-1154))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-537) (-537))) (-5 *1 (-345 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-731) (-731))) (-5 *1 (-370 *3)) (-4 *3 (-1045)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-1045))))) +(((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-341 *3)) (-4 *3 (-333))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) (-4 *4 (-998)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1222 *3 *4)) (-4 *3 (-998)) + (-4 *4 (-803))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 (-606 (-2 (|:| -3619 *4) (|:| -2009 (-1064)))))) + (-4 *4 (-333)) (-5 *2 (-731)) (-5 *1 (-330 *4)))) + ((*1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-335 *3 *4)) (-14 *3 (-874)) + (-14 *4 (-874)))) + ((*1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-336 *3 *4)) (-4 *3 (-333)) + (-14 *4 + (-3 (-1113 *3) + (-1200 (-606 (-2 (|:| -3619 *3) (|:| -2009 (-1064))))))))) + ((*1 *2) + (-12 (-5 *2 (-731)) (-5 *1 (-337 *3 *4)) (-4 *3 (-333)) + (-14 *4 (-874))))) (((*1 *2 *2) + (|partial| -12 (-4 *3 (-347)) (-4 *4 (-357 *3)) (-4 *5 (-357 *3)) + (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-647 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-529)) (-4 *5 (-357 *4)) (-4 *6 (-357 *4)) + (-4 *7 (-945 *4)) (-4 *2 (-647 *7 *8 *9)) + (-5 *1 (-503 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-647 *4 *5 *6)) + (-4 *8 (-357 *7)) (-4 *9 (-357 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-647 *2 *3 *4)) (-4 *2 (-998)) + (-4 *3 (-357 *2)) (-4 *4 (-357 *2)) (-4 *2 (-347)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-347)) (-4 *3 (-163)) (-4 *4 (-357 *3)) + (-4 *5 (-357 *3)) (-5 *1 (-648 *3 *4 *5 *2)) + (-4 *2 (-647 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-649 *2)) (-4 *2 (-347)) (-4 *2 (-998)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1067 *2 *3 *4 *5)) (-4 *3 (-998)) + (-4 *4 (-223 *2 *3)) (-4 *5 (-223 *2 *3)) (-4 *3 (-347)))) + ((*1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-807)) (-5 *1 (-1125 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-998)) (-5 *1 (-1102 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-862)) (-5 *2 (-402 (-1113 *1))) (-5 *3 (-1113 *1))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-606 (-606 (-606 *5)))) (-5 *3 (-1 (-111) *5 *5)) + (-5 *4 (-606 *5)) (-4 *5 (-807)) (-5 *1 (-1125 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-874)) (-5 *2 (-1113 *4)) (-5 *1 (-341 *4)) + (-4 *4 (-333))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1117)) + (-5 *2 (-3 (|:| |fst| (-418)) (|:| -1374 "void"))) (-5 *1 (-1120))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-537)) (-5 *2 (-111))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) + (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *3 *1) (-12 (-5 *2 - (-598 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797)) - (-5 *1 (-429 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -1915 (-598 *3)) (|:| -4189 (-598 *3)))) - (-5 *1 (-1139 *3)) (-4 *3 (-1030))))) -(((*1 *2 *2) - (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) - (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3))))) + (-2 (|:| |cycle?| (-111)) (|:| -2273 (-731)) (|:| |period| (-731)))) + (-5 *1 (-1098 *4)) (-4 *4 (-1154)) (-5 *3 (-731))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-902 *3 *4 *2)) (-4 *3 (-998)) (-4 *4 (-753)) + (-4 *2 (-807)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-753)) (-4 *5 (-998)) (-4 *6 (-902 *5 *4 *2)) + (-4 *2 (-807)) (-5 *1 (-903 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-347) + (-10 -8 (-15 -2341 ($ *6)) (-15 -3301 (*6 $)) + (-15 -3315 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-391 (-905 *4))) (-4 *4 (-529)) + (-5 *2 (-1117)) (-5 *1 (-994 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1012 *2 *3 *4)) (-4 *2 (-998)) (-4 *3 (-753)) + (-4 *4 (-807)) (-4 *2 (-529))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) - (-5 *1 (-367 *3)) (-4 *3 (-1030)))) + (-2 (|:| |lm| (-370 *3)) (|:| |mm| (-370 *3)) (|:| |rm| (-370 *3)))) + (-5 *1 (-370 *3)) (-4 *3 (-1045)))) ((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |lm| (-769 *3)) (|:| |mm| (-769 *3)) (|:| |rm| (-769 *3)))) - (-5 *1 (-769 *3)) (-4 *3 (-797))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) - (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))))) + (-2 (|:| |lm| (-779 *3)) (|:| |mm| (-779 *3)) (|:| |rm| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-807))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-529)) (-5 *1 (-922 *3 *2)) (-4 *2 (-1176 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1082 *2 *3)) (-4 *2 (-13 (-1045) (-33))) + (-4 *3 (-13 (-1045) (-33)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-264))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1113 *1)) (-4 *1 (-964))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1117)) + (-4 *4 (-13 (-807) (-291) (-989 (-537)) (-602 (-537)) (-141))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-764 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1139) (-912)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-816)))) + ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1205)) (-5 *1 (-915))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) (-5 *6 (-1113 *3)) + (-4 *3 (-13 (-414 *7) (-27) (-1139))) + (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-578 *3)) (-5 *5 (-606 *3)) + (-5 *6 (-391 (-1113 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1139))) + (-4 *7 (-13 (-435) (-989 (-537)) (-807) (-141) (-602 (-537)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-533 *7 *3 *8)) (-4 *8 (-1045))))) +(((*1 *1 *1) (-4 *1 (-93))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) - (-4 *5 (-354 *3)) (-5 *2 (-531)))) - ((*1 *2 *1) - (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) - (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531))))) -(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289))))) + (-12 (-4 *1 (-237 *3 *4 *2 *5)) (-4 *3 (-998)) (-4 *4 (-807)) + (-4 *5 (-753)) (-4 *2 (-250 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) + (-5 *1 (-1053 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *2 (-1045)) (-4 *3 (-1045)) + (-4 *4 (-1045)) (-4 *5 (-1045)) (-4 *6 (-1045))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-998)) (-4 *5 (-753)) (-4 *3 (-807)) + (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) + (-4 *1 (-1012 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) + (-5 *2 (-2 (|:| -3449 *1) (|:| |gap| (-731)) (|:| -1672 *1))) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) + (-5 *4 (-606 (-874))) (-5 *5 (-606 (-247))) (-5 *1 (-451)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *3 (-606 (-827))) + (-5 *4 (-606 (-874))) (-5 *1 (-451)))) + ((*1 *1 *2) (-12 (-5 *2 (-606 (-606 (-896 (-210))))) (-5 *1 (-451)))) + ((*1 *1 *1) (-5 *1 (-451)))) +(((*1 *2 *1) + (-12 (-5 *2 (-896 *4)) (-5 *1 (-1106 *3 *4)) (-14 *3 (-874)) + (-4 *4 (-998))))) +(((*1 *1) (-5 *1 (-421)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1186)))) + (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-210)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))) + (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-731)) (-5 *2 (-391 (-537))) (-5 *1 (-363))))) +(((*1 *2) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-435)) (-4 *4 (-753)) (-4 *5 (-807)) + (-4 *6 (-1012 *3 *4 *5)) (-5 *2 (-1205)) + (-5 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *7 (-1018 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) - (-5 *1 (-313)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1102)) (-5 *4 (-1023 (-895 (-531)))) (-5 *2 (-311)) - (-5 *1 (-313)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030))))) -(((*1 *2 *3) - (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) - (-4 *4 (-13 (-344) (-795))) (-4 *3 (-1160 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5))))) -(((*1 *1) (-5 *1 (-311)))) -(((*1 *2 *3) - (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) - (-5 *2 (-230 *4 *5)) (-5 *1 (-887 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-398 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) - (-4 *4 (-986))))) + (-12 (-5 *3 (-606 (-247))) (-5 *4 (-1117)) (-5 *2 (-111)) + (-5 *1 (-247))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-649 (-1113 *8))) (-4 *5 (-998)) (-4 *8 (-998)) + (-4 *6 (-1176 *5)) (-5 *2 (-649 *6)) (-5 *1 (-482 *5 *6 *7 *8)) + (-4 *7 (-1176 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) - (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) - (|:| |relerr| (-208)))) + (-2 (|:| |lfn| (-606 (-300 (-210)))) (|:| -3956 (-606 (-210))))) + (-5 *2 (-363)) (-5 *1 (-251)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1200 (-300 (-210)))) (-5 *2 (-363)) (-5 *1 (-289))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-529)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4086 *4))) + (-5 *1 (-922 *4 *3)) (-4 *3 (-1176 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-606 (-1117))) (-5 *1 (-1117))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-537)) (-5 *6 (-1 (-1205) (-1200 *5) (-1200 *5) (-363))) + (-5 *3 (-1200 (-363))) (-5 *5 (-363)) (-5 *2 (-1205)) + (-5 *1 (-748))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-537))) (-5 *5 (-1 (-1098 *4))) (-4 *4 (-347)) + (-4 *4 (-998)) (-5 *2 (-1098 *4)) (-5 *1 (-1102 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 (-463 *4 *5))) (-14 *4 (-606 (-1117))) + (-4 *5 (-435)) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-176))))) -(((*1 *1) - (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) - (-4 *4 (-162))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-208)) (-5 *4 (-531)) - (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) - (-5 *1 (-699))))) -(((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127))))) -(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1187)))) - ((*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1187))))) + (-2 (|:| |gblist| (-606 (-232 *4 *5))) + (|:| |gvlist| (-606 (-537))))) + (-5 *1 (-594 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-606 (-1100))) (-5 *1 (-1203))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7)) - (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) - (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) - (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-598 *3)) (-5 *5 (-864)) (-4 *3 (-1160 *4)) - (-4 *4 (-289)) (-5 *1 (-440 *4 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) - (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-1098 *6)) - (-5 *1 (-302 *4 *5 *6 *7))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) - (-4 *3 (-13 (-1030) (-33)))))) -(((*1 *1 *1 *1) (-5 *1 (-806)))) + (-12 (-5 *3 (-606 (-300 (-210)))) (-5 *4 (-731)) + (-5 *2 (-649 (-210))) (-5 *1 (-251))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4301)) (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) + (-4 *4 (-1154)) (-5 *2 (-1205))))) +(((*1 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203)))) + ((*1 *2 *2) (-12 (-5 *2 (-606 (-874))) (-5 *1 (-1203))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-816))) ((*1 *1 *1 *1) (-5 *1 (-816))) + ((*1 *1 *1) (-5 *1 (-816)))) +(((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-347)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1216 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-998)) (-4 *4 (-163)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1216 *2 *3)) (-4 *2 (-807)) (-4 *3 (-998)) + (-4 *3 (-163))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1117)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-606 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-606 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3121 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1139) (-27) (-414 *8))) + (-4 *8 (-13 (-435) (-807) (-141) (-989 *3) (-602 *3))) + (-5 *3 (-537)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3278 *4) (|:| |sol?| (-111)))) + (-5 *1 (-965 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *2) + (-12 (-5 *2 (-606 *3)) (-4 *3 (-1045)) (-4 *1 (-1043 *3)))) + ((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-1045))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-537)) (-5 *4 (-649 (-210))) (-5 *2 (-986)) + (-5 *1 (-713))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) - (-5 *2 (-598 (-598 (-598 (-886 *3)))))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) - (-5 *2 (-975)) (-5 *1 (-698))))) + (-12 (-4 *1 (-570 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1154)) + (-5 *2 (-606 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-414 *3) (-954))) (-5 *1 (-260 *3 *2)) + (-4 *3 (-13 (-807) (-529)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-138))))) +(((*1 *2) + (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-327 *3 *4)) (-14 *3 (-874)) + (-14 *4 (-874)))) + ((*1 *2) + (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-328 *3 *4)) (-4 *3 (-333)) + (-14 *4 (-1113 *3)))) + ((*1 *2) + (-12 (-5 *2 (-911 (-1064))) (-5 *1 (-329 *3 *4)) (-4 *3 (-333)) + (-14 *4 (-874))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-145 *2)) + (-4 *2 (-1154))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-649 *4)) (-5 *3 (-874)) (|has| *4 (-6 (-4302 "*"))) + (-4 *4 (-998)) (-5 *1 (-979 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-606 (-649 *4))) (-5 *3 (-874)) + (|has| *4 (-6 (-4302 "*"))) (-4 *4 (-998)) (-5 *1 (-979 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-880))))) +(((*1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-782))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-598 (-360))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) - (-4 *4 (-797)) (-4 *2 (-432))))) -(((*1 *1 *2) - (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3)))) - ((*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-907 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))) -(((*1 *2 *2) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826))))) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1154)) (-5 *1 (-359 *4 *2)) + (-4 *2 (-13 (-357 *4) (-10 -7 (-6 -4301))))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) + (-5 *1 (-941 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1100)) (-4 *4 (-435)) (-4 *5 (-753)) (-4 *6 (-807)) + (-4 *7 (-1012 *4 *5 *6)) (-5 *2 (-1205)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)) (-4 *8 (-1018 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-51))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) - (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) - (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))) -(((*1 *1) - (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264))) - (-3745 (|has| *1 (-6 -4256))))) - ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797)))) - ((*1 *1 *1 *1) (-4 *1 (-797))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))) - ((*1 *1) (-5 *1 (-1049)))) -(((*1 *2 *3) - (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1025 (-790 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) - (-5 *1 (-287)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) - (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-344)) (-5 *2 (-598 (-1083 *4))) (-5 *1 (-267 *4 *5)) - (-5 *3 (-1083 *4)) (-4 *5 (-1175 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284)))) - ((*1 *1 *1) (-4 *1 (-284))) - ((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) - ((*1 *1 *1) (-5 *1 (-806)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164))))) -(((*1 *1 *1) (-5 *1 (-998)))) -(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-51))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-864)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1098 *1)) - (-4 *1 (-310 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) - (-4 *2 (-1160 *3)))) + (-12 (-4 *4 (-529)) (-5 *2 (-606 *3)) (-5 *1 (-922 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *1) (-5 *1 (-1201)))) +(((*1 *1 *1 *1) (-4 *1 (-522)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) + (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1117)) (-5 *5 (-1040 (-210))) (-5 *2 (-880)) + (-5 *1 (-878 *3)) (-4 *3 (-580 (-513))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-879)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-879)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-879)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1040 (-210))) (-5 *1 (-880)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-606 (-1 (-210) (-210)))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-210) (-210))) (-5 *3 (-1040 (-210))) + (-5 *1 (-880))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-827)) + (-5 *5 (-874)) (-5 *6 (-606 (-247))) (-5 *2 (-451)) (-5 *1 (-1204)))) ((*1 *2 *3) - (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4)) - (-5 *1 (-501 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 (-531))) (-5 *2 (-531)) (-5 *1 (-465 *4)) - (-4 *4 (-1160 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110))))) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *2 (-451)) + (-5 *1 (-1204)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-606 (-896 (-210))))) (-5 *4 (-606 (-247))) + (-5 *2 (-451)) (-5 *1 (-1204))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-731)) (-4 *1 (-936 *2)) (-4 *2 (-1139))))) +(((*1 *2 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-874)) (-5 *1 (-746))))) (((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 *1)) - (-4 *1 (-363 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-598 (-686 *3 *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) - (-4 *4 (-677)))) - ((*1 *2 *1) - (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) - (-4 *1 (-892 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1197 (-1102) *3)) (-4 *3 (-986)) (-5 *1 (-1204 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) - (-5 *1 (-1206 *3 *4))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-571 *3)) - (-4 *3 (-13 (-411 *5) (-27) (-1124))) - (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) - (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124))))) -(((*1 *2 *1) (-12 (-5 *1 (-1134 *2)) (-4 *2 (-916))))) + (-12 (-4 *3 (-998)) (-4 *4 (-753)) (-4 *5 (-807)) (-5 *2 (-606 *1)) + (-4 *1 (-1012 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-807)) + (-5 *2 (-2 (|:| -3449 (-537)) (|:| |var| (-578 *1)))) + (-4 *1 (-414 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1160 *5)) - (-5 *1 (-757 *5 *2 *3 *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) - (-4 *3 (-609 *2)) (-4 *6 (-609 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-598 (-388 *2))) (-4 *2 (-1160 *5)) - (-5 *1 (-757 *5 *2 *3 *6)) - (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) - (-4 *6 (-609 (-388 *2)))))) -(((*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) - ((*1 *1 *1) (-5 *1 (-1049)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1184 (-1184 (-531)))) (-5 *3 (-864)) (-5 *1 (-446))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-4 *2 (-1160 *4)) - (-5 *1 (-865 *4 *2))))) + (-12 (-5 *1 (-562 *2)) (-4 *2 (-37 (-391 (-537)))) (-4 *2 (-998))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) (((*1 *2 *3) - (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) - (-4 *4 (-330))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-724)) (-5 *1 (-112)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-908))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-1032 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-598 *4))) (-5 *1 (-847 *4)) - (-5 *3 (-598 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-1032 *4))) (-5 *1 (-847 *4)) - (-5 *3 (-1032 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))) + (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-136 *2 *4 *3)) + (-4 *3 (-357 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-484 *2 *4 *5 *3)) + (-4 *5 (-357 *2)) (-4 *3 (-357 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 *4)) (-4 *4 (-945 *2)) (-4 *2 (-529)) + (-5 *1 (-653 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-945 *2)) (-4 *2 (-529)) (-5 *1 (-1169 *2 *4 *3)) + (-4 *3 (-1176 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-858 (-537))) (-5 *4 (-537)) (-5 *2 (-649 *4)) + (-5 *1 (-979 *5)) (-4 *5 (-998)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-537))) (-5 *2 (-649 (-537))) (-5 *1 (-979 *4)) + (-4 *4 (-998)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-606 (-858 (-537)))) (-5 *4 (-537)) + (-5 *2 (-606 (-649 *4))) (-5 *1 (-979 *5)) (-4 *5 (-998)))) + ((*1 *2 *3) + (-12 (-5 *3 (-606 (-606 (-537)))) (-5 *2 (-606 (-649 (-537)))) + (-5 *1 (-979 *4)) (-4 *4 (-998))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) (-4 *5 (-1045)) + (-4 *6 (-1154)) (-5 *2 (-1 *6 *5)) (-5 *1 (-603 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) + (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-606 *6)) (-5 *4 (-606 *5)) (-4 *6 (-1045)) + (-4 *5 (-1154)) (-5 *2 (-1 *5 *6)) (-5 *1 (-603 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-4 *5 (-1045)) + (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-606 *5)) (-5 *4 (-606 *6)) + (-4 *5 (-1045)) (-4 *6 (-1154)) (-5 *1 (-603 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-606 *5)) (-5 *4 (-606 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1045)) (-4 *2 (-1154)) (-5 *1 (-603 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1086)) (-5 *3 (-138)) (-5 *2 (-731))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1117)) (-5 *2 (-1205)) (-5 *1 (-782))))) +(((*1 *2 *2) (-12 (-5 *2 (-537)) (-5 *1 (-534))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-537)) (|has| *1 (-6 -4301)) (-4 *1 (-357 *3)) + (-4 *3 (-1154))))) +(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-51)) (-5 *1 (-789))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-827)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-874)) (-5 *4 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1201)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1205)) (-5 *1 (-1202))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-391 (-537)))) + (-5 *2 + (-606 + (-2 (|:| |outval| *4) (|:| |outmult| (-537)) + (|:| |outvect| (-606 (-649 *4)))))) + (-5 *1 (-739 *4)) (-4 *4 (-13 (-347) (-805)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) (((*1 *2) - (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-398 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) - ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1138)) (-5 *2 (-721))))) -(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106))))) -((-1215 . 727741) (-1216 . 727600) (-1217 . 727505) (-1218 . 727133) - (-1219 . 726980) (-1220 . 726886) (-1221 . 726783) (-1222 . 726695) - (-1223 . 726609) (-1224 . 726208) (-1225 . 726131) (-1226 . 726075) - (-1227 . 726009) (-1228 . 725738) (-1229 . 725554) (-1230 . 725241) - (-1231 . 725170) (-1232 . 725069) (-1233 . 724694) (-1234 . 724545) - (-1235 . 724493) (-1236 . 724462) (-1237 . 724407) (-1238 . 724237) - (-1239 . 724107) (-1240 . 723763) (-1241 . 723483) (-1242 . 723132) - (-1243 . 723065) (-1244 . 722985) (-1245 . 722856) (-1246 . 722744) - (-1247 . 722360) (-1248 . 722235) (-1249 . 722135) (-1250 . 722101) - (-1251 . 721983) (-1252 . 721819) (-1253 . 721695) (-1254 . 721448) - (-1255 . 721332) (-1256 . 721280) (-1257 . 721116) (-1258 . 721021) - (-1259 . 720530) (-1260 . 720435) (-1261 . 720340) (-1262 . 720211) - (-1263 . 720183) (-1264 . 720042) (-1265 . 719929) (-1266 . 719629) - (-1267 . 719556) (-1268 . 719469) (-1269 . 719317) (-1270 . 719243) - (-1271 . 718999) (-1272 . 718868) (-1273 . 718577) (-1274 . 718494) - (-1275 . 718364) (-1276 . 718248) (-1277 . 718012) (-1278 . 717938) - (-1279 . 717712) (-1280 . 717597) (-1281 . 717542) (-1282 . 717387) - (-1283 . 716941) (-1284 . 716616) (-1285 . 716343) (-1286 . 716199) - (-1287 . 715953) (-1288 . 715898) (-1289 . 714717) (-1290 . 714386) - (-1291 . 714315) (-1292 . 713980) (-1293 . 713952) (-1294 . 713895) - (-1295 . 713842) (-1296 . 713744) (-1297 . 713657) (-1298 . 713504) - (-1299 . 713431) (-1300 . 713332) (-1301 . 712372) (-1302 . 712307) - (-1303 . 712004) (-1304 . 711792) (-1305 . 711564) (-1306 . 711492) - (-1307 . 711377) (-1308 . 711325) (-1309 . 710789) (-1310 . 710712) - (-1311 . 710632) (-1312 . 710282) (-1313 . 709763) (-1314 . 709678) - (-1315 . 709557) (-1316 . 709400) (-1317 . 709174) (-1318 . 709069) - (-1319 . 708765) (-1320 . 708403) (-1321 . 708143) (-1322 . 708069) - (-1323 . 707955) (-1324 . 707848) (-1325 . 707600) (-1326 . 707529) - (-1327 . 707452) (-1328 . 707369) (-1329 . 707279) (-1330 . 707172) - (-1331 . 707019) (-1332 . 706589) (-1333 . 706446) (-1334 . 706393) - (-1335 . 706300) (-1336 . 706193) (-1337 . 706140) (-1338 . 706031) - (-1339 . 705948) (-1340 . 705829) (-1341 . 705777) (-1342 . 705687) - (-1343 . 705507) (-1344 . 705422) (-1345 . 705046) (-1346 . 704881) - (-1347 . 704690) (-1348 . 704519) (-1349 . 704079) (-1350 . 703532) - (-1351 . 703386) (-1352 . 703215) (-1353 . 701919) (-1354 . 701494) - (-1355 . 701356) (-1356 . 701270) (-1357 . 701115) (-1358 . 700817) - (-1359 . 700644) (-1360 . 700562) (-1361 . 700419) (-1362 . 699859) - (-1363 . 699680) (-1364 . 699627) (-1365 . 699428) (-1366 . 699372) - (-1367 . 699168) (-1368 . 699025) (-1369 . 698952) (-1370 . 698558) - (-1371 . 698455) (-1372 . 698314) (-1373 . 698246) (-1374 . 697949) - (-1375 . 697555) (-1376 . 697496) (-1377 . 697394) (-1378 . 697325) - (-1379 . 697297) (-1380 . 697178) (-1381 . 696528) (-1382 . 696232) - (-1383 . 696015) (-1384 . 695824) (-1385 . 695669) (-1386 . 695620) - (-1387 . 695499) (-1388 . 695443) (-1389 . 695239) (-1390 . 695021) - (-1391 . 694781) (-1392 . 694635) (-1393 . 694436) (-1394 . 694405) - (-1395 . 694371) (-1396 . 693984) (-1397 . 693904) (-1398 . 693545) - (-1399 . 693418) (-1400 . 693274) (-1401 . 693075) (-1402 . 692837) - (-1403 . 692771) (-1404 . 692601) (-1405 . 692548) (-1406 . 691838) - (-1407 . 691786) (-1408 . 691694) (-1409 . 691600) (-1410 . 691548) - (-1411 . 691463) (-1412 . 691397) (-1413 . 691223) (-1414 . 691153) - (-1415 . 690965) (-1416 . 690751) (-1417 . 690461) (-1418 . 690343) - (-1419 . 690146) (-1420 . 689874) (-1421 . 689821) (-1422 . 689769) - (-1423 . 689717) (-1424 . 689635) (-1425 . 689436) (-1426 . 688911) - (-1427 . 688853) (-1428 . 688710) (-1429 . 688402) (-1430 . 688350) - (-1431 . 688192) (-1432 . 688091) (-1433 . 687781) (-1434 . 687375) - (-1435 . 687203) (-1436 . 687153) (-1437 . 686995) (-1438 . 686121) - (-1439 . 685877) (-1440 . 685814) (-1441 . 685615) (-1442 . 685584) - (-1443 . 685500) (-1444 . 685415) (-12 . 685243) (-1446 . 685097) - (-1447 . 684990) (-1448 . 684783) (-1449 . 684725) (-1450 . 684152) - (-1451 . 684000) (-1452 . 683945) (-1453 . 683800) (-1454 . 683699) - (-1455 . 683460) (-1456 . 683390) (-1457 . 683316) (-1458 . 683209) - (-1459 . 682924) (-1460 . 682820) (-1461 . 682654) (-1462 . 682118) - (-1463 . 681952) (-1464 . 681595) (-1465 . 681542) (-1466 . 681390) - (-1467 . 681324) (-1468 . 681213) (-1469 . 680799) (-1470 . 680681) - (-1471 . 680581) (-1472 . 680472) (-1473 . 680413) (-1474 . 680188) - (-1475 . 680035) (-1476 . 679908) (-1477 . 679834) (-1478 . 679739) - (-1479 . 679598) (-1480 . 679504) (-1481 . 679401) (-1482 . 679330) - (-1483 . 679221) (-1484 . 678911) (-1485 . 678820) (-1486 . 678756) - (-1487 . 678457) (-1488 . 678288) (-1489 . 677038) (-1490 . 676883) - (-1491 . 676704) (-1492 . 676638) (-1493 . 676328) (-1494 . 676225) - (-1495 . 676102) (-1496 . 675893) (-1497 . 675827) (-1498 . 675718) - (-1499 . 675260) (-1500 . 675071) (-1501 . 674647) (-1502 . 674549) - (-1503 . 674440) (-1504 . 673836) (-1505 . 673733) (-1506 . 673603) - (-1507 . 673085) (-1508 . 673002) (-1509 . 672950) (-1510 . 672682) - (-1511 . 672633) (-1512 . 672575) (-1513 . 672417) (-1514 . 672357) - (-1515 . 672204) (-1516 . 672099) (-1517 . 671955) (-1518 . 671757) - (-1519 . 671704) (-1520 . 671501) (-1521 . 671447) (-1522 . 671394) - (-1523 . 671332) (-1524 . 671215) (-1525 . 670899) (-1526 . 670819) - (* . 666296) (-1528 . 666202) (-1529 . 666152) (-1530 . 666066) - (-1531 . 665938) (-1532 . 665843) (-1533 . 665730) (-1534 . 665590) - (-1535 . 665539) (-1536 . 665418) (-1537 . 665338) (-1538 . 665264) - (-1539 . 665023) (-1540 . 664804) (-1541 . 664745) (-1542 . 664696) - (-1543 . 664440) (-1544 . 664388) (-1545 . 664252) (-1546 . 664115) - (-1547 . 663572) (-1548 . 663328) (-1549 . 662968) (-1550 . 662867) - (-1551 . 662711) (-1552 . 662604) (-1553 . 662460) (-1554 . 662312) - (-1555 . 662238) (-1556 . 662210) (-1557 . 661966) (-1558 . 661824) - (-1559 . 661694) (-1560 . 661498) (-1561 . 661340) (-1562 . 661252) - (-1563 . 661097) (-1564 . 660706) (-1565 . 660566) (-1566 . 660449) - (-1567 . 660353) (-1568 . 660192) (-1569 . 660016) (-1570 . 659942) - (-1571 . 659878) (-1572 . 659829) (-1573 . 659772) (-1574 . 659720) - (-1575 . 659618) (-1576 . 659201) (-1577 . 658830) (-1578 . 658487) - (-1579 . 658358) (-1580 . 657955) (-1581 . 657902) (-1582 . 657799) - (-1583 . 657682) (-1584 . 657403) (-1585 . 656887) (-1586 . 656665) - (-1587 . 656497) (-1588 . 656445) (-1589 . 656140) (-1590 . 656080) - (-1591 . 655935) (-1592 . 655456) (-1593 . 655404) (-1594 . 655186) - (-1595 . 655115) (-1596 . 654970) (-1597 . 654841) (-1598 . 654740) - (-1599 . 654492) (-1600 . 654340) (-1601 . 654205) (-1602 . 654096) - (-1603 . 654001) (-1604 . 653973) (-1605 . 653939) (-1606 . 653665) - (-1607 . 653580) (-1608 . 653461) (-1609 . 652646) (-1610 . 652578) - (-1611 . 652392) (-1612 . 652190) (-1613 . 652015) (-1614 . 651907) - (-1615 . 651620) (-1616 . 651431) (-1617 . 651324) (-1618 . 651229) - (-1619 . 651168) (-1620 . 650671) (-1621 . 650619) (-1622 . 650426) - (-1623 . 650199) (-1624 . 650136) (-1625 . 649997) (-1626 . 649944) - (-1627 . 649572) (-1628 . 649329) (-1629 . 649119) (-1630 . 649063) - (-1631 . 648977) (-1632 . 648822) (-1633 . 648726) (-1634 . 648619) - (-1635 . 648479) (-1636 . 648370) (-1637 . 648318) (-1638 . 648136) - (-1639 . 648083) (-1640 . 648010) (-1641 . 647827) (-1642 . 647714) - (-1643 . 647643) (-1644 . 647572) (-1645 . 647474) (-1646 . 647331) - (-1647 . 646906) (-1648 . 646850) (-1649 . 646779) (-1650 . 646727) - (-1651 . 646696) (-1652 . 646611) (-1653 . 646245) (-1654 . 646168) - (-1655 . 645958) (-1656 . 645787) (-1657 . 645627) (-1658 . 645543) - (-1659 . 645511) (-1660 . 645289) (-1661 . 645067) (-1662 . 644887) - (-1663 . 644692) (-1664 . 644553) (-1665 . 644309) (-1666 . 644201) - (-1667 . 644015) (-1668 . 643960) (-1669 . 643737) (-1670 . 643498) - (-1671 . 643444) (-1672 . 642560) (-1673 . 642356) (-1674 . 642174) - (-1675 . 642107) (-1676 . 641862) (-1677 . 641718) (-1678 . 641570) - (-1679 . 641391) (-1680 . 641276) (-1681 . 639991) (-1682 . 639122) - (-1683 . 639066) (-1684 . 638997) (-1685 . 638560) (-1686 . 638473) - (-1687 . 638411) (-1688 . 638240) (-1689 . 638014) (-1690 . 637739) - (-1691 . 637662) (-1692 . 637522) (-1693 . 637400) (-1694 . 637369) - (-1695 . 637311) (-1696 . 637047) (-1697 . 636835) (-1698 . 636476) - (-1699 . 636421) (-1700 . 636268) (-1701 . 636063) (-1702 . 635820) - (-1703 . 635229) (-1704 . 635163) (-1705 . 635030) (-1706 . 634924) - (-1707 . 634853) (-1708 . 634801) (-1709 . 634525) (-1710 . 634472) - (-1711 . 634377) (-1712 . 634290) (-1713 . 633959) (-1714 . 633771) - (-1715 . 633616) (-1716 . 633285) (-1717 . 633141) (-1718 . 633074) - (-1719 . 633016) (-1720 . 632988) (-1721 . 632820) (-1722 . 632754) - (-1723 . 632598) (-1724 . 632247) (-1725 . 632089) (-1726 . 631985) - (-1727 . 631887) (-1728 . 631748) (-1729 . 631614) (-1730 . 631362) - (-1731 . 631279) (-1732 . 631230) (-1733 . 631114) (-1734 . 631061) - (-1735 . 630919) (-1736 . 630818) (-1737 . 630627) (-1738 . 630598) - (-1739 . 630501) (-1740 . 630180) (-1741 . 629664) (-1742 . 629598) - (-1743 . 629499) (-1744 . 628858) (-1745 . 628775) (-1746 . 628716) - (-1747 . 628664) (-1748 . 628504) (-1749 . 627658) (-1750 . 627025) - (-1751 . 626921) (-1752 . 626855) (-1753 . 626540) (-1754 . 626437) - (-1755 . 626254) (-1756 . 625927) (-1757 . 625783) (-1758 . 625432) - (-1759 . 625289) (-1760 . 621678) (-1761 . 621573) (-1762 . 621503) - (-1763 . 621378) (-1764 . 621211) (-1765 . 621107) (-1766 . 620807) - (-1767 . 620428) (-1768 . 620015) (-1769 . 619879) (-1770 . 619802) - (-1771 . 619740) (-1772 . 619631) (-1773 . 619546) (-1774 . 619398) - (-1775 . 619184) (-1776 . 619110) (-1777 . 618896) (-1778 . 618790) - (-1779 . 618696) (-1780 . 618635) (-1781 . 618037) (-1782 . 617870) - (-1783 . 617771) (-1784 . 617662) (-1785 . 612465) (-1786 . 612347) - (-1787 . 612154) (-1788 . 605200) (-1789 . 605066) (-1790 . 604585) - (-1791 . 604505) (-1792 . 604059) (-1793 . 603905) (-1794 . 603801) - (-1795 . 603748) (-1796 . 603670) (-1797 . 603525) (-1798 . 602323) - (-1799 . 601684) (-1800 . 601233) (-1801 . 601098) (-1802 . 601004) - (-1803 . 600882) (-1804 . 600749) (-1805 . 600605) (-1806 . 599440) - (-1807 . 599385) (-1808 . 599319) (-1809 . 599268) (-1810 . 599216) - (-1811 . 599163) (-1812 . 599037) (-1813 . 598977) (-1814 . 598813) - (-1815 . 598682) (-1816 . 598190) (-1817 . 598032) (-1818 . 597671) - (-1819 . 597366) (-1820 . 597338) (-1821 . 597235) (-1822 . 597132) - (-1823 . 597066) (-1824 . 596475) (-1825 . 596406) (-1826 . 595653) - (-1827 . 595488) (-1828 . 595264) (-1829 . 595157) (-1830 . 594992) - (-1831 . 594880) (-1832 . 594786) (-1833 . 594612) (-1834 . 594519) - (-1835 . 594322) (-1836 . 594271) (-1837 . 593930) (-1838 . 593750) - (-1839 . 593683) (-1840 . 592984) (-1841 . 592714) (-1842 . 592610) - (-1843 . 592512) (-1844 . 592390) (-1845 . 592356) (-1846 . 591161) - (-1847 . 590993) (-1848 . 590919) (-1849 . 590586) (-1850 . 590000) - (-1851 . 589949) (-1852 . 589825) (-1853 . 589148) (-1854 . 589082) - (-1855 . 588809) (-1856 . 588757) (-1857 . 588364) (-1858 . 588073) - (-1859 . 587963) (-1860 . 587839) (-1861 . 587230) (-1862 . 587061) - (-1863 . 586406) (-1864 . 585876) (-1865 . 585805) (-1866 . 585732) - (-1867 . 585342) (-1868 . 585276) (-1869 . 585223) (-1870 . 585114) - (-1871 . 575584) (-1872 . 575133) (-1873 . 575035) (-1874 . 574563) - (-1875 . 574489) (-1876 . 574352) (-1877 . 574279) (-1878 . 574035) - (-1879 . 573834) (-1880 . 573569) (-1881 . 573516) (-1882 . 573402) - (-1883 . 573086) (-1884 . 572934) (-1885 . 572854) (-1886 . 572771) - (-1887 . 572655) (-1888 . 572603) (-1889 . 572276) (-1890 . 572076) - (-1891 . 571980) (-1892 . 571630) (-1893 . 571523) (-1894 . 571341) - (-1895 . 571282) (-1896 . 571211) (-1897 . 571083) (-1898 . 570962) - (-1899 . 569183) (-1900 . 569112) (-1901 . 568897) (-1902 . 568796) - (-1903 . 568330) (-1904 . 568184) (-1905 . 568088) (-1906 . 567980) - (-1907 . 567629) (-1908 . 567406) (-1909 . 567213) (-1910 . 567142) - (-1911 . 566924) (-1912 . 566515) (-1913 . 566337) (-1914 . 566257) - (-1915 . 566200) (-1916 . 566102) (-1917 . 565995) (-1918 . 565942) - (-1919 . 565872) (-1920 . 565789) (-1921 . 565657) (-1922 . 565155) - (-1923 . 565078) (-1924 . 564998) (-1925 . 564847) (-1926 . 564685) - (-1927 . 564576) (-1928 . 564243) (-1929 . 564166) (-1930 . 563859) - (-1931 . 563777) (-1932 . 563349) (-1933 . 563266) (-1934 . 563145) - (-1935 . 562891) (-1936 . 562839) (-1937 . 562768) (-1938 . 562655) - (-1939 . 562375) (-1940 . 562253) (-1941 . 562147) (-1942 . 558085) - (-1943 . 557992) (-1944 . 557865) (-1945 . 557684) (-1946 . 557599) - (-1947 . 557504) (-1948 . 557430) (-1949 . 557287) (-1950 . 557028) - (-1951 . 556940) (-1952 . 556709) (-1953 . 556575) (-1954 . 556442) - (-1955 . 556195) (-1956 . 555749) (-1957 . 555604) (-1958 . 555547) - (-1959 . 555466) (-1960 . 555340) (-1961 . 555241) (-1962 . 555098) - (-1963 . 555041) (-1964 . 554883) (-1965 . 554814) (-1966 . 554690) - (-1967 . 554574) (-1968 . 554500) (-1969 . 554444) (-1970 . 554335) - (-1971 . 554191) (-1972 . 554142) (-1973 . 554070) (-1974 . 553985) - (-1975 . 553808) (-1976 . 553287) (-1977 . 553160) (-1978 . 553087) - (-1979 . 552944) (-1980 . 552845) (-1981 . 552765) (-1982 . 552545) - (-1983 . 552388) (-1984 . 552331) (-1985 . 549986) (-1986 . 549875) - (-1987 . 549752) (-1988 . 549249) (-1989 . 549148) (-1990 . 549062) - (-1991 . 548977) (-1992 . 548840) (-1993 . 548725) (-1994 . 548630) - (-1995 . 548562) (-1996 . 548488) (-1997 . 548328) (-1998 . 548166) - (-1999 . 548072) (-2000 . 548004) (-2001 . 547834) (-2002 . 547768) - (-2003 . 547291) (-2004 . 547063) (-2005 . 546708) (-2006 . 546609) - (-2007 . 546529) (-2008 . 546477) (-2009 . 545952) (-2010 . 544612) - (-2011 . 544469) (-2012 . 542368) (-2013 . 542177) (-2014 . 541926) - (-2015 . 541852) (-2016 . 541712) (-2017 . 541607) (-2018 . 541498) - (-2019 . 541444) (-2020 . 541360) (-2021 . 541233) (-2022 . 541162) - (-2023 . 541075) (-2024 . 540885) (-2025 . 540786) (-2026 . 540620) - (-2027 . 540409) (-2028 . 540283) (-2029 . 540070) (-2030 . 539987) - (-2031 . 539922) (-2032 . 539322) (-2033 . 539288) (-2034 . 539232) - (-2035 . 538939) (-2036 . 538887) (-2037 . 538749) (-2038 . 538619) - (-2039 . 538536) (-2040 . 537433) (-2041 . 537326) (-2042 . 537050) - (-2043 . 536954) (-2044 . 536857) (-2045 . 536770) (-2046 . 535970) - (-2047 . 535865) (-2048 . 535788) (-2049 . 535705) (-2050 . 535611) - (-2051 . 535548) (-2052 . 535367) (-2053 . 535245) (-2054 . 534664) - (-2055 . 534561) (-2056 . 532831) (-2057 . 532759) (-2058 . 532525) - (-2059 . 532402) (-2060 . 532278) (-2061 . 532158) (-2062 . 531901) - (-2063 . 531807) (-2064 . 531688) (-2065 . 531633) (-2066 . 531466) - (-2067 . 531413) (-2068 . 531253) (-2069 . 531148) (-2070 . 531093) - (-2071 . 531023) (-2072 . 530817) (-2073 . 530732) (-2074 . 530641) - (-2075 . 530424) (-2076 . 529187) (-2077 . 528582) (-2078 . 528495) - (-2079 . 528199) (-2080 . 528012) (-2081 . 527769) (-2082 . 527578) - (-2083 . 527505) (-2084 . 527423) (-2085 . 525999) (-2086 . 525753) - (-2087 . 525680) (-2088 . 525538) (-2089 . 525465) (-2090 . 525367) - (-2091 . 525197) (-2092 . 525144) (-2093 . 525110) (-2094 . 524759) - (-2095 . 524707) (-2096 . 524221) (-2097 . 524162) (-2098 . 523820) - (-2099 . 523719) (-2100 . 523284) (-2101 . 523154) (-2102 . 523017) - (-2103 . 522854) (-2104 . 522801) (-2105 . 522690) (-2106 . 522032) - (-2107 . 521717) (-2108 . 521549) (-2109 . 520448) (-2110 . 520344) - (-2111 . 520184) (-2112 . 520125) (-2113 . 520054) (-2114 . 519877) - (-2115 . 519822) (-2116 . 519578) (-2117 . 519526) (-2118 . 519308) - (-2119 . 519094) (-2120 . 519066) (-2121 . 519000) (-2122 . 518895) - (-2123 . 518821) (-2124 . 518674) (-2125 . 518255) (-2126 . 518111) - (-2127 . 518014) (-2128 . 517970) (-2129 . 517883) (-2130 . 517795) - (-2131 . 517463) (-2132 . 517389) (-2133 . 517320) (-2134 . 517267) - (-2135 . 517133) (-2136 . 517049) (-2137 . 516906) (-2138 . 516717) - (-2139 . 516409) (-2140 . 515404) (-2141 . 515332) (-2142 . 515262) - (-2143 . 515019) (-2144 . 514875) (-2145 . 513811) (-2146 . 513519) - (-2147 . 512556) (-2148 . 512288) (-2149 . 512165) (-2150 . 512113) - (-2151 . 512041) (-2152 . 511897) (-2153 . 511730) (-2154 . 511658) - (-2155 . 511357) (-2156 . 511270) (-2157 . 511111) (-2158 . 511056) - (-2159 . 510927) (-2160 . 510872) (-2161 . 510627) (-2162 . 510523) - (-2163 . 510452) (-2164 . 510285) (-2165 . 510193) (-2166 . 510113) - (-2167 . 509797) (-2168 . 509459) (-2169 . 509306) (-2170 . 509229) - (-2171 . 509127) (-2172 . 509011) (-2173 . 508940) (-2174 . 508709) - (-2175 . 508604) (-2176 . 508501) (-2177 . 508014) (-2178 . 507962) - (-2179 . 507879) (-2180 . 507776) (-2181 . 507691) (-2182 . 507416) - (-2183 . 507242) (-2184 . 507155) (-2185 . 507095) (-2186 . 507043) - (-2187 . 506899) (-2188 . 506668) (-2189 . 506597) (-2190 . 505863) - (-2191 . 505583) (-2192 . 505496) (-2193 . 505441) (-2194 . 505335) - (-2195 . 505176) (-2196 . 505046) (-2197 . 504463) (-2198 . 503722) - (-2199 . 503615) (-2200 . 503185) (-2201 . 502786) (-2202 . 502699) - (-2203 . 502668) (-2204 . 502529) (-2205 . 502446) (-2206 . 502323) - (-2207 . 502236) (-2208 . 502017) (-2209 . 501789) (-2210 . 501048) - (-2211 . 500904) (-2212 . 500725) (-2213 . 500444) (-2214 . 500377) - (-2215 . 500325) (-2216 . 500115) (-2217 . 499969) (-2218 . 499281) - (-2219 . 499111) (-2220 . 498853) (-2221 . 498754) (-2222 . 498671) - (-2223 . 498594) (-2224 . 498412) (-2225 . 498303) (-2226 . 497712) - (-2227 . 497493) (-2228 . 497274) (-2229 . 496698) (-2230 . 496591) - (-2231 . 496372) (-2232 . 496273) (-2233 . 496191) (-2234 . 496070) - (-2235 . 495967) (-2236 . 495852) (-2237 . 494668) (-2238 . 494561) - (-2239 . 494403) (-2240 . 494273) (-2241 . 493697) (-2242 . 493669) - (-2243 . 493598) (-2244 . 493497) (-2245 . 493306) (-2246 . 492990) - (-2247 . 492904) (-2248 . 492804) (-2249 . 492574) (-2250 . 491396) - (-2251 . 491323) (-2252 . 491168) (-2253 . 490592) (-2254 . 490476) - (-2255 . 490025) (-2256 . 489775) (-2257 . 489661) (-2258 . 489595) - (-2259 . 489436) (-2260 . 489384) (-2261 . 489190) (-2262 . 488848) - (-2263 . 486650) (-2264 . 486479) (-2265 . 463324) (-2266 . 462638) - (-2267 . 462540) (-2268 . 462455) (-2269 . 462294) (-2270 . 462220) - (-2271 . 461600) (-2272 . 461503) (-2273 . 461303) (-2274 . 458551) - (-2275 . 458435) (-2276 . 458251) (-2277 . 457004) (-2278 . 456885) - (-2279 . 456199) (-2280 . 455817) (-2281 . 455503) (-2282 . 455418) - (-2283 . 454819) (-2284 . 453963) (-2285 . 453576) (-2286 . 452822) - (-2287 . 452603) (-2288 . 452551) (-2289 . 452406) (-2290 . 452228) - (-2291 . 451997) (-2292 . 451248) (-2293 . 450995) (-2294 . 450871) - (-2295 . 450771) (-2296 . 450491) (-2297 . 450388) (-2298 . 450230) - (-2299 . 450065) (-2300 . 449963) (-2301 . 449796) (-2302 . 449144) - (-2303 . 449002) (-2304 . 448950) (-2305 . 448376) (-2306 . 448269) - (-2307 . 448196) (-2308 . 447779) (-2309 . 447457) (-2310 . 447386) - (-2311 . 447196) (-2312 . 447143) (-2313 . 447002) (-2314 . 446910) - (-2315 . 446836) (-2316 . 446708) (-2317 . 446570) (-2318 . 445996) - (-2319 . 445879) (-2320 . 445799) (-2321 . 445647) (-2322 . 445299) - (-2323 . 445085) (-2324 . 445030) (-2325 . 444740) (-2326 . 444712) - (-2327 . 444617) (-2328 . 444583) (-2329 . 444527) (-2330 . 444456) - (-2331 . 443882) (-2332 . 443721) (-2333 . 443640) (-2334 . 443578) - (-2335 . 443376) (-2336 . 443145) (-2337 . 443093) (-2338 . 443040) - (-2339 . 442877) (-2340 . 442811) (-2341 . 442702) (-2342 . 442660) - (-2343 . 441973) (-2344 . 441810) (-2345 . 441726) (-2346 . 441617) - (-2347 . 441131) (-2348 . 441029) (-2349 . 440873) (-2350 . 440758) - (-2351 . 440703) (-2352 . 440575) (-2353 . 440491) (-2354 . 440423) - (-2355 . 440301) (-2356 . 439614) (-2357 . 439540) (-2358 . 439374) - (-2359 . 439212) (-2360 . 438965) (-2361 . 438862) (-2362 . 438564) - (-2363 . 438511) (-2364 . 438427) (-2365 . 438099) (-2366 . 438033) - (-2367 . 437346) (-2368 . 437207) (-2369 . 437105) (-2370 . 436812) - (-2371 . 436605) (-2372 . 436487) (-2373 . 434659) (-2374 . 434557) - (-2375 . 434349) (-2376 . 434237) (-2377 . 434200) (-2378 . 434090) - (-2379 . 433515) (-2380 . 433380) (-2381 . 433261) (-2382 . 433011) - (-2383 . 432958) (-2384 . 432906) (-2385 . 431405) (-2386 . 431217) - (-2387 . 431052) (-2388 . 430969) (-2389 . 430902) (-2390 . 430809) - (-2391 . 430234) (-2392 . 430197) (-2393 . 430104) (-2394 . 429860) - (-2395 . 429559) (-2396 . 429503) (-2397 . 427963) (-2398 . 427840) - (-2399 . 427733) (-2400 . 427350) (-2401 . 427145) (-2402 . 427062) - (-2403 . 426487) (-2404 . 426289) (-2405 . 426129) (-2406 . 426038) - (-2407 . 425971) (-2408 . 425884) (-2409 . 425814) (-2410 . 425752) - (-2411 . 425637) (-2412 . 425567) (-2413 . 425533) (-2414 . 425481) - (-2415 . 425363) (-2416 . 424789) (-2417 . 424738) (-2418 . 424617) - (-2419 . 424534) (-2420 . 424405) (-2421 . 423880) (-2422 . 423144) - (-2423 . 422806) (-2424 . 422476) (-2425 . 422389) (-2426 . 422261) - (-2427 . 422169) (-2428 . 421498) (-2429 . 420924) (-2430 . 420475) - (-2431 . 420380) (-2432 . 420296) (-2433 . 420226) (-2434 . 420116) - (-2435 . 419955) (-2436 . 419813) (-2437 . 419650) (-2438 . 419538) - (-2439 . 419510) (-2440 . 419380) (-2441 . 419113) (-2442 . 418539) - (-2443 . 418438) (-2444 . 418309) (-2445 . 418136) (-2446 . 418084) - (-2447 . 418016) (-2448 . 417890) (-2449 . 417783) (-2450 . 417504) - (-2451 . 417406) (-2452 . 417303) (-2453 . 417127) (-2454 . 415727) - (-2455 . 415650) (-2456 . 415076) (-2457 . 414953) (-2458 . 414901) - (-2459 . 414764) (-2460 . 414657) (-2461 . 414429) (-2462 . 413791) - (-2463 . 413658) (-2464 . 413624) (-2465 . 413284) (-2466 . 413210) - (-2467 . 413105) (-2468 . 412531) (-2469 . 412475) (-2470 . 412390) - (-2471 . 412318) (-2472 . 412259) (-2473 . 411768) (-2474 . 411656) - (-2475 . 410495) (-2476 . 408365) (-2477 . 408158) (-2478 . 408052) - (-2479 . 407943) (-2480 . 407617) (-2481 . 407419) (-2482 . 407339) - (-2483 . 406969) (-2484 . 406857) (-2485 . 406283) (-2486 . 406234) - (-2487 . 406089) (-2488 . 405975) (-2489 . 405421) (-2490 . 405337) - (-2491 . 405213) (-2492 . 405082) (-2493 . 404903) (-2494 . 404750) - (-2495 . 404678) (-2496 . 404212) (-2497 . 403939) (-2498 . 403911) - (-2499 . 403544) (-2500 . 402420) (-2501 . 402358) (-2502 . 402288) - (-2503 . 402191) (-2504 . 402125) (-2505 . 401997) (-2506 . 401917) - (-2507 . 401508) (-2508 . 401302) (-2509 . 401029) (-2510 . 400977) - (-2511 . 400859) (-2512 . 400831) (-2513 . 400645) (-2514 . 400538) - (-2515 . 400419) (-2516 . 399018) (-2517 . 398734) (-2518 . 398661) - (-2519 . 398516) (-2520 . 398248) (-2521 . 398153) (-2522 . 397088) - (-2523 . 391764) (-2524 . 391690) (-2525 . 391616) (-2526 . 391299) - (-2527 . 391055) (-2528 . 390977) (-2529 . 390779) (-2530 . 390727) - (-2531 . 390618) (-2532 . 390414) (-2533 . 390281) (-2534 . 389892) - (-2535 . 389134) (-2536 . 389028) (-2537 . 388903) (-2538 . 388782) - (-2539 . 388543) (-2540 . 388380) (-2541 . 388278) (-2542 . 388108) - (-2543 . 387983) (-2544 . 387930) (-2545 . 387718) (-2546 . 387605) - (-2547 . 387531) (-2548 . 387445) (-2549 . 387360) (-2550 . 386659) - (-2551 . 386531) (-2552 . 381023) (-2553 . 380844) (-2554 . 380790) - (-2555 . 380605) (-2556 . 380547) (-2557 . 380433) (-2558 . 380286) - (-2559 . 380200) (-2560 . 380006) (-2561 . 379923) (-2562 . 379817) - (-2563 . 379429) (-2564 . 379366) (-2565 . 379314) (-2566 . 379240) - (-2567 . 379035) (-2568 . 378942) (-2569 . 378891) (-2570 . 378223) - (-2571 . 378112) (-2572 . 378056) (-2573 . 377942) (-2574 . 377855) - (-2575 . 377645) (-2576 . 377573) (-2577 . 377120) (-2578 . 376962) - (-2579 . 376761) (-2580 . 376659) (-2581 . 376065) (-2582 . 375979) - (-2583 . 374823) (-2584 . 374771) (-2585 . 374663) (-2586 . 374540) - (-2587 . 374485) (-2588 . 374018) (-2589 . 373698) (-2590 . 373351) - (-2591 . 373268) (-2592 . 373153) (-2593 . 373080) (-2594 . 373000) - (-2595 . 372929) (-2596 . 372711) (-2597 . 372638) (-2598 . 372565) - (-2599 . 372256) (-2600 . 372148) (-2601 . 372049) (-2602 . 371969) - (-2603 . 371870) (-2604 . 371802) (-2605 . 371716) (-2606 . 371078) - (-2607 . 370705) (-2608 . 370576) (-2609 . 370491) (-2610 . 370282) - (-2611 . 370167) (-2612 . 370094) (-2613 . 369790) (-2614 . 369543) - (-2615 . 369385) (-2616 . 369097) (-2617 . 368972) (-2618 . 368892) - (-2619 . 368840) (-2620 . 368710) (-2621 . 368567) (-2622 . 368496) - (-2623 . 368444) (-2624 . 368371) (-2625 . 368082) (-2626 . 367789) - (-2627 . 367455) (-2628 . 367399) (-2629 . 367332) (-2630 . 367249) - (-2631 . 367118) (-2632 . 366961) (-2633 . 366909) (-2634 . 366584) - (-2635 . 366331) (-2636 . 366252) (-2637 . 365941) (-2638 . 365858) - (-2639 . 365787) (-2640 . 365680) (-2641 . 365568) (-2642 . 365367) - (-2643 . 365294) (-2644 . 365144) (-2645 . 365076) (-2646 . 364966) - (-2647 . 364848) (-2648 . 364519) (-2649 . 364461) (-2650 . 364297) - (-2651 . 363887) (-2652 . 363592) (-2653 . 363497) (-2654 . 363420) - (-2655 . 363351) (-2656 . 363256) (-2657 . 361946) (-2658 . 361874) - (-2659 . 361756) (-2660 . 360892) (-2661 . 360313) (-2662 . 360199) - (-2663 . 360087) (-2664 . 360028) (-2665 . 359907) (-2666 . 359777) - (-2667 . 359401) (-2668 . 359373) (-2669 . 357754) (-2670 . 356756) - (-2671 . 356696) (-2672 . 356532) (-2673 . 356445) (-2674 . 356242) - (-2675 . 356083) (-2676 . 356024) (-2677 . 355901) (-2678 . 355301) - (-2679 . 355235) (-2680 . 355008) (-2681 . 354786) (-2682 . 353925) - (-2683 . 353829) (-2684 . 353748) (-2685 . 353402) (-2686 . 353288) - (-2687 . 353228) (-2688 . 353023) (-2689 . 352847) (-2690 . 352748) - (-2691 . 352649) (-2692 . 352540) (-2693 . 352308) (-2694 . 351674) - (-2695 . 350306) (-2696 . 350229) (-2697 . 350056) (-2698 . 349925) - (-2699 . 349854) (-2700 . 349759) (-2701 . 349388) (-2702 . 349243) - (-2703 . 349074) (-2704 . 348867) (-2705 . 348741) (-2706 . 348599) - (-2707 . 348413) (-2708 . 347910) (-2709 . 347599) (-2710 . 347325) - (-2711 . 347091) (-2712 . 346992) (-2713 . 346888) (-2714 . 346798) - (-2715 . 346745) (-2716 . 346588) (-2717 . 345845) (-2718 . 345732) - (-2719 . 345488) (-2720 . 344609) (-2721 . 344157) (-2722 . 344053) - (-2723 . 343897) (-2724 . 343762) (-2725 . 343681) (-2726 . 343584) - (-2727 . 342873) (-2728 . 342692) (-2729 . 342551) (-2730 . 342249) - (-2731 . 342220) (-2732 . 342112) (-2733 . 341868) (-2734 . 341794) - (-2735 . 341693) (-2736 . 341593) (-2737 . 341470) (-2738 . 340694) - (-2739 . 340477) (-2740 . 340446) (-2741 . 340283) (-2742 . 340190) - (-2743 . 340135) (-2744 . 340026) (-2745 . 339933) (-2746 . 339856) - (-2747 . 339464) (-2748 . 338919) (-2749 . 338824) (-2750 . 338695) - (-2751 . 338618) (-2752 . 338160) (-2753 . 337586) (-2754 . 337446) - (-2755 . 337325) (-2756 . 337216) (-2757 . 337126) (-2758 . 336996) - (-2759 . 336901) (-2760 . 336846) (-2761 . 336634) (-2762 . 336562) - (-2763 . 336458) (-2764 . 336405) (-2765 . 336333) (-2766 . 336085) - (-2767 . 335488) (-2768 . 335264) (-2769 . 335236) (-2770 . 335159) - (-2771 . 335076) (-2772 . 334882) (-2773 . 334702) (-2774 . 334594) - (-2775 . 334523) (-2776 . 334304) (-2777 . 334102) (-2778 . 332656) - (-2779 . 332480) (-2780 . 332322) (-2781 . 332198) (-2782 . 332138) - (-2783 . 332059) (-2784 . 331950) (-2785 . 331717) (-2786 . 331644) - (-2787 . 331544) (-2788 . 331438) (-2789 . 331351) (-2790 . 331193) - (-2791 . 331051) (-2792 . 328799) (-2793 . 328662) (-2794 . 328469) - (-2795 . 328361) (-2796 . 328173) (-2797 . 328036) (-2798 . 326826) - (-2799 . 326708) (-2800 . 325893) (-2801 . 325856) (-2802 . 325632) - (-2803 . 325237) (-2804 . 325013) (-2805 . 324794) (-2806 . 324517) - (-2807 . 324095) (-2808 . 324039) (-2809 . 323787) (-2810 . 323677) - (-2811 . 323576) (-2812 . 323492) (-2813 . 323253) (-2814 . 323146) - (-2815 . 323114) (-2816 . 323035) (-2817 . 322976) (-2818 . 322894) - (-2819 . 322736) (-2820 . 322599) (-2821 . 322489) (-2822 . 322078) - (-2823 . 321966) (-2824 . 321833) (-2825 . 321535) (-2826 . 321455) - (-2827 . 321375) (-2828 . 321229) (-2829 . 321062) (-2830 . 320989) - (-2831 . 320888) (-2832 . 320786) (-2833 . 320651) (-2834 . 320458) - (-2835 . 320371) (-2836 . 319764) (-2837 . 319637) (-2838 . 319557) - (-2839 . 319507) (-2840 . 319005) (-2841 . 318935) (-2842 . 318812) - (-2843 . 318759) (-2844 . 318689) (-2845 . 318582) (-2846 . 318326) - (-2847 . 318125) (-2848 . 317935) (-2849 . 317858) (-2850 . 317752) - (-2851 . 317675) (-2852 . 317562) (-2853 . 317378) (-2854 . 317019) - (-2855 . 315058) (-2856 . 314774) (-2857 . 314561) (-2858 . 314438) - (-2859 . 314301) (-2860 . 314227) (-2861 . 313963) (-2862 . 313838) - (-2863 . 313769) (-2864 . 313590) (-2865 . 313321) (-2866 . 313272) - (-2867 . 312897) (-2868 . 312826) (-2869 . 311953) (-2870 . 311851) - (-2871 . 311768) (-2872 . 311436) (-2873 . 311323) (-2874 . 311266) - (-2875 . 310815) (-2876 . 310760) (-2877 . 310655) (-2878 . 310473) - (-2879 . 310282) (-2880 . 310185) (-2881 . 309642) (-2882 . 307880) - (-2883 . 307764) (-2884 . 307340) (-2885 . 307158) (-2886 . 307075) - (-2887 . 306988) (-2888 . 306841) (-2889 . 306630) (-2890 . 306315) - (-2891 . 306245) (-2892 . 306141) (-2893 . 305991) (-2894 . 305774) - (-2895 . 305745) (-2896 . 305607) (-2897 . 305224) (-2898 . 305172) - (-2899 . 305069) (-2900 . 304928) (-2901 . 304838) (-2902 . 304783) - (-2903 . 304659) (-2904 . 304603) (-2905 . 304551) (-2906 . 304500) - (-2907 . 304385) (-2908 . 304280) (-2909 . 304227) (-2910 . 304132) - (-2911 . 304018) (-2912 . 303854) (-2913 . 303732) (-2914 . 303662) - (-2915 . 303504) (-2916 . 303341) (-2917 . 303262) (-2918 . 303113) - (-2919 . 302975) (-2920 . 302922) (-2921 . 302870) (-2922 . 302502) - (-2923 . 302115) (-2924 . 301985) (-2925 . 301752) (-2926 . 301699) - (-2927 . 301648) (-2928 . 301423) (-2929 . 301285) (-2930 . 301144) - (-2931 . 300590) (-2932 . 300306) (-2933 . 300141) (-2934 . 299387) - (-2935 . 299135) (-2936 . 298978) (-2937 . 298728) (-2938 . 298651) - (-2939 . 298105) (-2940 . 297657) (-2941 . 297540) (-2942 . 297324) - (-2943 . 297225) (-2944 . 297156) (-2945 . 297047) (-2946 . 296311) - (-2947 . 296049) (-2948 . 295964) (-2949 . 295897) (-2950 . 295754) - (-2951 . 295677) (-2952 . 295606) (-2953 . 295557) (-2954 . 295484) - (-2955 . 295410) (-2956 . 294140) (-2957 . 294003) (-2958 . 293933) - (-2959 . 293740) (-2960 . 293474) (-2961 . 293418) (-2962 . 293233) - (-2963 . 293095) (-2964 . 293036) (-2965 . 292959) (-2966 . 292299) - (-2967 . 292162) (-2968 . 292106) (-2969 . 291980) (-2970 . 291420) - (-2971 . 291249) (-2972 . 291022) (-2973 . 290787) (-2974 . 290256) - (-2975 . 290116) (-2976 . 289971) (-2977 . 289884) (-2978 . 289828) - (-2979 . 289440) (-2980 . 289359) (-2981 . 288595) (-2982 . 288539) - (-2983 . 288379) (-2984 . 288298) (-2985 . 288050) (-2986 . 287999) - (-2987 . 287650) (-2988 . 287569) (-2989 . 287540) (-2990 . 287422) - (-2991 . 287230) (-2992 . 287097) (-2993 . 286838) (-2994 . 286398) - (-2995 . 286196) (-2996 . 286111) (-2997 . 285988) (-2998 . 285960) - (-2999 . 285932) (-3000 . 285838) (-3001 . 284954) (-3002 . 284656) - (-3003 . 284561) (-3004 . 283913) (-3005 . 283455) (-3006 . 282453) - (-3007 . 282023) (-3008 . 281952) (-3009 . 281896) (-3010 . 281203) - (-3011 . 280990) (-3012 . 280685) (-3013 . 280648) (-3014 . 280502) - (-3015 . 280428) (-3016 . 280349) (-3017 . 280054) (-3018 . 280002) - (-3019 . 279703) (-3020 . 279589) (-3021 . 279482) (-3022 . 278937) - (-3023 . 278859) (-3024 . 278805) (-3025 . 278753) (-3026 . 278411) - (-3027 . 278288) (-3028 . 278219) (-3029 . 278104) (-3030 . 277825) - (-3031 . 277582) (-3032 . 277441) (-3033 . 277287) (-3034 . 277164) - (-3035 . 276993) (-3036 . 276835) (-3037 . 276762) (-3038 . 276694) - (-3039 . 276569) (-3040 . 276496) (-3041 . 276414) (-3042 . 276224) - (-3043 . 276084) (-3044 . 275858) (-3045 . 275803) (-3046 . 275190) - (-3047 . 275112) (-3048 . 274858) (-3049 . 274723) (-3050 . 274476) - (-3051 . 274442) (-3052 . 274386) (-3053 . 274278) (-3054 . 274106) - (-3055 . 273999) (-3056 . 273940) (-3057 . 273791) (-3058 . 273208) - (-3059 . 273110) (-3060 . 273039) (-3061 . 272675) (-3062 . 272248) - (-3063 . 272153) (-3064 . 272093) (-3065 . 271905) (-3066 . 271769) - (-3067 . 271702) (-3068 . 271607) (-3069 . 271435) (-3070 . 271291) - (-3071 . 271148) (-3072 . 270950) (-3073 . 270695) (-3074 . 270633) - (-3075 . 270282) (-3076 . 270248) (-3077 . 270178) (-3078 . 270071) - (-3079 . 270043) (-3080 . 269756) (-3081 . 269635) (-3082 . 269537) - (-3083 . 269375) (-3084 . 268994) (-3085 . 268822) (-3086 . 268723) - (-3087 . 268543) (-3088 . 268464) (-3089 . 268392) (-3090 . 268067) - (-3091 . 267935) (-3092 . 267832) (-3093 . 267753) (-3094 . 267641) - (-3095 . 267589) (-3096 . 267477) (-3097 . 267427) (-3098 . 267222) - (-3099 . 267112) (-3100 . 266940) (-3101 . 266853) (-3102 . 266611) - (-3103 . 266324) (-3104 . 266290) (-3105 . 266222) (-3106 . 265202) - (-3107 . 265171) (-3108 . 264829) (-3109 . 264583) (-3110 . 264490) - (-3111 . 264357) (-3112 . 264273) (-3113 . 264209) (-3114 . 264112) - (-3115 . 263730) (-3116 . 263645) (-3117 . 263611) (-3118 . 262861) - (-3119 . 262625) (-3120 . 262487) (-3121 . 262392) (-3122 . 262251) - (-3123 . 262012) (-3124 . 261940) (-3125 . 261855) (-3126 . 261563) - (-3127 . 261315) (-3128 . 261144) (-3129 . 261059) (-3130 . 260941) - (-3131 . 260691) (-3132 . 260589) (-3133 . 260504) (-3134 . 260246) - (-3135 . 260110) (-3136 . 259839) (-3137 . 259715) (-3138 . 259595) - (-3139 . 259438) (-3140 . 259348) (-3141 . 259263) (-3142 . 259207) - (-3143 . 259100) (-3144 . 258763) (-3145 . 258606) (-3146 . 258405) - (-3147 . 258293) (-3148 . 258179) (-3149 . 257909) (-3150 . 257812) - (-3151 . 257760) (-3152 . 257658) (-3153 . 257585) (-3154 . 253057) - (-3155 . 252854) (-3156 . 252738) (-3157 . 252401) (-3158 . 252303) - (-3159 . 252254) (-3160 . 251734) (-3161 . 251650) (-3162 . 251499) - (-3163 . 249957) (-3164 . 249767) (-3165 . 249739) (-3166 . 249598) - (-3167 . 248694) (-3168 . 248523) (-3169 . 248471) (-3170 . 248398) - (-3171 . 248192) (-3172 . 248076) (-3173 . 247969) (-3174 . 247830) - (-3175 . 247730) (-3176 . 247029) (-3177 . 246894) (-3178 . 246737) - (-3179 . 245773) (-3180 . 245587) (-3181 . 245480) (-3182 . 245274) - (-3183 . 245222) (-3184 . 244943) (-3185 . 244826) (-3186 . 244427) - (-3187 . 244308) (-3188 . 242733) (-3189 . 242566) (-3190 . 242435) - (-3191 . 242337) (-3192 . 242090) (-3193 . 242011) (-3194 . 241961) - (-3195 . 241447) (-3196 . 241387) (-3197 . 241284) (-3198 . 240972) - (-3199 . 240317) (-3200 . 240157) (-3201 . 239978) (-3202 . 239787) - (-3203 . 238606) (-3204 . 238489) (-3205 . 238395) (-3206 . 237844) - (-3207 . 237621) (-3208 . 237379) (-3209 . 237311) (-3210 . 236920) - (-3211 . 236535) (-3212 . 236426) (-3213 . 236273) (-3214 . 236208) - (-3215 . 236056) (-3216 . 235926) (-3217 . 235842) (-3218 . 235735) - (-3219 . 235673) (-3220 . 235620) (-3221 . 235502) (-3222 . 235355) - (-3223 . 234917) (-3224 . 234833) (-3225 . 234519) (-3226 . 234401) - (-3227 . 234370) (-3228 . 234189) (-3229 . 234136) (-3230 . 234024) - (-3231 . 233954) (-3232 . 233889) (-3233 . 233852) (-3234 . 233768) - (-3235 . 233568) (-3236 . 233410) (-3237 . 233254) (-3238 . 233127) - (-3239 . 233030) (-3240 . 232584) (-3241 . 232397) (-3242 . 232224) - (-3243 . 232047) (-3244 . 231711) (-3245 . 231290) (-3246 . 231198) - (-3247 . 230770) (-3248 . 230440) (-3249 . 230348) (-3250 . 230209) - (-3251 . 230084) (-3252 . 230024) (-3253 . 229502) (-3254 . 228466) - (-3255 . 227170) (-3256 . 227098) (-3257 . 226978) (-3258 . 226947) - (-3259 . 226755) (-3260 . 226363) (-3261 . 212300) (-3262 . 212074) - (-3263 . 211987) (-3264 . 211757) (-3265 . 211583) (-3266 . 211498) - (-3267 . 211399) (-3268 . 211149) (-3269 . 211027) (-3270 . 210890) - (-3271 . 210781) (-3272 . 210704) (-3273 . 210621) (-3274 . 210551) - (-3275 . 210477) (-3276 . 210234) (-3277 . 210139) (-3278 . 210051) - (-3279 . 209921) (-3280 . 209759) (-3281 . 209540) (-3282 . 209484) - (-3283 . 209192) (-3284 . 209077) (-3285 . 208937) (-3286 . 208839) - (-3287 . 208701) (-3288 . 208566) (-3289 . 207386) (-3290 . 207279) - (-3291 . 207192) (-3292 . 206860) (-3293 . 206774) (-3294 . 206697) - (-3295 . 206629) (-3296 . 206520) (-3297 . 206388) (-3298 . 206259) - (-3299 . 206165) (-3300 . 206005) (-3301 . 205776) (-3302 . 205676) - (-3303 . 205593) (-3304 . 205371) (-3305 . 205315) (-3306 . 205265) - (-3307 . 205187) (-3308 . 205130) (-3309 . 204976) (-3310 . 204767) - (-3311 . 204623) (-3312 . 204429) (-3313 . 204376) (-3314 . 204253) - (-3315 . 204179) (-3316 . 204096) (-3317 . 204011) (-3318 . 199299) - (-3319 . 199158) (-3320 . 198995) (-3321 . 198733) (-3322 . 198455) - (-3323 . 198296) (-3324 . 198078) (-3325 . 197938) (-3326 . 197864) - (-3327 . 197735) (-3328 . 197683) (-3329 . 197513) (-3330 . 197429) - (-3331 . 197327) (-3332 . 197066) (-3333 . 196936) (-3334 . 196852) - (-3335 . 196638) (-3336 . 196585) (-3337 . 196470) (-3338 . 196350) - (-3339 . 196279) (-3340 . 196202) (-3341 . 195822) (-3342 . 195669) - (-3343 . 195603) (-3344 . 195494) (-3345 . 194899) (-3346 . 194846) - (-3347 . 194745) (-3348 . 193553) (-3349 . 193416) (-3350 . 192970) - (-3351 . 192818) (-3352 . 190666) (-3353 . 190613) (-3354 . 190494) - (-3355 . 190345) (-3356 . 190284) (-3357 . 190194) (-3358 . 189866) - (-3359 . 189807) (-3360 . 189644) (-3361 . 189374) (-3362 . 189321) - (-3363 . 189082) (-3364 . 188791) (-3365 . 188636) (-3366 . 188499) - (-3367 . 188193) (-3368 . 188037) (-3369 . 186952) (-3370 . 186779) - (-3371 . 186654) (-3372 . 186360) (-3373 . 186171) (-3374 . 185972) - (-3375 . 185892) (-3376 . 185744) (-3377 . 185693) (-3378 . 185613) - (-3379 . 185535) (-3380 . 185005) (-3381 . 184846) (-3382 . 184719) - (-3383 . 184297) (-3384 . 182446) (-3385 . 182283) (-3386 . 181826) - (-3387 . 181798) (-3388 . 181405) (-3389 . 181273) (-3390 . 181245) - (-3391 . 181183) (-3392 . 181087) (-3393 . 180786) (-3394 . 180752) - (-3395 . 180634) (-3396 . 180578) (-3397 . 180500) (-3398 . 180407) - (-3399 . 180285) (-3400 . 180087) (-3401 . 180032) (-3402 . 179897) - (-3403 . 179475) (-3404 . 179422) (-3405 . 179251) (-3406 . 179168) - (-3407 . 178998) (-3408 . 178946) (-3409 . 178897) (-3410 . 178718) - (-3411 . 178538) (-3412 . 178485) (-3413 . 178457) (-3414 . 178199) - (-3415 . 178105) (-3416 . 177992) (-3417 . 177802) (-3418 . 177729) - (-3419 . 177491) (-3420 . 177359) (-3421 . 177276) (-3422 . 177205) - (-3423 . 177052) (-3424 . 176900) (-3425 . 176832) (-3426 . 176689) - (-3427 . 176592) (-3428 . 176307) (-3429 . 176174) (-3430 . 175847) - (-3431 . 175597) (-3432 . 175545) (-3433 . 175496) (-3434 . 175443) - (-3435 . 175392) (-3436 . 175318) (-3437 . 175001) (-3438 . 174553) - (-3439 . 174444) (-3440 . 174345) (-3441 . 174271) (-3442 . 174186) - (-3443 . 173579) (-3444 . 173501) (-3445 . 173286) (-3446 . 173220) - (-3447 . 170439) (-3448 . 169368) (-3449 . 168932) (-3450 . 168826) - (-3451 . 168729) (-3452 . 168350) (-3453 . 168187) (-3454 . 168091) - (-3455 . 167986) (-3456 . 167877) (-3457 . 167808) (-3458 . 167648) - (-3459 . 166282) (-3460 . 166139) (-3461 . 165886) (-3462 . 165805) - (-3463 . 165752) (-3464 . 165513) (-3465 . 165415) (-3466 . 165362) - (-3467 . 165210) (-3468 . 165153) (-3469 . 165000) (-3470 . 164767) - (-3471 . 164292) (-3472 . 163952) (-3473 . 163853) (-3474 . 163742) - (-3475 . 163690) (-3476 . 163301) (-3477 . 163249) (-3478 . 162770) - (-3479 . 162670) (-3480 . 162636) (-3481 . 162398) (-3482 . 162087) - (-3483 . 162033) (-3484 . 161877) (-3485 . 161700) (-3486 . 161562) - (-3487 . 161337) (-3488 . 160727) (-3489 . 160564) (-3490 . 160453) - (-3491 . 160045) (-3492 . 159922) (-3493 . 159838) (-3494 . 159554) - (-3495 . 159373) (-3496 . 159244) (-3497 . 158896) (-3498 . 158838) - (-3499 . 158641) (-3500 . 158568) (-3501 . 158495) (-3502 . 158348) - (-3503 . 158247) (-3504 . 158135) (-3505 . 158083) (-3506 . 157856) - (-3507 . 157773) (-3508 . 157241) (-3509 . 157033) (-3510 . 156889) - (-3511 . 156823) (-3512 . 156736) (-3513 . 156031) (-3514 . 155886) - (-3515 . 155446) (-3516 . 155127) (-3517 . 154851) (-3518 . 154766) - (-3519 . 154632) (-3520 . 154304) (-3521 . 154188) (-3522 . 153847) - (-3523 . 152982) (-3524 . 152494) (-3525 . 152338) (-3526 . 152275) - (-3527 . 152150) (-3528 . 152046) (-3529 . 151952) (-3530 . 151642) - (-3531 . 151576) (-3532 . 151504) (-3533 . 151381) (-3534 . 151294) - (-3535 . 150375) (-3536 . 149751) (-3537 . 149671) (-3538 . 149359) - (-3539 . 147895) (-3540 . 147839) (-3541 . 147669) (-3542 . 147579) - (-3543 . 147473) (-3544 . 147224) (-3545 . 146739) (-3546 . 146642) - (-3547 . 146462) (-3548 . 146330) (-3549 . 146157) (-3550 . 146037) - (-3551 . 145942) (-3552 . 145857) (-3553 . 145371) (-3554 . 145148) - (-3555 . 145033) (-3556 . 144872) (-3557 . 144766) (-3558 . 144535) - (-3559 . 144373) (-3560 . 144290) (-3561 . 144223) (-3562 . 144005) - (-3563 . 143915) (-3564 . 143830) (-3565 . 142712) (-3566 . 142656) - (-3567 . 142295) (-3568 . 142164) (-3569 . 141985) (-3570 . 141602) - (-3571 . 141490) (-3572 . 141335) (-3573 . 140732) (-3574 . 140469) - (-3575 . 140091) (-3576 . 139964) (-3577 . 139867) (-3578 . 139744) - (-3579 . 139549) (-3580 . 139488) (-3581 . 139422) (-3582 . 136137) - (-3583 . 136063) (-3584 . 135934) (-3585 . 135868) (-3586 . 135794) - (-3587 . 135652) (-3588 . 135599) (-3589 . 135278) (-3590 . 135148) - (-3591 . 134639) (-3592 . 134527) (-3593 . 134400) (-3594 . 134216) - (-3595 . 134038) (-3596 . 133609) (-3597 . 133444) (-3598 . 133182) - (-3599 . 133075) (-3600 . 132962) (-3601 . 132865) (-3602 . 132063) - (-3603 . 131887) (-3604 . 131802) (-3605 . 131736) (-3606 . 131707) - (-3607 . 131654) (-3608 . 131159) (-3609 . 130304) (-3610 . 130222) - (-3611 . 130004) (-3612 . 129909) (-3613 . 129729) (-3614 . 129661) - (-3615 . 129552) (-3616 . 129060) (-3617 . 126813) (-3618 . 126731) - (-3619 . 126606) (-3620 . 126443) (-3621 . 126245) (-3622 . 125030) - (-3623 . 124689) (-3624 . 124295) (-3625 . 124224) (-3626 . 124157) - (-3627 . 123985) (-3628 . 123900) (-3629 . 123823) (-3630 . 123726) - (-3631 . 123667) (-3632 . 123568) (-3633 . 123482) (-3634 . 123372) - (-3635 . 123207) (-3636 . 123077) (-3637 . 122980) (-3638 . 122892) - (-3639 . 122740) (-3640 . 122448) (-3641 . 122371) (-3642 . 122041) - (-3643 . 121942) (-3644 . 121890) (-3645 . 121862) (-3646 . 121778) - (-3647 . 121537) (-3648 . 121469) (-3649 . 121435) (-3650 . 121338) - (-3651 . 121282) (-3652 . 121141) (-3653 . 120870) (-3654 . 120785) - (-3655 . 120718) (-3656 . 120605) (-3657 . 120535) (-3658 . 120414) - (-3659 . 120234) (-3660 . 120076) (-3661 . 119862) (-3662 . 119667) - (-3663 . 119461) (-3664 . 119315) (-3665 . 119172) (-3666 . 118972) - (-3667 . 118697) (-3668 . 118315) (-3669 . 118208) (-3670 . 117879) - (-3671 . 117799) (-3672 . 117503) (-3673 . 117415) (-3674 . 117162) - (-3675 . 116938) (-3676 . 116840) (-3677 . 116684) (-3678 . 116538) - (-3679 . 116485) (-3680 . 116359) (-3681 . 116310) (-3682 . 116173) - (-3683 . 116018) (-3684 . 115744) (-3685 . 111584) (-3686 . 111528) - (-3687 . 111479) (-3688 . 111229) (-3689 . 111130) (-3690 . 111049) - (-3691 . 110997) (-3692 . 110878) (-3693 . 110807) (-3694 . 110492) - (-3695 . 110349) (-3696 . 110296) (-3697 . 110217) (-3698 . 110162) - (-3699 . 110102) (-3700 . 109986) (-3701 . 109588) (-3702 . 109097) - (-3703 . 109019) (-3704 . 108925) (-3705 . 108855) (-3706 . 108785) - (-3707 . 108717) (-3708 . 108638) (-3709 . 108389) (-3710 . 108292) - (-3711 . 108098) (-3712 . 108032) (-3713 . 107363) (-3714 . 107147) - (-3715 . 107073) (-3716 . 106256) (-3717 . 105925) (-3718 . 105842) - (-3719 . 105673) (-3720 . 105406) (-3721 . 105190) (-3722 . 105096) - (-3723 . 105026) (-3724 . 104843) (-3725 . 104791) (-3726 . 104760) - (-3727 . 104663) (-3728 . 104561) (-3729 . 104435) (-3730 . 103920) - (-3731 . 103560) (-3732 . 103460) (-3733 . 103377) (-3734 . 103292) - (-3735 . 103177) (-3736 . 103020) (-3737 . 102872) (-3738 . 102787) - (-3739 . 102732) (-3740 . 102599) (-3741 . 101603) (-3742 . 101395) - (-3743 . 101315) (-3744 . 101220) (-3745 . 101103) (-3746 . 101016) - (-3747 . 100963) (-3748 . 100908) (-3749 . 100719) (-3750 . 100616) - (-3751 . 100229) (-3752 . 100093) (-3753 . 99924) (-3754 . 99670) - (-3755 . 99249) (-3756 . 99125) (-3757 . 98780) (-3758 . 98714) - (-3759 . 98496) (-3760 . 98206) (-3761 . 98135) (-3762 . 98034) - (-3763 . 98003) (-3764 . 97944) (-3765 . 97846) (-3766 . 97749) - (-3767 . 97675) (-3768 . 97623) (-3769 . 97465) (-3770 . 97410) - (-3771 . 97307) (-3772 . 96655) (-3773 . 96543) (-3774 . 96321) - (-3775 . 96155) (-3776 . 96039) (-3777 . 95416) (-3778 . 95188) - (-3779 . 95091) (-3780 . 95020) (-3781 . 94644) (-3782 . 94202) - (-3783 . 93773) (-3784 . 93659) (-3785 . 93531) (-3786 . 93458) - (-3787 . 93211) (-3788 . 93087) (-3789 . 93035) (-3790 . 92840) - (-3791 . 92767) (-3792 . 92708) (-3793 . 92504) (-3794 . 92244) - (-3795 . 91947) (-3796 . 91853) (-3797 . 91738) (-3798 . 90923) - (-3799 . 90839) (-3800 . 90627) (-3801 . 90491) (-3802 . 90403) - (-3803 . 90262) (-3804 . 90167) (-3805 . 89982) (-3806 . 89793) - (-3807 . 89765) (-3808 . 89672) (-3809 . 89376) (-3810 . 89158) - (-3811 . 89107) (-3812 . 89034) (-3813 . 88970) (-3814 . 88939) - (-3815 . 88700) (-3816 . 88626) (-3817 . 88416) (-3818 . 88315) - (-3819 . 88287) (-3820 . 88205) (-3821 . 88176) (-3822 . 88064) - (-3823 . 87783) (-3824 . 87656) (-3825 . 87627) (-3826 . 87558) - (-3827 . 87435) (-3828 . 87401) (-3829 . 87338) (-3830 . 87170) - (-3831 . 87071) (-3832 . 86956) (-3833 . 86849) (-3834 . 86753) - (** . 83676) (-3836 . 83567) (-3837 . 83515) (-3838 . 83430) - (-3839 . 82885) (-3840 . 82557) (-3841 . 82404) (-3842 . 82307) - (-3843 . 82212) (-3844 . 82076) (-3845 . 81863) (-3846 . 81735) - (-3847 . 81667) (-3848 . 81377) (-3849 . 81300) (-3850 . 81089) - (-3851 . 80952) (-3852 . 80601) (-3853 . 80430) (-3854 . 80329) - (-3855 . 80122) (-3856 . 79992) (-3857 . 79842) (-3858 . 79753) - (-3859 . 79653) (-3860 . 79580) (-3861 . 79408) (-3862 . 79308) - (-3863 . 79280) (-3864 . 79162) (-3865 . 78775) (-3866 . 78348) - (-3867 . 78246) (-3868 . 78161) (-3869 . 78058) (-3870 . 77923) - (-3871 . 77833) (-3872 . 77669) (-3873 . 77511) (-3874 . 77219) - (-3875 . 77124) (-3876 . 76887) (-3877 . 76814) (-3878 . 76489) - (-3879 . 76436) (-3880 . 76408) (-3881 . 76311) (-3882 . 76162) - (-3883 . 75996) (-3884 . 75902) (-3885 . 75815) (-3886 . 75698) - (-3887 . 75509) (-3888 . 75454) (-3889 . 75358) (-3890 . 75281) - (-3891 . 75174) (-3892 . 74923) (-3893 . 74808) (-3894 . 74634) - (-3895 . 74229) (-3896 . 74048) (-3897 . 73989) (-3898 . 73885) - (-3899 . 73691) (-3900 . 73608) (-3901 . 73515) (-3902 . 73385) - (-3903 . 73302) (-3904 . 73214) (-3905 . 73068) (-3906 . 73037) - (-3907 . 72861) (-3908 . 72713) (-3909 . 72223) (-3910 . 72084) - (-3911 . 71956) (-3912 . 71154) (-3913 . 70931) (-3914 . 70836) - (-3915 . 70731) (-3916 . 70615) (-3917 . 70462) (-3918 . 70316) - (-3919 . 70242) (-3920 . 70118) (-3921 . 69823) (-3922 . 69670) - (-3923 . 69517) (-3924 . 69171) (-3925 . 69074) (-3926 . 68687) - (-3927 . 68659) (-3928 . 68550) (-3929 . 68477) (-3930 . 68212) - (-3931 . 68149) (-3932 . 68019) (-3933 . 67800) (-3934 . 67682) - (-3935 . 67589) (-3936 . 67527) (-3937 . 67151) (-3938 . 67039) - (-3939 . 66780) (-3940 . 66209) (-3941 . 66034) (-3942 . 65856) - (-3943 . 65669) (-3944 . 63254) (-3945 . 63099) (-3946 . 62955) - (-3947 . 62737) (-3948 . 62706) (-3949 . 62591) (-3950 . 62504) - (-3951 . 62362) (-3952 . 62250) (-3953 . 61994) (-3954 . 61895) - (-3955 . 61331) (-3956 . 61188) (-3957 . 61079) (-3958 . 60939) - (-3959 . 60630) (-3960 . 60435) (-3961 . 60217) (-3962 . 60032) - (-3963 . 59814) (-3964 . 59762) (-3965 . 59696) (-3966 . 59640) - (-3967 . 59414) (-3968 . 59277) (-3969 . 59218) (-3970 . 59084) - (-3971 . 59013) (-3972 . 58894) (-3973 . 58643) (-3974 . 58517) - (-3975 . 58408) (-3976 . 58293) (-3977 . 58200) (-3978 . 57882) - (-3979 . 57636) (-3980 . 57557) (-3981 . 57477) (-3982 . 57449) - (-3983 . 57305) (-3984 . 57232) (-3985 . 56952) (-3986 . 56897) - (-3987 . 56604) (-3988 . 56471) (-3989 . 56384) (-3990 . 56224) - (-3991 . 56175) (-3992 . 56072) (-3993 . 56019) (-3994 . 55961) - (-3995 . 55860) (-3996 . 55758) (-3997 . 55427) (-3998 . 55323) - (-3999 . 55180) (-4000 . 55082) (-4001 . 54936) (-4002 . 54853) - (-4003 . 54540) (-4004 . 54373) (-4005 . 53940) (-4006 . 53862) - (-4007 . 53589) (-4008 . 53537) (-4009 . 53425) (-4010 . 52753) - (-4011 . 52503) (-4012 . 52402) (-4013 . 52070) (-4014 . 51997) - (-4015 . 51890) (-4016 . 51856) (-4017 . 51734) (-4018 . 51657) - (-4019 . 51280) (-4020 . 50451) (-4021 . 50395) (-4022 . 50144) - (-4023 . 50089) (-4024 . 49980) (-4025 . 49925) (-4026 . 49395) - (-4027 . 49294) (-4028 . 49244) (-4029 . 49194) (-4030 . 49142) - (-4031 . 49045) (-4032 . 48855) (-4033 . 48776) (-4034 . 48397) - (-4035 . 48316) (-4036 . 48142) (-4037 . 48023) (-4038 . 47868) - (-4039 . 47790) (-4040 . 47756) (-4041 . 47576) (-4042 . 46950) - (-4043 . 46841) (-4044 . 45264) (-4045 . 45209) (-4046 . 45083) - (-4047 . 45018) (-4048 . 44477) (-4049 . 44424) (-4050 . 44108) - (-4051 . 44049) (-4052 . 43976) (-4053 . 43889) (-4054 . 43777) - (-4055 . 41923) (-4056 . 41514) (-4057 . 41392) (-4058 . 41323) - (-4059 . 41167) (-4060 . 40329) (-4061 . 40190) (-4062 . 40022) - (-4063 . 39956) (-4064 . 39826) (-4065 . 39651) (-4066 . 39573) - (-4067 . 36665) (-4068 . 36599) (-4069 . 36124) (-4070 . 36003) - (-4071 . 35823) (-4072 . 35629) (-4073 . 35557) (-4074 . 35480) - (-4075 . 35261) (-4076 . 35070) (-4077 . 34154) (-4078 . 34067) - (-4079 . 33997) (-4080 . 33907) (-4081 . 33765) (-4082 . 33569) - (-4083 . 33217) (-4084 . 33105) (-4085 . 33034) (-4086 . 32981) - (-4087 . 32877) (-4088 . 32726) (-4089 . 32619) (-4090 . 32518) - (-4091 . 31939) (-4092 . 31844) (-4093 . 31552) (-4094 . 31433) - (-4095 . 31381) (-4096 . 31036) (-4097 . 30876) (-4098 . 30842) - (-4099 . 30689) (-4100 . 30637) (-4101 . 30513) (-4102 . 30427) - (-4103 . 30148) (-4104 . 29775) (-4105 . 29661) (-4106 . 29436) - (-4107 . 29335) (-4108 . 28993) (-4109 . 28752) (-4110 . 28567) - (-4111 . 28412) (-4112 . 28341) (-4113 . 28063) (-4114 . 27904) - (-4115 . 23916) (-4116 . 23713) (-4117 . 23591) (-4118 . 23560) - (-4119 . 23394) (-4120 . 23341) (-4121 . 23286) (-4122 . 23071) - (-4123 . 22989) (-4124 . 22782) (-4125 . 22607) (-4126 . 22392) - (-4127 . 22206) (-4128 . 22065) (-4129 . 21958) (-4130 . 21835) - (-4131 . 21729) (-4132 . 21663) (-4133 . 21576) (-4134 . 21489) - (-4135 . 21415) (-4136 . 21363) (-4137 . 21294) (-4138 . 21266) - (-4139 . 20997) (-4140 . 20879) (-4141 . 20719) (-4142 . 20601) - (-4143 . 19997) (-4144 . 19846) (-4145 . 19794) (-4146 . 19590) - (-4147 . 19493) (-4148 . 18819) (-4149 . 18741) (-4150 . 18400) - (-4151 . 18306) (-4152 . 17898) (-4153 . 17678) (-4154 . 17612) - (-4155 . 17534) (-4156 . 17425) (-4157 . 17367) (-4158 . 17123) - (-4159 . 17050) (-4160 . 16865) (-4161 . 16791) (-4162 . 16627) - (-4163 . 16388) (-4164 . 16109) (-4165 . 15795) (-4166 . 15716) - (-4167 . 15558) (-4168 . 15388) (-4169 . 15336) (-4170 . 15242) - (-4171 . 15168) (-4172 . 15094) (-4173 . 14734) (-4174 . 14578) - (-4175 . 14359) (-4176 . 14289) (-4177 . 14218) (-4178 . 14153) - (-4179 . 14103) (-4180 . 13599) (-4181 . 13544) (-4182 . 13385) - (-4183 . 13319) (-4184 . 12522) (-4185 . 12494) (-4186 . 12401) - (-4187 . 12281) (-4188 . 12212) (-4189 . 12155) (-4190 . 12055) - (-4191 . 11802) (-4192 . 11746) (-4193 . 11365) (-4194 . 10940) - (-4195 . 10804) (-4196 . 10593) (-4197 . 10105) (-4198 . 9845) - (-4199 . 9771) (-4200 . 9684) (-4201 . 9600) (-4202 . 9534) - (-4203 . 9427) (-4204 . 9242) (-4205 . 9185) (-4206 . 9006) - (-4207 . 8938) (-4208 . 8750) (-4209 . 8391) (-4210 . 8030) - (-4211 . 7905) (-4212 . 7807) (-4213 . 7513) (-4214 . 7432) - (-4215 . 7120) (-4216 . 7043) (-4217 . 6960) (-4218 . 6859) - (-4219 . 6699) (-4220 . 6544) (-4221 . 6341) (-4222 . 6135) - (-4223 . 5977) (-4224 . 5920) (-4225 . 5792) (-4226 . 5705) - (-4227 . 5591) (-4228 . 5479) (-4229 . 5364) (-4230 . 5309) - (-4231 . 4500) (-4232 . 4330) (-4233 . 4272) (-4234 . 4117) - (-4235 . 3800) (-4236 . 3652) (-4237 . 3500) (-4238 . 3318) - (-4239 . 3141) (-4240 . 3049) (-4241 . 2943) (-4242 . 2703) - (-4243 . 2624) (-4244 . 2099) (-4245 . 2047) (-4246 . 1870) - (-4247 . 1215) (-4248 . 1094) (-4249 . 707) (-4250 . 514) - (-4251 . 422) (-4252 . 58) (-4253 . 30))
\ No newline at end of file + (-12 (-4 *3 (-529)) (-5 *2 (-606 (-649 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-401 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-807) (-529))) (-5 *1 (-260 *3 *2)) + (-4 *2 (-13 (-414 *3) (-954))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1191 *3)) + (-5 *1 (-262 *3 *4 *2)) (-4 *2 (-1162 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-391 (-537)))) (-4 *4 (-1160 *3)) + (-5 *1 (-263 *3 *4 *2 *5)) (-4 *2 (-1183 *3 *4)) (-4 *5 (-936 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-315 *2)) (-4 *2 (-807)))) + ((*1 *1 *1) + (-12 (-5 *1 (-323 *2 *3 *4)) (-14 *2 (-606 (-1117))) + (-14 *3 (-606 (-1117))) (-4 *4 (-371)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1103 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1098 *3)) (-4 *3 (-37 (-391 (-537)))) + (-5 *1 (-1104 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-358 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-163)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-731)) (-4 *1 (-1220 *3 *4)) (-4 *3 (-807)) + (-4 *4 (-998))))) +(((*1 *2 *3) + (-12 (-5 *3 (-606 *4)) (-4 *4 (-998)) (-5 *2 (-1200 *4)) + (-5 *1 (-1118 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-874)) (-5 *2 (-1200 *3)) (-5 *1 (-1118 *3)) + (-4 *3 (-998))))) +((-1232 . 729255) (-1233 . 729064) (-1234 . 728323) (-1235 . 728216) + (-1236 . 728114) (-1237 . 728007) (-1238 . 727790) (-1239 . 727536) + (-1240 . 727470) (-1241 . 727366) (-1242 . 727314) (-1243 . 727242) + (-1244 . 726369) (-1245 . 725903) (-1246 . 725481) (-1247 . 724793) + (-1248 . 724708) (-1249 . 724561) (-1250 . 724446) (-1251 . 724378) + (-1252 . 724292) (-1253 . 723925) (-1254 . 722745) (-1255 . 722711) + (-1256 . 722682) (-1257 . 722616) (-1258 . 722513) (-1259 . 721937) + (-1260 . 721885) (-1261 . 721494) (-1262 . 721357) (-1263 . 721304) + (-1264 . 721252) (-1265 . 720999) (-1266 . 720899) (-1267 . 720601) + (-1268 . 720549) (-1269 . 720445) (-1270 . 720347) (-1271 . 720220) + (-1272 . 720091) (-1273 . 719515) (-1274 . 718996) (-1275 . 718789) + (-1276 . 718718) (-1277 . 718621) (-1278 . 718506) (-1279 . 718382) + (-1280 . 718271) (-1281 . 718154) (-1282 . 717947) (-1283 . 717799) + (-1284 . 717620) (-1285 . 717505) (-1286 . 716929) (-1287 . 716799) + (-1288 . 716581) (-1289 . 716354) (-1290 . 716256) (-1291 . 715914) + (-1292 . 715598) (-1293 . 715570) (-1294 . 715472) (-1295 . 715087) + (-1296 . 714756) (-1297 . 714618) (-1298 . 714226) (-1299 . 714109) + (-1300 . 713423) (-1301 . 712621) (-1302 . 712502) (-1303 . 712312) + (-1304 . 712246) (-1305 . 712183) (-1306 . 712075) (-1307 . 711987) + (-1308 . 711696) (-1309 . 711584) (-1310 . 711109) (-1311 . 710946) + (-1312 . 710893) (-1313 . 710755) (-1314 . 710069) (-1315 . 709995) + (-1316 . 709882) (-1317 . 709788) (-1318 . 709645) (-1319 . 709561) + (-1320 . 709481) (-1321 . 708518) (-1322 . 708039) (-1323 . 707853) + (-1324 . 707783) (-1325 . 707496) (-1326 . 707419) (-1327 . 707301) + (-1328 . 706552) (-1329 . 706478) (-1330 . 706341) (-1331 . 706226) + (-1332 . 706019) (-1333 . 705987) (-1334 . 705714) (-1335 . 705607) + (-1336 . 705510) (-1337 . 705423) (-1338 . 705346) (-1339 . 705245) + (-1340 . 704671) (-1341 . 704546) (-1342 . 704490) (-1343 . 704254) + (-1344 . 704152) (-1345 . 704038) (-1346 . 703883) (-1347 . 703788) + (-1348 . 703722) (-1349 . 703604) (-1350 . 703525) (-1351 . 702934) + (-1352 . 702360) (-1353 . 702278) (-1354 . 702209) (-1355 . 702095) + (-1356 . 702025) (-1357 . 701973) (-1358 . 701808) (-1359 . 701734) + (-1360 . 701636) (-1361 . 701539) (-1362 . 701454) (-1363 . 701339) + (-1364 . 701232) (-1365 . 700658) (-1366 . 700605) (-1367 . 700549) + (-1368 . 700322) (-1369 . 699903) (-1370 . 699679) (-1371 . 699521) + (-1372 . 696226) (-1373 . 696119) (-1374 . 696090) (-1375 . 695986) + (-1376 . 695860) (-1377 . 695289) (-1378 . 694602) (-1379 . 693793) + (-1380 . 693600) (-1381 . 692315) (-1382 . 692208) (-1383 . 692122) + (-1384 . 692052) (-1385 . 691981) (-1386 . 691869) (-1387 . 691785) + (-1388 . 691729) (-1389 . 691042) (-1390 . 690901) (-1391 . 690740) + (-1392 . 690610) (-1393 . 690533) (-1394 . 690292) (-1395 . 689846) + (-1396 . 689726) (-1397 . 689537) (-1398 . 689443) (-1399 . 689172) + (-1400 . 689075) (-1401 . 689022) (-1402 . 688929) (-1403 . 688242) + (-1404 . 688191) (-1405 . 688106) (-1406 . 687979) (-1407 . 687928) + (-1408 . 687894) (-1409 . 687755) (-1410 . 687502) (-1411 . 687422) + (-1412 . 687208) (-1413 . 686868) (-1414 . 686722) (-1415 . 686147) + (-1416 . 685983) (-1417 . 685893) (-1418 . 685814) (-1419 . 685736) + (-1420 . 685573) (-1421 . 685493) (-1422 . 685371) (-1423 . 685259) + (-1424 . 685203) (-1425 . 685059) (-1426 . 683763) (-1427 . 683678) + (-1428 . 683253) (-1429 . 682678) (-1430 . 682542) (-1431 . 681959) + (-1432 . 681853) (-1433 . 681618) (-1434 . 681497) (-1435 . 681399) + (-1436 . 681347) (-1437 . 681240) (-1438 . 681183) (-1439 . 681081) + (-1440 . 680972) (-1441 . 680397) (-1442 . 680345) (-1443 . 680122) + (-1444 . 679984) (-1445 . 679824) (-1446 . 679660) (-1447 . 679564) + (-1448 . 679434) (-1449 . 679307) (-1450 . 679220) (-1451 . 678925) + (-1452 . 678842) (-1453 . 678268) (-1454 . 678237) (-1455 . 678053) + (-1456 . 677941) (-1457 . 677867) (-1458 . 677833) (-1459 . 677740) + (-1460 . 677667) (-1461 . 677560) (-1462 . 677398) (-1463 . 677346) + (-1464 . 677127) (-1465 . 676553) (-1466 . 676480) (-1467 . 676361) + (-1468 . 676235) (-1469 . 676164) (-1470 . 675632) (-1471 . 675580) + (-1472 . 675480) (-1473 . 675261) (-1474 . 675195) (-1475 . 674621) + (-1476 . 674568) (-1477 . 674424) (-1478 . 673555) (-1479 . 673457) + (-1480 . 673308) (-1481 . 673067) (-1482 . 672897) (-1483 . 672604) + (-1484 . 671412) (-1485 . 670838) (-1486 . 670713) (-1487 . 670632) + (-1488 . 670482) (-1489 . 670297) (-1490 . 669659) (-1491 . 669572) + (-1492 . 669500) (-1493 . 668957) (-1494 . 668815) (-1495 . 668241) + (-1496 . 668071) (-1497 . 667997) (-1498 . 667889) (-1499 . 667702) + (-1500 . 667521) (-1501 . 667455) (-1502 . 667363) (-1503 . 667082) + (-1504 . 666904) (-1505 . 666830) (-1506 . 666624) (-1507 . 666471) + (-1508 . 666376) (-1509 . 665845) (-1510 . 665473) (-1511 . 665385) + (-1512 . 665319) (-1513 . 665173) (-1514 . 665071) (-1515 . 664997) + (-1516 . 660469) (-1517 . 660370) (-1518 . 660274) (-1519 . 659995) + (-1520 . 659879) (-1521 . 659680) (-1522 . 659595) (-1523 . 658721) + (-1524 . 658112) (-1525 . 657733) (-1526 . 657572) (-1527 . 657479) + (-1528 . 657424) (-1529 . 657396) (-1530 . 657329) (-1531 . 657145) + (-1532 . 657093) (-1533 . 656921) (-1534 . 656826) (-1535 . 656717) + (-1536 . 656555) (-1537 . 656448) (-1538 . 655918) (-1539 . 655783) + (-1540 . 654588) (-1541 . 654278) (-1542 . 654164) (-1543 . 653956) + (-1544 . 653849) (-12 . 653677) (-1546 . 653618) (-1547 . 653234) + (-1548 . 653127) (-1549 . 653053) (-1550 . 653001) (-1551 . 652683) + (-1552 . 652631) (-1553 . 652390) (-1554 . 652338) (-1555 . 651978) + (-1556 . 651815) (-1557 . 651708) (-1558 . 651412) (-1559 . 651204) + (-1560 . 651082) (-1561 . 651050) (-1562 . 650669) (-1563 . 650516) + (-1564 . 650325) (-1565 . 650230) (-1566 . 649800) (-1567 . 649744) + (-1568 . 649647) (-1569 . 649491) (-1570 . 648908) (-1571 . 648796) + (-1572 . 648687) (-1573 . 648513) (-1574 . 648383) (-1575 . 648024) + (-1576 . 647935) (-1577 . 647618) (-1578 . 647463) (-1579 . 647350) + (-1580 . 647253) (-1581 . 647219) (-1582 . 647167) (-1583 . 647096) + (-1584 . 647035) (-1585 . 646973) (-1586 . 646784) (-1587 . 646411) + (-1588 . 646326) (-1589 . 646252) (-1590 . 646004) (-1591 . 645897) + (-1592 . 645845) (-1593 . 645614) (-1594 . 645440) (-1595 . 645266) + (-1596 . 645095) (-1597 . 645040) (-1598 . 644867) (-1599 . 644811) + (-1600 . 644684) (-1601 . 644498) (-1602 . 644361) (-1603 . 644254) + (-1604 . 644180) (-1605 . 643937) (-1606 . 643797) (-1607 . 642679) + (-1608 . 642538) (-1609 . 642481) (-1610 . 642324) (-1611 . 642110) + (-1612 . 628042) (-1613 . 627984) (-1614 . 627797) (-1615 . 627745) + (-1616 . 627645) (-1617 . 627402) (-1618 . 626752) (-1619 . 626554) + (-1620 . 626460) (-1621 . 626320) (-1622 . 626248) (-1623 . 626154) + (-1624 . 626043) (-1625 . 624281) (-1626 . 624228) (-1627 . 624157) + (-1628 . 623797) (-1629 . 623697) (-1630 . 623538) (-1631 . 623481) + (-1632 . 623409) (-1633 . 623358) (-1634 . 623250) (-1635 . 623138) + (-1636 . 622380) (* . 617854) (-1638 . 617712) (-1639 . 617591) + (-1640 . 617521) (-1641 . 617423) (-1642 . 617261) (-1643 . 617174) + (-1644 . 616258) (-1645 . 615945) (-1646 . 615727) (-1647 . 615595) + (-1648 . 615526) (-1649 . 615309) (-1650 . 615214) (-1651 . 614968) + (-1652 . 614889) (-1653 . 614785) (-1654 . 614731) (-1655 . 614663) + (-1656 . 614364) (-1657 . 614257) (-1658 . 614200) (-1659 . 614105) + (-1660 . 613825) (-1661 . 613500) (-1662 . 613415) (-1663 . 613271) + (-1664 . 613201) (-1665 . 613114) (-1666 . 613057) (-1667 . 612571) + (-1668 . 612407) (-1669 . 612261) (-1670 . 612152) (-1671 . 612058) + (-1672 . 611851) (-1673 . 611713) (-1674 . 611648) (-1675 . 611504) + (-1676 . 611265) (-1677 . 611146) (-1678 . 611037) (-1679 . 610908) + (-1680 . 610779) (-1681 . 610684) (-1682 . 610393) (-1683 . 610276) + (-1684 . 610118) (-1685 . 610002) (-1686 . 609860) (-1687 . 609803) + (-1688 . 609208) (-1689 . 608868) (-1690 . 608716) (-1691 . 608539) + (-1692 . 608225) (-1693 . 608159) (-1694 . 608021) (-1695 . 607917) + (-1696 . 607800) (-1697 . 607544) (-1698 . 607298) (-1699 . 607146) + (-1700 . 607118) (-1701 . 606498) (-1702 . 606408) (-1703 . 606262) + (-1704 . 606189) (-1705 . 605983) (-1706 . 605561) (-1707 . 605466) + (-1708 . 605371) (-1709 . 605225) (-1710 . 605169) (-1711 . 605095) + (-1712 . 604817) (-1713 . 604690) (-1714 . 604309) (-1715 . 604100) + (-1716 . 603857) (-1717 . 603619) (-1718 . 603566) (-1719 . 603333) + (-1720 . 603277) (-1721 . 603206) (-1722 . 603151) (-1723 . 602859) + (-1724 . 602780) (-1725 . 602709) (-1726 . 602659) (-1727 . 602519) + (-1728 . 602436) (-1729 . 602091) (-1730 . 601911) (-1731 . 601788) + (-1732 . 601685) (-1733 . 601466) (-1734 . 601332) (-1735 . 601269) + (-1736 . 601170) (-1737 . 601136) (-1738 . 600967) (-1739 . 600912) + (-1740 . 600739) (-1741 . 600657) (-1742 . 600529) (-1743 . 600457) + (-1744 . 600338) (-1745 . 600267) (-1746 . 600190) (-1747 . 600108) + (-1748 . 599044) (-1749 . 598935) (-1750 . 598867) (-1751 . 598572) + (-1752 . 598456) (-1753 . 598422) (-1754 . 598369) (-1755 . 598069) + (-1756 . 598017) (-1757 . 597920) (-1758 . 597825) (-1759 . 597773) + (-1760 . 597699) (-1761 . 597060) (-1762 . 597005) (-1763 . 596955) + (-1764 . 596896) (-1765 . 596752) (-1766 . 596689) (-1767 . 596636) + (-1768 . 596530) (-1769 . 596307) (-1770 . 595423) (-1771 . 595367) + (-1772 . 595295) (-1773 . 595202) (-1774 . 595027) (-1775 . 594727) + (-1776 . 594674) (-1777 . 594535) (-1778 . 594461) (-1779 . 594393) + (-1780 . 594341) (-1781 . 594179) (-1782 . 594051) (-1783 . 593885) + (-1784 . 593715) (-1785 . 593585) (-1786 . 593419) (-1787 . 593144) + (-1788 . 593016) (-1789 . 592852) (-1790 . 592503) (-1791 . 592201) + (-1792 . 592015) (-1793 . 591949) (-1794 . 591433) (-1795 . 591242) + (-1796 . 591035) (-1797 . 590387) (-1798 . 590302) (-1799 . 590117) + (-1800 . 590024) (-1801 . 589958) (-1802 . 589740) (-1803 . 589655) + (-1804 . 589534) (-1805 . 589468) (-1806 . 589353) (-1807 . 589159) + (-1808 . 589036) (-1809 . 588927) (-1810 . 588862) (-1811 . 588733) + (-1812 . 588596) (-1813 . 588473) (-1814 . 588409) (-1815 . 588243) + (-1816 . 588113) (-1817 . 587983) (-1818 . 587693) (-1819 . 587190) + (-1820 . 586807) (-1821 . 586699) (-1822 . 586587) (-1823 . 586286) + (-1824 . 585958) (-1825 . 585713) (-1826 . 585540) (-1827 . 585208) + (-1828 . 585032) (-1829 . 584937) (-1830 . 584692) (-1831 . 584539) + (-1832 . 584414) (-1833 . 584328) (-1834 . 584245) (-1835 . 583866) + (-1836 . 583738) (-1837 . 583672) (-1838 . 583619) (-1839 . 582885) + (-1840 . 582812) (-1841 . 582545) (-1842 . 582094) (-1843 . 581904) + (-1844 . 581847) (-1845 . 581709) (-1846 . 581617) (-1847 . 581378) + (-1848 . 581326) (-1849 . 581173) (-1850 . 580969) (-1851 . 580916) + (-1852 . 580715) (-1853 . 580591) (-1854 . 580140) (-1855 . 579982) + (-1856 . 579826) (-1857 . 579798) (-1858 . 579655) (-1859 . 579567) + (-1860 . 579291) (-1861 . 579178) (-1862 . 579060) (-1863 . 578846) + (-1864 . 578731) (-1865 . 578505) (-1866 . 578271) (-1867 . 578154) + (-1868 . 578072) (-1869 . 577959) (-1870 . 577744) (-1871 . 576825) + (-1872 . 576741) (-1873 . 576426) (-1874 . 576199) (-1875 . 576056) + (-1876 . 575951) (-1877 . 575756) (-1878 . 575647) (-1879 . 575596) + (-1880 . 575523) (-1881 . 574987) (-1882 . 574807) (-1883 . 574349) + (-1884 . 574224) (-1885 . 574169) (-1886 . 574036) (-1887 . 573963) + (-1888 . 573934) (-1889 . 573860) (-1890 . 573372) (-1891 . 573299) + (-1892 . 573228) (-1893 . 573053) (-1894 . 572965) (-1895 . 563433) + (-1896 . 563295) (-1897 . 563056) (-1898 . 562957) (-1899 . 562575) + (-1900 . 562495) (-1901 . 562434) (-1902 . 562402) (-1903 . 562232) + (-1904 . 562010) (-1905 . 561005) (-1906 . 560825) (-1907 . 560616) + (-1908 . 560515) (-1909 . 560310) (-1910 . 560273) (-1911 . 560062) + (-1912 . 559953) (-1913 . 559742) (-1914 . 559523) (-1915 . 559356) + (-1916 . 559256) (-1917 . 559204) (-1918 . 559127) (-1919 . 559071) + (-1920 . 558723) (-1921 . 558667) (-1922 . 553468) (-1923 . 553352) + (-1924 . 553221) (-1925 . 552963) (-1926 . 552796) (-1927 . 552709) + (-1928 . 552609) (-1929 . 552393) (-1930 . 552341) (-1931 . 552054) + (-1932 . 551926) (-1933 . 551513) (-1934 . 551295) (-1935 . 551238) + (-1936 . 550751) (-1937 . 550587) (-1938 . 550405) (-1939 . 550328) + (-1940 . 550078) (-1941 . 549938) (-1942 . 549851) (-1943 . 549402) + (-1944 . 549281) (-1945 . 549228) (-1946 . 549093) (-1947 . 548897) + (-1948 . 548814) (-1949 . 548529) (-1950 . 548406) (-1951 . 548112) + (-1952 . 547820) (-1953 . 547634) (-1954 . 547306) (-1955 . 547229) + (-1956 . 546949) (-1957 . 546812) (-1958 . 546651) (-1959 . 546596) + (-1960 . 546488) (-1961 . 546245) (-1962 . 546148) (-1963 . 545950) + (-1964 . 545852) (-1965 . 545700) (-1966 . 545641) (-1967 . 545451) + (-1968 . 545118) (-1969 . 545062) (-1970 . 544865) (-1971 . 544792) + (-1972 . 544634) (-1973 . 544277) (-1974 . 543847) (-1975 . 543760) + (-1976 . 543726) (-1977 . 543659) (-1978 . 543380) (-1979 . 542850) + (-1980 . 542743) (-1981 . 542102) (-1982 . 541761) (-1983 . 541679) + (-1984 . 541601) (-1985 . 541507) (-1986 . 541454) (-1987 . 541368) + (-1988 . 541284) (-1989 . 541211) (-1990 . 541128) (-1991 . 540922) + (-1992 . 540683) (-1993 . 540515) (-1994 . 540462) (-1995 . 540368) + (-1996 . 540238) (-1997 . 540210) (-1998 . 540062) (-1999 . 539810) + (-2000 . 539744) (-2001 . 539660) (-2002 . 539602) (-2003 . 539460) + (-2004 . 539370) (-2005 . 538990) (-2006 . 538864) (-2007 . 538795) + (-2008 . 538419) (-2009 . 538092) (-2010 . 537874) (-2011 . 537750) + (-2012 . 537561) (-2013 . 537454) (-2014 . 537359) (-2015 . 537069) + (-2016 . 536970) (-2017 . 536865) (-2018 . 536798) (-2019 . 536692) + (-2020 . 536626) (-2021 . 536400) (-2022 . 535912) (-2023 . 535776) + (-2024 . 535325) (-2025 . 535253) (-2026 . 535030) (-2027 . 534579) + (-2028 . 534289) (-2029 . 534078) (-2030 . 533954) (-2031 . 533765) + (-2032 . 533670) (-2033 . 533329) (-2034 . 533234) (-2035 . 533116) + (-2036 . 533048) (-2037 . 532915) (-2038 . 532821) (-2039 . 532741) + (-2040 . 532497) (-2041 . 532445) (-2042 . 532368) (-2043 . 532253) + (-2044 . 532112) (-2045 . 531820) (-2046 . 531767) (-2047 . 531646) + (-2048 . 530986) (-2049 . 530880) (-2050 . 530821) (-2051 . 530762) + (-2052 . 530603) (-2053 . 530348) (-2054 . 530282) (-2055 . 528502) + (-2056 . 528388) (-2057 . 528339) (-2058 . 528254) (-2059 . 528153) + (-2060 . 528070) (-2061 . 527988) (-2062 . 527851) (-2063 . 527628) + (-2064 . 527575) (-2065 . 527362) (-2066 . 526916) (-2067 . 526215) + (-2068 . 526130) (-2069 . 525816) (-2070 . 525487) (-2071 . 525289) + (-2072 . 525140) (-2073 . 523716) (-2074 . 523511) (-2075 . 523445) + (-2076 . 522930) (-2077 . 522772) (-2078 . 522702) (-2079 . 522638) + (-2080 . 522329) (-2081 . 522132) (-2082 . 521955) (-2083 . 521745) + (-2084 . 521035) (-2085 . 520883) (-2086 . 520759) (-2087 . 520664) + (-2088 . 520555) (-2089 . 520500) (-2090 . 520300) (-2091 . 520027) + (-2092 . 519897) (-2093 . 519684) (-2094 . 519632) (-2095 . 519142) + (-2096 . 518928) (-2097 . 518683) (-2098 . 518576) (-2099 . 518490) + (-2100 . 518437) (-2101 . 518360) (-2102 . 518265) (-2103 . 518182) + (-2104 . 518154) (-2105 . 518067) (-2106 . 517948) (-2107 . 517861) + (-2108 . 517752) (-2109 . 517632) (-2110 . 517433) (-2111 . 517173) + (-2112 . 517089) (-2113 . 517018) (-2114 . 516865) (-2115 . 516538) + (-2116 . 516415) (-2117 . 516211) (-2118 . 516074) (-2119 . 516022) + (-2120 . 514726) (-2121 . 514569) (-2122 . 513704) (-2123 . 513611) + (-2124 . 513524) (-2125 . 513390) (-2126 . 513246) (-2127 . 513169) + (-2128 . 513047) (-2129 . 512910) (-2130 . 512833) (-2131 . 512775) + (-2132 . 512668) (-2133 . 512529) (-2134 . 512474) (-2135 . 512394) + (-2136 . 512344) (-2137 . 512272) (-2138 . 512213) (-2139 . 512162) + (-2140 . 510960) (-2141 . 510609) (-2142 . 510538) (-2143 . 510386) + (-2144 . 509996) (-2145 . 509898) (-2146 . 509761) (-2147 . 509530) + (-2148 . 509282) (-2149 . 509209) (-2150 . 509057) (-2151 . 508980) + (-2152 . 508505) (-2153 . 508324) (-2154 . 508161) (-2155 . 507949) + (-2156 . 507766) (-2157 . 507669) (-2158 . 507241) (-2159 . 507081) + (-2160 . 506835) (-2161 . 506742) (-2162 . 506437) (-2163 . 505622) + (-2164 . 505543) (-2165 . 504233) (-2166 . 504164) (-2167 . 504086) + (-2168 . 503978) (-2169 . 503877) (-2170 . 503803) (-2171 . 503751) + (-2172 . 503648) (-2173 . 503585) (-2174 . 503127) (-2175 . 502983) + (-2176 . 502903) (-2177 . 502530) (-2178 . 502414) (-2179 . 502331) + (-2180 . 501094) (-2181 . 500999) (-2182 . 500757) (-2183 . 500670) + (-2184 . 500342) (-2185 . 500148) (-2186 . 499990) (-2187 . 499895) + (-2188 . 499638) (-2189 . 499480) (-2190 . 499418) (-2191 . 499317) + (-2192 . 498918) (-2193 . 498613) (-2194 . 498542) (-2195 . 498040) + (-2196 . 497987) (-2197 . 497921) (-2198 . 497670) (-2199 . 497570) + (-2200 . 497490) (-2201 . 497413) (-2202 . 497042) (-2203 . 496983) + (-2204 . 496930) (-2205 . 496806) (-2206 . 496756) (-2207 . 496405) + (-2208 . 496145) (-2209 . 495644) (-2210 . 494989) (-2211 . 493888) + (-2212 . 493557) (-2213 . 493491) (-2214 . 493439) (-2215 . 493313) + (-2216 . 493180) (-2217 . 493107) (-2218 . 492913) (-2219 . 492858) + (-2220 . 492801) (-2221 . 492773) (-2222 . 492397) (-2223 . 492331) + (-2224 . 492272) (-2225 . 491994) (-2226 . 491887) (-2227 . 491816) + (-2228 . 491717) (-2229 . 491626) (-2230 . 491556) (-2231 . 491454) + (-2232 . 491349) (-2233 . 491208) (-2234 . 491094) (-2235 . 490989) + (-2236 . 490905) (-2237 . 490530) (-2238 . 490493) (-2239 . 490401) + (-2240 . 490186) (-2241 . 489641) (-2242 . 489540) (-2243 . 489379) + (-2244 . 489110) (-2245 . 488856) (-2246 . 488785) (-2247 . 488398) + (-2248 . 488347) (-2249 . 488226) (-2250 . 488146) (-2251 . 488039) + (-2252 . 487912) (-2253 . 487851) (-2254 . 487757) (-2255 . 487674) + (-2256 . 487530) (-2257 . 487200) (-2258 . 486884) (-2259 . 486792) + (-2260 . 486740) (-2261 . 486655) (-2262 . 486582) (-2263 . 486351) + (-2264 . 486252) (-2265 . 486129) (-2266 . 486042) (-2267 . 485969) + (-2268 . 485903) (-2269 . 485681) (-2270 . 485584) (-2271 . 485497) + (-2272 . 485200) (-2273 . 485138) (-2274 . 484842) (-2275 . 484731) + (-2276 . 484610) (-2277 . 484405) (-2278 . 484235) (-2279 . 483993) + (-2280 . 483923) (-2281 . 483728) (-2282 . 483569) (-2283 . 483413) + (-2284 . 483203) (-2285 . 483043) (-2286 . 482934) (-2287 . 482706) + (-2288 . 482675) (-2289 . 482592) (-2290 . 482327) (-2291 . 482107) + (-2292 . 481966) (-2293 . 481879) (-2294 . 481792) (-2295 . 481740) + (-2296 . 481353) (-2297 . 481285) (-2298 . 481026) (-2299 . 480505) + (-2300 . 480287) (-2301 . 480166) (-2302 . 479867) (-2303 . 479814) + (-2304 . 479669) (-2305 . 479615) (-2306 . 479542) (-2307 . 479373) + (-2308 . 479205) (-2309 . 479132) (-2310 . 478969) (-2311 . 478730) + (-2312 . 478645) (-2313 . 478529) (-2314 . 478142) (-2315 . 477989) + (-2316 . 477960) (-2317 . 477926) (-2318 . 476742) (-2319 . 476705) + (-2320 . 476676) (-2321 . 475971) (-2322 . 475584) (-2323 . 475213) + (-2324 . 475090) (-2325 . 474914) (-2326 . 474788) (-2327 . 474679) + (-2328 . 474606) (-2329 . 473428) (-2330 . 473341) (-2331 . 473232) + (-2332 . 472881) (-2333 . 472676) (-2334 . 472532) (-2335 . 472462) + (-2336 . 471558) (-2337 . 471399) (-2338 . 471326) (-2339 . 470880) + (-2340 . 468681) (-2341 . 445306) (-2342 . 444726) (-2343 . 444643) + (-2344 . 444574) (-2345 . 444490) (-2346 . 444182) (-2347 . 444022) + (-2348 . 443890) (-2349 . 443740) (-2350 . 440988) (-2351 . 440774) + (-2352 . 440334) (-2353 . 440141) (-2354 . 439898) (-2355 . 439299) + (-2356 . 438545) (-2357 . 438401) (-2358 . 438264) (-2359 . 437595) + (-2360 . 437275) (-2361 . 437181) (-2362 . 437002) (-2363 . 436915) + (-2364 . 436841) (-2365 . 436399) (-2366 . 436225) (-2367 . 435952) + (-2368 . 435884) (-2369 . 435597) (-2370 . 435479) (-2371 . 434806) + (-2372 . 434754) (-2373 . 434653) (-2374 . 434625) (-2375 . 434303) + (-2376 . 434247) (-2377 . 434108) (-2378 . 434042) (-2379 . 433938) + (-2380 . 433607) (-2381 . 433469) (-2382 . 433410) (-2383 . 433319) + (-2384 . 432910) (-2385 . 432284) (-2386 . 432191) (-2387 . 432050) + (-2388 . 431881) (-2389 . 431726) (-2390 . 431625) (-2391 . 431597) + (-2392 . 431517) (-2393 . 431459) (-2394 . 431378) (-2395 . 431255) + (-2396 . 431017) (-2397 . 430913) (-2398 . 430794) (-2399 . 430701) + (-2400 . 430309) (-2401 . 430225) (-2402 . 429882) (-2403 . 429725) + (-2404 . 429628) (-2405 . 429506) (-2406 . 429395) (-2407 . 429079) + (-2408 . 428775) (-2409 . 428673) (-2410 . 428537) (-2411 . 425629) + (-2412 . 424974) (-2413 . 424816) (-2414 . 423546) (-2415 . 423388) + (-2416 . 423250) (-2417 . 423145) (-2418 . 422966) (-2419 . 422790) + (-2420 . 422586) (-2421 . 422432) (-2422 . 422289) (-2423 . 422149) + (-2424 . 422053) (-2425 . 421924) (-2426 . 421812) (-2427 . 421652) + (-2428 . 421599) (-2429 . 421531) (-2430 . 421424) (-2431 . 421372) + (-2432 . 421289) (-2433 . 421144) (-2434 . 421059) (-2435 . 420468) + (-2436 . 420313) (-2437 . 420140) (-2438 . 419924) (-2439 . 419789) + (-2440 . 419706) (-2441 . 419342) (-2442 . 419142) (-2443 . 418976) + (-2444 . 418697) (-2445 . 418526) (-2446 . 418394) (-2447 . 418360) + (-2448 . 418297) (-2449 . 418102) (-2450 . 417911) (-2451 . 417797) + (-2452 . 417769) (-2453 . 417719) (-2454 . 417474) (-2455 . 417365) + (-2456 . 417294) (-2457 . 416865) (-2458 . 416834) (-2459 . 416595) + (-2460 . 416473) (-2461 . 416374) (-2462 . 416292) (-2463 . 416144) + (-2464 . 416007) (-2465 . 414757) (-2466 . 414566) (-2467 . 414534) + (-2468 . 414317) (-2469 . 413958) (-2470 . 413829) (-2471 . 413769) + (-2472 . 413361) (-2473 . 413269) (-2474 . 413109) (-2475 . 412972) + (-2476 . 411572) (-2477 . 411027) (-2478 . 410858) (-2479 . 410577) + (-2480 . 410521) (-2481 . 410391) (-2482 . 410267) (-2483 . 410190) + (-2484 . 409375) (-2485 . 409130) (-2486 . 409078) (-2487 . 408985) + (-2488 . 408858) (-2489 . 408597) (-2490 . 408305) (-2491 . 408252) + (-2492 . 408157) (-2493 . 407860) (-2494 . 407534) (-2495 . 407434) + (-2496 . 407230) (-2497 . 407160) (-2498 . 405306) (-2499 . 405207) + (-2500 . 405095) (-2501 . 404996) (-2502 . 404892) (-2503 . 404697) + (-2504 . 404624) (-2505 . 404262) (-2506 . 404193) (-2507 . 404070) + (-2508 . 403996) (-2509 . 403466) (-2510 . 403308) (-2511 . 403080) + (-2512 . 402990) (-2513 . 402607) (-2514 . 402167) (-2515 . 402101) + (-2516 . 402005) (-2517 . 401891) (-2518 . 401759) (-2519 . 401626) + (-2520 . 401506) (-2521 . 401396) (-2522 . 401128) (-2523 . 400537) + (-2524 . 400012) (-2525 . 399926) (-2526 . 399764) (-2527 . 399695) + (-2528 . 399497) (-2529 . 399002) (-2530 . 398919) (-2531 . 398851) + (-2532 . 398736) (-2533 . 398614) (-2534 . 398586) (-2535 . 398516) + (-2536 . 398369) (-2537 . 397003) (-2538 . 396930) (-2539 . 396691) + (-2540 . 396187) (-2541 . 396079) (-2542 . 395835) (-2543 . 395754) + (-2544 . 395548) (-2545 . 395123) (-2546 . 395022) (-2547 . 393841) + (-2548 . 393747) (-2549 . 393667) (-2550 . 393464) (-2551 . 393390) + (-2552 . 393235) (-2553 . 392900) (-2554 . 392871) (-2555 . 392773) + (-2556 . 392703) (-2557 . 392576) (-2558 . 392173) (-2559 . 392096) + (-2560 . 392037) (-2561 . 391985) (-2562 . 391608) (-2563 . 391507) + (-2564 . 391206) (-2565 . 391025) (-2566 . 390420) (-2567 . 390353) + (-2568 . 390282) (-2569 . 390146) (-2570 . 390072) (-2571 . 390023) + (-2572 . 389953) (-2573 . 389830) (-2574 . 389762) (-2575 . 389667) + (-2576 . 389568) (-2577 . 389438) (-2578 . 389368) (-2579 . 389308) + (-2580 . 388914) (-2581 . 388846) (-2582 . 388540) (-2583 . 388244) + (-2584 . 387894) (-2585 . 387640) (-2586 . 387587) (-2587 . 387509) + (-2588 . 387457) (-2589 . 387377) (-2590 . 387147) (-2591 . 386941) + (-2592 . 386816) (-2593 . 386683) (-2594 . 386573) (-2595 . 386448) + (-2596 . 386353) (-2597 . 385536) (-2598 . 385484) (-2599 . 385383) + (-2600 . 385045) (-2601 . 384798) (-2602 . 384712) (-2603 . 384494) + (-2604 . 384411) (-2605 . 384082) (-2606 . 383949) (-2607 . 383368) + (-2608 . 383276) (-2609 . 382957) (-2610 . 382814) (-2611 . 382464) + (-2612 . 382408) (-2613 . 382326) (-2614 . 382253) (-2615 . 381751) + (-2616 . 381040) (-2617 . 380948) (-2618 . 380874) (-2619 . 380807) + (-2620 . 379969) (-2621 . 379866) (-2622 . 379793) (-2623 . 379720) + (-2624 . 379665) (-2625 . 378645) (-2626 . 378559) (-2627 . 378431) + (-2628 . 378135) (-2629 . 378083) (-2630 . 377198) (-2631 . 377040) + (-2632 . 376861) (-2633 . 376733) (-2634 . 376587) (-2635 . 376490) + (-2636 . 376272) (-2637 . 376128) (-2638 . 376044) (-2639 . 375655) + (-2640 . 375584) (-2641 . 375513) (-2642 . 375429) (-2643 . 375376) + (-2644 . 375247) (-2645 . 375219) (-2646 . 375132) (-2647 . 374926) + (-2648 . 374733) (-2649 . 374654) (-2650 . 374468) (-2651 . 374412) + (-2652 . 374082) (-2653 . 373661) (-2654 . 373590) (-2655 . 373502) + (-2656 . 373289) (-2657 . 373230) (-2658 . 372885) (-2659 . 372729) + (-2660 . 372562) (-2661 . 372380) (-2662 . 372271) (-2663 . 372243) + (-2664 . 372023) (-2665 . 371945) (-2666 . 371872) (-2667 . 371747) + (-2668 . 371471) (-2669 . 371306) (-2670 . 371203) (-2671 . 370966) + (-2672 . 370821) (-2673 . 370731) (-2674 . 370673) (-2675 . 370639) + (-2676 . 370498) (-2677 . 370188) (-2678 . 370035) (-2679 . 369929) + (-2680 . 369714) (-2681 . 369617) (-2682 . 369423) (-2683 . 369269) + (-2684 . 369184) (-2685 . 368853) (-2686 . 368668) (-2687 . 368563) + (-2688 . 368154) (-2689 . 368101) (-2690 . 368034) (-2691 . 367917) + (-2692 . 367664) (-2693 . 367441) (-2694 . 367099) (-2695 . 366918) + (-2696 . 366841) (-2697 . 366556) (-2698 . 366417) (-2699 . 366308) + (-2700 . 366172) (-2701 . 366019) (-2702 . 365834) (-2703 . 365761) + (-2704 . 365618) (-2705 . 365431) (-2706 . 365221) (-2707 . 364923) + (-2708 . 364794) (-2709 . 364728) (-2710 . 364648) (-2711 . 364327) + (-2712 . 364247) (-2713 . 364035) (-2714 . 363577) (-2715 . 363378) + (-2716 . 363164) (-2717 . 363093) (-2718 . 362842) (-2719 . 362733) + (-2720 . 362610) (-2721 . 362498) (-2722 . 362308) (-2723 . 362206) + (-2724 . 362100) (-2725 . 361907) (-2726 . 361730) (-2727 . 361464) + (-2728 . 361262) (-2729 . 360978) (-2730 . 360893) (-2731 . 360769) + (-2732 . 360660) (-2733 . 360486) (-2734 . 360329) (-2735 . 360201) + (-2736 . 359116) (-2737 . 358956) (-2738 . 357800) (-2739 . 357536) + (-2740 . 357477) (-2741 . 357083) (-2742 . 356449) (-2743 . 356176) + (-2744 . 356093) (-2745 . 355948) (-2746 . 355793) (-2747 . 355720) + (-2748 . 355596) (-2749 . 355466) (-2750 . 354713) (-2751 . 354685) + (-2752 . 354614) (-2753 . 354540) (-2754 . 354474) (-2755 . 354068) + (-2756 . 353964) (-2757 . 353769) (-2758 . 353688) (-2759 . 353605) + (-2760 . 353492) (-2761 . 353439) (-2762 . 353324) (-2763 . 353234) + (-2764 . 351504) (-2765 . 351439) (-2766 . 351160) (-2767 . 350862) + (-2768 . 350778) (-2769 . 350637) (-2770 . 350495) (-2771 . 350344) + (-2772 . 350097) (-2773 . 349925) (-2774 . 349842) (-2775 . 349776) + (-2776 . 349651) (-2777 . 349552) (-2778 . 349443) (-2779 . 349243) + (-2780 . 349102) (-2781 . 348923) (-2782 . 348786) (-2783 . 348730) + (-2784 . 348674) (-2785 . 348158) (-2786 . 348087) (-2787 . 347677) + (-2788 . 347598) (-2789 . 347543) (-2790 . 347319) (-2791 . 347214) + (-2792 . 347107) (-2793 . 347037) (-2794 . 346930) (-2795 . 346860) + (-2796 . 346758) (-2797 . 346652) (-2798 . 346449) (-2799 . 346176) + (-2800 . 346082) (-2801 . 345970) (-2802 . 345659) (-2803 . 345484) + (-2804 . 345303) (-2805 . 345157) (-2806 . 344996) (-2807 . 344843) + (-2808 . 344723) (-2809 . 344653) (-2810 . 344566) (-2811 . 344514) + (-2812 . 344363) (-2813 . 344196) (-2814 . 344138) (-2815 . 344072) + (-2816 . 343969) (-2817 . 343564) (-2818 . 343470) (-2819 . 343310) + (-2820 . 343224) (-2821 . 343058) (-2822 . 342763) (-2823 . 342660) + (-2824 . 342618) (-2825 . 342546) (-2826 . 342439) (-2827 . 342259) + (-2828 . 342192) (-2829 . 342053) (-2830 . 341928) (-2831 . 341873) + (-2832 . 341767) (-2833 . 341715) (-2834 . 341585) (-2835 . 341473) + (-2836 . 341235) (-2837 . 341182) (-2838 . 341116) (-2839 . 341061) + (-2840 . 340813) (-2841 . 340716) (-2842 . 340536) (-2843 . 339800) + (-2844 . 339748) (-2845 . 339593) (-2846 . 339290) (-2847 . 339205) + (-2848 . 339134) (-2849 . 339001) (-2850 . 338875) (-2851 . 338613) + (-2852 . 338539) (-2853 . 338426) (-2854 . 338227) (-2855 . 338156) + (-2856 . 338047) (-2857 . 337829) (-2858 . 337744) (-2859 . 337654) + (-2860 . 337495) (-2861 . 336948) (-2862 . 332788) (-2863 . 332681) + (-2864 . 332410) (-2865 . 332116) (-2866 . 332046) (-2867 . 331928) + (-2868 . 331805) (-2869 . 331444) (-2870 . 331390) (-2871 . 331214) + (-2872 . 329113) (-2873 . 328935) (-2874 . 328777) (-2875 . 328724) + (-2876 . 328573) (-2877 . 328403) (-2878 . 328294) (-2879 . 327966) + (-2880 . 327605) (-2881 . 327091) (-2882 . 327031) (-2883 . 326868) + (-2884 . 326649) (-2885 . 326524) (-2886 . 326431) (-2887 . 326087) + (-2888 . 325808) (-2889 . 325725) (-2890 . 325628) (-2891 . 325417) + (-2892 . 325338) (-2893 . 322557) (-2894 . 322455) (-2895 . 321937) + (-2896 . 321383) (-2897 . 320840) (-2898 . 320755) (-2899 . 320658) + (-2900 . 320542) (-2901 . 320400) (-2902 . 320329) (-2903 . 320122) + (-2904 . 319996) (-2905 . 319923) (-2906 . 319871) (-2907 . 319484) + (-2908 . 319324) (-2909 . 319240) (-2910 . 319128) (-2911 . 318971) + (-2912 . 318891) (-2913 . 318829) (-2914 . 318776) (-2915 . 318231) + (-2916 . 317967) (-2917 . 317916) (-2918 . 317669) (-2919 . 317376) + (-2920 . 317316) (-2921 . 317182) (-2922 . 317079) (-2923 . 316976) + (-2924 . 316923) (-2925 . 316810) (-2926 . 316656) (-2927 . 316587) + (-2928 . 316416) (-2929 . 316363) (-2930 . 316207) (-2931 . 315962) + (-2932 . 315798) (-2933 . 315727) (-2934 . 315120) (-2935 . 314983) + (-2936 . 314876) (-2937 . 314688) (-2938 . 314636) (-2939 . 314348) + (-2940 . 314202) (-2941 . 314143) (-2942 . 313990) (-2943 . 313743) + (-2944 . 313646) (-2945 . 313401) (-2946 . 313329) (-2947 . 313157) + (-2948 . 313098) (-2949 . 312917) (-2950 . 312861) (-2951 . 312765) + (-2952 . 312647) (-2953 . 312593) (-2954 . 311597) (-2955 . 311282) + (-2956 . 311164) (-2957 . 311093) (-2958 . 311037) (-2959 . 310940) + (-2960 . 310768) (-2961 . 310699) (-2962 . 310647) (-2963 . 310539) + (-2964 . 310288) (-2965 . 309842) (-2966 . 309772) (-2967 . 309587) + (-2968 . 309465) (-2969 . 309405) (-2970 . 309246) (-2971 . 309172) + (-2972 . 309062) (-2973 . 308890) (-2974 . 308746) (-2975 . 308353) + (-2976 . 308300) (-2977 . 308107) (-2978 . 308012) (-2979 . 307933) + (-2980 . 307850) (-2981 . 307773) (-2982 . 307542) (-2983 . 306471) + (-2984 . 306231) (-2985 . 306121) (-2986 . 305949) (-2987 . 305791) + (-2988 . 305474) (-2989 . 305406) (-2990 . 305308) (-2991 . 305256) + (-2992 . 305199) (-2993 . 305139) (-2994 . 304948) (-2995 . 304864) + (-2996 . 304580) (-2997 . 304493) (-2998 . 304440) (-2999 . 304406) + (-3000 . 303604) (-3001 . 303514) (-3002 . 303443) (-3003 . 303356) + (-3004 . 303297) (-3005 . 302772) (-3006 . 302687) (-3007 . 302338) + (-3008 . 302269) (-3009 . 302168) (-3010 . 300626) (-3011 . 300559) + (-3012 . 300509) (-3013 . 300397) (-3014 . 299774) (-3015 . 299716) + (-3016 . 299498) (-3017 . 299433) (-3018 . 299156) (-3019 . 298841) + (-3020 . 298711) (-3021 . 298453) (-3022 . 298372) (-3023 . 298294) + (-3024 . 298220) (-3025 . 297905) (-3026 . 297162) (-3027 . 297067) + (-3028 . 296953) (-3029 . 296793) (-3030 . 296678) (-3031 . 296542) + (-3032 . 296409) (-3033 . 296264) (-3034 . 296035) (-3035 . 295765) + (-3036 . 295694) (-3037 . 295662) (-3038 . 295410) (-3039 . 295353) + (-3040 . 295145) (-3041 . 294992) (-3042 . 294780) (-3043 . 294727) + (-3044 . 294654) (-3045 . 294523) (-3046 . 294163) (-3047 . 293959) + (-3048 . 293796) (-3049 . 293726) (-3050 . 293570) (-3051 . 293521) + (-3052 . 293342) (-3053 . 293219) (-3054 . 292840) (-3055 . 292738) + (-3056 . 292511) (-3057 . 292384) (-3058 . 292275) (-3059 . 292202) + (-3060 . 292094) (-3061 . 291929) (-3062 . 291831) (-3063 . 291767) + (-3064 . 291517) (-3065 . 291257) (-3066 . 291132) (-3067 . 291080) + (-3068 . 291009) (-3069 . 290908) (-3070 . 290804) (-3071 . 290657) + (-3072 . 290554) (-3073 . 290118) (-3074 . 290052) (-3075 . 289530) + (-3076 . 289432) (-3077 . 288966) (-3078 . 288615) (-3079 . 288509) + (-3080 . 288460) (-3081 . 288345) (-3082 . 288020) (-3083 . 287843) + (-3084 . 287790) (-3085 . 287644) (-3086 . 287535) (-3087 . 287267) + (-3088 . 287014) (-3089 . 286983) (-3090 . 286924) (-3091 . 286845) + (-3092 . 279889) (-3093 . 279861) (-3094 . 279809) (-3095 . 279706) + (-3096 . 279625) (-3097 . 279374) (-3098 . 279321) (-3099 . 279123) + (-3100 . 279016) (-3101 . 278939) (-3102 . 278648) (-3103 . 278545) + (-3104 . 278494) (-3105 . 278466) (-3106 . 277666) (-3107 . 277093) + (-3108 . 276734) (-3109 . 276193) (-3110 . 275963) (-3111 . 275792) + (-3112 . 275698) (-3113 . 275522) (-3114 . 275445) (-3115 . 275084) + (-3116 . 274879) (-3117 . 274651) (-3118 . 274488) (-3119 . 274432) + (-3120 . 274327) (-3121 . 274272) (-3122 . 273956) (-3123 . 273869) + (-3124 . 273704) (-3125 . 273549) (-3126 . 273304) (-3127 . 272916) + (-3128 . 272694) (-3129 . 272353) (-3130 . 272097) (-3131 . 271983) + (-3132 . 271888) (-3133 . 271808) (-3134 . 271645) (-3135 . 271412) + (-3136 . 271355) (-3137 . 271165) (-3138 . 271022) (-3139 . 270468) + (-3140 . 270359) (-3141 . 270255) (-3142 . 270172) (-3143 . 269903) + (-3144 . 269701) (-3145 . 269599) (-3146 . 268999) (-3147 . 268706) + (-3148 . 268214) (-3149 . 267902) (-3150 . 267830) (-3151 . 266827) + (-3152 . 266774) (-3153 . 266357) (-3154 . 266259) (-3155 . 266082) + (-3156 . 265735) (-3157 . 265042) (-3158 . 264993) (-3159 . 264196) + (-3160 . 264116) (-3161 . 263973) (-3162 . 263815) (-3163 . 263714) + (-3164 . 263495) (-3165 . 263352) (-3166 . 263231) (-3167 . 263148) + (-3168 . 262965) (-3169 . 262891) (-3170 . 262773) (-3171 . 262699) + (-3172 . 262449) (-3173 . 262366) (-3174 . 262116) (-3175 . 262064) + (-3176 . 261732) (-3177 . 261609) (-3178 . 261458) (-3179 . 261371) + (-3180 . 261318) (-3181 . 261119) (-3182 . 260365) (-3183 . 259519) + (-3184 . 259385) (-3185 . 259300) (-3186 . 259200) (-3187 . 259057) + (-3188 . 258444) (-3189 . 258006) (-3190 . 257727) (-3191 . 257583) + (-3192 . 257528) (-3193 . 257376) (-3194 . 257233) (-3195 . 253619) + (-3196 . 253522) (-3197 . 253418) (-3198 . 253242) (-3199 . 252867) + (-3200 . 252440) (-3201 . 251915) (-3202 . 251771) (-3203 . 251653) + (-3204 . 251572) (-3205 . 251477) (-3206 . 251353) (-3207 . 251291) + (-3208 . 251042) (-3209 . 250992) (-3210 . 250889) (-3211 . 250777) + (-3212 . 250743) (-3213 . 250638) (-3214 . 250610) (-3215 . 249955) + (-3216 . 249859) (-3217 . 249793) (-3218 . 249738) (-3219 . 249667) + (-3220 . 249557) (-3221 . 249458) (-3222 . 249364) (-3223 . 249139) + (-3224 . 249042) (-3225 . 248971) (-3226 . 248659) (-3227 . 248607) + (-3228 . 248552) (-3229 . 248414) (-3230 . 248109) (-3231 . 248024) + (-3232 . 247802) (-3233 . 247692) (-3234 . 247447) (-3235 . 247177) + (-3236 . 247025) (-3237 . 246896) (-3238 . 246768) (-3239 . 246437) + (-3240 . 246353) (-3241 . 246275) (-3242 . 246184) (-3243 . 246071) + (-3244 . 245955) (-3245 . 245805) (-3246 . 245750) (-3247 . 245627) + (-3248 . 245599) (-3249 . 245518) (-3250 . 245490) (-3251 . 244887) + (-3252 . 244802) (-3253 . 244731) (-3254 . 244664) (-3255 . 244565) + (-3256 . 244468) (-3257 . 244383) (-3258 . 244191) (-3259 . 244135) + (-3260 . 244052) (-3261 . 243941) (-3262 . 243868) (-3263 . 243748) + (-3264 . 243641) (-3265 . 243416) (-3266 . 243367) (-3267 . 243029) + (-3268 . 242713) (-3269 . 242681) (-3270 . 242628) (-3271 . 242545) + (-3272 . 242356) (-3273 . 242154) (-3274 . 242081) (-3275 . 241974) + (-3276 . 241919) (-3277 . 241790) (-3278 . 241452) (-3279 . 241372) + (-3280 . 241232) (-3281 . 240980) (-3282 . 240824) (-3283 . 240343) + (-3284 . 240283) (-3285 . 240106) (-3286 . 240001) (-3287 . 239821) + (-3288 . 239578) (-3289 . 239354) (-3290 . 239027) (-3291 . 238681) + (-3292 . 238594) (-3293 . 238169) (-3294 . 237684) (-3295 . 237483) + (-3296 . 237361) (-3297 . 237115) (-3298 . 237057) (-3299 . 236626) + (-3300 . 236598) (-3301 . 235899) (-3302 . 235839) (-3303 . 235773) + (-3304 . 235551) (-3305 . 235362) (-3306 . 235262) (-3307 . 235078) + (-3308 . 235028) (-3309 . 234854) (-3310 . 234731) (-3311 . 234537) + (-3312 . 234388) (-3313 . 234317) (-3314 . 234233) (-3315 . 233556) + (-3316 . 233454) (-3317 . 233403) (-3318 . 233298) (-3319 . 233201) + (-3320 . 233066) (-3321 . 232947) (-3322 . 232396) (-3323 . 232289) + (-3324 . 231881) (-3325 . 231828) (-3326 . 231554) (-3327 . 231477) + (-3328 . 231356) (-3329 . 231137) (-3330 . 230984) (-3331 . 230898) + (-3332 . 230713) (-3333 . 230533) (-3334 . 230446) (-3335 . 230305) + (-3336 . 230252) (-3337 . 229373) (-3338 . 229108) (-3339 . 229056) + (-3340 . 228972) (-3341 . 228868) (-3342 . 228795) (-3343 . 228767) + (-3344 . 228577) (-3345 . 228513) (-3346 . 228460) (-3347 . 228359) + (-3348 . 228114) (-3349 . 228007) (-3350 . 227948) (-3351 . 227855) + (-3352 . 227729) (-3353 . 227569) (-3354 . 227231) (-3355 . 226968) + (-3356 . 226778) (-3357 . 226120) (-3358 . 225977) (-3359 . 225884) + (-3360 . 224703) (-3361 . 224590) (-3362 . 224332) (-3363 . 224199) + (-3364 . 224132) (-3365 . 223974) (-3366 . 223755) (-3367 . 222309) + (-3368 . 222185) (-3369 . 222136) (-3370 . 221919) (-3371 . 221309) + (-3372 . 221111) (-3373 . 221028) (-3374 . 220925) (-3375 . 220846) + (-3376 . 220514) (-3377 . 220483) (-3378 . 220382) (-3379 . 220329) + (-3380 . 220277) (-3381 . 219970) (-3382 . 219874) (-3383 . 219840) + (-3384 . 219784) (-3385 . 219617) (-3386 . 219546) (-3387 . 219480) + (-3388 . 219013) (-3389 . 218872) (-3390 . 214810) (-3391 . 214752) + (-3392 . 214699) (-3393 . 214590) (-3394 . 214433) (-3395 . 214337) + (-3396 . 214039) (-3397 . 213909) (-3398 . 213766) (-3399 . 213608) + (-3400 . 213363) (-3401 . 213188) (-3402 . 212771) (-3403 . 212657) + (-3404 . 212235) (-3405 . 212067) (-3406 . 211998) (-3407 . 211945) + (-3408 . 211890) (-3409 . 211807) (-3410 . 211545) (-3411 . 211265) + (-3412 . 210981) (-3413 . 210731) (-3414 . 210551) (-3415 . 210099) + (-3416 . 209785) (-3417 . 209294) (-3418 . 209250) (-3419 . 209048) + (-3420 . 208905) (-3421 . 208727) (-3422 . 208629) (-3423 . 208404) + (-3424 . 208319) (-3425 . 207943) (-3426 . 205598) (-3427 . 205199) + (-3428 . 205062) (-3429 . 204614) (-3430 . 204459) (-3431 . 204256) + (-3432 . 204113) (-3433 . 203762) (-3434 . 203137) (-3435 . 202946) + (-3436 . 202804) (-3437 . 202699) (-3438 . 202580) (-3439 . 202480) + (-3440 . 202381) (-3441 . 202173) (-3442 . 202089) (-3443 . 201969) + (-3444 . 201912) (-3445 . 201835) (-3446 . 201775) (-3447 . 201178) + (-3448 . 199217) (-3449 . 198862) (-3450 . 198636) (-3451 . 198491) + (-3452 . 198432) (-3453 . 198287) (-3454 . 198232) (-3455 . 198101) + (-3456 . 195949) (-3457 . 195920) (-3458 . 195762) (-3459 . 195259) + (-3460 . 195115) (-3461 . 194798) (-3462 . 194718) (-3463 . 194650) + (-3464 . 194431) (-3465 . 194348) (-3466 . 194262) (-3467 . 194209) + (-3468 . 194051) (-3469 . 193945) (-3470 . 193637) (-3471 . 193608) + (-3472 . 193407) (-3473 . 193277) (-3474 . 192916) (-3475 . 192813) + (-3476 . 192760) (-3477 . 192607) (-3478 . 192555) (-3479 . 192483) + (-3480 . 192446) (-3481 . 192000) (-3482 . 191926) (-3483 . 191687) + (-3484 . 191604) (-3485 . 191531) (-3486 . 191360) (-3487 . 191259) + (-3488 . 191143) (-3489 . 191091) (-3490 . 189876) (-3491 . 189720) + (-3492 . 189283) (-3493 . 189209) (-3494 . 189051) (-3495 . 188974) + (-3496 . 188895) (-3497 . 188722) (-3498 . 188635) (-3499 . 186220) + (-3500 . 184645) (-3501 . 184454) (-3502 . 184223) (-3503 . 184101) + (-3504 . 183916) (-3505 . 183842) (-3506 . 183814) (-3507 . 183268) + (-3508 . 183154) (-3509 . 182803) (-3510 . 182740) (-3511 . 182653) + (-3512 . 182544) (-3513 . 182459) (-3514 . 182366) (-3515 . 181510) + (-3516 . 181300) (-3517 . 180871) (-3518 . 180783) (-3519 . 180637) + (-3520 . 180449) (-3521 . 180326) (-3522 . 180167) (-3523 . 180049) + (-3524 . 179894) (-3525 . 179842) (-3526 . 179789) (-3527 . 179626) + (-3528 . 179462) (-3529 . 179389) (-3530 . 179231) (-3531 . 179078) + (-3532 . 178948) (-3533 . 178914) (-3534 . 178827) (-3535 . 178740) + (-3536 . 178667) (-3537 . 178582) (-3538 . 178246) (-3539 . 178149) + (-3540 . 178033) (-3541 . 177854) (-3542 . 177802) (-3543 . 177637) + (-3544 . 177326) (-3545 . 177090) (-3546 . 176974) (-3547 . 176804) + (-3548 . 176529) (-3549 . 176467) (-3550 . 176043) (-3551 . 175974) + (-3552 . 175858) (-3553 . 175830) (-3554 . 175673) (-3555 . 175521) + (-3556 . 175466) (-3557 . 175407) (-3558 . 175123) (-3559 . 174992) + (-3560 . 174907) (-3561 . 173056) (-3562 . 172995) (-3563 . 172898) + (-3564 . 172849) (-3565 . 172767) (-3566 . 172543) (-3567 . 172414) + (-3568 . 172025) (-3569 . 171693) (-3570 . 171596) (-3571 . 171501) + (-3572 . 171131) (-3573 . 170755) (-3574 . 170596) (-3575 . 170381) + (-3576 . 170319) (-3577 . 170242) (-3578 . 170148) (-3579 . 170063) + (-3580 . 169964) (-3581 . 169796) (-3582 . 169455) (-3583 . 169381) + (-3584 . 169321) (-3585 . 169102) (-3586 . 169022) (-3587 . 168658) + (-3588 . 167257) (-3589 . 167180) (-3590 . 167051) (-3591 . 166968) + (-3592 . 166816) (-3593 . 166706) (-3594 . 166619) (-3595 . 166532) + (-3596 . 166389) (-3597 . 166317) (-3598 . 166154) (-3599 . 166074) + (-3600 . 165967) (-3601 . 165844) (-3602 . 165679) (-3603 . 165572) + (-3604 . 165417) (-3605 . 165269) (-3606 . 165217) (-3607 . 165062) + (-3608 . 164979) (-3609 . 164790) (-3610 . 164515) (-3611 . 164414) + (-3612 . 164331) (-3613 . 164213) (-3614 . 164123) (-3615 . 163699) + (-3616 . 163599) (-3617 . 163432) (-3618 . 163333) (-3619 . 163022) + (-3620 . 162945) (-3621 . 162839) (-3622 . 157331) (-3623 . 156998) + (-3624 . 156550) (-3625 . 156478) (-3626 . 156285) (-3627 . 155749) + (-3628 . 155550) (-3629 . 155472) (-3630 . 154656) (-3631 . 154474) + (-3632 . 154348) (-3633 . 153960) (-3634 . 153815) (-3635 . 153746) + (-3636 . 153345) (-3637 . 153273) (-3638 . 153059) (-3639 . 152989) + (-3640 . 152957) (-3641 . 152901) (-3642 . 152824) (-3643 . 152728) + (-3644 . 152519) (-3645 . 152066) (-3646 . 151901) (-3647 . 151503) + (-3648 . 151376) (-3649 . 151320) (-3650 . 151237) (-3651 . 151019) + (-3652 . 150840) (-3653 . 150774) (-3654 . 149916) (-3655 . 149495) + (-3656 . 149148) (-3657 . 149074) (-3658 . 149006) (-3659 . 148954) + (-3660 . 148468) (-3661 . 148249) (-3662 . 147975) (-3663 . 147762) + (-3664 . 147734) (-3665 . 147622) (-3666 . 147527) (-3667 . 147429) + (-3668 . 147349) (-3669 . 147251) (-3670 . 147223) (-3671 . 147080) + (-3672 . 146977) (-3673 . 146847) (-3674 . 146694) (-3675 . 146624) + (-3676 . 146509) (-3677 . 146414) (-3678 . 146214) (-3679 . 146097) + (-3680 . 145841) (-3681 . 145475) (-3682 . 145352) (-3683 . 145300) + (-3684 . 145199) (-3685 . 145147) (-3686 . 145062) (-3687 . 144981) + (-3688 . 144778) (-3689 . 144615) (-3690 . 144326) (-3691 . 144224) + (-3692 . 144054) (-3693 . 143993) (-3694 . 143911) (-3695 . 143845) + (-3696 . 143760) (-3697 . 143711) (-3698 . 143649) (-3699 . 143390) + (-3700 . 143311) (-3701 . 143258) (-3702 . 143190) (-3703 . 143017) + (-3704 . 142915) (-3705 . 141667) (-3706 . 141532) (-3707 . 141138) + (-3708 . 141086) (-3709 . 141033) (-3710 . 140980) (-3711 . 140952) + (-3712 . 140850) (-3713 . 140763) (-3714 . 140450) (-3715 . 140268) + (-3716 . 140190) (-3717 . 140038) (-3718 . 140010) (-3719 . 139936) + (-3720 . 139635) (-3721 . 139545) (-3722 . 139294) (-3723 . 139134) + (-3724 . 138918) (-3725 . 138774) (-3726 . 138632) (-3727 . 138595) + (-3728 . 138464) (-3729 . 138430) (-3730 . 138043) (-3731 . 137902) + (-3732 . 137809) (-3733 . 136190) (-3734 . 136095) (-3735 . 135971) + (-3736 . 135646) (-3737 . 135532) (-3738 . 135461) (-3739 . 135384) + (-3740 . 135269) (-3741 . 135237) (-3742 . 135097) (-3743 . 135016) + (-3744 . 134899) (-3745 . 134527) (-3746 . 133666) (-3747 . 133080) + (-3748 . 132589) (-3749 . 132515) (-3750 . 132357) (-3751 . 132067) + (-3752 . 131928) (-3753 . 131354) (-3754 . 130877) (-3755 . 130798) + (-3756 . 130749) (-3757 . 129381) (-3758 . 129056) (-3759 . 128794) + (-3760 . 128720) (-3761 . 128378) (-3762 . 128237) (-3763 . 127134) + (-3764 . 126994) (-3765 . 126837) (-3766 . 126454) (-3767 . 126026) + (-3768 . 125904) (-3769 . 125820) (-3770 . 125721) (-3771 . 125669) + (-3772 . 125592) (-3773 . 124940) (-3774 . 124818) (-3775 . 124784) + (-3776 . 124638) (-3777 . 124346) (-3778 . 123348) (-3779 . 123260) + (-3780 . 123151) (** . 120074) (-3782 . 120025) (-3783 . 119858) + (-3784 . 119721) (-3785 . 119553) (-3786 . 119319) (-3787 . 119093) + (-3788 . 118956) (-3789 . 118871) (-3790 . 118800) (-3791 . 118701) + (-3792 . 118585) (-3793 . 118397) (-3794 . 117799) (-3795 . 117696) + (-3796 . 117619) (-3797 . 117371) (-3798 . 117020) (-3799 . 116860) + (-3800 . 116739) (-3801 . 116576) (-3802 . 116524) (-3803 . 116067) + (-3804 . 116015) (-3805 . 115935) (-3806 . 115768) (-3807 . 115649) + (-3808 . 115530) (-3809 . 115358) (-3810 . 115287) (-3811 . 114523) + (-3812 . 113998) (-3813 . 113854) (-3814 . 113781) (-3815 . 111953) + (-3816 . 111818) (-3817 . 111332) (-3818 . 111280) (-3819 . 110720) + (-3820 . 110599) (-3821 . 110120) (-3822 . 109419) (-3823 . 109301) + (-3824 . 109121) (-3825 . 108902) (-3826 . 108753) (-3827 . 107252) + (-3828 . 107135) (-3829 . 107003) (-3830 . 106903) (-3831 . 106820) + (-3832 . 106624) (-3833 . 106573) (-3834 . 106391) (-3835 . 106243) + (-3836 . 106019) (-3837 . 105882) (-3838 . 105848) (-3839 . 104308) + (-3840 . 104199) (-3841 . 104081) (-3842 . 103965) (-3843 . 103747) + (-3844 . 103693) (-3845 . 103022) (-3846 . 102900) (-3847 . 102802) + (-3848 . 102574) (-3849 . 102503) (-3850 . 102338) (-3851 . 102265) + (-3852 . 102203) (-3853 . 102088) (-3854 . 102010) (-3855 . 101933) + (-3856 . 101715) (-3857 . 101597) (-3858 . 101330) (-3859 . 101164) + (-3860 . 101080) (-3861 . 101048) (-3862 . 100884) (-3863 . 100554) + (-3864 . 100411) (-3865 . 99675) (-3866 . 99551) (-3867 . 99298) + (-3868 . 99203) (-3869 . 99096) (-3870 . 98825) (-3871 . 98751) + (-3872 . 98639) (-3873 . 98499) (-3874 . 97895) (-3875 . 97707) + (-3876 . 97546) (-3877 . 96894) (-3878 . 95828) (-3879 . 95579) + (-3880 . 95478) (-3881 . 95379) (-3882 . 95178) (-3883 . 95101) + (-3884 . 95073) (-3885 . 94990) (-3886 . 94820) (-3887 . 94771) + (-3888 . 94641) (-3889 . 94361) (-3890 . 94235) (-3891 . 93275) + (-3892 . 93192) (-3893 . 93013) (-3894 . 92906) (-3895 . 92794) + (-3896 . 92720) (-3897 . 92655) (-3898 . 92048) (-3899 . 91966) + (-3900 . 91785) (-3901 . 91147) (-3902 . 91040) (-3903 . 90940) + (-3904 . 90730) (-3905 . 90615) (-3906 . 90511) (-3907 . 90437) + (-3908 . 90189) (-3909 . 90123) (-3910 . 90050) (-3911 . 89819) + (-3912 . 88658) (-3913 . 86528) (-3914 . 86008) (-3915 . 85841) + (-3916 . 85792) (-3917 . 85692) (-3918 . 85540) (-3919 . 85484) + (-3920 . 85324) (-3921 . 84691) (-3922 . 84465) (-3923 . 83852) + (-3924 . 83669) (-3925 . 83616) (-3926 . 83502) (-3927 . 83193) + (-3928 . 82834) (-3929 . 82522) (-3930 . 82453) (-3931 . 82304) + (-3932 . 82054) (-3933 . 81936) (-3934 . 81869) (-3935 . 81760) + (-3936 . 81656) (-3937 . 80316) (-3938 . 80113) (-3939 . 80061) + (-3940 . 78937) (-3941 . 78585) (-3942 . 78152) (-3943 . 78084) + (-3944 . 77981) (-3945 . 77730) (-3946 . 77602) (-3947 . 77503) + (-3948 . 77116) (-3949 . 77064) (-3950 . 76909) (-3951 . 76769) + (-3952 . 76695) (-3953 . 76091) (-3954 . 76039) (-3955 . 75924) + (-3956 . 75800) (-3957 . 75623) (-3958 . 70299) (-3959 . 70214) + (-3960 . 69819) (-3961 . 69648) (-3962 . 69343) (-3963 . 69288) + (-3964 . 69194) (-3965 . 69091) (-3966 . 68894) (-3967 . 68807) + (-3968 . 68560) (-3969 . 68505) (-3970 . 68418) (-3971 . 68363) + (-3972 . 68271) (-3973 . 68131) (-3974 . 67990) (-3975 . 67799) + (-3976 . 67720) (-3977 . 67444) (-3978 . 67035) (-3979 . 65999) + (-3980 . 65869) (-3981 . 65837) (-3982 . 65734) (-3983 . 65598) + (-3984 . 65432) (-3985 . 65354) (-3986 . 65298) (-3987 . 65213) + (-3988 . 64991) (-3989 . 64942) (-3990 . 64833) (-3991 . 64739) + (-3992 . 64643) (-3993 . 64509) (-3994 . 64116) (-3995 . 63705) + (-3996 . 58992) (-3997 . 58813) (-3998 . 58378) (-3999 . 58274) + (-4000 . 57680) (-4001 . 57595) (-4002 . 57438) (-4003 . 57388) + (-4004 . 57279) (-4005 . 57067) (-4006 . 56948) (-4007 . 56881) + (-4008 . 56687) (-4009 . 56516) (-4010 . 56454) (-4011 . 56356) + (-4012 . 56222) (-4013 . 56110) (-4014 . 56032) (-4015 . 55971) + (-4016 . 55800) (-4017 . 55748) (-4018 . 55605) (-4019 . 55284) + (-4020 . 55182) (-4021 . 55129) (-4022 . 55074) (-4023 . 55000) + (-4024 . 54796) (-4025 . 54715) (-4026 . 54663) (-4027 . 54383) + (-4028 . 54331) (-4029 . 54261) (-4030 . 53926) (-4031 . 53892) + (-4032 . 53757) (-4033 . 53669) (-4034 . 53526) (-4035 . 51949) + (-4036 . 51871) (-4037 . 51818) (-4038 . 51744) (-4039 . 51588) + (-4040 . 51476) (-4041 . 51361) (-4042 . 51255) (-4043 . 51175) + (-4044 . 50748) (-4045 . 50501) (-4046 . 50388) (-4047 . 50187) + (-4048 . 50064) (-4049 . 49908) (-4050 . 49790) (-4051 . 49700) + (-4052 . 49358) (-4053 . 49190) (-4054 . 49135) (-4055 . 48861) + (-4056 . 48716) (-4057 . 48665) (-4058 . 48631) (-4059 . 48513) + (-4060 . 48426) (-4061 . 48154) (-4062 . 48039) (-4063 . 47900) + (-4064 . 47738) (-4065 . 47666) (-4066 . 47527) (-4067 . 47087) + (-4068 . 46958) (-4069 . 46892) (-4070 . 46832) (-4071 . 46736) + (-4072 . 46589) (-4073 . 46342) (-4074 . 46290) (-4075 . 46132) + (-4076 . 46002) (-4077 . 45774) (-4078 . 45743) (-4079 . 45645) + (-4080 . 45572) (-4081 . 45345) (-4082 . 45167) (-4083 . 45114) + (-4084 . 44150) (-4085 . 44078) (-4086 . 43696) (-4087 . 43563) + (-4088 . 43430) (-4089 . 43318) (-4090 . 43290) (-4091 . 43058) + (-4092 . 42981) (-4093 . 42866) (-4094 . 42677) (-4095 . 42529) + (-4096 . 42147) (-4097 . 42076) (-4098 . 41982) (-4099 . 41927) + (-4100 . 41862) (-4101 . 41794) (-4102 . 41738) (-4103 . 41266) + (-4104 . 41214) (-4105 . 41072) (-4106 . 41017) (-4107 . 40898) + (-4108 . 40628) (-4109 . 40519) (-4110 . 40488) (-4111 . 40243) + (-4112 . 40141) (-4113 . 39985) (-4114 . 39951) (-4115 . 39846) + (-4116 . 35858) (-4117 . 35800) (-4118 . 35432) (-4119 . 35314) + (-4120 . 35261) (-4121 . 35151) (-4122 . 35091) (-4123 . 34946) + (-4124 . 34845) (-4125 . 34353) (-4126 . 34301) (-4127 . 34130) + (-4128 . 34000) (-4129 . 33937) (-4130 . 33755) (-4131 . 33567) + (-4132 . 33453) (-4133 . 33370) (-4134 . 32810) (-4135 . 32663) + (-4136 . 32515) (-4137 . 32408) (-4138 . 32296) (-4139 . 32003) + (-4140 . 31894) (-4141 . 31320) (-4142 . 31051) (-4143 . 30968) + (-4144 . 30873) (-4145 . 29708) (-4146 . 29483) (-4147 . 29141) + (-4148 . 29054) (-4149 . 28948) (-4150 . 28274) (-4151 . 28121) + (-4152 . 28009) (-4153 . 27518) (-4154 . 27363) (-4155 . 27244) + (-4156 . 27212) (-4157 . 27134) (-4158 . 26999) (-4159 . 26878) + (-4160 . 26801) (-4161 . 26743) (-4162 . 26632) (-4163 . 26450) + (-4164 . 26270) (-4165 . 26193) (-4166 . 26108) (-4167 . 25244) + (-4168 . 25125) (-4169 . 25072) (-4170 . 24937) (-4171 . 24836) + (-4172 . 24694) (-4173 . 24641) (-4174 . 24495) (-4175 . 24389) + (-4176 . 24210) (-4177 . 24040) (-4178 . 23946) (-4179 . 23825) + (-4180 . 23770) (-4181 . 23688) (-4182 . 23594) (-4183 . 22926) + (-4184 . 22791) (-4185 . 21581) (-4186 . 21453) (-4187 . 21379) + (-4188 . 21330) (-4189 . 21231) (-4190 . 20455) (-4191 . 20368) + (-4192 . 20156) (-4193 . 19556) (-4194 . 19457) (-4195 . 19391) + (-4196 . 17139) (-4197 . 17023) (-4198 . 16967) (-4199 . 16761) + (-4200 . 16673) (-4201 . 16617) (-4202 . 16484) (-4203 . 16353) + (-4204 . 16268) (-4205 . 16137) (-4206 . 16078) (-4207 . 16004) + (-4208 . 15907) (-4209 . 15806) (-4210 . 15679) (-4211 . 15609) + (-4212 . 15505) (-4213 . 15114) (-4214 . 14972) (-4215 . 14803) + (-4216 . 14425) (-4217 . 14370) (-4218 . 14226) (-4219 . 14056) + (-4220 . 14004) (-4221 . 13643) (-4222 . 13472) (-4223 . 13279) + (-4224 . 13178) (-4225 . 12669) (-4226 . 12524) (-4227 . 12399) + (-4228 . 12166) (-4229 . 11974) (-4230 . 11145) (-4231 . 8898) + (-4232 . 8786) (-4233 . 8633) (-4234 . 8582) (-4235 . 8481) + (-4236 . 7017) (-4237 . 6951) (-4238 . 6922) (-4239 . 6842) + (-4240 . 6644) (-4241 . 6535) (-4242 . 6380) (-4243 . 6194) + (-4244 . 6127) (-4245 . 6059) (-4246 . 5888) (-4247 . 5832) + (-4248 . 5540) (-4249 . 5456) (-4250 . 5428) (-4251 . 5221) + (-4252 . 5141) (-4253 . 5088) (-4254 . 5016) (-4255 . 4861) + (-4256 . 4717) (-4257 . 4662) (-4258 . 4610) (-4259 . 4513) + (-4260 . 4458) (-4261 . 4363) (-4262 . 4124) (-4263 . 3865) + (-4264 . 3751) (-4265 . 3337) (-4266 . 3097) (-4267 . 3023) + (-4268 . 2914) (-4269 . 2862) (-4270 . 2121) (-4271 . 2069) + (-4272 . 1319) (-4273 . 740) (-4274 . 625) (-4275 . 516) (-4276 . 409) + (-4277 . 329) (-4278 . 226) (-4279 . 153) (-4280 . 30))
\ No newline at end of file |